forked from cysmith/neural-style-tf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_style.py
839 lines (702 loc) · 29.4 KB
/
neural_style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
import tensorflow as tf
import numpy as np
import scipy.io
import argparse
import struct
import time
import cv2
import os
'''
parsing and configuration
'''
def parse_args():
desc = "TensorFlow implementation of 'A Neural Algorithm for Artisitc Style'"
parser = argparse.ArgumentParser(description=desc)
# options for single image
parser.add_argument('--verbose', action='store_true',
help='Boolean flag indicating if statements should be printed to the console.')
parser.add_argument('--img_name', type=str,
default='result',
help='Filename of the output image.')
parser.add_argument('--style_imgs', nargs='+', type=str,
help='Filenames of the style images (example: starry-night.jpg)',
required=True)
parser.add_argument('--style_imgs_weights', nargs='+', type=float,
default=[1.0],
help='Interpolation weights of each of the style images. (example: 0.5 0.5)')
parser.add_argument('--content_img', type=str,
help='Filename of the content image (example: lion.jpg)')
parser.add_argument('--style_imgs_dir', type=str,
default='./styles',
help='Directory path to the style images. (default: %(default)s)')
parser.add_argument('--content_img_dir', type=str,
default='./image_input',
help='Directory path to the content image. (default: %(default)s)')
parser.add_argument('--init_img_type', type=str,
default='content',
choices=['random', 'content', 'style'],
help='Image used to initialize the network. (default: %(default)s)')
parser.add_argument('--max_size', type=int,
default=512,
help='Maximum width or height of the input images. (default: %(default)s)')
parser.add_argument('--content_weight', type=float,
default=5e0,
help='Weight for the content loss function. (default: %(default)s)')
parser.add_argument('--style_weight', type=float,
default=1e3,
help='Weight for the style loss function. (default: %(default)s)')
parser.add_argument('--tv_weight', type=float,
default=1e-3,
help='Weight for the transvariational loss function. Set small (e.g. 1e-3). (default: %(default)s)')
parser.add_argument('--temporal_weight', type=float,
default=2e2,
help='Weight for the temporal loss function. (default: %(default)s)')
parser.add_argument('--content_loss_function', type=int,
default=1,
choices=[1, 2, 3],
help='Different constants for the content layer loss functions. (default: %(default)s)')
parser.add_argument('--content_layers', type=str,
default=['conv4_2'],
help='VGG19 layers used for the content image. (default: %(default)s)')
parser.add_argument('--style_layers', nargs='+', type=str,
default=['relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1'],
help='VGG19 layers used for the style image. (default: %(default)s)')
parser.add_argument('--content_layer_weights', type=float,
default=[1.0],
help='Contributions (weights) of each content layer to loss. (default: %(default)s)')
parser.add_argument('--style_layer_weights', nargs='+', type=float,
default=[0.2, 0.2, 0.2, 0.2, 0.2],
help='Contributions (weights) of each style layer to loss. (default: %(default)s)')
parser.add_argument('--original_colors', action='store_true',
help='Transfer the style but not the colors.')
parser.add_argument('--style_mask', action='store_true',
help='Transfer the style to masked regions.')
parser.add_argument('--style_mask_imgs', nargs='+', type=str,
default=None,
help='Filenames of the style mask images (example: face_mask.png) (default: %(default)s)')
parser.add_argument('--noise_ratio', type=float,
default=1.0,
help="Interpolation value between the content image and noise image if the network is initialized with 'random'.")
parser.add_argument('--seed', type=int,
default=0,
help='Seed for the random number generator. (default: %(default)s)')
parser.add_argument('--model_weights', type=str,
default='imagenet-vgg-verydeep-19.mat',
help='Weights and biases of the VGG-19 network.')
parser.add_argument('--pooling_type', type=str,
default='avg',
choices=['avg', 'max'],
help='Type of pooling in convolutional neural network. (default: %(default)s)')
parser.add_argument('--device', type=str,
default='/gpu:0',
choices=['/gpu:0', '/cpu:0'],
help='GPU or CPU mode. GPU mode requires NVIDIA CUDA. (default|recommended: %(default)s)')
parser.add_argument('--img_output_dir', type=str,
default='./image_output',
help='Relative or absolute directory path to output image and data.')
# optimizations
parser.add_argument('--optimizer', type=str,
default='lbfgs',
choices=['lbfgs', 'adam'],
help='Loss minimization optimizer. L-BFGS gives better results. Adam uses less memory. (default|recommended: %(default)s)')
parser.add_argument('--learning_rate', type=float,
default=1e1,
help='Learning rate parameter for the Adam optimizer. (default: %(default)s)')
parser.add_argument('--max_iterations', type=int,
default=1000,
help='Max number of iterations for the Adam or L-BFGS optimizer. (default: %(default)s)')
parser.add_argument('--print_iterations', type=int,
default=50,
help='Number of iterations between optimizer print statements. (default: %(default)s)')
# options for video frames
parser.add_argument('--video', action='store_true',
help='Boolean flag indicating if the user is generating a video.')
parser.add_argument('--start_frame', type=int,
default=1,
help='First frame number.')
parser.add_argument('--end_frame', type=int,
default=1,
help='Last frame number.')
parser.add_argument('--first_frame_type', type=str,
choices=['random', 'content', 'style'],
default='content',
help='Image used to initialize the network during the rendering of the first frame.')
parser.add_argument('--init_frame_type', type=str,
choices=['prev_warped', 'prev', 'random', 'content', 'style'],
default='prev_warped',
help='Image used to initialize the network during the every rendering after the first frame.')
parser.add_argument('--video_input_dir', type=str,
default='./video_input',
help='Relative or absolute directory path to input frames.')
parser.add_argument('--video_output_dir', type=str,
default='./video_output',
help='Relative or absolute directory path to output frames.')
parser.add_argument('--content_frame_frmt', type=str,
default='frame_{}.ppm',
help='Filename format of the input content frames.')
parser.add_argument('--backward_optical_flow_frmt', type=str,
default='backward_{}_{}.flo',
help='Filename format of the backward optical flow files.')
parser.add_argument('--forward_optical_flow_frmt', type=str,
default='forward_{}_{}.flo',
help='Filename format of the forward optical flow files')
parser.add_argument('--content_weights_frmt', type=str,
default='reliable_{}_{}.txt',
help='Filename format of the optical flow consistency files.')
parser.add_argument('--prev_frame_indices', nargs='+', type=int,
default=[1],
help='Previous frames to consider for longterm temporal consistency.')
parser.add_argument('--first_frame_iterations', type=int,
default=2000,
help='Maximum number of optimizer iterations of the first frame. (default: %(default)s)')
parser.add_argument('--frame_iterations', type=int,
default=800,
help='Maximum number of optimizer iterations for each frame after the first frame. (default: %(default)s)')
args = parser.parse_args()
# normalize weights
args.style_layer_weights = normalize(args.style_layer_weights)
args.content_layer_weights = normalize(args.content_layer_weights)
args.style_imgs_weights = normalize(args.style_imgs_weights)
# create directories for output
if args.video:
maybe_make_directory(args.video_output_dir)
else:
maybe_make_directory(args.img_output_dir)
return args
'''
pre-trained vgg19 convolutional neural network
remark: layers are manually initialized for clarity.
'''
vgg19_mean = np.array([123.68, 116.779, 103.939]).reshape((1,1,1,3))
def build_vgg19(input_img):
if args.verbose: print('\nBUILDING VGG-19 NETWORK')
net = {}
_, h, w, d = input_img.shape
if args.verbose: print('loading model weights...')
vgg_rawnet = scipy.io.loadmat(args.model_weights)
vgg_layers = vgg_rawnet['layers'][0]
if args.verbose: print('constructing layers...')
net['input'] = tf.Variable(np.zeros((1, h, w, d), dtype=np.float32))
if args.verbose: print('LAYER GROUP 1')
net['conv1_1'] = conv_layer('conv1_1', net['input'], W=get_weights(vgg_layers, 0))
net['relu1_1'] = relu_layer('relu1_1', net['conv1_1'], b=get_bias(vgg_layers, 0))
net['conv1_2'] = conv_layer('conv1_2', net['relu1_1'], W=get_weights(vgg_layers, 2))
net['relu1_2'] = relu_layer('relu1_2', net['conv1_2'], b=get_bias(vgg_layers, 2))
net['pool1'] = pool_layer('pool1', net['relu1_2'])
if args.verbose: print('LAYER GROUP 2')
net['conv2_1'] = conv_layer('conv2_1', net['pool1'], W=get_weights(vgg_layers, 5))
net['relu2_1'] = relu_layer('relu2_1', net['conv2_1'], b=get_bias(vgg_layers, 5))
net['conv2_2'] = conv_layer('conv2_2', net['relu2_1'], W=get_weights(vgg_layers, 7))
net['relu2_2'] = relu_layer('relu2_2', net['conv2_2'], b=get_bias(vgg_layers, 7))
net['pool2'] = pool_layer('pool2', net['relu2_2'])
if args.verbose: print('LAYER GROUP 3')
net['conv3_1'] = conv_layer('conv3_1', net['pool2'], W=get_weights(vgg_layers, 10))
net['relu3_1'] = relu_layer('relu3_1', net['conv3_1'], b=get_bias(vgg_layers, 10))
net['conv3_2'] = conv_layer('conv3_2', net['relu3_1'], W=get_weights(vgg_layers, 12))
net['relu3_2'] = relu_layer('relu3_2', net['conv3_2'], b=get_bias(vgg_layers, 12))
net['conv3_3'] = conv_layer('conv3_3', net['relu3_2'], W=get_weights(vgg_layers, 14))
net['relu3_3'] = relu_layer('relu3_3', net['conv3_3'], b=get_bias(vgg_layers, 14))
net['conv3_4'] = conv_layer('conv3_4', net['relu3_3'], W=get_weights(vgg_layers, 16))
net['relu3_4'] = relu_layer('relu3_4', net['conv3_4'], b=get_bias(vgg_layers, 16))
net['pool3'] = pool_layer('pool3', net['relu3_4'])
if args.verbose: print('LAYER GROUP 4')
net['conv4_1'] = conv_layer('conv4_1', net['pool3'], W=get_weights(vgg_layers, 19))
net['relu4_1'] = relu_layer('relu4_1', net['conv4_1'], b=get_bias(vgg_layers, 19))
net['conv4_2'] = conv_layer('conv4_2', net['relu4_1'], W=get_weights(vgg_layers, 21))
net['relu4_2'] = relu_layer('relu4_2', net['conv4_2'], b=get_bias(vgg_layers, 21))
net['conv4_3'] = conv_layer('conv4_3', net['relu4_2'], W=get_weights(vgg_layers, 23))
net['relu4_3'] = relu_layer('relu4_3', net['conv4_3'], b=get_bias(vgg_layers, 23))
net['conv4_4'] = conv_layer('conv4_4', net['relu4_3'], W=get_weights(vgg_layers, 25))
net['relu4_4'] = relu_layer('relu4_4', net['conv4_4'], b=get_bias(vgg_layers, 25))
net['pool4'] = pool_layer('pool4', net['relu4_4'])
if args.verbose: print('LAYER GROUP 5')
net['conv5_1'] = conv_layer('conv5_1', net['pool4'], W=get_weights(vgg_layers, 28))
net['relu5_1'] = relu_layer('relu5_1', net['conv5_1'], b=get_bias(vgg_layers, 28))
net['conv5_2'] = conv_layer('conv5_2', net['relu5_1'], W=get_weights(vgg_layers, 30))
net['relu5_2'] = relu_layer('relu5_2', net['conv5_2'], b=get_bias(vgg_layers, 30))
net['conv5_3'] = conv_layer('conv5_3', net['relu5_2'], W=get_weights(vgg_layers, 32))
net['relu5_3'] = relu_layer('relu5_3', net['conv5_3'], b=get_bias(vgg_layers, 32))
net['conv5_4'] = conv_layer('conv5_4', net['relu5_3'], W=get_weights(vgg_layers, 34))
net['relu5_4'] = relu_layer('relu5_4', net['conv5_4'], b=get_bias(vgg_layers, 34))
net['pool5'] = pool_layer('pool5', net['relu5_4'])
return net
def conv_layer(layer_name, layer_input, W):
conv = tf.nn.conv2d(layer_input, W, strides=[1, 1, 1, 1], padding='SAME')
if args.verbose: print('--{} | shape={} | weights_shape={}'.format(layer_name,
conv.get_shape(), W.get_shape()))
return conv
def relu_layer(layer_name, layer_input, b):
relu = tf.nn.relu(layer_input + b)
if args.verbose:
print('--{} | shape={} | bias_shape={}'.format(layer_name, relu.get_shape(),
b.get_shape()))
return relu
def pool_layer(layer_name, layer_input):
if args.pooling_type == 'avg':
pool = tf.nn.avg_pool(layer_input, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
elif args.pooling_type == 'max':
pool = tf.nn.max_pool(layer_input, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
if args.verbose:
print('--{} | shape={}'.format(layer_name, pool.get_shape()))
return pool
def get_weights(vgg_layers, i):
weights = vgg_layers[i][0][0][2][0][0]
W = tf.constant(weights)
return W
def get_bias(vgg_layers, i):
bias = vgg_layers[i][0][0][2][0][1]
b = tf.constant(np.reshape(bias, (bias.size)))
return b
'''
'a neural algorithm for artistic style' loss functions
'''
def content_layer_loss(p, x):
_, h, w, d = p.get_shape()
M = h.value * w.value
N = d.value
if args.content_loss_function == 1:
K = 1. / (2. * N**0.5 * M**0.5)
elif args.content_loss_function == 2:
K = 1. / (N * M)
elif args.content_loss_function == 3:
K = 1. / 2.
loss = K * tf.reduce_sum(tf.pow((x - p), 2))
return loss
def style_layer_loss(a, x):
_, h, w, d = a.get_shape()
M = h.value * w.value
N = d.value
A = gram_matrix(a, M, N)
G = gram_matrix(x, M, N)
loss = (1./(4 * N**2 * M**2)) * tf.reduce_sum(tf.pow((G - A), 2))
return loss
def gram_matrix(x, area, depth):
F = tf.reshape(x[0], (area, depth))
G = tf.matmul(tf.transpose(F), F)
return G
def mask_style_layer(a, x, mask_img):
_, h, w, d = a.get_shape()
mask = get_mask_image(mask_img, w.value, h.value)
mask = tf.convert_to_tensor(mask)
tensors = []
for _ in range(d.value):
tensors.append(mask)
mask = tf.pack(tensors, axis=2)
mask = tf.pack(mask, axis=0)
mask = tf.expand_dims(mask, 0)
a = tf.mul(a, mask)
x = tf.mul(x, mask)
return a, x
def sum_masked_style_losses(sess, net, style_imgs):
total_style_loss = 0.
weights = args.style_imgs_weights
masks = args.style_mask_imgs
for img, img_weight, img_mask in zip(style_imgs, weights, masks):
sess.run(net['input'].assign(img))
style_loss = 0.
for layer, weight in zip(args.style_layers, args.style_layer_weights):
a = sess.run(net[layer])
x = net[layer]
a = tf.convert_to_tensor(a)
a, x = mask_style_layer(a, x, img_mask)
style_loss += style_layer_loss(a, x) * weight
style_loss /= float(len(args.style_layers))
total_style_loss += (style_loss * img_weight)
total_style_loss /= float(len(style_imgs))
return total_style_loss
def sum_style_losses(sess, net, style_imgs):
total_style_loss = 0.
weights = args.style_imgs_weights
for img, img_weight in zip(style_imgs, weights):
sess.run(net['input'].assign(img))
style_loss = 0.
for layer, weight in zip(args.style_layers, args.style_layer_weights):
a = sess.run(net[layer])
x = net[layer]
a = tf.convert_to_tensor(a)
style_loss += style_layer_loss(a, x) * weight
style_loss /= float(len(args.style_layers))
total_style_loss += (style_loss * img_weight)
total_style_loss /= float(len(style_imgs))
return total_style_loss
def sum_content_losses(sess, net, content_img):
sess.run(net['input'].assign(content_img))
content_loss = 0.
for layer, weight in zip(args.content_layers, args.content_layer_weights):
p = sess.run(net[layer])
x = net[layer]
p = tf.convert_to_tensor(p)
content_loss += content_layer_loss(p, x) * weight
content_loss /= float(len(args.content_layers))
return content_loss
'''
'artistic style transfer for videos' loss functions
'''
def temporal_loss(x, w, c):
c = c[np.newaxis,:,:,:]
D = float(x.size)
loss = (1. / D) * tf.reduce_sum(c * tf.nn.l2_loss(x - w))
loss = tf.cast(loss, tf.float32)
return loss
def get_longterm_weights(i, j):
c_sum = 0.
for k in range(args.prev_frame_indices):
if i - k > i - j:
c_sum += get_content_weights(i, i - k)
c = get_content_weights(i, i - j)
c_max = tf.maximum(c - c_sum, 0.)
return c_max
def sum_longterm_temporal_losses(sess, net, frame, input_img):
x = sess.run(net['input'].assign(input_img))
loss = 0.
for j in range(args.prev_frame_indices):
prev_frame = frame - j
w = get_prev_warped_frame(frame)
c = get_longterm_weights(frame, prev_frame)
loss += temporal_loss(x, w, c)
return loss
def sum_shortterm_temporal_losses(sess, net, frame, input_img):
x = sess.run(net['input'].assign(input_img))
prev_frame = frame - 1
w = get_prev_warped_frame(frame)
c = get_content_weights(frame, prev_frame)
loss = temporal_loss(x, w, c)
return loss
'''
denoising loss function
remark: not sure this does anything significant.
'''
def sum_total_variation_losses(sess, net, input_img):
b, h, w, d = input_img.shape
x = sess.run(net['input'].assign(input_img))
tv_y_size = b * (h-1) * w * d
tv_x_size = b * h * (w-1) * d
loss_y = tf.nn.l2_loss(x[:,1:,:,:] - x[:,:h-1,:,:])
loss_y /= tv_y_size
loss_x = tf.nn.l2_loss(x[:,:,1:,:] - x[:,:,:w-1,:])
loss_x /= tv_x_size
loss = 2 * (loss_y + loss_x)
loss = tf.cast(loss, tf.float32)
return loss
'''
utilities and i/o
'''
def read_image(path):
# bgr image
img = cv2.imread(path, cv2.IMREAD_COLOR).astype('float')
img = preprocess(img, vgg19_mean)
return img
def write_image(path, img):
img = postprocess(img, vgg19_mean)
cv2.imwrite(path, img)
def preprocess(img, mean):
# bgr to rgb
img = img[...,::-1]
# shape (h, w, d) to (1, h, w, d)
img = img[np.newaxis,:,:,:]
img -= mean
return img
def postprocess(img, mean):
img += mean
# shape (1, h, w, d) to (h, w, d)
img = img[0]
img = np.clip(img, 0, 255).astype('uint8')
# rgb to bgr
img = img[...,::-1]
return img
def read_flow_file(path):
with open(path, 'rb') as f:
# 4 bytes header
header = struct.unpack('4s', f.read(4))[0]
# 4 bytes width, height
w = struct.unpack('i', f.read(4))[0]
h = struct.unpack('i', f.read(4))[0]
flow = np.ndarray((2, h, w), dtype=np.float32)
for y in range(h):
for x in range(w):
flow[1,y,x] = struct.unpack('f', f.read(4))[0]
flow[0,y,x] = struct.unpack('f', f.read(4))[0]
return flow
def read_weights_file(path):
lines = open(path).read().splitlines()
header = map(int, lines[0].split(' '))
w = header[0]
h = header[1]
vals = np.zeros((h, w), dtype=np.float32)
for i in range(1, len(lines)):
line = lines[i].rstrip().split(' ')
vals[i-1] = np.array(map(np.float32, line))
vals[i-1] = map(lambda x: 0. if x < 255. else 1., vals[i-1])
# expand to 3 channels
weights = np.dstack([vals.astype(np.float32)] * 3)
return weights
def normalize(weights):
return [float(i)/sum(weights) for i in weights]
def maybe_make_directory(dir_path):
if not os.path.exists(dir_path):
os.makedirs(dir_path)
'''
rendering -- where the magic happens
'''
def stylize(content_img, style_imgs, init_img, frame=None):
with tf.device(args.device), tf.Session() as sess:
# setup network
net = build_vgg19(content_img)
# style loss
if args.style_mask:
L_style = sum_masked_style_losses(sess, net, style_imgs)
else:
L_style = sum_style_losses(sess, net, style_imgs)
# content loss
L_content = sum_content_losses(sess, net, content_img)
# denoising loss
L_tv = sum_total_variation_losses(sess, net, init_img)
# loss weights
alpha = args.content_weight
beta = args.style_weight
theta = args.tv_weight
# total loss
L_total = alpha * L_content
L_total += beta * L_style
L_total += theta * L_tv
if args.video and frame > 1:
gamma = args.temporal_weight
L_temporal = sum_shortterm_temporal_losses(sess, net, frame, init_img)
L_total += gamma * L_temporal
# optimization algorithm
optimizer = get_optimizer(L_total)
if args.optimizer == 'adam':
minimize_with_adam(sess, net, optimizer, init_img, L_total)
elif args.optimizer == 'lbfgs':
minimize_with_lbfgs(sess, net, optimizer, init_img)
output_img = sess.run(net['input'])
if args.original_colors:
output_img = convert_to_original_colors(np.copy(content_img), output_img)
if args.video:
write_video_output(frame, output_img)
else:
write_image_output(output_img, content_img, style_imgs, init_img)
def minimize_with_lbfgs(sess, net, optimizer, init_img):
if args.verbose: print('\nMINIMIZING LOSS USING: L-BFGS OPTIMIZER')
init_op = tf.initialize_all_variables()
sess.run(init_op)
sess.run(net['input'].assign(init_img))
optimizer.minimize(sess)
def minimize_with_adam(sess, net, optimizer, init_img, loss):
if args.verbose: print('\nMINIMIZING LOSS USING: ADAM OPTIMIZER')
train_op = optimizer.minimize(loss)
init_op = tf.initialize_all_variables()
sess.run(init_op)
sess.run(net['input'].assign(init_img))
iterations = 0
while (iterations < args.max_iterations):
sess.run(train_op)
if iterations % args.print_iterations == 0 and args.verbose:
curr_loss = loss.eval()
print("At iterate {}\tf= {:.5E}".format(iterations, curr_loss))
iterations += 1
def get_optimizer(loss):
print_iterations = args.print_iterations if args.verbose else 0
if args.optimizer == 'lbfgs':
optimizer = tf.contrib.opt.ScipyOptimizerInterface(
loss,
method='L-BFGS-B',
options={'maxiter': args.max_iterations,
'disp': print_iterations})
elif args.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(args.learning_rate)
return optimizer
def write_video_output(frame, output_img):
output_frame_fn = args.content_frame_frmt.format(str(frame).zfill(4))
output_frame_path = os.path.join(args.video_output_dir, output_frame_fn)
write_image(output_frame_path, output_img)
def write_image_output(output_img, content_img, style_imgs, init_img):
out_dir = os.path.join(args.img_output_dir, args.img_name)
maybe_make_directory(out_dir)
img_path = os.path.join(out_dir, args.img_name+'.png')
content_path = os.path.join(out_dir, 'content.png')
init_path = os.path.join(out_dir, 'init.png')
write_image(img_path, output_img)
write_image(content_path, content_img)
write_image(init_path, init_img)
index = 0
for style_img in style_imgs:
path = os.path.join(out_dir, 'style_'+str(index)+'.png')
write_image(path, style_img)
index += 1
# save the configuration settings
out_file = os.path.join(out_dir, 'meta_data.txt')
f = open(out_file, 'w')
f.write('image_name: {}\n'.format(args.img_name))
f.write('content: {}\n'.format(args.content_img))
index = 0
for style_img, weight in zip(args.style_imgs, args.style_imgs_weights):
f.write('styles['+str(index)+']: {} * {}\n'.format(weight, style_img))
index += 1
index = 0
if args.style_mask_imgs is not None:
for mask in args.style_mask_imgs:
f.write('style_masks['+str(index)+']: {}\n'.format(mask))
index += 1
f.write('init_type: {}\n'.format(args.init_img_type))
f.write('content_weight: {}\n'.format(args.content_weight))
f.write('style_weight: {}\n'.format(args.style_weight))
f.write('tv_weight: {}\n'.format(args.tv_weight))
f.write('content_layers: {}\n'.format(args.content_layers))
f.write('style_layers: {}\n'.format(args.style_layers))
f.write('optimizer_type: {}\n'.format(args.optimizer))
f.write('max_iterations: {}\n'.format(args.max_iterations))
f.write('max_image_size: {}\n'.format(args.max_size))
f.close()
'''
image loading and processing
'''
def get_init_image(init_type, content_img, style_img, frame=None):
if init_type == 'content':
return content_img
elif init_type == 'style':
return style_img
elif init_type == 'random':
init_img = get_noise_image(args.noise_ratio, content_img)
return init_img
# only for video frames
elif init_type == 'prev':
init_img = get_prev_frame(frame)
return init_img
elif init_type == 'prev_warped':
init_img = get_prev_warped_frame(frame)
return init_img
def get_content_frame(frame):
content_fn = args.content_frame_frmt.format(str(frame).zfill(4))
content_path = os.path.join(args.video_input_dir, content_fn)
img = read_image(content_path)
return img
def get_content_image(content_img):
path = os.path.join(args.content_img_dir, content_img)
# bgr image
img = cv2.imread(path, cv2.IMREAD_COLOR).astype('float')
h, w, d = img.shape
mx = args.max_size
# resize if > max size
if h > w and h > mx:
w = (float(mx) / float(h)) * w
img = cv2.resize(img, dsize=(int(w), mx), interpolation=cv2.INTER_CUBIC)
if w > mx:
h = (float(mx) / float(w)) * h
img = cv2.resize(img, dsize=(mx, int(h)), interpolation=cv2.INTER_CUBIC)
img = preprocess(img, vgg19_mean)
return img
def get_style_images(content_img):
_, ch, cw, cd = content_img.shape
style_imgs = []
for style_fn in args.style_imgs:
path = os.path.join(args.style_imgs_dir, style_fn)
# bgr image
img = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32)
img = cv2.resize(img, dsize=(cw, ch))
img = preprocess(img, vgg19_mean)
style_imgs.append(img)
return style_imgs
def get_noise_image(noise_ratio, content_img):
np.random.seed(args.seed)
noise_img = np.random.uniform(-20., 20., content_img.shape).astype(np.float32)
img = noise_ratio * noise_img + (1.-noise_ratio) * content_img
return img
def get_mask_image(mask_img, width, height):
path = os.path.join(args.content_img_dir, mask_img)
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, dsize=(width, height)).astype(np.float32)
mx = np.amax(img)
img /= mx
return img
def get_prev_frame(frame):
# previously stylized frame
prev_frame = frame - 1
prev_frame_fn = args.content_frame_frmt.format(str(prev_frame).zfill(4))
prev_frame_path = os.path.join(args.video_output_dir, prev_frame_fn)
img = cv2.imread(prev_frame_path, cv2.IMREAD_COLOR)
return img
def get_prev_warped_frame(frame):
prev_img = get_prev_frame(frame)
prev_frame = frame - 1
# backwards flow: current frame -> previous frame
flow_fn = args.backward_optical_flow_frmt.format(str(frame), str(prev_frame))
flow_path = os.path.join(args.video_input_dir, flow_fn)
flow = read_flow_file(flow_path)
warped_img = warp_image(prev_img, flow).astype('float32')
img = preprocess(warped_img, vgg19_mean)
return img
def get_content_weights(frame, prev_frame):
forward_fn = args.content_weights_frmt.format(str(prev_frame), str(frame))
backward_fn = args.content_weights_frmt.format(str(frame), str(prev_frame))
forward_path = os.path.join(args.video_input_dir, forward_fn)
backward_path = os.path.join(args.video_input_dir, backward_fn)
forward_weights = read_weights_file(forward_path)
backward_weights = read_weights_file(backward_path)
forward_weights = np.clip(forward_weights, 0, 255).astype('uint8')
backward_weights = np.clip(backward_weights, 0, 255).astype('uint8')
return forward_weights #, backward_weights
def warp_image(src, flow):
_, h, w = flow.shape
flow_map = np.zeros(flow.shape, dtype=np.float32)
for y in range(h):
flow_map[1,y,:] = float(y) + flow[1,y,:]
for x in range(w):
flow_map[0,:,x] = float(x) + flow[0,:,x]
# remap pixels to optical flow
dst = cv2.remap(
src, flow_map[0], flow_map[1],
interpolation=cv2.INTER_CUBIC, borderMode=cv2.BORDER_TRANSPARENT)
return dst
def convert_to_original_colors(content_img, stylized_img):
content_img = postprocess(content_img, vgg19_mean)
stylized_img = postprocess(stylized_img, vgg19_mean)
content_yuv = cv2.cvtColor(content_img, cv2.COLOR_BGR2YUV)
stylized_yuv = cv2.cvtColor(stylized_img, cv2.COLOR_BGR2YUV)
y, _, _ = cv2.split(stylized_yuv)
_, u, v = cv2.split(content_yuv)
merged = cv2.merge((y, u, v))
dst = cv2.cvtColor(merged, cv2.COLOR_YUV2BGR).astype('float')
dst = preprocess(dst, vgg19_mean)
return dst
def render_single_image():
content_img = get_content_image(args.content_img)
style_imgs = get_style_images(content_img)
with tf.Graph().as_default():
print('\n---- RENDERING SINGLE IMAGE ----\n')
init_img = get_init_image(args.init_img_type, content_img, style_imgs)
tick = time.time()
stylize(content_img, style_imgs, init_img)
tock = time.time()
print('Single image elapsed time: {}'.format(tock - tick))
def render_video():
for frame in range(args.start_frame, args.end_frame+1):
with tf.Graph().as_default():
print('\n---- RENDERING VIDEO FRAME: {}/{} ----\n'.format(frame, args.end_frame))
if frame == 1:
content_frame = get_content_frame(frame)
style_imgs = get_style_images(content_frame)
init_img = get_init_image(args.first_frame_type, content_frame, style_imgs, frame)
args.max_iterations = args.first_frame_iterations
tick = time.time()
stylize(content_frame, style_imgs, init_img, frame)
tock = time.time()
print('Frame {} elapsed time: {}'.format(frame, tock - tick))
else:
content_frame = get_content_frame(frame)
style_imgs = get_style_images(content_frame)
init_img = get_init_image(args.init_frame_type, content_frame, style_imgs, frame)
args.max_iterations = args.frame_iterations
tick = time.time()
stylize(content_frame, style_imgs, init_img, frame)
tock = time.time()
print('Frame {} elapsed time: {}'.format(frame, tock - tick))
def main():
global args
args = parse_args()
if args.video: render_video()
else: render_single_image()
if __name__ == '__main__':
main()