We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我的版本、环境信息: 1)PaddlePaddle版本:paddlepaddle-gpu 1.8.0.post107 3)GPU:gtx950m ,cuda 10.2, V10.2.89 4)系统环境:py3.7+win10 家庭普通版 训练信息 1)单机,单卡 2)6169m 当运行
#先来尝试一下完全使用 ImageNet预训练的权重,效果怎样吧 test_program` = fluid.Program() test_startup = fluid.Program() with fluid.program_guard(test_program, test_startup): with fluid.unique_name.guard(): image = fluid.layers.data(name='image', shape=(-1, 3, 224, 224), dtype='float32') label = fluid.layers.data(name='label', shape=(-1, 1), dtype='int64') _, fetch_list = create_network(image, label, is_test=True) # 大家如果没有 GPU,可以将其改为 False # 注意: CPU 中 PaddlePaddle 并不一定实现了所有的 Operator 的训练,一般建议大家使用 GPU use_gpu = True place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = `fluid.Executor(place) # 初始化一下 Executor exe.run(program=test_startup) # 载入预训练的模型参数 def _predicate(var): # 查看 var 参数是不是在预训练模型路径内 return os.path.exists(os.path.join(pretrained_model_path, var.name)) fluid.io.load_vars(exe, pretrained_model_path, predicate=_predicate, main_program=test_program) data = exe.run(program=test_program, fetch_list=fetch_list, feed={'image': images, 'label': labels}) # 把数据从 data 中取出来 (data 是一个列表,顺序与 fetch_list 相同) image, label = data[0:2] out, confidence, top5_scores, top5_indices = data[2:6] loss, acc_top1, acc_top5 = data[6:] display_batch(image) print('ImageNet 预训练模型情况: loss=%06.3f top-1=%05.2f%% top-5=%05.2f%%' % ( loss, acc_top1 * 100, acc_top5 * 100)) log_topk_info(None, top5_scores, top5_indices) # 之后要重新创建模型进行针对 Natural Images 的再训练,故这里的 Program 和 Executor 都不再需要了 exe.close()
报错为
TypeError Traceback (most recent call last) <ipython-input-17-bb3713832880> in <module> 8 image = fluid.layers.data(name='image', shape=(-1, 3, 224, 224), dtype='float32') 9 label = fluid.layers.data(name='label', shape=(-1, 1), dtype='int64') ---> 10 _, fetch_list = create_network(image, label, is_test=True) 11 12 # 大家如果没有 GPU,可以将其改为 False <ipython-input-13-3a2c2fad7823> in create_network(image, label, class_dim, is_test) 9 10 model = ResNet(is_test=is_test) ---> 11 out = model.net(image, class_dim=class_dim) 12 13 confidence = fluid.layers.softmax(out) <ipython-input-12-9f956ea050fb> in net(self, input, class_dim) 49 initializer=fluid.initializer.Uniform(-stdv, stdv), trainable=True) 50 out = fluid.layers.fc( ---> 51 input=pool, size=class_dim, act=None, is_test=self.is_test, param_attr=fc_param_attr) 52 53 return out TypeError: fc() got an unexpected keyword argument 'is_test'
不知道什么原因?能否解决下?请问您当时的paddle用的是哪个版本,可否告知下,由于您跑都没什么问题,我估计是环境问题,您当时18年录制时使用的paddle以及cuda是哪个版本?您看到了希望尽快回复,谢谢您了!
The text was updated successfully, but these errors were encountered:
No branches or pull requests
我的版本、环境信息:
1)PaddlePaddle版本:paddlepaddle-gpu 1.8.0.post107
3)GPU:gtx950m ,cuda 10.2, V10.2.89
4)系统环境:py3.7+win10 家庭普通版
训练信息
1)单机,单卡
2)6169m
当运行
报错为
不知道什么原因?能否解决下?请问您当时的paddle用的是哪个版本,可否告知下,由于您跑都没什么问题,我估计是环境问题,您当时18年录制时使用的paddle以及cuda是哪个版本?您看到了希望尽快回复,谢谢您了!
The text was updated successfully, but these errors were encountered: