-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathProofByReflection_template.v
565 lines (398 loc) · 11 KB
/
ProofByReflection_template.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
Require Import Frap.
Set Implicit Arguments.
Set Asymmetric Patterns.
Set Universe Polymorphism.
(** * Proving Evenness *)
Inductive isEven : nat -> Prop :=
| Even_O : isEven O
| Even_SS : forall n, isEven n -> isEven (S (S n)).
Theorem even_256 : isEven 256.
Proof.
Admitted.
(** * Reifying the Syntax of a Trivial Tautology Language *)
Theorem true_galore : (True /\ True) -> (True \/ (True /\ (True -> True))).
Proof.
tauto.
Qed.
Print true_galore.
(** * A Monoid Expression Simplifier *)
Section monoid.
Variable A : Set.
Variable e : A.
Variable f : A -> A -> A.
Infix "+" := f.
Hypothesis assoc : forall a b c, (a + b) + c = a + (b + c).
Hypothesis identl : forall a, e + a = a.
Hypothesis identr : forall a, a + e = a.
Inductive mexp : Set :=
| Ident : mexp
| Var : A -> mexp
| Op : mexp -> mexp -> mexp.
(* Next, we write an interpretation function. *)
Fixpoint mdenote (me : mexp) : A :=
match me with
| Ident => e
| Var v => v
| Op me1 me2 => mdenote me1 + mdenote me2
end.
Ltac reify me :=
match me with
| e => Ident
| ?me1 + ?me2 =>
let r1 := reify me1 in
let r2 := reify me2 in
constr:(Op r1 r2)
| _ => constr:(Var me)
end.
(*Ltac monoid :=
match goal with
| [ |- ?me1 = ?me2 ] =>
let r1 := reify me1 in
let r2 := reify me2 in
change (mdenote r1 = mdenote r2);
apply monoid_reflect; simplify
end.
Theorem t1 : forall a b c d, a + b + c + d = a + (b + c) + d.
simplify; monoid.
reflexivity.
Qed.*)
End monoid.
(** * Set Simplification for Model Checking *)
(* Let's take a closer look at model-checking proofs like from last class. *)
(* Here's a simple transition system, where state is just a [nat], and where
* each step subtracts 1 or 2. *)
Inductive subtract_step : nat -> nat -> Prop :=
| Subtract1 : forall n, subtract_step (S n) n
| Subtract2 : forall n, subtract_step (S (S n)) n.
Definition subtract_sys (n : nat) : trsys nat := {|
Initial := {n};
Step := subtract_step
|}.
Lemma subtract_ok :
invariantFor (subtract_sys 5)
(fun n => n <= 5).
Proof.
eapply invariant_weaken.
apply multiStepClosure_ok.
simplify.
(* Here we'll see that the Frap library uses slightly different, optimized
* versions of the model-checking relations. For instance, [multiStepClosure]
* takes an extra set argument, the _worklist_ recording newly discovered
* states. There is no point in following edges out of states that were
* already known at previous steps. *)
(* Now, some more manual iterations: *)
eapply MscStep.
closure.
(* Ew. What a big, ugly set expression. Let's shrink it down to something
* more readable, with duplicates removed, etc. *)
simplify.
(* How does the Frap library do that? Proof by reflection is a big part of
* it! Let's develop a baby version of that automation. The full-scale
* version is in file Sets.v. *)
Abort.
(* Back to our example, which we can now finish without calling [simplify] to
* reduces trees of union operations. *)
(*Lemma subtract_ok :
invariantFor (subtract_sys 5)
(fun n => n <= 5).
Proof.
eapply invariant_weaken.
apply multiStepClosure_ok.
simplify.
(* Now, some more manual iterations: *)
eapply MscStep.
closure.
simplify_set.
(* Success! One subexpression shrunk. Now for the other. *)
simplify_set.
(* Our automation doesn't handle set difference, so we finish up calling the
* library tactic. *)
simplify.
eapply MscStep.
closure.
simplify_set.
simplify_set.
simplify.
eapply MscStep.
closure.
simplify_set.
simplify_set.
simplify.
eapply MscStep.
closure.
simplify_set.
simplify_set.
simplify.
model_check_done.
simplify.
linear_arithmetic.
Qed.*)
(** * A Smarter Tautology Solver *)
Definition propvar := nat.
Inductive formula : Set :=
| Atomic : propvar -> formula
| Truth : formula
| Falsehood : formula
| And : formula -> formula -> formula
| Or : formula -> formula -> formula
| Imp : formula -> formula -> formula.
Definition asgn := nat -> Prop.
Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
match f with
| Atomic v => atomics v
| Truth => True
| Falsehood => False
| And f1 f2 => formulaDenote atomics f1 /\ formulaDenote atomics f2
| Or f1 f2 => formulaDenote atomics f1 \/ formulaDenote atomics f2
| Imp f1 f2 => formulaDenote atomics f1 -> formulaDenote atomics f2
end.
Require Import ListSet.
Section my_tauto.
Variable atomics : asgn.
Definition add (s : set propvar) (v : propvar) := set_add eq_nat_dec v s.
Fixpoint allTrue (s : set propvar) : Prop :=
match s with
| nil => True
| v :: s' => atomics v /\ allTrue s'
end.
Theorem allTrue_add : forall v s,
allTrue s
-> atomics v
-> allTrue (add s v).
Proof.
induct s; simplify; propositional;
match goal with
| [ |- context[if ?E then _ else _] ] => destruct E
end; simplify; propositional.
Qed.
Theorem allTrue_In : forall v s,
allTrue s
-> set_In v s
-> atomics v.
Proof.
induct s; simplify; equality.
Qed.
Fixpoint forward (known : set propvar) (hyp : formula)
(cont : set propvar -> bool) : bool :=
match hyp with
| Atomic v => cont (add known v)
| Truth => cont known
| Falsehood => true
| And h1 h2 => forward known h1 (fun known' =>
forward known' h2 cont)
| Or h1 h2 => forward known h1 cont && forward known h2 cont
| Imp _ _ => cont known
end.
Compute fun cont => forward [] (Atomic 0) cont.
Compute fun cont => forward [] (Or (Atomic 0) (Atomic 1)) cont.
Compute fun cont => forward [] (Or (Atomic 0) (And (Atomic 1) (Atomic 2))) cont.
Fixpoint backward (known : set propvar) (f : formula) : bool :=
match f with
| Atomic v => if In_dec eq_nat_dec v known then true else false
| Truth => true
| Falsehood => false
| And f1 f2 => backward known f1 && backward known f2
| Or f1 f2 => backward known f1 || backward known f2
| Imp f1 f2 => forward known f1 (fun known' => backward known' f2)
end.
Compute backward [] (Atomic 0).
Compute backward [0] (Atomic 0).
Compute backward [0; 2] (Or (Atomic 0) (Atomic 1)).
Compute backward [2] (Or (Atomic 0) (Atomic 1)).
Compute backward [2] (Imp (Atomic 0) (Or (Atomic 0) (Atomic 1))).
Compute backward [2] (Imp (Or (Atomic 0) (Atomic 3)) (Or (Atomic 0) (Atomic 1))).
Compute backward [2] (Imp (Or (Atomic 1) (Atomic 0)) (Or (Atomic 0) (Atomic 1))).
End my_tauto.
Lemma forward_ok : forall atomics hyp f known cont,
forward known hyp cont = true
-> (forall known', allTrue atomics known'
-> cont known' = true
-> formulaDenote atomics f)
-> allTrue atomics known
-> formulaDenote atomics hyp
-> formulaDenote atomics f.
Proof.
induct hyp; simplify; propositional.
apply H0 with (known' := add known p).
apply allTrue_add.
assumption.
assumption.
assumption.
eapply H0.
eassumption.
assumption.
eapply IHhyp1.
eassumption.
simplify.
eauto.
assumption.
assumption.
apply andb_true_iff in H; propositional.
eapply IHhyp1.
eassumption.
assumption.
assumption.
assumption.
apply andb_true_iff in H; propositional.
eapply IHhyp2.
eassumption.
assumption.
assumption.
assumption.
eapply H0.
eassumption.
assumption.
Qed.
Lemma backward_ok' : forall atomics f known,
backward known f = true
-> allTrue atomics known
-> formulaDenote atomics f.
Proof.
induct f; simplify; propositional.
cases (in_dec Nat.eq_dec p known); propositional.
eapply allTrue_In.
eassumption.
unfold set_In.
assumption.
equality.
equality.
apply andb_true_iff in H; propositional.
eapply IHf1.
eassumption.
assumption.
apply andb_true_iff in H; propositional.
eapply IHf2.
eassumption.
assumption.
apply orb_true_iff in H; propositional.
left.
eapply IHf1.
eassumption.
assumption.
right.
eapply IHf2.
eassumption.
assumption.
eapply forward_ok.
eassumption.
simplify.
eapply IHf2.
eassumption.
assumption.
assumption.
assumption.
Qed.
Theorem backward_ok : forall f,
backward [] f = true
-> forall atomics, formulaDenote atomics f.
Proof.
simplify.
apply backward_ok' with (known := []).
assumption.
simplify.
propositional.
Qed.
(* Find the position of an element in a list. *)
Ltac position x ls :=
match ls with
| [] => constr:(@None nat)
| x :: _ => constr:(Some 0)
| _ :: ?ls' =>
let p := position x ls' in
match p with
| None => p
| Some ?n => constr:(Some (S n))
end
end.
(* Compute a duplicate-free list of all variables in [P], combining it with
* [acc]. *)
Ltac vars_in P acc :=
match P with
| True => acc
| False => acc
| ?Q1 /\ ?Q2 =>
let acc' := vars_in Q1 acc in
vars_in Q2 acc'
| ?Q1 \/ ?Q2 =>
let acc' := vars_in Q1 acc in
vars_in Q2 acc'
| ?Q1 -> ?Q2 =>
let acc' := vars_in Q1 acc in
vars_in Q2 acc'
| _ =>
let pos := position P acc in
match pos with
| Some _ => acc
| None => constr:(P :: acc)
end
end.
(* Reification of formula [P], with a pregenerated list [vars] of variables it
* may mention *)
Ltac reify_tauto' P vars :=
match P with
| True => Truth
| False => Falsehood
| ?Q1 /\ ?Q2 =>
let q1 := reify_tauto' Q1 vars in
let q2 := reify_tauto' Q2 vars in
constr:(And q1 q2)
| ?Q1 \/ ?Q2 =>
let q1 := reify_tauto' Q1 vars in
let q2 := reify_tauto' Q2 vars in
constr:(Or q1 q2)
| ?Q1 -> ?Q2 =>
let q1 := reify_tauto' Q1 vars in
let q2 := reify_tauto' Q2 vars in
constr:(Imp q1 q2)
| _ =>
let pos := position P vars in
match pos with
| Some ?pos' => constr:(Atomic pos')
end
end.
(* Our final tactic implementation is now fairly straightforward. First, we
* [intro] all quantifiers that do not bind [Prop]s. Then we reify. Finally,
* we call the verified procedure through a lemma. *)
Ltac my_tauto :=
repeat match goal with
| [ |- forall x : ?P, _ ] =>
match type of P with
| Prop => fail 1
| _ => intro
end
end;
match goal with
| [ |- ?P ] =>
let vars := vars_in P (@nil Prop) in
let p := reify_tauto' P vars in
change (formulaDenote (nth_default False vars) p)
end;
apply backward_ok; reflexivity.
(* A few examples demonstrate how the tactic works: *)
Theorem mt1 : True.
Proof.
my_tauto.
Qed.
Print mt1.
Theorem mt2 : forall x y : nat, x = y -> x = y.
Proof.
my_tauto.
Qed.
Print mt2.
Theorem mt3 : forall x y z,
(x < y /\ y > z) \/ (y > z /\ x < S y)
-> y > z /\ (x < y \/ x < S y).
Proof.
my_tauto.
Qed.
Print mt3.
Theorem mt4 : True /\ True /\ True /\ True /\ True /\ True /\ False -> False.
Proof.
my_tauto.
Qed.
Print mt4.
Theorem mt4' : True /\ True /\ True /\ True /\ True /\ True /\ False -> False.
Proof.
tauto.
Qed.
Print mt4'.