-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompositeIndex.Rmd
219 lines (177 loc) · 6.91 KB
/
compositeIndex.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
title: "Composite Index Construction"
output:
html_document:
code_folding: hide
toc: true
toc_float: true
css: mystyle.css
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, collapse=TRUE)
library(MASS)
library(ggplot2)
library(Amelia)
library(leaps)
library(MASS)
library(DMwR)
library(rgl)
```
## Brief Explanation
An explanation of what indicators are and of the reason why they are widely used in companies and international organizations will be provided. The latest developments in methodology for the construction of indexes and indicators will be explained (economic activity, human development, poverty, finance, etc.). Special attention will be paid to their application in decision-making processes and, more precisely, to their usefulness in the context of forecasting. In particular, the methodology applied by international institutions in the construction of the most commonly known indexes will be explained, identifying and providing potential improvements. Students will solve a case study based on the real situation of an international institution using indicators.
## Introduction
A composite indicator measures multi-dimensional concepts (e.g. competitiveness, e-trade or environmental quality) which cannot be captured by a single indicator. Ideally, a composite indicator should be based on a theoretical framework / definition, which allows individual indicators / variables to be selected, combined and weighted in a manner which reflects the dimensions or structure of the phenomena being measure.
[EU VIDEO](https://www.youtube.com/watch?v=kz9g3d3xn6s)
## Some Examples
Some Composite Indicators:
- Global AgeWatch Index. [GAWI.pdf](compositeIndex/GAWI.pdf)
- HDI.
[Link Wiki](https://en.wikipedia.org/wiki/Human_Development_Index)
[Australia VIDEO](https://www.youtube.com/watch?v=w5wORaWcWPY)
- IQ
- Economic Risk Indicator.
[Paper.pdf](compositeIndex/Paper.pdf)
Another useful applications:
- Forecasting.
[Forecast.png](compositeIndex/Forecast.png)
- Stress Testing. Density Forecast.
##Data
[DataSet.pdf](compositeIndex/DataSet.pdf)
[Income.csv](compositeIndex/Income.csv)
[Index.csv](compositeIndex/Index.csv)
## Missing Value Imputation
```{r, warning=FALSE}
options(warn = -1)
#Import Data
path <- "compositeIndex"
Data <- read.csv2(paste(path, "Income.csv", sep = "/"))
Data2 <- read.csv2(paste(path, "Index.csv", sep = "/"))
Data <- apply(Data, 2, as.numeric)
Data2 <- apply(Data2, 2, as.numeric)
Data_estimate<-data.frame(Data)
x1<-Data_estimate[,1]
x2<-Data_estimate[,2]
x3<-Data_estimate[,3]
x4<-Data_estimate[,4]
#
dif<-matrix(0,length(x3),1)
dif2<-matrix(0,length(x3),1)
Data_estimate<-data.frame(Data_estimate)
leaps<-regsubsets(x3~x1+x2+x4,data=Data_estimate,nbest=5)
plot(leaps,scale="r2")
fit <- lm(x3~x1+x2+x4)
for (i in 1:length(x3)) {
value_estimate=fit$coefficients[1]+fit$coefficients[2]*x2[i]+fit$coefficients[3]*x3[i]+fit$coefficients[4]*x4[i]
dif[i]<-abs(x3[i]-value_estimate)/x3[i]
}
for (i in 1:length(x3)) {
Data_estim<-Data
Data_estim[i,3]<-NA
Data_estimate<-data.frame(Data_estim)
a.out <- amelia(Data_estimate, m = 1, boot.type = "none")
unlist(a.out$imputations[[1]])
em_estimation<-as.matrix(a.out$imputations[[1]])
dif2[i]<-abs(x3[i]-em_estimation[i,3])/x3[i]
}
Errors=cbind(dif,dif2)
ddf<-data.frame(Errors,GRP = c("Regression","EM"))
boxplot(Errors ~ GRP, main="Relative Welfare",data = ddf, lwd = 1, ylab = 'Errors')
stripchart(Errors~ GRP,vertical = TRUE, data = ddf,
method = "jitter", add = TRUE, pch = 20, col = c('blue','red'),cex=2)
check_value<-mean(dif[!is.na(dif)])
check_value2<-median(dif[!is.na(dif)])
check_value3<-sd(dif[!is.na(dif)])
CV<-c(check_value,check_value2,check_value3)
check_valueb<-mean(dif2[!is.na(dif2)])
check_valueb2<-median(dif2[!is.na(dif2)])
check_valueb3<-sd(dif2[!is.na(dif2)])
CVb<-matrix(c(check_valueb,check_valueb2,check_valueb3),1,3)
C<-matrix(cbind(CV,CVb),2,3)
barplot(C, main="Blue:Regression; Red: EM",
xlab="Mean, Median, StDesv", col=c("darkblue","red"),
beside=TRUE)
```
## Outlier Detection
```{r, warning=FALSE}
Data_estimate<-data.frame(Data)
x1<-Data_estimate[,1]
x2<-Data_estimate[,2]
x3<-Data_estimate[,3]
x4<-Data_estimate[,4]
#Univariate
outlier_values <- boxplot.stats(x3)$out # outlier values.
print(outlier_values)
boxplot(x2, boxwex=1)
#Multivariate
#Cook DIstance
mod <- lm(x2 ~ ., data=Data_estimate)
cooksd <- cooks.distance(mod)
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance") # plot cook's distance
abline(h = 4*mean(cooksd, na.rm=T), col="red") # add cutoff line
text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4*mean(cooksd, na.rm=T),names(cooksd),""), col="red")
#Mahalanobis Distance
Data2<-Data_estimate[,c(1:3)]
n.outliers <- 2 # Mark as outliers the 2 most extreme points
m.dist.order <- order(mahalanobis(Data2, colMeans(Data2), cov(Data2)), decreasing=TRUE)
is.outlier <- rep(FALSE, nrow(Data2))
is.outlier[m.dist.order[1:n.outliers]] <- TRUE
pch <- is.outlier * 16
col<- is.outlier + 1
plot3d(Data2[,1], Data2[,2], Data2[,3], type="s", col=col,xlab = "Pension",ylab="Poverty",zlab="Welfare")
```
## Normalization
```{r, warning=FALSE}
Data2<-Data
for (i in 1:4) {
Data2[,i]<-scale(Data2[,i],TRUE,TRUE)
}
Data3<-Data
for (i in 1:4) {
Data3[,i]<-(Data3[,i]-min(Data3[,i]))/(max(Data3[,i])-min(Data3[,i]))
}
Data4<-Data
for (i in 1:4) {
Data4[,i]<-SoftMax( Data4[,i], lambda = 2, avg = mean( Data4[,i], na.rm = T), std = sd( Data4[,i], na.rm = T))
}
RR<-cor(Data)
RR2<-cor(Data2)
RR3<-cor(Data3)
RR4<-cor(Data4)
dif2<-RR-RR2
dif3<-RR-RR3
dif4<-RR-RR4
check_value<-mean(dif2[!is.na(dif2)])
check_value2<-mean(dif3[!is.na(dif3)])
check_value3<-mean(dif4[!is.na(dif4)])
C<-matrix(c(check_value,check_value2,check_value3),1,3)
barplot(C, main="Changes in Correlation Matrix Structure",
xlab="Z-Score,Max-Min,Softmax",col="blue")
par(mfrow=c(2,2))
hist(Data[,2], col=rgb(0.1,0,1,0.5),xlab="Original",main="Poverty Rate")
hist(Data2[,2], col=rgb(0.1,0,1,0.5),xlab="Standardization",main="Poverty Rate")
hist(Data3[,2], col=rgb(0.1,0,1,0.5),xlab="Max.Min",main="Poverty Rate")
hist(Data3[,2], col=rgb(0.1,0,1,0.5),xlab="SoftMax",main="Poverty Rate")
Original<-matrix(0,99,1)
Zscore<-matrix(0,99,1)
Max.Min<-matrix(0,99,1)
softmax<-matrix(0,99,1)
z<-matrix(seq(0.01,0.99,0.01),99,1)
for ( i in c(1:99)) {
Original[i]<-quantile(Data[,2],z[i])
Zscore[i]<-quantile(Data2[,2],z[i])
Max.Min[i]<-quantile(Data3[,2],z[i])
softmax[i]<-quantile(Data4[,2],z[i])
}
dat<-data.frame(Original,Zscore)
dat2<-data.frame(Original,Max.Min)
dat3<-data.frame(Original,softmax)
ggplot(dat, aes(x=Original, y=Zscore)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm,level=0.9)
ggplot(dat2, aes(x=Original, y=Max.Min)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm,level=0.9)
ggplot(dat3, aes(x=Original, y=softmax)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm,level=0.9)
```