forked from yuanming-hu/taichi_mpm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mls-mpm88-explained.cpp
319 lines (250 loc) · 8.64 KB
/
mls-mpm88-explained.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// 88-Line 2D Moving Least Squares Material Point Method (MLS-MPM)
// [Explained Version by David Medina]
// Uncomment this line for image exporting functionality
#define TC_IMAGE_IO
// Note: You DO NOT have to install taichi or taichi_mpm.
// You only need [taichi.h] - see below for instructions.
#include "taichi.h"
using namespace taichi;
using Vec = Vector2;
using Mat = Matrix2;
// Window
const int window_size = 800;
// Grid resolution (cells)
const int n = 80;
const real dt = 1e-4_f;
const real frame_dt = 1e-3_f;
const real dx = 1.0_f / n;
const real inv_dx = 1.0_f / dx;
// Snow material properties
const auto particle_mass = 1.0_f;
const auto vol = 1.0_f; // Particle Volume
const auto hardening = 10.0_f; // Snow hardening factor
const auto E = 1e4_f; // Young's Modulus
const auto nu = 0.2_f; // Poisson ratio
const bool plastic = true;
// Initial Lamé parameters
const real mu_0 = E / (2 * (1 + nu));
const real lambda_0 = E * nu / ((1+nu) * (1 - 2 * nu));
struct Particle {
// Position and velocity
Vec x, v;
// Deformation gradient
Mat F;
// Affine momentum from APIC
Mat C;
// Determinant of the deformation gradient (i.e. volume)
real Jp;
// Color
int c;
Particle(Vec x, int c, Vec v=Vec(0)) :
x(x),
v(v),
F(1),
C(0),
Jp(1),
c(c) {}
};
std::vector<Particle> particles;
// Vector3: [velocity_x, velocity_y, mass]
Vector3 grid[n + 1][n + 1];
void advance(real dt) {
// Reset grid
std::memset(grid, 0, sizeof(grid));
// P2G
for (auto &p : particles) {
// element-wise floor
Vector2i base_coord = (p.x * inv_dx - Vec(0.5f)).cast<int>();
Vec fx = p.x * inv_dx - base_coord.cast<real>();
// Quadratic kernels [http://mpm.graphics Eqn. 123, with x=fx, fx-1,fx-2]
Vec w[3] = {
Vec(0.5) * sqr(Vec(1.5) - fx),
Vec(0.75) - sqr(fx - Vec(1.0)),
Vec(0.5) * sqr(fx - Vec(0.5))
};
// Compute current Lamé parameters [http://mpm.graphics Eqn. 86]
auto e = std::exp(hardening * (1.0f - p.Jp));
auto mu = mu_0 * e;
auto lambda = lambda_0 * e;
// Current volume
real J = determinant(p.F);
// Polar decomposition for fixed corotated model
Mat r, s;
polar_decomp(p.F, r, s);
// [http://mpm.graphics Paragraph after Eqn. 176]
real Dinv = 4 * inv_dx * inv_dx;
// [http://mpm.graphics Eqn. 52]
auto PF = (2 * mu * (p.F-r) * transposed(p.F) + lambda * (J-1) * J);
// Cauchy stress times dt and inv_dx
auto stress = - (dt * vol) * (Dinv * PF);
// Fused APIC momentum + MLS-MPM stress contribution
// See http://taichi.graphics/wp-content/uploads/2019/03/mls-mpm-cpic.pdf
// Eqn 29
auto affine = stress + particle_mass * p.C;
// P2G
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
auto dpos = (Vec(i, j) - fx) * dx;
// Translational momentum
Vector3 mass_x_velocity(p.v * particle_mass, particle_mass);
grid[base_coord.x + i][base_coord.y + j] += (
w[i].x*w[j].y * (mass_x_velocity + Vector3(affine * dpos, 0))
);
}
}
}
// For all grid nodes
for(int i = 0; i <= n; i++) {
for(int j = 0; j <= n; j++) {
auto &g = grid[i][j];
// No need for epsilon here
if (g[2] > 0) {
// Normalize by mass
g /= g[2];
// Gravity
g += dt * Vector3(0, -200, 0);
// boundary thickness
real boundary = 0.05;
// Node coordinates
real x = (real) i / n;
real y = real(j) / n;
// Sticky boundary
if (x < boundary || x > 1-boundary || y > 1-boundary) {
g = Vector3(0);
}
// Separate boundary
if (y < boundary) {
g[1] = std::max(0.0f, g[1]);
}
}
}
}
// G2P
for (auto &p : particles) {
// element-wise floor
Vector2i base_coord = (p.x * inv_dx - Vec(0.5f)).cast<int>();
Vec fx = p.x * inv_dx - base_coord.cast<real>();
Vec w[3] = {
Vec(0.5) * sqr(Vec(1.5) - fx),
Vec(0.75) - sqr(fx - Vec(1.0)),
Vec(0.5) * sqr(fx - Vec(0.5))
};
p.C = Mat(0);
p.v = Vec(0);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
auto dpos = (Vec(i, j) - fx);
auto grid_v = Vec(grid[base_coord.x + i][base_coord.y + j]);
auto weight = w[i].x * w[j].y;
// Velocity
p.v += weight * grid_v;
// APIC C
p.C += 4 * inv_dx * Mat::outer_product(weight * grid_v, dpos);
}
}
// Advection
p.x += dt * p.v;
// MLS-MPM F-update
auto F = (Mat(1) + dt * p.C) * p.F;
Mat svd_u, sig, svd_v;
svd(F, svd_u, sig, svd_v);
// Snow Plasticity
for (int i = 0; i < 2 * int(plastic); i++) {
sig[i][i] = clamp(sig[i][i], 1.0f - 2.5e-2f, 1.0f + 7.5e-3f);
}
real oldJ = determinant(F);
F = svd_u * sig * transposed(svd_v);
real Jp_new = clamp(p.Jp * oldJ / determinant(F), 0.6f, 20.0f);
p.Jp = Jp_new;
p.F = F;
}
}
// Seed particles with position and color
void add_object(Vec center, int c) {
// Randomly sample 1000 particles in the square
for (int i = 0; i < 1000; i++) {
particles.push_back(Particle((Vec::rand()*2.0f-Vec(1))*0.08f + center, c));
}
}
int main() {
GUI gui("Real-time 2D MLS-MPM", window_size, window_size);
auto &canvas = gui.get_canvas();
add_object(Vec(0.55,0.45), 0xED553B);
add_object(Vec(0.45,0.65), 0xF2B134);
add_object(Vec(0.55,0.85), 0x068587);
int frame = 0;
// Main Loop
for (int step = 0;; step++) {
// Advance simulation
advance(dt);
// Visualize frame
if (step % int(frame_dt / dt) == 0) {
// Clear background
canvas.clear(0x112F41);
// Box
canvas.rect(Vec(0.04), Vec(0.96)).radius(2).color(0x4FB99F).close();
// Particles
for (auto p : particles) {
canvas.circle(p.x).radius(2).color(p.c);
}
// Update image
gui.update();
// Write to disk (optional)
// canvas.img.write_as_image(fmt::format("tmp/{:05d}.png", frame++));
}
}
}
/* -----------------------------------------------------------------------------
** Reference: A Moving Least Squares Material Point Method with Displacement
Discontinuity and Two-Way Rigid Body Coupling (SIGGRAPH 2018)
By Yuanming Hu (who also wrote this 88-line version), Yu Fang, Ziheng Ge,
Ziyin Qu, Yixin Zhu, Andre Pradhana, Chenfanfu Jiang
** Build Instructions:
Step 1: Download and unzip mls-mpm88.zip (Link: http://bit.ly/mls-mpm88)
Now you should have "mls-mpm88.cpp" and "taichi.h".
Step 2: Compile and run
* Linux:
g++ mls-mpm88-explained.cpp -std=c++14 -g -lX11 -lpthread -O3 -o mls-mpm
./mls-mpm
* Windows (MinGW):
g++ mls-mpm88-explained.cpp -std=c++14 -lgdi32 -lpthread -O3 -o mls-mpm
.\mls-mpm.exe
* Windows (Visual Studio 2017+):
- Create an "Empty Project"
- Use taichi.h as the only header, and mls-mpm88-explained.cpp as the only source
- Change configuration to "Release" and "x64"
- Press F5 to compile and run
* OS X:
g++ mls-mpm88-explained.cpp -std=c++14 -framework Cocoa -lpthread -O3 -o mls-mpm
./mls-mpm
** FAQ:
Q1: What does "1e-4_f" mean?
A1: The same as 1e-4f, a float precision real number.
Q2: What is "real"?
A2: real = float in this file.
Q3: What are the hex numbers like 0xED553B?
A3: They are RGB color values.
The color scheme is borrowed from
https://color.adobe.com/Copy-of-Copy-of-Core-color-theme-11449181/
Q4: How can I get higher-quality?
A4: Change n to 320; Change dt to 1e-5; Change E to 2e4;
Change particle per cube from 500 to 8000 (Ln 72).
After the change the whole animation takes ~3 minutes on my computer.
Q5: How to record the animation?
A5: Uncomment Ln 2 and 85 and create a folder named "tmp".
The frames will be saved to "tmp/XXXXX.png".
To get a video, you can use ffmpeg. If you already have taichi installed,
you can simply go to the "tmp" folder and execute
ti video 60
where 60 stands for 60 FPS. A file named "video.mp4" is what you want.
Q6: How is taichi.h generated?
A6: Please check out my #include <taichi> talk:
http://taichi.graphics/wp-content/uploads/2018/11/include_taichi.pdf
and the generation script:
https://github.com/yuanming-hu/taichi/blob/master/misc/amalgamate.py
You can regenerate it using `ti amal`, if you have taichi installed.
Questions go to yuanming _at_ mit.edu
or https://github.com/yuanming-hu/taichi_mpm/issues.
Last Update: March 6, 2019
Version 1.5
----------------------------------------------------------------------------- */