-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathEvaluationContexts.v
2076 lines (1807 loc) · 59.3 KB
/
EvaluationContexts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 12: More on Evaluation Contexts
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap.
(** * Evaluation Contexts for Lambda Calculus *)
(* Let's revisit the typed language from the end of the previous chapter, this
* time casting its small-step semantics using evaluation contexts. *)
Module Stlc.
Inductive exp : Set :=
| Var (x : var)
| Const (n : nat)
| Plus (e1 e2 : exp)
| Abs (x : var) (e1 : exp)
| App (e1 e2 : exp).
Inductive value : exp -> Prop :=
| VConst : forall n, value (Const n)
| VAbs : forall x e1, value (Abs x e1).
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
match e2 with
| Var y => if y ==v x then e1 else Var y
| Const n => Const n
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
end.
(* Here's the first difference from last chapter. This is our grammar of
* contexts. Note a difference from the book: we don't enforce here that
* the first argument of a [Plus1] or [App1] is a value, but rather that
* constraint comes in the next relation definition. *)
Inductive context : Set :=
| Hole : context
| Plus1 : context -> exp -> context
| Plus2 : exp -> context -> context
| App1 : context -> exp -> context
| App2 : exp -> context -> context.
(* Again, note how two of the rules include [value] premises. *)
Inductive plug : context -> exp -> exp -> Prop :=
| PlugHole : forall e, plug Hole e e
| PlugPlus1 : forall e e' C e2,
plug C e e'
-> plug (Plus1 C e2) e (Plus e' e2)
| PlugPlus2 : forall e e' v1 C,
value v1
-> plug C e e'
-> plug (Plus2 v1 C) e (Plus v1 e')
| PlugApp1 : forall e e' C e2,
plug C e e'
-> plug (App1 C e2) e (App e' e2)
| PlugApp2 : forall e e' v1 C,
value v1
-> plug C e e'
-> plug (App2 v1 C) e (App v1 e').
(* Small-step, call-by-value evaluation, using our evaluation contexts *)
(* First: the primitive reductions *)
Inductive step0 : exp -> exp -> Prop :=
| Beta : forall x e v,
value v
-> step0 (App (Abs x e) v) (subst v x e)
| Add : forall n1 n2,
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)).
(* Then: running them in context *)
Inductive step : exp -> exp -> Prop :=
| StepRule : forall C e1 e2 e1' e2',
plug C e1 e1'
-> plug C e2 e2'
-> step0 e1 e2
-> step e1' e2'.
(* It's easy to wrap everything as a transition system. *)
Definition trsys_of (e : exp) := {|
Initial := {e};
Step := step
|}.
(* Typing details are the same as last chapter. *)
Inductive type :=
| Nat (* Numbers *)
| Fun (dom ran : type) (* Functions *).
Inductive has_ty : fmap var type -> exp -> type -> Prop :=
| HtVar : forall G x t,
G $? x = Some t
-> has_ty G (Var x) t
| HtConst : forall G n,
has_ty G (Const n) Nat
| HtPlus : forall G e1 e2,
has_ty G e1 Nat
-> has_ty G e2 Nat
-> has_ty G (Plus e1 e2) Nat
| HtAbs : forall G x e1 t1 t2,
has_ty (G $+ (x, t1)) e1 t2
-> has_ty G (Abs x e1) (Fun t1 t2)
| HtApp : forall G e1 e2 t1 t2,
has_ty G e1 (Fun t1 t2)
-> has_ty G e2 t1
-> has_ty G (App e1 e2) t2.
Local Hint Constructors value plug step0 step has_ty : core.
(** * Now we adapt the automated proof of type soundness. *)
Ltac t0 := match goal with
| [ H : ex _ |- _ ] => invert H
| [ H : _ /\ _ |- _ ] => invert H
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
| [ H : Some _ = Some _ |- _ ] => invert H
| [ H : step _ _ |- _ ] => invert H
| [ H : step0 _ _ |- _ ] => invert1 H
| [ H : has_ty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H
| [ H : has_ty _ _ _ |- _ ] => invert1 H
| [ H : plug _ _ _ |- _ ] => invert1 H
end; subst.
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6.
Lemma progress : forall e t,
has_ty $0 e t
-> value e
\/ (exists e' : exp, step e e').
Proof.
induct 1; t.
Qed.
Lemma weakening_override : forall (G G' : fmap var type) x t,
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
-> (forall x' t', G $+ (x, t) $? x' = Some t'
-> G' $+ (x, t) $? x' = Some t').
Proof.
simplify.
cases (x ==v x'); simplify; eauto.
Qed.
Local Hint Resolve weakening_override : core.
Lemma weakening : forall G e t,
has_ty G e t
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
-> has_ty G' e t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve weakening : core.
(* Replacing a typing context with an equal one has no effect (useful to guide
* proof search as a hint). *)
Lemma has_ty_change : forall G e t,
has_ty G e t
-> forall G', G' = G
-> has_ty G' e t.
Proof.
t.
Qed.
Local Hint Resolve has_ty_change : core.
Lemma substitution : forall G x t' e t e',
has_ty (G $+ (x, t')) e t
-> has_ty $0 e' t'
-> has_ty G (subst e' x e) t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve substitution : core.
Lemma preservation0 : forall e1 e2,
step0 e1 e2
-> forall t, has_ty $0 e1 t
-> has_ty $0 e2 t.
Proof.
invert 1; t.
Qed.
Local Hint Resolve preservation0 : core.
Lemma preservation' : forall C e1 e1',
plug C e1 e1'
-> forall e2 e2' t, plug C e2 e2'
-> step0 e1 e2
-> has_ty $0 e1' t
-> has_ty $0 e2' t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve preservation' : core.
Lemma preservation : forall e1 e2,
step e1 e2
-> forall t, has_ty $0 e1 t
-> has_ty $0 e2 t.
Proof.
invert 1; t.
Qed.
Local Hint Resolve progress preservation : core.
Theorem safety : forall e t, has_ty $0 e t
-> invariantFor (trsys_of e)
(fun e' => value e'
\/ exists e'', step e' e'').
Proof.
simplify.
apply invariant_weaken with (invariant1 := fun e' => has_ty $0 e' t); eauto.
apply invariant_induction; simplify; eauto; equality.
Qed.
(* It may not be obvious that this way of defining the semantics gives us a
* unique evaluation sequence for every well-typed program. Let's prove
* it. *)
Lemma plug_not_value : forall C e v,
value v
-> plug C e v
-> C = Hole /\ e = v.
Proof.
invert 1; invert 1; auto.
Qed.
Lemma step0_value : forall v e,
value v
-> step0 v e
-> False.
Proof.
invert 1; invert 1.
Qed.
Lemma plug_det : forall C e1 e2 e1' f1 f1',
step0 e1 e1'
-> step0 f1 f1'
-> plug C e1 e2
-> forall C', plug C' f1 e2
-> C = C' /\ e1 = f1.
Proof.
induct 3; invert 1;
repeat match goal with
| [ H : step0 _ _ |- _ ] => invert1 H
| [ H : plug _ _ _ |- _ ] => eapply plug_not_value in H; [ | solve [ eauto ] ];
propositional; subst
| [ IH : step0 _ _ -> _, H : plug _ _ _ |- _ ] => eapply IH in H; [ | solve [ auto ] ];
equality
| [ _ : value ?v, _ : step0 ?v _ |- _ ] => exfalso; eapply step0_value; eauto
end; equality.
Qed.
Lemma step0_det : forall e e', step0 e e'
-> forall e'', step0 e e''
-> e' = e''.
Proof.
invert 1; invert 1; auto.
Qed.
Lemma plug_func : forall C e e1,
plug C e e1
-> forall e2, plug C e e2
-> e1 = e2.
Proof.
induct 1; invert 1; auto; f_equal; auto.
Qed.
Theorem deterministic : forall e e', step e e'
-> forall e'', step e e''
-> e' = e''.
Proof.
invert 1; invert 1.
assert (C = C0 /\ e1 = e0) by (eapply plug_det; eassumption).
propositional; subst.
assert (e2 = e3) by (eapply step0_det; eassumption).
subst.
eapply plug_func; eassumption.
Qed.
End Stlc.
(** * Some More Classic Features *)
(* Here's how easy it is to extend those definitions and proofs to two other
* common features of functional-programming languages. We'll use comments to
* mark the only places where code is added. Very little old code needs to be
* changed! The version in the book PDF shows even more clearly how evaluation
* contexts make for compact descriptions of features, since here we are
* manually writing [plug] relations, following clear conventions in
* evaluation-context grammars. *)
Module StlcPairs.
Inductive exp : Set :=
| Var (x : var)
| Const (n : nat)
| Plus (e1 e2 : exp)
| Abs (x : var) (e1 : exp)
| App (e1 e2 : exp)
(* We can combine two values together into a pair, and then we can use
* projection functions to retrieve the first and second components,
* respectively. *)
| Pair (e1 e2 : exp)
| Fst (e1 : exp)
| Snd (e2 : exp).
Inductive value : exp -> Prop :=
| VConst : forall n, value (Const n)
| VAbs : forall x e1, value (Abs x e1)
(* A pair of values is a value. (Now this relation finally becomes
* recursive.) *)
| VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2).
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
match e2 with
| Var y => if y ==v x then e1 else Var y
| Const n => Const n
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
(* Some bureaucratic work here to add predictable cases *)
| Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'')
| Fst e2' => Fst (subst e1 x e2')
| Snd e2' => Snd (subst e1 x e2')
end.
Inductive context : Set :=
| Hole : context
| Plus1 : context -> exp -> context
| Plus2 : exp -> context -> context
| App1 : context -> exp -> context
| App2 : exp -> context -> context
(* Two new context kinds, indicating left-to-right evaluation order for
* pairs *)
| Pair1 : context -> exp -> context
| Pair2 : exp -> context -> context
(* And similar for projections *)
| Fst1 : context -> context
| Snd1 : context -> context.
Inductive plug : context -> exp -> exp -> Prop :=
| PlugHole : forall e, plug Hole e e
| PlugPlus1 : forall e e' C e2,
plug C e e'
-> plug (Plus1 C e2) e (Plus e' e2)
| PlugPlus2 : forall e e' v1 C,
value v1
-> plug C e e'
-> plug (Plus2 v1 C) e (Plus v1 e')
| PlugApp1 : forall e e' C e2,
plug C e e'
-> plug (App1 C e2) e (App e' e2)
| PlugApp2 : forall e e' v1 C,
value v1
-> plug C e e'
-> plug (App2 v1 C) e (App v1 e')
(* Our new plugging rules *)
| PlugPair1 : forall e e' C e2,
plug C e e'
-> plug (Pair1 C e2) e (Pair e' e2)
| PlugPair2 : forall e e' v1 C,
value v1
-> plug C e e'
-> plug (Pair2 v1 C) e (Pair v1 e')
| PlugFst1 : forall e e' C,
plug C e e'
-> plug (Fst1 C) e (Fst e')
| PlugSnd1 : forall e e' C,
plug C e e'
-> plug (Snd1 C) e (Snd e').
Inductive step0 : exp -> exp -> Prop :=
| Beta : forall x e v,
value v
-> step0 (App (Abs x e) v) (subst v x e)
| Add : forall n1 n2,
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2))
(* Reducing projections *)
| FstPair : forall v1 v2,
value v1
-> value v2
-> step0 (Fst (Pair v1 v2)) v1
| SndPair : forall v1 v2,
value v1
-> value v2
-> step0 (Snd (Pair v1 v2)) v2.
Inductive step : exp -> exp -> Prop :=
| StepRule : forall C e1 e2 e1' e2',
plug C e1 e1'
-> plug C e2 e2'
-> step0 e1 e2
-> step e1' e2'.
Definition trsys_of (e : exp) := {|
Initial := {e};
Step := step
|}.
Inductive type :=
| Nat
| Fun (dom ran : type)
| Prod (t1 t2 : type) (* "Prod" for "product," as in Cartesian product *).
Inductive has_ty : fmap var type -> exp -> type -> Prop :=
| HtVar : forall G x t,
G $? x = Some t
-> has_ty G (Var x) t
| HtConst : forall G n,
has_ty G (Const n) Nat
| HtPlus : forall G e1 e2,
has_ty G e1 Nat
-> has_ty G e2 Nat
-> has_ty G (Plus e1 e2) Nat
| HtAbs : forall G x e1 t1 t2,
has_ty (G $+ (x, t1)) e1 t2
-> has_ty G (Abs x e1) (Fun t1 t2)
| HtApp : forall G e1 e2 t1 t2,
has_ty G e1 (Fun t1 t2)
-> has_ty G e2 t1
-> has_ty G (App e1 e2) t2
| HtPair : forall G e1 e2 t1 t2,
has_ty G e1 t1
-> has_ty G e2 t2
-> has_ty G (Pair e1 e2) (Prod t1 t2)
| HtFst : forall G e1 t1 t2,
has_ty G e1 (Prod t1 t2)
-> has_ty G (Fst e1) t1
| HtSnd : forall G e1 t1 t2,
has_ty G e1 (Prod t1 t2)
-> has_ty G (Snd e1) t2.
Local Hint Constructors value plug step0 step has_ty : core.
Ltac t0 := match goal with
| [ H : ex _ |- _ ] => invert H
| [ H : _ /\ _ |- _ ] => invert H
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
| [ H : Some _ = Some _ |- _ ] => invert H
| [ H : step _ _ |- _ ] => invert H
| [ H : step0 _ _ |- _ ] => invert1 H
| [ H : has_ty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; []
(* Change here! We need to enforce there is at most one
* remaining subgoal, or we'll keep doing useless [value]
* inversions ad infinitum. *)
| [ H : has_ty _ _ _ |- _ ] => invert1 H
| [ H : plug _ _ _ |- _ ] => invert1 H
end; subst.
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6.
Lemma progress : forall e t,
has_ty $0 e t
-> value e
\/ (exists e' : exp, step e e').
Proof.
induct 1; t.
Qed.
Lemma weakening_override : forall (G G' : fmap var type) x t,
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
-> (forall x' t', G $+ (x, t) $? x' = Some t'
-> G' $+ (x, t) $? x' = Some t').
Proof.
simplify.
cases (x ==v x'); simplify; eauto.
Qed.
Local Hint Resolve weakening_override : core.
Lemma weakening : forall G e t,
has_ty G e t
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
-> has_ty G' e t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve weakening : core.
(* Replacing a typing context with an equal one has no effect (useful to guide
* proof search as a hint). *)
Lemma has_ty_change : forall G e t,
has_ty G e t
-> forall G', G' = G
-> has_ty G' e t.
Proof.
t.
Qed.
Local Hint Resolve has_ty_change : core.
Lemma substitution : forall G x t' e t e',
has_ty (G $+ (x, t')) e t
-> has_ty $0 e' t'
-> has_ty G (subst e' x e) t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve substitution : core.
Lemma preservation0 : forall e1 e2,
step0 e1 e2
-> forall t, has_ty $0 e1 t
-> has_ty $0 e2 t.
Proof.
invert 1; t.
Qed.
Local Hint Resolve preservation0 : core.
Lemma preservation' : forall C e1 e1',
plug C e1 e1'
-> forall e2 e2' t, plug C e2 e2'
-> step0 e1 e2
-> has_ty $0 e1' t
-> has_ty $0 e2' t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve preservation' : core.
Lemma preservation : forall e1 e2,
step e1 e2
-> forall t, has_ty $0 e1 t
-> has_ty $0 e2 t.
Proof.
invert 1; t.
Qed.
Local Hint Resolve progress preservation : core.
Theorem safety : forall e t, has_ty $0 e t
-> invariantFor (trsys_of e)
(fun e' => value e'
\/ exists e'', step e' e'').
Proof.
simplify.
apply invariant_weaken with (invariant1 := fun e' => has_ty $0 e' t); eauto.
apply invariant_induction; simplify; eauto; equality.
Qed.
End StlcPairs.
(* Next, the dual feature of *variants*, corresponding to the following type
* family from Coq's standard library. *)
Print sum.
Module StlcSums.
Inductive exp : Set :=
| Var (x : var)
| Const (n : nat)
| Plus (e1 e2 : exp)
| Abs (x : var) (e1 : exp)
| App (e1 e2 : exp)
| Pair (e1 e2 : exp)
| Fst (e1 : exp)
| Snd (e2 : exp)
(* New cases: *)
| Inl (e1 : exp)
| Inr (e2 : exp)
| Match (e' : exp) (x1 : var) (e1 : exp) (x2 : var) (e2 : exp).
(* The last one roughly means "match e' with inl x1 => e1 | inr x2 => e2". *)
Inductive value : exp -> Prop :=
| VConst : forall n, value (Const n)
| VAbs : forall x e1, value (Abs x e1)
| VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2)
| VInl : forall v, value v -> value (Inl v)
| VInr : forall v, value v -> value (Inr v).
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
match e2 with
| Var y => if y ==v x then e1 else Var y
| Const n => Const n
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
| Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'')
| Fst e2' => Fst (subst e1 x e2')
| Snd e2' => Snd (subst e1 x e2')
(* Some bureaucratic work here to add predictable cases *)
| Inl e2' => Inl (subst e1 x e2')
| Inr e2' => Inr (subst e1 x e2')
| Match e2' x1 e21 x2 e22 => Match (subst e1 x e2')
x1 (if x1 ==v x then e21 else subst e1 x e21)
x2 (if x2 ==v x then e22 else subst e1 x e22)
end.
Inductive context : Set :=
| Hole : context
| Plus1 : context -> exp -> context
| Plus2 : exp -> context -> context
| App1 : context -> exp -> context
| App2 : exp -> context -> context
| Pair1 : context -> exp -> context
| Pair2 : exp -> context -> context
| Fst1 : context -> context
| Snd1 : context -> context
(* New cases: *)
| Inl1 : context -> context
| Inr1 : context -> context
| Match1 : context -> var -> exp -> var -> exp -> context.
Inductive plug : context -> exp -> exp -> Prop :=
| PlugHole : forall e, plug Hole e e
| PlugPlus1 : forall e e' C e2,
plug C e e'
-> plug (Plus1 C e2) e (Plus e' e2)
| PlugPlus2 : forall e e' v1 C,
value v1
-> plug C e e'
-> plug (Plus2 v1 C) e (Plus v1 e')
| PlugApp1 : forall e e' C e2,
plug C e e'
-> plug (App1 C e2) e (App e' e2)
| PlugApp2 : forall e e' v1 C,
value v1
-> plug C e e'
-> plug (App2 v1 C) e (App v1 e')
| PlugPair1 : forall e e' C e2,
plug C e e'
-> plug (Pair1 C e2) e (Pair e' e2)
| PlugPair2 : forall e e' v1 C,
value v1
-> plug C e e'
-> plug (Pair2 v1 C) e (Pair v1 e')
| PlugFst1 : forall e e' C,
plug C e e'
-> plug (Fst1 C) e (Fst e')
| PlugSnd1 : forall e e' C,
plug C e e'
-> plug (Snd1 C) e (Snd e')
(* Our new plugging rules *)
| PlugInl1 : forall e e' C,
plug C e e'
-> plug (Inl1 C) e (Inl e')
| PlugInr1 : forall e e' C,
plug C e e'
-> plug (Inr1 C) e (Inr e')
| PluMatch1 : forall e e' C x1 e1 x2 e2,
plug C e e'
-> plug (Match1 C x1 e1 x2 e2) e (Match e' x1 e1 x2 e2).
Inductive step0 : exp -> exp -> Prop :=
| Beta : forall x e v,
value v
-> step0 (App (Abs x e) v) (subst v x e)
| Add : forall n1 n2,
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2))
| FstPair : forall v1 v2,
value v1
-> value v2
-> step0 (Fst (Pair v1 v2)) v1
| SndPair : forall v1 v2,
value v1
-> value v2
-> step0 (Snd (Pair v1 v2)) v2
(* Reducing a [Match] *)
| MatchInl : forall v x1 e1 x2 e2,
value v
-> step0 (Match (Inl v) x1 e1 x2 e2) (subst v x1 e1)
| MatchInr : forall v x1 e1 x2 e2,
value v
-> step0 (Match (Inr v) x1 e1 x2 e2) (subst v x2 e2).
Inductive step : exp -> exp -> Prop :=
| StepRule : forall C e1 e2 e1' e2',
plug C e1 e1'
-> plug C e2 e2'
-> step0 e1 e2
-> step e1' e2'.
Definition trsys_of (e : exp) := {|
Initial := {e};
Step := step
|}.
Inductive type :=
| Nat
| Fun (dom ran : type)
| Prod (t1 t2 : type)
(* New case: *)
| Sum (t1 t2 : type).
Inductive has_ty : fmap var type -> exp -> type -> Prop :=
| HtVar : forall G x t,
G $? x = Some t
-> has_ty G (Var x) t
| HtConst : forall G n,
has_ty G (Const n) Nat
| HtPlus : forall G e1 e2,
has_ty G e1 Nat
-> has_ty G e2 Nat
-> has_ty G (Plus e1 e2) Nat
| HtAbs : forall G x e1 t1 t2,
has_ty (G $+ (x, t1)) e1 t2
-> has_ty G (Abs x e1) (Fun t1 t2)
| HtApp : forall G e1 e2 t1 t2,
has_ty G e1 (Fun t1 t2)
-> has_ty G e2 t1
-> has_ty G (App e1 e2) t2
| HtPair : forall G e1 e2 t1 t2,
has_ty G e1 t1
-> has_ty G e2 t2
-> has_ty G (Pair e1 e2) (Prod t1 t2)
| HtFst : forall G e1 t1 t2,
has_ty G e1 (Prod t1 t2)
-> has_ty G (Fst e1) t1
| HtSnd : forall G e1 t1 t2,
has_ty G e1 (Prod t1 t2)
-> has_ty G (Snd e1) t2
(* New cases: *)
| HtInl : forall G e1 t1 t2,
has_ty G e1 t1
-> has_ty G (Inl e1) (Sum t1 t2)
| HtInr : forall G e1 t1 t2,
has_ty G e1 t2
-> has_ty G (Inr e1) (Sum t1 t2)
| HtMatch : forall G e t1 t2 x1 e1 x2 e2 t,
has_ty G e (Sum t1 t2)
-> has_ty (G $+ (x1, t1)) e1 t
-> has_ty (G $+ (x2, t2)) e2 t
-> has_ty G (Match e x1 e1 x2 e2) t.
Local Hint Constructors value plug step0 step has_ty : core.
Ltac t0 := match goal with
| [ H : ex _ |- _ ] => invert H
| [ H : _ /\ _ |- _ ] => invert H
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
| [ H : Some _ = Some _ |- _ ] => invert H
| [ H : step _ _ |- _ ] => invert H
| [ H : step0 _ _ |- _ ] => invert1 H
| [ H : has_ty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; []
(* New case! For sums, we sometimes need to consider two rules for
* one [value] inversion. *)
| [ H : has_ty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; [|]
| [ H : has_ty _ _ _ |- _ ] => invert1 H
| [ H : plug _ _ _ |- _ ] => invert1 H
end; subst.
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 7.
(* change! --^ *)
Lemma progress : forall e t,
has_ty $0 e t
-> value e
\/ (exists e' : exp, step e e').
Proof.
induct 1; t.
Qed.
Lemma weakening_override : forall (G G' : fmap var type) x t,
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
-> (forall x' t', G $+ (x, t) $? x' = Some t'
-> G' $+ (x, t) $? x' = Some t').
Proof.
simplify.
cases (x ==v x'); simplify; eauto.
Qed.
Local Hint Resolve weakening_override : core.
Lemma weakening : forall G e t,
has_ty G e t
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
-> has_ty G' e t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve weakening : core.
(* Replacing a typing context with an equal one has no effect (useful to guide
* proof search as a hint). *)
Lemma has_ty_change : forall G e t,
has_ty G e t
-> forall G', G' = G
-> has_ty G' e t.
Proof.
t.
Qed.
Local Hint Resolve has_ty_change : core.
Lemma substitution : forall G x t' e t e',
has_ty (G $+ (x, t')) e t
-> has_ty $0 e' t'
-> has_ty G (subst e' x e) t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve substitution : core.
Lemma preservation0 : forall e1 e2,
step0 e1 e2
-> forall t, has_ty $0 e1 t
-> has_ty $0 e2 t.
Proof.
invert 1; t.
Qed.
Local Hint Resolve preservation0 : core.
Lemma preservation' : forall C e1 e1',
plug C e1 e1'
-> forall e2 e2' t, plug C e2 e2'
-> step0 e1 e2
-> has_ty $0 e1' t
-> has_ty $0 e2' t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve preservation' : core.
Lemma preservation : forall e1 e2,
step e1 e2
-> forall t, has_ty $0 e1 t
-> has_ty $0 e2 t.
Proof.
invert 1; t.
Qed.
Local Hint Resolve progress preservation : core.
Theorem safety : forall e t, has_ty $0 e t
-> invariantFor (trsys_of e)
(fun e' => value e'
\/ exists e'', step e' e'').
Proof.
simplify.
apply invariant_weaken with (invariant1 := fun e' => has_ty $0 e' t); eauto.
apply invariant_induction; simplify; eauto; equality.
Qed.
End StlcSums.
(** * Exceptions *)
(* Evaluation contexts are very helpful for concise modeling of control-flow
* constructs like exceptions. Let's look at an example where exceptions are
* just numbers, for simplicity. *)
Module StlcExceptions.
Inductive exp : Set :=
| Var (x : var)
| Const (n : nat)
| Plus (e1 e2 : exp)
| Abs (x : var) (e1 : exp)
| App (e1 e2 : exp)
| Pair (e1 e2 : exp)
| Fst (e1 : exp)
| Snd (e2 : exp)
| Inl (e1 : exp)
| Inr (e2 : exp)
| Match (e' : exp) (x1 : var) (e1 : exp) (x2 : var) (e2 : exp)
| Throw (e1 : exp)
| Catch (e1 : exp) (x : var) (e2 : exp).
(* The last one roughly means "try e1 catch x => e2". *)
Inductive value : exp -> Prop :=
| VConst : forall n, value (Const n)
| VAbs : forall x e1, value (Abs x e1)
| VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2)
| VInl : forall v, value v -> value (Inl v)
| VInr : forall v, value v -> value (Inr v).
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
match e2 with
| Var y => if y ==v x then e1 else Var y
| Const n => Const n
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
| Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'')
| Fst e2' => Fst (subst e1 x e2')
| Snd e2' => Snd (subst e1 x e2')
| Inl e2' => Inl (subst e1 x e2')
| Inr e2' => Inr (subst e1 x e2')
| Match e2' x1 e21 x2 e22 => Match (subst e1 x e2')
x1 (if x1 ==v x then e21 else subst e1 x e21)
x2 (if x2 ==v x then e22 else subst e1 x e22)
(* New cases: *)
| Throw e2' => Throw (subst e1 x e2')
| Catch e2' x1 e2'' => Catch (subst e1 x e2')
x1 (if x1 ==v x then e2'' else subst e1 x e2'')
end.
Inductive context : Set :=
| Hole : context
| Plus1 : context -> exp -> context
| Plus2 : exp -> context -> context
| App1 : context -> exp -> context
| App2 : exp -> context -> context
| Pair1 : context -> exp -> context
| Pair2 : exp -> context -> context
| Fst1 : context -> context
| Snd1 : context -> context
| Inl1 : context -> context
| Inr1 : context -> context
| Match1 : context -> var -> exp -> var -> exp -> context
(* New cases: *)
| Throw1 : context -> context
| Catch1 : context -> var -> exp -> context.
(* We modify [plug] with a new Boolean argument, to control whether [Catch1]
* context kinds are allowed. *)
Inductive plug : bool -> context -> exp -> exp -> Prop :=
| PlugHole : forall ac e, plug ac Hole e e
| PlugPlus1 : forall ac e e' C e2,
plug ac C e e'
-> plug ac (Plus1 C e2) e (Plus e' e2)
| PlugPlus2 : forall ac e e' v1 C,
value v1
-> plug ac C e e'
-> plug ac (Plus2 v1 C) e (Plus v1 e')
| PlugApp1 : forall ac e e' C e2,
plug ac C e e'
-> plug ac (App1 C e2) e (App e' e2)
| PlugApp2 : forall ac e e' v1 C,
value v1
-> plug ac C e e'
-> plug ac (App2 v1 C) e (App v1 e')
| PlugPair1 : forall ac e e' C e2,
plug ac C e e'
-> plug ac (Pair1 C e2) e (Pair e' e2)
| PlugPair2 : forall ac e e' v1 C,
value v1
-> plug ac C e e'
-> plug ac (Pair2 v1 C) e (Pair v1 e')
| PlugFst1 : forall ac e e' C,
plug ac C e e'
-> plug ac (Fst1 C) e (Fst e')
| PlugSnd1 : forall ac e e' C,
plug ac C e e'
-> plug ac (Snd1 C) e (Snd e')
| PlugInl1 : forall ac e e' C,
plug ac C e e'
-> plug ac (Inl1 C) e (Inl e')
| PlugInr1 : forall ac e e' C,
plug ac C e e'
-> plug ac (Inr1 C) e (Inr e')
| PluMatch1 : forall ac e e' C x1 e1 x2 e2,
plug ac C e e'
-> plug ac (Match1 C x1 e1 x2 e2) e (Match e' x1 e1 x2 e2)
| PlugThrow1 : forall ac e e' C,
plug ac C e e'
-> plug ac (Throw1 C) e (Throw e')
| PlugCatch1 : forall e e' C x1 e1,
plug true C e e'
-> plug true (Catch1 C x1 e1) e (Catch e' x1 e1).
Inductive step0 : exp -> exp -> Prop :=
| Beta : forall x e v,
value v
-> step0 (App (Abs x e) v) (subst v x e)
| Add : forall n1 n2,
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2))
| FstPair : forall v1 v2,
value v1
-> value v2
-> step0 (Fst (Pair v1 v2)) v1
| SndPair : forall v1 v2,
value v1
-> value v2
-> step0 (Snd (Pair v1 v2)) v2
| MatchInl : forall v x1 e1 x2 e2,
value v
-> step0 (Match (Inl v) x1 e1 x2 e2) (subst v x1 e1)
| MatchInr : forall v x1 e1 x2 e2,
value v