-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_transformer.py
121 lines (101 loc) · 5.96 KB
/
training_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import numpy as np
from tqdm import tqdm
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import utils as vutils
from transformer import VQGANTransformer
from utils import load_data, plot_images
from torch import autocast
from torch.cuda.amp import GradScaler
class TrainTransformer:
def __init__(self, args):
self.model = VQGANTransformer(args).to(device=args.device)
self.model.load_state_dict(
torch.load(os.path.join("/media/userdisk1/code/VQGAN-pytorch/checkpoints", "transformer_167.pt")))
self.optim = self.configure_optimizers()
self.train(args)
def configure_optimizers(self):
decay, no_decay = set(), set()
whitelist_weight_modules = (nn.Linear, )
blacklist_weight_modules = (nn.LayerNorm, nn.Embedding)
for mn, m in self.model.transformer.named_modules():
for pn, p in m.named_parameters():
fpn = f"{mn}.{pn}" if mn else pn
if pn.endswith("bias"):
no_decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, whitelist_weight_modules):
decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, blacklist_weight_modules):
no_decay.add(fpn)
no_decay.add("pos_emb")
param_dict = {pn: p for pn, p in self.model.transformer.named_parameters()}
optim_groups = [
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01},
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
]
optimizer = torch.optim.AdamW(optim_groups, lr=4.5e-06, betas=(0.9, 0.95))
return optimizer
def train(self, args):
train_dataset = load_data(args)
scaler = GradScaler()
all_loss = 0
best_loss = 0
start_epoch = 167
for epoch in range(start_epoch,args.epochs):
with tqdm(range(len(train_dataset))) as pbar:
for i, imgs in zip(pbar, train_dataset):
self.optim.zero_grad()
with autocast(device_type='cuda', dtype=torch.float16):
imgs = imgs.to(device=args.device)
logits, targets = self.model(imgs)
loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), targets.reshape(-1))
#
scaler.scale(loss).backward()
scaler.step(self.optim)
scaler.update()
# loss.backward()
# self.optim.step()
if i == 0:
all_loss = loss.cpu().detach().numpy().item()
else:
all_loss = all_loss * i / (i + 1) + loss.cpu().detach().numpy().item() / (i + 1)
pbar.set_postfix(Transformer_Loss=np.round(all_loss, 4))
pbar.update(0)
with autocast(device_type='cuda', dtype=torch.float16):
log, sampled_imgs = self.model.log_images(imgs[0][None])
vutils.save_image(sampled_imgs.add(1).mul(0.5), os.path.join("results", f"transformer_{epoch}.jpg"), nrow=4)
plot_images(log)
if epoch ==start_epoch:
best_loss =all_loss
torch.save(self.model.state_dict(), os.path.join("checkpoints", f"transformer_{epoch}_{all_loss}.pt"))
elif all_loss < best_loss:
best_loss = all_loss
torch.save(self.model.state_dict(), os.path.join("checkpoints", f"transformer_{epoch}_{all_loss}.pt"))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="VQGAN")
parser.add_argument('--latent-dim', type=int, default=256, help='Latent dimension n_z.')
parser.add_argument('--image-size', type=int, default=256, help='Image height and width.)')
parser.add_argument('--num-codebook-vectors', type=int, default=1024, help='Number of codebook vectors.')
parser.add_argument('--beta', type=float, default=0.25, help='Commitment loss scalar.')
parser.add_argument('--image-channels', type=int, default=3, help='Number of channels of images.')
parser.add_argument('--dataset-path', type=str, default='./data', help='Path to data.')
parser.add_argument('--checkpoint-path', type=str, default='./checkpoints/last_ckpt.pt', help='Path to checkpoint.')
parser.add_argument('--device', type=str, default="cuda", help='Which device the training is on')
parser.add_argument('--batch-size', type=int, default=20, help='Input batch size for training.')
parser.add_argument('--epochs', type=int, default=1000, help='Number of epochs to train.')
parser.add_argument('--learning-rate', type=float, default=2.25e-05, help='Learning rate.')
parser.add_argument('--beta1', type=float, default=0.5, help='Adam beta param.')
parser.add_argument('--beta2', type=float, default=0.9, help='Adam beta param.')
parser.add_argument('--disc-start', type=int, default=10000, help='When to start the discriminator.')
parser.add_argument('--disc-factor', type=float, default=1., help='Weighting factor for the Discriminator.')
parser.add_argument('--l2-loss-factor', type=float, default=1., help='Weighting factor for reconstruction loss.')
parser.add_argument('--perceptual-loss-factor', type=float, default=1., help='Weighting factor for perceptual loss.')
parser.add_argument('--pkeep', type=float, default=0.5, help='Percentage for how much latent codes to keep.')
parser.add_argument('--sos-token', type=int, default=0, help='Start of Sentence token.')
args = parser.parse_args()
args.dataset_path = r"/media/userdisk1/code/jpg/"
args.checkpoint_path = r"/media/userdisk1/code/VQGAN-pytorch/checkpoints/vqgan_epoch_307.pt"
train_transformer = TrainTransformer(args)