-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge.py
141 lines (113 loc) · 6 KB
/
merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import sys, os
import cv2
import torch
import argparse
import timeit
import random
import collections
import pandas as pd
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.backends import cudnn
from torch.utils import data
from tqdm import tqdm
from models import get_model
from loaders import get_loader, get_data_path
from misc.utils import convert_state_dict, AverageMeter
from misc.metrics import runningScore
import glob
def merge(args):
if not os.path.exists(args.root_results):
os.makedirs(args.root_results)
# Setup Dataloader
data_loader = get_loader(args.dataset)
data_path = get_data_path(args.dataset)
loader = data_loader(data_path, split=args.split, transforms=None, fold_num=0, num_folds=1, no_gt=args.no_gt, seed=args.seed, no_load_images=True)
n_classes = loader.n_classes
testloader = data.DataLoader(loader, batch_size=args.batch_size)#, num_workers=2, pin_memory=True)
avg_y_prob = np.zeros((loader.__len__(), 1, 1024, 1024), dtype=np.float32)
avg_y_pred_sum = np.zeros((loader.__len__(),), dtype=np.int32)
fold_list = []
for prob_file_name in glob.glob(os.path.join(args.root_results, '*.npy')):
prob = np.load(prob_file_name, mmap_mode='r')
for i in range(loader.__len__()):
avg_y_prob[i, :, :, :] += prob[i, :, :, :]
fold_list.append(prob_file_name)
print(prob_file_name)
avg_y_prob = avg_y_prob / len(fold_list)
##avgprob_file_name = 'prob_{}_avg'.format(len(fold_list))
##np.save(os.path.join(args.root_results, '{}.npy'.format(avgprob_file_name)), avg_y_prob)
avg_y_pred = (avg_y_prob > args.thresh).astype(np.int)
avg_y_pred_sum = avg_y_pred.sum(3).sum(2).sum(1)
avg_y_pred_sum_argsorted = np.argsort(avg_y_pred_sum)[::-1]
pruned_idx = int(avg_y_pred_sum_argsorted.shape[0]*args.non_empty_ratio)
mask_sum_thresh = int(avg_y_pred_sum[avg_y_pred_sum_argsorted[pruned_idx]]) if pruned_idx < avg_y_pred_sum_argsorted.shape[0] else 0
running_metrics = runningScore(n_classes=2, weight_acc_non_empty=args.weight_acc_non_empty)
pred_dict = collections.OrderedDict()
num_non_empty_masks = 0
for i, (_, labels, names) in tqdm(enumerate(testloader)):
labels = labels.cuda()
prob = avg_y_prob[i*args.batch_size:i*args.batch_size+labels.size(0), :, :, :]
pred = (prob > args.thresh).astype(np.int)
pred = torch.from_numpy(pred).long().cuda()
pred_sum = pred.sum(3).sum(2).sum(1)
for k in range(labels.size(0)):
if pred_sum[k] > mask_sum_thresh:
num_non_empty_masks += 1
else:
pred[k, :, :, :] = torch.zeros_like(pred[k, :, :, :])
if args.only_non_empty:
pred[k, :, 0, 0] = 1
if not args.no_gt:
running_metrics.update(labels.long(), pred.long())
for k in range(labels.size(0)):
name = names[0][k]
if pred_dict.get(name, None) is None:
mask = pred[k, 0, :, :].cpu().numpy()
rle = loader.mask2rle(mask)
pred_dict[name] = rle
print('# non-empty masks: {:5d} (non_empty_ratio: {:.5f} / mask_sum_thresh: {:6d})'.format(num_non_empty_masks, args.non_empty_ratio, mask_sum_thresh))
if not args.no_gt:
dice, dice_empty, dice_non_empty, miou, acc, acc_empty, acc_non_empty = running_metrics.get_scores()
print('Dice (per image): {:.5f} (empty: {:.5f} / non-empty: {:.5f})'.format(dice, dice_empty, dice_non_empty))
print('Classification accuracy: {:.5f} (empty: {:.5f} / non-empty: {:.5f})'.format(acc, acc_empty, acc_non_empty))
print('Overall mIoU: {:.5f}'.format(miou))
running_metrics.reset()
# Create submission
csv_file_name = 'merged_{}_{}_{}_{}'.format(args.split, len(fold_list), args.thresh, args.non_empty_ratio)
sub = pd.DataFrame.from_dict(pred_dict, orient='index')
sub.index.names = ['ImageId']
sub.columns = ['EncodedPixels']
sub.to_csv(os.path.join(args.root_results, '{}.csv'.format(csv_file_name)))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--dataset', nargs='?', type=str, default='siim',
help='Dataset to use [\'pascal, camvid, ade20k, cityscapes, etc\']')
parser.add_argument('--batch_size', nargs='?', type=int, default=1,
help='Batch Size')
parser.add_argument('--split', nargs='?', type=str, default='test',
help='Split of dataset to test on')
parser.add_argument('--no_gt', dest='no_gt', action='store_true',
help='Disable verification | True by default')
parser.add_argument('--gt', dest='no_gt', action='store_false',
help='Enable verification | True by default')
parser.set_defaults(no_gt=True)
parser.add_argument('--seed', nargs='?', type=int, default=1234,
help='Random seed')
parser.add_argument('--root_results', nargs='?', type=str, default='results',
help='Root path for saving results (.csv, .npy, etc)')
parser.add_argument('--thresh', nargs='?', type=float, default=0.5,
help='Thresh for prediction')
parser.add_argument('--non_empty_ratio', nargs='?', type=float, default=0.0,
help='Ratio for non-empty predictions')
parser.add_argument('--only_non_empty', dest='only_non_empty', action='store_true',
help='Enable to load only non-empty mask images | False by default')
parser.add_argument('--no-only_non_empty', dest='only_non_empty', action='store_false',
help='Disable to load only non-empty mask images | False by default')
parser.set_defaults(only_non_empty=False)
parser.add_argument('--weight_acc_non_empty', nargs='?', type=float, default=1.0,
help='Weight for accuracy of non-empty mask images')
args = parser.parse_args()
print(args)
merge(args)