-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbayesnet.py
176 lines (149 loc) · 4.16 KB
/
bayesnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#! /usr/bin/env python
import getopt, sys
from numpy import *
from pbnt.Graph import *
from pbnt.Distribution import *
from pbnt.Node import *
from pbnt.Inference import *
try:
from IPython import embed
except:
pass
debug = False;
def main():
#Import arguments and parse into options.
try:
optlist, remainder = getopt.getopt(sys.argv[1:], 'j:g:m:vh')
#If no arguments profided
if len(optlist) == 0:
print "***Options required***"
usage()
#if inappropriate argument provided
except getopt.GetoptError as err:
print str(err)
usage()
for o, a in optlist:
if o == "-v":
debug = True
if debug:
#view input
print "\nProvided Arguments: "
print str(optlist) + "\n"
elif o == "-h":
usage()
elif o == "-m":
# Return the Marginal probability
pass
elif o == "-g":
# Return the conditional probability
pass
elif o == "-j":
# Return the joint probability
pass
#Initialize the Cancer Bayes Network
# network = nGraph()
#testing basic bayes net class implementation
numberOfNodes = 4
#name the nodes
cloudy = 0
sprinkler = 1
rain = 2
wetgrass = 3
cNode = BayesNode(0, 2, name="cloudy")
sNode = BayesNode(1, 2, name="sprinkler")
rNode = BayesNode(2, 2, name="rain")
wNode = BayesNode(3, 2, name="wetgrass")
#cloudy
cNode.add_child(sNode)
cNode.add_child(rNode)
#sprinkler
sNode.add_parent(cNode)
sNode.add_child(wNode)
#rain
rNode.add_parent(cNode)
rNode.add_child(wNode)
#wetgrass
wNode.add_parent(sNode)
wNode.add_parent(rNode)
nodes = [cNode, sNode, rNode, wNode]
#create distributions
#cloudy distribution
cDistribution = DiscreteDistribution(cNode)
index = cDistribution.generate_index([],[])
# embed()
cDistribution[index] = 0.5
cNode.set_dist(cDistribution)
#sprinkler
dist = zeros([cNode.size(),sNode.size()], dtype=float32)
dist[0,] = 0.5
dist[1,] = [0.9,0.1]
sDistribution = ConditionalDiscreteDistribution(nodes=[cNode, sNode], table=dist)
sNode.set_dist(sDistribution)
#rain
dist = zeros([cNode.size(), rNode.size()], dtype=float32)
dist[0,] = [0.8,0.2]
dist[1,] = [0.2,0.8]
rDistribution = ConditionalDiscreteDistribution(nodes=[cNode, rNode], table=dist)
rNode.set_dist(rDistribution)
#wetgrass
dist = zeros([sNode.size(), rNode.size(), wNode.size()], dtype=float32)
dist[0,0,] = [1.0,0.0]
dist[1,0,] = [0.1,0.9]
dist[0,1,] = [0.1,0.9]
dist[1,1,] = [0.01,0.99]
wgDistribution = ConditionalDiscreteDistribution(nodes=[sNode, rNode, wNode], table=dist)
wNode.set_dist(wgDistribution)
#create bayes net
water = BayesNet(nodes)
for node in water.nodes:
if node.id == 0:
cloudy = node
if node.id == 1:
sprinkler = node
if node.id == 2:
rain = node
if node.id == 3:
wetgrass = node
# embed()
engine = JunctionTreeEngine(water)
#Compute the marginal probability of sprinkler given no evidence
Q = engine.marginal(cloudy)[0]
# embed()
index = Q.generate_index([True], range(Q.nDims))
print "The marginal probability of Cloudy=true:", Q[index]
# engine.evidence[cloudy] = True
# #Compute the marginal probability given the evidence cloudy=False, rain=true
# Q = engine.marginal(sprinkler)[0]
# index = Q.generate_index([True],range(Q.nDims))
# print "The marginal probability of wetgrass=false | cloudy=False, rain=True:", Q[index]
#Run logic on bayes:
#print result
def usage():
print """
Usage:
---
Flags
-g conditional probablity
-j joint probability
-m marginal probability
-v verbose
-h help
---
Input
P Polution (p = low, ~p = high)
S Smoker (s = true, ~s = false)
C Cancer (c = true, ~c = false)
D Dyspnoea (d = true, ~d = false)
X X-Ray (x = true, ~x = false)
---
Example
python bayesnet.py -jPSC
(joint probabilities for Pollution, Smoker, and Cancer)
python bayesnet.py -j~p~s~c
(joint probability for pollution = h, smoker = f, cancer = f)
python bayesnet.py -gc|s
(conditional probability for cancer given that someone is a smoker)
"""
sys.exit(2)
if __name__ == "__main__":
main()