-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcapacity.qmd
542 lines (390 loc) · 20.6 KB
/
capacity.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
---
title: "Installed Capacity"
subtitle: "Total Installed Capacity by Certified Utilities in Alaska, 2011-2021"
---
```{r}
# Import required packages
library(tidyr)
library(dplyr)
library(readr)
library(ggplot2)
library(ggiraph)
# Import the data
capacity_data <- read.csv("data/final_data/capacity.csv")
regional_capacity <- capacity_data %>%
group_by(year,acep_region,prime_mover) %>%
summarize(
"total_capacity" = sum(capacity, na.rm = TRUE), .groups = "drop") %>%
mutate(prime_mover = factor(prime_mover,
levels =
c("Fossil Turbines","Recip Engines",
"Hydro","Wind","Utility Solar",
"Rooftop Solar","Storage",
"Landfill Gas")),
year = as.character(year))
# Function declaration
source("scripts/inline_functions/capacity_inline_functions.R")
source("scripts/R/theme_electrified.R")
# Function to make space regardless of execution format
# To use: write `r space() outside of a code block
# Modify globally at ./scripts/inline_functions/space.R
source("scripts/R/space.R")
```
`r space(br="", vspace="-3em")`
## General Overview {#sec-capacity}
Generation capacity represents the maximum amount of electricity that can be generated at any given time dependent on certain conditions. The combination of generation sources is often referred to as the capacity mix. Changes in the capacity mix over time reflect decisions to build and retire generators. These decisions are a result of shifting costs, technological innovations, the normal aging of the generation fleet, and/or stakeholder policies. Due to data limitations, we show capacity levels for calendar years 2011-2013, 2018, and 2021. While we cannot observe year-to-year trends, there are enough years of data to visualize capacity trends from 2011 to 2021.
We begin this section by showcasing the increases in total capacity across the state. In 2011, it is estimated that the total statewide electricity generation capacity was `r capacity(year=2011)` MW. We estimate that this has increased to approximately `r capacity(year=2021)` MW in 2021 based on best available data. This represents an increase of `r formatC(capacity(year=2021, numeric_out = TRUE) - capacity(year=2011, numeric_out = TRUE), format="d", big.mark=",")` MW, or `r round((capacity(year=2021, numeric_out = TRUE) - capacity(year=2011, numeric_out = TRUE))/abs(capacity(year=2011, numeric_out = TRUE)),2)*100` percent increase since 2011. To illustrate this example, we show a stacked area chart in `r if (knitr::is_html_output())"@fig-capacity-state-html" else if (knitr::is_latex_output()) "@fig-capacity-state-pdf"` that showcases growth over time for various technologies.[^1]
`r space()`
[^1]: Prime movers are categorized as follows. Fossil turbines include combined cycle turbines, gas turbines, and steam turbines. Reciprocating engines include internal combustion engines. Hydro includes hydraulic turbines and hydrokinetics. Wind includes wind turbines. Utility solar includes utility-owned photovoltaic (PV), and Rooftop solar includes customer-sited, behind-the-meter PV. Storage refers to batteries and flywheels.
```{r}
#code for both html and pdf
statewide_capacity <- regional_capacity %>%
group_by(year, prime_mover) %>%
summarize(statewide_capacity = sum(total_capacity, na.rm = TRUE), .groups = "drop")
statewide_plot <-
ggplot(
statewide_capacity,
aes(
x = year,
y = statewide_capacity,
fill = prime_mover)) +
scale_x_discrete(name = "\nYear") +
scale_y_continuous(
name = "Capacity (MW)\n",
limits = c(0,3500),
breaks = seq(0,3000, by = 500),
expand = c(0, 0)) +
scale_fill_manual(values = c("#606571", "#9da7bf", "#00a1b7", "#F79646", "#fad900","#9BBB59","#71346a","#896D09")) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(nrow = 2))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-capacity-state-html
#| fig-cap: "Capacity Changes, Statewide"
statewide_html <-
statewide_plot +
geom_col_interactive(aes(fill = prime_mover,
tooltip =
paste("Year:", year,
"<br>Prime Mover:", prime_mover,
"<br>Capacity (MW):",statewide_capacity)),
position = position_stack(reverse = TRUE))
girafe(code = print(statewide_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-capacity-state-pdf
#| fig-cap: "Capacity Changes, Statewide"
statewide_pdf <-
statewide_plot +
geom_col(position = position_stack(reverse = TRUE))
print(statewide_pdf)
```
`r space()`
::: {.content-visible when-format="pdf"}
\newpage
:::
## Coastal
For the coastal region, we observe a `r capacity_delta("Coastal")` MW increase in generation capacity (an increase of approximately `r capacity_delta("Coastal", pct=TRUE)` percent) between 2011 and 2021. `r if (knitr::is_html_output())"@fig-capacity-coastal-html" else if (knitr::is_latex_output()) "@fig-capacity-coastal-pdf"` shows the change in total installed capacity for each prime mover in the coastal region. This region saw additions of `r capacity_delta("Coastal", prime_mover = "Fossil Turbines")` MW of fossil turbines, and `r capacity_delta("Coastal", prime_mover = "Recip Engines")` MW of reciprocating engines. The remaining increases were renewable and storage capacity which we look at in more depth in `r if (knitr::is_html_output())"@fig-capacity-coastal-renewable-html" else if (knitr::is_latex_output()) "@fig-capacity-coastal-renewable-pdf"`.
`r space(vspace="-1em")`
```{r}
coastal_capacity_names <- c("Fossil Turbines", "Recip Engines", "Hydro", "Wind", "Storage")
coastal_capacity <-
regional_capacity %>%
filter(acep_region == "Coastal", prime_mover %in% coastal_capacity_names) %>%
group_by(year, prime_mover) %>%
summarize(coastal_capacity = sum(total_capacity, na.rm = TRUE), .groups = "drop")
coastal_plot <-
ggplot(
coastal_capacity,
aes(
x = year,
y = coastal_capacity,
fill = prime_mover)) +
scale_x_discrete(name = "\nYear") +
scale_y_continuous(
name = "Capacity (MW)\n",
limits = c(0,700),
breaks = seq(0,650, by = 50),
expand = c(0, 0)) +
scale_fill_manual(values = c("#606571", "#9da7bf", "#00a1b7", "#F79646","#71346a")) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(nrow = 1))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-capacity-coastal-html
#| fig-cap: "Coastal Region Capacity"
coastal_html <-
coastal_plot +
geom_col_interactive(aes(fill = prime_mover,
tooltip =
paste("Year:", year,
"<br>Prime Mover:", prime_mover,
"<br>Capacity (MW):",coastal_capacity)),
position = position_stack(reverse = TRUE))
girafe(code = print(coastal_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-capacity-coastal-pdf
#| fig-cap: "Coastal Region Capacity"
coastal_pdf <-
coastal_plot +
geom_col(position = position_stack(reverse = TRUE))
print(coastal_pdf)
```
`r space(vspace="-2em")`
#### Coastal Renewables
Across the `r capacity_delta(region = "Coastal", numeric_out = TRUE) - capacity_delta(region = "Coastal", prime_mover = "Fossil Turbines", numeric_out = TRUE) - capacity_delta(region = "Coastal", prime_mover = "Recip Engines", numeric_out = TRUE)` MW of added renewable and storage capacity <!--the remaining capacity expansions-->, hydropower accounted for the bulk of the capacity additions with `r capacity_delta("Coastal", prime_mover = "Hydro")` MW. Storage capacity increased by `r capacity_delta("Coastal", prime_mover = "Storage")` MW and wind generation capacity increased by `r capacity_delta("Coastal", prime_mover = "Wind")` MW. Between 2013 and 2018, significant hydropower additions were made in the Southeast (19.4 MW), Kodiak (11.3 MW), and the Copper-River/Chugach (6.5 MW) AEA energy regions.
`r space(vspace="-1em")`
```{r}
coastal_renewables_names <- c("Hydro", "Wind", "Storage")
coastal_renewable_capacity <-
regional_capacity %>%
filter(acep_region == "Coastal", prime_mover %in% coastal_renewables_names) %>%
group_by(year, prime_mover) %>%
summarize(coastal_renewable_capacity = sum(total_capacity, na.rm = TRUE), .groups = "drop")
coastal_renewable_plot <-
ggplot(
coastal_renewable_capacity,
aes(
x = year,
y = coastal_renewable_capacity,
fill = prime_mover)) +
scale_x_discrete(name = "\nYear") +
scale_y_continuous(
name = "Capacity (MW)\n",
limits = c(0,350),
breaks = seq(0,300, by = 50),
expand = c(0, 0)) +
scale_fill_manual(values = c("#00a1b7", "#F79646","#71346a")) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(nrow = 1))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-capacity-coastal-renewable-html
#| fig-cap: "Coastal Region Renewable Capacity"
coastal_renewable_html <-
coastal_renewable_plot +
geom_col_interactive(aes(fill = prime_mover,
tooltip =
paste("Year:", year,
"<br>Prime Mover:", prime_mover,
"<br>Capacity (MW):",coastal_renewable_capacity)),
position = position_stack(reverse = TRUE))
girafe(code = print(coastal_renewable_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-capacity-coastal-renewable-pdf
#| fig-cap: "Coastal Region Renewable Capacity"
coastal_renewable_pdf <-
coastal_renewable_plot +
geom_col(position = position_stack(reverse = TRUE))
print(coastal_renewable_pdf)
```
`r space()`
::: {.content-visible when-format="pdf"}
\newpage
:::
## Railbelt
For the Railbelt region, capacity additions were dominated by more-efficient fossil fuel generating units and new battery storage. These additions are visualized in `r if (knitr::is_html_output())"@fig-capacity-railbelt-html" else if (knitr::is_latex_output()) "@fig-capacity-railbelt-pdf"`. There were `r capacity_delta("Railbelt")` MW of capacity additions between 2011 and 2021. The Railbelt region saw `r capacity_delta("Railbelt", prime_mover = "Recip Engines")` MW of reciprocating engine additions and `r capacity_delta("Railbelt", prime_mover = "Fossil Turbines")` MW of fossil fuel turbines. The remaining capacity additions were renewables and storage and are shown in `r if (knitr::is_html_output())"@fig-capacity-railbelt-renewable-html" else if (knitr::is_latex_output()) "@fig-capacity-railbelt-renewable-pdf"`.
`r space(vspace="-1em")`
```{r}
railbelt_capacity <-
regional_capacity %>%
filter(acep_region == "Railbelt") %>%
group_by(year, prime_mover) %>%
summarize(railbelt_capacity = sum(total_capacity, na.rm = TRUE), .groups = "drop")
railbelt_plot <-
ggplot(
railbelt_capacity,
aes(
x = year,
y = railbelt_capacity,
fill = prime_mover)) +
scale_x_discrete(name = "\nYear") +
scale_y_continuous(
name = "Capacity (MW)\n",
limits = c(0,2500),
breaks = seq(0,2000, by = 250),
expand = c(0, 0)) +
scale_fill_manual(values = c("#606571", "#9da7bf", "#00a1b7", "#F79646", "#fad900","#9BBB59","#71346a","#896D09")) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(nrow = 2))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-capacity-railbelt-html
#| fig-cap: "Railbelt Region Capacity"
railbelt_html <-
railbelt_plot +
geom_col_interactive(aes(fill = prime_mover,
tooltip =
paste("Year:", year,
"<br>Prime Mover:", prime_mover,
"<br>Capacity (MW):",railbelt_capacity)),
position = position_stack(reverse = TRUE))
girafe(code = print(railbelt_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-capacity-railbelt-pdf
#| fig-cap: "Railbelt Region Capacity"
railbelt_pdf <-
railbelt_plot +
geom_col(position = position_stack(reverse = TRUE))
print(railbelt_pdf)
```
`r space(vspace="-2em")`
#### Railbelt Renewables
Total renewable and storage capacity in the Railbelt region increased by `r capacity_delta(region = "Railbelt", numeric_out = TRUE) - capacity_delta(region = "Railbelt", prime_mover = "Fossil Turbines", numeric_out = TRUE) - capacity_delta(region = "Railbelt", prime_mover = "Recip Engines", numeric_out = TRUE)` MW. Notable additions included the commercial commissioning of the 18 MW Fire Island Wind site in September 2012 and the 25 MW Eva Creek Wind site in October 2012. Significant investments in storage capacity have also been made. Since 2011, `r capacity_delta("Railbelt", prime_mover = "Storage")` MW of storage, `r capacity_delta("Railbelt", prime_mover = "Wind")` MW of wind, `r capacity_delta("Railbelt", prime_mover = "Hydro")` MW of hydro, `r capacity_delta("Railbelt", prime_mover = "Utility Solar")` MW of utility solar, `r capacity_delta("Railbelt", prime_mover = "Rooftop Solar")` MW of rooftop – also known as “behind-the-meter” – solar, and `r capacity_delta("Railbelt", prime_mover = "Landfill Gas")` MW of landfill gas have been added.
`r space(vspace="-1em")`
```{r}
railbelt_renewable_names <- c("Hydro", "Wind", "Utility Solar", "Rooftop Solar", "Storage", "Landfill Gas")
railbelt_renewable_capacity <-
regional_capacity %>%
filter(acep_region == "Railbelt", prime_mover %in% railbelt_renewable_names) %>%
group_by(year, prime_mover) %>%
summarize(railbelt_renewable_capacity = sum(total_capacity, na.rm = TRUE), .groups = "drop")
railbelt_renewable_plot <-
ggplot(
railbelt_renewable_capacity,
aes(
x = year,
y = railbelt_renewable_capacity,
fill = prime_mover)) +
scale_x_discrete(name = "\nYear") +
scale_y_continuous(
name = "Capacity (MW)\n",
limits = c(0,400),
breaks = seq(0,350, by = 50),
expand = c(0, 0)) +
scale_fill_manual(values = c("#00a1b7", "#F79646","#fad900","#9BBB59","#71346a","#896D09")) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(nrow = 1))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-capacity-railbelt-renewable-html
#| fig-cap: "Railbelt Region Renewable Capacity"
railbelt_renewable_html <-
railbelt_renewable_plot +
geom_col_interactive(aes(fill = prime_mover,
tooltip =
paste("Year:", year,
"<br>Prime Mover:", prime_mover,
"<br>Capacity (MW):", railbelt_renewable_capacity)),
position = position_stack(reverse = TRUE))
girafe(code = print(railbelt_renewable_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-capacity-railbelt-renewable-pdf
#| fig-cap: "Railbelt Region Renewable Capacity"
railbelt_renewable_pdf <-
railbelt_renewable_plot +
geom_col(position = position_stack(reverse = TRUE))
print(railbelt_renewable_pdf)
```
`r space()`
::: {.content-visible when-format="pdf"}
\newpage
:::
## Rural Remote
The rural remote region saw an increase of `r capacity_delta("Rural Remote")` MW in capacity (a `r capacity_delta("Rural Remote", pct = TRUE)`% increase) (`r if (knitr::is_html_output())"@fig-capacity-rural-html" else if (knitr::is_latex_output()) "@fig-capacity-rural-pdf"`). Most of the increases in capacity were fossil fuel turbines (`r capacity_delta("Rural Remote", prime_mover = "Fossil Turbines")` MW added on the North Slope) and reciprocating engines (`r capacity_delta("Rural Remote", prime_mover = "Recip Engines")` MW). Renewable capacity is explored in further detail in the `r if (knitr::is_html_output())"@fig-capacity-rural-renewable-html" else if (knitr::is_latex_output()) "@fig-capacity-rural-renewable-pdf"`.
`r space(vspace="-1em")`
```{r}
rural_remote_names <- c("Fossil Turbines", "Recip Engines", "Hydro", "Wind", "Utility Solar", "Storage")
rural_remote_capacity <-
regional_capacity %>%
filter(acep_region == "Rural Remote", prime_mover %in% rural_remote_names) %>%
group_by(year, prime_mover) %>%
summarize(rural_remote_capacity = sum(total_capacity, na.rm = TRUE), .groups = "drop")
rural_remote_plot <-
ggplot(
rural_remote_capacity,
aes(
x = year,
y = rural_remote_capacity,
fill = prime_mover)) +
scale_x_discrete(name = "\nYear") +
scale_y_continuous(
name = "Capacity (MW)\n",
limits = c(0,400),
breaks = seq(0,300, by = 50),
expand = c(0, 0)) +
scale_fill_manual(values = c("#606571", "#9da7bf", "#00a1b7", "#F79646", "#fad900","#71346a")) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(nrow = 1))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-capacity-rural-html
#| fig-cap: "Rural Remote Region Capacity"
rural_remote_html <-
rural_remote_plot +
geom_col_interactive(aes(fill = prime_mover,
tooltip =
paste("Year:", year,
"<br>Prime Mover:", prime_mover,
"<br>Capacity (MW):",rural_remote_capacity)),
position = position_stack(reverse = TRUE))
girafe(code = print(rural_remote_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-capacity-rural-pdf
#| fig-cap: "Rural Remote Region Capacity"
rural_remote_pdf <-
rural_remote_plot +
geom_col(position = position_stack(reverse = TRUE))
print(rural_remote_pdf)
```
`r space(vspace="-2em")`
#### Rural Remote Renewables
This region saw an absolute increase of `r capacity_delta(region = "Rural Remote", numeric_out = TRUE) - capacity_delta(region = "Rural Remote", prime_mover = "Fossil Turbines", numeric_out = TRUE) - capacity_delta(region = "Rural Remote", prime_mover = "Recip Engines", numeric_out = TRUE)` MW of renewable capacity between 2011 to 2021. Over this time period, hydropower generation resources increased by `r capacity_delta("Rural Remote", prime_mover = "Hydro")` MW, wind increased by `r capacity_delta("Rural Remote", prime_mover = "Wind")` MW, utility-scale solar increased by `r capacity_delta("Rural Remote", prime_mover = "Utility Solar")` MW and storage increased by `r capacity_delta("Rural Remote", prime_mover = "Storage")` MW. Between 2018 and 2021, 2 MW of wind was retired in the Bering Straits energy region, 1.2 MW in Kotzebue, and 0.2 MW in the Aleutians, explaining the reduction in wind capacity between the calendar years.
`r space(vspace="-1em")`
```{r}
rural_remote_renewable_names <- c("Hydro", "Wind", "Utility Solar","Storage")
rural_remote_renewable_capacity <-
regional_capacity %>%
filter(acep_region == "Rural Remote", prime_mover %in% rural_remote_renewable_names) %>%
group_by(year, prime_mover) %>%
summarize(rural_remote_renewable_capacity = sum(total_capacity, na.rm = TRUE), .groups = "drop")
rural_remote_renewable_plot <-
ggplot(
rural_remote_renewable_capacity,
aes(
x = year,
y = rural_remote_renewable_capacity,
fill = prime_mover)) +
scale_x_discrete(name = "\nYear") +
scale_y_continuous(
name = "Capacity (MW)\n",
limits = c(0,24),
breaks = seq(0,22, by = 2),
expand = c(0, 0)) +
scale_fill_manual(values = c("#00a1b7", "#F79646","#fad900","#71346a")) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(nrow = 1))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-capacity-rural-renewable-html
#| fig-cap: "Rural Remote Region Renewable Capacity"
rural_remote_renewable_html <-
rural_remote_renewable_plot +
geom_col_interactive(aes(fill = prime_mover,
tooltip =
paste("Year:", year,
"<br>Prime Mover:", prime_mover,
"<br>Capacity (MW):",rural_remote_renewable_capacity)),
position = position_stack(reverse = TRUE))
girafe(code = print(rural_remote_renewable_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-capacity-rural-renewable-pdf
#| fig-cap: "Rural Remote Region Renewable Capacity"
rural_remote_renewable_pdf <-
rural_remote_renewable_plot +
geom_col(position = position_stack(reverse = TRUE))
print(rural_remote_renewable_pdf)
```