-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
157 lines (135 loc) · 5.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.nn.functional as F
from transformers import GPT2Tokenizer
import tiktoken # Make sure tiktoken is imported
enc = tiktoken.get_encoding("gpt2") # Initialize the GPT-2 tokenizer
# Load the GPT-2 tokenizer (or your specific tokenizer)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# Define the GPTLanguageModel class (the one you used for training)
# Ensure that this matches exactly the training-time definition
class Head(nn.Module):
def __init__(self, head_size, n_embd, block_size, dropout):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
v = self.value(x)
wei = q @ k.transpose(-2, -1) * k.shape[-1]**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, head_size, n_embd, dropout):
super().__init__()
self.heads = nn.ModuleList([Head(head_size, n_embd, block_size, dropout) for _ in range(n_heads)])
self.proj = nn.Linear(n_heads * head_size, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
head_outputs = [head(x) for head in self.heads]
concatenated = torch.cat(head_outputs, dim=-1)
out = self.proj(concatenated)
out = self.dropout(out)
return out
class FeedForward(nn.Module):
def __init__(self, n_embd, dropout=0.1, expansion_factor=4):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, expansion_factor * n_embd),
nn.ReLU(),
nn.Linear(expansion_factor * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_embd, n_head, dropout=0.1):
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size, n_embd, dropout)
self.ffwd = FeedForward(n_embd, dropout)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class GPTLanguageModel(nn.Module):
def __init__(self, vocab_size, n_embd, block_size, n_layer, n_head, device="cpu"):
super().__init__()
self.device = device
self.block_size = block_size
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd)
self.lm_head = nn.Linear(n_embd, vocab_size)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.1, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
T = min(T, self.block_size)
idx = idx[:, :T]
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device))
x = tok_emb + pos_emb.unsqueeze(0)
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
targets = targets[:, :T]
B, T, C = logits.shape
logits = logits.reshape(B*T, C)
targets = targets.reshape(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
@torch.no_grad()
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -self.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
# Now that we have the model definition, let's load the weights and perform inference
device = torch.device('cpu') # Use 'cuda' if you have a GPU
# Hyperparameters (match these with the ones you used for training)
vocab_size = 50257
n_heads = 8
n_layers = 6
head_size = 64
n_embd = 512
block_size = 128
dropout = 0.1
learning_rate = 3e-4
weight_decay = 0.1
# Create an instance of the model
model = GPTLanguageModel(vocab_size, n_embd, block_size, n_layers, n_heads).to(device)
# Load the trained weights
model.load_state_dict(torch.load("model_weights.pth", map_location=device))
# Set the model to evaluation mode
model.eval()
# Prompt
context = torch.tensor([enc.encode("Once upon a time there was a knight called Bob and he rode into his greatest battle yet")], dtype=torch.long, device=device)
# Test generation with a higher number of tokens and adjusted temperature
max_new_tokens = 200 # Increase the token limit for a longer generation
temperature = 0.8 # More focused, less random
generated_text_idx = model.generate(context, max_new_tokens)
generated_text = enc.decode(generated_text_idx[0].tolist())
print(f"Generated text: {generated_text}")