-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmat_to_numpy.py
83 lines (65 loc) · 2.56 KB
/
mat_to_numpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
Read all the Matlab files in the 'data' directory and export 3 numpy arrays:
- labels.npy
- images.npy
- masks.npy
Usage: python matlab_to_numpy.py ~/brain_tumor_dataset
"""
import os
import argparse
import sys
import numpy as np
import hdf5storage
import cv2
class NoDataFound(Exception):
pass
def dir_path(path):
"""Check the path and the existence of a data directory"""
# replace '\' in path for Windows users
path = path.replace('\\', '/')
data_path = os.path.join(path, 'data').replace('\\', '/')
if os.path.isdir(data_path):
return path
elif os.path.isdir(path):
raise NoDataFound('Could not find a "data" folder inside directory. {} does not exist.'
.format(data_path))
else:
raise NotADirectoryError(path)
parser = argparse.ArgumentParser()
parser.add_argument('path', help='path to the brain_tumor_dataset directory', type=dir_path)
parser.add_argument('--image-dimension', '-d', default=512, help='dimension of the image', type=int)
args = parser.parse_args()
labels = []
images = []
masks = []
data_dir = os.path.join(args.path, 'data').replace('\\', '/')
files = os.listdir(data_dir)
for i, file in enumerate(files, start=1):
if i % 10 == 0:
# print the percentage of images loaded
sys.stdout.write('\r[{}/{}] images loaded: {:.1f} %'
.format(i, len(files), i / float(len(files)) * 100))
sys.stdout.flush()
# load matlab file with hdf5storage as scipy.io.loadmat does not support v7.3 files
mat_file = hdf5storage.loadmat(os.path.join(data_dir, file))['cjdata'][0]
# resize image and mask to a unique size
image = cv2.resize(mat_file[2], dsize=(args.image_dimension, args.image_dimension),
interpolation=cv2.INTER_CUBIC)
mask = cv2.resize(mat_file[4].astype('uint8'), dsize=(args.image_dimension, args.image_dimension),
interpolation=cv2.INTER_CUBIC)
labels.append(int(mat_file[0]))
images.append(image)
masks.append(mask.astype(bool))
sys.stdout.write('\r[{}/{}] images loaded: {:.1f} %'
.format(i, len(files), i / float(len(files)) * 100))
sys.stdout.flush()
labels = np.array(labels)
images = np.array(images)
masks = np.array(masks)
print('\nlabels:', labels.shape)
print('images:', images.shape)
print('masks:', masks.shape)
np.save(os.path.join(args.path, 'labels.npy'), labels)
np.save(os.path.join(args.path, 'images.npy'), images)
np.save(os.path.join(args.path, 'masks.npy'), masks)
print('labels.npy, images.npy, masks.npy saved in', args.path)