-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfit_model.py
126 lines (107 loc) · 4.53 KB
/
fit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import json
import os
import time
import argparse
import matplotlib
import numpy as np
from sklearn.model_selection import KFold
from ConfigSpace.read_and_write import json as config_space_json_r_w
import utils
from ensemble import Ensemble
matplotlib.use("Agg")
def train_surrogate_model():
parser = argparse.ArgumentParser("Surrogate Train")
parser.add_argument("--dataset_root", type=str, help="Path to dataset root dir")
parser.add_argument("--model", type=str, help="Surrogate model")
parser.add_argument("--model_config_path", type=str, default=None, help="Model config path")
parser.add_argument("--data_config_path", type=str, default=None, help="Data config path")
parser.add_argument("--device", default=None, type=str, help="If using performance model, which device?")
parser.add_argument("--metric", default=None, type=str, help="If using performance model for a device, which metric to fit?")
parser.add_argument(
"--log_dir",
default="experiments/surrogate_models",
type=str,
help="Log directory",
)
parser.add_argument("--seed", type=int, default=6, help="Seed")
parser.add_argument("--data_splits_root", default=None, type=str, help="path to dir containing data splits")
parser.add_argument(
"--ensemble", action="store_true", default=False, help="Ensemble"
)
args = parser.parse_args()
# Create log directory
if args.device is not None:
assert args.metric is not None, f"Please specify metric for {args.device}"
args.device = args.device.lower()
args.metric = args.metric.lower()
args.log_dir = os.path.join(args.log_dir, args.model, args.device, args.metric)
else:
args.log_dir = os.path.join(args.log_dir, args.model)
# num_samples = 5000
# fold = f"model_{num_samples}samples"
log_dir = os.path.join(
args.log_dir, "{}-{}".format(time.strftime("%Y%m%d-%H%M%S"), args.seed)
# args.log_dir, "{}-{}".format(fold, args.seed)
)
os.makedirs(log_dir)
data_config = json.load(open(args.data_config_path, 'r'))
model_configspace = config_space_json_r_w.read(open(args.model_config_path, 'r').read())
#model_configspace = utils.get_model_configspace(args.model)
model_config = model_configspace.get_default_configuration().get_dictionary()
model_config['model'] = args.model
model_config['device'] = args.device
model_config['metric'] = args.metric
'''
m_config = dict()
for hyp in model_config["hyperparameters"]:
m_config[hyp["name"]] = (
hyp["default"] if "default" in hyp.keys() else hyp["value"]
)
'''
#print(m_config)
# Instantiate surrogate model
if args.ensemble:
surrogate_model = Ensemble(
member_model_name=args.model,
data_root=args.dataset_root,
log_dir=log_dir,
starting_seed=args.seed,
model_config=model_config,
data_config=data_config,
ensemble_size=5,
device=args.device,
metric=args.metric
)
else:
surrogate_model = utils.model_dict[args.model](
data_root=args.dataset_root,
log_dir=log_dir,
seed=args.seed,
model_config=model_config,
data_config=data_config,
device=args.device,
metric=args.metric
)
if args.data_splits_root is not None:
train_paths = json.load(open(os.path.join(args.data_splits_root, "train_paths.json"), "r"))
val_paths = json.load(open(os.path.join(args.data_splits_root, "val_paths.json"), "r"))
test_paths = json.load(open(os.path.join(args.data_splits_root, "test_paths.json"), "r"))
print('=()=()='*10)
print(len(train_paths), len(val_paths))
cross_val_paths = train_paths + val_paths
k_fold = KFold(n_splits=9, shuffle=True, random_state=args.seed)
splits = list(k_fold.split(cross_val_paths))
train_inds, val_inds = splits[args.seed % len(splits)]
print('=)(=)(='*10)
print(len(train_inds), len(val_inds))
surrogate_model.train_paths = list(np.array(cross_val_paths)[train_inds])
surrogate_model.val_paths = list(np.array(cross_val_paths)[val_inds])
surrogate_model.test_paths = test_paths
# Train and validate the model on the available data
surrogate_model.train()
if len(surrogate_model.test_paths) > 0:
surrogate_model.test()
# Save the model
surrogate_model.save()
if __name__ == "__main__":
train_surrogate_model()