-
Notifications
You must be signed in to change notification settings - Fork 0
/
solutions.html
237 lines (217 loc) · 7.99 KB
/
solutions.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>ML-Scope Solutions</title>
<style>
:root {
--dark-blue: #1a365d;
--light-blue: #7db0e8;
--orange: #ff6b35;
}
body {
font-family: Arial, sans-serif;
line-height: 1.6;
color: var(--dark-blue);
margin: 0;
padding: 0;
background-color: #f0f8ff;
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
nav {
background-color: var(--dark-blue);
padding: 10px 0;
}
nav .container {
display: flex;
justify-content: space-between;
align-items: center;
}
.logo {
width: 50px;
height: 50px;
}
.nav-links a {
color: white;
text-decoration: none;
margin-left: 20px;
}
.nav-links a:hover {
color: var(--light-blue);
}
h1 {
text-align: center;
color: var(--dark-blue);
}
.project-container {
border: 1px solid var(--light-blue);
margin-bottom: 20px;
border-radius: 5px;
overflow: hidden;
background-color: white;
}
.project-header {
background-color: var(--light-blue);
padding: 10px;
cursor: pointer;
display: flex;
justify-content: space-between;
align-items: center;
transition: background-color 0.3s ease;
}
.project-header:hover {
background-color: #6a9fd4;
}
.project-header h2 {
margin: 0;
color: var(--dark-blue);
}
.project-content {
display: none;
padding: 20px;
}
.project-content.active {
display: block;
}
.toggle-icon::after {
content: "\25BC";
color: var(--dark-blue);
}
.project-header.active .toggle-icon::after {
content: "\25B2";
}
a {
color: var(--orange);
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
</style>
</head>
<body>
<nav>
<div class="container">
<a href="index.html">
<img src="aida-logo.jpeg" alt="Logo" class="logo" />
</a>
<div class="nav-links">
<a href="index.html">Problems</a>
<a href="solutions.html">Solutions</a>
<a href="leaderboard.html">Leaderboard</a>
<a href="resources.html">Resources</a>
</div>
</div>
</nav>
<div class="container">
<h1>Solutions</h1>
<div id="content"></div>
</div>
<script>
const problemsData = [
// Add more projects here as needed
];
const solutionsData = [
{
project: 1,
title: "House Price Prediction Solution",
content: `
<h1>Project 1 Solutions</h1>
<h2>Summary</h2>
<h4>Baseline Models:</h4>
<ul>
<li>Linear Regression yielded an R² score of 0.71, which is a reasonable baseline, but not highly accurate for predicting house prices.</li>
<li>Decision Tree Classifier performed very poorly with a score of 0.0096, indicating it's unsuitable for this regression task.</li>
<li>Random Forest Regressor achieved a significantly better score of 0.84, making it the best among the baseline models.</li>
</ul>
<h4>Highest-Performing Solutions:</h4>
<ul>
<li>Gradient Boosting Regressor after tuning hyperparameters (max_depth=5, n_estimators=200) scored 0.90, showing that ensemble methods with boosting can yield very strong results.</li>
<li>Random Forest Regressor (with 500 estimators) performed similarly, with a score of 0.89, demonstrating that increasing the number of trees from 100 to 500 provided a marginal improvement.</li>
</ul>
<h4>Takeaways:</h4>
<ul>
<li>Feature Scaling and hyperparameter tuning were essential for achieving high accuracy.</li>
<li>Ensemble methods like Random Forest and Gradient Boosting Regressor consistently outperformed linear models.</li>
<li>Grid search allowed further refinement of hyperparameters, slightly improving the model's performance.</li>
</ul>
<a target="_blank" href="https://colab.research.google.com/drive/1u9JW5vECvlZ6huyvz7xrhJj2HmDrlmb_?authuser=5#scrollTo=nsSyl5JME8nn">Link to Notebook</a>
<br>
<a target="_blank" href="https://docs.google.com/presentation/d/1qy1OWxAyliL4PSqrljxphXdFPLurtd8j52xF4pKdMwA/edit?usp=sharing">Link to Slides</a>
`,
},
{
project: 2,
title: "Heart Disease Classification Solution",
content: `
<h1>Project 2 Solutions</h1>
<h2>Summary</h2>
<h4>Baseline Models:</h4>
<ul>
<li>Stochastic Gradient Descent Classifier (with log loss) yielded an accuracy of 0.72, providing a reasonable starting point but not highly reliable for medical predictions.</li>
<li>Random Forest Classifier achieved a much higher accuracy of 0.98, making it significantly better for classifying heart disease compared to SGD.</li>
</ul>
<h4>Highest-Performing Solutions:</h4>
<ul>
<li>Random Forest Classifier (with 100 estimators) was the top-performing model, reaching an accuracy of 0.98, indicating that ensemble methods are highly effective for this task.</li>
</ul>
<h4>Takeaways:</h4>
<ul>
<li>Random Forest outperformed linear classifiers, suggesting that decision tree-based models handle complex medical data better.</li>
<li>Increasing the number of trees in the forest can lead to more robust predictions, particularly when dealing with health-related datasets.</li>
<li>Future improvements could include exploring hyperparameter tuning and other advanced ensemble methods.</li>
</ul>
<a target="_blank" href="https://colab.research.google.com/drive/1TfhmyyxZ1njcXTghnxJuNAkaBVo-lWFW?usp=sharing">Link to Notebook</a>
<br>
<a target="_blank" href="https://docs.google.com/presentation/d/1ruvhrehQhAcr20RiEG_G6QNCvhQivFFeYbJUNscfafg/edit?usp=sharing">Link to Slides</a>
`,
},
];
function createProjectElement(projectData) {
const projectElement = document.createElement("div");
projectElement.className = "project-container";
projectElement.innerHTML = `
<div class="project-header">
<h2>Project ${projectData.project}: ${projectData.title}</h2>
<span class="toggle-icon"></span>
</div>
<div class="project-content">
${projectData.content}
</div>
`;
return projectElement;
}
function toggleProject(projectHeader) {
projectHeader.classList.toggle("active");
const content = projectHeader.nextElementSibling;
content.classList.toggle("active");
}
function loadContent(data) {
const contentDiv = document.getElementById("content");
contentDiv.innerHTML = "";
data.forEach((project, index) => {
const projectElement = createProjectElement(project);
contentDiv.appendChild(projectElement);
const projectHeader = projectElement.querySelector(".project-header");
projectHeader.addEventListener("click", () =>
toggleProject(projectHeader)
);
// Open the last project by default
if (index === data.length - 1) {
toggleProject(projectHeader);
}
});
}
// Determine which page to load based on the current URL
const currentPage = window.location.pathname.includes("solutions.html")
? "solutions"
: "problems";
loadContent(currentPage === "solutions" ? solutionsData : problemsData);
</script>
</body>
</html>