diff --git a/notebooks/single_dataset_pathlib.py b/notebooks/single_dataset_pathlib.py index 8a8b32a..7a79edd 100644 --- a/notebooks/single_dataset_pathlib.py +++ b/notebooks/single_dataset_pathlib.py @@ -7,8 +7,8 @@ # Set environment variables -# os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" -os.environ["CUDA_VISIBLE_DEVICES"] = "1" +os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" +os.environ["CUDA_VISIBLE_DEVICES"] = "0" import cryovesnet @@ -21,39 +21,46 @@ pl2 = cryovesnet.Pipeline(dataset_directory,pattern='*.rec.nad') -# pl2.setup_cryovesnet_dir(initialize=False, make_masks=True) -# # -# # +pl2.setup_cryovesnet_dir(initialize=False, make_masks=True) # -# # pl2.run_deep(force_run=True, gauss=True, rescale= None, weight_path=None) -# pl2.run_deep(force_run=True,augmentation_level=4) -# # pl2.run_deep(force_run=True, gauss=False, rescale= None, augmentation_level=4, weight_path=None) -# pl2.rescale(force_run=True, slice_range=None) -# #pl2.rescale(force_run=True,slice_range=[1,130]) -# -# pl2.label_vesicles(input_array_name="deep_mask", within_segmentation_region=True,threshold_coef=None) -# # pl2.label_vesicles(input_array_name="deep_mask", within_segmentation_region=False,threshold_coef=0.9) -# -# pl2.label_vesicles_adaptive(expanding = False, convex=False, separating=True) -# df = pl2.make_spheres(tight=True, keep_ellipsoid=False) -# pl2.repair_spheres() -# -# -# #pl2.make_full_modfile(input_array_name='convex_labels') # -# # pl2.last_output_array_name="convex_labels" -# # pl2.last_output_array_name= "mancorr_labels" -# # pl2.fix_spheres_interactively() -# # pl2.fix_spheres_interactively(max_expected_diameter=45) -# # pl2.fix_spheres_interactively("mancorr_labels") -# -# -# # pl2.last_output_array_name="convex_labels" -# os.system('rm -rf /media/amin/mtwo/84/pyto') -# pl2.make_full_modfile(input_array_name='convex_labels') + +# pl2.run_deep(force_run=True, gauss=True, rescale= None, weight_path=None) +# pl2.run_deep(force_run=True,augmentation_level=4) +pl2.run_deep(force_run=True,augmentation_level=1) +# pl2.run_deep(force_run=True, gauss=False, rescale= None, augmentation_level=4, weight_path=None) +pl2.rescale(force_run=True, slice_range=None) +#pl2.rescale(force_run=True,slice_range=[1,130]) + +pl2.label_vesicles(input_array_name="deep_mask", within_segmentation_region=True,threshold_coef=None) +# pl2.label_vesicles(input_array_name="deep_mask", within_segmentation_region=False,threshold_coef=0.9) + +pl2.label_vesicles_adaptive(expanding = False, convex=False, separating=True) +df = pl2.make_spheres(tight=False, keep_ellipsoid=False) +pl2.repair_spheres() + + +#pl2.make_full_modfile(input_array_name='convex_labels') + +### For manual correction ### pl2.last_output_array_name="convex_labels" -pl2.make_full_label_file() -pl2.pyto_wrapper() +pl2.fix_spheres_interactively(max_expected_diameter=45) -# +### In case you want to continue the manual correction ### +# pl2.last_output_array_name= "mancorr_labels" +# pl2.fix_spheres_interactively() +### or: +# pl2.fix_spheres_interactively("mancorr_labels") + + +### To clean the old files ### +#os.system('rm -rf /media/amin/mtwo/84/pyto') + +## In case u jsut want the automatic segmentation without manual correction +## pl2.last_output_array_name="convex_labels" + +### For connector segmentation ### +# pl2.make_full_modfile() +# pl2.make_full_label_file() +# pl2.pyto_wrapper()