-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprobabilistic_model.py
254 lines (219 loc) · 11.1 KB
/
probabilistic_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torch.nn as nn
import torch .nn.functional as F
from transformers import RobertaModel
from networks.gatvae_ss import *
from networks.gatvae_1 import *
class baseline_model(nn.Module):
def __init__(self,args,config):
super(baseline_model,self).__init__()
self.args=args
self.config=config
if self.args.dataset=='Causalogue':
self.bert=RobertaModel.from_pretrained(self.config.roberta_pretrain_path)
config.emb_dim=768
config.feat_dim=768
config.gat_feat_dim=768
if args.bert_learning==False:
for p in self.parameters():
p.requires_grad=False
if self.args.dataset=="Causaction":
self.oneDlayer=nn.Linear(300*2048,config.emb_dim)
self.gnn=gat_vae(args,config)
#layers=[nn.Linear(self.config.feat_dim*2,self.config.feat_dim),nn.Sigmoid(),nn.Dropout(0.5),nn.Linear(self.config.feat_dim,1),nn.Sigmoid(),nn.Dropout(0.5),nn.Linear(1,1)]
#self.out_mlp = nn.Sequential(*layers)
self.strengh=nn.Linear(self.config.feat_dim*2,1)
# self.strengh2=nn.Linear(1,1)
# self.pool=nn.Sigmoid()
def forward(self,lengths,adj_mask,bert_token_b,bert_masks_b,bert_clause_b):
if self.args.dataset=='Causalogue':
bert_output=self.bert(input_ids=bert_token_b.cuda(),attention_mask=bert_masks_b.cuda())
doc_sents_h = self.batched_index_select(bert_output, bert_clause_b.cuda())
if self.args.dataset=="Causaction":
batch=lengths.size()[0]
max_len=adj_mask.size()[1]
doc_sents_h = bert_token_b.view(batch,max_len,-1)
doc_sents_h=self.oneDlayer(doc_sents_h)
H,A,e,s,rank,C=self.gnn(doc_sents_h,lengths,adj_mask)
H_src=H.unsqueeze(-2).expand(-1, -1, doc_sents_h.size()[1], -1)
H_dst=H.unsqueeze(-3).expand(-1, doc_sents_h.size()[1], -1, -1)
H_pair=torch.cat((H_src,H_dst),dim=-1)
pred_results=torch.relu(self.strengh(H_pair).squeeze(-1))
assert not torch.any(torch.isnan(pred_results))
assert not torch.any(torch.isnan(A))
doc_sents_h_src=doc_sents_h.unsqueeze(-2).expand(-1, -1, doc_sents_h.size()[1], -1)
doc_sents_h_dst=doc_sents_h.unsqueeze(-3).expand(-1, doc_sents_h.size()[1], -1, -1)
doc_sents_h_pair=torch.cat((doc_sents_h_src,doc_sents_h_dst),dim=-1)
doc_sents_h_pred_results=torch.relu(self.strengh(doc_sents_h_pair).squeeze(-1))
assert not torch.any(torch.isnan(doc_sents_h_pred_results))
return H,doc_sents_h,A.squeeze(1),e,s,rank,pred_results,doc_sents_h_pred_results,C
def batched_index_select(self, bert_output, bert_clause_b):
hidden_state = bert_output[0]
dummy = bert_clause_b.unsqueeze(2).expand(bert_clause_b.size(0), bert_clause_b.size(1), hidden_state.size(2))
doc_sents_h = hidden_state.gather(1, dummy)
return doc_sents_h
# def loss_ss(self,H_do,correlation_label,batch_label_mask):
# criterion = nn.BCEWithLogitsLoss(reduction='mean')
# batch,do_num,max_doc_len,_=H_do.size()[1]
# batch_label_mask.expand(-1,do_num,-1,-1).reshape(batch*do_num,max_doc_len,-1)
# batch_label_mask=batch_label_mask.ge(0.5)
# H_do_raw=H_do.expand(-1,-1,max_doc_len,-1)
# H_do_arr=H_do.expand(-1,max_doc_len,-1,-1)
# similarity=torch.cosine_similarity(H_do_raw,H_do_arr,dim=-1)
def loss_hl(self,causal_strengh,causal_graph,batch_label,batch_label_mask):
criterion = nn.BCEWithLogitsLoss(reduction='mean')
batch_label_mask=batch_label_mask.ge(0.5)
causal_strengh=torch.masked_select(causal_strengh,batch_label_mask)
causal_graph=torch.masked_select(causal_graph,batch_label_mask)
batch_label=torch.masked_select(batch_label,batch_label_mask)
loss1=criterion(causal_strengh,batch_label)
loss2=criterion(causal_graph,batch_label)
return loss1+loss2
def loss_KL(self,e,s):
# batch=e[1].size()[0]
# utt=e[1].size()[1]
# num=batch*utt*utt
# sum=0
# for i in range(1,self.args.gnn_layers+1):
# KLD= -0.5 * torch.sum(1 + s[i] - e[i].pow(2) - s[i].exp())
# KLD=KLD/num
# sum+=KLD
e=e.squeeze(1)
s=s.squeeze(1)
batch=e.size()[0]
utt=e.size()[1]
num=batch*utt*utt
# print(e,s)
# print(e.pow(2),s.exp())
KLD= -0.5 * torch.sum(1 + s - e.pow(2) - s.exp())
sum=KLD/num
if sum>2:
return 1
else:
return sum
def loss_reconstruction(self,X_hat,X,confounding,rank,batch_label_mask):
batch_label_mask=batch_label_mask.ge(0.5)
criterion = nn.BCEWithLogitsLoss(reduction='mean')
assert X_hat.size()==X.size()
batch,N,emb=X_hat.size()
xhat_withC=torch.add(X_hat,confounding)
xhat_withC_src=xhat_withC.unsqueeze(-2).expand(-1, -1, N, -1)
xhat_withC_dst=xhat_withC.unsqueeze(-3).expand(-1, N, -1, -1)
xhat_src=X_hat.unsqueeze(-2).expand(-1, -1, N, -1)
xhat_dst=X_hat.unsqueeze(-3).expand(-1, N, -1, -1)
x_src=X.unsqueeze(-2).expand(-1, -1, N, -1)
x_dst=X.unsqueeze(-3).expand(-1, N, -1, -1)
# Sim_xhat_withC_pair=torch.cat((xhat_withC_src,xhat_withC_dst),dim=-1)
# Sim_xhat_withC=torch.relu(self.strengh(Sim_xhat_withC_pair).squeeze(-1))
# Sim_xhat_pair=torch.cat((xhat_src,xhat_dst),dim=-1)
# Sim_xhat=torch.relu(self.strengh(Sim_xhat_pair).squeeze(-1))
# Sim_x_pair=torch.cat((x_src,x_dst),dim=-1)
# Sim_x=torch.relu(self.strengh(Sim_x_pair).squeeze(-1))
Sim_xhat_withC=torch.cosine_similarity(xhat_withC_src,xhat_withC_dst,dim=-1)
Sim_xhat=torch.cosine_similarity(xhat_src,xhat_dst,dim=-1)
Sim_x=torch.cosine_similarity(x_src,x_dst,dim=-1)
if self.args.confounding=="True":
loss_all=0
for i in range(batch):
Sim_xhat_withC_batch=torch.masked_select(Sim_xhat_withC[i],batch_label_mask)
Sim_xhat_batch=torch.masked_select(Sim_xhat[i],batch_label_mask)
Sim_x_batch=torch.masked_select(Sim_x[i],batch_label_mask)
loss_withC=criterion(Sim_xhat_withC_batch,Sim_x_batch)
loss_woC=criterion(Sim_xhat_batch,Sim_x_batch)
loss=rank[i]*loss_withC+(1-rank[i])*loss_woC
loss_all+=loss
return loss_all/batch
else:
loss=criterion(Sim_xhat,Sim_x)
return loss
# def loss_reconstruction(self,causal_strength,causal_graph,causal_label_mask):
# batch_adj_mask=causal_label_mask.ge(0.5)
# causal_strength=torch.masked_select(causal_strength,batch_adj_mask)
# causal_graph=torch.masked_select(causal_graph,batch_adj_mask)
# crie=torch.nn.MSELoss()
# distance=crie(causal_strength,causal_graph)
# return distance
class SS_model(nn.Module):
def __init__(self,args,config):
super(SS_mdoel,self).__init__()
self.args=args
self.config=config
self.bert=RobertaModel.from_pretrained(self.config.roberta_pretrain_path)
self.gnn=gat_vae_do(args,config)
#layers=[nn.Linear(self.config.feat_dim*2,self.config.feat_dim),nn.Sigmoid(),nn.Dropout(0.5),nn.Linear(self.config.feat_dim,1),nn.Sigmoid(),nn.Dropout(0.5),nn.Linear(1,1)]
#self.out_mlp = nn.Sequential(*layers)
self.strengh=nn.Linear(self.config.feat_dim*2,1)
# self.strengh2=nn.Linear(1,1)
# self.pool=nn.Sigmoid()
def forward(self,lengths,adj_mask,bert_token_b,bert_masks_b,bert_clause_b):
bert_output=self.bert(input_ids=bert_token_b.cuda(),attention_mask=bert_masks_b.cuda())
doc_sents_h = self.batched_index_select(bert_output, bert_clause_b.cuda())
H,doc_sents_h,A,e,s,rank=self.gnn(doc_sents_h,lengths,adj_mask)
return H,A,e,s,rank
def batched_index_select(self, bert_output, bert_clause_b):
hidden_state = bert_output[0]
dummy = bert_clause_b.unsqueeze(2).expand(bert_clause_b.size(0), bert_clause_b.size(1), hidden_state.size(2))
doc_sents_h = hidden_state.gather(1, dummy)
return doc_sents_h
def loss_ss(self,H_do,correlation_label,batch_label_mask):
criterion = nn.BCEWithLogitsLoss(reduction='mean')
batch=batch_label_mask.size()[0]
all,max_doc_len,_=H_do.size()
do_num=int(all/batch)
batch_label_mask=batch_label_mask.unsqueeze(1).expand(-1,do_num,-1,-1).reshape(batch*do_num,max_doc_len,-1)
batch_label_mask=batch_label_mask.ge(0.5)
H_do_raw=H_do.unsqueeze(2).expand(-1,-1,max_doc_len,-1)
H_do_arr=H_do.unsqueeze(1).expand(-1,max_doc_len,-1,-1)
similarity=torch.cosine_similarity(H_do_raw,H_do_arr,dim=-1)#[all,max_doc_len,max_doc_len]
correlation_label=torch.masked_select(correlation_label,batch_label_mask)
similarity=torch.masked_select(similarity,batch_label_mask)
loss=criterion(similarity,correlation_label)
return loss
def loss_hl(self,causal_strengh,causal_graph,batch_label,batch_adj_mask):
criterion = nn.BCEWithLogitsLoss(reduction='mean')
batch_adj_mask=batch_adj_mask.ge(0.5)
causal_strengh=torch.masked_select(causal_strengh,batch_adj_mask)
causal_graph=torch.masked_select(causal_graph,batch_adj_mask)
batch_label=torch.masked_select(batch_label,batch_adj_mask)
loss1=criterion(causal_strengh,batch_label)
loss2=criterion(causal_graph,batch_label)
#loss=loss1+loss2
if self.args.high_level_loss=='loss1':
return loss1
if self.args.high_level_loss=='loss2':
return loss2
def loss_KL(self,e,s):
# batch=e[1].size()[0]
# utt=e[1].size()[1]
# num=batch*utt*utt
# sum=0
# for i in range(1,self.args.gnn_layers+1):
# KLD= -0.5 * torch.sum(1 + s[i] - e[i].pow(2) - s[i].exp())
# KLD=KLD/num
# sum+=KLD
e=e.squeeze()
s=s.squeeze()
batch=e.size()[0]
utt=e.size()[1]
num=batch*utt*utt
# print(e,s)
# print(e.pow(2),s.exp())
KLD= -0.5 * torch.sum(1 + s - e.pow(2) - s.exp())
sum=KLD/num
if sum>2:
return 1
else:
return sum
def loss_reconstruction(self,X_rec,X):
criterion = nn.BCEWithLogitsLoss(reduction='mean')
X_rec=X_rec.view(-1,768)
X=X.view(-1,768)
loss=criterion(X_rec,X)
return loss
# def loss_reconstruction(self,causal_strength,causal_graph,causal_label_mask):
# batch_adj_mask=causal_label_mask.ge(0.5)
# causal_strength=torch.masked_select(causal_strength,batch_adj_mask)
# causal_graph=torch.masked_select(causal_graph,batch_adj_mask)
# crie=torch.nn.MSELoss()
# distance=crie(causal_strength,causal_graph)
# return distance