-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
264 lines (221 loc) · 9.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""Train an net using Contrastive Learning."""
import argparse
import os
import subprocess
import sys
from pathlib import Path
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import random_split, DataLoader, Subset
from src import models
from src.dataset import rebracket_collate
import hydra
from hydra.core.hydra_config import HydraConfig
from hydra.utils import instantiate
import pytorch_lightning as pl
from utils import OmegaConf
from utils import ModelCheckpoint, DebugCallback, CSVLogger, TensorBoardLogger, WandbLogger, LightningModule
import logging
log = logging.getLogger(__name__)
class DataModule(pl.LightningDataModule):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.loader_kwargs = dict(num_workers=cfg.num_workers, pin_memory=True)
self.collator = instantiate(self.cfg.dataset.collator)
def setup(self, stage=None, seed=None):
log.info(f"Preparing data for {stage} stage")
if stage == "fit":
data = instantiate(self.cfg.dataset.object)
if self.cfg.dataset.split[0] < 1.0:
split_size = [round(len(data) * prop) for prop in self.cfg.dataset.split]
split_size[-1] = len(data) - sum(split_size[:-1])
else:
split_size = self.cfg.dataset.split
seed = seed if seed is not None else self.cfg.seed
generator = torch.Generator().manual_seed(seed)
self._train_set, self._val_set, self._test_set = random_split(data, split_size, generator=generator)
# Sample dataset for training classifier
N = len(self._train_set)
indices = torch.randperm(N, generator=generator).tolist()
indices = indices[: round(N * self.cfg.clf.prop)]
self._clf_train_set = Subset(self._train_set, indices)
if self.cfg.fix_clf_train:
self.fix_clf_train_set()
def fix_clf_train_set(self):
"""Convert clf train set to a fixed tensor dataset. Suitable for semi-supervised evaluation."""
loader = DataLoader(
self._clf_train_set,
batch_size=self.cfg.clf.optim.batch_size,
shuffle=True,
**self.loader_kwargs,
collate_fn=self.collator(self.cfg.n_views_test),
)
X, Xi, Y = [], [], []
for (x, xi), y in tqdm(loader):
X.append(x.cpu())
Xi.append(xi.cpu())
Y.append(y.cpu())
X = torch.cat(X, dim=0)
Xi = torch.cat(Xi, dim=0)
Y = torch.cat(Y, dim=0)
self._clf_train_set = torch.utils.data.TensorDataset(X, Xi, Y)
def train_dataloader(self):
return DataLoader(
self._train_set,
batch_size=self.cfg.batch_size,
shuffle=True,
**self.loader_kwargs,
drop_last=True,
collate_fn=self.collator(self.cfg.n_views_train),
)
def val_dataloader(self):
return DataLoader(
self._val_set,
batch_size=self.cfg.test_batch_size,
shuffle=False,
**self.loader_kwargs,
collate_fn=self.collator(self.cfg.n_views_train),
)
def test_dataloader(self):
return DataLoader(
self._test_set,
batch_size=self.cfg.test_batch_size,
shuffle=False,
**self.loader_kwargs,
collate_fn=self.collator(self.cfg.n_views_train),
)
class ClfDataModule(pl.LightningDataModule):
def __init__(self, data_module, cfg):
super().__init__()
self.cfg = cfg
self.data_module = data_module
self.loader_kwargs = data_module.loader_kwargs
self.collator = data_module.collator
@property
def _train_set(self):
return self.data_module._clf_train_set
@property
def _val_set(self):
return self.data_module._val_set
@property
def _test_set(self):
return self.data_module._test_set
def train_dataloader(self):
if self.cfg.fix_clf_train:
collator = rebracket_collate
else:
collator = self.collator(self.cfg.n_views_test)
return DataLoader(
self._train_set,
batch_size=self.cfg.clf.optim.batch_size,
shuffle=True,
**self.loader_kwargs,
collate_fn=collator,
)
def val_dataloader(self):
return DataLoader(
self._val_set,
batch_size=self.cfg.test_batch_size,
shuffle=False,
**self.loader_kwargs,
collate_fn=self.collator(self.cfg.n_views_test),
)
def test_dataloader(self):
return DataLoader(
self._test_set,
batch_size=self.cfg.test_batch_size,
shuffle=False,
**self.loader_kwargs,
collate_fn=self.collator(self.cfg.n_views_test),
)
class EvaluatorCallback(pl.callbacks.Callback):
def __init__(self, evaluator, data_module):
super().__init__()
self.evaluator = evaluator
self.data_module = data_module
def on_epoch_start(self, *args, **kwargs):
print()
def on_validation_epoch_end(self, trainer, pl_module):
if (pl_module.cfg.clf_freq > 0) and (
pl_module.current_epoch % pl_module.cfg.clf_freq == (pl_module.cfg.clf_freq - 1)
):
metrics = self.evaluator.fit(self.data_module.train_dataloader())
[pl_module.log(f"train/clf/{k}", v, on_step=False, on_epoch=True) for k, v in metrics.items()]
metrics = self.evaluator.evaluate(self.data_module.val_dataloader())
[pl_module.log(f"val/clf/{k}", v, on_step=False, on_epoch=True) for k, v in metrics.items()]
def on_test_epoch_end(self, trainer, pl_module):
self.evaluator.fit(self.data_module.train_dataloader())
metrics = self.evaluator.evaluate(self.data_module.test_dataloader())
[pl_module.log(f"test/clf/{k}", v, on_step=False, on_epoch=True) for k, v in metrics.items()]
@hydra.main(config_path="config", config_name="main")
def main(cfg):
run_path = os.getcwd()
dirname = HydraConfig.get().job.override_dirname
success_path, ckpt_path = os.path.join(run_path, "success.txt"), None
cfg.num_gpus = torch.cuda.device_count()
cfg.num_workers = 4 * cfg.num_gpus if cfg.num_workers == -1 else cfg.num_workers
gpus = 1 if torch.cuda.is_available() else None
device = "cuda" if torch.cuda.is_available() else "cpu"
# For reproducibility purposes
cfg.seed = cfg.run if cfg.seed == 0 else int(torch.randint(0, 2 ** 32 - 1, (1,)).item())
pl.seed_everything(cfg.seed)
# Init PyTorch Lightning model ⚡
model = instantiate(cfg.model, cfg)
criterion = instantiate(cfg.dataset.criterion)
evaluator = models.Evaluator(criterion, cfg.representation_dim, cfg.dataset, model.encoder, cfg.clf, device)
# Init PyTorch Lightning datamodule ⚡
data_module = DataModule(cfg)
clf_data_module = ClfDataModule(data_module, cfg)
# Init PyTorch Lightning loggers ⚡
Path(cfg.paths.logs).mkdir(parents=True, exist_ok=True) # Create logs dir
loggers = [instantiate(logger_conf) for logger_conf in cfg.logger.values()] if "logger" in cfg else []
# Init PyTorch Lightning callbacks ⚡
callbacks = [instantiate(cfg.checkpoint)]
if model.name in ["ssl", "cnp"]:
callbacks.append(EvaluatorCallback(evaluator, clf_data_module))
callbacks.append(DebugCallback(cfg, data_module, evaluator))
if not cfg.clf.only:
# Init PyTorch Lightning trainer ⚡
trainer = instantiate(
cfg.trainer, gpus=gpus, resume_from_checkpoint=ckpt_path, callbacks=callbacks, logger=loggers
)
log.info("Stage : Training")
if model.name == "sup":
data_module.setup("fit")
trainer.fit(model, clf_data_module)
else:
trainer.fit(model, data_module)
log.info("Stage : Testing")
trainer.test()
if not trainer.interrupted:
trainer.logger.save()
log.info("Success!")
open(success_path, "w+").close()
return model.hp_metric # value used for hyperparameter minimization with ax or nevergrad
else:
log.info("Load encoder and train classifier...")
from pytorch_lightning.utilities.cloud_io import load as pl_load
checkpoint = pl_load(ckpt_path, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint["state_dict"])
evaluator.encoder = evaluator.encoder.to(device)
clf_data_module.data_module.setup("fit", seed=model.cfg.seed)
if cfg.clf.scan:
val_results, test_results, results = evaluator.scan(
clf_data_module.train_dataloader(), clf_data_module.val_dataloader(), clf_data_module.test_dataloader()
)
print("Val", val_results, "Test", test_results, "Best val->test", results)
else:
metrics = {}
metrics["train"] = evaluator.fit(clf_data_module.train_dataloader())
metrics["val"] = evaluator.evaluate(clf_data_module.val_dataloader())
metrics["test"] = evaluator.evaluate(clf_data_module.test_dataloader())
for split, metrics in metrics.items():
for logger in loggers:
results = {f"{split}/clf/{k}": v for k, v in metrics.items()}
logger.log_metrics(results)
logger.save()
if __name__ == "__main__":
cudnn.benchmark = True
main()