forked from Topspin26/SberbankDataScienceContest_2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon_words.py
52 lines (40 loc) · 1.36 KB
/
common_words.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import re
from collections import Counter
import tqdm
import numpy as np
def nonuniq_words(text):
return [e.lower().replace('ё', 'е') for e in re.findall("\w+", text, re.UNICODE)]
def uniq_words(text):
return set(nonuniq_words(text))
def calculate_idfs(data):
counter_data = Counter()
uniq_data = set(data)
for e in tqdm.tqdm_notebook(uniq_data, desc="calc idf"):
set_words = uniq_words(e)
counter_data.update(set_words)
num_docs = len(uniq_data)
print(num_docs)
idfs = {}
for word in counter_data:
idfs[word] = np.log(num_docs / counter_data[word])
return idfs
def calculate_counter(data):
counter_data = Counter()
uniq_data = set(data)
for e in tqdm.tqdm_notebook(uniq_data, desc="calc freq"):
set_words = nonuniq_words(e)
counter_data.update(set_words)
return counter_data
def calculate_idfs_chars(data, nchars=3):
counter_data = Counter()
uniq_data = set(data)
for e in tqdm.tqdm_notebook(uniq_data, desc="calc idf"):
s = ' '.join(nonuniq_words(e))
set_chars = set([s[i:i + nchars] for i in range(len(s) - nchars) if ' ' not in s[i:i + nchars]])
counter_data.update(set_chars)
num_docs = len(uniq_data)
print(num_docs)
idfs = {}
for word in counter_data:
idfs[word] = np.log(num_docs / counter_data[word])
return idfs