-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathFrapWithoutSets.v
464 lines (398 loc) · 13.6 KB
/
FrapWithoutSets.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
Require Import Eqdep String NArith Arith Lia Program Sets Relations Map Var Invariant Bool ModelCheck.
Export Ascii String Arith Sets Relations Map Var Invariant Bool ModelCheck.
Require Import List.
Export List ListNotations.
Open Scope string_scope.
Open Scope list_scope.
Ltac inductN n :=
match goal with
| [ |- forall x : ?E, _ ] =>
match type of E with
| Prop =>
let H := fresh in intro H;
match n with
| 1 => dependent induction H
| S ?n' => inductN n'
end
| _ => intro; inductN n
end
end.
Ltac same_structure x y :=
match x with
| ?f ?a1 ?b1 ?c1 ?d1 =>
match y with
| f ?a2 ?b2 ?c2 ?d2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2; same_structure d1 d2
| _ => fail 2
end
| ?f ?a1 ?b1 ?c1 =>
match y with
| f ?a2 ?b2 ?c2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2
| _ => fail 2
end
| ?f ?a1 ?b1 =>
match y with
| f ?a2 ?b2 => same_structure a1 a2; same_structure b1 b2
| _ => fail 2
end
| ?f ?a1 =>
match y with
| f ?a2 => same_structure a1 a2
| _ => fail 2
end
| _ =>
match y with
| ?f ?a1 ?b1 ?c1 ?d1 =>
match x with
| f ?a2 ?b2 ?c2 ?d2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2; same_structure d1 d2
| _ => fail 2
end
| ?f ?a1 ?b1 ?c1 =>
match x with
| f ?a2 ?b2 ?c2 => same_structure a1 a2; same_structure b1 b2; same_structure c1 c2
| _ => fail 2
end
| ?f ?a1 ?b1 =>
match x with
| f ?a2 ?b2 => same_structure a1 a2; same_structure b1 b2
| _ => fail 2
end
| ?f ?a1 =>
match x with
| f ?a2 => same_structure a1 a2
| _ => fail 2
end
| _ => idtac
end
end.
Ltac instantiate_obvious1 H :=
match type of H with
| _ ++ _ = _ ++ _ -> _ => fail 1
| ?x = ?y -> _ =>
(same_structure x y; specialize (H eq_refl))
|| (has_evar (x, y); fail 3)
| JMeq.JMeq ?x ?y -> _ =>
(same_structure x y; specialize (H JMeq.JMeq_refl))
|| (has_evar (x, y); fail 3)
| forall x : ?T, _ =>
match type of T with
| Prop => fail 1
| _ =>
let x' := fresh x in
evar (x' : T);
let x'' := eval unfold x' in x' in specialize (H x''); clear x';
instantiate_obvious1 H
end
end.
Ltac instantiate_obvious H :=
match type of H with
| context[@eq string _ _] => idtac
| _ => repeat instantiate_obvious1 H
end.
Ltac instantiate_obviouses :=
repeat match goal with
| [ H : _ |- _ ] => instantiate_obvious H
end.
(** * Interlude: special notations and induction principle for [N] *)
(* Note: recurse is an identifier, but we will always use the name "recurse" by convention *)
(*Declare Scope N_recursion_scope.*)
Notation "recurse 'by' 'cases' | 0 => A | n + 1 => B 'end'" :=
(N.recursion A (fun n recurse => B))
(at level 11, A at level 200, n at level 0, B at level 200,
format "'[hv' recurse 'by' 'cases' '//' '|' 0 => A '//' '|' n + 1 => B '//' 'end' ']'")
: N_recursion_scope.
Open Scope N_recursion_scope.
Lemma indN: forall (P: N -> Prop),
P 0%N -> (* base case to prove *)
(forall n: N, P n -> P (n + 1)%N) -> (* inductive case to prove *)
forall n, P n. (* conclusion to enjoy *)
Proof. setoid_rewrite N.add_1_r. exact N.peano_ind. Qed.
Ltac induct e := (induction e using indN || inductN e || dependent induction e); instantiate_obviouses.
Ltac invert' H := inversion H; clear H; subst.
Ltac invertN n :=
match goal with
| [ |- forall x : ?E, _ ] =>
match type of E with
| Prop =>
let H := fresh in intro H;
match n with
| 1 => invert' H
| S ?n' => invertN n'
end
| _ => intro; invertN n
end
end.
Ltac invert e := invertN e || invert' e.
Ltac invert0 e := invert e; fail.
Ltac invert1 e := invert0 e || (invert e; []).
Ltac invert2 e := invert1 e || (invert e; [|]).
Ltac maps_neq :=
match goal with
| [ H : ?m1 = ?m2 |- _ ] =>
let rec recur E :=
match E with
| ?E' $+ (?k, _) =>
(apply (f_equal (fun m => m $? k)) in H; simpl in *; autorewrite with core in *; simpl in *; congruence)
|| recur E'
end in
recur m1 || recur m2
end.
Ltac fancy_neq :=
repeat match goal with
| _ => maps_neq
| [ H : @eq (nat -> _) _ _ |- _ ] => apply (f_equal (fun f => f 0)) in H
| [ H : @eq ?T _ _ |- _ ] =>
match eval compute in T with
| fmap _ _ => fail 1
| _ => invert H
end
end.
Ltac maps_equal' := progress Frap.Map.M.maps_equal; autorewrite with core; simpl.
Ltac removeDups :=
match goal with
| [ |- context[constant ?ls] ] =>
someMatch ls;
erewrite (@removeDups_ok _ ls)
by repeat (apply RdNil
|| (apply RdNew; [ simpl; intuition (congruence || solve [ fancy_neq ]) | ])
|| (apply RdDup; [ simpl; intuition (congruence || (repeat (maps_equal' || f_equal))) | ]))
end.
Ltac doSubtract :=
match goal with
| [ |- context[@minus ?A (@constant ?A1 ?ls) (@constant ?A2 ?ls0)] ] =>
match A with
| A1 => idtac
| _ => change (@constant A1 ls) with (@constant A ls)
end;
match A with
| A2 => idtac
| _ => change (@constant A2 ls0) with (@constant A ls0)
end;
erewrite (@doSubtract_ok A ls ls0)
by repeat (apply DsNil
|| (apply DsKeep; [ simpl; intuition (congruence || solve [ fancy_neq ]) | ])
|| (apply DsDrop; [ simpl; intuition (congruence || (repeat (maps_equal' || f_equal))) | ]))
end.
Ltac simpl_maps :=
repeat match goal with
| [ |- context[add ?m ?k1 ?v $? ?k2] ] =>
(rewrite (@lookup_add_ne _ _ m k1 k2 v) by (congruence || lia))
|| (rewrite (@lookup_add_eq _ _ m k1 k2 v) by (congruence || lia))
end.
Ltac simplify := repeat (unifyTails; pose proof I);
repeat match goal with
| [ H : True |- _ ] => clear H
end;
repeat progress (simpl in *; intros; try autorewrite with core in *; simpl_maps);
repeat (normalize_set || doSubtract).
Ltac propositional := intuition idtac.
Ltac linear_arithmetic := intros;
repeat match goal with
| [ |- context[max ?a ?b] ] =>
let Heq := fresh "Heq" in destruct (Max.max_spec a b) as [[? Heq] | [? Heq]];
rewrite Heq in *; clear Heq
| [ _ : context[max ?a ?b] |- _ ] =>
let Heq := fresh "Heq" in destruct (Max.max_spec a b) as [[? Heq] | [? Heq]];
rewrite Heq in *; clear Heq
| [ |- context[min ?a ?b] ] =>
let Heq := fresh "Heq" in destruct (Min.min_spec a b) as [[? Heq] | [? Heq]];
rewrite Heq in *; clear Heq
| [ _ : context[min ?a ?b] |- _ ] =>
let Heq := fresh "Heq" in destruct (Min.min_spec a b) as [[? Heq] | [? Heq]];
rewrite Heq in *; clear Heq
end; lia.
Ltac equality := intuition congruence.
Ltac cases E :=
((repeat match type of E with
| _ \/ _ => destruct E as [E | E]
end)
|| (match type of E with
| N => destruct E using indN
end)
|| (is_var E; destruct E)
|| match type of E with
| {_} + {_} => destruct E
| _ => let Heq := fresh "Heq" in destruct E eqn:Heq
end);
repeat match goal with
| [ H : _ = left _ |- _ ] => clear H
| [ H : _ = right _ |- _ ] => clear H
end.
Global Opaque max min.
Infix "==n" := eq_nat_dec (no associativity, at level 50).
Infix "<=?" := le_lt_dec.
Export Frap.Map.
Ltac maps_equal := Frap.Map.M.maps_equal; simplify.
Ltac first_order := firstorder idtac.
(** * Model checking *)
Lemma eq_iff : forall P Q,
P = Q
-> (P <-> Q).
Proof.
equality.
Qed.
Ltac sets0 := Sets.sets ltac:(simpl in *; intuition (subst; auto; try equality; try linear_arithmetic)).
Ltac sets := propositional;
try match goal with
| [ |- @eq (?T -> Prop) _ _ ] =>
change (T -> Prop) with (set T)
end;
try match goal with
| [ |- @eq (set _) _ _ ] =>
let x := fresh "x" in
apply sets_equal; intro x;
repeat match goal with
| [ H : @eq (set _) _ _ |- _ ] => apply (f_equal (fun f => f x)) in H;
apply eq_iff in H
end
end; sets0;
try match goal with
| [ H : @eq (set ?T) _ _, x : ?T |- _ ] =>
repeat match goal with
| [ H : @eq (set T) _ _ |- _ ] => apply (f_equal (fun f => f x)) in H;
apply eq_iff in H
end;
solve [ sets0 ]
end.
Ltac model_check_invert1 :=
match goal with
| [ H : ?P |- _ ] =>
match type of P with
| Prop => invert H;
repeat match goal with
| [ H : existT _ ?x _ = existT _ ?x _ |- _ ] =>
apply inj_pair2 in H; subst
end; simplify
end
end.
Ltac model_check_invert := simplify; subst; repeat model_check_invert1.
Lemma oneStepClosure_solve : forall A (sys : trsys A) I I',
oneStepClosure sys I I'
-> I = I'
-> oneStepClosure sys I I.
Proof.
equality.
Qed.
Ltac singletoner := try (exfalso; solve [ sets ]);
repeat match goal with
(* | _ => apply singleton_in *)
| [ |- _ ?S ] => idtac S; apply singleton_in
| [ |- (_ \cup _) _ ] => apply singleton_in_other
end.
Ltac closure :=
repeat (apply oneStepClosure_empty
|| (apply oneStepClosure_split; [ model_check_invert; try equality; solve [ singletoner ] | ])).
Ltac model_check_done := apply MscDone.
Ltac model_check_step := eapply MscStep; [ closure | simplify ].
Ltac model_check_steps1 := model_check_step || model_check_done.
Ltac model_check_steps := repeat model_check_steps1.
Ltac model_check_finish := simplify; propositional; subst; simplify; try equality; try linear_arithmetic.
Ltac model_check_infer :=
apply multiStepClosure_ok; simplify; model_check_steps.
Ltac model_check_find_invariant :=
simplify; eapply invariant_weaken; [ model_check_infer | ]; cbv beta in *.
Ltac model_check := model_check_find_invariant; model_check_finish.
Inductive ordering (n m : nat) :=
| Lt (_ : n < m)
| Eq (_ : n = m)
| Gt (_ : n > m).
Local Hint Constructors ordering : core.
Local Hint Extern 1 (_ < _) => lia : core.
Local Hint Extern 1 (_ > _) => lia : core.
Theorem totally_ordered : forall n m, ordering n m.
Proof.
induction n; destruct m; simpl; eauto.
destruct (IHn m); eauto.
Qed.
Ltac total_ordering N M := destruct (totally_ordered N M).
Ltac inList x xs :=
match xs with
| (x, _) => true
| (_, ?xs') => inList x xs'
| _ => false
end.
Ltac maybe_simplify_map m found kont :=
match m with
| @empty ?A ?B => kont (@empty A B)
| ?m' $+ (?k, ?v) =>
let iL := inList k found in
match iL with
| true => maybe_simplify_map m' found kont
| false =>
maybe_simplify_map m' (k, found) ltac:(fun m' => kont (m' $+ (k, v)))
end
end.
Ltac simplify_map' m found kont :=
match m with
| ?m' $+ (?k, ?v) =>
let iL := inList k found in
match iL with
| true => maybe_simplify_map m' found kont
| false =>
simplify_map' m' (k, found) ltac:(fun m' => kont (m' $+ (k, v)))
end
end.
Ltac simplify_map :=
match goal with
| [ |- context[@add ?A ?B ?m ?k ?v] ] =>
simplify_map' (m $+ (k, v)) tt ltac:(fun m' =>
replace (@add A B m k v) with m' by maps_equal)
end.
Require Import Classical.
Ltac excluded_middle P := destruct (classic P).
Lemma join_idempotent: forall (A B : Type) (m : fmap A B), (m $++ m) = m.
Proof.
simplify; apply fmap_ext; simplify.
cases (m $? k).
- rewrite lookup_join1; auto.
eauto using lookup_Some_dom.
- rewrite lookup_join2; auto.
eauto using lookup_None_dom.
Qed.
Lemma includes_refl: forall (A B : Type) (m : fmap A B), m $<= m.
Proof.
simplify.
apply includes_intro; auto.
Qed.
Ltac dep_cases E :=
let x := fresh "x" in
remember E as x; simpl in x; dependent destruction x;
try match goal with
| [ H : _ = E |- _ ] => try rewrite <- H in *; clear H
end.
(** * More with [N] *)
Lemma recursion_step: forall {A: Type} (a: A) (f: N -> A -> A) (n: N),
N.recursion a f (n + 1)%N = f n (N.recursion a f n).
Proof.
intros until f. setoid_rewrite N.add_1_r.
eapply N.recursion_succ; cbv; intuition congruence.
Qed.
Ltac head f :=
match f with
| ?g _ => head g
| _ => constr:(f)
end.
(* If a function f is defined as
recurse by cases
| 0 => base
| k + 1 => step recurse k
end.
and we have an occurrence of (f (k + 1)) in our goal, we can use
"unfold_recurse f k" to replace (f (k + 1)) by (step (f k) k),
ie it allows us to unfold one recursive step. *)
Ltac unfold_recurse f k :=
let h := head f in
let rhs := eval unfold h in f in
lazymatch rhs with
| N.recursion ?base ?step =>
let g := eval cbv beta in (step k (f k)) in
rewrite (recursion_step base step k : f (k + 1)%N = g) in *
| _ => let expected := open_constr:(N.recursion _ _) in
fail "The provided term" f "expands to" rhs "which is not of the expected form" expected
end.
(* This will make "simplify" a bit less nice in some cases (but these are easily worked around using
linear_arithmetic). *)
Arguments N.mul: simpl never.
Arguments N.add: simpl never.
Definition IF_then_else (p q1 q2 : Prop) :=
(p /\ q1) \/ (~p /\ q2).
Notation "'IFF' p 'then' q1 'else' q2" := (IF_then_else p q1 q2) (at level 95).