Skip to content

acivit/deep-learning-notes

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning Study Notes

My Deep Learning study notes.

Sources:

All credits go to L. Fei-Fei, A. Karpathy, J.Johnson teachers of the CS231n course. Thank you for this amazing course!!

Full Document

Full study notes pdf.

Individual Chapters

If you chose individidual chapters here is the list (are you sure you do not prefer the FULL DOCUMENT?):

  1. Data
    1. Data Preprocessing
    2. Data Augmentation and Transfer Learning
  2. Learning
    1. Neural Network
    2. Parameters Initialization
    3. Activation Function
    4. Loss function
    5. Backpropagation
    6. Parameters Update
    7. Dropout
    8. Hyper-Parameters selection and babysitting
    9. Other definitions
    10. Tricks
    11. Visualization
  3. Layers
    1. Input Layer
    2. Convolutional layer
    3. Pooling layer
    4. Batch Normalization layer
    5. Upsampling Layer (“Transposed Convolution”)
    6. Fully Connected Layer
    7. Highway Layer
  4. Networks
    1. Recurrent Neural Networks (RNN)
    2. Autoencoders
    3. Generative Adversarial Nets
    4. Region Based CNN (R-CNN)
    5. YOLO
    6. RNN ConvNet
    7. Attention Models
    8. Spatial Transformer Networks
    9. Famous Networks
  5. Applications
  6. Bibliography

Contributions

More than happy to accept contributions

Acknowledgements & Credits

All credits go to L. Fei-Fei, A. Karpathy, J.Johnson teachers of the CS231n course. Thank you for this amazing course!!

About

My CS231n lecture notes

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • TeX 99.8%
  • Shell 0.2%