forked from stefan-woerner/qiskit-aqua
-
Notifications
You must be signed in to change notification settings - Fork 2
/
QCOpMat.py
executable file
·535 lines (471 loc) · 17.6 KB
/
QCOpMat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
#
# Class QCOpMat for operator matrices.
#
"""
A class for individual operator matrices from/to a matrix-element file.
Module qcmatrixio provides low-level I/O routines for the file.
Class
-----
OpMat -- one operator matrix from/to a matrix element file.
Properties
----------
name -- name string (label used in file)
type -- "i", "d", or "c" for integer (int32), double, or
complex double.
asym -- whether any lower-triangular indices are antisymmetric/anti-Hermetian
(True) or symmetric/Hermetian (False).
nelem -- number of elements per set of indicies. Usually 1, but
2 or 3 for raffenetti 1,2 or 1,2, and 3 integrals.
dimens -- tuple with up to 5 dimensions, negative values for lower-triangular
tetrahedral, etc. storage.
array -- array with the actual data. A linear np.ndarray unless
nelem>1, in which case it is (ntot,nelem) (fortran order).
lenarray -- the number of sets of nelem values in array,so
array.size=self.lenarry*self.nelem
labpars -- a tuple of values for a header record for the object in a file.
Methods
-------
OpMat (name,array,nelem=1,type=None,asym=False,dimens=None):
initialization, copies arguments to the corresponding properties.
type defaults based on the data type in the array, which must be
np.int32, np.int64, np.float64, or np.complex128. asym is False for
symmetric/Hermetian and True for antisymmetric/anti-Hermetian
and only matters if dimens marks some some indices as lower
triangular/tetrahedral/etc. dimens defaults to one dimension
determined by the size of the array (i.e., array.size/nelem)
print_mat (wid=1,**kwargs):
print the matrix; wid selects different line lengths and formats.
this is also invoked indirectly when the __str__ method is used.
(ind,sign) = make_indxf (*args):
return an index into the array for a given set of arguments and
which the sign should be flipped (or complex conjugate taken).
This takes fortran-style indices -- starting at 1 with the
leftmost fastest running
(ind,sign) = make_indxc (*args):
return an index into the array for a given set of arguments and
which the sign should be flipped (or complex conjugate taken).
This takes c/python-style indices -- starting at 0 with the
rightmost fastest running.
get_elemf (*args):
set_elemf (value,*args):
return/set-and-return an element of the array given by a list of
fortran-style indices.
get_elemc (*args):
set_elemc (value,*args):
return/set-and-return an element of the array given by a list of
c-style indices.
expand:
expand the array in self from lower-triangular to full within
the object and returns the resulting array.
wr_lbuf (iu,lenbuf):
write the object to a matrix element file open on fortran unit iu
using lenbuf as the max buffer (record) size.
wr_lrind (iu,lenbuf):
write an object containing a real array in compressed form, with
indices for the non-zero elements
wr_lao2e (iu,lenbuf):
write an object containing AO 2e integrals, compressed with 4
indices for each non-zero integral (or Raff set).
write(iu,lenbuf):
write an object in either 2e or uncompressed form as appropriate.
Other functions
---------------
Most functions which accept optional keyword arguments pass these
on to print(), but can also include the keyword input=True to
print in the form of an executable statement.
printlab (cbuf,ni,nr,nri,ntot,lenbuf,n1,n2,n3,n4,n5,asym,**kwargs)
print a line giving the parameters for a matrix.
def doinpprt (label,x,doinp=False,**kwargs):
print array x with label as an executable statement.
def print1d (comp,type,wid,label,arr,**kwargs):
print a 1-dimensional array. comp is True to compress,
printing only non-zero values.
def print2e (cbuf,nbasis,r,**kwargs):
print an array of two-electron integrals with label cbuf
def ltout (label,n,x,key,im,**kwargs):
lower-triangular matrix output, im is non-zero to print
a submatrix number.
def sqout (label,m,n,x,key,im,**kwargs):
square matrix output, im is non-zero to print
a submatrix number.
"""
__version__ = 2.0
import sys
import io
import re
import numpy as np
import os
INTSIZE_NAME = "GAUOPEN_INTSIZE"
doi8 = False
import qcmatrixio as qcmio
INPKW = "input"
def _lenarray (d):
if len(d) == 5:
l = d[4]*qcmio.lind4(False,d[0],d[1],d[2],d[3],0,abs(d[0]),abs(d[1]),abs(d[2]),abs(d[3]))[0] + 1
elif len(d) == 4:
l = qcmio.lind4(False,d[0],d[1],d[2],d[3],0,abs(d[0]),abs(d[1]),abs(d[2]),abs(d[3]))[0] + 1
elif len(d) == 3:
l = qcmio.lind3(False,d[0],d[1],d[2],0,abs(d[0]),abs(d[1]),abs(d[2]))[0] + 1
elif len(d) == 2:
l = qcmio.lind2(False,d[0],d[1],0,abs(d[0]),abs(d[1]))[0] + 1
else:
l = d[0]
return (l)
def _makeindx (dimens,asym,args):
if len(dimens) >= 5: return qcmio.lind5 (True,dimens[0],dimens[1],dimens[2],dimens[3],
dimens[4],asym,args[0],args[1],args[2],args[3],args[4])
elif len(dimens) == 4: return qcmio.lind4 (True,dimens[0],dimens[1],dimens[2],dimens[3],
asym,args[0],args[1],args[2],args[3])
elif len(dimens) == 3: return qcmio.lind3 (True,dimens[0],dimens[1],dimens[2],asym,args[0],
args[1],args[2])
elif len(dimens) == 2: return qcmio.lind2 (True,dimens[0],dimens[1],asym,args[0],args[1])
else: return (args[0]-1,1.0e0)
def _makeindxc (dimens,asym,args):
if len(dimens) >= 5: return qcmio.lind5 (True,dimens[0],dimens[1],dimens[2],dimens[3],
dimens[4],asym,args[4]+1,args[3]+1,args[2]+1,
args[1]+1,args[0]+1)
elif len(dimens) == 4: return qcmio.lind4 (True,dimens[0],dimens[1],dimens[2],dimens[3],
asym,args[3]+1,args[2]+1,args[1]+1,args[0]+1)
elif len(dimens) == 3: return qcmio.lind3 (True,dimens[0],dimens[1],dimens[2],asym,
args[2]+1,args[1]+1,args[0]+1)
elif len(dimens) == 2: return qcmio.lind2 (True,dimens[0],dimens[1],asym,args[1]+1,args[0]+1)
else: return (args[0],1.0e0)
def printlab (cbuf,ni,nr,nri,ntot,lenbuf,n1,n2,n3,n4,n5,asym,doinp=False,**kwargs):
if doinp: print(cbuf," = ",end=" ",**kwargs)
else:
if asym: iasym = -1
else: iasym = 0
print ("%-35s NI=%2d NR=%2d NRI=%1d NTot=%8d" % (cbuf,ni,nr,nri,ntot),end=" ",**kwargs)
if lenbuf > 0: print ("LenBuf=%8d" % lenbuf,end=" ",**kwargs)
print ("N=%6d%6d%6d%6d%6d AS=%2d" % (n1,n2,n3,n4,n5,iasym),**kwargs)
def formatv (fwid,plusstr,pkstr,thresh,val):
if abs(val) < thresh: val1 = 0.0e0
else: val1 = val
str = (pkstr % val1).strip()
if re.match("^-0\.0*$",str): str = str[1:]
if str[0] != '-': str = plusstr + str
str = str.replace('e','D')
return (fwid % str)
def formatx (fwid,plusstr,pkstr,thresh,val):
if type(val) == np.complex128 or type(val) == complex:
str1 = formatv (fwid," ",pkstr,0.0e0,val.real)
str2 = formatv (fwid,"+",pkstr,0.0e0,val.imag)
str = str1 + str2 + "i "
else:
str = formatv(fwid,plusstr,pkstr,thresh,val)
return(str)
def printpars (type,wid):
if (type == "i"):
if (wid == 1):
npl = 20
pkstr = "%4d"
fwid = "%4s"
elif (wid == 2):
npl = 10
pkstr = "%8d"
fwid = "%8s"
else:
npl = 5
pkstr = "%12d"
fwid = "%12s"
elif (type == "d"):
if (wid == 1):
npl = 10
pkstr = "%12.6f"
fwid = "%12s"
elif (wid == 2):
npl = 3
pkstr = "%12.6f"
fwid = "%12s"
elif (wid == 3):
npl = 5
pkstr = "%20.8f"
fwid = "%20s"
else:
npl = 5
pkstr = "%12.6f"
fwid = "%12s"
elif (type == "c"):
npl = 5
pkstr = "%12.6f"
fwid = "%12s"
else:
print ("error",**kwargs)
npl = 1
pkstr = "%12.6f"
fwid = "%12s"
raise TypeError
return (npl,pkstr,fwid)
def doinpprt (label,x,doinp=False,**kwargs):
if doinp:
if label != " ": print(" elif name == \"%s\":\n arr = np." % label,end="",**kwargs)
np.set_printoptions (threshold=1000000000)
xstr = x.__repr__()
print (xstr,**kwargs)
return (doinp)
def print1d (comp,type,wid,label,arr,doinp=False,**kwargs):
if arr is None: return
if doinpprt (label,arr,doinp=False,**kwargs): return
if (label != " "): labstr = "%6s=" % label
else: labstr = " "
npl,pkstr,fwid = printpars (type,wid)
i = 0
ndone = 0
while (i < arr.size):
if (abs(arr[i]) >= 1.e-12) or not comp:
if ndone == 0: print (labstr,end="",**kwargs)
if comp: print("%8d=" % (i+1),end="",**kwargs)
str = formatx (fwid," ",pkstr,0.0e0,arr[i])
print (str,end="",**kwargs)
ndone = ndone + 1
if ndone == npl:
print ("",**kwargs)
ndone = 0
i = i + 1
if ndone > 0: print ("",**kwargs)
def print2e (cbuf,n,r,doinp=False,**kwargs):
if doinpprt (cbuf,r,doinp=False,**kwargs): return
if re.match("^REG",cbuf): lab = "Int"
else: lab = "R1"
if len(np.shape(r)) == 1:
lr = np.shape(r)
nr = 1
else: lr,nr = np.shape(r)
ri = np.empty((nr))
for i in range(n):
for j in range(i+1):
for k in range(i+1):
if i == k: llim = j + 1
else: llim = k + 1
for l in range(llim):
ijkl,sign = qcmio.lind4(False,-n,-n,-n,n,0,i+1,j+1,k+1,l+1)
doit = False
if (nr == 1):
ri[0] = r[ijkl]
doit = doit or (abs(ri[0]) >= 1.e-12)
else:
for x in range(nr):
ri[x] = r[ijkl,x]
doit = doit or (abs(ri[x]) >= 1.e-12)
if doit:
str = "I=%3i J=%3i K=%3i L=%3i %s=%20.12e" % (i+1,j+1,k+1,l+1,lab,ri[0])
if nr > 1: str = str + " R2=%20.12e" % ri[1]
if nr > 2: str = str + " R3=%20.12e" % ri[2]
str = str.replace("e","D")
print (str,**kwargs)
def ltout (label,n,x,key,im,doinp=False,**kwargs):
if doinpprt (label,x,doinp=False,**kwargs): return
if key > 0: thresh = 0.0e0
else: thresh = 10.0e0**(key-6)
ntt = (n*(n+1))//2
if im > 0:
print ("%s, matrix %6d:" % (label,im),**kwargs)
imoff = (im-1)*ntt
else: imoff = 0
if (type(x[0]) == np.complex128):
nc = 4
fmthead = "%19i "
else:
nc = 5
fmthead = "%14i"
for ist in range(0,n,nc):
iend = min(ist+nc,n)
for irow in range (ist,iend): print (fmthead % (irow+1),end="",**kwargs)
print (**kwargs)
for irow in range (ist,n):
ir = min(irow-ist+1,nc)
l = (irow*(irow+1))//2 + ist + imoff
print ("%4d" % (irow+1),end="",**kwargs)
for i in range(ir):
s = x[l]
l = l + 1
s = formatx ("%14s","","%14.6e",thresh,s)
print (s,end="",**kwargs)
print (**kwargs)
def sqout (label,m,n,x,key,im,doinp=False,**kwargs):
if doinpprt (label,x,doinp=False,**kwargs): return
if key > 0: thresh = 0.0e0
else: thresh = 10.0e0**(key-6)
if im > 0:
print ("%s, matrix %6d:" % (label,im),**kwargs)
imoff = (im-1)*m*n
else: imoff = 0
if (type(x[0]) == np.complex128):
nc = 4
fmthead = "%23i "
fmtval = "%14.6e"
elif (type(x[0]) == np.float64):
nc = 5
fmthead = "%14i"
fmtval = "%14.6e"
else:
nc = 5
fmthead = "%14i"
fmtval = "%14d"
for jl in range(0,n,nc):
ju = min(jl+nc,n)
num = ju - jl
for j in range (jl,ju): print (fmthead % (j+1),end="",**kwargs)
print (**kwargs)
for i in range(m):
imx = i + imoff
print ("%7d " % (i+1),end="",**kwargs)
for j in range(jl,ju):
s = formatx ("%14s","",fmtval,thresh,x[imx+j*m])
print (s,end="",**kwargs)
print (**kwargs)
class OpMat (object):
def __init__ (self,name,array,nelem=1,type=None,asym=False,dimens=None):
if isinstance (name,str): self.name = name
else: raise TypeError
if isinstance (array,np.ndarray): self.array = array
else: raise TypeError
if isinstance (nelem,int): self.nelem = nelem
else: raise TypeError
if type is None:
if self.array.dtype == np.int32: self.type = "i"
elif self.array.dtype == np.int64: self.type = "i"
elif self.array.dtype == np.float64: self.type = "d"
elif self.array.dtype == np.complex128: self.type = "c"
else: raise TypeError
elif not isinstance (type,str): raise TypeError
else: self.type = type
if asym: self.asym = True
else: self.asym = False
if dimens is None: self.dimens = (self.array.size/self.nelem,)
elif not isinstance (dimens,tuple): raise TypeError
else: self.dimens = dimens
@property
def lenarray (self):
return _lenarray (self.dimens)
@property
def labpars (self):
if (self.type == "c"):
ni = 0
nr = self.nelem
nri = 2
elif (self.type == "d"):
ni = 0
nr = self.nelem
nri = 1
else:
ni = self.nelem
nr = 0
nri = 1
ntot = self.lenarray
n1 = self.dimens[0]
n2 = self.dimens[1] if len(self.dimens) >= 2 else 1
n3 = self.dimens[2] if len(self.dimens) >= 3 else 1
n4 = self.dimens[3] if len(self.dimens) >= 4 else 1
n5 = self.dimens[3] if len(self.dimens) >= 5 else 1
return (self.name,ni,nr,nri,ntot,n1,n2,n3,n4,n5,self.asym)
def print_mat (self,wid=1,doinp=False,**kwargs):
name,ni,nr,nri,ntot,n1,n2,n3,n4,n5,asym = self.labpars
if doinpprt (name,self.array,doinp=False,**kwargs): return
printlab (name,ni,nr,nri,ntot,0,n1,n2,n3,n4,n5,asym,**kwargs)
if qcmio.aoints(name): print2e (self.name,self.dimens[3],self.array,**kwargs)
elif len(self.dimens) == 1:
if re.match("GAUSSIAN SCALARS",self.name): print1d (True,self.type,5," ",self.array,**kwargs)
else: print1d (False,self.type,wid," ",self.array,**kwargs)
elif len(self.dimens) == 2:
if self.dimens[0] < 0: ltout (" ",self.dimens[1],self.array,0,0,**kwargs)
else: sqout (" ",self.dimens[0],self.dimens[1],self.array,0,0,**kwargs)
elif len(self.dimens) >= 3:
allpos = True
nmat = 1
for i in range(2,len(self.dimens)):
nmat = nmat * self.dimens[i]
allpos = allpos and (self.dimens[i] > 0)
if self.dimens[0] < 0 and self.dimens[1] > 0 and allpos:
for im in range(nmat): ltout(name,self.dimens[1],self.array,0,im+1,**kwargs)
elif self.dimens[0] > 0 and self.dimens[1] > 0 and allpos:
for im in range(self.dimens[2]): sqout(name,self.dimens[0],self.dimens[1],self.array,0,im+1,**kwargs)
elif (len(self.dimens) >= 4) and (self.dimens[0] == -self.dimens[1]) and (self.dimens[2] == -self.dimens[3]):
nmat = (self.dimens[3]*(self.dimens[3]+1))//2
if len(self.dimens) >= 5: nmat = self.dimens[4]*nmat
for im in range(nmat): ltout(name,self.dimens[1],self.array,0,im+1,**kwargs)
else: print1d (False,self.type,1," ",self.array,**kwargs)
else:
print ("cannot print dims",self.dimens,**kwargs)
def __str__ (self):
stream = io.StringIO()
self.print_mat(file=stream)
str = stream.getvalue()
return (str[:-1])
def make_indxf (self,*args):
return _makeindx(self.dimens,self.asym,args)
def make_indxc (self,*args):
return _makeindxc(self.dimens,self.asym,args)
def get_elemf (self,*args):
indx,sign = _makeindx(self.dimens,self.asym,args)
val = self.array[indx]
if sign < 0:
if self.type == "c": val = val.conjugate()
if self.asym: val = -val
return val
def get_elemc (self,*args):
indx,sign = _makeindxc(self.dimens,self.asym,args)
val = self.array[indx]
if sign < 0:
if self.type == "c": val = val.conjugate()
if self.asym: val = -val
return val
def set_elemf (self,value,*args):
indx,sign = _makeindx(self.dimens,self.asym,args)
val = value
if sign < 0:
if self.type == "c": val = val.conjugate()
if self.asym: val = -val
self.array[indx] = val
return self.array[indx]
def set_elemc (self,value,*args):
indx,sign = _makeindxc(self.dimens,self.asym,args)
val = value
if sign < 0:
if self.type == "c": val = val.conjugate()
if self.asym: val = -val
self.array[indx] = val
return self.array[indx]
def expand (self):
d = tuple(reversed([abs(num) for num in self.dimens]))
if qcmio.aoints(self.name):
if self.dimens[0] < 0:
n = self.dimens[3]
lr = self.array.size//self.nelem
if self.nelem == 1: narr = qcmio.expao1(n,self.array)
else: narr = qcmio.expaon(n,self.array)
else: narr = self.array
else:
narr = np.empty(d,dtype=type(self.array[0]))
for i in np.ndindex(*d): narr[i] = self.get_elemc(*i)
self.array = narr.reshape((_lenarray(d)))
self.dimens = tuple(reversed(d))
return (self.array)
def wr_lbuf(self,iu,lenbuf):
label,ni,nr,nri,ntot,n1,n2,n3,n4,n5,asym = self.labpars
lenbx = lenbuf - (lenbuf % (nri * self.nelem))
lenbx = lenbx//nri
qcmio.wr_labl(iu,label,ni,nr,ntot,lenbx,n1,n2,n3,n4,n5,asym)
if self.type == "i": qcmio.wr_ibuf(iu,lenbx,self.array)
elif self.type == "c": qcmio.wr_cbuf(iu,lenbx,self.array)
else: qcmio.wr_rbuf(iu,lenbx,self.array)
def wr_lrind (iu,lenbuf):
ntot = self.lenarr
lenbx = lenbuf//self.nelem
y = self.array.reshape((self.nelem,ntot),order='F')
nnz = qcmio.numnzr(y)
wr_labl(iu,self.name,1,nr,nnz,lenbx,ntot,1,1,1,1,0)
wr_rind(iu,nnz,lenbx,y)
def wr_lao2e (self,iu,lenbuf):
label,ni,nr,nri,ntot,n1,n2,n3,n4,n5,asym = self.labpars
ntot = self.lenarray
if ((ntot*self.nelem) != self.array.size) or (self.nelem > 3):
print ("2e write error NTot=",ntot,"nelem=",self.nelem,"size",self.array.size)
raise TypeError
lenbx = lenbuf//(2+self.nelem)
nnz = qcmio.numnza(self.array)
qcmio.wr_labl(iu,label,4,nr,nnz,lenbx,n1,n2,n3,n4,n5,asym)
qcmio.wr_2e(iu,nnz,self.dimens[3],lenbx,self.array)
def write(self,iu,lenbuf):
if qcmio.aoints(self.name): self.wr_lao2e(iu,lenbuf)
else: self.wr_lbuf(iu,lenbuf)