forked from basujindal/stable-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
txt2img_gradio.py
180 lines (149 loc) · 5.98 KB
/
txt2img_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
import numpy as np
import torch
from torchvision.utils import make_grid
from einops import rearrange
import os
from PIL import Image
import torch
import numpy as np
from random import randint
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from ldm.util import instantiate_from_config
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
config = "optimizedSD/v1-inference.yaml"
ckpt = "models/ldm/stable-diffusion-v1/model.ckpt"
sd = load_model_from_config(f"{ckpt}")
li, lo = [], []
for key, v_ in sd.items():
sp = key.split('.')
if(sp[0]) == 'model':
if('input_blocks' in sp):
li.append(key)
elif('middle_block' in sp):
li.append(key)
elif('time_embed' in sp):
li.append(key)
else:
lo.append(key)
for key in li:
sd['model1.' + key[6:]] = sd.pop(key)
for key in lo:
sd['model2.' + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config}")
config.modelUNet.params.small_batch = False
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
def generate(prompt,ddim_steps,n_iter, batch_size, Height, Width, seed, small_batch, full_precision,outdir):
device = "cuda"
C = 4
f = 8
start_code = None
ddim_eta = 0.0
scale = 7.5
model.small_batch = small_batch
if not full_precision:
model.half()
modelCS.half()
tic = time.time()
os.makedirs(outdir, exist_ok=True)
outpath = outdir
sample_path = os.path.join(outpath, "_".join(prompt.split()))[:150]
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
if seed == '':
seed = randint(0, 1000000)
seed = int(seed)
print("init_seed = ", seed)
seed_everything(seed)
# n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
assert prompt is not None
data = [batch_size * [prompt]]
precision_scope = autocast if not full_precision else nullcontext
all_samples = []
with torch.no_grad():
all_samples = list()
for _ in trange(n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
modelCS.to(device)
uc = None
if scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = modelCS.get_learned_conditioning(prompts)
shape = [C, Height // f, Width // f]
mem = torch.cuda.memory_allocated()/1e6
modelCS.to("cpu")
while(torch.cuda.memory_allocated()/1e6 >= mem):
time.sleep(1)
samples_ddim = model.sample(S=ddim_steps,
conditioning=c,
batch_size=batch_size,
seed = seed,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=start_code)
modelFS.to(device)
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
all_samples.append(x_sample.to("cpu"))
x_sample = 255. * rearrange(x_sample[0].cpu().numpy(), 'c h w -> h w c')
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, "seed_" + str(seed) + "_" + f"{base_count:05}.png"))
seed+=1
base_count += 1
mem = torch.cuda.memory_allocated()/1e6
modelFS.to("cpu")
while(torch.cuda.memory_allocated()/1e6 >= mem):
time.sleep(1)
del samples_ddim
del x_sample
del x_samples_ddim
print("memory_final = ", torch.cuda.memory_allocated()/1e6)
toc = time.time()
time_taken = (toc-tic)/60.0
grid = torch.cat(all_samples, 0)
grid = make_grid(grid, nrow=n_iter)
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
txt = "Your samples are ready in " + str(round(time_taken, 3)) + " minutes and waiting for you here \n" + sample_path
return Image.fromarray(grid.astype(np.uint8)), txt
demo = gr.Interface(
fn=generate,
inputs=["text",gr.Slider(1, 1000,value=50),gr.Slider(1, 100, step=1), gr.Slider(1, 100,step=1),
gr.Slider(512, 4096, step=64), gr.Slider(512,4096,step=64), "text","checkbox", "checkbox",gr.Text(value = "outputs/txt2img-samples")],
outputs=["image", "text"],
)
demo.launch()