-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.c
587 lines (441 loc) · 19.6 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/********* Copyright (c) 2018-2020, a5021 ************************************/
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wuninitialized"
#endif
#include "nrf.h"
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#ifdef USE_UART
#include <stdio.h>
#define UART_TX_PIN 6
#endif
#define NRF_FREQ_CHANNEL 99
#define TX_PERIOD 60
#define SDA_PIN 26
#define SCL_PIN 27
#define NRF_TWIMx NRF_TWIM1
#define NRF_TWIx NRF_TWI1
#define NRF_TIMERy NRF_TIMER2
#define WAIT_FOR_EVENT(EVT) while((EVT) == 0); EVT = 0
#define TWI_ERROR 0
#define TWI_OK !TWI_ERROR
#define CRCINIT0 0x0UL
#define CRCPOLY0 0x0UL
#define CRCINIT8 0xFFUL
#define CRCPOLY8 0x107UL
#define CRCINIT16 0xFFFFUL
#define CRCPOLY16 0x11021UL
/* width=24 poly=0x00065b init=0x555555 refin=true refout=true xorout=0x000000 check=0xc25a56 residue=0x000000 name="CRC-24/BLE" */
#define CRCINIT24 0x555555UL
#define CRCPOLY24 0x00065bUL
/*** allowed value for `BITS' is: 0, 8, 16, 24 */
#define NRF_RADIO_SET_CRC(BITS) NRF_RADIO->CRCCNF = BITS / 8; \
NRF_RADIO->CRCINIT = CRCINIT ## BITS; \
NRF_RADIO->CRCPOLY = CRCPOLY ## BITS
#define BME280_I2C_ADDR_PRIM 0x76
#define BME280_CHIP_ID 0x60
#define BME280_RESET_CMD 0xB6
#define BME280_FORCED_MODE 0x01
#define BME280_FILTER_POS 0x02
#define BME280_SENSOR_MODE_POS 0x00
#define BME280_CTRL_HUM_POS 0x00
#define BME280_CTRL_PRESS_POS 0x02
#define BME280_CTRL_TEMP_POS 0x05
#define BME280_NO_OVERSAMPLING 0x00
#define BME280_OVERSAMPLING_1X 0x01
#define BME280_OVERSAMPLING_2X 0x02
#define BME280_OVERSAMPLING_4X 0x03
#define BME280_OVERSAMPLING_8X 0x04
#define BME280_OVERSAMPLING_16X 0x05
#define BME280_FILTER_COEFF_OFF 0x00
#define BME280_FILTER_COEFF_2 0x01
#define BME280_FILTER_COEFF_4 0x02
#define BME280_FILTER_COEFF_8 0x03
#define BME280_FILTER_COEFF_16 0x04
typedef enum {
CHIP_ID_REG = 0xD0,
RESET_REG = 0xE0,
TEMP_PRESS_CALIB_DATA_REG = 0x88,
HUMIDITY_CALIB_DATA_REG = 0xE1,
CONFIG_REG = 0xF5,
CTRL_HUM_REG = 0xF2,
CTRL_MEAS_REG = 0xF4,
DATA_REG = 0xF7
} bme280_reg_addr_t;
typedef enum {
ID_LEN = 1,
TEMP_PRESS_CALIB_DATA_LEN = 26,
HUMIDITY_CALIB_DATA_LEN = 7,
P_T_H_DATA_LEN = 8
} bme280_len_t;
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpadded"
#endif
typedef struct {
uint16_t T1;
int16_t T2;
int16_t T3;
uint16_t P1;
int16_t P2;
int16_t P3;
int16_t P4;
int16_t P5;
int16_t P6;
int16_t P7;
int16_t P8;
int16_t P9;
uint8_t H1;
int16_t H2;
uint8_t H3;
int16_t H4;
int16_t H5;
int8_t H6;
int32_t t_fine;
} bme280_calib_data_t ;
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#define PRESS_EXP(D) ((uint32_t)D[0] << 12) | ((uint32_t)D[1] << 4) | (D[2] >> 4)
#define TEMP_EXP(D) ((uint32_t)D[3] << 12) | ((uint32_t)D[4] << 4) | (D[5] >> 4)
#define HUM_EXP(D) ((uint32_t)D[6] << 8) | D[7]
static unsigned char i2c_status;
__STATIC_INLINE void init_radio(uint8_t freq, uint8_t *payload) {
NRF_RADIO->FREQUENCY = freq; /* Set RF channel */
NRF_RADIO->MODE = RADIO_MODE_MODE_Nrf_2Mbit; /* Set data rate and modulation */
NRF_RADIO->TXPOWER = RADIO_TXPOWER_TXPOWER_Pos4dBm; /* Set TX power */
NRF_RADIO->PCNF0 = ( /* Packet configuration register 0 */
(6 << RADIO_PCNF0_LFLEN_Pos) | /* 6 bits for LENGTH field */
(3 << RADIO_PCNF0_S1LEN_Pos) /* 3 bits for PKT ID & NO_ACK field */
);
NRF_RADIO->PCNF1 = ( /* Packet configuration register 1 */
(RADIO_PCNF1_ENDIAN_Msk) | /* Most significant bit on air first */
(2 << RADIO_PCNF1_BALEN_Pos) | /* Base address length in number of bytes */
(32 << RADIO_PCNF1_MAXLEN_Pos) /* Max payload size in bytes */
);
/*** Address consists of one byte PREFIX0 + n bytes BASE0 ***/
/*** where n is a value of BALEN field in PCNF1 register ***/
NRF_RADIO->BASE0 = 0xE7E7E7E7; /* Base address 0 */
NRF_RADIO->PREFIX0 = 0xE7; /* Prefixes bytes for logical addresses */
NRF_RADIO->RXADDRESSES = 0x01; /* Receive address select */
NRF_RADIO_SET_CRC(16); /* Set 16 bit CRC mode */
NRF_RADIO->PACKETPTR = (uint32_t) payload; /* Set TX buffer pointer */
NRF_RADIO->TASKS_TXEN = 1; /* Enable RADIO in TX mode */
}
__STATIC_INLINE void init_twi(uint8_t twi_addr) {
NRF_TWIx->ENABLE = TWI_ENABLE_ENABLE_Enabled << TWI_ENABLE_ENABLE_Pos; /* Enable I2C */
NRF_TWIx->ADDRESS = twi_addr; /* Set I2C slave device (sensor) address */
NRF_TWIx->FREQUENCY = TWI_FREQUENCY_FREQUENCY_K400; /* Set 400kHz I2C mode */
NRF_TWIx->PSELSDA = SDA_PIN; /* Define SDA pin */
NRF_TWIx->PSELSCL = SCL_PIN; /* Define SCL pin */
}
__STATIC_INLINE void init_rtc(void) {
NRF_RTC2->PRESCALER = 1; /* freq = 32768 / 2 */
NRF_RTC2->CC[0] = 16384 * TX_PERIOD; /* sleep period between data sendings */
NRF_RTC2->CC[1] = 135; /* short sleep while data converting */
NRF_RTC2->INTENSET = RTC_INTENSET_COMPARE0_Msk | RTC_INTENSET_COMPARE1_Msk;
NRF_RTC2->EVENTS_COMPARE[1] = /* reset compare 1 event flag */
NRF_RTC2->EVENTS_COMPARE[0] = 0; /* reset compare 0 event flag */
NVIC_ClearPendingIRQ(RTC2_IRQn);
// do not use NVIC_EnableIRQ(RTC2_IRQn); !!!
}
#ifdef USE_UART
void __STATIC_INLINE init_uart(void) {
NRF_UART0->PSELTXD = UART_TX_PIN;
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud9600;
NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Enabled;
NRF_UART0->EVENTS_TXDRDY = 0x0UL;
NRF_UART0->TASKS_STARTTX = 0x1UL;
}
#define UART_PUTC(C) \
NRF_UART0->TXD = C; \
WAIT_FOR_EVENT(NRF_UART0->EVENTS_TXDRDY)
uint8_t __STATIC_INLINE uart_puts(char *s) {
while (*s != 0) {
UART_PUTC(*s++);
}
return 1;
}
#define PRINTF(...) for(char _[100]; snprintf(_, sizeof(_), __VA_ARGS__), uart_puts(_), 0;)
#endif
#define TWI_CHECK_ERR() if (NRF_TWIx->EVENTS_ERROR) { \
NRF_TWIx->TASKS_STOP = 1; \
WAIT_FOR_EVENT(NRF_TWIx->EVENTS_STOPPED); \
i2c_status |= NRF_TWIx->ERRORSRC; \
return TWI_ERROR; \
}
#define TWI_WAIT(FLAG) do {while(!FLAG) TWI_CHECK_ERR();} while(0)
#define TWI_XFER(T, E) \
NRF_TWIx->TASKS_##T = 1; \
TWI_WAIT(NRF_TWIx->EVENTS_##E)
__STATIC_INLINE uint8_t twi_read(uint8_t r, uint8_t *d, uint8_t len) {
NRF_TWIx->EVENTS_TXDSENT =
NRF_TWIx->EVENTS_RXDREADY = 0;
NRF_TWIx->TXD = r;
TWI_XFER(STARTTX, TXDSENT);
if (len == 1) {
NRF_TWIx->SHORTS = TWI_SHORTS_BB_STOP_Enabled << TWI_SHORTS_BB_STOP_Pos;
TWI_XFER(STARTRX, RXDREADY);
*d = (uint8_t)NRF_TWIx->RXD;
} else {
NRF_TWIx->SHORTS = TWI_SHORTS_BB_SUSPEND_Enabled << TWI_SHORTS_BB_SUSPEND_Pos;
NRF_TWIx->TASKS_STARTRX = 1;
do {
if (--len == 0) {
NRF_TWIx->SHORTS = TWI_SHORTS_BB_STOP_Enabled << TWI_SHORTS_BB_STOP_Pos;
}
NRF_TWIx->EVENTS_RXDREADY = 0;
TWI_XFER(RESUME, RXDREADY);
*d++ = (uint8_t)NRF_TWIx->RXD;
} while (len);
}
WAIT_FOR_EVENT(NRF_TWIx->EVENTS_STOPPED);
NRF_TWIx->SHORTS = 0;
return TWI_OK;
}
__STATIC_INLINE uint8_t twi_write(uint8_t r, uint8_t d) {
NRF_TWIx->TXD = r;
NRF_TWIx->EVENTS_TXDSENT = 0;
TWI_XFER(STARTTX, TXDSENT);
NRF_TWIx->EVENTS_TXDSENT = 0;
NRF_TWIx->TXD = d;
TWI_WAIT(NRF_TWIx->EVENTS_TXDSENT);
NRF_TWIx->TASKS_STOP = 1;
WAIT_FOR_EVENT(NRF_TWIx->EVENTS_STOPPED);
return TWI_OK;
}
__STATIC_INLINE uint8_t bme280_read(const bme280_reg_addr_t r, uint8_t* d, bme280_len_t len) {
return twi_read((uint8_t)r, d, (uint8_t)len);
}
__STATIC_INLINE uint8_t bme280_write(const bme280_reg_addr_t r, uint8_t d) {
return twi_write((uint8_t)r, d);
}
__STATIC_INLINE int32_t compensate_temperature(uint32_t u_temp, bme280_calib_data_t *c) {
int32_t var1, var2, temperature;
int32_t temperature_min = -4000;
int32_t temperature_max = 8500;
var1 = (int32_t)(u_temp / 8) - (int32_t)c->T1 * 2;
var1 = (var1 * ((int32_t)c->T2)) / 2048;
var2 = (int32_t)(u_temp / 16) - ((int32_t)c->T1);
var2 = (((var2 * var2) / 4096) * ((int32_t)c->T3)) / 16384;
c->t_fine = var1 + var2;
temperature = (c->t_fine * 5 + 128) / 256;
if (temperature < temperature_min)
temperature = temperature_min;
else if (temperature > temperature_max)
temperature = temperature_max;
return temperature;
}
__STATIC_INLINE uint32_t compensate_pressure(uint32_t u_press, bme280_calib_data_t *c) {
#define pressure_min 3000000UL
#define pressure_max 11000000UL
int64_t var1, var2, var3;
uint32_t pressure;
var1 = ((int64_t)c->t_fine) - 128000;
var2 = var1 * var1 * (int64_t)c->P6;
var2 = var2 + ((var1 * (int64_t)c->P5) * 131072);
var2 = var2 + (((int64_t)c->P4) * 34359738368);
var1 = ((var1 * var1 * (int64_t)c->P3) / 256) + ((var1 * ((int64_t)c->P2) * 4096));
var3 = ((int64_t)1) * 140737488355328;
var1 = (var3 + var1) * ((int64_t)c->P1) / 8589934592;
/* To avoid divide by zero exception */
if (var1 != 0) {
int64_t var4 = 1048576 - u_press;
var4 = (((var4 * 2147483648) - var2) * 3125) / var1;
var1 = (((int64_t)c->P9) * (var4 / 8192) * (var4 / 8192)) / 33554432;
var2 = (((int64_t)c->P8) * var4) / 524288;
var4 = ((var4 + var1 + var2) / 256) + (((int64_t)c->P7) * 16);
pressure = (uint32_t)(((var4 / 2) * 100) / 128);
if (pressure < pressure_min)
pressure = pressure_min;
else if (pressure > pressure_max)
pressure = pressure_max;
} else {
pressure = pressure_min;
}
return pressure;
}
__STATIC_INLINE uint32_t compensate_humidity(uint32_t u_hum, bme280_calib_data_t *c) {
int32_t var1, var2, var3, var4, var5;
var1 = c->t_fine - ((int32_t)76800);
var2 = (int32_t)(u_hum * 16384);
var3 = (int32_t)(((int32_t)c->H4) * 1048576);
var4 = ((int32_t)c->H5) * var1;
var5 = (((var2 - var3) - var4) + (int32_t)16384) / 32768;
var2 = (var1 * ((int32_t)c->H6)) / 1024;
var3 = (var1 * ((int32_t)c->H3)) / 2048;
var4 = ((var2 * (var3 + (int32_t)32768)) / 1024) + (int32_t)2097152;
var2 = ((var4 * ((int32_t)c->H2)) + 8192) / 16384;
var3 = var5 * var2;
var4 = ((var3 / 32768) * (var3 / 32768)) / 128;
var5 = var3 - ((var4 * ((int32_t)c->H1)) / 16);
var5 = (var5 < 0 ? 0 : var5);
var5 = (var5 > 419430400 ? 419430400 : var5);
uint32_t humidity = (uint32_t)(var5 / 4096);
if (humidity > 102400)
humidity = 102400;
return humidity;
}
__STATIC_INLINE void sleep(void) {
NVIC_ClearPendingIRQ(RTC2_IRQn);
NRF_POWER->TASKS_LOWPWR = 1;
__WFE();
}
__STATIC_INLINE void init_clock(void) {
/* Start 32 MHz crystal oscillator */
NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
NRF_CLOCK->TASKS_HFCLKSTART = 1;
/* Wait for the external oscillator to start up */
while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0);
/* Start low frequency crystal oscillator */
NRF_CLOCK->LFCLKSRC = (CLOCK_LFCLKSRC_SRC_Xtal << CLOCK_LFCLKSRC_SRC_Pos);
NRF_CLOCK->EVENTS_LFCLKSTARTED = 0;
NRF_CLOCK->TASKS_LFCLKSTART = 1;
/* Wait for the external oscillator to start up */
while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0);
}
__STATIC_INLINE void init_adc(void) {
NRF_SAADC->RESOLUTION = SAADC_RESOLUTION_VAL_12bit;
NRF_SAADC->CH[0].PSELP = SAADC_CH_PSELP_PSELP_VDD;
NRF_SAADC->CH[0].CONFIG = (
SAADC_CH_CONFIG_TACQ_15us << SAADC_CH_CONFIG_TACQ_Pos |
SAADC_CH_CONFIG_BURST_Enabled << SAADC_CH_CONFIG_BURST_Pos
);
NRF_SAADC->OVERSAMPLE = SAADC_OVERSAMPLE_OVERSAMPLE_Over64x;
NRF_SAADC->RESULT.MAXCNT = 1;
NRF_SAADC->SAMPLERATE = SAADC_SAMPLERATE_MODE_Task << SAADC_SAMPLERATE_MODE_Pos;
NRF_SAADC->ENABLE = SAADC_ENABLE_ENABLE_Enabled << SAADC_ENABLE_ENABLE_Pos;
NRF_SAADC->TASKS_CALIBRATEOFFSET = 1; /* Start calibration */
while (NRF_SAADC->EVENTS_CALIBRATEDONE == 0);
NRF_SAADC->EVENTS_CALIBRATEDONE = 0;
while (NRF_SAADC->STATUS == (SAADC_STATUS_STATUS_Busy <<SAADC_STATUS_STATUS_Pos));
}
__STATIC_INLINE uint32_t measure_vdd(void) {
volatile uint16_t res;
NRF_SAADC->RESULT.PTR = (uint32_t) &res;
NRF_SAADC->EVENTS_DONE = 0;
NRF_SAADC->ENABLE = SAADC_ENABLE_ENABLE_Enabled << SAADC_ENABLE_ENABLE_Pos;
NRF_SAADC->TASKS_START = 1; // Start the SAADC
while (NRF_SAADC->EVENTS_STARTED == 0); // Wait for STARTED event
NRF_SAADC->EVENTS_STARTED = 0; // Reset event flag
NRF_SAADC->TASKS_SAMPLE = 1;
while (NRF_SAADC->EVENTS_END == 0);
NRF_SAADC->EVENTS_END = 0;
// Disable SAADC
NRF_SAADC->ENABLE = SAADC_ENABLE_ENABLE_Disabled << SAADC_ENABLE_ENABLE_Pos;
return res * 3600 / 4095;
}
#define MASK_SIGN (0x00000200UL)
#define MASK_SIGN_EXTENSION (0xFFFFFC00UL)
#define READ_TEMP() (((unsigned)NRF_TEMP->TEMP & MASK_SIGN) != 0) ? (signed)((unsigned)NRF_TEMP->TEMP | MASK_SIGN_EXTENSION) : (NRF_TEMP->TEMP)
int main(void) {
struct {
uint8_t l;
uint8_t i;
uint32_t p : 24;
int8_t t0: 8;
int32_t t : 16;
uint32_t h : 16;
uint16_t v : 16;
} __attribute__((packed)) payload_buf = {.l = 10, .i = 6};
init_clock();
init_adc();
init_twi(BME280_I2C_ADDR_PRIM);
init_rtc();
#ifdef USE_UART
init_uart();
#endif
SCB->SCR |= SCB_SCR_SEVONPEND_Msk;
__SEV();
__WFE();
bme280_calib_data_t c_data;
uint8_t buf[TEMP_PRESS_CALIB_DATA_LEN];
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcomma"
#endif
while(
! bme280_read(CHIP_ID_REG, buf, ID_LEN) ||
! (buf[0] == BME280_CHIP_ID) ||
! bme280_write(RESET_REG, BME280_RESET_CMD) ||
(
NRF_TWIx->ENABLE = TWI_ENABLE_ENABLE_Disabled << TWI_ENABLE_ENABLE_Pos ,
NRF_RTC2->TASKS_START = 1 ,
sleep() ,
NRF_RTC2->EVENTS_COMPARE[1] = 0 ,
NRF_RTC2->TASKS_STOP = 1 ,
NRF_RTC2->TASKS_CLEAR = 1 ,
NRF_TWIx->ENABLE = TWI_ENABLE_ENABLE_Enabled << TWI_ENABLE_ENABLE_Pos ,
0
) ||
! bme280_read(TEMP_PRESS_CALIB_DATA_REG, (uint8_t*)&c_data, TEMP_PRESS_CALIB_DATA_LEN) ||
! bme280_read(HUMIDITY_CALIB_DATA_REG, buf, HUMIDITY_CALIB_DATA_LEN) ||
(
c_data.H2 = (int16_t)((int16_t)buf[1] << 8) | buf[0] ,
c_data.H3 = buf[2] ,
c_data.H4 = ((int16_t)buf[3] * 16) | (buf[4] & 0x0F) ,
c_data.H5 = ((int16_t)buf[5] * 16) | (buf[4] >> 4) ,
c_data.H6 = (int8_t)buf[6] ,
0
) ||
! bme280_write(CONFIG_REG, BME280_FILTER_COEFF_OFF << BME280_FILTER_POS) ||
! bme280_write(CTRL_HUM_REG, BME280_OVERSAMPLING_1X << BME280_CTRL_HUM_POS)
);
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
init_radio(NRF_FREQ_CHANNEL, (uint8_t*)&payload_buf);
NRF_RTC2->TASKS_START = 1;
/* Workaround for PAN_028 rev2.0A anomaly 31 - TEMP: Temperature offset value has to be manually loaded to the TEMP module */
*(uint32_t *) 0x4000C504 = 0;
while (1) {
bme280_write(CTRL_MEAS_REG, (BME280_OVERSAMPLING_1X << BME280_CTRL_TEMP_POS) | (BME280_OVERSAMPLING_1X << BME280_CTRL_PRESS_POS) | BME280_FORCED_MODE);
sleep();
NRF_RTC2->EVENTS_COMPARE[1] = 0;
bme280_read(DATA_REG, buf, P_T_H_DATA_LEN);
NRF_TWIx->ENABLE = TWI_ENABLE_ENABLE_Disabled << TWI_ENABLE_ENABLE_Pos;
NRF_TEMP->TASKS_START = 1; /** Start the temperature measurement. */
/* Busy wait while temperature measurement is not finished */
while (NRF_TEMP->EVENTS_DATARDY == 0);
NRF_TEMP->EVENTS_DATARDY = 0;
/* Workaround for PAN_028 rev2.0A anomaly 29 - TEMP: Stop task clears the TEMP register. */
payload_buf.t0 = (int8_t)(READ_TEMP() / 4);
/* Workaround for PAN_028 rev2.0A anomaly 30 - TEMP: Temp module analog front end does not power down when DATARDY event occurs. */
NRF_TEMP->TASKS_STOP = 1; /* Stop the temperature measurement. */
payload_buf.t = compensate_temperature(TEMP_EXP(buf), &c_data);
payload_buf.p = compensate_pressure(PRESS_EXP(buf), &c_data);
payload_buf.h = compensate_humidity(HUM_EXP(buf), &c_data) / 10;
payload_buf.i = ((((payload_buf.i >> 1) + 1) << 1) & 0x06) | 1;
payload_buf.v = (uint16_t) measure_vdd();
#ifdef USE_UART
NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Enabled;
NRF_UART0->TASKS_STARTTX = 1;
PRINTF("%d.%02uC,\t\t %u.%02u Pa / %u.%02u mmHg,\t %u.%02u%%\t%u\t0x%02X\r\n", payload_buf.t / 100, (unsigned) payload_buf.t % 100, payload_buf.p / 100, payload_buf.p % 100, payload_buf.p / 13332, payload_buf.p % 13332 * 100 / 13332, payload_buf.h / 1000, payload_buf.h % 1000, payload_buf.i, NRF_CLOCK->HFCLKSTAT);
#endif
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->TASKS_START = 1;
WAIT_FOR_EVENT(NRF_RADIO->EVENTS_END);
#ifdef USE_UART
static unsigned a_cnt;
PRINTF("TX Loop count = %u \n", ++a_cnt);
NRF_UART0->TASKS_STOPTX = 1;
NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Disabled;
#endif
NRF_RADIO->TASKS_DISABLE = 1;
WAIT_FOR_EVENT(NRF_RADIO->EVENTS_DISABLED);
NRF_CLOCK->TASKS_HFCLKSTOP = 1;
NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
sleep();
NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
NRF_CLOCK->TASKS_HFCLKSTART = 1;
while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0);
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->TASKS_TXEN = 1;
while (NRF_RADIO->EVENTS_READY == 0);
NRF_TWIx->ENABLE = TWI_ENABLE_ENABLE_Enabled << TWI_ENABLE_ENABLE_Pos;
NRF_RTC2->EVENTS_COMPARE[0] = 0;
NRF_RTC2->TASKS_CLEAR = 1;
}
}