-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathinteraction.c
1012 lines (885 loc) · 43.8 KB
/
interaction.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Functions used to calculate the interaction term
*
* Copyright (C) ADDA contributors
* This file is part of ADDA.
*
* ADDA is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
*
* ADDA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ADDA. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "const.h" // keep this first
#include "interaction.h" // corresponding headers
// project headers
#include "cmplx.h"
#include "comm.h"
#include "igt_so.h"
#include "io.h"
#include "memory.h"
#include "somnec.h"
#include "vars.h"
// system headers
#include <float.h> // for DBL_EPSILON
#include <stdlib.h>
// GLOBAL VARIABLES
// function pointers, defined as extern in interaction.h
/* Calculates interaction term between two dipoles; given integer distance vector {i,j,k} (in units of d). The acting
* dipole is placed in the origin, while the field is calculated at position given as argument. All six components of
* the symmetric matrix are computed at once. The elements in result are: [G11, G12, G13, G22, G23, G33]
*/
void (*InterTerm_int)(const int i,const int j,const int k,doublecomplex result[static restrict 6]);
// same as above, but distance is passed as a double vector (in um)
void (*InterTerm_real)(const double qvec[static restrict 3],doublecomplex result[static restrict 6]);
/* Calculates reflection term between two dipoles; given integer distance vector {i,j,k} (in units of d). k is the _sum_
* of dipole indices along z with respect to the center of bottom dipoles of the particle. Bottom is considered for the
* current processor (position) and the whole particle (position_full) in FFT and SPARSE modes respectively. The latter
* behavior is determined by ZsumShift.
* The acting dipole is placed in the origin, while the field is calculated at position given as argument.
* Six components of the matrix are computed at once: [GR11, GR12, GR13, GR22, GR23, GR33].
* The matrix is not symmetric, but satisfies: GR21=GR12, GR31=-GR13, GR32=-GR23. However the large matrix GR, which
* acts on the total vector of dipole polarizations is still complex-symmetric, since GR[i,j]=GR^T[j,i] (interchange of
* i and j changes only the sign of x and y components, but not z, which leads to sign change of 13,31,23,32 components)
*/
void (*ReflTerm_int)(const int i,const int j,const int k,doublecomplex result[static restrict 6]);
/* same as above, but distance is passed as a double vector (in um) and its z-component is the sum of heights of
* source and probe points above the surface. So qvec_in is the actual distance between probe point and the image of the
* source point.
*/
void (*ReflTerm_real)(const double qvec[static restrict 3],doublecomplex result[static restrict 6]);
// SEMI-GLOBAL VARIABLES
// defined and initialized in make_particle.c
extern const double ZsumShift;
// defined and initialized in param.c
extern const double igt_lim,igt_eps,nloc_Rp;
// extern const bool InteractionRealArgs;
// used in fft.c
int local_Nz_Rm; // number of local layers in Rmatrix, not greater than 2*boxZ-1 (also used in SPARSE)
// LOCAL VARIABLES
/* Performance of the functions in this file can be improved by using static variable declarations (either inside
* functions or here for the whole source file. However, such optimizations are not thread-safe without additional'
* efforts. So we prefer not to do it, since parallel (multi-threaded) execution of these functions is probably the
* first step for the OpenMP implementation.
*/
// KroneckerDelta[mu,nu] - can serve both as multiplier, and as bool
static const double dmunu[6] = {1.0, 0.0, 0.0, 1.0, 0.0, 1.0};
static doublecomplex surfRCn; // reflection coefficient for normal incidence
static bool XlessY; // whether boxX is not larger than boxY (used for SomTable)
static doublecomplex * restrict somTable; // table of Sommerfeld integrals
static size_t * restrict somIndex; // array for indexing somTable (in the xy-plane)
#ifdef USE_SSE3
static __m128d c1, c2, c3, zo, inv_2pi, p360, prad_to_deg;
static __m128d exptbl[361];
#endif //USE_SSE3
// EXTERNAL FUNCTIONS
#ifndef NO_FORTRAN
static double igtLimR2; // IGT distance threshold squared
// fort/propaesplibreintadda.f
void propaespacelibreintadda_(const double *Rij,const double *ka,const double *gridspacex,const double *gridspacey,
const double *gridspacez,const double *relreq,double *result,int *ifail);
#endif
// sinint.c
void cisi(double x,double *ci,double *si);
/* The following is used for debugging, should be empty define, when not required.
* Moreover, the current implementation is a crude one. In many cases, the coordinates are printed as normalized (there
* are no simple general way to fix it for all interaction terms).
*/
#define PRINT_GVAL /* printf("%s: %g,%g,%g: %g%+gi, %g%+gi, %g%+gi,\n%g%+gi, %g%+gi, %g%+gi\n",__func__,COMP3V(qvec),\
REIM(result[0]),REIM(result[1]),REIM(result[2]),REIM(result[3]),REIM(result[4]),REIM(result[5])); */
/* the following wrappers incur a lot of redundant compilation (since each of them inlines the same functional part),
* however this way all the code is visible to compiler in one place, avoiding extra function calls and allowing full
* optimizations. Overall, this looks like trying to implement C++ features in C.
*/
// wrapper for <name> (direct interaction), based on integer input; arguments are described in .h file
# define INT_WRAPPER_INTER(name) \
void name##_int(const int i,const int j,const int k,doublecomplex result[static restrict 6]) { \
double qvec[3]; \
UnitsGridToCoord(i,j,k,qvec); \
name(qvec,result); }
// same as above, but calling function is different from name and accepts additional argument
# define INT_WRAPPER_INTER_3(name,func,arg) \
void name##_int(const int i,const int j,const int k,doublecomplex result[static restrict 6]) { \
double qvec[3]; \
UnitsGridToCoord(i,j,k,qvec); \
func(qvec,result,arg); }
// wrapper for <name> (reflected interaction), based on integer input; arguments are described in .h file
# define INT_WRAPPER_REFL(name) \
void name##_int(const int i,const int j,const int k,doublecomplex result[static restrict 6]) { \
double qvec[3]; \
UnitsGridToCoordShift(i,j,k,qvec); \
name(qvec,result); }
/* wrapper for <name>, based on real input; arguments are described in .h file; fine both for direct and reflected parts
* to keep the input argument const, it has to be duplicated since some of the formulations of InterTerms may change it
*/
# define REAL_WRAPPER(name) \
void name##_real(const double qvec_in[static restrict 3],doublecomplex result[static restrict 6]) { \
double qvec[3]; \
vCopy(qvec_in,qvec); \
name(qvec,result); }
// same as above, but calling function is different from name and accepts additional argument
# define REAL_WRAPPER_3(name,func,arg) \
void name##_real(const double qvec_in[static restrict 3],doublecomplex result[static restrict 6]) { \
double qvec[3]; \
vCopy(qvec_in,qvec); \
func(qvec,result,arg); }
// aggregate defines
#define WRAPPERS_INTER(name) INT_WRAPPER_INTER(name) REAL_WRAPPER(name)
#define WRAPPERS_INTER_3(name,func,arg) INT_WRAPPER_INTER_3(name,func,arg) REAL_WRAPPER_3(name,func,arg)
#define WRAPPERS_REFL(name) INT_WRAPPER_REFL(name) REAL_WRAPPER(name)
/* this macro defines a void (error generating) real-input wrapper for Green's tensor formulations, which are, for
* instance, based on tables. Doesn't generate 'int' wrapper, since the function itself is used for it.
*/
# define NO_REAL_WRAPPER(name) \
void name##_real(const double qvec_in[static restrict 3] ATT_UNUSED ,doublecomplex result[static restrict 6] ATT_UNUSED ) { \
LogError(ALL_POS,"Function "#name" to compute dipole interaction does not support real input"); }
//=====================================================================================================================
/* The following two functions are used to do common calculation parts. For simplicity it is best to call them with the
* same set of parameters - in this respect they can be replaced by macros. But inline functions are probably easier to
* maintain.
*/
//=====================================================================================================================
static inline void UnitsGridToCoord(const int i,const int j,const int k,double qvec[static 3])
// convert integer coordinates (in dipole sizes) to real distance vector
{
qvec[0]=i*dsX;
qvec[1]=j*dsY;
qvec[2]=k*dsZ;
}
//=====================================================================================================================
static inline void InterParams(double qvec[static 3],double qmunu[static 6],double *rr,double *invr3,double *kr,
double *kr2)
/* some common variables needed by the interaction functions - needed for all except IGT
* makes |qvec|=1
* It will probably break down for qvec=0, so if any interaction term is required for zero argument, a new function need
* to be created, which will avoid this singularity
*/
{
double invr;
*rr=vNorm(qvec);
invr = 1.0/(*rr);
vMultScal(invr,qvec,qvec); // finalize qvec (to have unity amplitude)
*invr3=invr*invr*invr;
*kr=WaveNum*(*rr);
*kr2=(*kr)*(*kr);
OuterSym(qvec,qmunu);
}
//=====================================================================================================================
static inline double InsideCube(const double qvec[static 3],const double rn)
/* Tests if the point is inside the unit cube ([-0.5,0.5] over each axis).
* qvec is normalized vector (point location), rn is its norm before normalization
* returns weight: 1 for points inside, 0 outside, and 1/2, 1/4, or 1/8 on the facet, edge, and vertex, respectively
* The latter is designed for continuous transition of total weight, when the same point is tested versus a grid of
* cubes. However, float equality tests are not expected to be robust.
*/
{
double t,w=1;
int i;
if (rn>SQRT3*0.5) return 0;
else for (i=0;i<3;i++) {
t=rn*fabs(qvec[i]);
if (t>0.5) return 0;
else if (t==0.5) w*=0.5;
}
return w;
}
#ifdef USE_SSE3
//=====================================================================================================================
static inline __m128d accImExp_pd(const double x)
/* Accelerated sin-cos (or imaginary exp) routine for use in the calculation of the interaction tensor. Returns
* c*exp(ix) in the resultant vector. The code is adapted from the CEPHES library. The idea is that we have
* precalculated exp(iy) for some discrete values of y. Then we take the y that is nearest to our x and write
* exp(ix)=exp(iy+(ix-iy))=exp(iy)exp(i(x-y)). We take exp(y) from the table and exp(i(x-y)) from the Taylor series.
* This converges very fast since |x-y| is small.
*/
{
__m128d px = _mm_set_sd(x);
__m128d ipx = _mm_mul_pd(px,inv_2pi);
int ix = _mm_cvttsd_si32(ipx); // truncation so the function only works for 0 <= x < 2*pi*2^-31
ipx = _mm_cvtsi32_sd(ipx,ix);
ipx = _mm_mul_pd(p360,ipx);
px = _mm_mul_pd(prad_to_deg,px);
px = _mm_sub_pd(px,ipx); // this is x (deg) mod 360
ix = _mm_cvtsd_si32(px); // the closest integer (rounded, not truncated)
__m128d scx = exptbl[ix]; // the tabulated value
ipx = _mm_cvtsi32_sd(ipx,ix);
__m128d pz = _mm_sub_pd(ipx,px); // the residual -z=(ix-x)
__m128d py = _mm_mul_pd(pz,pz);
__m128d yy = _mm_shuffle_pd(py,py,0); // now (y,y)
__m128d zy = _mm_shuffle_pd(yy,pz,1);
__m128d scz = _mm_mul_pd(c1,yy); // Taylor series approximation
scz = _mm_add_pd(c2,scz);
scz = _mm_mul_pd(yy,scz);
scz = _mm_add_pd(c3,scz);
scz = _mm_mul_pd(zy,scz);
scz = _mm_sub_pd(zo,scz);
return cmul(scz,scx); // multiply lookup and approximation
}
//=====================================================================================================================
static inline doublecomplex accImExp(const double x)
{
/* Here and further in the SSE3 part it is assumed that doublecomplex is equivalent to two doubles (that is
* specified by the C99 standard). Explicit pointer casts have been put in place, and pragmas to ignore remaining
* warnings from strict aliasing.
*
* !!! TODO: SSE3 code is a nice hack. But it should be considered carefully - is it worth it? After implementation
* of the tabulated imExp for the whole code, the further improvement from SSE3 is 10% (1.52 - 1.70 for matvec in
* test sparse runs). Moreover, if the following is replaced by call to standard imExp(), the timing is almost the
* same with slight improvement if the check for int overflow and negative numbers is turned off (as is the case in
* SSE3 code).
*
* There seems to be some space for improvement in InterTerm_core (in comparison with SSE3) code, but otherwise we
* should move to remove SSE3 code for better maintainability. Interestingly, adding -msse3 to standard code
* compilation (without -DSSE3) doesn't help
*/
doublecomplex c;
IGNORE_WARNING(-Wstrict-aliasing);
_mm_store_pd((double *)(&c),accImExp_pd(x));
STOP_IGNORE;
return c;
}
//=====================================================================================================================
static inline void InterTerm_core(const double kr,const double kr2,const double invr3,const double qmunu[static 6],
doublecomplex *expval,doublecomplex result[static 6])
// Core routine that calculates the point interaction term between two dipoles
{
const __m128d ie = accImExp_pd(kr);
const __m128d sc = _mm_mul_pd(_mm_set1_pd(invr3),ie);
const double t1=(3-kr2), t2=-3*kr, t3=(kr2-1);
const __m128d v1 = _mm_set_pd(kr,t3);
const __m128d v2 = _mm_set_pd(t2,t1);
__m128d qff,im_re;
IGNORE_WARNING(-Wstrict-aliasing);
_mm_store_pd((double *)expval,sc);
STOP_IGNORE;
#undef INTERACT_MUL
#define INTERACT_DIAG(ind) { \
qff = _mm_set1_pd(qmunu[ind]); \
im_re = _mm_add_pd(v1,_mm_mul_pd(v2,qff)); \
im_re = cmul(sc,im_re); \
_mm_store_pd((double *)(result+ind),im_re); }
#define INTERACT_NONDIAG(ind) { \
qff = _mm_set1_pd(qmunu[ind]); \
im_re = _mm_mul_pd(v2,qff); \
im_re = cmul(sc,im_re); \
_mm_store_pd((double *)(result+ind),im_re); }
IGNORE_WARNING(-Wstrict-aliasing);
INTERACT_DIAG(0); // xx
INTERACT_NONDIAG(1); // xy
INTERACT_NONDIAG(2); // xz
INTERACT_DIAG(3); // yy
INTERACT_NONDIAG(4); // yz
INTERACT_DIAG(5); // zz
STOP_IGNORE;
#undef INTERACT_DIAG
#undef INTERACT_NONDIAG
}
#else //not using SSE3
//=====================================================================================================================
static inline doublecomplex accImExp(const double x)
// Without SSE3, this is just an alias for imExp
{
return imExp(x);
}
//=====================================================================================================================
static inline void InterTerm_core(const double kr,const double kr2,const double invr3,const double qmunu[static 6],
doublecomplex *expval,doublecomplex result[static 6])
// Core routine that calculates the point interaction term between two dipoles
{
const double t1=(3-kr2), t2=-3*kr, t3=(kr2-1);
*expval=invr3*imExp(kr);
#define INTERACT_DIAG(ind) { result[ind] = ((t1*qmunu[ind]+t3) + I*(kr+t2*qmunu[ind]))*(*expval); }
#define INTERACT_NONDIAG(ind) { result[ind] = (t1+I*t2)*qmunu[ind]*(*expval); }
INTERACT_DIAG(0); // xx
INTERACT_NONDIAG(1); // xy
INTERACT_NONDIAG(2); // xz
INTERACT_DIAG(3); // yy
INTERACT_NONDIAG(4); // yz
INTERACT_DIAG(5); // zz
#undef INTERACT_DIAG
#undef INTERACT_NONDIAG
}
#endif //USE_SSE3
//=====================================================================================================================
static inline void InterTerm_poi(double qvec[static 3],doublecomplex result[static 6])
/* Interaction term between two dipoles using the point-dipoles formulation;
* qvec is the real distance, result is for produced output
*/
{
// standard variable definitions used for functions InterParams and InterTerm_core
double qmunu[6]; // normalized outer-product {qxx,qxy,qxz,qyy,qyz,qzz}
double rr,invr3,kr,kr2; // |R|, |R|^-3, kR, (kR)^2
doublecomplex expval; // exp(ikR)/|R|^3
InterParams(qvec,qmunu,&rr,&invr3,&kr,&kr2);
InterTerm_core(kr,kr2,invr3,qmunu,&expval,result);
PRINT_GVAL;
}
WRAPPERS_INTER(InterTerm_poi)
//=====================================================================================================================
static inline void InterTerm_fcd(double qvec[static 3],doublecomplex result[static 6])
/* Interaction term between two dipoles for FCD. See InterTerm_poi for more details.
* !!! Works only for cubical dipoles, otherwise careful reconsideration of all formulae is required
*
* FCD is based on Gay-Balmaz P., Martin O.J.F. "A library for computing the filtered and non-filtered 3D Green's tensor
* associated with infinite homogeneous space and surfaces", Comp. Phys. Comm. 144:111-120 (2002), and
* Piller N.B. "Increasing the performance of the coupled-dipole approximation: A spectral approach",
* IEEE Trans.Ant.Propag. 46(8): 1126-1137. Here it differs by a factor of 4*pi*k^2.
*
* speed of FCD can be improved by using faster version of sici routine, using predefined tables, etc (e.g. as is
* done in GSL library). But currently extra time for this computation is already smaller than one main iteration.
*/
// If needed, it can be updated to work fine for qvec==0
{
// standard variable definitions used for functions InterParams and InterTerm_core
double qmunu[6]; // normalized outer-product {qxx,qxy,qxz,qyy,qyz,qzz}
double rr,invr3,kr,kr2; // |R|, |R|^-3, kR, (kR)^2
doublecomplex expval; // exp(ikR)/|R|^3
double temp,kfr,ci,si,ci1,si1,ci2,si2,brd,g0,g2;
int comp;
doublecomplex eikfr; // exp(i*k_F*R)
// next line should never happen
if (rectDip) LogError(ONE_POS,"Incompatibility error in InterTerm_fcd");
InterParams(qvec,qmunu,&rr,&invr3,&kr,&kr2);
InterTerm_core(kr,kr2,invr3,qmunu,&expval,result);
kfr=PI*rr/gridspace; // k_F*r, for FCD
eikfr=accImExp(kfr);
// ci,si_1,2 = ci,si_+,- = Ci,Si((k_F +,- k)r)
cisi(kfr+kr,&ci1,&si1);
cisi(kfr-kr,&ci2,&si2);
// ci=ci1-ci2; si=pi-si1-si2
ci=ci1-ci2;
si=PI-si1-si2;
g0=INV_PI*(cimag(expval)*ci+creal(expval)*si);
g2=INV_PI*(kr*(creal(expval)*ci-cimag(expval)*si)+2*ONE_THIRD*invr3*(kfr*creal(eikfr)-4*cimag(eikfr)))-g0;
temp=g0*kr2;
for (comp=0;comp<NDCOMP;comp++) {
// brd=(delta[mu,nu]*(-g0*kr^2-g2)+qmunu*(g0*kr^2+3g2))/r^3
brd=qmunu[comp]*(temp+3*g2);
if (dmunu[comp]) brd-=temp+g2;
// result=Gp+brd; only the real part of the Green's tensor is corrected
result[comp]+=brd;
}
// the following won't be needed if the singular (L) term is also filtered (so-called, improved FCD)
double w=InsideCube(qvec,rr/gridspace);
if (w!=0) for (comp=0;comp<NDCOMP;comp++) if (dmunu[comp]) result[comp]-=w*FOUR_PI_OVER_THREE/dipvol;
PRINT_GVAL;
}
WRAPPERS_INTER(InterTerm_fcd)
//=====================================================================================================================
static inline void InterTerm_fcd_st(double qvec[static 3],doublecomplex result[static 6])
/* Interaction term between two dipoles for static FCD (in the limit of k->inf). See InterTerm_fcd for more details.
* !!! Works only for cubical dipoles, otherwise careful reconsideration of all formulae is required
*/
// If needed, it can be updated to work fine for qvec==0
{
// standard variable definitions used for functions InterParams and InterTerm_core
double qmunu[6]; // normalized outer-product {qxx,qxy,qxz,qyy,qyz,qzz}
double rr,invr3,kr,kr2; // |R|, |R|^-3, kR, (kR)^2
doublecomplex expval; // exp(ikR)/|R|^3
double kfr,ci,si,brd;
int comp;
doublecomplex eikfr;
// next line should never happen
if (rectDip) LogError(ONE_POS,"Incompatibility error in InterTerm_fcd_st");
InterParams(qvec,qmunu,&rr,&invr3,&kr,&kr2);
InterTerm_core(kr,kr2,invr3,qmunu,&expval,result);
kfr=PI*rr/gridspace; // k_F*r, for FCD
eikfr=accImExp(kfr);
// result = Gp*[3*Si(k_F*r)+k_F*r*cos(k_F*r)-4*sin(k_F*r)]*2/(3*pi)
cisi(kfr,&ci,&si);
brd=TWO_OVER_PI*ONE_THIRD*(3*si+kfr*creal(eikfr)-4*cimag(eikfr));
for (comp=0;comp<NDCOMP;comp++) result[comp]*=brd;
PRINT_GVAL;
}
WRAPPERS_INTER(InterTerm_fcd_st)
//=====================================================================================================================
void InterTerm_igt_so(double qvec[static 3],doublecomplex result[static restrict 6])
{
CalcIGTso(qvec,WaveNum,dsX,dsY,dsZ,result);
}
WRAPPERS_INTER(InterTerm_igt_so)
//=====================================================================================================================
static inline double lower_gamma52(const double sx,const double expMx)
/* computes the values of lower incomplete gamma function of order 5/2 at sx^2 by upward recursion from erf(x),
* i.e. sx = sqrt(x) is given together with exp(-sx^2)=exp(-x)
* it is numerically stable (up to all digits) for x>1
* if extension to complex input is required, cerf can be obtained from http://apps.jcns.fz-juelich.de/doku/sc/libcerf
*/
{
return 0.75*SQRT_PI*erf(sx) - sx*(1.5+sx*sx)*expMx;
}
//=====================================================================================================================
static inline double gamma_scaled(const double s,const double x,const double expMx)
/* computes the values of scaled lower incomplete gamma function, using given value of exp(-x)
* f[s-1/2,x] = g[s,x]/x^s = M(s,s+1,-x)/s = exp(-x)M(1,s+1,x)/s, where M is Kummer's confluent hypergeometric function
*
* The code is based on Numerical Recipes, 3rd ed. There it is mentioned that such series are more efficient than
* continuous fraction for x < s. Series is f[s-1/2,x] = exp(-x)*Sum{k=0->inf,Gamma(s)*x^k/Gamma(s+k+1)}.
* For s=5/2 to reach double precision it requires from 9 to 16 iterations when 0.1<=x<=1 (and even smaller -
* for smaller x)
*/
{
double ap,del,sum;
ap=s;
del=sum=1.0/s;
do {
ap++;
del*=x/ap;
sum+=del;
} while (fabs(del) > fabs(sum)*DBL_EPSILON);
return sum*expMx;
}
//=====================================================================================================================
static inline double AverageGaussCube(double x)
/* computes one component of Gaussian averaging over a cube: (multiplied by 2)
* [2/(sqrt(2pi)*d*Rp)]*Integral[exp(-(x+t)^2/(2Rp^2)),{t,-d/2,d/2}]
* !!! works only for cubical dipoles (with single size gridspace)
*/
{
double dif;
if (x<0) x=-x; // for convenience work only with non-negative input
const double y=x/(SQRT2*nloc_Rp);
const double z=gridspace/(2*SQRT2*nloc_Rp);
// two branches not to lose precision
if (x<1) dif = erf(y+z) - erf(y-z);
else dif = erfc(y-z) - erfc(y+z);
return dif/gridspace;
}
//=====================================================================================================================
static inline void InterTerm_nloc_both(double qvec[static 3],doublecomplex result[static 6],const bool averageH)
/* Interaction term between two dipoles using the non-local interaction;
* qvec is the real distance, result is for produced output
* averageH specifies if the h function should be averaged over the dipole (cube) volume
*
* !!! Currently only static version is implemented; and only for cubical dipoles
* !!! Mind the difference in sign with term in quantum-mechanical simulations, which defines the interaction energy
* G = 4/[3sqrt(PI)R^3]g(5/2,x)[3(RR/R^2)-I] - (4pi/3)h(R), where x=R^2/(2Rp^2), g is lower incomplete gamma-function.
* For moderate x, those gamma functions can be easily expressed through erf by upward recursion, since
* g(1/2,y^2) = sqrt(pi)erf(y) and g(s+1,x) = s*g(s,x) - exp(-x)x^s
* For small x to save significant digits, we define f(m,x) = g(m+1/2,x)/x^(m+1/2) [no additional coefficient 1/2]
* (computed by series representation), then g(5/2,x)/R^3 = f(2,x)/[sqrt(2)*Rp]^3
*
* (4pi/3)h(R)=exp(-x)*sqrt(2/pi)/(3*Rp^3) - is the non-locality function. If averageH, it is replaced by its integral
* over cube, which can be easily expressed through erf.
*
* Currently this function is faster than FCD, so we should not worry about speed. But if needed, calculation of both
* h(R) and its integrals can be optimized by tabulating 1D functions (either exp, or combinations of erf)
*/
// If needed, it can be updated to work fine for qvec==0
{
// standard variable definitions used for functions InterParams
double qmunu[6]; // normalized outer-product {qxx,qxy,qxz,qyy,qyz,qzz}
double rr,rn,invr3,kr,kr2; // |R|, |R/d|, |R|^-3, kR, (kR)^2
double sx,x,t1,t2,expMx,invRp3;
// next line should never happen
if (rectDip) LogError(ONE_POS,"Incompatibility error in InterTerm_nloc_both");
InterParams(qvec,qmunu,&rr,&invr3,&kr,&kr2);
rn=rr/gridspace;
if (nloc_Rp==0) {
if (rr==0) LogError(ALL_POS,"Non-local interaction is not defined for both R and Rp equal to 0");
t1=invr3;
// when averaging, we check if the point r is inside the cube around r0. Conforms with general formula below
if (averageH) t2=FOUR_PI_OVER_THREE*InsideCube(qvec,rn);
else t2=0;
}
else {
invRp3=1/(nloc_Rp*nloc_Rp*nloc_Rp);
sx=SQRT1_2*rr/nloc_Rp;
x=sx*sx;
expMx=exp(-sx*sx);
// the threshold for x is somewhat arbitrary
if (x>1) t1=(4/(3*SQRT_PI))*lower_gamma52(sx,expMx)*invr3;
else t1=SQRT2_9PI*x*gamma_scaled(2.5,x,expMx)*invRp3;
if (averageH)
t2=PI_OVER_SIX*AverageGaussCube(qvec[0]*rr)*AverageGaussCube(qvec[1]*rr)*AverageGaussCube(qvec[2]*rr);
else t2=expMx*invRp3*SQRT2_9PI;
}
//#define INTERACT_DIAG(ind) { result[ind] = ((t1*qmunu[ind]+t3) + I*(kr+t2*qmunu[ind]))*(*expval); }
//#define INTERACT_NONDIAG(ind) { result[ind] = (t1+I*t2)*qmunu[ind]*(*expval); }
#define INTERACT_DIAG(ind) { result[ind] = 3*t1*qmunu[ind] - (t1+t2); }
#define INTERACT_NONDIAG(ind) { result[ind] = 3*t1*qmunu[ind]; }
INTERACT_DIAG(0); // xx
INTERACT_NONDIAG(1); // xy
INTERACT_NONDIAG(2); // xz
INTERACT_DIAG(3); // yy
INTERACT_NONDIAG(4); // yz
INTERACT_DIAG(5); // zz
#undef INTERACT_DIAG
#undef INTERACT_NONDIAG
PRINT_GVAL;
}
// wrappers both for nloc and nloc_av
WRAPPERS_INTER_3(InterTerm_nloc,InterTerm_nloc_both,false)
WRAPPERS_INTER_3(InterTerm_nloc_av,InterTerm_nloc_both,true)
//=====================================================================================================================
#ifndef NO_FORTRAN
static inline void InterTerm_igt(double qvec[static 3],doublecomplex result[static 6])
// Interaction term between two dipoles with integration of Green's tensor. See InterTerm_poi for more details.
{
double tmp[12];
int comp,ifail;
if (igt_lim==UNDEF || DotProd(qvec,qvec)<=igtLimR2 ) {
/* passing complex vectors from Fortran to C is not necessarily portable (at least requires extra effort in
* the Fortran code. So we do it through double. This is not bad for performance, since double is anyway used
* internally for integration in this Fortran routine.
*/
propaespacelibreintadda_(qvec,&WaveNum,&dsX,&dsY,&dsZ,&igt_eps,tmp,&ifail);
if (ifail!=0) {
if (ifail==1) LogWarning(EC_WARN,ALL_POS,"Failed to reach relative accuracy of %g for Green's tensor "
"integration for distance "GFORMDEF3V,igt_eps,COMP3V(qvec));
else LogWarning(EC_WARN,ALL_POS,"Error in Green's tensor integration (code %d - see dcuhre.f) for distance "
GFORMDEF3V,ifail,COMP3V(qvec));
}
for (comp=0;comp<6;comp++) result[comp] = tmp[comp] + I*tmp[comp+6];
PRINT_GVAL;
// test IGT_SO
// doublecomplex result1[6];
// InterTerm_igt_so(qvec, result1);
// for (comp=0;comp<6;comp++) {
// double norm_IGT = cAbs2(result[comp]);
// double norm_SO = cAbs2(result1[comp]);
// if (norm_IGT == 0 && fabs(norm_SO) > 1e-10) int rrrr = 1;
// if (norm_IGT != 0) {
// double errrr = fabs(cAbs2(result[comp]-result1[comp]))/norm_IGT*100;
// if (errrr > 0.0001) int rrrr = 1;
// }
// }
}
else InterTerm_poi(qvec,result);
}
WRAPPERS_INTER(InterTerm_igt)
#endif
/* TO ADD NEW INTERACTION FORMULATION
* Add above functions that actually perform the calculation of the interaction term, according to the new formulae. At
* the end you need to have two functions according to the declarations InterTerm_int and InterTerm_real in
* interaction.h. Their input and output arguments are described there as well. Precise definition of Green's tensor is
* given in the manual, in particular, it is based on CGS system of units. There are two ways to proceed:
*
* 1) Recommended. You create one main function with the following declaration
* static inline void InterTerm_<name>(double qvec[static 3],doublecomplex result[static 6])
* which works for double input vector. After the function definition you specify "WRAPPERS_INTER(InterTerm_<name>)",
* which automatically produces declarations compatible to that in interaction.h. See InterTerm_poi() for example.
*
* 2) Create two separate functions named InterTerm_<name>_int and InterTerm_<name>_real with declarations described in
* interaction.h. If the new formulation does not support arbitrary real input vector (e.g. it is based on tables), then
* use "NO_REAL_WRAPPER(InterTerm_<name>)" instead of the real-input declaration.
*
* In any case you may benefit from existing utility functions InterParams() and InterTerm_core(). Adhering to the
* naming conventions is important to be able to use macros here and below in InitInteraction().
*/
//=====================================================================================================================
static inline void UnitsGridToCoordShift(const int i,const int j,const int k,double qvec[static 3])
// convert integer coordinates (in dipole sizes) to real distance vector with extra shift along the z-axis
{
qvec[0]=i*dsX;
qvec[1]=j*dsY;
qvec[2]=k*dsZ+ZsumShift;
}
//=====================================================================================================================
static inline void ReflTerm_core(const double kr,const double kr2,const double invr3,const double qmunu[static 6],
doublecomplex *expval,doublecomplex result[static 6])
// Core routine that calculates the reflection interaction between probe dipole and image of source dipole
{
// this is a modification of InterTerm_core, multiplying by refl. coef. and inverting z-components
const double t1=(3-kr2), t2=-3*kr, t3=(kr2-1);
*expval=invr3*imExp(kr);
doublecomplex scale=surfRCn*(*expval);
#define INTERACT_DIAG(ind) { result[ind] = ((t1*qmunu[ind]+t3) + I*(kr+t2*qmunu[ind]))*scale; }
#define INTERACT_NONDIAG(ind) { result[ind] = (t1+I*t2)*qmunu[ind]*scale; }
INTERACT_DIAG(0); // xx
INTERACT_NONDIAG(1); // xy
INTERACT_NONDIAG(2); // xz
INTERACT_DIAG(3); // yy
INTERACT_NONDIAG(4); // yz
INTERACT_DIAG(5); // zz
#undef INTERACT_DIAG
#undef INTERACT_NONDIAG
// invert sign of *z components
result[2]*=-1;
result[4]*=-1;
result[5]*=-1;
}
//=====================================================================================================================
static inline void ReflTerm_img(double qvec[static 3],doublecomplex result[static 6])
/* Reflection term using the image-dipole approximation;
* qvec is the real distance between probe and image of source, so its z-component is the sum of heights of source and
* probe points above the surface. result is for produced output
*/
{
// standard variable definitions used for functions InterParams and ReflTerm_core
double qmunu[6]; // normalized outer-product {qxx,qxy,qxz,qyy,qyz,qzz}
double rr,invr3,kr,kr2; // |R|, |R|^-3, kR, (kR)^2
doublecomplex expval; // exp(ikR)/|R|^3
InterParams(qvec,qmunu,&rr,&invr3,&kr,&kr2);
ReflTerm_core(kr,kr2,invr3,qmunu,&expval,result);
}
WRAPPERS_REFL(ReflTerm_img)
//=====================================================================================================================
static inline void SingleSomIntegral(double rho,const double z,doublecomplex vals[static 4])
/* computes a single Sommerfeld integral (4-element array); arguments are in real units
* currently it is a wrapper around evlua, but in the future it may be replaced by use of interpolation table
*/
{
// TODO: these scales can be removed by changes in som_init to use proper wavenumber instead of 2*pi
const double scale=WaveNum/TWO_PI;
const double isc=pow(scale,3); // this is subject to under/overflow
evlua(z*scale,rho*scale,vals,vals+1,vals+2,vals+3,0);
vals[0]*=isc;
vals[1]*=isc;
vals[2]*=isc;
vals[3]*=isc;
}
//=====================================================================================================================
static void CalcSomTable(void)
/* calculates a table of (essential Sommerfeld integrals), which are further combined into reflected Green's tensor
* For z values - all local grid; for x- and y-values only positive values are considered and additionally y<=x.
*
* That is good for FFT code, since all these values are required anyway. A minor improvement can be achieved by
* locating different pairs of i,j that lead to the same rho (like 3,4 and 5,0), but the fraction of such matching pairs
* is very small (also see below). Another way for improvement is to set a (coarser) 2D grid in plane of z-rho and
* perform interpolation on it (as done in Schmehl's thesis). But that will add another free parameter affecting the
* final accuracy.
*
* However, in sparse mode this procedure is inefficient, since incurs (potentially) a lot of unnecessary evaluations
* of Sommerfeld integrals. For really sparse aggregates the better way is to buildup a lookup table, using only
* actually used pairs of (z,rho), as is done in DDA-SI code. A hash table can be used for that.
* TODO: Implement such improvement for the sparse mode (issue 175)
*
* Using only actually used value of (z,rho) can be also relevant for FFT mode (consider, e.g. a sphere and z close to 0
* and to 2*boxZ-1). However, searching through such pairs seems to be O(N^2) operation, which is unacceptable in FFT
* mode.
*
* Another problem in SPARSE mode is that currently all values of z are computed on each processor (in MPI mode). This
* is related to the current parallelization mode (issue 160), but it can be improved by computing all values in chunks
* and then gathering them on each processor. Better to combine it with the hash table above.
*/
{
int i,j,k;
double z;
size_t ind;
/* The logic below is heavily based on dsX=dsY. In principle, it can be extended to integer ratios, but doesn't seem
* worth the effort. First, it is hard to find interesting practical cases of particles on substrate that would
* benefit from dsX!=dsY. Second, the issue will be solved automatically once optimized routines are implemented
* (as discussed above).
*/
if (dsX!=dsY) LogError(ONE_POS,"Incompatibility error in CalcSomTable");
XlessY=(boxX<=boxY);
// create index for plane x,y; if boxX<=boxY the space above the main diagonal is indexed (so x<=y) and vice versa
MALLOC_VECTOR(somIndex,sizet,boxY+1,ALL);
memory+=(boxY+1)*sizeof(size_t);
somIndex[0]=0;
for (j=0;j<boxY;j++) somIndex[j+1]=somIndex[j] + (XlessY ? MIN(j+1,boxX) : (boxX-j));
// allocate and fill the table
const size_t tmp=4*local_Nz_Rm*somIndex[boxY];
memory+=tmp*sizeof(doublecomplex);
if (!prognosis) {
MALLOC_VECTOR(somTable,complex,tmp,ALL);
if (IFROOT) PRINTFB("Calculating table of Sommerfeld integrals\n");
ind=0;
for (k=0;k<local_Nz_Rm;k++) {
z=k*dsZ+ZsumShift;
for (j=0;j<boxY;j++) {
if (XlessY) for (i=0;i<=j && i<boxX;i++,ind++) SingleSomIntegral(hypot(i*dsX,j*dsY),z,somTable+4*ind);
else for (i=j;i<boxX;i++,ind++) SingleSomIntegral(hypot(i*dsX,j*dsY),z,somTable+4*ind);
}
}
}
}
//=====================================================================================================================
static inline void CombineSomTensor(const double x, const double y,const double rho,const doublecomplex Ivals[static 4],
doublecomplex result[static 6])
/* combine Sommerfeld integrals in the Sommerfeld tensor and add it to the result (increment)
* x,y coordinates can be in any units (only relative values matter), rho should be equal to hypot(x,y)
*/
{
double xr,yr; // relative (scaled by ro) transverse coordinates
doublecomplex Irv,Izv,Irh,Iph; // values of Sommerfeld integrals
// index tables
Irv=Ivals[0];
Izv=Ivals[1];
Irh=Ivals[2];
Iph=Ivals[3];
if (rho==0) {
/* particular direction doesn't matter in this case; this special case can be obtained from
* general case by taking, e.g. xr=1, yr=0 (since Iph+Irh=Irv=0 for rho=0).
*/
result[0] += Irh;
result[3] += Irh;
result[5] += Izv;
}
else {
xr=x/rho;
yr=y/rho;
result[0] += xr*xr*Irh - yr*yr*Iph;
result[1] += xr*yr*(Irh+Iph);
result[2] += xr*Irv;
result[3] += yr*yr*Irh - xr*xr*Iph;
result[4] += yr*Irv;
result[5] += Izv;
}
}
//=====================================================================================================================
void ReflTerm_som_int(const int i,const int j,const int k,doublecomplex result[static restrict 6])
// Reflection term using the Sommerfeld integrals for integer input; arguments are described in .h file
// we do not use wrappers here, since both integer and real values are required
{
// first, image-dipole part
// standard variable definitions used for functions InterParams and ReflTerm_core
double qvec[3],qmunu[6]; // distance vector (in units of d) and normalized outer-product {qxx,qxy,qxz,qyy,qyz,qzz}
double rr,invr3,kr,kr2; // |R|, |R|^-3, kR, (kR)^2
doublecomplex expval; // exp(ikR)/|R|^3
UnitsGridToCoordShift(i,j,k,qvec);
InterParams(qvec,qmunu,&rr,&invr3,&kr,&kr2);
ReflTerm_core(kr,kr2,invr3,qmunu,&expval,result);
// second, Sommerfeld integral part
// compute table index
int iT=abs(i);
int jT=abs(j);
size_t ind;
// index for the table
if (XlessY) {
if (iT<=jT) ind=somIndex[jT]+iT;
else ind=somIndex[iT]+jT; // effectively swap iT and jT
}
else {
if (iT>=jT) ind=somIndex[jT]+iT-jT;
else ind=somIndex[iT]+jT-iT; // effectively swap iT and jT
}
ind=4*(ind+k*somIndex[boxY]);
double x=qvec[0];
double y=qvec[1];
double rho=hypot(x,y);
CombineSomTensor(x,y,rho,somTable+ind,result);
PRINT_GVAL;
}
//=====================================================================================================================
void ReflTerm_som_real(const double qvec[static restrict 3],doublecomplex result[static restrict 6])
// Reflection term using the Sommerfeld integrals for real input; arguments are described in .h file
{
// first, image-dipole part
// standard variable definitions used for functions InterParams and ReflTerm_core
double qmunu[6]; // normalized outer-product {qxx,qxy,qxz,qyy,qyz,qzz}
double rr,invr3,kr,kr2; // |R|, |R|^-3, kR, (kR)^2
doublecomplex expval; // exp(ikR)/|R|^3
double qv[3]; // copy of qvec
vCopy(qvec,qv);
InterParams(qv,qmunu,&rr,&invr3,&kr,&kr2);
ReflTerm_core(kr,kr2,invr3,qmunu,&expval,result);
// second, Sommerfeld integral part
double x=qvec[0];
double y=qvec[1];
double rho=hypot(x,y);
doublecomplex Ivals[4];
SingleSomIntegral(rho,qvec[2],Ivals);
CombineSomTensor(x,y,rho,Ivals,result);
PRINT_GVAL;
}
/* TO ADD NEW REFLECTION FORMULATION
* Add here functions that actually perform the calculation of the reflection term, according to the new formulae. At
* the end you need to have two functions according to the declarations ReflTerm_int and ReflTerm_real in
* interaction.h. Their input and output arguments are described there as well. Precise definition of reflected Green's
* tensor is given in the manual, in particular, it is based on CGS system of units. There are two ways to proceed:
*
* 1) Recommended. You create one main function with the following declaration
* static inline void ReflTerm_<name>(double qvec[static 3],doublecomplex result[static 6])
* which works for double input vector. After the function definition you specify "WRAPPERS_REFL(ReflTerm_<name>)",
* which automatically produces declarations compatible to that in interaction.h. See ReflTerm_img() for example.
*
* 2) Create two separate functions named ReflTerm_<name>_int and ReflTerm_<name>_real with declarations described in
* interaction.h. If the new formulation does not support arbitrary real input vector (e.g. it is based on tables), then
* use "NO_REAL_WRAPPER(ReflTerm_<name>)" instead. See ReflTerm_som_int/real() for example.
*
* In any case you may benefit from existing utility functions InterParams() and ReflTerm_core(). Adhering to the
* naming conventions is important to be able to use macros here and below in InitInteraction().
*/
//=====================================================================================================================
void InitInteraction(void)
// Initialize the interaction calculations
{
#define SET_FUNC_POINTERS(type,name) { type##_int = &type##_##name##_int; type##_real = &type##_##name##_real; }
// set InterTerm_int (real) to point at the right functions
switch (IntRelation) {
case G_POINT_DIP: SET_FUNC_POINTERS(InterTerm,poi); break;
case G_FCD: SET_FUNC_POINTERS(InterTerm,fcd); break;
case G_FCD_ST: SET_FUNC_POINTERS(InterTerm,fcd_st); break;
case G_IGT_SO: SET_FUNC_POINTERS(InterTerm,igt_so); break;
case G_NLOC: SET_FUNC_POINTERS(InterTerm,nloc); break;
case G_NLOC_AV: SET_FUNC_POINTERS(InterTerm,nloc_av); break;
#ifndef NO_FORTRAN
case G_IGT:
SET_FUNC_POINTERS(InterTerm,igt);
// initialize IGT distance threshold
if (igt_lim!=UNDEF) {
igtLimR2=igt_lim*MAX(MAX(dsX,dsY),dsZ);
igtLimR2*=igtLimR2;
}
break;
#endif
/* TO ADD NEW INTERACTION FORMULATION
* Add here the assignment of function pointers for the new formulation. It is recommended to use special macro,
* assuming that you conformed to naming conventions for functions themselves. If new formulation requires
* initialization, add it here, preferably by a separate function. Initialization should honor the 'prognosis'
* flag. Additional memory should be counted always, but allocated only when not prognosis. If the new
* formulation does not support arbitrary real input vector (e.g. it is based on tables), then test for
* InteractionRealArgs and add an exception.
*/
default: LogError(ONE_POS, "Invalid interaction term calculation method: %d",(int)IntRelation);
// no break
}
// Interaction through reflection from surface
if (surface) {
#ifdef SPARSE
local_Nz_Rm=2*boxZ-1;
#else
local_Nz_Rm=MAX(MIN(2*local_z1,2*boxZ-1)-2*local_z0,0);
#endif
switch (ReflRelation) {
case GR_IMG: SET_FUNC_POINTERS(ReflTerm,img); break;
case GR_SOM:
SET_FUNC_POINTERS(ReflTerm,som);
if (!prognosis) som_init(msub*msub);
CalcSomTable();
break;
/* TO ADD NEW REFLECTION FORMULATION
* Add here the assignment of function pointers for the new formulation. It is recommended to use special
* macro, assuming that you conformed to naming conventions for functions themselves. If new formulation
* requires initialization add it here, preferably by a separate function. Initialization should honor the
* 'prognosis' flag. Additional memory should be counted always, but allocated only when not prognosis. See
* CalcSomTable() for example. If the new formulation does not support arbitrary real input vector (e.g. it
* is based on tables), then test for InteractionRealArgs and add an exception.
*/
default: LogError(ONE_POS, "Invalid reflection term calculation method: %d",(int)ReflRelation);
// no break
}
surfRCn=msubInf ? -1 : ((1-msub*msub)/(1+msub*msub));
}
#ifdef USE_SSE3
c1 = _mm_set_pd(1.34959795251974073996e-11,3.92582397764340914444e-14);
c2 = _mm_set_pd(-8.86096155697856783296e-7,-3.86632385155548605680e-9);
c3 = _mm_set_pd(1.74532925199432957214e-2,1.52308709893354299569e-4);
zo = _mm_set_pd(0.0,1.0);
inv_2pi = _mm_set_sd(1.0/(2*PI));
p360 = _mm_set_sd(360.0);
prad_to_deg = _mm_set_sd(180.0/PI);
for (unsigned int i=0; i<=360; i++) {
double x = (PI/180.0)*(double)i;
exptbl[i] = _mm_set_pd(sin(x),cos(x));
}
#endif
#undef SET_FUNC_POINTERS
}
//=====================================================================================================================