From cd40b9b69f7785f75b2114f96714da694dc4b7c6 Mon Sep 17 00:00:00 2001 From: AndrewDavidRatnam <130483608+AndrewDavidRatnam@users.noreply.github.com> Date: Wed, 8 May 2024 17:44:57 +0530 Subject: [PATCH 1/5] Update 15_processing_sequences_using_rnns_and_cnns.ipynb fixed cell 16 df.resample bug --- 15_processing_sequences_using_rnns_and_cnns.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/15_processing_sequences_using_rnns_and_cnns.ipynb b/15_processing_sequences_using_rnns_and_cnns.ipynb index 91861c27..68b5a779 100644 --- a/15_processing_sequences_using_rnns_and_cnns.ipynb +++ b/15_processing_sequences_using_rnns_and_cnns.ipynb @@ -491,7 +491,7 @@ ], "source": [ "period = slice(\"2001\", \"2019\")\n", - "df_monthly = df.resample('M').mean() # compute the mean for each month\n", + "df_monthly = df.iloc[:,[1,2]].resample('M').mean() # compute the mean for each month\n", "rolling_average_12_months = df_monthly[period].rolling(window=12).mean()\n", "\n", "fig, ax = plt.subplots(figsize=(8, 4))\n", From 9fa4f5c63958facd27a2e0fe09d5603a2ffe9c09 Mon Sep 17 00:00:00 2001 From: AndrewDavidRatnam <130483608+AndrewDavidRatnam@users.noreply.github.com> Date: Fri, 10 May 2024 13:59:28 +0530 Subject: [PATCH 2/5] Fixed tensor->numpy->tensor error in the next cell when creating one hot encoding of types next_day --- ...essing_sequences_using_rnns_and_cnns.ipynb | 10063 ++++++++-------- 1 file changed, 5239 insertions(+), 4824 deletions(-) diff --git a/15_processing_sequences_using_rnns_and_cnns.ipynb b/15_processing_sequences_using_rnns_and_cnns.ipynb index 68b5a779..4a71fc2c 100644 --- a/15_processing_sequences_using_rnns_and_cnns.ipynb +++ b/15_processing_sequences_using_rnns_and_cnns.ipynb @@ -1,4829 +1,5244 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Chapter 15 – Processing Sequences Using RNNs and CNNs**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_This notebook contains all the sample code and solutions to the exercises in chapter 15._" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - " \n", - " \n", - "
\n", - " \"Open\n", - " \n", - " \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dFXIv9qNpKzt", - "tags": [] - }, - "source": [ - "# Setup" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "8IPbJEmZpKzu" - }, - "source": [ - "This project requires Python 3.7 or above:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "TFSU3FCOpKzu" - }, - "outputs": [], - "source": [ - "import sys\n", - "\n", - "assert sys.version_info >= (3, 7)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GJtVEqxfpKzw" - }, - "source": [ - "And TensorFlow ≥ 2.8:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "0Piq5se2pKzx" - }, - "outputs": [], - "source": [ - "from packaging import version\n", - "import tensorflow as tf\n", - "\n", - "assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DDaDoLQTpKzx" - }, - "source": [ - "As we did in earlier chapters, let's define the default font sizes to make the figures prettier:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "8d4TH3NbpKzx" - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "plt.rc('font', size=14)\n", - "plt.rc('axes', labelsize=14, titlesize=14)\n", - "plt.rc('legend', fontsize=14)\n", - "plt.rc('xtick', labelsize=10)\n", - "plt.rc('ytick', labelsize=10)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "RcoUIRsvpKzy" - }, - "source": [ - "And let's create the `images/rnn` folder (if it doesn't already exist), and define the `save_fig()` function which is used through this notebook to save the figures in high-res for the book:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "id": "PQFH5Y9PpKzy" - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "\n", - "IMAGES_PATH = Path() / \"images\" / \"rnn\"\n", - "IMAGES_PATH.mkdir(parents=True, exist_ok=True)\n", - "\n", - "def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n", - " path = IMAGES_PATH / f\"{fig_id}.{fig_extension}\"\n", - " if tight_layout:\n", - " plt.tight_layout()\n", - " plt.savefig(path, format=fig_extension, dpi=resolution)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YTsawKlapKzy" - }, - "source": [ - "This chapter can be very slow without a GPU, so let's make sure there's one, or else issue a warning:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "Ekxzo6pOpKzy" - }, - "outputs": [], - "source": [ - "if not tf.config.list_physical_devices('GPU'):\n", - " print(\"No GPU was detected. Neural nets can be very slow without a GPU.\")\n", - " if \"google.colab\" in sys.modules:\n", - " print(\"Go to Runtime > Change runtime and select a GPU hardware \"\n", - " \"accelerator.\")\n", - " if \"kaggle_secrets\" in sys.modules:\n", - " print(\"Go to Settings > Accelerator and select GPU.\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Basic RNNs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's download the ridership data from the ageron/data project. It originally comes from Chicago's Transit Authority, and was downloaded from the [Chicago's Data Portal](https://homl.info/ridership)." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading data from https://github.com/ageron/data/raw/main/ridership.tgz\n", - "114688/108512 [===============================] - 0s 0us/step\n", - "122880/108512 [=================================] - 0s 0us/step\n" - ] - }, - { - "data": { - "text/plain": [ - "'./datasets/ridership.tgz'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tf.keras.utils.get_file(\n", - " \"ridership.tgz\",\n", - " \"https://github.com/ageron/data/raw/main/ridership.tgz\",\n", - " cache_dir=\".\",\n", - " extract=True\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "from pathlib import Path\n", - "\n", - "path = Path(\"datasets/ridership/CTA_-_Ridership_-_Daily_Boarding_Totals.csv\")\n", - "df = pd.read_csv(path, parse_dates=[\"service_date\"])\n", - "df.columns = [\"date\", \"day_type\", \"bus\", \"rail\", \"total\"] # shorter names\n", - "df = df.sort_values(\"date\").set_index(\"date\")\n", - "df = df.drop(\"total\", axis=1) # no need for total, it's just bus + rail\n", - "df = df.drop_duplicates() # remove duplicated months (2011-10 and 2014-07)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
day_typebusrail
date
2001-01-01U297192126455
2001-01-02W780827501952
2001-01-03W824923536432
2001-01-04W870021550011
2001-01-05W890426557917
\n", - "
" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "JDgJn6YvnUzp" + }, + "source": [ + "**Chapter 15 – Processing Sequences Using RNNs and CNNs**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YsKz7I4WnUzr" + }, + "source": [ + "_This notebook contains all the sample code and solutions to the exercises in chapter 15._" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sjuj1Ss9nUzs" + }, + "source": [ + "\n", + " \n", + " \n", + "
\n", + " \"Open\n", + " \n", + " \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dFXIv9qNpKzt", + "tags": [] + }, + "source": [ + "# Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8IPbJEmZpKzu" + }, + "source": [ + "This project requires Python 3.7 or above:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "TFSU3FCOpKzu" + }, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "assert sys.version_info >= (3, 7)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GJtVEqxfpKzw" + }, + "source": [ + "And TensorFlow ≥ 2.8:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0Piq5se2pKzx" + }, + "outputs": [], + "source": [ + "from packaging import version\n", + "import tensorflow as tf\n", + "\n", + "assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DDaDoLQTpKzx" + }, + "source": [ + "As we did in earlier chapters, let's define the default font sizes to make the figures prettier:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "8d4TH3NbpKzx" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.rc('font', size=14)\n", + "plt.rc('axes', labelsize=14, titlesize=14)\n", + "plt.rc('legend', fontsize=14)\n", + "plt.rc('xtick', labelsize=10)\n", + "plt.rc('ytick', labelsize=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RcoUIRsvpKzy" + }, + "source": [ + "And let's create the `images/rnn` folder (if it doesn't already exist), and define the `save_fig()` function which is used through this notebook to save the figures in high-res for the book:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PQFH5Y9PpKzy" + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "IMAGES_PATH = Path() / \"images\" / \"rnn\"\n", + "IMAGES_PATH.mkdir(parents=True, exist_ok=True)\n", + "\n", + "def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n", + " path = IMAGES_PATH / f\"{fig_id}.{fig_extension}\"\n", + " if tight_layout:\n", + " plt.tight_layout()\n", + " plt.savefig(path, format=fig_extension, dpi=resolution)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YTsawKlapKzy" + }, + "source": [ + "This chapter can be very slow without a GPU, so let's make sure there's one, or else issue a warning:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Ekxzo6pOpKzy" + }, + "outputs": [], + "source": [ + "if not tf.config.list_physical_devices('GPU'):\n", + " print(\"No GPU was detected. Neural nets can be very slow without a GPU.\")\n", + " if \"google.colab\" in sys.modules:\n", + " print(\"Go to Runtime > Change runtime and select a GPU hardware \"\n", + " \"accelerator.\")\n", + " if \"kaggle_secrets\" in sys.modules:\n", + " print(\"Go to Settings > Accelerator and select GPU.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KC9snDmhnUzx" + }, + "source": [ + "# Basic RNNs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "N-wSE31dnUzx" + }, + "source": [ + "Let's download the ridership data from the ageron/data project. It originally comes from Chicago's Transit Authority, and was downloaded from the [Chicago's Data Portal](https://homl.info/ridership)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wz4qaBi2nUzy", + "outputId": "41d6b4da-c559-40a9-98aa-467837e717e6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://github.com/ageron/data/raw/main/ridership.tgz\n", + "114688/108512 [===============================] - 0s 0us/step\n", + "122880/108512 [=================================] - 0s 0us/step\n" + ] + }, + { + "data": { + "text/plain": [ + "'./datasets/ridership.tgz'" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tf.keras.utils.get_file(\n", + " \"ridership.tgz\",\n", + " \"https://github.com/ageron/data/raw/main/ridership.tgz\",\n", + " cache_dir=\".\",\n", + " extract=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KHrRSWzCnUzy" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from pathlib import Path\n", + "\n", + "path = Path(\"datasets/ridership/CTA_-_Ridership_-_Daily_Boarding_Totals.csv\")\n", + "df = pd.read_csv(path, parse_dates=[\"service_date\"])\n", + "df.columns = [\"date\", \"day_type\", \"bus\", \"rail\", \"total\"] # shorter names\n", + "df = df.sort_values(\"date\").set_index(\"date\")\n", + "df = df.drop(\"total\", axis=1) # no need for total, it's just bus + rail\n", + "df = df.drop_duplicates() # remove duplicated months (2011-10 and 2014-07)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "VApwcrP5nUzz", + "outputId": "778b18e3-78d7-4563-9dd8-3d88eb81910b" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
day_typebusrail
date
2001-01-01U297192126455
2001-01-02W780827501952
2001-01-03W824923536432
2001-01-04W870021550011
2001-01-05W890426557917
\n", + "
" + ], + "text/plain": [ + " day_type bus rail\n", + "date \n", + "2001-01-01 U 297192 126455\n", + "2001-01-02 W 780827 501952\n", + "2001-01-03 W 824923 536432\n", + "2001-01-04 W 870021 550011\n", + "2001-01-05 W 890426 557917" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WS4IuiCSnUzz" + }, + "source": [ + "Let's look at the first few months of 2019 (note that Pandas treats the range boundaries as inclusive):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nESDIld6nUzz", + "outputId": "b5c5c6a1-be6f-432d-f65b-04797d591cd1" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAADsCAYAAABqkpwSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC2I0lEQVR4nOydd5gcV5X2f7c694TumZFmlHOwZNmyJUuW5TSOmGiyE2DAmIWFJS6sDcuyS1pYk5ewNgZsg20MBoMxxtnjJMlKliwrx1FOkztVd1Xd749b1dOTu3u6a4y+eZ9Hj2aqq6rvVN1w7jnveY+QUjKKUYxiFKMYxShG8Y8EbaQbMIpRjGIUoxjFKEZRKEYNmFGMYhSjGMUoRvEPh1EDZhSjGMUoRjGKUfzDYdSAGcUoRjGKUYxiFP9wGDVgRjGKUYxiFKMYxT8cRg2YUYxiFKMYxShG8Q8H70g3oNSIRqNy1qxZI92MUYxiSMTjcSoqKka6GaMYRRajfXIUrzesW7fupJRybH+fnXIGTENDA2vXrh3pZoxiFEOiqamJxsbGkW7GKEaRxWifHMXrDUKI5oE+Gw0hjWIUoxjFKEYxin84jBowoxjFKEYxilGM4h8OowbMKEYxilGMYhSj+IfDqAEzilGMYhSjGMUo/uEwasCMYhSvc6xrbuOnz+5iXXPbSDdlFKMYxSheNzjlspBGMYpTCeua27jm9pWYliTg07j3I8tYPLVmpJs1ilMQ65rbeGR3mqrpbaN9bBT/EBj1wIxiFK9j/GblPgxLIoGMYbFqT8tIN2kUpyDWNbdx3R2r+OPODDfcuWrU2zeKfwiMGjCjGMXrFMc7Uzy99Vj2d00TLJtRN4ItGsWpilV7TpI2rbwN5dGw5iheDxgNIY1iFK9DSCn51wdfJWNJfnztWfzHw5uZEAmOuvZHURZMrg1nf/Zo2qCG8mhYcxSvF4x6YEYxihGAwzcYaAd7z8pmnt9xgi+/eT5vO2siH71oBluOdLH7RMzllo7i/wd0JDIAeAScPSU6qEHy5Jajo2HNUbwuMGrAjGIULmNdcxvX/2JgvsHOY11869GtXDJ3LO87dwoA7148Ca8meGDNgbK3bTQ08P8fVuxuYWI0xBVTfaxtbuN4Z2rAcw+3J7M/+7yDe2tKgdE+OYqBMGrAjGIULmPVnhZ0Q/ENUhmL36zch2lJANKGxad/t4HKgJf/efdChBAA1FcFuXxeAw+uO4humGVpl2NY3fb4dq7/xSiR002s2HWS/31m54g8c8uSrNzTwnkz62ic7MW0JH9Yd7DfczuSGZ7eehyASMhb9vDRuuY2rrP75HV3rGLdvtayfdcoXn9Y19yGp7Ju3ECfjxow/+B4eU8LPxmhiW8UxWHZjDqE/bMA/rzhMJd+r4lvPLKF63+xii1HOvn2u85kbFWgx3XXLp1MazzNk1uO9blnKbBqTwtpwwJANyxW7j5Zlu/5/xm53oSjHSl+s6qZq3/yItff+TLfe2IH192x0vWxvOVIJ+2JDOfPqmNchcbymXXcv3o/lm1U5+Lel5uJp02WTKtBSsrOfbnzhT3ZPpk2LT77wEZe2T/w81m7r5XvP7F9dD48BbCuuY1r71iJp6Jm4kDnnHIk3taUZNWekyybMWakm1J2rNh1khvufBkJBH27XldkunXNbby48wQXzB77umnT6wWLp9YQDfuIeE1uu/5cTnTp/PCpHdz54l4APJqgtsLf57oLZ49lYjTE71Yf4C1nTih5u5bNqMPrEWRMtXAd7hg4jDCKwuF4uNKGBQKkbR/UhH0IQAJpU/KVP2/itx9Z1m8fKAdW7lYclvNmjGHbK7u4/twpfPK+V3hh10kunjM2e14qY/KrF/dx4ewxnDU5ytrmNixLomlioFsXjYxp8fVHtvD3146iCWXoCyFoT6Z5x89WcOX8Bt50xngOtCWorwrQkczwxOZjrLUNl9uf38N9N5duPlzX3MaqPS0sm1HX454DHR9pvF7bVQh+v2a/mosG6V55GTBCiM8CH0GNsU3Ah4Aw8AAwDdgHvFdK2WaffytwE2ACn5JSPm4fXwzcBYSAR4FPSymlECIA3AMsBlqAa6SU++xrbgT+3W7KN6SUdw/W1s605AO/WsP9Jey8r1d894ntOHskPaPIdK+Hv9nJUjAsyU+e3cXvPnre66JdrycYlmRWVGPJtFoA9p6M870ntmNJQMp+36VHE1yzZDLff3IHzS1xptZVlLRNi6fWcOPyadz5wl7OmFjN79cc4PqlU1gwMVLS7/n/BWoROUlDdZD9LQnufXk/uu1NQMKFs8fw1bfOpyOR4YZfvkzGsBBCsP1YF5d//zluXD4NrwbLZowp6/h5afdJZoytYFwkyDbgyvnjqKvwc9/LzT0MmIdeOcTJmM7HLj6LrUc6kRJiaYPqoK9kbVnX3MbTW4/x7LbjbD3axUcvmsHl8+pZs6+NZTPqmDuuil+9uJefN+3miV6eyJpwdzsyZunmw3XNbdxwpzI8PZrgxuXTiAR97Dzexd9ePYolX1/ZWE7YLW1YeDXB/71vMZfPbxjpZhWEXcdj/PXVI8p2kbKvK9DGkAaMEGIi8ClgvpQyKYT4PXAtMB94Wkr5bSHELcAtwL8JIebbn58OTACeEkLMkVKawM+BjwKrUAbMVcDfUcZOm5RylhDiWuA7wDVCiFrgq8A5KONpnRDiYcdQGghGCTvv6xUrdp1k/f52PJrAtDMC3NqxDYX7Vzdj2O7njCl5csvR1/27cHPHIqUkmTYJeruH37IZdfi9GhnDGpQY+d5zJvPDp3bwwJoDfPGq00retjGVKmz1f+8/h3f89CU++8AG/vovFxD0eUr+XacyHPe3480SwPwJVXQkM1hS4vdqfObyOcyqrwLg3o8sy/a/ioCHT967nh88uQMor3c1Y1qs3tvKuxZNyh7zezXefc4k7nxhL8c6UzRUBzEtyS+e38MZEyMsn1nHoTZF5O1IZIoyYJzxtmhKlBljK+lIZli9p5X/emRz9pl99oo5fPqy2QAsnd49Hj512WzShsVPn92FBDQBH7t4JpfNa8gu3J4Saiat2tOCnlGcNcuU3PmC8pR6NYFpr61ONtbrYZ57ceeJbNjNsCQf/c1a3n7WRD58wXR0u52vZ89MS0znw3etIez38L33LOStP20/PNC5+YaQvEBICJFBeV4OA7cCjfbndwNNwL8BVwO/k1LqwF4hxC5gqRBiH1AtpVwJIIS4B3g7yoC5GvhP+14PAj8Rir34BuBJKWWrfc2TKKPn/sEaW8rO+3pEZyrDFx58lRljKvjG2xewak8L963ez+3P7eZtCydQERi5yOCOY108+upR2+ULloRnt5/g81fOxed5fVKuVuw6yY2/Xk3GlAS8Wkldz/0hbVoYlsSfYxMsnlrTYxEb6PvHRYJcelo9v197kM9eMafkzzSRVgTh8dVBbnvPQm781Wpue3w7X3nL/JJ+z6mORzcd6WG8/PMlM/nCG04b0FBePLWmx+9vP3si33tihworlXFxfPVgO4m0yfKZPefL65ZM4fbn9vCHtQf45KWzeXLLUfacjPOT689GCEF1SBktnalMwd/phNKy3qh+oAllIAyES06r584X92QN/svmNbB4ag0/vvYsPvbb9Xz0whkle14tMR2Jeo9+r8bPbljEBbPH8NqhzuzfIcTrZ8050JYA1DP0eTQum1fP45uP8qdXDuE8Ur/39eMxykUqY/JPv1nHsc4U9390GYum1GDGWo4OdP6QK52U8pAQ4rvAfiAJPCGlfEII0SClPGKfc0QIUW9fMhHlYXFw0D6WsX/ufdy55oB9L0MI0QHU5R7v55oB8dGLStd5X4/42l+3cKQjyYMfX86iKTUsnzWG82eN4dpfrOIbf9vCf7/zzBFpl2M5VwS9/ODas9h1PIZhSX7w5A6+98QObnlj/x4Dt+O165rbWLn7JJUBL5sOdfLwxkPZxUY3LP7+2pGytiNpGwkBT88JuvciNhCuWzqFp7au5emtx7lqwYAE/aKQ0A1CPg+aJrh4zlg+cN5UfvniXi6bV8/ymcXzyk6FmHwh2HigHVC6Kj6vxqWnKRd+vu/4vJlj8Hl2kTYtvEMIyw0HL+1qQQj63H/amArOn1XH/asP8PHGWfz8uT1MqQ1z1emqv1WH1NLRkSzcgMkliwvgivkNvO2sCZzo1Pnvx7ZhmoN7IWFgg/88u4/WlMgb/eSWY/x6xT6WTKvh4jljOW9mdzhv8dQa7rt5GV9+aBN7TsSZWhce4m7lx9Yjnfz5lcNcPGcMS6fXZZ9NRzLDp+9/haYdJ4DXl8fIgZSSf/vjq6xtbuOn1y9i0ZSh25ZPCKkG5SGZDrQDfxBCvG+wS/pr2yDHi70mt40fRYWm8I+bReuRAzQ1DWi0lQy72ky2tZqcVuthVo1nwGOlxCvHDR5cr/OWGT4692ykaU/3Z2+a5uP+1QcYkznO4gZ3vTAZS/I/q1Mc67S49dwggRPbOF0AHmic5OX/nttNOHaQM8f2bNfWFoPvrtUxpZrsP784wPwx5Wv7rjaT/16dwrZX8Hvg9FoPr7WYmJbqXPet3MtE4wjTI+UJm7Qk7Z2nodPU1FT4DSxJlQ+++qf1HNwZKGk/29Ws4xVmtl3nV0qeCAv+6e6XuWSyjzPHFN6vd7WZfHtNCsMCnwb/tiRYlrHxesGWFpO1zSkuneyhNqhxWq2Hrr0badpb2H1unO/lF5vSvHVGcdfng0fXJZlSpbFxzQoAYrFY9t0vrDR4aZfOp+98ko0HMnxgvp8XX3gegOZOZYSvXLuB9IHCxmug3UQTYErwarC0qoPK1hiVwBcX+7PzZz5/8+kCuvYezJ5nSYkANm3bRZO5v6B29ca+DpNvrU4xrVrjI7N0AtohuvYe6tOmD862+NIxiy/9ponr5wX6vZcbMC3JN1alCHkl75mUoFIkezybC2pMXrCfuwAC7c00NfWfLl9O9LdG7mgzeGhnhq2tFu+e7aOidTtNTduHvFc+Pe9yYK+U8gSAEOJPwHLgmBBivO19GQ8ct88/CEzOuX4SKuR00P659/Hcaw4KIbxABGi1jzf2uqapdwOllHcAdwAExs+WDZOm0tg4J48/rXisa27j208ooqomMiyZVoPX42HV7hZMKfF7TO6/+VwW2yTNUqAlpvOvP3yeeeOr+f6Hz8fv7Rk+WH6Bxb6fvcRdW+KYkUlZt2q5sW5fK//xl83sbLf46fWLePOZ43t8vux8k7f/9CXu2qbz6JXLGBcJIqXk768d5edNr2aNCVPCT141+PyVM7nh3Cll4V08+dAmTKkmNk3AJy6Zzacvn5P1EEypDfGdx7Zz27o0//e+M7koh8RYKuw6HoPnnqM6HKSxsbHg69c1t5F8aiVdGclt69IlDXn95dgGovHWHu1qq97PLX/cxMO7Mzyx3yzY9fzcw5sxrH2Aesd6dCqNjbNK0t7XG0xL8p3/fZGJUcHPPnrxsPrwjJYEv9j0LMsWzqPxnMlDX1AgkmmTPU8+wY3Lp9LYqEKETU1N2Xe/3LC4d/uTPLInQ3XQy5euuzT79xxoTfDVFc8yecZcGpcU1rZG4KDnNe5a0cwvP7i0xxhrLMHfVdn0ODUNE2lsPL3oexxsS/CFn61gbFWI33/i/D6SBr2xPrmRP284zH9dfy7jI6Giv3c4uOP53ezt3Mb/Xnc2b1nYN0uxEThjYQsfvmsNc8dV8ZF3nO96G9fsa+W/n1iFaUkEGapDXpJpi7SpNnUeIbjusnPyXjfzCaDvB5YJIcI2L+UyYCvwMHCjfc6NwF/snx8GrhVCBIQQ04HZwGo73NQlhFhm3+cDva5x7vVu4BmpmMePA1cKIWpsT9CV9rEBIYDOpJHHnzU8/PLFPVmiqiVh94k4Ww53ZEldadPi5t+s45cv7qU9kR62muS6fa1c94tVtCXSfP+9C/sYL6Dimv900Qy6dJOfNe3mBhfEyNY1t3HNHavYfKQTryYYFwn2OSfo8/CT6xeRyph86K7VfOXPr/GmH7/AP9+7npqwH79HwyNU+2eOreDrj2yh8bYmvvnoVn78dOk0blIZk6btxxGQ/b4LZqvJc/HUGj5xySzeunAif/r4cqbUhvnwXWv44VM7Sq4C2h1CKu76VXtasGR3yKuUUu5x3SDs67mvaYmls67QdIHft+9knIc2HMr+fqrz0/647iBbj3RyyxtPG7YBXmF3kLhenvlsXXMbadNi+az+Q4ObDnUQ01VfTaRNNh/uzH4WCRfPgQGIhFSI5/wBvns4qA756EoV/8xe2HmCt//0JeK6wV0fWjKk8QKKWCyl5MdP7yr6e4fCYGvIvpNxvv/kDi6f18Bbem0gc3HujDpuunAGrxxop7klXra29gfTkvznw5uzop0SmFZXwcLJkZxQi2TV3vzFCvPhwLwshHgQWA8YwCsob0cl8HshxE0oI+c99vmb7UylLfb5n7AzkAA+Tnca9d/tfwC/BH5jE35bUVlMSClbhRBfB9bY533NIfQOBE1AV5GDKl/sOt7FU1uOZ/UJfF6N299/DgA33LmKjGGh2VoeX39kC//9961ICySyKPKUSot72Y6HiyzRsj8caEtmNSVShsVX/vwa//bG0zh/Zh0bD3aUnIewak9L1pCTA6T/Asyqr+QjF0znx8/sYuuRLgD+6aIZfPGq09hwoL1Hu1bsPsnX/rqFXzyv4mM/aypNFsYPn9rJofYUX3nLPFIZa8DnUF8d5PcfO49rb1/JD5/aqdytJUyTTKTV5Br0Fqef4WQsOZkRg5EdC0UyYxLuZVktm1FHwKeRylhYEmbXV+Z1ryMdSW6482UE8OU3zeObj249pflpcd3gtie2s2hKdNBFJF84ZPz4ION9OFix+yReTWRT+Xtj1Z6WbAZr77Fd6fciRHEcGICYbhD2e/CUQUOmKugt2rBa19zGjb9ajSXB79HozNMQmlQT5vqlU7j35f187OIZJZc4yE3l9nk07vtIt3d/3b5WPvvARjQE33j7gqx690C44dwp/OzZXfx2VTNffrM75HzLUvyWzYfVRldKic+r8R9vVV4yZ90stDRFXsFLKeVXUenMudBR3pj+zv8m8M1+jq8FFvRzPIVtAPXz2a+AX+XTTlAGTLGdNx8k0yafuPcVqoJevvOuM9l+rKvHQtibWLb5cAdffug1NtikvmLIU6v2tJCxXWzWIEYCdC82aZsZv68lzo2/Wk0k5COmG0hZnBE1EBxVWcnQdVECPk/2XI9QOyWPJvoQG5fPHMNbF45n21Fl6JSCcLbxQDt3PL+ba86ZzE0XzBjy/OqgjzecPo4tR7qQKJ2dFbtPlsiAUQuSv8gNukNgfGnXSR5Ye4DfvtzMjcunlSTklkibhHs1zPm+x147wj0rm7lrxT4un9cwqIBZS0znfXe+TEcyw/03L2PqmDDffHQrNeHXR6p/OXD7c7s50aVz+/sXD7mI5IOAV8OribJ5YF7a3cLCyVEqB8haHCy1X9ME1UEfnUUaMHHdGPB7h4vqoK/oTazybqqfTauweecTl8zigbUH+NFTO/n+NWcV9f2DtSttqA2Eblhc+4tVzB1XRU3Yz4pdirbg8wgOtSf79YLnoqE6yBsWjOOBNQf43BVzCRU7EeUJy5Lc8qdXeXDdQT5z+WwunD22z0Y6nwzM/vD6zGsdBpQHpnwhpP/662Z2HO/iB9ecxeXzG/jEJbP6pEPmHjt9QoSvvGV+Nn2tmOJnjkIqqLS4fNj5n79yLr//p/N45T+u4P/et5j6qgCmJbGkqr/z/SeUGNpwQ1uLp9ZQFfRy1uTIkEaRY1w5mRmD/R3LZowZ1jPLhW6YfOHBjdRXBfnyW+blfd0Fs8cS9GlZo+upLcdKYhwnBshCKgSLp9bwqctmc9u7zuRAa5L/e273sNsFamEJ+fouLIun1vDlN8/na1efzordLfzqpYHZlc/vOMEbf/QCB1oT/OqDSzhjUoRKvxdNQHuivN7RkcLh9iR3vLCHty2ckFf2RB8cWA0vfE/9b0MIQdjvKYsB05nKsOlgO+fPHHou+dyVc/sd29Uhb9EemC7doDJYHgOmKugtmkaQW+aj0HmnvjrIjedN46ENh9h5rKuo7x+sXY63yqsJrpzfQG1FgI0H2rO0BcuSeYd3P7BsKp0pg7/khHfLAcuSfOmhTfx+7UE+deksPnP5nD5rJPRdN/PFKVdKQBOibB6Yh145yO/WHOCTl8wqiNy5eGoNS6bVsPtEnNvff07BL2nx1Bret2wqv35pH3e8f/GQ1/f2aFy1YBxjqwJZGXMhlPrmxbc1IezVeTghEt2wOHf60JZzvlonzrmXnVbPit0t3HPTucPyfPzkmV3sOBbj1x9cUpDoVm57E7rB7c/v4d0/X8Evb1zC5NriUyadEFKxHJhcLJ81hjefOZ6fN+3mXYsmDatdoEJIFYM07L3nTObprcf5n8e2s3zmGOZPqM5+JqXkjuf38O2/b0MCfo/ITrqaJoiEfEUveK9nrGtu4yt/fg3DknzxqrmF36B5JdzzNrAM8ATgxodh8lIAKgPeLA+llHh5TyuW7E47HgiDpX1XB315h1h6I5YyqCqXBybkY8fx4gyIxVNrCPs9zBlXxb+/eX7B887HLp7JPSub+cR96/nvd55ZsnDp4qk1fOSC6fz8uT387IZFXGmns69rbuOGX6wik0fqOaAM5H0vsHTqBZw2rop7VjZzzZLJJfEY9sbafa187ZEtvHqwg09eMovPXlH6xJpT0gNTahLvuuY2vvbIFm754yaWTqvlM5fPLvgek2sr8Hm0oju0o5A61IQzEBzNgn99w1z+8LHlrLjlUi6eMxYp6SGWVSgM00I3rLzF8wqxtGfWV5GxJIumRAtuF6j39h9/eY2fPruLdy2axCWn1Q99US847f3CVadxz01LOdqR4i3/+wJffmhT0V6rZGb4Hphc/Pub5+HRBP/11y3Dvldc7xtCyoUQgv9+5xlUh3x85oFXSNl/y4pdJ3nHz1bw37bxAoq0l9unTkUDxhFl23KkEyQc69Tzv9jMwIb74IHrwUyDtNT/+17InlIR8JbFA7Ni90kCXo1FU6NF32M47zP2OvXAgErAyGdD1h/2nIyTMS12HIvx3v9byYPrDgx9UZ6os9eAc3OMlMVTa7j35oG9ZD2w43H49Rvh6W8g7rmaz57WzpYjnWVJ9FDj4mVePdiBRxNcMndsWYykU9ADU1oSr2PhpmzhpZsvnIG3CPXTqqB3WKGtuG7g84h+s4/yRe/d1Kcum81KO7bqLTI7xCEYDrboFYtIyEfasEhlrILjtA7pLZVR7+3qftIKC8XymWP4xtsX8OnfbeDel/fz4LqDRaUwJ4aZhdQb4yMhPnXZbL799208s+1YVjStGCTT/YeQclFXGeC295zJh369hnf89CW8HsGmQ52MjwT52MUzuGvFvn55E5GQj/ZTzIDJFWUbip8GqB3wniZIx2Dzn6G9GWpnQKpTeWCEgGkXZk+vCHiJp0u/IXtk42HmNlQR8BbfCauDPnafiBV1bSxlMKayPMJvDgdGSlnwopk2LDKmpLLIwZmbIWhKyb/+4VUeeuUQN184g6qAl1V7W4tOonDmjYp+OGqD3q9lN6z8Cay7G5x8GjPNJYHtVAXP5J6VzZxTQrkP6MnblFJlFpVSUsTBqWfAAJ0po6jO2x9W7WnJSl5rAnYc7+KK0wtfIKqCikRrWrIo5n0ibRIqsS7K4qk1fO89Z/Iv92/g442Fxx9Vu9TkWg5CXtRO1WxPpgn5C9NW6P3eNh3u4KK5w9d0OdCWRAhVSbjYgnHDJfH2hw+fP50/rD3ArX/cxPXndhRVBVxKyVxjK5eceA4OvCMbxugP1UFFwN5qE60/dP40/u0qlTp8xfxx/YYJI2H/KeeBya3gPRQ/jeaVcPdbwbKfwZi5cN0DMOcNcHANPPIZOLkTqruN7YpAaTkwuTL+bYkM65rbivYKD9sDE8gznGuHPZh24aB90kFV0Isl1eaq0HnJedZhf3HzWS7x2evReO85k3liy1E++Os12fIqxSZRxHVDEbvz2UAfWA2vPgAntsO+F8Hjg9lXws4nlBHj8eGfdTHviVVyz8p9/Pub51FfPTj5txAUNC6GgVMyhGRaMuumHy6WzajDsYP8wyCTVtvu0liRk1FcN8pS4+j8WWpRj4aLqyibHfDlMGDseivFED+XzajLpheXcgCpgamGTbGaJsrL4UEroUvV79V437lTOdal88OndnLDnYVrAKX3ruJe3ze5YP/P4a43qwV3AOSm2HqECnE6WVADhQkjoeKzVl6vWDy1hvcvmwrA7QPx06SEnU/B7z/QbbwIDc68BuZepVa1yUvhut+p40/9V/bSCr+XeAk5MP15jIrCgdVc1XYvM1Kbi7q8K5WhKp8Q0oHVcNdb4Omvwa+ugke/CNv/rgy9fS/1IT5zYDXLDt3NIrGjKE98fJgbslzi8303L+Prb1/AC1+8lDedMU4Vg5TdWZXFtC2vNeDAajV+19ypDL8zr4HPvAbX/w7e+iN1zgWfhclLef95UzEsyWcf2FjSUJLD2wTy4m0Wi1PPA2OvCZ1Jo2grOhcToyEsCctn1vH5K+cW/SIc8mhXKkMkVLixkMgMzk0oFpFhGAlAdnIt1uU6GByxrGLatnhqDR8+fzq3P7+Hn16/qKRkuuEWjIv3k6pcCiRso11SXOq5sfcFghgIpOJi/PadcMZ7YP7V4AvB/pXZXfCg1bMH2DFHQl7aE+lS/bmvGzhV4PvUijqwGjb9QXlXDr8CVePA4wfLVP9Pv7Dn+dEpcN4n1KJ87sdg0mKbxFs6D0zGtHoUJizKsLcXyIvNDMs0H+l9S/FPOy/vy6WUtgdmiPnZsqDpv8G0eUXShNW3q3+5EBrMvAwqG+DVBzjTMrnX7+X43rPhrMaC/jRnPuuthVQIeod0/F6Nmy6YwWOvHcWSxWdVJvTBCfZZ7HhMjV8A4YGxc6DKjhqcdT08/mXoVNlHrfE0mp3Use7O1pIWeBwubzMfnLoGTCozZD58PnjkVVXt4BtvX8CMsfkJePUHZ7dRLA8mUSYPjEcTVAeLX1icHUspjMXeiNpqnR3J4to2Jkt6K23s1VEujRapaZJMm4VxevJ0oS+bUYcmKHqSjI1bhg8PHgzQfDD5XHjtj7D+bvsMAd4A3PhXFk9d2n9GWfMquPstis/hDfbIqImG/CUN775eEE+bfflpB1YrwqRlj/dzPw5XfA2ObBj8XV7wWVj/G3j8Vvjw41QEvNkw7XCx9Ugn//fcbuaNq+JNZ45neU5hwoLwwvfBTKMBPgxSu14oyIBJZkwsyeDzWew4PPRPsPsZtQiDMvqu+S0EI4rTseUvgFTk5wMvg94FqFpIPjJ49r9YuAFjP+tSz7WLp9Zw4ewxvLK/nV9/aGlRzz2mG1QMNc9KCfvtWsrCo55ZDqcKzQPTzoe9iiiuPKnqo1JXPS8Fb3MonLIGTKmIvA9vPMyCidXDMl5AcWCgeAOmXLt2UJVbiyVXOjuWIQdWEXDCWsOJs0PpjStH06TYdP1E2rDfZZ+6pH2x6Y/wx5vUuZoXrrlXhR36weKpNVxqp57/pojU8/a6s3nIvIqPeR+B994Dp70JMin466dUPB0JRgo2PwSTl/YlD7Y1q0XHCZMYSbUbtBfqSMiHaandd1UB6eyvd/Qb3t3xWLfxIjxQORa8fvUsBuNxBKrg0n9Xz3zzQ1QE5pckhNSRyPCx366jOujj7puWUl9V5Obu5TtghxJQl0AGL+31SylkdozZc2C/WUgHVsP6e2DbI5BJwlt+CPXzofnFXkbfJ1RWjZlWi/T7/qie9z1Xg5nGxMPR2nN6FN/LB05IvBzz2Yyxlaxvbi/aQEikzaENq80PQfNLcM5HIDKhf0N52oWw/VFoP8CyGXX4vEr4tNRlPpQo5jCf44HVTKwS4wb6+BTkwCgLphSp1HtPxnn1YAdvK0EGS7cHZjiLXnnszWjIR1uRIaREdsdSeuMqOowQEqi2hXyllyvXNEFVsHgCYyJtEsrnXW59BP78MbKGjmXA766DB94Pq34Gz3+3Z/wfmNNQhW5YnD05WkS7DFqkresy7QL1vy8ISz4C3pBy1YOKra/+Bdmtm5Sw9tfw8+Vq56z5yBaSf/kOlW3D8MOVr1f0uzNOdaj/+9sFD4Wz3wcNC+Cpr1LtNUibVpa3UgwsS/KZB17hcHuSn79v0fCMl79/Aea+GaZfjOGr5ob0lzgeXVjQbbpsI6GPDsy+l5TX6pXfQLJd8TXO+RBMORcu/HzPhXjyUuXdu/TL3V6+qcvh6p8C8L/GOzhYcUbBf2J2Q1aO+Szkp0s3stk5hcIpvzDwCSfg0X+FiYvhjd/p+8wcTL9I/b/vhWxIHODmC6eXlKsS140+GVMDIlfIUe+Co6/Biz+AX7+JcZVi4kCXnZIeGIvSlBP468bDCAFvLakBU2wIySRc109nKJCh3x+iYX/RISTHy1GO8FbI58Hv0Yr2DsX0PHYsRWI4GRjJtEnY5wEGuN4y4dlvqgE9Zg6071eaIR4vnPYW2PEEbH1YnesNwI2PZN99bYUf05J0pjIFh7iSaZMwNt/An1PLxVks9r0A9afD6jvURPnqH2D8mYrfcWgtTL8Yrv4JdB1V50amwKqfwh9uhHWNLA7MY5FooCN5QY9y9f/o6COLL6UKfTQsgAXvLHxsah54wzfhnqt529Yv8JS4krh+BX5v4SHLdc1tfO+J7azY3cLXrz6dxVOLDKfmGi/vuQue/ArawfWsl3MKJmZnPTC5z+zYZnjwQzleKy3L0xgQ/XmzbEOxleriSLxl9MA4G7LOZCar6VIIEmmDcYNlCj36ebX4X/0zNVcMhPr5EKpVYaSzrufiOUofq7LEXtFE2swvucMhapsFaCjZOIUNmOF5YKSUPLzxMEum1ZakPHpVDom3GCTSZt9BdWC1Sst03Kjv/zNMPW9go2aA49Gwj70ni6tMmsjuWPpp2zANKyEEkbBvWB6YcuykYHgZNYm0yYRoP5PFgdUqzXH3M3BoHSz6ALzxNjj6as9n+dz/wLPfQoV0dOVKt59xXaVa5Fri6YINmHjaJCxSWJ4gmtbrueUuFrOvVETAl38GB19Wx877JFzxddA0RUZ1zj39HfC3z8P6u5hBE/f6fezcfzpMvLKgtr2eEe9Nrtz3ArTugXfcDguvLe6mvjAIjYmtK7jXv4au5sUw/6KCbrGuuY1r71hJxpR4hGD++OrBL9jzHDN3/hLGtMKkc5Qn7egmWPNL2PlYt/Hi9UOoBk+mCw9mwYa8YyRUBr1gGvDSD6Hp28poziU5F+K1chCMAFBNvKg1IFEmDgzkykIUZ8DEB9uQbX5IcYIu+yrUnzb4jTRNEcj3Pg9SEvJ7CPk8tMZKS7CPp4fwGDl46Yc5xouAmZcqL2Q6Bo9+AUlswFj7KWnAAMNO19x6pItdx2N84+19ak8WBccDU6xhFU8bfZnxO59QnARQ///6jRCug2SL2gUKD8y+HCKTIdEGW/+imP3ennLlNWE/bcP0wIRzNWqcND7HsPrg34r3DoV8RZN44/mQ3orEcOrAJNJG3xDSgdWK/GrYA/n8z8AVdjpt753mjEabSKkrAuO2v8FF/wq+ULZYYls8DQXK3iTSBhWkkL4hBMY0DSrHqF2ytFQ/C9eq473h8ULNFEBDYOHHIHBwBVAaA2ZdcxvP7zjORXPqR6zKdTzdywOz7m61kM6/uvib7nsBpF3tHgOx76WCDRglJubM/UOIib32J3jww0xGwoMP9/1caCpDyvEChdSzLsZQ6NINFokdzFr/NDz6IpzcrgzdN30PWncPb+PjC4Hmo8aTpLWIzWJsoBDSQBuyfS8q0uz0i4Zs77AzPgfakO14Av78z8pbu/xT+d1s2oXK4GnbC7UzqK3w0xovrQGTGELVGzMDj92i5i+hAUKtF423dD/Lsadx7H+WHR7oFqecASNQZdCHW9Dx4Y2H8WqCN50xviTtCtrhkGLaJaXst0owB9fYP2jK7XzGu+HYFkictC80Yd8KNenoXd3uWSMJK34M7/oVeP1Ewz66UgaGaRWsMuwQUrOViY00PPGV7jQ+M6126x/4C/gHWBgH8dZEQsV7YPrsjEuISMhXmGx8DhLZEFIOXvltt/EiNAgOslvODelICc98Ax76GLz719RVqJ1dSxGTUTJtEhY6Mjd8NBCmXajq9jhG6mC75WkXKiEtU8fEQ3P1IoqoGNQHuR6Gnzyzm7s+vIQLZw9frLBQxHWDBodXEm9R4b3FH1KLabHo9cxaxi4p1B7Nv1L8iR3w8L/QTSrXYN6bbeP4Ufu4gAOrVAYLZA2YqIgXvFn0H17Lff5vEnjNvu6SL8HF/6Z+rqgrerMDKE2dUJQxiQT7iuBBJtKGukXvDdndb1XjU2gw8RzIJJSKst6pztF88P6H+qbG58DxiBa7IZuT3sLVhx+A5+YoD13nYeUh2/ciIFV7Dq/P7/lNv1j9v/d5qJ1BXaW/qDljMMQHCnkdWK28xjufhKMbldE1902wf0XfNWDyUg51yaMDfccpZ8CA2h0PhwMjpeSvGw9zwewxWY2HUkCVEyi8XbphYVqyJ4l304NKknzxB5XL3nnxB1bD3W/LCSv9qedxQwckbP0r/GghzHsrF58UPC/G0ZG8vGDXZjyXad66Fx78sBpEmic773FwNdx+EbzzdkUwc2CZyj392C3K2OrF5wDldj3cnir4mam2GSV9f7kYLgemRxr1a3+CDfcCQk2Q+bjPc70yHj88+RV4ehq1S24BKGo3FU+bRNER/jxySnKNqKF2y5OXwrvuhN+/nzvMN+ENnl5w2/rD3187kvUwmFLy8d+u40fXns1l84ovpVAMerj2N96vxt7iG4d308lLFZ/oTzfzE+PtLIksZIjAQB84leKnj6ngP956ev8equPb1OKsecEbwDIyaN5A905+1zP9G6m2ATPWkyjYgKk+9rLyKoHq71qJl6FghBo9WdRc6xCye6T5b/5zt6dbmspQmHCW2hgeWg9IlXl3/7XKe9BwBhxe1zdUPwwPTGbfKn7j+TqBYwYcsw/6KhTJ3jE8TUONx3wMmDGzlW7O3hdg8QeprfDTUuIQUrI/DkxvT/NF/waXfkn9PDX/VHwHp6YBE/QNywOzfn8bh9qTfP7KIqpnDuJNKLYeUrJ3DYzOI4pXMPEc5XbNJWwNtLDkHp96AWTi8OR/wurbOQu4z+/j5N6z4YzGgtoW1w2WenfCg/er1DyPD977GyXa5bQhk1AuzjuvgIXXqV1Ssk09q/jx7psZusq86SF+5mfrkeIqy8Z1g8k15au3UowBI6XsKUq48qfw+Jdgynlw4b+qHUmh7vPl/6I4Fy/9kAZL8s+eo/gO68CUgtqWTBuESSECeXhgYOiU4FzMvASAuKhEliALKWNaNG0/AaiwsdejURsOcNPda3n7WRO4+uyJbDncWXTdmUKgRNk8yhu27i6YtBQaSmCkTV0OwAmiRZcTSBkWy2YO8AyObVabGs0DNz0BqQ72PXMPMy79QPd7HchIDUYBGB9IFjwO9laezRloeBgG12UwBCNEOxPFcWB6e213PwPr71I/C015Ha/5Td/NouaBulnwxL/bF3ZrJmV1kIaRVWnseR4/Znc7LvpXaPyS8sLnbljzfZZCqLDXnudASmor/Ow8Vlxdq4EQT/eThfTaH3t6mn2Fc4FyMaQBI4SYCzyQc2gG8B/APfbxacA+4L1Syjb7mluBmwAT+JSU8nH7+GLgLiAEPAp8WkophRAB+36LgRbgGinlPvuaGwGnV3xDSumoag0IVY20+Eny4Q2HCXi1bMnyAdG8UsXvolOUfsP+VSoFUJq2iNdfewz6KrvIWKHIisUFvGqS/MsnVCd4x+39s80HWlh6Hz/8ChzdhMCy4+wvFmzANHS8yhdTX4bXTDUo3nE7zH9b9/c5+PgKePAm2PDb7mPTLoJzP6rSgZ1qvJsfggs+ozgVqEFfbIZUv2G3EqE6W2jSzEro54O0qbxpM5KbOGvL96BzK8x7G7zzF2o3NfvywhsjBLzpu3B0E96VP+LzXoG18c+weFJBhlAibVIpUmj+0hddw18JmpexIsXOEpQT+N9ndrHreIzbzk0xpf1lIguuZMbZF/PTZ3fxk2d28ucNh9GGUXemECTShhqbzSugZafKAikFbE9YBcls0dRCoBsmacPKqoBncWC18uBuuA8ClWqeGjMbgP1TE8zona7cXx+yPTDjfEkOFDin7QrM53fW5XzA87gqnzCckFF/CEaJiIPFeWDSNm9OSiUV8NgtMPY05Vlp2TnwptA5/shnYe2vyGom7X0+e35V0IcQFJVV2TVuGdFco2/WFd0lKPL1hPbGtAuVUvTJHdSVjQOTsz617oVXf69+LkZeoB8MacBIKbcDZwEIITzAIeAh4BbgaSnlt4UQt9i//5sQYj5wLXA6MAF4SggxR0ppAj8HPgqsQhkwVwF/Rxk7bVLKWUKIa4HvANcIIWqBrwLnoPxk64QQDzuG0kCoDhVnKAAYpsXfNh3hsnn1g0tdr78HHv4UA4qRGSll3fYwYIrzwHRXIfWqwbH7abVgjZlV8L16YNqFyg1qpLDQOBw9hwET7gfAjNgralABoKlB3h9CUZi2XO1osImfMxuVVsH0i9UADFQrb8T91yrOjC9ENOQjnjbJmBa+Avk5sTKpF4PqY6DI4oUYMMm0ySKxg3e++nU0aaqd27J/tl3Bw4DHC7Mug0Nr8QgJMpO/O9lGIm1SoaWzC2dJIQQEo4zNxFk3TANmXXMrP3lmJ587rZ33vPZpRQbc/wuQt/HZy2+iI5nhrhX7etSdKZcBoxumXb3YqxSLAxFFSC0FAlUAVIlkUR6YftOVe7jwBbztx1njpSA4ISRvktcKTaPWM6S8VSBFNxejlAhGqJTbi9rEJnSDJWIb3Pk1lQk4903wzjuy76IPeht4C6+DDffbISepPCSWBZpmq5776ChiQ9ZedzaPmJfxYe8TcN39fTVxijECHT2Yvc9TU3EJyYxZuEr4AJBS9iQddx5RIoNItVnrODCsDFUHhQrZXQbsllI2A1cDjjfkbuDt9s9XA7+TUupSyr3ALmCpEGI8UC2lXClVFbh7el3j3OtB4DKhgpBvAJ6UUrbaRsuTKKNnUFQFvUVn+9yzch8nY2kWTBiARGlZ8NKP4a+fJmu8CE2lkd74iBL8ch7r0U192lWMARO3WftnbP4feOxWmHEJnHNTwffpg8lL4ca/YnnDPGsupDlceMbVes1xlYv8yJzeQF/re/JSZcgsvVl17gOrFZfGNIpW43WIz+Uk8ULh7YqnTZZpWxFOWXuJIq+VArMuB6EhAUP4Ct7dOFlIA5Kth4tQDbVanPYiSYygZAg+88AGJtaE+NiYjcp4AeW9e/TzcOdlvL/6Fc717uCfPX9hsWdX2SrhQrfwWY2IKa7Eme8p3fPTPEhfmApSRdVDcq7pYcDsfb6nC79tb3Fts9OV6zyJgkVDYymDGk9KGQX9Za4NF8EIYRkvaq6d0LWJb3XdqowXzQvLPz2w8dIfHI/IZV+Bs25QisyP35oVfYyGfUV5YGK6Qaejd1wqo69mmspQ3fs8dRWO/EJxiQm9oRsWlrRV0BOt8Jt3QKJFKSaf+d6BRfYKRKHb02uB++2fG6SURwCklEeEEPX28YkoD4uDg/axjP1z7+PONQfsexlCiA6gLvd4P9cMiOpgcRod65rb+ObftgHw46d3ce6MXrVCYsdVtsfup2Hq+aqTmxm1GM+/uqc779hmFe975V44+wag+BCS59Aa7vV/i+B2e+JfcnPpBv7kpVjjziSyv539RewM1lmz0UWI4MQzlPjWUGTOodydp78d4rcpobQH3sdi71wWiSjtiYuztY3ygUN8LqeQHRQumJhMG6yy5gE2x7mUHIDJS2F6I/F9q/nPyq/y3QIniIStA0M+WUjFIFRDTTxeNPl5XXMbX/3LaxxsTfLHmxbi/9tn1AfCo7hXS2+GbX9jZtMn+J1XYEkwND8B7TygxGEKG45nZN7xR1Va++IPlvYLAlVUp5I0F2HAOAt4j6rPTtYMeZLFB4LHC4EItVrh7zOmG0S0lPK4lgOhKGGzi06j8PlsdnIDGrZSrpSw/yWYuqywmzgeESkVV2jVT5VX87KvEC0yqzKhm1SQwvSG8PTWaCoWDg9m+6PULlDzWWs8zaQS8AadTfd5+5+H156Ftn3wvgd7JnGUAHnP7kIIP/A24NahTu3nmBzkeLHX5Lbto6jQFGPHjqX9xBHaEwZNTU1DNLUnHtmdxrQt5bRhcf9Ta+ia6ae6YxvjjzzBmBMvo8k0u2d/jMMTrqK6djvR9tdojy6gc3cCdjvftxhRexZnRncSefjTvHIgQVf1bDpO6rTFC2+Xd8uf8ZOxUyIFe1f/nf3HSrfIzDEqmSG28tutu2gy9xd0bVtXHD8pmrUp7O3xDAbDYhj03NnMbbiU8Tv+zjz+zr1+P088EeDgpPl5t6szrd7j4ea9NDUdHOJsiLS/xpgTq+iIzKMjejqmJ4Sl+anuzHnHke48kN3tauf9wsvr6dqbv5G0t8NkvZxDWguRCE1k75ybe/Wd4WGWHqZWmjzTOangfnbgSIqgTHHgWBu7C7w2H5yRsAhm2jnW2lVw23a1mXx7dQpDKtJuxaP/gmzfz66ZH8Fj6er9+E+DMy7htK0/ouH4c3gEYKXZ+uTdHJuRKPnfA3Cgy2KR2MGc7T8nHp7Emm0tsK2wv20wLDU9VIkkO/Y009Q0YDZpv9jaovro7m2baTqxDb/ewtLVd5KonMHJsctpj57Rp+/FYrG83825IoAvcZyWRKKg93ngaJKQ0Unc0FhThn42+XALM6UBmRRPPfMs3gJKibyQmsmNqEXGEh42tlbQOZw2Bq5gzvhdTHjhuxza9Rrv7IyypmM+TU2F9cd1xwzGk0QnwOoSPrOG1BjmJdvo2vg3YDxNK9fSOnb4mz7z2Ba16d6TRgJ7ZnyAA80WNDcN+965KKSlbwTWSymdJK5jQojxtvdlPOCkkxyEHkrhk4DD9vFJ/RzPveagEMILRIBW+3hjr2uaejdMSnkHcAfA3Llz5emzZ/DYvh2cf+FFBfEmqqa38cedK5CA36dx3eVLWKzthLscXRNFUp2z8BpUftIlg9/w3LPgjkYW7/w+/NNzrM+089T+nVx00cXduil54HkrjnnsATwYCK+fGZd+oCfRbrjwboCjT1FfV0VjY2GpbJ6mh9GQTJ2zgKkXNJauTdo6OPZMVsjr9NAJZjXmf//9LQl45lnOWjCPxsW9Srrtf1lpdfgqINWm0tFP7gBg8qG/5jYCpess+lRWnnIixtdXPce02fNoPDt/5lBwTwusXIUPg866hSy6+mN5X5sfXoZDj6AbJhdffHFBVZ9v3/4S4S6d8Iy5TC7gWeeN1vvRYodImR4aC7z/5md3YcjtALxTe565bc/ARV9k9qVf7nvyrCq4+2WkkUJD0hEcV/D35Ytta57ivf5vEDANSCVpnBkuLSl1ez1RPU107DgaGwurOZTZcgzWrOWCc8/hjEkReOB9gEH1hx6kum5mv9c0NTXl/6y2j2dc0iLZSUFz2m2vvkCdzFBRW6b3snYP7LmHahKcvfTNBUlDfOElg7QRIjDxTDxv+AaLSvEuL74IfvtuJu55jPcjuAYfwZmFiXu2rj+I97UUvora0j6zjlmw7Uc01qsMpIkzTus7XxaB44+uyG66QTBz+jRmXtg47Pv2RiFxiOvoDh8BPAw4Ygc3An/JOX6tECIghJgOzAZW2+GmLiHEMpvf8oFe1zj3ejfwjM2TeRy4UghRI4SoQcl3Pj5YI/3pNmbqW4DC6w4tnlpDyO9h0ZRod+bCvhe6RdmEBp1D7+azqKiDa+9VKcO/eScXHfk1Z7ODWLqwdh2sOINfmjb1592/Lj1r3ybx+TsKi4dLKdHSdupdIXHifDD9wiyfI4OXA9WFuR6dzK0+aXw7n4JfvwFW/gSe/w6su0eJ72WdfRrMeSNc/p/dol1ORsG+F7K3qS6SA5NMm/jJoFkZTM8wibv9wSZXhoyuLPk7X5hpe1dYthBSlLDZSVfKwLTyqMSdA0eUbaY4xNe8v6Zr3DKVGdIfbG6XuOiLHPaM56wdP0Y2l4hn1Av+gyvwOiR2afboIyVBoIoqkSqOxKurvlkZ9Cp5gq1/hcZ/gwGMl4IRqqHC6sSS3eMtv3YZVJAcXKxxOLBTvKtF4TyYuJ7BJ3WYcXHp5lnNk02J15B4MQruJ/G0CiERKDHBPjIJamdQdVSNj1JlIrXVL8XEnnu9ZUiVt5GXASOECANXAH/KOfxt4AohxE77s28DSCk3A78HtgCPAZ+wM5AAPg7ciSL27kZlIAH8EqgTQuwCPofKaEJK2Qp8HVhj//uafWxABPQW3rD2ZhaJHQXzYKSUpDImF8zK4b6Md3Y9eZBU+8P4M1Va8LFNLN7zc+71fwt9z6ohL8uFqhKsSHNl6Qh1KpupKravoMt0wyIknUWvxAbM5KUw8zJkQFW83RMqTFcj3l+RyWQbPPzJ7irKQoOLvwDv+oXysAiPIhlf+Dm44LNw2X/YpGxbzzTWrVlTLIk3kTYJo0SxTM/wa2z1gZN+LroKnows3a6HVUYOTMCM48EsmAu2eGoNlwe382Dwm/gDAaquv0stDANh8lK49MusaryfQ1Yd1m/fC4c3DKv5/eFozTmYzjRaDk2TQBWVJIsj8dqLd7VIKE5Zw4L8pebzQaiGkKk0mgoZB3HdICzjpd/0OLAJxhHiBXHULEsi0wnFgSl122Zc3L0hk16sKRcUdHlcN6gUSbRgGZ7ZmLl49zaxzLu9ZGq8JyJnlXfTbSMvA0ZKmZBS1kkpO3KOtUgpL5NSzrb/b8357JtSyplSyrlSyr/nHF8rpVxgf/ZJ28uClDIlpXyPlHKWlHKplHJPzjW/so/PklL+Oq8/ysqwTNtaMMEykTaxpL1jcdC2T/2/5CM9QggFwaMWO4HEh4Es0PpOONY3lGdxqZmGhUY0URj/Ja4bVJJUv5RjMhozByEtXmFOwamHjm5GNgsp2a6Y8PETaqERHiVK5dQwufFhuPTLPd9x9vi/K9L2y7crnRrA59EI+z0FG8mJtEGlKKMBY3tgaogVPBlpaceAKUMaNfSon1MwkfHAan4uv05UtuM1UyoNMw9cuXQBH5H/TidhpTj72K0qy61EOFR5Br81r1C/XHtv6SfqQBUVJIrywDiZmJGXvgWxYypl2lPCisOhGgKGIgUXkonUlTIIWYnykXizHphEQR6YRMbMmc9KPAYmL4VZl5P2VHJD+kt0jV1U0OUJXWUIasESt+vAatj9FMLUudv7LSpPrCvJbePl3nTbKEMO28hDah5WWfMKdh92ZXUTcgb5K/eqncubbit+cprWMxxyckxh94mnDao9KVX/olQM9Fx4A7T6xlOfzm9RcJBIm1SJMg14gFANIh2jLli4+FPCKTLp90KqA377Tjj6Glxzryou2Z+x0l9q3+SlSvXyfX+EKcvgTx+1a48Up8brngcmpgo6FoKMY8CUL40aVP2cgtPi976AB0sF+qz8QzVVQR+LzzyDr+nXIvVOWPUzZciUyIiJ6wbt0klvbSzJPXvAX0lYJgsOB4IK1bzP+zTe9b+C+W8veQYIoRr86Q5A5v0+04aFblgEzFj5PDChKGAXmiygnyV0I2c+K4NxNWYOHhSJv1ApgZhuUiVSiFJ7uve9oMYT4MVgfNvaktxWbdTsZ1muDRGnqAHTsuhfWC/nFLw7dmLG2bTD41tVXZ+zblApZ8Vi8lKYfjGmP8oN6S9xtPqMgi5P6CYRT7p8rn2gLTSFCWYB/B6cWLbtGSrHZGRPRJND6YJ37DE7jW/CKz+AO6+EI68qCfC5Vw1srAwGXwiuvQ9qpsO974W//xvLfLuLMmCcXV55ODDdBkzBHphMmTkw9s44Sqzg56ZPWo7ETkEsMFRz7ZLJjDePIp3pztBLxlWJp00qRBLpDfWvij1cBKoIWomiQkg1LRv4L++v1C/bHy2p5wmAYBQhVX/O19sd1w28GPgsPRvqKTmcEFKBHJhYuT3KoSheM4mfTMHzWdYgKPVG0SkaClh4WENp6pTF7bRvyxcuj9aPjVPSgPFVqbqthXpgHJdrNoT0ym+VmNGZ7x1+o2pnIDSN9XJO4cSytEG10MtqycYrpzGVI6Qz+e/0EuncAV+GHYu9Y58QSBXsgak4vp57/d+ievX34eQ2FQaa+8bhtSdcC5d+RXkqXv4/vhP/Mg2dGwu6RTJtUFHOEJLtgamhi9YCRKkM08JnlXnHZL/PiIgV/D67xi6ikzAnI2cUHMpdPLWGA5FFZMjxrE4tjIMwEGK6QUSkEOXwQAIEKvFikE4lC750QvtatGyhv0zpCcZFVKQu+6YHsgZMNYmCaASqlEY5DRg1NiMU3v+zxOdSj83JS+E6Je+/IvoWVqZLQ/BWophlaG8vnJIGTNAmlhXKgcmS3oJeNeBffQDmXAUVY0rQqAhauhOQBasEJ3STSi1V1s6gR2ZQIXQ6T+TPg4npZnndhPYEOd6fLJgDU3Pi5Zw0Pk1liJQCLTtwho0XgxmxDQVdnkib1HjU32J4y2DA+CuRmpc6LV6QByaR6Q5t4StvCClC4SGkRNoggEHbmHMKDuUKIThz2ZVcp99K14w3QbcvZ9iI6wYRR1W2HLA3BsLJ9isAr3odT2+RCQhDIfs+8/eodaUMqoTt6SsXB8bjQ/oqiIjCCjr24PSVcT6rEbGC67ul9DRB0uV5ZjMuBm8Irz9Ma4kqUsd1kwqhl8+wt3HqGTBCI5DuRAgKDiH14MDsfFIRPs9+X2naFaxGWAYh9IIzMBIZVWSvLDwTG1atsrxTR7fnfU2i7C5XNeDrvYVXvN1TcXZ3doi3cFn9AZHjcpXCw0pbVTdfJDImNV41SZQlhCQEIlRLgy9R0GSULDdRHHpyYAqcwGNJnZBIFz0hvmPRRDYyh3+OfQTTV6lqmZUAcd2kupybC3tc+a04acMq6NKNzFFepynLik9AGAy5Hpg8DYWYblBVzjnDhghG7DIHBWRHpcs8nzn8tCJCqGZKbcrLsgYIARVjqaWDLt1AN4a/2UukDaq1FGLUA1MYJBpC76AyUHg9pB4cmA33QkW9qvpZCthuzVpPsuAQksNALycHRqtXWjCZ4wMUY+wHMTu1TwqP4oiUGvYEOcYTL9jlutM/n98JO43vmvtKN3lPXqqKuwEvNVzPSr0wl2sybRLxqtBOWUJIAOFaxnriBaVRqzICdsipXJOOPQbGeAr3wKQSagL3FJmF0dySQAIv7E/xoH4u5mt/glTnkNcNhbhuUCXKKItvv4sqkiQK1I9KplL4ycDMS8uTxupUpPYnCwghZajC9sCUSwcGIBgpeK6N53qUyxgSVx6YAknsum3AlGtsVowhYrUDFFXqoDfiaZNqUUbPpI1Tz4ARGqTaVT2kAj0d2dohZpsqwrXwmtIR8+wBMS6QLtgDE3cyV8pozVbUTSYhA4iWXXlf46R3S3/l8EjOA8HesdRqCTqSGawCxM/iukHSY09CTtXVUmGGKqYmg7V06YWJssV1g4hWZgMmVEutKCyEFNeN7hBSubKQPF4IVBflUdPjytjwFKmDsWpPS/bn+zIX4zGSZDb+oah75SLucJrKxoFRf28xBR0tx0ArW80htSA3ePM3YLpSRnl5Jg5CUSJaYRyYnrIQ5QghqfmswZcs2EjIhhDL1c8qxlJhtAHQUoIwUjJtRw1GPTCFQQoPJNupDvmKTqOu2P4nsAw4q0ThI8hmYDT49cI9MGmDoCwvISoSDrBPjsPfsWfok23E0yrtUJQz/i88REUMKQsjZcfTBlFPSgnUef0lblcEEESFmlQKMUiTGZMqjw5Cw9JK3C4H4VoidNFWQJgmmVExa6B8HBiAUJQ6T+E6MGnbA+MLFdfXls2ow+/V0ARsYiZbrcnseOxn3PfyflbvbeGnz+5iXXNbwffNZq6UbQyo+1aKZLbydb4Qzq69zOnK9d5E3gapCiE5HJgyZSEBBCNEiBc0NuP2ois9fiVoWWo4Bp8vUXhFdt02YEqdRu2gYizBtOr/pVDjjeuGmk/KGDWAwqtRv+7heGCqgt6iODCVAQ/ahvuUZkL9aUNflC9s9/lYX4oDBctbmwStMqTQ5aCmws9GOZ4Lu/IvJxB3dBPKNUEKAaEoVVJNxO3JNJFwfkJccd0koiXBV4bdp6ZBMEKlVJNKRzJDNJyfMZJIm3ZGWVV5vFYAoRqqZFdBHJhE2iSEXtpqtwO0rSaZ/4LnIJ0angGzeGoN935kGav2tLBsRh2h1z7EtDVf41///Ajb5FSEAL9X6y4hkicSuqnUqMvMgakiWZBcP4Cmd4GP8oVqfCHwBqnz5K94G0vlaq2U0QMTjFBFvCCBvbhuEC2nMeqvAM1HvTfB+gINeI8RV4LgZfPAjMGfagEkLQVkLw4EpXdV3jULTkkPjAapDqqDhXtgYnqGa7zPw/HNSnm1lLAnkTGeVMEhpGQ6Q8BKltWarfB72Md4qpKH7dpAQ8MhMJbNAwN2vRXbgClg0CfSRnljsKEaKqxuAyb/dtlx9nLuTMK1hI0OuvRM3oQ8h2clfeXdMRGMFpS14sBMqj4QDBe/GC+eWsMnLpnF4qk1TLvkQ0hPgC+NW6MqD0vIGFaPUFM+iOmOqmy5Fj21AFSIZEFqvLphErRsYcIyj88aLX9OUzxXLK6sHJgoYStOl14YiTeildGjLASEa5UHsoD+L6VUBgyUkQMzFmGlqSJZGg9M2iAkk+XzGNk4BQ0YDyQ7qA56C+bAjGnbyK3mz9Uvq+8orfCT7YGp8aYKMqwsS2JmUmiYZQ0hCSE47pukvqe9Oa9r4nqZjQSAUA1hQ1WwKGTQx3RbMK5ck2QoSqgIGfVk2lBk2XLuTEI1eGSGMDpt8fyemSLxppDlDB/ZbauWxWRhKGMxUFGivhauRcx7K+fFnyYo1ITt82osm1FX0G10PYVPpssfQqIwA0ZxTcqcrgwQqlE1h/IcA126Qa0npfS1vGXIwnMQjBCyYnQVEEZV/LTyz2c1FJZGncyYVMoycnMAKpR22litoyQGTDKVUQbMqAemUGigdxAJagWHkKbF1uPBTlUstfCTY8BohdXnSBkmYemQK8vbGVpCU9UPJ/PLREqky5/eTagGf0YZCoUMeiWyV86CcdFsHZhCPTAVsswemFC3mF2+7mClA6MjyhyzdjxqBRswNgeg2BBSv1j0AbzpDr40fTeagN/edG5B4SMAHHJlucamfd9KkSJWAAcmlspNVy6vAVOIQRpL2QZMoLp8IVRQultIpN6FlPmR7BNOSnxZn1dtwR5IpalS5ndZoQz3acFkSQo6mukyF4a1ccoZMFKoP2msV7H2C8lcWSsW2D+VQfjJGwTNZ4srFdt5y2vAxCpsAybPTCSlDllG9zlAqAZfuh0ovOKt2gGULwPDl1aeoULVPoNlzijrroeUfyp1ws5CKrfwFKEagmYnibRRmK6JXSm7pLoS0y6E6FSuSD2OJWFSTWHep7RhETAdL0eZxoCmYfkqCvbAOBIHQNlDNRVWF8mMmdf7jJVb+M+BTTCulPFsYdehoJ5ZmcdmqIZK2UV7IpO3YaWyo8q8ibU9MFMC8ZKI2YlyF4a1cQoaMIqAWOtNYUkKIr6tM2eREmGYtKT0wk9C2MSyREGGlRIYc/Q5ymvN+ipqaRNRaMnXA2MQLnecM1SDlmoHCuPAxHWTsBUvowETxaMrAyZfw0pKSSJtcybKOkk6BkxX/gZM2qRCpNBc8MB4pEq/L8QglVlPRwnbp2mw6P2Mb13Nrd57ad/xYkGXx3ONhDIafiJQTUWBJN6ulEE1ZTauAEI1hEw7lJqHIR/TDapFGUO7DnrUQ8o/jFpZ7g1ZuIaw2YlhybwNK5Wqn8QS3vJkR0HWgJnoi5UkhCTSZc6As3EKGjDqT6r1KAuwkHBNVzKDX+pK56Mcwk/BaipkHFmAYRV3akpA2a3ZmrCPZsZDy+68zo+nMiq9u8wTpNA7iQRE3gaMaUmSGZOAWcYQUqgGUu14tfwNGN2wsCQErER5vWnZekj5T0bJjEmlC9Lfzs64UDVSkSnTjq5+PhK42fM3Zv39hoJ4b67U9QEIVFJVIIm3K5WhSiSwNF95uSah7lBqPiH7LicLqZxhGuiuhyQSefNzYrq9ISvzfBYsMCTuFEY0fRXlC7uFVbmccd7YsLOQTEviczyTZV6zTs00aiBCAgjSmcowgfwEw6x0HI9mlrXIWDjTbVhVBYdOCU7kFP8ruwFT4WeX2cBZLVvzOt9Kx1WxuDIPeICJwXTeC55SLJX4zXj5dnp2Jd7xQSNvrlXS3nH5rTIXObM9MLUifwMmrtvkYhc8MGCXEyjAgNEycTJ48ZVa0+fENnV/AVg27y3PzUs8neOBKaMXUgSqiHj0gnRgHH2asolMOgjV4DVTBMhvfKp2JSAwsXxtgqzuVnUBWjDKo1waD4xlWZw8eZL29nZMM+e9jX0rXHEhd8oxtBzcS9fRoX0IvozJGW/+JDvFxxBb85ubi8JVDzJZC/FlM8zWYXyPJSVffOsStorfQ6YeBrmXx+MhGo0yZswYtCKqVudlwAghosCdwAJUFbQPA9uBB4BpwD7gvVLKNvv8W4GbABP4lJTycfv4YuAuIAQ8CnxaSimFEAHgHmAx0AJcI6XcZ19zI/DvdlO+IaW8e7C2OiGkamEbMHla34ZpoaVjEKR8u4NghJAdDsnXM+RY30DZOTCRkI+d5niINSmZ9aEWf73M6pCQY8Ck6MhT/CmuK0KqhlV2Ea+JQT1/w8qu9O0zEmUm8ToS7wkO5uuBcWohuZCFBFAt4nm/TwCPkUAXQfJTASoA0y5ECA0pLQzhxV8A762ncmt5PTDV4lhBSrwqVJMov6fDeZ/kVw8pliqdkTAockJI+XLUUqm08sCXoG0HDx5ECMG0adPw+XwIx4iMn4SOA2BNYfKYairz2MS2J9KItr1UeS20hsJqrxWEY5IUfnZkxnDaxEh3mwtExrQ4dOQo07RjMGbOgHOdlJJMJsOxY8c4ePAgU6ZMKfi78jV5fgQ8JqU8DVgIbAVuAZ6WUs4GnrZ/RwgxH7gWOB24CviZEMJRxvo58FFgtv3PLlbDTUCblHIW8APgO/a9aoGvAucCS4GvCiEGTxOwPTBVsjCV1Lhu5lRJLZ+yrN8orFJ2Tw9MeXfHNWE/e+U49UseRF4tG+csb5YDwAR//vLbPYuylVdGfVwglXfNrWTaQMPCa5WZxOj1g7+yoIKO8bRBqMz1toBuD0yBISSvkUDXymBcTV4Kc9+EToD/afifgkLHimDvwuYiUE2VSBVUC6krpcaACJVR7RYK9qgp3ZwyekYdOCEk8s/6lCXkbcTjcSZOnIjf7+9pCNgikR7MvEuQWBLl6RZlZnx4vEpGAzAKSH7pDcuSqr0AYmBRTCEEfr+fiRMnEo/Hi/quIZ+IEKIauAj4JYCUMi2lbAeuBhxvyN3A2+2frwZ+J6XUpZR7gV3AUiHEeKBaSrlSKvr1Pb2uce71IHCZUG/9DcCTUspW27vzJN1GT79wPDBhqzBDoTOV6U47DJZp0Acj+IzCDKtEjyrB5d21RMM+9sjx6pcheDCmJbN/S3lDSCocUu9L5K0Dk3DDGHVKQxQgo55wo+Kzg1BhBR2Tepog6bKHKZ3nFhUxOgogZfvMBJly1Y5qWICfNC8mCtsBxl2qrIy/kjDJgtKou1IGEZFEK7sHJgoog3SoUKplSWJ6hoBVRm6ag0A1EmFzYPLrZ1qJiaf9hkQ0FfTwYOVtJFhSKnmPcipkA2hePFL1sULqu/WGJSWasDPS8ggLFRM6yl6bxzkzgBPAr4UQrwgh7hRCVAANUsojAPb/9fb5E4EDOdcftI9NtH/ufbzHNVJKA+gA6ga514CQCNC8hGxPR77Wd0w3XFj0InjTnQW1K+7iohcN+9gvGxSPaIhMJNe4OfYEOcaTvwcmpruggWG3a2wBhexUaMsdPhPhGmpEPG9CnqU7pDu3PDCFqZH6rSQZT5nCWxVj0JAk24/nndoKDom3/BwYAlVUyESBadQZpWlSbk9H1gMztEctnjYIkMEjjfIbMJoGweq8Q1tpwyJouZC1ZRshXkzMPPua8mhYiGEs9HlB8yGkelbD8cCYEhW+h7J7jfLhwHiBRcC/SClfFkL8CDtcNAD6C5zJQY4Xe033FwrxUVRoirFjx5L2VNByYAewjA1bdjBF3zdIcxW2t5rZsMOaV7cT35Ma8ppCMfVIK9ONJF4M1r26hUj70OnKm/ammSqSWMLD8y+uLCshb3+nSRofHd6x6FtXsFU0DXhuW8rKGglrN20ntm/4Jdj7gzfTxQWA1nGQtvg8nn322SFjsxuOdxuj67fupvNwU8nbFUid4DzA03WYk51zaGoa+js2HO8mfW7ZfYBYxdi8risGZ6YE4XQrx/V4Xt8RazsOwI59hzicKU+bAJCSi4SPWi3O6p17afIezuuyCjNJ3PSW5XmNOXGCBUA408rfnmyi0p/fGNvQnGGKSGJqfl54obAU7EIw/VgrE2WSYyfb8v77dzenqCTO0fYE2wp4ZrFYrKBnHEweYxmKML55xx6axMEBz23NmTN27D/G4TL1fQfnEiAq4qwZol0AsbTMzv8bt+2h7fjw2haJROjq6upzXFgZKgGvsEimdLoYet5M6hZRJBnDQu/nnqWC3zB5w7s+zPg5Z/OD738PmS5urUlkJB57me6KJfJas1KpVFFjOx8D5iBwUEr5sv37gygD5pgQYryU8ogdHjqec/7knOsnAYft45P6OZ57zUEhhBeIAK328cZe1zT1bqCU8g7gDoC5c+dKf3Ulk2rDBA9qjBk/mcbGoYlP1rZj7F73dwCWXHgZRCYNcUUReHk77LuPKhKMm3I6jY2zhrxkfWYH4d0qvbXxkktK36YcHOlI8h8rniERncUETycNjY0Dnrv7RIwXnn8cgHPOb4TaGeVplGXCS4LptT7M47B0+YVUBAbvth0bDrF9w/MALFp2ETScXvp26TFYBdNq/SRbBRdffPGQhlXs1cNUvLIFgPlnLeH4kRCNgzzjYeHkTMSu1cTicOFFF+PRBm/bL16+DwyYs+Bs5iwsU5scrKujIZmkqq6BxsazhjzdtCRbn0nhq5xSnufVHIDN32GM6GD6gkWcPiG/EPLmZ3dRuTOFFoqU7z0CeNbB/j/i92l5f89vm9dQ1Z6iespsxhXQtqampsL+llQHvKy4YNrY8TQ2njHgqbuOd1H13AMAzFmwuPz9bNs46vQU0frB2wVwsC1BZdNKABYuuQAmLxnWV2/dupWqqn48OZYJcfAJC+nxUVU1tFex00ziyVh4AkH8/d2zVNDUpl0g8fkDVFUWpzljJtJkkhYSjarq/DyAwWCQs88+u+DvGtK/I6U8ChwQQsy1D10GbAEeBm60j90I/MX++WHgWiFEQAgxHUXWXW2HmbqEEMtsfssHel3j3OvdwDM2T+Zx4EohRI1N3r3SPjY4glFItdsFHfPzDHSlcsu8l4/EC1CrJfMOISXTBlFPClFm/gtANKRSVE/4pygOzCAuzoRu5oh4ldFNrXkgGCGSrUg99PtMpHM5MGVqm11ZNkIcw5Ik8hClcsTi1PXl1ltRBR2lzFNvIuOO9DcAoSh1WiJvDkwyo0JvZSs0aYt41dHJobZk3pfF3VBuhWwfzqqb5oHOZIYK6Q7XBOHJK5TqEIuB8oe2AIIRonlyYOK66U5GmdAAgVdYBYeQyk7itfk5GnJ4JF4nhFTukBf5ZyH9C3CvEOJV4CzgW8C3gSuEEDuBK+zfkVJuBn6PMnIeAz4hpXRm94+j0rF3AbuBv9vHfwnUCSF2AZ/DDlFJKVuBrwNr7H9fs48NjmAEku1UBb35FxnLLfNeLmPBJgc3BPT8s6PSJlVa2pWFJeT3EPBqHPVOVDVeuo4O0i6XUkihV0XqoRdjV8iVQkAoSpXMnyyedJXEW4Pf6ELDyovIq2Vsg6/cadQAoZq8OBMO4rriW8lyPbNKZcCMER0cai/MgIl6ylyNHbIGUlbdNA9kUnFF/Cy3oWCPgzpt6BIprvAMcxGMUC3ieW0We2j6lNWAURxNbwEkXmlZikvhkgEjzQxf+uLnqampoaamhi984QtYluK0TJs2je9+97s9LmtsbOSTn/xk9veH//wQF13+ZsLTl1BbW8vFF1/MsWPHytLkvHRgpJQbgHP6+eiyAc7/JvDNfo6vRWnJ9D6eAt4zwL1+Bfwqn3ZmEYpC2z6qQ768s5Ac4qf0V5aPLGUbMPV+PW8PTEI3qNLKXDAxB9Gwj2Zh86RbdkL1+H7Pc3afluZDK5e8tYNQDWFTTd757Npd200Fo1RYKhOrI5lhfGTwLJlEOofEG6gCOsvXtnAtAkmEGC3xNLMHOVVKiZaJg5/yexPArmB8rCADZiw6XeUyYALVSI+fBqswD0xMN6kSKQhEy9MuB3YfDpgJMqaFz5PH/KR39ri2rAhGqUkNnUbtWoFJB6EoVeSnAxN3BPbABYKxB69l5Z3ps+lQG3/d18Wy0yIsnjv0+cW3S2nS/OWhP/Hu697HypUrefXVV7n55psZP348n/vc54a8xdGjR/noh97PV2/5LNe/7UriwQZWrVpVtiafckq8QDaEVDXGl/ck2ZXKMFUky5dCDdnd0Fhfit0FZCFVkgL/2PK1Kwc1YT+7rRwtmOkXDdIuW+mz3AjVEOhqAfKT7Y+nDSZ4bLXbcqYehmoIZ2XUh36fibQdcgBXQkiQX0FH3bAIuVRvC7AL2sUKSItXkv1lK3MgBKKinsmJOOsL8MAk0o4s/uShTx4O7L/bKegYDeehRqw7KcFl1oEBZZCmhk6j7nJL+M+BvcHIywOjm2UvmPhff93MlsOdkEkipSTJMcL+weenrlSGrUe7kBK0VVs5bdzBvBTcHcyfUM1X35onB9D2wDQ01POVb97GzPoqTjvtNHbs2MH3v//9vAyYw4cPk8lkeMebr2DatMmIMXNYsKCPz6JkOOVqIQHKA5NspzrgoauAMu81nmR53cG2cVTnTRUkb10hUmXXgHEQCfnYp0dUNe5XHxiwNoxTyE660a6cys/5LHrKtV8aRc3B2xXFb9c1ycewSqRNajwuGQrZekhdtAxhwPTUp3EhhBSMEja78tfPScTQhMRTTi9kxRjGezsLCiHFdGdslpsDo/pxpUjkVQBQSomWdtEDE6qhWg79PmOpnBBSOTeKDoIRgjJFPDH0O03YISTLV1F+7oZN9pd9E2r7oDNlZKmIliRv0cyiYG/2liw6GzOnaeeddx6HDh2is3Noj/HChQu5sPFSzr3sat79oU/x85//nBMnTpSrxaeqByYC0mRMwMj7hXelDCJaqryuTXvQFkLiTaRNQtIFhVQbNWE/gaNrwczA/lVw99v6rcwd1w3qKLPB5yBUg0dvB/KrSJ1Im0Q0d2TUfRlVSydfA6bBoyshABeE7EDpc7QNacAYhIRjWLnjUfNbSTB0UhmToG/wXaieUBOnJ1TGvlZZz5j2fRwukANTIctcmBOym5cKUnlpwei5miZukGVDNVRYm+3FVg6YjRcbAQ8M0B1OGwROWQhZxnZlPSHt+zGTHWw2J7NgQgRtkAzBdc1tXP+LlRimxOfR+NG1Z7N46uBi9EVDCECgDcLP0TStj1ZSJtM993k8Hu598GH2vPQQTSvW8stf/pJbb72V5557joULF5a8yaemB8buuGO8ybw5MF1OmfeyKmpWAYKolr+8dUI3CcmkqxyYOcmNZOV2zLQqcNcLDs9EC7pjwIhkOwEvtOdRP0fVgSmzXD9AMJo1rPLJdEimDao9uiLKlltVM6wmufH+xJAhJFfJxZAVAYwQz8sgTSdUOMQfKqcHpp6I2c7JWJpUJj/F23h2bJY700fdv0ok86qHFHNLIdhBqIaQ2YVpyUE9RDFdebnxhsBT8qpWfWFvGANGJxnTGvTUeNqkSri0IdM8aI7i7RCZSIun1vCDd8zmc8uquPeDC8tnvDgQgrWvbMQwrKyhsmrVKiZMmEB1dTVjx47lyJEj2dNTqRTbtm3rcQsLWH7OmXz1ls+xZs0aJkyYwAMPPFCW5p6aBkyOemvasPKakLpSGZVGXc4di6ZBoJpqkb9hFU8bBGXSNQ9MNOznufTcbEkGPH7op8BdIq3IxW55YEAyKZjJi8TruIPLr0IaRdM70bDy9sBUabprXg5QNaSGCiHF0yZhkVIq1t4yyfX307bqPOvnpG0PjC9UxvdZMYZwphWQeYeRkildFf8rdxjV3rxU2ByYodCVG6pxiSwbsDPeBjPku1KGCqG6MWdAQfWQnJC4K/OZ8CJQ9YLyIfKeMS7MJ5ZUsXhqbfnbhuDI0WN85z9vYcvWbTz44IPcdtttfPaznwXg0ksv5d5776WpqYnNmzfz4Q9/uIcHZtWqVfz4u99h3YZN7D94hIcffpgDBw4wf/78srT2FA0hRQGo0eJAiK6UMaSbOisLXu4BH6ymijgx3VD5/UMIjOl62p1J0kY07GO1MQtzwVvw7nys3/AROCmRLng5ILvgTQqm8tqxx3STSjcq3jpGQiC/itTJjJ214oYxGoiA0GjwJlgxRDmBRFqRZC1vCI8L2g2FFnQ0UirTKxAu49isrEeTBtXEOdSWZObYPIzMEtfOGRC+CiSCSpEknkc9pJ7ZPu6Nz2qUQToh2r8RHNMNoh4XNhbZdkVVu2wtmNqKgcnPcd2kWqQQgXHlb1dOQcehUqmllAiXZPnVdwiuf+eb6TBNzl9+HkIIbrrppqwBc+utt7Jv3z6uvvpqKisr+fKXv8zhw91q2pFIhLWrV/HbO39Ke2eMyZMn85WvfIX3ve99ZWnuKWrAKMs7KhwDJsPYqsFTfbtSdpVUF8q8V5gJpFTelaEY5TITBw8ucmBUexI1p1Ft/gXG9x+3TKRNNUm6MUHahNQJgRR78wghJXSDsHSBA2MbyhMCet6pmhVCdyccqGkQqmGMJ07LEBWpk2mTMDqWr4IyB7YUnAKAIpaXro/pGDAVZexrtpjd2AK0YEQ6Dj7K/z41DemvpNLIjwPTpWdyRDnd4cCAep+DeWBiqYw7oV0H9joQYWgtmLhuUKW5NJ/Z2T5ehk6lNqXsrivkwuai6W8PIuMtbLKm8svbf95H9by6upr777+/x7F//ud/zv48b948fnXfg8w0d0P1BKhsKGt7T+kQUrU9iPMh8iaTOgGZKj87PhghZDkVqQdvl2lJvI5CqkscmIitxtvlsZ9DoqXf8+K6QdgtA8aeIBt8+RV0jOsGIRl3hcQLMD6QyosDo7J9kq550wjVUpNHGnU2hOSGiB30KOiYjwfG0tV48ZaTb+UYMFpXXlowacNSVZXBlTEg/ZUqjTqdBwcmpcIhpjcMHhf2qHm+T8XNcWFj4cAJIYmhtWDiaYMqypzE4SDrgRnagLEssnWFEC5sLzQvAmtYarxZ3VoXPEanpgFj74wrpZr48llcpO6SOzhQTdDMz4BxreJzDhwPTKcWtRvRvwGT0HVCuBtCGutN5Beq0dMELReMK9tQbvAl8tKBSWZMwi7ymQjXEqGLtkR60CrLybRBBTrCrXbZ7zOSJwdG2gZMWZ9bZT0As8KJvDww8dyMGhcMUhGooiJPEq9TFqWcGTU9kOuBGWROi+m2Ae+aByYKOByYIQwY3aACFzLKIOuB8WBiWoOTiy3bAyPRylrIt5i2DQQhnZBX+Q2uU9OACVQDgrAtPz+UoaAbZs5uqtxhhwh+wzFgBh9UPfU53MpCUh6YNuxJJn6y3/OslFM7xz1C6hgtNqQHRkqpyiBA+WPt9gQ51pvMm8QbxD1VZUK1VFmdZExJ1yALXyJtEiLlngETiCAReZcTkM77LGdfsz0w04J5GjBuSc/bEMEqqkR+JN6YTUh1zdPRiwMzcLvs+kxuaMAA+EJIzUdExIfcYCivrVshJLWwe0UeHhjHgHGD/wJZNV4vJoZZnAeGUQ/MMKFpEKwmaOZXp8aVQo4OghF8tvhZPnHZbg+MuxyYk5b9HAbwwLgtVQ6K05TMmOjGwETGtGkRslx6l/bEXefJz4BJpk2lz+GipyNkKwW3DsKDUUUmdbSgS4aVpiGCEerz9Khpaft9lvO5hesAwWR/LK8QUlzP2Vy4YJCKQBURLZUfiVc3qCbhjsQB5IzPoTgwhur/bnlghEAGI1TnUU4goyfwYrrTNqG8HD4xdD0ky5KqppVbBowdcvTn0bb+IKXs9sCUWyqCU9WAAQhGCWQcD0w+NTpcEn4KVuPJxBBYQw6qhNv6HEDENmCOm/akPIAHRnN2xW4MeI9XpZ/TXXdoILhWJRuyIaSaPGLsUkoSaYOA5SIHJlxLINMOMGgqtZOF5JoHBmyCcX4GjDDimGjgDZavPZoHwnWM83RytDOFMYRuSNbLAe54If2VVIo8SbwpJXGgueXpcEKpg3gipZTE9TRBywVuWg5EKKqykIbYLArdxflM0wAtTw+Mqg7thjGg2mYbV1r+tZpyISVo0r2sqVPXgAlF8aQ78WhiSPdhV8pwb9ELRhDSooJUHhyY3sX/yo+A10PY7+FoOqQ64EAeGDcNGOhR+XkwLZgsURDK3zZvALwhIiJOIm0OKpalGxaWlPhM90QJCdXgMVMESA9K5E2kTcJCR7gUpnTaVqMl8iJlezJxdBEsPwegsp5a0YlpSY51DZ56HndbVTZQnTeJtyuVIVJuUc5ceHzgr2Ksd+CK1Lph4TNTCKR77QJEMEKtZ2gODNnSCy4ZV5qnsCwk10JIw/PAqJCXe6TjU9eACUYQqXaqgt6hQ0huph3a989LXCntfggJIBry0ZY0lRx9on8PjM9w24CpIWQoA2awekgJW1ETcC2FNGtYDdGuELqajFwk8YLSW2kdRAsmoasQkpt9jFBN3hwYn5lA11wQ2KsYQ7XZBjBkGCmRdtuAqaSCJLE8Q0iuCDnmIlRDrTYw16THxsLNdgUj1IjkkJtYjxs8q1xoXrzCzCMLyQkhueSBERog8GEO6YXsD5aUaGLUAzN8BKOqoGPQN6ShoJQr7cmo7CEkW6PGkxyaxKu7T+IFReTtSKYVL6CfEJIiPbs4eQOEagjafI7Bdu2uT5QhVfEWBs92S9iZPoB779Kuh1QjYoOHkDK2p8+NQo4OQlGq5NAVjEEZMBmPC22rqCeUtg2Y9sSgp8Z0kwqRwvIE3ZHFD1QRlkkSeegNxVKGLeTopgETpUaLD/g+Yyl3Sc9ZBKNUi/igc61lSTyGeynxAGgePDJ/Eq9rISQhwOPDK4YW2esPKuTlnm7NqWvAhKKQ6lAemHyqpLq1m7INmHF+Pb80apc5MAA1FT7aEhmoGAOJ1r7t0s1uqXLXFuMa/DafYzDxs4TL2SFOHRgY3AOTTJtUuMmZgKwHpsEbH5TEm0zpBEi7aiQTqqHS6sqrurjfTJLxuOCBqazHl1KVcw+3pwY9NRtCcuuZBarQsMjo8SFPjaV0W6PJXQ9MZBCyrEMsBtxtVzBC1RAk3mTGdNebBqoeEnl4YGwOjHBDIduB5rXTqOWg8gv9QXmMRkNIw0cwCql8PTAZKkUCqfnKSxSErFeg3pfKL43aERhzywIHoiG/MhLCdf2GkOJuu8/BrkjdAQxuKMR7cGBcmCiDUQKGatdgRMEehGwX06hBlWBoHcTos5xF0eUQUsjsojOpDzlJBqwkpteFtlWMQaTjTAhLDg4RQuoO07jU/x1DySlfMAjMpEuaVrmwOWoDjU1XeYa5CEaosOJ0DuK1dZ3PBKB50bAwpcQapP9blvLACLdCSHbbPNLEkpJ8nDBNTU0IITh58iSWlKxcsQIxcREnWwbgT5ayqfmcJITYJ4TYJITYIIRYax+rFUI8KYTYaf9fk3P+rUKIXUKI7UKIN+QcX2zfZ5cQ4sfCrrsuhAgIIR6wj78shJiWc82N9nfsFELcmPdfFoyAkaLGP3S2T7Z6a6Cq/ERBp1K2b2gPTNzxwLi5sKDqIbUnMgOGkHqmkLpnwIhkGx5t8BBS3M5CkkJzrbKyzyYADsWBcd2bllPQcTASr0yPjAEjkIStxKAVjA3TIkhKqcqWGxVKzG5etT6kFkwirWqBCbeMUWfRz8MDIx2JA5c5MBVW18AhJLcrZGfbFcVHBn2Q5xZPm+6HtzRvd0XqQawES0o8QroSjslC86JJtTblI2a3fPlyjhw5Ql1dHaZEEbVdQiFP5RIp5VlSynPs328BnpZSzgaetn9HCDEfuBY4HbgK+JnoNh9/DnwUmG3/u8o+fhPQJqWcBfwA+I59r1rgq8C5wFLgq7mG0qBwUvv8ySFDSF0pg6iWRLgx4O2JqM6bHDqEpJtUipS7rn1sAyaZQYbrINmq9Kxz4Ih4mZ6AO/F/UAueNJkQNGgfpB6SkgRPIv0uGKN2u7x6OzBECCmTS8h2L40aoN6bGNyAcVJIfS4aMLYhHxmiHlLcNvykG22zxexmVyQ51DY4Byaum1RrKYRb3gTbUNLy8MBobmo0OQjVEDI7iaeNfrPxYnqm20hwmcQLIJIdA54yMh4Yj12RenAejLQcUTgXPTCebuMqkRo8Gw/A7/czbtw4hBDdnB2XMByz7mrgbvvnu4G35xz/nZRSl1LuBXYBS4UQ44FqKeVKqXzG9/S6xrnXg8BltnfmDcCTUspWKWUb8CTdRs/gyKqkDu3p6NINoh6X6mDYgzeqpfKqz1GtuZzeCtSE/ZiWRA/UgrQg1d6zXfZuyvK5yZnoDocM5YGpcjOFNBhFGEl8GIMaym4LnwHgC4E3NHRBx4wLQnG9kWf9nETaIOxWBe9KW403FOdQe3LQ0Fa2GruLHBiAgJUYNF1fSomWcTIE3fXAeKQ5oDxETDfdkzfIhW3AaOmOAd9n3A4HWsJbfgqBA5FfQcduA8YdD0xjYyMf/9yX+MLXvk/jwllcevFFfP/73+fMM8+koqKCiRMn8pGPfIT29vbsNT1CSFZOGrULyLfSlwSeEEJI4HYp5R1Ag5TyCICU8ogQot4+dyKwKufag/axjP1z7+PONQfsexlCiA6gLvd4P9dkIYT4KMqzw9ixY2lqaqKmdT8LAf34brr0GTzz7LNoA+zIdzenqJQx2pNeNjQ15fdEhoELNT++5AlOpGI0DfJ9u5t13kiC9hSutMvBkYNqQdmw9yTLgNXPPkqiYlL283XHDGaKJEnp4yWX2lV38iBnAJFMC3sPVQ/43LbsSPNmkiRMjbUutG3CoRPMAWq1OK/t2EOTONjvea8czGRJvCvXb0IPHiMWG/z9lwLLPGECiWOc6EoO+F0y2QEe2Lh1F23HytseB5H2fZyNUm99fuVaTtT1v8M8HLN4MykOx3T2l/lZBVInOA/wte0hlZnEX59sotrf/5yx72CKCpngWEeCrS70s6rOnSwGKknyxDPPUeHrv11pUxKyy6Ks37yLzoOF7dyL7ZPjjhznNFTK/i8efo5zx/f0zL66J80ku/83rVzn2oLsrAOVMsFjTzcR8vZ9bhuOG0RJktaCrHruuZJ8byQSoatrYG+ZN5MmhCroGIsnsNL9v0/LyMCxzWQ2/YX0tEasCYtL0r6BYJomv/3dH/noDe/g3j8+TDjgY+VzT/Otb32LadOmceDAAb7whS/wsY99jF/84hcAJBLKMI3FYnjxZw2YWCxGIBDI63tTqVRR/S5fA+Z8KeVh20h5UgixbZBz+3sTcpDjxV7TfUAZVHcAzJ07VzY2NsLBSngVTp9UDQdh8bILiIT6D3fcvXc1ka400XEzaGxs7PeckmJtDeMDkEl5Bv2+Px55herWDNGxU91plw1jyzF++dpa6mcvgt2wdMEMmLo8+3nLuoNUvpYkUD3GvXY1B+C1bzGzRuOQWUVj4wX9nvZc12aih5JU1k5wp22bTsLO25kSThMZM47GxjP7PW3fS3tp3voXAM676HII19LU1FT+Nm6dwHjDIt0O5y6/kJC/74J279MrAFi4ZDlMXlre9jg4Pg42QIQ40+bMp/GM8f2etnF/G+E1OnXjp3BOuZ9VJgWr4IxxITgE0+cv4oxJ/avZ/nL3y1R26tRMnkmDG/3s5CRYrwyYs5YsY2K0/6ysE106f336KQAWLW+EsXML+ppi++Tu547AdlWg85evGVy+/BwWT+2O9q/Rt1G9N4H0V9F4yaUF379oHKyCV1W7zlqyjPGRvs+ta+Nh0puSeMLRko3HrVu3UlXVy9P091vg6Cb1szQhk2CS9OP1+fANwHHxx1vg5DZ8SHyrfgQNCwrzrI07A9747bxP93g8TJ8+je999XPsssYTiUS5+Lwl2c8XLFiAEIKrr76a++67D03TCIcVP62yshLT789yYCorK/s+gwEQDAY5++yz8/+7bORlBkspD9v/HwceQvFRjtlhIez/j9unHwQm51w+CThsH5/Uz/Ee1wghvEAEaB3kXkMjpxIpDK7Rka2F5FrYIUIlCWK6MaibOqEbatc+AhwYgDZhD5ReRF6VqpxCcznGDlDvG1x+PqGbVGvuV7wd508OGhJMZEZG04dwDT5daZs8v/NEn49NS+I13U/Vz61gPOj7TCXwCROPG3WafEEIVFNLOzC4FowSJky4GEJS31M5REFHFdpynyz7aqvaa0ZEnIxpsWpPzwyUWMqgxqO7wzPMhR1CqmZgkb0sB8bN+cyGQMnvDwRN7yK7Z5cWpAbm8pQKixcpQ8Kp1fTMM89wxRVXMGnSJKqqqnjnO99JOp3m6NGjfa7tocTrAob0wAghKgBNStll/3wl8DXgYeBG4Nv2/3+xL3kYuE8I8X1gAoqsu1pKaQohuoQQy4CXgQ8A/5tzzY3ASuDdwDNSSimEeBz4Vg5x90rg1rz+MpvEW41ypw7Gg4npBmE3hZ+CESricSxpM+AD/b+GeNogJEeCxKsqUg9U0DGmK90ELTjFvUY5hRO1+KCkz5hN4nWNKGi3a5wvxZYhdWBSSI8f4fW70zagTVaid+0C4F/uf4X7b17WY2eczJgjovbsjM8I8UG1YNJx5Yb3upWunKPGO1gqdTKlE5S6e3OGvbhWMrgB05VyUVU8B3OnTYGNKoQkBCybUdezXbpKlHDdSHDWATFwOYF42mQSyfITsnM9IWYGjr1Gi6zDU1nPuEj/3Ju2Vx6l/pEPgmWAxw/vurPsXtKKSrXe+IXJ9p17ePOb38zNN9/M1772Nerq6li/fj3XXXcd6XTfediycpR4XUA+IaQG4CE749kL3CelfEwIsQb4vRDiJmA/8B4AKeVmIcTvgS2AAXxCSqe+Nh8H7gJCwN/tfwC/BH4jhNiF8rxca9+rVQjxdWCNfd7XpJR9ldX6g215V8qhK1J3JTMqbuzW4ApUE+o6pr47lRnQgEmkTcLSxdo5NhwPzAnL/t5Efx6YJFrIXaVPcAonGpiWxKP1jTAmdINKN71pdrvGehODypUn0iYTPO4Tsg/pIcbZRTANe2eca8AkdKO73pabWUjeANIXptaMcXIQA0ZPqowab8gtA6YeX6qFsN8zaCq1lS3+5xYhO4wUGhVi8IrUjuKtFJqrxTnnz5iq/o+avBj3cPbkaJ92VWsuJUrkwv6+wUT2HBKvFuo/jFkW2LpePiHJDOKCSTecCW/5PnQehhmNLoV4VWBGSJP169eRTqf5xrdvozqs+CyPPPLIgFdaLqdRD2nASCn3AAv7Od4CXDbANd8EvtnP8bXAgn6Op7ANoH4++xXwq6Ha2QceH/gqCJtDy7xn9DgeTPd27cEIAXM3oDxD4wcoGpvQDQIy6b4OjM0VakkKlfIb7+mBiesmVaTcXYy9AfBVoKXU7viFnSdonFvf57S4brqrQup4hjxJOmKDZ9NUa7rr3rS6seOIHo4BEk1ofXbGqmCoU+LA3X4mQjXUZhI8vOsk65rbehhWDjIJNX59rhkwYxAtu5gYDQ1aD0m4naosBJavkspMkthgHhhbyNHyVeJxQ0bAgT0OLp7s5XsbTfacjDGrvvvZdGtt1Q10h/LA68fyhqg2Bq49F08bVIsUmpvGldBAaHilScrsf8GXUqrKzg2nw5nXuCdZIQQWGl5MpkyfgWVZ/OAHP+AD11/DqlWr+OEPfzjgpW5nIZ26SrwAoShB24AZqPNKKUF3WbkyWI3fLkw4mBqvoSdUIS+XFz2vRyPs8/D8zuPogZo+Hpi4w81x2R2c9kc4fPQIAP/0m3Wsa27rc05KTxFw07Vve/pqtaHSgU2qNN11b9r4cRPwCovxAZ0LZ4/pYySoStQpJEKlXbuIhKeKCrOLjQc7uOHOVf2+TyOlxkkg7FJfq6yH+AkmREODemBExhH/c+99Sn/lkCGkmF3XTbrt6fCFwBNgSlgZw2v29XyXMccz6jYHBpDBqM2B6X98JrLSC+6OTVXQUanx9geZW1fITR0YAM2HF5M58xZwy399m9t/9r/Mnz+fO++8k+9+97sDXial1W/mTdma6eJ3uY9gFH9G7ZQGch8m0qYaWACBAVwhJW9XBG/GCW0NolGTdn+SBFjX3EYyY7KuuZ2tnX46WnqStZJ6iiBp193BnVRSLZVB2h9REAC3d8aaBwLVVKMKxlkDaDok0o4oobteDkfM7pyx9Bt6cIpMmt6wO8J/OWizKogI1cczRv/vs9uAcamvVdRDopXJUR+HBzBgMqZF0HS5+J/9XZUiSSKdBwfGbQNGCAhFiRBnTKWfNft6RvpjKYdnOAJE2VCEiB167g9x3aDC7dpRAMJj68D0zxlxROEkwrWx2dTUxE9+8hM0j5ewV81lX/z8Zzl86BDJZJKnn36a9773vUgpmTZtGqC0Y6SUjBkzBiyTxuXnIGPH1e9lxqltwISi+DKKtT2QB6YrlaPC6GIISTPTBEgPSi7uFqRy14BZtacl6wRstapIdx7v8bmVdIwEd9vlr6qjRlPPxKOJPuEQyFEqdVVGPUo1MSypSMT9IemUEnDZGHUEAGdXpdnX0ldOXWXTpLB8LlaithGOjCFq83N83r7hLeiu0+RKFhKoAqZIKox22hIZVuzqr5RGjqqyiwuyFqyighSxwTgwdkaNq/w0B6EaRKqNc6bWsraXB6ZLN2yeofvt0oJRoiIx8CZW1xUPzG3jSvPgwRqw6rNpZ/RIobm+ucDjxWt7fwr5aind9Rid2gZMMIJIdVDh9wxSoyPTXVnZRRIvqBTvgUJIacPCb41Adggqg8CJn7eLaiJWZ4/PpdshNxvVNWOZH1UuyrefNaFfzoSWdow+N9U+o1RYtkdtIDd12lDcnBHywEyvSHO8S++ze1cFQ3V3pPp7oaaungZfkqBP496PLOv3fWbLHLhl+FUqXtWKjUrq6kN3rekT2orlSs+7aJCKQBVVQ6RRd+kG1VoSbQRCNYRqINnOOdNq2N+a4Fhnd0XvZErHL0eAxAvKM6QlWLW7pd8wpZkaAW8a2AUdB65IbVl2CMkl0b8e0LwIaSAQpDL5ZxUJJ1/HpTaf4gZMFFIdBLweXt7bf+ftzPXAuMabiAJQJQYmlqkdu/uTJMDiqTVcf65KkV5y+hz86bYeYgWuLyoOQjWEzU4mREOk+yG+WZbENyIy6lFCpjJgBuLBOJ4O99NIlVEwKaj6UnNLT20TZViNQGgLIFRDpYyRylgsmDjA+8r2NZfaZ9dDqpHtQP+hysRIFP9DGTDVYnASbyxlUC1GIBwCtgHTxpJpymh2vDCGaeFxxuUIGFYtZohKKzYg1ypb/NLt+UzzZA2Y/vTALCnxYCkPjNvQfAjLwO8V6MbAHr8+cDww2qgHZvgIRTETbbQl0mw61Nlv51UD3mUPjE38jGrJQbQJcov/uTywgEtOUxO5CNeCkerm40D3ZDQSi3Gyjam1oT4LMShNk0q336XdrkBm8IrUibRJyHJflNAJITV4BzJgVGjLzZTbLEJRvJZOgPTAtZqyZFm3DBjlgWnwKINUE31DlTHdcL8aO0CgmkqRGkIHxsn2cZ9r4ozP+ROqCfk8WR5MPG2OiLieg0NJf3aO749rJUbIo5xbkbo/ozQrCuc2gRdAUwnKYS8FemCcENKoB2b4CEbxZGJoqE7SX+fNDnhwkQOjvqfBP3ChSUWudLn4Xw5m2ymQB9P2wpGTiSTSI+DlABUOMdPMqtXY39rXgOlRVTboEiEbIBjF55DFB9CCSaRNAjLhvqcjFAUEtTZ3qLkXDyaZNgkLHW0E+lh3QccYJ7r6r3rrMez37BZHxy7o+KllUaqDXs6bWdcntBUfoRASgUoqSJJID86BqRihbB/HgPF5NM6eEmVtc2u2TSMhrudgzNgGqkggsPrlWo3UfJa2NASqHlJzS6KPYapSkkcohORRBkzIY5E2LKzB5IJtSClzDJhRD8zwYS9iNZoaPP113pieyZmM3PXAjPX1X7kV7OrFI6GQamNiNETI52FPwk6tzdGC8Y4QudhZ8GZVGrTG0328VyO20wvV4NU7ADkgB8ZIp/BKYwRSNT0QjBDMdFBb4WdfLw9M3A4huUaSzUVOOYGBDBgtk0AXQddc0gSqweNnsq+LRVNrONmPZ0gJn6WwPAFwUVWZQBVhksQGkV5IJRP4yYyMByYYVZXNDZ1zptWy5XAnMd1Q4nqMnAdmQkMDHiGpJMX/Xruoj0FaLo/yYGViAFK2HerBQkrZx4AxpfrMtb6fC9sDE9AkEknaGNoLY0m6VXgLMLqGek6D4dQ2YGyV1A8vVh22v87blTKoEglFYvTkW9tymLAt/THe1IAhJMe1D7hnWOVA0wSzGyrZ3mlP0HY5AcuS+EcihRSyC970CrXY9Q6HxPUcb5qrBkwUYaUJofcbQpJSIjIjxBsC5blKtjK1LtyvB6ZC6CMUQlLvM0KcE7H+DRivEUfXXNSnEUKFkeInmV1fye4TsT4kS1VKI4F0+136K9GQmKnYgKdYKScc4qIH0kGqXf2/+1mWTKvBkvDK/raeiRIj4RnKqYfk9fRNqSnHhszn85FMDqwjBOD3q7nVgwkIKnopsjshJDGCIaSApgwSPTM0D8ZJ+1bX529aJJNJfL7iRPpObQPGJsueP1E9nIpA346QTaN2c2A54mee5IDaBD1CSCOxuKDCSK+22YPKDiElMyNHLs4SUgPqufQOI8V1ZYxamg+8/dcWKQvsfhYV/cuV64ZFWI4cn4lQLSRamVob7mv0pQ3CQh+ZPpZ9bgN7YHxmkrSbBgyoVOr4cWbXV5E2LA609iU+V4gRSIm3jXLL4Wz0A+kU+3N7c3FgNay+Xf38hw+wWNuFJpSgXddIJErkIqce0tajPTMq04ZFUJaeN1dfX8+hQ4dIJBIDehiCtgHjExZVQW9fA8YOIYkCjIGSQVNrplcowyWVjwcmV4U3D6NLSkkikeDQoUPU1/dVVc8HLrkcRgh2x50cVm7g3SdiLJ/VU1ynK2Uwz5NEuDng/RUgPNRoyUHkrU0qRBKpeRHegHtty8GchkoeXx+AINmK1PH0CLqDncKJ/iQQ7HcxriSJ5atEGwEZ9XG+JC/uOknj3Pqe9YbSOeHAkeKaxI8zdXwFf9l4GN0wCXg92baNZBYSwPhAakADxm8lMPwua9RU1kPsGLMb1LvacayLaWO6n09MNxiPy3MGZMdblrPRD8RI6CAB7HsBLHuXbmYIH17B/AlLWbuvlTkNle4nSuTC3jDOrDTYeqSn8Zco03xWXa2e/+HDh8lkBgj5mRnoOk6nppMSAZInem66OpIZTurHEMEEBAd+52WBlNBxAoIpWvQgXV6N1orBw6Vpw0KPtdJKEtGxLa+v8fl8NDQ0ZJ9XoTi1DRiHAyPiVPgr2H2ir5BXTM8QcbvImBAQrCaiDawDo4rsKX0O4baIkY05DVXECGFpfjTbA+NwcwxPCK/bsVl7wQsZndRWVLO/tef7jOum8sC4vcuzDeVApotV+9u54c5VPXRNekySIxVCOrmdaWPCSAkHWpPMqlft0PU0ATIj5BlSz2eCP8UrAxgwASuJ4XXZgKkYC0dfyz6jncdjXHl698fK05dCuEkUhxwDpn8PjJQSb7oLfLhvKEy7UFVLNlKK/zDtQs5pq+CBNQd44xnjR9YDY7+n02os/nKkpwemp6ZPaZ9ZdXX14Atz7Dh890Iem/J5PrVnCVv+6w14Pd3elm/8eT3/vuE9cNlX4ezPlbRteeHbb4La6fzJ+iAvpKbz2GcuGvT01Xtb2fHAV3hvxSv4b93rShP/vwghCb2DmXY8uze6UgaRkSjzHoxQxcA6MKrEwQik3eZATeCClC+a5cDE7Zompm/kFjySbUzpLxxiT0au74ztdlULu8xBr2y3hJ3pA4xgCKmNqXXKi5DLgzFspVvXsnxyEagC4aHBl+yXA5M2rJFRCa4YC/ETVAW8jI8E2XW857wR102qtJT7/czuO1nSaS/ohkVIjlC2z+SlcONfoWo81J8Ok5eyZFotyYzJy3taFM9QeFyvtwVk14FZ1SZ7TsZJ5fA5HE0fwxNyjwPpwJ43pobTpA2LPSd7bsiMrOL5CHitDqxWnKbD6/ni8S9QffKVAQX3HDjSH25yw05tA8beGZNsZ8aYCvb064GxU/zcdrkGI1TKODHd6DdGmkgbhEUKMRIhBxsToyHCfg+dWiSbhaR2nypM4zp8IcVtSbbZhNTeISSVheT6wmJPkDWa6l+9s90SPUQJRyBUE66FdBfToiqu3SMTyeFTjES7hAB/JWcZG6lv39jnYyWyp2O5rRJcWQ9WBlLtzG6oYsexnh4PZwy4vrDY3xcw4xhmX05Cp1MHKedcVzF5Kcx7G7TsBNPgnGlqgX5+x4lunuFIeJNtD8yUcBrTkuw81m0AOlWyzRFQosbjA38V43zqnW053Evx3CFkj8SmZ98LYPNZPJbBOXJzHy5YbyTTJpWMGjClg10hlVQ7M8dWcqi9byG0rpRTyMvtyaiasIxjWrJfXQe1GOsjasBommB2fSUnrMosidfJjpIjMUFCt5hdXQVHOpI90vsStjGqhVx27duG8lUzFFfptnef2YsDM7KaPtjEzpojL1AV8LI/xwMjR6hgKKB2eXonU1Nb+X7qP5D7X+7xcVYwzu3FxVbjJXaC2fWV7DreMxMp7rzPESLxVpDqtzBnLGV0KwS7Hd5yMHmpSqU+voWG6iBTasN0pgxqPCPgsXIQqAYE4/3Ky5dL5E3oygPjekaZg3ANEWL4vRpbeoW3smTtkZgzpl2YJfLi8bLKmsfO44PzcJyimG6uWae2AQNqICfbmWnHs3t7YbpSGcJW3P20w2AEjx3LXrGrbxXehG5QpY0QuTIHsxuqOJSu6EniFSMY2sqq8YaxJBxs694VxNJqZ+x6HZhANQgPZ9j88N7F2ZK5JF63n1tOdoj4w428IdLc0wOTtn92mygL2V2eAHwYpHc/3+NjFXpLuT+BOwZMXBkwumFxqK07JTamm1SMRGVl+/sqRZJ4P0VDYyMlI5CLSeeo/w+uBsh6YaJaamRSu0Gl9Nqcw5DPw9YcQ8ExkuUISFUAEKpBS7Vx2riqPh4Y0iMovTB5Kbz9ZwBklv4z6+Ucdh4fOPsNusfr69KAEUJ4hBCvCCEesX+vFUI8KYTYaf9fk3PurUKIXUKI7UKIN+QcXyyE2GR/9mNhs1OFEAEhxAP28ZeFENNyrrnR/o6dQogbC/4LQ1FIdTBzrG3A9IozJlI6QelyGjVw0ghiJlRZg0/ev75PiYN42qRSpEZEAyYXs+srOZKpQOZwYKpIIkZCzwGyBeOm1qkFtznHrZnQbSE7t9smBAQj1GoJwn4PGw909Pi4p6aPy5NRr+yQC/3be3BguvVpRsBQnnYhCA8SyODl5JglPT6O24uLCIyQByZ+PJuJlDt5J1M6QfSRM2Dov5xALOXICPhhhDIXiU5VOjoH1wJk6yJVjwTPMBfeINr+lby17iDbcjKREs6GbCTIxdBdfmF8NVuOdPagE4yY4rmDBe9WZVKSJxQX7NgQHpi0QSUpPEEXK7QXcO6nga05v98CPC2lnA08bf+OEGI+cC1wOnAV8DPRrcTzc+CjwGz731X28ZuANinlLOAHwHfse9UCXwXOBZYCX801lPJCMAopteAJAbt7ucEsp1icy4PrYNKfZb/3VzBOFXMcIX2OHMxpqKJVViH0TjDSKguJpKudtAfsAT/FNmD253gT4ilbVXmE6sBoqXYWTIyw8WB7j48cD4wUmvskRic7BEB4iI1bxsG2JBmbQ5GV6h+pXd7pb0cKLzekv8TBijN6fBxP6gRFBo/bHhi7IjWxE8yyS2rsyJm8u8XiXO5n3iCW8FApEv3Wzum0y6K4noWXCyFg0hLl+QOW2B6YkBWnXY4AgRdUW2LH4eirfKPjS/iOrMkaCs6GTBux+aw2Wz+qNZ7maE4Fb89IKZ470DSYch7sX8Gs+kp29ZMEk4uEnaGquTgu8jJghBCTgDcDd+Ycvhq42/75buDtOcd/J6XUpZR7gV3AUiHEeKBaSrlSqt5zT69rnHs9CFxme2feADwppWyVUrYBT9Jt9OSHUBSS7QR9HibXhHtkIpmWxDNCVm792HqqRBIPZr8F45TEe3LkOq+N2Q2VtGI/m0SLLaOexBMe2R3L2MoAYb+nB5E3rSfwYYycWFayjbMmR9l8uLMHN8fRp5G+CvdJjE52iC8Msy7HN3UZhiU53J5ESul+raHemLAITRrskhP6ZCLpSWUouG4sh+sAAfETREI+GqoDPd3nI+XaFwLLVzkwB8YWchyxcIiDyUugdTckWulIKJmIoBnnheZUH0+zK8ghpHqlwYL0pqyhEE8rVWVPaAQ3ZIlW5o9Xc1ZuGMkzkurdDqacB617WFijs+t4DGuQTCRnnnOT65SvB+aHwBeBXOp7g5TyCID9vyOlNxE4kHPeQfvYRPvn3sd7XCOlNIAOoG6Qe+WPYCQrcT1zbE8tGMflCri+m5rQ0ADAjCqTeeOr+pQ4SOgmoZESGMvBxGiIhMeOXSda7AGfwjOiIaQ2hBBMqQ330IIZsZ0xKE9fsp2Fk6KkDYvtR3Pd1CZhRpCQPXkpjD8rm70FqgxD2rQIypFVe6Z6AgDjRWsfMbt0Qk3mPrcXF82jjJj4cUApUuemUne79t1/n5a/kqqBODC2B3LEwrsOJtmhwINrWLW3FYHi7XTIUB9Psyvoh5DqhJHiukr99YwU6TlcC6l2Thun+lKuAeN1NhcjuYmduhyAc7XtJNImhzsGLo+QSLmv6j1k4rsQ4i3AcSnlOiFEYx737G+LKQc5Xuw1uW38KCo0xdixY2lqasp+NrslTn1XCy81NeHXdXYfM3jm2WfRhOBk0sqmHW7cvo+2E029b102jDtyhNOARdUx/nLUn22Tg5MtMQJSZ+/hkzTn/D0jARmoggxsWPk0ew7PxC8M9hw6wf4RaNeUI23MMJI8//TjhC3JlgOx7PuOnTwMwNY9hziWcLdt87oyVHUdIXlIRVn/8MxqWqaoSXPbzjRXiSQJQ2NNzjOLxWI9+mo5MSdTxdgTKzi8fQMAT67aQOc+L2GU0fDSmo1k/O6IT+WiuuMYi4AJoo11m3cyPdOc/WzHrn28Edh78AivudzXzhEVJJu3srmpiVBGZ/WR7nkDvRN88Or2fbSedLddZ5keKkixdsMmAid6qp2+ujvN6SJBZyrAq0U+r1L0Sc1McSEazS89SCB6LT5NUkWCBCEC7c00NR0c+iYlxoQZH2LOrjvYNvl61m+bw99e2oA46mf7bp0qkuw/3sbeEZjPJh1qYZa02PDCEzSENZ57dTdneA5hSUnATIAGTSvXulbduTeEZXCBFqDm4DPA+/jTUys4c2z/ZsOhgx14sNh96DgHXHqW+Sj3nA+8TQjxJpSofLUQ4rfAMSHEeCnlETs8dNw+/yAwOef6ScBh+/ikfo7nXnNQCOEFIkCrfbyx1zVNvRsopbwDuANg7ty5srEx5xLrRTjyGI0XXcTh0EEe37eJOWedy6SaMFuPdFL5wgoAFi69oJtB7wa2xmA7XLVgHA8cSjP+tMXMG9+9c/remr9BBqbPWcD05Y0D38cFrDnQAbvhrFkTaUhWwgmYcdpCZpw7Au168hnYCxdNNHghNZ17VjZz0UUXo2mCP6zZBRmYd/a5zJvrctvif4XXNvGuqy7h2+ueIhGqp7FxIQDPd22h6pBORU09uX2zqampx+9lRWALPP44b7/wTG5dsRZ/7UTOXjqdLc/dD8D5l1wxMiJj7TPglVuYHeqkraYh+8wAWmJ/hYNwxsLFBBc0utuu5qlUZlI0NjZyOLSfJ5s3MXvhuYyLBLnziVUAnHnOcph6nqvNymyvpzKWYMqM2TSeN63HZysTW6nen6J2/Jyi+1XJ+uTOBUzTjvGRd1zGojOP4P+NyZuXnsbEt142/HsXg9Qi+PYdzJ8+kYlHQ+jhGhobz+aJ42vxHzOYOms+Uy9qdL9dz7wEu+GCCRkWz5zC5sOdNDY20pXKsOvpX5DRgjReMkLPzMGBczktvh+A8LgZNF44o9/T/rz7CeiAmaedycylja40bcgQkpTyVinlJCnlNBQ59xkp5fuAhwEnK+hG4C/2zw8D19qZRdNRZN3VdpipSwixzOa3fKDXNc693m1/hwQeB64UQtTY5N0r7WP5IxgBaUG6i5ljlWvLCSPFdIPqkZK4tt288xRJn1f2t/f8fATd1L3RMF5F7RLtx7BSI6wOuern6uc/fIhF2i50w+K4HXrQ0iNDyAZssngHQkrOnBRl44H27EfJjEGV0Ec2lj12DgDi5A6m1VXQ3BInmTYICR2J5m7xy1xUjgME0/wdfTgwTtVl/0jwEyrqu0NIdibSruMxpRsygqnKWqiaSpEk1g8Hpks3VM2hkcz2cTB5KRxaD5bJoga1T55oh81HBMFqqJsFh19h3vjqbCp193w2AmG3A6vhpR+qn//0US6t2Edziyov4yixG96RpRAAMGU53uObmVqR6SEC2BtSdz+EPxwdmG8DVwghdgJX2L8jpdwM/B7YAjwGfEJK6Yy2j6OIwLuA3cDf7eO/BOqEELuAz2FnNEkpW4GvA2vsf1+zj+UPWyW1pxaMegldqUyO8JP7SrwADf4UtRV+Xtnfk9wmRlJgrBcmT5yIJQVtJ4+CPoKG1b4XwLJj/2aG01IbgG5pfJ/hDKCRIPHWKENZ72ThpCi7TsSyda4SaZNKbWTLQjBGGTCc3J4tw+Ckd5u+8MgopAJ4/VAxlometj4cGMs2YLTgCDy3irFZ7aPZ9d1FHWPpHLG4ERgDWrCaSlJ9BDnBFrJjBFOCczFpKaS74MQ2FXKDkW/XhLPhyAbmja9iz4kYqYw5shuyXvPZ2dZmALYd7VL6NCI1MgrBvTH1PEDyxsj+wbVgRoDcXpABI6VsklK+xf65RUp5mZRytv1/a85535RSzpT/r70zD4/qPA/9750Z7fuGkGAksWOMDYJY4DjExE6ctEnrJG1au03j3CQ3XZL7JE/TpzdNn9Zp3KRpb9rcmye3i2+z2G2WZm0cNxtesHFsI2xjGxuMAYGQ2ARoX2ak0Xz3j+87o0EIDNia8wne3/PoOWe+M+fonTNnznm/dzVmhTHmp1njTxljVrttH3VWFowxCWPMe4wxS40xbcaYjqx9vurGlxpjvnbRnzBoJ5AYoKYkn4qivEwm0lAiFV7pbfdjlsQgrfFKdmbN2I0xRHyIQHcsb6iknxKGe49PlZ4P4wefnRIciVC47EZgqhZM3sRIeLJlrrN+1sQrMAZ2HbH1YGzqeTJca1r5QptpdPJlWmpL6OwdZTiRopgEk2HP8sobmc/ZQbzpMAt5TSbsDbnjUSqL86krK2Bfz3Cm3xYQygNZCmwQ70xp1ENj4y5z0QMLTOCOd9WWgfDlalgLg0dYUzVO2sC+E8OYMK22LZtspXgAEapWvQmwgbyBpS8ddkYZ2KDsSIzrYy+zr2d4xtY3ABJMbnMYxHsFVOKttMtEPyLC4roSDvTYB92QK71tm4zlOI00iHpPDtLaVMn+nuFMymHSNbEDQs9CAmisKKSPclJDJ6fcNGH8sIKU4PIFMG8VtVdtIhoRDp8etY3/jFNgwsgoyDSatJlIQKag3dhEimIzFu53GYlA7TI49TLNNcWZ5nHFksSElUIdUN5Idfo0p0fGz2wYFzSazPV562qHZ/7drn/zPdDVzrJ5pezrGZ5qbwDhKFYF5ZRIgqcO9Z6VkpxKDBMlnXtr8kxUL7aZXN1PQWDlCFuuxlYArsbOj/ccGyQyHuKELN4Gd9xnFau8YqqWv56aknx2Hx20XbLDbHGQTX4JNKxh5fgLDCVSZ000AiIhTCCvAAXGPczG+gFYUjfVlTrTyLGgLPcm9GD2lhhgXZN9+D3rCqCdUbnVgxgYESGRV4WMns4qrhTSzCDeBivfDr0d5IlN8+7sHbUVNTMNE0M4ZxlXZR9VJfk01xRn4mBGxycpDLmzOAC1K8DFwIC9gRd7kKpPeSPl4z1Mpg19o+OZYZkISYE5o3rxOBzaxvL6MvafGJpqZhrJt+6vHHN0LEYpY7xwpJ/f/dcnz1BiQnWHTCcoaNfdHq7VNpuGawGhfniPbSlwfDArbi7EEgcbfh/Gh5FTL7Oq0VbkDfqnSdj3jICm66kbfJECxs/ZEymayn3Yw+WvwGS5kMAqMD1DSYYSEwwlJqgIo/Q82Nbt+aWQGODaeCUiZOJgRpLWtA+E/9BzpIuqKRjvI5oKWYEBO5MaH4bT+2iuKebw6RHXemGMVKQglAdLtgsJYM3CykxF3mRynEITchAv2DiYgS6aS62VY8+xQUpIIh4oMAWpQQpJnjG7yygwuY4DaNk0dQ1JBFo2sXReKSPjk+zvGaaEMdIhfZcHh+xEq5gkE6lpFbx9iTUJWHgdnHoZ+m0GS+hyFZRB7TIix59jxfwy9hwbJJaZkIUoW9NGu+x8nFUN5ew9PkT/6IRtjBhWheDpNL+eSHqca6WDfSfOjoMxxpAXKDA+9kKas2S5kIBMJlLHyRGGEykqogkkrIu3sAISg5QWxFhRX5bJRBoN+iBB+A89R6xsHuVmIPzy1pAxBXN0pw1I7R1lJJminFFSeSFW1ISMpW9NvJJjAwl6BhNTHZ/Dtqa5TKSGyW7yosJLx4cokhB6DU2nzBazmz+tmF0sNcoEeblXSANXZXE1LHgdxNsygbw7D/eHatpfWG/rhZYyhgE2LqrObJNkiEHsMxEUtOt42C59kKthLRy1gbwvHR8K36IMULUISuvh8JOsaixnfDLNriMDlEoivBYH02my5QI2Feyb0QITVlHMy1+BKSizsyj3YFnsmjoeODnMUCJFZSTEqP2sKsGtTZXsPNxHOm1cGwF/YmAAiqrmUcUwpYza/sFhRsfXLrf//+hOmmuK6R+d4NhAglIJb2ac7UICWBu3rsvnugfAl4yy2hUARE/vI15d7FyVydz3GppOeaDAnJmJFE2NkoyE1D8n3gbLf8VaEIxheb19kDzb1U8piZyWS8+muXE+AG9aVETakOlPY4yZehiHHWsSsGCdvfceesy+DtuFBHbyM3SU1upx+kcnyJ8MMfA/QMT1HHoy01Jgx6FeSkgQC6vFwXSKq6FuJW/I33dGVeqAUdcjD8hpfOTlr8CIe9h2bIWudppriolFhI6TIww5f3ZoF29Becbs2xqvYjCRouPUCGPOHQJ4o8BU1jQQkzQL5BQT0WIbFBoWkSg0rHEWmKl4jjJGSeeHdPPOK7IZBU4hvbqxgmhEeK6r34+eJmADKyUKJ/dm4mBKJBFOmnI2gQJD7xm1YPImR5mIhqTAgFVixnrh9AGqSvKpLc3ncO+oNe2Hdc9w19DnfrWF1y+p4dP37XYpwWlKjAcP42wKymDeKpgYtXWGwnDtTqdxLQBroocA2+IgTSS8XmABTdfDwGEW5fVREIuw91g/xZIk5osyCtB0PSsndvNid99ZAeSjE7aRYypSYMMjcsTlr8B0tdt4iSNPwT2/Tt7Rp2iqKXYWmAkbxBvWRVJYkYnNWddcCdg4GBsDkyQdK7IPaw+oqLEzvybpIeVDbYLGVjj2PM1V9qa4++igVfrCsiaIQH4xHHwUutopzIuycn4Zz3b1E/GhpwnYB0j1Iji1N9MTqYQEEvb3WdYAQFPsTAtMfnrMKsthEXexCV3bAVjq3EhlMkakKKR7hlNOIuND/MNvraUgL8LHvv0svaPjWfVpPHroBW4kX5Sq+TaQtzm5F4CyoFhcWHWQAlwcTOxIOyvnl1Hk3DE5b2R6Hg6WrKHYjNKcOsjv/L8zA8hHXXmBXNetufwVmKxOpEFGQZCJNJx06a2huZDKMwrM4tpSygpj7Ozqz1RhDM0dMgNSUgtYBWYyrDiTbBpbITVGc9r2+txzbDDcRnZd7dZNeXQn3PPr0NXOmnglT3f2ZZlWPVD8alfAqX00V1vFoCjHzddmpKAUCipsNV6nwBhjKEiPMRkLUYGpXW4nGU6BCdxIpZEQs0MCRWB8mPkVhXz+3dey68gAd/1491RNK59m7fE2u/RFqSoohdrlFPbsYkFlka12G7YCD1C/2rpeOh9nVWN5qNWez8WjyaUAXBd5iYnJMwPIR8YnKZYk6Rz/Xi9/BaZlE0ScSSuaBy2bWFxXwqFTo/SPTlBsRsK7SFwQL0AkIqyNV/JMZ5+NgZFEuHEm0ymuAaBe+hmTEM36AS6Qt/jk89SWFtBxasTNjEPqKjuDorx2YSVjE5N+ZZTVLYfTB2ipLiCPFPmk/JCrvPGMarxBLaRQFZhIxFaUdQpMEMhbFmaxuMCK5wJ237Z6Pre3xfnZi8cplxDLCJyLwAIzMWqVfB9obM20FCiRBGkfJmTRGMSvy8TBlIRY7flcrF61miOmlusiL9kA8sU1mW2BBSbXk+7LX4GJt8GNf2rX3/73EG9jSV0p45NpTvYNEDMT4buQXGXD1qYqXj4xxMmhpDXte2Q+fL4vL7O+r1/O8oHmnOrFUFCRCeSdTNuOt6H5jFs2QcSdo2gMWjaxJl4JkFXTx4Pvs3Y5pCdYGjvpVbFEyhupz4qBGXEF40zYSnx8gy2HP9bH0nn2+yshEW7cHEy19AB+7dpGBJuZNGyKeLprMBzZZmLUFWgfOpaxTIZO41oYPk5zXj+ljDHqw4QMoOn10LOba2oMpZnfpgf3DMf65ipKF6zi5tjztPIysciU220kqF2mCswssPZ37dJlgyxxmUhhlgTP/F8zaWcn2EyktIEnO05TQoKIRzOpx49PrQ+ZwjPrT4RBJAKNNpDXukMMpYwRKw7JAhNvg3f9s13f8AcQb2PpvFKK86NZKfEeKAouE6l+vItSscpC53nam+SM8gaqJ09lLDCj49ZyZcI+Z4ELpPspltWXEsFaho6OhRSbFtwTklNKys6ufkSgjFGGKAr/t5lN52OAe9A5y2ToOOtt9+4nKJMx9vYR/oQMXByMYeXEnowFZm/fzGX7Q6GrnYrjT1BoEnwz/7M8/MD9mU2j4ylKJPfB7VeGAlOx0NaacNp/UAumTILgypAUmDE3O+nYCkCrm7E/09lPWSSBeGQ+vG5pIyPGdiwek6IzzIeh0dgKJ16gpSqPYpJExYQXAwOw+jdsQKor3BWNCNcsqPDLhVS7DIATHc9lLDBfeuxo+Dfw8gWUpXoZGRsjmZp0zew8iM9ZsN5mbnVtp/P0aMaadu8zZ5fyzwmxAmvpG5+ywGxcXEN+LGJ7JFHsx28zoGWTzUCSqO1j1rIpbIlg/jWkibCKDkoZ82NCBvZai+TR99KjGQvM/7y/I/zfZsChbXbCDeRLilTHo/QMWjmDfm+RHD+zrgwFBuxMyikwlcX51JTkhxso1dUOT/6TXf/ef4OudiqL81lcV8L4ZNrOjsO+eWexvrmKWJkN5L3h6sWsb64KWSKsAjM5zjV53VlNOUNUYERg8WboeATSaQDmVxT6lRJfWA5ljQx3v2gbTAKDk/nh38DLGhAMdQxwanicUVcLKXQlvqAU5q+Gru082XE6c88YnCwI55yJWJmSU2az9c1VfONDG1ldIzTMq/PjtxkQ9Pu56c/tMrBohUl+CcnKpayJHqRUxhgVT5S+/GJoXIvpfDxzzxhIhXSdzURW80kR4fHJq/j37XayFlhgcl1478pSYAYOw+AxwLqRyoIHSxiz9uxW6qmJjGm1NW5vPiWS8CqAC6Cg3FYBnVfrwY8dMqbgxeP7slJIQ/YZL7rRWtZOvMDTnX38ZNcxikkyagr8iU2oXUZ8spuKmO07NB7xwKJWvgCABjnNyaEkI4kJa1ULu0YN2DiY7qfZ2FJBdZ5V+saiIT70ovl2ApQVT7K+uYp4SYrS8urz7BgS8TbY9Ak/lBdHUfN6bijupiaWZNNqTyZkAE0bmT+8h7qoDXdIxjxRrmBKGV2wHokWULNsA9/c3kkyNekyZ3NfeO/KUWAWBr5s+6OvKIqFO2uf1ko9MK22NlUCUGxyHxD1irhU6tCVhIDKZiiqpn54j80MgfDTNRffaJcdW3my4zSTaRubM4pHM6m6FZQMdnDnW5sB+OStrwv/Bu6K2dW7arzJsWEiYoj6cK3FN8DECOsLjvCFW5cA8Ee3tIZzzrraYbgHjj9/dlBsYtCf36bvNLaSN3aS/MkR6mtrw5Zmiibbc+gPmo4A8OX33xj+bzObeBu84Y8hNcb/WNbLqeFx7n/uGCNJ27spojEws0TDtVZh6Grn6c4+Ht57MvPQ23U6hECpQJudf411LSxYDwQKjKGIMY6N5a6i4QXhUqm9uUmKQGMrBT3PUhOz3+VL/SEXpCpvtJk+Bx/JxCaUSoIRPLByBNQuh/EhlkZPAHBVU0PIApFRYBpcP6TEqHWR5PlQSj2+wS672rnKPUuWxUM6Z9lBsKnkma+TQ37VgPGZhrVT677czyBzrVUefwIiMdYtnh+yQDOwaBNIlGsST7NsXilfe/wgycQoUTE59xq8ogIjIoUi0i4iz4nIiyLyV268WkS2iMg+t6zK2ufPRGS/iOwVkbdmja8XkV1u25dEbPlDESkQkf9w49tFpCVrnzvc/9gnIndc8ieNFdj0ue4dPNlxmrQxmSDe7UcnLvmwr4p4G9zwcZtRcHQnYNNHC5ggSppvPnvanwAumFJgPErto7EVevZQke4H4E9/7EHQ2+LN0Pk46xeU8I0PbeSaeTHqamr8mUnV2qaOHHnGLvNDLqMOUFSFiRVS7xSYibFAgfHACplJAtg+lb4clnu3ZZO9lwGQhprlU9uSg+FbIOcK86+xfZrALwWmpMZmCqbGrAU+7ArBM1FYAfE25MCDvP+GFl44Mshz+7vtNg/TqJPATcaYNcBa4G0ishH4JPCgMWYZ8KB7jYisAm4DrgbeBvyjiAQ5h/8EfBhY5v7e5sY/CPQZY5YCXwT+1h2rGrgT2AC0AXdmK0oXTbwNju7k+uZS8mORTOGn1mVNl3zIV82Sm+wPad8WAHYc6gs/UPBcTDg3zdCxcOXIprEVMZO0RV4CoDflQUbBohttanz3DtY3V7GozFBcGlJ690zU2VTqQGn2wlUpgpQ10Bzr5+RwgtSYVRQKij14IItMJQFkOj6H9NALOmVf/1GIFcGT/wjpSZhM2WtOFZgLI78Y6lbadZ8UGIBm2/nZO7myWXIzHHuOdy3Pp6Ioj9N9LqPWNwXGWIKcvTz3Z4BbgXvc+D3AO936rcC3jTFJY8xBYD/QJiINQLkx5gljjAHunbZPcKzvATc768xbgS3GmF5jTB+whSml5+JZ2AaT46zL6+IbH9rIm1oKSUcLWb9o3iUf8lVTXA0LXgf7fgHYlMiqPBtcmYx65Hboaodn7rXrD3/Wj4JUkAnkfX3kRQCSsZLwz1nLG6xSevAR+3p82A8lIaC03hYB7D1gX/uQHQVQviBTjTc15pELCaxpf+Cw7U4N4Voh423w1s/CO74Ihx+HbX8/VRfG54eeb1QstMtBjyZkYBs7gl/3jOksvQmA4q5t3HZdPDPpPpDjPIULioERkaiIPAv0YBWK7UC9MeYYgFsGWsACoCtr9243tsCtTx8/Yx9jTAoYAGrOc6xLI4iC79rO+uYqWuujRHzwGS97i50ND59kfXMVX3q3rdXx329e44/b4dA2O9MDu/ShIBXY2ImSeTRJDwD//IHN4Z+zokqrWLn6PiSH/VESwFoU6pzrIRKzWS0+UN5gq/EOJUk7S0foadQBQRzMgQft0ge51twG17wHtn4e9ju5fLifzQW62uHAw3b9obv8mZBBprEjyUG/5MqmYS0UVcOBh2htqszUuvrrLV05deFfUJSoMWYSWCsilcAPRWT1ed4+k9POnGf8UveZ+ociH8a6pqirq2Pr1q3nFG5D4TyGdv4Xu8dXs+rwfkrTMdrP8/5cUDpUzesw7Ln/y5yY/ybKB/YAMHz6+Hk/Sy4pHyhhTSRGJJ0iLVGe6y1h0BPZVhc2UzvSQypayFDnC2ztDFsiWBRdRNPhH/DYAz+hbaiX3rxh9k47X8PDw6F9vytSZTQAKSngsUceCUWG6Szun6Rh8hRdPf30jtm5zo7ndjNyYDRkyUDSKd4QySd6fBdpifHoY0+ELRIA0Yp38bqCR8n/z48SBV7Yf5hTA1sv+XhhXpO5pKnzeyxKpxAgPTnBoYfu5XBz+NcZQHn/HloBBo+Q/trbeW7NXQxWrAxbrLO4quxqKvf8jAdOvytTbXwglc+3HtjB0JLcTIouKs3FGNMvIluxbpwTItJgjDnm3EM97m3dQDxrt4XAUTe+cIbx7H26RSQGVAC9bnzztH22ziDX3cDdACtWrDCbN2+e/pYpTr2Ros5fMu/GG6H7y5A3n/O+Pxek3wgvfZ6rYt1ctXkz7EvBTlhz3Q0e1U7YDOvWwaFtRFs2sc4buQCehK07iBVXhf9dBjQJ3Ps9NsUjsGOChuZlNEyTbevWreHJG3sWjj9ErLjCn3NWtBe6fkBscpjK4jwYgutu2AxVLWFLZum8Djp/SaSw3J9zBrBiHnzlFgBWx6tg4+ZLPlSo12Qu6SqGe74Hk+NEovksvul9LPblnrbtaaxzJE3UTLKuegQ2bQ5ZqBmoOAI/+iM+sL6Uuw/b+kjjsWJuf/N1ObOCX0gWUp2zvCAiRcCbgZeA+4AgK+gO4Edu/T7gNpdZtAgbrNvu3ExDIrLRxbe8b9o+wbF+E3jIxcn8HLhFRKpc8O4tbuzSiW+wQagD3S5q3wOfcSQCS99izdPpyaky4T65HcDLglRAJg7GqwDG+AZbQr1jq4uB8ey7DAJ5fZKrzKYmV6dOMe7SqL2KAwiuex/uGWdg7D0E4IE7/XU7+ISPFYIDgkwzn9ovzMQSGwezamQHH99kyyB87rbX59SFfyEWmAbgHpdJFAG+Y4y5X0SeAL4jIh8EDgPvATDGvCgi3wF2AyngI84FBfCHwNeBIuCn7g/gK8C/ich+rOXlNnesXhG5C9jh3vcZY0zvq/nAxF17967ttvBTbYgBvNksezM890048nSWAuPRzdtngpoO48P25u3DzSiv0PqyX/4pmLQfMRPZBKnUPqRQB7hqvPXSy9iIiwb0ScEK4mB8U2AObct0tGcyZV/78BvwnXibn+cpUK4ObbPKi48yApQ3wLyr4cCDtCz/FQCuXXzpIaqXwisqMMaY54HWGcZPAzefY5/PAp+dYfwp4Kz4GWNMAqcAzbDtq8BXX0nOC6Z+NeQVQ/cOmxLpy6w9k079Cyips2OqwFwY/Z2AwOARW53UlxnV4s3wwKftum/fZWWzDeAd6/dH6Su3FpgG6cWMD5OORYjECkMWKougmndi0J9zBq6qd77t9uzzjF25cHxVrqaz9CbY/i+ZQqzepVFfdkTzoHGdq+ngUeGnoip7g9y3JavWhGcPPV85tI1MvPfkuD8ZUotunFr3TYE5+ox1V/Z3nl2SPixK6zESpV56KSFJMlLkVyGv3gOA2HRqX84Z+O0OUS5vltxs77kv/9xWuo/m5fTfX3kKDFg30vHnnQXGI3PwsrfAsWeh76Bf6a2+46vPuGGNrVoJfrlCwCp54pnSF4mSLq2ngV6KSTAeKQpbojPx8ZwF+BqfplzeNF1vCyr27A5lwn2FKjAbXCdo41fdhGVvscuX/svfMtI+4usMNBK1LkuAwe7zvzfXBM1EPVP6IuWNNET6KJEEqahH8Tng7TlTlNDIK7SFOyEUK7Nn3QJzxMLrptZ9ssDMvxZK58PwcShf+MrvV6bw0Wfc1T7lZtjyaVtx2RcZPQ0UlPJGFkSeITEZIxXzTIHx9JwpSqgsvRn2bwlFgbkyLTAltVC9xK77EgMD1uKy9M12XeNf5j6HttkMJLAWP59cDuCn26G8kXkuBmbSNwUG/DxnihImS1wuT3Ig53FhV6YCA1C92C59akwIU24kn8tIKxdGkB2iLocLp7yREjPKPOkj7VvckKIoZzPWhw1u7855cPuVqcB0tU/1qXngr/xSFAKX1uBRvzIdlIvH19gcnymzBbGapAfyVIFRFO/pfCy04PYrMwZmJtO+Lw+XY89OrQcXgy+yKRePj7E5PlNuFZg8mfQvc0tRlLMJgttDqEN0ZSowPhd+atlk09J8lE1RZhunwAAMTmoZAUXxnhCD269MBcbnbAKfZVOUWeaZvkLWufVHOscY6+zLaW8VRVEugZAszVemAgN+m/Z9lk1RZpEnDo/QbMqokSGG0wU82XFaFRhFUWbkygziVRTFSzYurqGHagCSkSI2Lq4JWSJFUXxFFRhFUbxhfXMVDXFbo+m9b1yl1hdFUc6JKjCKonhFZX0TAC0N80KWRFEUn1EFRlEUvzDGLgeOhCuHoiheowqMoij+0NUOz37Trj/4GS3kqCjKOXlFBUZE4iLysIjsEZEXReRjbrxaRLaIyD63rMra589EZL+I7BWRt2aNrxeRXW7bl0Rs+T4RKRCR/3Dj20WkJWufO9z/2Ccid7ymn15RFL84tA3MpF33sX+UoijecCEWmBTwCWPMVcBG4CMisgr4JPCgMWYZ8KB7jdt2G3A18DbgH0Uk6o71T8CHgWXu721u/INAnzFmKfBF4G/dsaqBO4ENQBtwZ7aipCjKZUZQ1VP7RymK8gq8ogJjjDlmjHnGrQ8Be4AFwK3APe5t9wDvdOu3At82xiSNMQeB/UCbiDQA5caYJ4wxBrh32j7Bsb4H3OysM28Fthhjeo0xfcAWppQeRVEuN7R/lKIoF8hFFbJzrp1WYDtQb4w5BlbJEZEgZWAB8GTWbt1ubMKtTx8P9ulyx0qJyABQkz0+wz6KolyOaCFHRVEugAtWYESkFPg+8HFjzKAE3SdneOsMY+Y845e6T7ZsH8a6pqirq2Pr1q3nkk1RvGF4eFivVcUr9JpU5hIXpMCISB5WefmGMeYHbviEiDQ460sD0OPGu4F41u4LgaNufOEM49n7dItIDKgAet345mn7bJ0unzHmbuBugBUrVpjNmzdPf4uieMfWrVvRa1XxCb0mlbnEhWQhCfAVYI8x5h+yNt0HBFlBdwA/yhq/zWUWLcIG67Y7d9OQiGx0x3zftH2CY/0m8JCLk/k5cIuIVLng3VvcmKIoiqIoVzAXYoG5Afg9YJeIPOvGPgV8HviOiHwQOAy8B8AY86KIfAfYjc1g+ogxQV4kfwh8HSgCfur+wCpI/yYi+7GWl9vcsXpF5C5gh3vfZ4wxvZf2URVFURRFuVwQY84KKZnTiMgQsPdVHqYCGHgNxHmt8VUu8Fc2X+UCqAVOhS3EDPh8znyVzVe54OJky+U1ebmcs1ziq1wwe7KtMMaUzbThorKQ5gh7jTGvezUHEJG7jTEffq0Eeq3wVS7wVzZf5QIQkade7bU6G3h+zryUzVe54OJky+U1ebmcs1ziq1wwe7KJyFPn2qatBGbmx2ELcA58lQv8lc1XuXzG53Pmq2y+ygX+yuarXOCvbL7KBSHIdjm6kLyc1SrKdPRaVXxDr0nFN853TV6OFpi7wxZAUS4QvVYV39BrUvGNc16Tl50FRlEURVGUy5/L0QKjKIqiKMplzpxTYETEiMi/Zb2OichJEbk/TLkUZSZE5F3uml0ZtizKlY3eO5XLjTmnwAAjwGoRKXKv3wIcuZgDuHYFipILbgcewxVnvFBEJDo74ihXMK/63qkoPjEXFRiwFXzf7tZvB74VbBCRNhF5XER2uuUKN/5+EfmuiPwY+EXuRVauNFwD1BuAD+IUGBHZLCKPisgPRWS3iPyziETctmER+YyIbAeuD09y5TLmUu6d20Rkbdb7fiki1+ZSaEWZibmqwHwb22+pELgW2J617SXgjcaYVuAvgc9lbbseuMMYc1POJFWuZN4J/MwY8zLQKyLr3Hgb8AngGmAJ8G43XgK8YIzZYIx5LNfCKlcEl3Lv/Ffg/QAishwoMMY8nzOJFeUczEkFxv14WrAziJ9M21wBfFdEXgC+CFydtW2L9lJScsjt2AcGbnm7W283xnS4HmHfAt7gxiexXd8VZVa4xHvnd4F3iEge8AFsPztFCZ25HAtyH/AFYDNQkzV+F/CwMeZdItICbM3aNpIr4ZQrGxGpAW7CxhwYIAoY7ENjeu2C4HUiq/GposwWF3XvNMaMisgW4FbgtwAtdKd4wVxWYL4KDBhjdonI5qzxCqYC096fY5kUJeA3gXuNMb8fDIjII1hrS5uILAI6gd9Gi4cpueVS7p3/ii0Vv02t2IovzEkXEoAxptsY839m2PR3wN+IyC+xs15FCYPbgR9OG/s+8DvAE8DngReAgzO8T1FmjUu5dxpjngYGga/lQERFuSC0Eq+i5BA34/0TY8w7QhZFUS4YEWnEupRWGmPSIYujKMActsAoiqIos4+IvA+brfTnqrwoPqEWGEVRFEVR5hxqgVEURVEUZc7hvQIjInEReVhE9ojIiyLyMTdeLSJbRGSfW1a58Rr3/mER+fK0Y/22iDzvjvN3YXweRVEURVFePd4rMEAK+IQx5ipgI/AREVkFfBJ40BizDHjQvQZIAH8B/En2QVxdjv8F3GyMuRqoF5Gbc/QZFEVRFEV5DfFegTHGHDPGPOPWh4A9wAJsUaV73NvuwZZtxxgz4sqwJ6YdajHwsjHmpHv9APAbsyu9oiiKoiizgfcKTDauOmQrNiK+3hhzDKySA8x7hd33AytFpMV1o34nEJ89aRVFURRFmS3mjALjOvt+H/i4MWbwYvc3xvQBfwj8B7ANOIR1TymKoiiKMseYEwqMayL2feAbxpgfuOETItLgtjcAPa90HGPMj12n3+uBvcC+2ZJZURRFUZTZw3sFRkQE+AqwxxjzD1mb7gPucOt3AD+6gGPNc8sq4I+w/T0URVEURZljeF/ITkTegHX57AKCKpCfwsbBfAdoAg4D7wmajInIIaAcyAf6gVuMMbtF5FvAGneMzxhjvp2jj6EoiqIoymuI9wqMoiiKoijKdLx3ISmKoiiKokxHFRhFURRFUeYcqsAoiqIoijLnUAVGURRFUZQ5hyowiqIoiqLMOVSBURTFO0TkfhH5ethyKIriL6rAKIoypxGRzSJiRKQ2bFkURckdqsAoiqIoijLnUAVGUZRQEZFiEfm6iAyLyAkR+dS07e8VkR0iMiQiPSLyXRFZ4La1AA+7t550lpivu20iIn8qIgdEZExEdonIe3P52RRFmT1UgVEUJWy+ALwF+A3gZqAVeGPW9nzgTmwbkHcAtcC33LYutx/A1UAD8DH3+q+BDwIfAVYBfwP8i4i8fbY+iKIouUNbCSiKEhoiUgqcBj5gjPlG1lg38J/GmPfPsM9KYA8QN8Z0i8hmrBWmzhhzyr2nBDiF7YO2LWvf/w0sN8b86ix+LEVRckAsbAEURbmiWYK1sDwRDBhjhkVkV/BaRNZhLTBrgWpA3KYmrKIzE6uAQuBnIpI9S8sDDr1GsiuKEiKqwCiKEiZy3o3WkvJz4AHg94AerAtpG1bxOReBe/zXsN3qs5m4JEkVRfEKVWAURQmT/ViFYiPQARmlZTVwAFiJVVg+ZYw56La/e9oxxt0ymjW2G0gCzcaYh2ZNekVRQkMVGEVRQsO5i74C/K2InASOAn/JlDJyGKuIfFRE/i9wFXDXtMN0AgZ4u4j8GBgzxgyJyBeAL4iIAI8CpVhFKW2MuXu2P5uiKLOLZiEpihI2f4INwv2hW76AVTgwxpwE7gDeibWq3An8cfbOxpgjbvyzwAngy27TXwCfdsd/EdiCzVg6OIufRVGUHKFZSIqiKIqizDnUAqMoiqIoypxDFRhFURRFUeYcqsAoiqIoijLnUAVGURRFUZQ5hyowiqIoiqLMOVSBURRFURRlzqEKjKIoiqIocw5VYBRFURRFmXOoAqMoiqIoypzj/wP4YgxoCVqVtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "df[\"2019-03\":\"2019-05\"].plot(grid=True, marker=\".\", figsize=(8, 3.5))\n", + "save_fig(\"daily_ridership_plot\") # extra code – saves the figure for the book\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "J90wbe7dnUz0", + "outputId": "12ee8d31-35ec-4915-9b4d-21c9b544fd49" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAFYCAYAAABNvsbFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXhdVfb3P+e6xj2NNE3qnrpQo8VpseIUH9wdhmHwYXAGd0qhQKHQFilV6pa6t0njnlx3Oe8fN0mTNnJvmvub4SXf5+nT5Ny9z105sveS71pLEEWRbnSjG93oRje60Y0/EyT/bQG60Y1udKMb3ehGN0JFtwLTjW50oxvd6EY3/nToVmC60Y1udKMb3ejGnw7dCkw3utGNbnSjG93406FbgelGN7rRjW50oxt/OnQrMN3oRje60Y1udONPB9l/W4D/BqKiosTs7Oz/thjd6MZJsNlsaLXa/7YY3ehG97PYjf8J5OXl1YqiGN/aZ39JBSYxMZFt27b9t8XoRjdOwurVq5k8efJ/W4xudKP7WezG/wQEQShq67PuEFI3utGNbnSjG93406FbgelGN7rRjW50oxt/OnQrMN3oRje60Y1udONPh24Fphvd6EY3utGNbvzp0K3AdKMb3ehGN7rRjT8duhWYbnSjG93oRje68adDtwLTjW78CZFXZODtVUfJKzL8t0XpRje60Y3/CroVmG5040+GvCIDl76/kX8vPcQVH276n1JiXtr6Elf/cjUev+e/LUo3TgHrj9ayON/9P/VsAdg99v+2CN34H0K3AtONbvzJ8Pryw3j9IgBur59NBXX/ZYmOo2dkT2LVsf9tMbpxClhzqIYrP9rM90c8XPlRxwry/5U30OP38Pf1f2dp4dKwfk83/jzoVmC60Y0/ET5ed4y1R2qRCIHfRSAr7r9b7l0URXbX7Abgkt6X8PqU15FL5P9VmbrReczbcrzwqacDBfm3vRVc8t4GXvn9UFDKzqlAKkgptZby67FfOxybb8zH6DSGTZZu/G+gW4HpRjf+R5BXZOCHI27yCutb/Xze5iKeWbKfswYmMf/mMdwyKQu5VOD3/VVhl6s9C/v7I99z1S9XsatmV9OxNaVr+P7w92GV6/9X/Lf5TaWGZmEaQWBMVuseNVEU+ddvh/CL4Bc7VnZOBX7RT7W9mr/1eZ5s8bZ2r40oijy05iFuXX4roiiGRZ5u/G/gL9kL6a+CvCIDmwrqGJMVS25G9H9bnG60g7wiA5d/uAm318/i/I1cMCyV6yf0ZEBKBNuLjXy8toBf9lYytW8Cb1w2DIVMwqiesYDA+2vyuXFiTwakRIZVLk3KQm4aNZl7x1zVYsx5vc5DRGRw3OCmYz8e/ZFSSykX5FyARAiPnbS+bD3Li5fzyKhHUEqVYfmO/2vkFRm44sNNeHx+FDIJ824c83/67laYHOyvsHDpiDTyjpaRb/QToWp9m1i0q5xjtTYABEAuk7Sp7Jwqtldt57ql1+EsuQGvNQel/AAfXZvLhF49ThorCAJX9XqEvOIKthcbw379fH4fUokUCCha4Xre/4rIKzIg1cUmtfV5l1xpQRDuFQRhnyAIewVB+FoQBJUgCDGCICwTBOFIw//RzcY/KgjCUUEQDgmCcEaz47mCIOxp+OxNQRCEhuNKQRC+aTi+WRCEzGZz5jR8xxFBEOYEI6/JJf7PkdO6Go0L4ctLw+/aDRXLDx/m7iUf/0/J9N/GpoI6PF4/EAgLLdxZxrlvrWPU88uZ/d5GftlbiUSAmyb2RCE7/treOrkXkWo5L/56MMxy+RDllWwvPwYEFupnNz2Ly+dCKVVySe9LaHhdAXhyzJPMO2deWBfzfGM+Cw4v+FMTO7cW1vOPn/by3M/7uXv+Dq77dAsurx+/CE6Pn6+3FP2fehEW7SxHFAPP1d3DVeiUEm789S7m7p8LBHgoT214im3l+3h68X6G9IhEAMZkxYRN2aq3ufl6gw1X9XQ8tgxEwY0042UeXvkyO0uM5BXWN3mszA4XX28p5qH5RSw4vJCr5n0ZtnXGL/p56I+HuG/FU7y96ijLDx9m+nfTWVe2rtXxh+oP8UvBL2GRpTX8tz15p4pNBbXMfn8jUm10altjTtkDIwhCKnAX0F8URYcgCN8ClwH9gRWiKL4oCMIjwCPAw4Ig9G/4fACQAiwXBKG3KIo+4F3gZmAT8AtwJvArcANgEEUxWxCEy4B/AZcKghAD/AMYQWDdzxMEYZEoiu3eMYNL5MqPNv2fWzdtodJWyXObn+OmQTcxOH5wxxOCwLL9lbgaNkSnx8/G/Nr/ib81r7CeW77YjaLH9yw7UMDc2Q/8T8jViNUlq5mYOrHJovq/wpisWGRSAY9PRCmT8P7VuVSbXbz3Rz41FjcQsHK3FxsZ2yuuaV6kWs4dU7J59ucDrDtSy4ScuDa+ofNyKWLWI9EexFF0KzUuHXa3l1JbAd8e+pYUXQrXD7z+pHlRqigAvH4vNo+NSGXXe4euGXANV/S7AplEhl/0I4ri//l9CxaN3tBhaVEIgsC2wnqWH6hiV6mpaUy0Rs6AlAi2Fhrw+UVEYEFeGQcqLNw6uReJESq2HKsPi0fV4/cgl8j5cWc5ydkL+PjQJqYppnHrlBze3GvjaE1AzgJjAcuKllFYnInJkcDn1+cy59NtZMZpu1SmvCIDG/JrMdk9fJdXitXlZUb/K1lpqsbj8+M1jKPWlc6st9cjEFj8Bfyo0j/GZ8/C45uAQnsYjyOTTQV1XSbb2iM1/LqnnOwEPSlRGkpqFOwodLCo9hBKTR2jc/uQoc8A4EDdAd7b9R6vT3kdQRBYUrCErw58xYzMGcgkXR/8sHls7KzeSe/o3hTXyLj8k9/xy4sQlg/ki+tHtVg3/lcgimILw6cRBpubB77bjc8vBha+NtBVV1EGqAVB8AAaoBx4FJjc8PnnwGrgYWAmMF8URRdwTBCEo8AoQRAKgQhRFDcCCILwBTCLgAIzE3iq4VwLgP80eGfOAJaJoljfMGcZAaXn644EbozX/i9sniaXidUlq5nTPygHUoeos7pYvKscoOnl3lNmavNh+b9CvuEYT/58AK9XicTWC4+pP2sO1/zX70HjddlVs4s7V97J38f8ndl9ZgP/d2G43IxoLh+Vzhcbi/hozggm5sQD0CtBx5UNIYW2XPRXjcng0/WFvPjbARb1moBE0nX3ODcjmn5J0RyxKLh/em9eW36Yv83N46M5I1h/+Xp0cl2bc/2in6t+uYoe+h68POnlLpOpORqVl6c2PIVEkPCPsf/4rz7jraHRG9poUAAIAsRpFU2/SwS4cWJPbp+S0/TMjciIpqjeznur87njqx0IDfO6OrT01IanOFB/gGdGfsSBCjPTx/UiIyIJ6uD68T2Zu/Fv7NijxD9RpE9MH57Jnc/1n+zilklZbDcuQUz+jkrLg53+/p93l7PyYDUZsVoS9EoOVpr5clNxU6Zd7zQT/5jSg1n9hrGj2NTwPo4jJ1HHA9/uauKAiYKPBFUqg9N689smFbajj6GQnlpYy+6xs7pkNQPjBrL5sMBDP65Fk/E+jp1z8LsTgbFNY132WEZp7iMtIg0IGEOl1lJMLhNRqiiu7n81V/W7CqnQtUp24/pVaavkluW38O9J/2br3nS8kjq0aXOxF93ENZ/AmQOTOWtgElFqOTtKjP8VasHWyq18vu9zXpz4IkqpkgsWXcCNg25kVvaspjHHam1c/9lWKk3OgO7SjgvylBUYURTLBEF4GSgGHMDvoij+LghCoiiKFQ1jKgRBSGiYkkrAw9KI0oZjnoafTzzeOKek4VxeQRBMQGzz463MaRfhjNcGC5PLRKQykj4xfdh+9fYuydwwOz3M+XQLtVY3z8wcgNnp4XCVlZ92lvPszwd44px+/5UF3mh3culPf8MmUSKT3IK39kxEEX7ZW864/nZGpw5tdV64FYhqezUP/PEAD418CK89nTPjHiVFOok1h2v4fntpwKUOyCQCX900uoF3Eh5EquUIwPhmllJuRjTzbhrT4hr8UfIHr+W9xtyz56JX6FHJpdw/ozf3fbuLxbvLmTk0qFcgaPRUTqe2Ipc7p+WQFKniwQW7uevrHbx9xfB2nyWJIOHCnAuJU7du+Z3qvf3bsr8Ro4rhhYkvEKeO+5/1vqw9XNOkvAjAhcNTefLcARytsXLlR5vweBuV08B1ys2Ibroeo7NiuWh4D+6Zv4PFuysQxa43vnITc0nRpbBweylSicALUx8kTqdk9erVDc9WHx74bhdL9lQwo38izyzKJz1Gy93Tcvit6ACxwnBq7KaOv6gVbCus5/avdrT5uUQAbcI63tizj/P7rmhxbRxeB0kZa1EXa3HbUpHLlLw67VlyM6L5IbWU+77dxZ1Ts0/pOpndZh5e+zAXZ9zD3N+TQepD9KmRSLxcPTaTUT2jue/bXbi8fkQgWnNcKb116K3cOvTWpt8TNAkcNhzm9e2vc+uQW0mPSO+0XI2Yf3A+mys28/Kkl0nVpTL3rLnopMk8uWs3fkcqzrIrkLp6cVrv+EBtn2aGrVL+f8+xqrJXUWGrwCf6MLvN9I/tT7w6YKx5fB5WHMnnkW+LEYD5N4/h43XH+NBmLG/rfMKpxlcbuC3fA5cCRuA7GrwkoihGNRtnEEUxWhCEt4GNoih+2XD8YwLhomLgBVEUT284PhF4SBTF8wRB2AecIYpiacNn+cAo4HpAKYrisw3H/w7YRVF8pRU5byYQnkKZmJX7n3c/IDs6vAveUYOP3wyriFQ7uCrpXARB4KjBx8F6H0lR9Xxvf4Pzo85nrH4sftGPR/SglHSejOjyibyyzUm+0c9dw5UMiQ/op6Io8tVBN8uKvJyXJeei3ooOztS1qHf6eS3PRYWvgPMytQzQp3Gw3ocILK7ehDLlO26OvYtBupymOaIo8keply/2u/GLIBPgoVFKekd3revV7DPzdtXbjJLP5OvtGXgbXweJE2Xsalw1p9Oo50cpBe4focIhP8om6yYuj70cudB16cJf7nexvszDu9NbejV22Xex3LSc2bGzSVOkUeAsYKl5KZdEX0KcPI4dth2kKzJ4fYsai8vPlHQ5A2KlXfZ8v5bnxOAUeXq8GoBlRR7mHXAzME5Cn2gp/WJC/65D9V5e2urCL4JcAg+NVIV8jqWmpagEFZMiJrXwLjr8DtQSdUjnaoTL7+J30+8M1Aykp7Jnp87RHKIo8vI2J/vq/AGi6wl/a+N60LeDa3jE4OW5zS4AFJ28Xs3hFb0cdBxkoGZgk5wP/OEgRSfh/hEqAKxWKzqdDr8o8o8NTiwuPwlaCYcNfh4YoWJgXOD739sVWHP+PUkTshzfH3azuCBQ9FAAzuopo1+slDe3u/D5QSaBe0cIaLW1pCtbbvgOv4Nnyp5hgHwCdXYJ4yKHMqKB72l0+Xlo9xIGJcCdGeeHLJfFZ+GY6xiZikx+KzHx6xENyWo1NQ6xSa7Ge3DU4GNPrY/VJR4UUoGnx6tRy1pX7I+5jvF57edcG3ctmcrMkOU6EX+Y/+CQ8xDXxl2LQqLA6RV5cYuTcpufK/spsLhE+sZISYpwoETN3P1e1pR5gQAB9sIcOef2Cv9+0Pz9PFTv5ogBcqIlpEdIcfvA7RN5s+pN6lxulJW38ugoLQkaCT8ddfP6TWfkiaI4orXzdsVucDpwTBTFGgBBEH4AxgFVgiAkN3hfkoHqhvGlQFqz+T0IhJxKG34+8XjzOaWCIMiASKC+4fjkE+asbk1IURQ/AD4A0KbkiDdeMK0zf2uHEEWRL/Z/Ac4snl9qQ55YgWC3sOOIF6kUam1mRL8KmUTLuNGncenEy8mKyuSChZfjdEt5dsxbndKINxfU8fQPeygw+Hnr8mGcNySlxeeTJ4s8tnAPX28pQR+XxD7f22iUXr4+/2MAHl/3OB6fh5cmvdQl16ERX245wIubluFz9uaTq2dzWu/4Fp+fvrcf9/7i4TdzbwbP6MfOEiNun581h2vZU3acnOkV4T+7fFw7Lo0+SXoK6+yn5JU5VH+I3tG9EQSBc8Vzuf+bXXjF49bJ+EG17POsR+Lsj9uajkTmwi9oeXqTk1HDS/HIfRwSMxmbFcfqmk/IiMjg4t4Xd/o6ASyq2ommupzJkye3OD7MNYyijUX079ef3MRcJjOZ6wnwTmweG098/wSTekzi2kk38MySA/x41MOvRb4us64ez78RGTomT34dCLxw4sI9fLW5mL21flTy9r/L4/ew4PAColXRnJl5JtUWJ0+8swFfg7LoE8EVlcHkydkhyTW5xasfQI29hqt+uYqr+l/F1f2vDul8ADuqd/D7r78za+QsJvaYGPL8E/HFxkL21e3jitHppEapT3pmJwd5nsnAf3YvJTNWy5PnDTjl+zrvwDze3/I+88+dz4DYAWwrrKdu6UYeP38gk4cHluHVq1c3PYvH5AU8s+QARrcfqSAwduRwcjOiEUWRZebN7N5eweTJZ4cshzWmnMUFOxAEUMok3HDmKHIzohk3Mjjv3FjnWNx+NzN/nIk2O4PJQy4DwOPz8/DBufjU6pPep2CwpnQNH674kCTbgxwpjuWcwcm8cskQ9pWbT5Kr8ezbCuuZ/f5GltfH8MrsIa2edzKTuY7rQpanOSxuCxW2CnpH92aSOAkREYkgwePzc+Pn2yi22Plozgim9k0EAu/ExYsv5qp+V3H3+Rez6YNNuH1+JBKBy08fGXYPjMVt4a6Vd3H70NuxmzL419It+Fvxm8h04xCR4vNK6TVgGLkZ0ZSpi04e2HxOF8hXDIwRBEFDIIQ0DdgG2IA5wIsN///UMH4R8JUgCK8SIPHmAFtEUfQJgmARBGEMsBm4Bnir2Zw5wEbgYmClKIqiIAhLgeebZTjNIMC9aRd+qfkU/+S2YfFY+GLfl9RWZ+MXz8VVeSECPnJS1Xgw40h+EXvhbXjdCazZeBoX7z7CoNQq9lcPwO8XuHJv6OTivCIDV3y0GZ9fRC4VSIk62foUBIFbp0VTarTw1ZYS5NHxSCUevt5SzCW5PZD4Yqk1uMgrMpCbEc0dK+5gTPIYrup/VSvfGKRchfU8t+1RpInF+AsfQas8+XE7a2AaKtmd3DR3G9d/9ROKhKW4qs4hRZvBTadlMXdDIZ6Gly0rXsebK482zVXJJMy7KfRN2uA0cPnPl3Nv7r1c3f9q8oqMLNlTgSAErBK5TMK942aTHHseFXVqvt+/mqW1L/Dm5PeZv05gcd4QBDGXbRxGseowA3N34k/1d/i9HcHs9KKRH7fc9tbupV9MPyKVkbw6+dVW52jlWuafMx+1TM38TfUIMjMIXtzemC4LM/i8GiJU+hbHUqPUTfwql8fPpoL2SeJLC5cSr44nllHcPm87Rru7aX5XhnNjVDFMSJ1AbmJuSPPKrGWk6lIZljCMZRcvI0nbZuZm0NhRbOCZJfuZ1jeBZ2cOPGVuUpxOSY9oTZfc00v7XEqKNoUBsQMA+HFnGSq5hBkDWv+7nZ7mz7fY4tlabPgbXv0k7O7z0ChC21Ia16oLh6VyxeiMpnM2hopey3sNI4OZltG6wdlIFv9p1k9EKaOajsulEtSmyxmcmdLqvA7hzMJx7E6OuPTIJALXjctEJZe2CGGdiBGZMdwxNYc3Vxxhcp/4k4zIrkBekYHHN9yLnWKWzf4VpVSJgEBeYT1PLd7HnjIzL1w4qEl5AYhTx3Fx74uZnDaZnOhovr55DI8v3EN+jZXEiK4pPyCKIlX2KqJV0SeVNLB5bJjcJvZV1PHKT3VNyosATO4Tz9R+iaw/WsvSvYH1AOH48xWrbV++U85xFEVxM4GQ0XZgT8M5PyCguEwXBOEIML3hd0RR3Ad8C+wHfgNub8hAArgV+Ag4CuQTIPACfAzENhB+7yOQ0UQDefcZYGvDv6cbCb3tyix4sLu9p/aHnwCTK0CStTsUeEvvwFl5HgqpBKkASrmcp84fwKNn9cdvHo1cvw+lTMI9p+dwWk4cm4/V4zIOw2Me2qliUJsK6gJsbcDvF1udb3abufq3q3BGfI8AeAxjcdadxqM/7GHwU78z77c+rNo0mCs+3MTmgipkEtkpcwrWHKnFUXIttvwH8Lq1bf5dU/omcMHQVJDZkMjrEPwqLh+VxriBlYwf9xu3TUth/s1j+fH28dwyKatpntvXucJZMomMJ8c+yYTUCRyqtHDDZ1tJi9bwybUjuW9GnyYFMkWXQm5GNI9Nm87M7PNIi4zjrcuHMWtwFqIowy+CywMTtH/nvtz7qLZXs6J4BS6fq1PXy+L0oG5Y/wtNhVz969V8vPfjDuf10PcgVh3LmKw4NEk/o8n8D37cJEeqOiXHiZAaZtFf3dK7NCYrFqVc0qSE5Ffb2uTaySVybsx+hpqCi7j0/Y1oFFIW3TmBswcloZB2Lg7v8XkYNW9UU3pvk6wSKX8f+3f6x/YHoMRS0tr0Flh4ZCHnLTyPg/WBVPRIZSRVtlMrDlhvc3P7vO0kRqh4dfbQLiFWR6rlmByn1mOq3FqO3WNHJpExJX0KEPBW/Ly7gun9k9C1YmRA4H6r5IH1rLnCKQgCZyffgdfSnzqrO2R5jPbAnKvHZp70DLh9blYWr+RA/YEOz5OgSUAhbRkKidEqOiUTwOoDJrzOVBAViKLI5mMdbisA3DU1m6FpUTy+cA/lRkerYx5b+xgLjywMWabGmkyHD0yi7Mgshv1zFWe8toYL31nPJe9vZE+ZGZlEoHdiS2NDEATuHHYnOdGBEP3w9Cg+vnZkgO/UReUXVhavZPqC6Xy05yMAnF4nd628i3Vl60hQJzJF9wJPf+dDLZeikDXuixLumJrD1WMyuGliFkq5BKkgoozdSL0s0C4iXt9+eKtLCAWiKP6DQDpzc7gIeGNaG/8c8Fwrx7cBA1s57gQuaeNcnwCfhCSvJ5Y6qxtNTNfwKdw+Nxcvvpgz0y9k0R99qbOq+PLGkUgE4QR3YzRzL3jmJBfklmN1zH5/PRKpHbkkImRrtGkxoW1rNkIRwV3D7kLly2HPrjI8Xj8yqYTbp2Sz/EAVuxvSOV1eP9d9toNp/eaAJoYfdh6luM7BxOweIW8y/VMiQJSDNxK5vH0r+7JR6Sze3QfnsQeaCI2Fzt3Ue4q558zBSCVSvjrwFaXSvShkE3B7RWSStquEtge9Qs+s7FmUGR1c/skGVHIpn18/irQYDVP6JJw0XqfQ8eTYJ5t+v3psJr/urcTdQNybu6mI/ikRuFRbeWzdYyy5YAkZERkhy2VxetE0xM4zIzN5csyTbVqerSE3I5rXp/+dnw5sZn2ZlleXHSY71cXgxF4hy9IcZocH/QnFzHIzopl34xg2FdSys8TEDzvK6Bmn5c5pOSfNX7SzjHu+2Y1fBInUztAhefSMH0f/lEh+3lNJ/+SIkGXyiT4u6X1J06LcGtaUruGulXfxzrR3GJc6rsVnoihi8ViIUEQwNX0qZdYyekUGrtMLm19gffl6VlyyImS5IFDb5cHvdlFtcbHwtvFEakLkSRVtgPyVkDMD0kY1HY7SKKi2ODslEwQKrt2x8g4iFZF8csYnTZyENYdrMNg9zBratscgNyOaeVcPY+vRakYOSGuxFsxIP5/5K7dRY3WRFhMaD8ZgCyhk0a1cI4VUwaJZi3D7O6eEKPVH2O5egcn1fshp/Bp9BTL9XvzWgSF5CGVSCW9cNpSz31jLjZ9v5exByYztFdfiehVbismKymrnLK2jsSaTSAKCO4E+6XpitUp2lxqbvBqiKLbreX0973WM9Ud4SpXFU0MzeGRrBXPG1jOqZ0zI8jTHtIxpzD1rLmpZwKNmcVsotZay8Vgpj89bTVG9nXMHJ/P8hYM4UmU9aQ88vp7Uscu5kmr3QURR7NAD85etxFtvc4f8sjXH4vzF1DvrmTNgDntKbWh8/fhqtQq33c0XN4xiePrxG9McrbkgR/WMJSJxE2LMYt4e/3PIisKQHoGXc2yvWO6f0afF/D01e1DKlPSO7s1FvS8CIOnGtBYP0PjsOK78KFBtVSoRGJERzaaCOhbvKUDf5ylc1Wfz3urJIVvKEVoXirgVTEo5nVvGtz+3+QPcKFcuFzXJDFDnrMMr1PPGpcO4dd52bpzYs1PudJPLxNIDR3lhcTUuj8D3t44L6VnIzYjmq4bMoGiNgi82FnLz3DyGZSo5M+VFymuVZIS+J2N2ekjQ1jaFMy7IuSDkc0zv04fpffqwK9fI7M/nceWv9/DypFc4o+f00AUC3F4P/h4vUuG/mEDppuNofJb9fpEHFuzilWWHqbW6SIhQMbhHJKUGB99uK2FHsbFpjlRdxOqKH9lTczbx+oCbu7YTG59KpuLBke2n7o5MGsmNg24kN+nkcNJdq+7C5rHxyRmfEKmM5I5hdzR9dn6v8xmZNDIkeRqRV2Tg8g824W0I57p9QYYWRRFKt8KGt+DAosCx9W/CtUualJhItZwj1ZZOyQUB79RDIx9CQGiRPfbjznKiNfKT+GnN4S4uRnfZBVxw6aUknv1Qi8+UCgeCzNgpb4ehwQMTpTnZ0m4kfna2yrJOJVDlseLwOkJWYI46VqJMWsGFsecwa1hqSOtMRqyWa8dn8vaqfPZXWJBLj/D5daMYlx3IMvvy7C9DkqURY7JikWuPgboAwTiFJ87pT25GNHlFhhOy2dpQtkQRSfV+JPnL8dUZuEiqZJn+cf65OIJFd0xAeopewqEJQ5t+jtfE89jgj7jkvY2I2JFLA2G4CJW81T1QFEUyfvuOoVdcjlfzAgqJAkEQiNX9H3hg/mwQ5HVUWMwMIarT59hYvpEiSxEDtOdx5UebcXkDBYVfuqhfk/ISCmIkA4gUIhmREXqxIasrEA47vV9iiwfD5/fxxPon0Cv0zD1rbtOideID1JryIIoiD3+/m4UF5+CzZyF0InWz0FiKMn4ZI3KmBDWvvfgywJ3D7gSgxFSBInY1HkkntATgw+0/8vnhl7G6HkEuxmB3+zqe1I6sl4zowdOL9zN3UxE7CmHx1h2dCouYnR488fO4c+UPLDhvwSlVsR2SFsU/z5zBk6vz+W6thqOFRztFejY4HEQ49eSa86BkSwuPQCMkEoGXLhpMpcnJ5xtbku5yEnRcMzaDb7aW4PX5kboG8PLY+YxI6o3FFOD1V1tCV2CCqWmklqmbFBOr28rTG5/mxdNeRCJImJExA5fP1ep5RiS1mvAQFDYV1DXVL2kM57Z7zff8AHmfQN0RsFRC8wJnPhccWdZCgTHaTy2ENCZ5TIvf1x2t5dc9FUzrl4Bcevx5E0UR3YIF1BcVETNnDvK0NKIuuYT4O24/6ZwfH3oBdY9iaq2hk56Ndg9SiXBSu4JjpmPcuvxWXpj4AsMShh3/oGQLFK6FzImtPovNkaMfzbF9GZ3iM42LuZLfN+Zw46yeZMSG3ixVo5A2hVc9PpFrPtnC9P6J9E2OQPSLTOwdH/K7mJsRzeCcOg46l/P+rEda9V60eMdLtsCxtaBPhrrDsG8hdxoKm+rCbVAI7Ev8lOqCW1mQl8GlIzuf1v3DkR+otldzy5Bbmo6tOVxDY1DZ7xfZdKye3Mzjnh7Hrl248guIuvACRLeb2nffRZBJib3hBiBgaNY526cI/DUVGMFLpblzdQvcPjdyiZwnxjyBWqbmndX5TTUeJALUdDLmmqjKQnRkoZGH7hUyOwIKTIS6pRtWKpHyxpQ3UMlUHS72JyoPgiBwwbBUvt02EQFQdBACag3Rsl5YDjzH2GnjOh4cAuw+M8qE3ygw9QNCXzSrq9NwlF2K6NPh49RrasilEpIiVQj4ker34/XEhnxOURSxuXzk+i7n/nHDu6QE/2Ujcth49Gp+2lnOiv31KOWykBUroWQnK2s3oqrzQPHPMGdxqxuHTCphbK9YNuQHFhwBuHJ0Os/MGoggCMwcmnrSAlvl3oNUc4Raa2iEW4BNFZu4fcXtfHLGJwyJ6o+gaN9Se3fXu2yp3EKZtYw0fRrn9TqvzbFun5sKWwXx6viQ38cxWbEdk5O9LjiwOOBhqdwVOCZIYOIDkDkBvr48oLyIfihcF/DOCAKRajkWpxefX+yUtfzurncZmTiySUHLKzJw7Sdb8PpFVh2sIe9AKX0t5WhHjUIQBGRVVbjLygLiCQKJjz4CgKeqCuuqVURfFsj4uTZxFLod9cjLtwKhbYIGu5sotfyk9cnlc5EZkUmqrllNo6PL4avLwO8FqRxmvQM5Z0DNwZOVmpItnGVYyCF7An7/6SFzkLweDX53ApHqjsN/nspKJBoN0ogIRJ8PT0kJY3roUcoleLx+pBIJ0/olsLGgjl/3ViKPXseHB8v54vzXQ153hkfMZs/eXMZf2zLUfZLxV7IFPjsHfI37kQR6TUEYcCGsfx1EP3GihDOSx7Db3pvnfzlAudHBab0TOrUW7qrZRb4xv4UC068hNNwWtcG44HssK1YQef55SJRKUl58Ee2Y0UBgPbzp95s63Lf+kgqM352Iy9W58NFVv1xFojaRt6YGEqT6JQcIUwKBCpmdzaaI1sg4VFuO1W1Fp2i7umlrMDsDVllzK6axR01mZGan5AEY2ysOjcpNdqKCf5zdCY+CwwNIidF2riZHW+gV1YuEuldQSDt3rYcm9eLbjQ4kQtdlwARaAUhQpn6N33AaY7Iu6nhSM9jdPnx+kXhZEgPjTqKBnYwgLdGcBB3ymDUoE37FcfiZ0BWrY+tQ4EFABK8Tvr4M+p4D6eNAoQ14DhpkGNcrjrflR5tc2RcM73Hc6yc5Qq5sLUgmAqPwi34+OfRvFLFqaiyhh8qStElc3f9qkrRJ5J91NvozziDxoUBIyWc0Io2KajH+/hH3c/+I+4NSDHfX7Oa6pdfx4YwPT/JYdITcjGhidQoSI1Q8PXNgS2t4/09grYb8FWCvA1UUx2tlC6DQQK8pMGdR4N5aa2Dzu7D+DZhwD1ENPBGzw0O0NrTaHR6fh3d3votkqIQRSSMQRZHXlh1u8hb5/H7qX32Vkm2ryVm7BqlOh/G22xg6ZcpJ5zJ8OQ/DvHnopk5FXruJ05Y8xDifH3HXH5Cb1qFnpMW57O6mvwsCrSdERPrG9OW96e81CO+ELR/AqufA3+CB8rnh+xtbnkyQQMZ4UEfDoV8YLvqJTovnx00CF467J6TrtaN+NVK1Hb2qfQXGazCQf/Y5xFxxOQkPPIC3qor8M88i6+l/Mu/G6ezIO8SY+W/R8/y7+TSlJ+8v2Un/8nL29LZ1ynAy2T1EqoMg5++a31J5mXgfTPt74Fd1DCx7gn4THuaf4+/i263FPPHHq3xUtJX31zzRKe/xP8f986RjjV7VmUNTmkjallWrUPbsiSIzk/i77iTh4YcRZIF9K+LMpraICILAAyMeIEoVxbd82+b3/iUVGAGos3XOUzK7z2z0iuMs722FgbZLN0zoyVmDkjttyWs0NmpjnuDXQjeX9G6Vr9wmzA2ZCc09MI+ufRSf38cbU9/olDyNUPf4klq5n9yMc0Kee9CwG0XcMhTyU6+n0RwyiYwEXQTVls5l+8iU9QiKGq4YlssFw0MnJ7eG3IxonjhnAP9ceicPTgu9toLZ6UGiKqZcWo7HP6X9qswlW+CzcwMLlFQB1yyCjNY32rG94nhzfTru2inIZYSsrK3XxPF+WjKvVNcy0OuH2OzARrz9i+ODpEq4dgm5GaOaXNljNW6GpUeB0wTLnoS8zwNjZUqYsxhJ2ig+P/MLxj2/npreod/HnpE9uavPzQgSCdILLkDVry8APquNwxMmkvjQg8Rcc03T+NYUF+P3P1D/+ef0ePs/KNKOl6bKjsrm+QnPkxUZOtESAinHo3ue4Mpvbg1njA9sKHIdzJ11/D5mNrwnaaMC/0QRrJWw4p+QmkukuicApk4oMHKpnJ3X7MTn9+H3izzz837WHa1lZPUhSnXxGCLjiL3uWjJuvwaJtiFk0ob1G3/nHUReeAHy2o3ww02Y8VGhkJHl8QQUr1AUGJunqXqtX/TzwB8PoJapeT5jFkLh2oC3atfXYCqB1BFQuSfggZFIYeL9Ad7Q0RWACKIfseoAhj0e5GopmlQvDgm4qvaHdK0ANhs/RxPbs1VPl9/txrFjJ9rRo5BFR5P48MNox48HQKLXk/KvF1EPHUpuRjSDxCTKFwBC4F3cV7WX27dvY7b2X4w5N3TD6aB9KfIoN4Hya22g5jDs/jbwpYIk8Gz1Pq4cMOYWWPcqVAS8fzVWN35nCl7zYLxeb5eVX2g0rC8blR7gyrlcVP7zaVQDBpD29n+QxZ/MuTIv/R18XiLOPptRyaOgZAupeqHNGOBfUoGRKOo4bNoO9At5bvNiZSaHh7kbizhncDJPnNv/lGRK0sXhOjqL4fGhu9OPe2COb3rDE4bjF0+9NkkyZ+JxdS7lvNB6EEXcSnTK509ZjhPh1q6jtM5PoGZiaFhY+BGaHvu5fsLFZMWH5u1qD+N6xeJ3JZESEfrCZHF6kekOsUtcgaSp7VdrA6vglwcDIQYI/P/lhTBgViBrRRUB5TuavCK5GdFcmzuVD9Zk8tE1I0JemCz6QSQ49Oiph+t+DmxOfj/89kjAKkYEnwv3pzfjGnAnuRfdwNBIgcPjxlM/cxixkWsQHSZEXwO9w+uEZX+H2XNJ1iUQo9ZRaw1dgfH6vVQ8+CCeykqyFv5w/APRT+yNN6CdGFAGPNXViA4HioxAVpinqgqJSoU0MhJldi9kSYnIewQKtzn27EHRsydRuqh2Q0ztwePzY3V5W3gVKPjjuPIiSCF7GmQ3bECN3pbWPGmCAOe/BVX7YMF1JJwe+DuNnUyllggS/MADC3bxw/Yyrh+TxkUvv0R9Ujqa+99keJDPhiD4UO59A/I+xWpJZ3GCgReTollZVE18ZmjGisHupke0pkm+AbEDUFuqET4/9/g1i80JKOlZk072PJZsgcL1x5XAS+ZiWvc00rIjOOsVvGc0Ujw0NIMQYKTin+xwtN4TuOb1N6ifO5fsFcuRJyQQfensps+kej2RM2c2/a7IzCTzq3kA5AJFZ4/nTT88OCOnU0pClW8bYnsObVMZzL0A5GqY+RbUF5z8bEnl0H8m7P4G3LaAUbNsIC7rAFSdoApAIHNvUPwgzs06t+lYE7WhYV+SKJVkfPbpSd7RJpRswfDui4gSFRHDesCxtWxZ+xxJOiF83aj/lBC8GJ2hs/kbUy91ch0SQcKXm4qwuLzcNvnU0lQB4nVa3IYxxCh6dDz4BBznwBy/nVf1vyrwcq995eQHuLXwQxshiWzdCLZ1sh17quQMZMUDmlLr2v3+EFHLeqxSZacaVA7Vz2LLnpyg4tuhIE6nRKIuYn1FDTOHXhvSXIvTg7t2KjemTzm5/k7JFihYHVBedn8DHntAGxBFkEggbSQcXAI75zVMEECmCmyOaaMY3TOGD9YcIVITOm9CL0njvKokUqPMx++VRAKDLg54YXxuEAQq/7Dh+vFFdMYF4IWkkVY0zl9h8Bk45UMpeuoTekwwokt2Q/FmeH0wBTmTGRtpRlUzCxgUklzv7XqPXTHreOmMp1scl+r1JNxzT9Pvte++i+nHn8hZ8weix0P+GWcSM2cOCffeg3rIENI/+AAA0e2m9LbbUQ0eTNrb/6HYXIxEkNBDH9r72OgNbfFseRorSktaelrguLelLSj1MHsufDiV4Wtu4g7pIMRiGaSd0facVlBiLuGtrV+yZXcfCquU3De9N3dOzcY75htElwvFiZtpyRbSixZAiablGrH3Bzj8KxgKcedcT8lzvzNqgJT7xut4SnULb4f4PhvtHvqkOCk0FZIZkcFNihTY9HLL8MeQywLKC5x8vdJGwZxF2FcsQDXxfCRZ40ifOx/fpnnk3/MWedq+xGgGnpA/1zGcTg3RyoDXTvR4MC1ajHrYMJRZPYmZMwfdhPHIE04uudARhp0xngeO5FNe8xSTTM+F7OWLMd9BUmQbWVn2evjyooDX87qfIbn1asAADLoE8j6FQ7+SO+hibpjQk/fX5PP6pUM6pVhtqdxyEvWh8V3Q1Vdi3PA7URdfjCIz8+TJfh8sfwo2vEVqXwGpwg/vB96RNTFR7X7vX1KBUfiS8NuC4BmcAKvHyvivx/PAiAeYnXMVH687xpQ+8QxICS1FrzXEaBUIMjMHaooYp227tkVrMDVbNCttlRw2HGaiX3ncihEk0HMyxPcGtz3gkvV7QSqDSQ+DIIPVzzccUzZtfAAxeqhxFeP1eZFJQ3tcTA4PUWplSwWjZAuGxy/C7/YTO/AlmLOY6m/Xohk9Bt2E8YiiiHnJz6j69kGZkxMgxZWWNlnQjbisx4v8a89RrC5vh3HqE6ESM/HZ3CeRngH8TieCXI4gDb2IX6RajjIqj1W1h4BrQ5obUEKlxChOiG+fGH5IGxMgL9rrWiqBPi/8cj/kfQaI4HVA/ipIG4VUYUTf73F+LbyfkZmhyuUhSbA38DWOQ0wdgSnxAfRpLqQDppN0pR7JxlcRjn6LFIjOksD5b8OwK5AWFhJ5RiHqM9Og7zTQxMKvD3O0aDV/JMbzdek/oGRoSMrsiKQRyGbLiB4y66TPmjeJHHLbbWhHj0GqD4R9Ex99FO34k712gkJBj3feQWjIxLnp95vITczl+YmheQ+NJyowje9bXF8YPBt6dkJpT+gL4+9Cs/oF7pUdQlyxGNJbJ1O3hZX5+/mlZD52063IJOmM7xmNIAjIk1rxzu9fDN/Noafog0/mQUpuQGkt3RogFgOc8TyKsbeTlrYGzcabMEmyeNMZ2roFYLC72Od8kdt/MvCTwYvMcCyQNSORB75LqoCepwEg+v0IksD9KX/0MZTZ2cTecD1uMYmif/9CnDWD+DsmII2KQjLuIvrOfozHonuhOPI8Zw96qz0xWsDitlDoWUqUOqBU+6xWKp97jpirrybh4nHIC9cib66EhmCQxaskpJhNyKwePL7QPWk9bHuYKSsItDBu/l0Fa+Cn28BSAVcvbF95AUgfCxGpsOc7GHQx6UlmdH3+TrHrKWBm+3NbwcKZJxfma4wMsGA+1b/+gm7aNGTRJyrKWwPrVkM4S6Zq4IMNugQyxnPbL/fxNU3JTCfhL6nASAU6VbNAKgTqKOQm5jJ/a3Gg2uaU0Pq3tIUYrQJ16pe8sWsp4zI/C2mu2ekJdG1VyPh057d8uvdTftMNJ7Fx0xP9gbBCWR64mmVf+Tyw8tmWJ/M6YOUzcPbLEN8Hp+NbFBlLKD+YRPqAM0OSK9+5EjHCCjQQAasPIP5wK8ajCrRJLvA6Ef94BcNX+QhqNboJ48HjofzBB4m/556AAnPkD/Jn3U7irVcQc/ffm86dFBGI01dbXCErMAWW/Wg19qa0Ufv2Haj69UWiVlP79jtYV68i87vvkKhCq2QrkQjoHecyVjUnpHkQuIeyiB0U+BQ01X+0VsPiu5uFHyTQewbE9gr8a+EWlsHQK2HXN4EwDSLsWwgjrqdvfDKummlNoZJQsK5mAYczqpl2QhjaXVBAxWuf4nvoQWLPHIUCoLwv5EtB9AECWCuAgBs9+ZV3ABC9Xuo++piY7JFMyl/GlsIS5KIQMndiTPIYRsiz8btcSJTHLdLPNhzjqUUBzoNCJuHrm8aQ24wc2NzdfyLUgwJGjfm3pTztPgt9/xlBy9OIJmOiMYS0+V2wVLB4ws0kZ5zW+RRtIaBQSwURvz90ronV2AvrwUDtUEEQMT77NOXxGpJffKGlgbFvISz8G4i+QLqt6AdzacDb16i8CNKGZwx0p52Ga388Bm81BqcJj8/fIh27PTjcPvr7DvJc6S5koh+ZxwunPRQwqsq3t1AKDN9+i3nRYtI//QRBLsdnMeO3BzxbivR0Ul76F7pJk49fLl08okQgQvTi8IdWR6bcWo5RmM/la/cj3ng+suhoei5YgEJa1WBMeALvYtIgcJrBUHD8usx4Bkb9LfA+tgJ5TSUf/vI5WyLvok9Mn5DkEos3k6p7mQirHT79LLDJyxRQewTHjq0YC9RE9VKglqlwHT1K0XXXEX/77URfdhmi3w9Cs/o/EgkMvBA2vQv2enrHpeIxjEPwdC6hwW+349y/H82IwPNd8+ZbxJbZkEgGkfrYo3jnXH1ceSnZAod/g8q9cGRpQGGd/Cisex18bsxlWoyHDaTNvRrNoV+osi5osxv1qedq/gnhkRgwKheHPE8j13B1/6vJjuzLB2sKGNUzhhHN8to7giiKx8M6JVtafBajVeCqPZ2JCZeFLFegUqociUTg1qG38snQ+0jct4gAiUsKMjVc+S08WgzX/hIILwjSAKHywg9h5jsBzwuSwIt5bA28PQreGMZNhz7mhao6Yn6cc5LMHaHOtwfk62HZP+Cr2fDuOARrOenTTMQPtIEgQTj6G32utBM3Qh5IGV33ClkvXE1USim8NwHhqwtIGGpCW/IOlGzBsW8fhVdcibtkDcrEHyk3hR4KXGt+EWXcGgCchw9TdMUVGOZ/A4B66BB006Y1KS+OffsCLz/gLiqi6qV/462pAcBbV4e3vmWJ8Th1HFZb6FlXFqcXefRm9ro3BTaLXfMD96D2cCBcJEgD96g9jkGDO51pf4epfwdDIXw0lcRjv3KL2UFSTehtF+T+BIY7ROTqaESvF3teHgDK7Gwyv5lPzJxmylrmxIDFLEhPDpU0wL5tGzVvvom1WocSKSpRxCPKEDMmhCSX3WPn6IwzqHn1eI+obYX1PLvkeNl5t9fPg9/tIq+onrwiA2+vOkpeEOFQw1dfkbhka1M7glBgsjfzwNjqYN3reHLO5JPKtXy+P0BkPlh/kEfXPkqNvSb4E2dNQgT8Ivgksvafg1YwpmcMBErYIZcKxPVKR5aSfHxDc1nhp9vhu2shKhNkSvxIAmvH7C/g0rmBn0+4t36nk8INPj6tLUemPYIhhOQIg93NRMle+rtd9PY0KAVyVWDzTxsVIOk2KGnSiEgkOh1+Z0BxSvvPf4i/83jxwchzzkGqa1avRSLFcCyeq7Z76Ce/NqRrlROdQ+ah2xi/eQe2desBUOrdCAv/1mBMiAEl3V7bUlERfbD0MXi1b4Cntu0zWNNyrZcnJ/PppDkcSgidduAoWM0KnYoCuSyQjbXra8R9P0PtYRQ6D/YqJW4LULgWaXQ0+slT0E2ZCoBt7VryT5+Oq6Dg+AkHXRLwuu//id5xibiqz0bwhN6/qdJWyacvz6HwwfvwuwP333XkMIqyYvQqOVKFHGXPAAGdki3w6dmBPfDI0oAMd2yFyY8E1q6pj8NpD+MXFXjr6jDE9qTMIla29d1/SQ+MgIjH78Xu9obUfMzpdeLwOli620SFycmLFw1uc6ynvBzDh68SN1yKJLkv9X8cpvrTRfS+sBKJxNeCowABBcZn602MJPRF0+z0NvFf5FX7GfbzYxCVDmc8D1V7W7o2M8cHankUrsXpz8DnTEc7ahTE5eDbvwJJv6kI0RmBTJP1b9DT46Knx4VfkIZs9Y2oG8PrjsegeDOWciUW6yCS31uA1FQYOFfGhAA/YPULCL88AAQyxJSNP+mTECQCsX1tgRPmfYY/6Rr8TgfmSCfyyF0UGmqYSHJI1ytbvI3YwkCPHFXv3qS88jL6qYEXXT9tGvppAQ+Ip6qKossuJ/amm4i/6058ZguGuXPRjh+HLj6e8gcfwlNVRdZPPzalAkbq7eS7VlFpSwupgJbF6aVv8RSel+2Ej6ZD2VboMQpm/icQ0w6WM9ScI9BrCnx5EcLCm7lNImA98iOU9AzpHkaKw7izzgmpkdS++x61779Pr19/QZGWhnrQCbyVRgWqHVm1Y8aQtXgRyl694Md9fHpsMd/YL2JBwnD0J41uG7evuJ3B5yTwtxkBL8nOEiPXfrqVBL2SHNt2BnKYLeIADlr6ctG7G2lMJlHIOu691OPNN6jFSl5VXshNIRs9MFFqOax5FtxW5NP/yccRCaikAaX4qPEoWyq2oJSF4BlIG4WgS+KgRcmm3o9zXYhhqCrfdpQJvzAm6hrumtabIRkNnaNLtgR4VQd/BUt5oBbN5EegfAeFK78ga+o1x+9jK/dWkMkQd1m4Q+rlytSe1DRUYg4GBrubPUI8SzVqRjo9xEjkLRQz65o1+J1OImbMIOLMM9CfMSMkvpulVEm8YAw541QiSDgoT2P33XfT27YKvv8c9v0QMPiah7Yu/jQw4fPzG0jEcpj0CFTsDIRyGz2nMlVT/SSJSsWxYadRrHyZufurQuqY7k2ZwPJVL6EQAqH+KucVOPPrSX/udqRfzKTXuXVNyqUsNpbkZ47zwyRaLaoBA1A0eGFdBQXIE7ORxObA3u+JyL0WtVxCiTH0RscWt4VtkQZyJ41oCr33eOstXvlmJxFFzQw8rwt+ffh4KrwghYR+AZ4XNK1dERMh4qqAcurVtO8g+EsqMDpJDO6aM0Puh7ShfAN3r7obacW99IzryWk5Lavmin4/+P0Iogf7R/dRN38n0dZqJFofqmoFMdlKRJ8PnxfK/lATn74A9TWBhSBaowCJnUOGfYhiWkgvqtnhQafycOVPF3FPwS5GqiLhmp8gskeL9DmfyYR1zRoizzsP0kZRe9fduPLz6fXzEnyRfSl845/oZ6hJuGc0jP4bJA7E/dnZHJPJiUZGQohWX3/nDqQEqty6TApcRhG/RIv0RCJe1mT46Q7Y2VBiW5DAaQ8GMjUaFwfRDzu/QjujH1nff0+03c1zvybi7h3KthdAbLmWv/36Lc7rLkDVrx+R57SeIi6LiyP5xRfQDAtUAlX170fvrVuavDPx992Ht7KiSXkB0Ggs1Lm+47BhckgKjK5mO18rnkdZ1vByj74Nzng2kC4KnSM7p+bCsGtgwxvcmJyAUhT5OEQl1Oz0oMcOqkhirr4KZU5O+6GojkipEFBeAMNBKVXHdFT1q6MmxFDgRb0vQugtoMnKZV+5iWs+3ky0Vs7Pg9ej3/QyAKIgw3Pum9yyOwfT4fWMkRxgi68fmwrazwCRRkWxYOc83t/1Ptuv3o5MEvwa0dicMNpVxto9c9nUZwwPxPchorYWWXwg22bCDhdTx3yMRhGBxW1hUf4iLu97ecc1aiKSMdgF9kn7Bi1PI3ZU7UYWuZ2LtRfQr74QMqIb+FVnB0IiCHD2v2HUTYEJaaMozrCTdSJh9oR7K8hk9H11NuK618GhCyk0b7R7KFLCA4nxfK4eQMzY+5rOL4oite+9D4KAfvp0BEEImayffnUm6+uq2OR6hHLrZ6TogvMu5FXsJCHqR86r+QlpVcP7mDMj4Kk2HDtZQW9NaV/1PPzxEjTWT9o5r+mzbI8Jh1GCShZaiLo+ZijLfdO5UfYrXPYVyj0WhOh8SBrWoeGgGTGiKbzjd7spuelmlDk5pF12ScCANJejynib1YYoILRWBznRObx79/KTjpsdnuOZsaZS+PaaQGiwMQGhDS9tI/xuN7GaNhOQgL+oAtNojYXaD8llT8BTPROLWY9NcLC92Ni0EHqqqym68krizhpMFL+i95SRfa4EudYPggTNOXPQZE2B76/HY/bgscrw7lkdsK5VkajkUrSx2/mhagn3e8YToQi+TL7Z6SFXWMOh6v3ofX64rkF5OQH18+ZR+5+3UQ8bjqJHKvF334XoCygYEp0O3eTJ6BrqGQCQOR5DXA4X612coz6HF0PY+ERRZGFEHTluNdMdTuIGeYm5/EUkzd28jRAEyJ0De78/ng6ZfXpLiz4lN1By/fcnAuTUwihuKVFQbQmNxW/32CmVFrFx/Fn0U7a/gAhSKZGD4yH/a/BNREgb1YLcqx44AAYG8hssK1fh2LmTnjlTWXvgScZfPb6t07aKxPqtvBejZbzDwUiXB3Rxx5WXU0G/c2HT21xltuAXpSGHHna7X+NFuZrHCuxoz4psUWzqVGE7XM3lR12sixlDjcUVUkr72T1msHPnUZ7ZtZNvd1WhV8r4cXwxEctebhojiF6Ui2/jPU0KEkUVAn48yCnSDQLa5q45DxzgjBVGRl74dsh/k6khIzBy47/IU6vYqlZR9enHmN//iMzvFyAoFFQ8/gTx99+H5qabWF24gndXvcCA2AEtesm0CnU0MUJppzpSn5t2PR8u6kNq6VeUlRWS/ftShB1zG5QXAkaDK3TrGwBdEvvlEqJ9hdRah3U8vgEGu5skp473SivoccV/Wmy8giDQ443XkUREhKy4NJ1Dl0ByTQGCty9i2zzQk7CmdCN6cTO2I3LUmR4EmQTSx4AuPvDvxHWwNaU9+/RApWWfK7BZ530RqKE09g7O/fE/DPQrueSR0NK799ceZpOqjCn5OjLjhhN1YTPvRBCGQyMkCgXJzzyNJDISklSIq55H2PcDScJk3I7OrTk+iwVBoWjBRzM7PYyQHIGfvgl49EUxkFGnT+rQo+w8fJiiK68i5e72KRV/SQVGdBlRZ7xHnS00Ql1BhQpn3VgA/EKgz8kQrQ+ZowDZ5g/QaMqQHd4FuYOQTLgXye9/P74hD57dsCEvRl64lqwZLoQNr8Bn5yBe9i1CVAqRDCVLnhNy87JUy16etr2NgIggVQYyVGJ7Ifp8GBd8j6pvH9RDhhBzzTXop01D0SOg1TZawgCCRNJUyRTAun49mmHDiM2cyLP7v2d9TmjNAO1uH9XacvQLI3BdOgnl+fcjae8Fayv80PzFzJoES+6BvM8wro5llELOL1XJnNwIvW0UmYsoTPqEjel3c2tWz5YfnphNULgevrwAvJ5ArPuslwJeDbkaag4F/jVkldi3bMG+ZQtJg8/A7dJgd/vRq4JfDHYp+vOVUo/O72ekV2jfMnE68RkMyJMDoTNXwTEQOB5nbo60UTDyRs7c/B7Xeh7mjNSRhLJEqV1ZTN+9gdJ9q+lzchucU0LqU/chfDKDeLeR2hBJ9etX/EHcvXexd/R1WJIHMG/YAWKXPQUpw6D6QGBjlsph9N9Q7l+EaA+QUgXRQ4Z5O+0VAnMeOoTnwy8ZesnVIXlfAIwON1cp1yDZ9z13D76cm89+FVllHZJ6I/LkZASplOwVyxE0AcNpUnUc2XN1ZM3QQUdZueoYIjnYxLMJBfUNniHxiadJEy0IhvyAwdC82FmIym0j6lYcZFFhPPIBa6izBl/w0mD3ECc6AvwXfcA7YtuwAdOSn0l+6h+tFjoLBbYKgexVLmSjLm/ZkqADnJV2BfGbl1C730dclrNj7llraGF8DYNtDcbXoV9RT0xgc0UyF7p9qBXBv42llmp0BiPujRF4jSak0Z3vIK0ddzwTr7YkB9+bnzLwgo9Zm1/fzqzWsap4FZ57n6SXkECvBd83HU+17OXvtkeh1gsIcNFH0P/8wIcdeWl79iTirLOQ9chsd9xfUoHRWWxE+L3UWBwhzRvQQ4pEZsbvjUAukzBx7Q8UPPYDvablI5W5SRkmwLQnYcK9Aa9C8pA2N2QBIGMU1tevo3ru6aT962Fu8eVRaBoesgLTx7kzoLxAgJTVECZwHc2n7qOP0E2ahHrIEKQ6HdI+HTPfPVXVlN56G9GXX0bimSOYue0TdhlDI8uaHB76HZ1JvOMjbK7eKIOxDjqyIgQhwO1BIG1CHddmpTLCviskuTIiMpAeu5Fe/Xu1rCHTvLqtIASY8eZymjL4fO6A8nQiGuLbiY88jN9mI+aQAXnUFpYclXD5wLOCluuAMIB/VgziHNcvcPVPLa6DZfVqPA1N9QBKb7sdn9lMzwXfAVD5zNOITheZX38VGL98Odrx45GoG8jEaaNxb36PEomMKrODlKjgvY4x5kFMyDTgvajjviShQtAnslmlpCZ6A9Xmy4Oe5xf9PFJ4P0NOG0C+KpU50t8ZvOMzyJ4Ol34Jlbtbvnd9z0X4/DxErxOpIHJs70b6T3IHMjhaQeTZZ6M4Yyo7jAfoaVeRoAm+3kdU3Q566L9kiV/D5OVL0I28HtJGkfDAA01j5KnHN1NlaioRE09Dnp6Ox+dBLm0njKaOJkK0dMoD8+Oxz5FHmYmOnYRKJQvwrBQ6mPVei3YQnYGjsJZzC13sTs0OqSih0eYGdRm/qTScqQlkvzgPHsK5dy9+lwtpB/2tOoLXLsNZIUViqsHvF4Puh2Rx+lidM5JLe21EGHktDLm8c9emhfE1JcD/2PI+w4DV/WK4ZclRPr/wu6BPl6QYRIIylfTLypq4LF0Bvz4HX9kG+imq+N5mxu31opAFrxqY3Ca2DJMzYkjL7Mt+jjykNBRBFSRgLAr6nIJcTvLT/wRjSbvj/pJZSFq1i9XV21BWbA9p3mbDt+h6vsKgBBXzbhxD74vPJea0XkiEZmmuiMdLcJ/ApD8JOacjnfVvJBIPwpJ7uMQ+l7ONj1F7dFlIcv3hyWFieirzIvQtLClVn95k/byExMcfC+l88sQEerz7DnF33gkpwyiQyxAta0M6h8nhQSdz0eucamIuuzCkue2iIdNFJoPlxdX47aGldssEFVP3lDL7ydvw2xrIwT4vrHi6obptQ7qoMiKwcEnlxy3UGc8HNsgBF0JjT1evM1BLAUAmI9FQgU6/hqVFP4ckl9nhQZTrEQTp8aJdDbCuXk3dJ582/R5z3bXE3Xq8aVr8XXeRcP99ALhLSii9+x7qPvzw+An0ySzQ66jOnsuh2oqQ5MJlQK72ox54apWmW4OjuB73hghclFFuCb5Yol/0c/6QuynskcNLkR/wT/lnGNNOh8vmBbJYTnzvGjyfwpQn2KGfSn/DStwfn9WgoJ4MQaGgzmvixt9vZEP5hpD+ph7GPBbqtRwp01GyUo/156/bHa/s2ZPUl17i+8KfuPC7cyn797/wWdowFjQxqP1WzPbQDC+Aw6Yd3LthFarffwpkBNrr4IpvAhZxe2tUEOjx4lMMGldHf6k0JE+awe6hJrKUZ2OjQRWopRV7/XVkfvdtU92eU0Hk6ePoObMKa79P+GDXpx1PaMCy4p+xRh9FrvXBmNtP6do0QRBAnwgI+BwSepX4SXSGVoHa5PAQKbWjSIxBkHddEc7EZ14lZYwRT9UzaHs/w5G6qpDmz8qexfNPrCTmvPNbHN/pTW9YJYVOe/g8Fl+7n/8lFRhBIiLHS2R1aGnBZ/U8i6t+Tef6Q8vIzYhG1b8/caf3CpRo6KQbVj39MjIevQCZyo9JKnBdSiyrDgWvlXt8fnZ6kjnbaqdn3ICmzCbH3n2IXi8ShaJTlrNu/HgkWi0+VQpPR8aRpwxtIT9mLKM0aQMHFPJAc7WuQtoouOgj/D7YvXcojoPGkKbvrznG3jQZRbOvC/R8MZXC5+cGLHZBejzt/Pw34YJ3A2nnU5+Aa3+GcbdDv/NgzK0NqegNr0/e57D/J+zbthFz+zWk7jqXS9IeDUkug7ucldojFCn1IAg4Dx3CXRKwPhIffZTs5ceVWt3EiU2ZUgCaYcOaCHqKtDTSP/6Y2JtvBhqI5fpExjidDKgciNEaklgcTH2Pr63R2I+FnoLdEfw2J0mlUu4szMBsC35Blklk3B/ZkwWmj5ki7EQUJERNuy+QJdIW0kbBpAeJv34ed3vvRqzaB++MhUV3nlQewO92I//0Bz5PeIDTepwW0t+UJwzk84pqbousJmW8Fe3ZwZVF6BXZixmmNMyff4ljZxteRXU0EkREp6n1z9vB6VFP0qcaFMv/BRW74ZLPAqGNroAukQK5DEFbHJoHxu7mXHM086pclNxxF87DhwFa8ChOCdp4ZIDaGYtaEnx9k/VVP5NecRhLqQo6yIIJCZkTQSrDVKSm988aLogOrV5UXu1KNrsMWAu6eNs2leB1ypi06xj3VZtxHgvNsIdAR+7GFHcI7EtHPQ1JLgMvbJFxGyxEUaRozg3tjvlLKjBOt5RLUxNZLgttY+0bPRCLJ5UIV8Mu4HHCngUQ3w+mPNGpmwQgDLwIa7kSTbWU1yrqOa3PRUHPtTi9RIoeHqs3MK7/pZA2Cm9tLUVXXkn1a6+FLEtzeKurOTx6LDft1nFdrStQxyZIVFnr0VmrcP8Rgauyk+TAtpAzA0ECvvJaot2r8PiC7/m0rGgZFcOWIDktO1DX4e0xgQZxF34I1/8WqEPQ/D625kVrjG9PfQIunw/Jg+Hba1AVfk7MnIlE61zU20PrH2XxVbFOXUe9XIPf5aLkxpuoev4FILCgh2JxaceMRqJS4Xe7Kb72Oowrt5Hl8TLcrKPOErwya3d7SDL2YuAGOXXfnZxlcKrQjhtHznV6YuK91ISw8bl8Lsq++oiin2PxewO1TSjZFNTcHtEaYkdfxoOu6wOKwPYvAqHDZkqMIJNh/PBj0gvtxKhC28C2+rJxSrQo03KJfOp7hPTRQc0bnjicO//2Edm/L0U3sY2aOOqALGqvGaenfcv0RGhrdjDpzH3EZRQFskDUUSHNbw+W9Vs4vDGOpfo91NmCv48Gu5s0iZMkbxTOAwfwVoVm+XcEvyyS8s1RnLMjgX4RwRuWFyY9z4WbfRgKNE2eoS5B2iiY8Tz6Hk5WThzOEW3bZThaQ42jnPRDXurWG7tOJoDCtVjLFYirIrmsyoqmOC+k6W/lvcmRKVOpff/9pmMWp5dIGvbJYVd1bl8UBJJffKHdMX9JDgxWKVZvNkfkmSFN219TwJcDx9PnvACRl7xPwVwG17x7kts/JKSPpiIvBmmKgnd01zEvvZ1OoyfA7PAQKTSEQhrKvUtjY0n590uo+oXerLI5ZNHRJDz0EJ6qVeQ6f8HicBKhCa5Im1ZI54KiDHSGfYiS0NIFO4RchaCOYtGNCfzoVHCX1UVyZHBy5caeztaDB5l8+CaQN5DLLv4kYCVA8C/aifHtb65CduQbEoBb47V8XlDMVaPfDdr7ZTdl85OYQBxGJEolqa+9iqI1Um4IEF0uBLkciS4SryoSraSGQkMNEFzmltXlY0BtFn3GrYBrupjB2wCHPoGfpJUUOfKAkUHN2Vu7l8did/PMRBuCvON0zBNxx9RsvthWjx8BaUMzyuY1jgSJhD47trOrfi9FIdaCMdhdbFuvJSpdxpCbQl+0q/R+9h77jXGHwF1cQtzNNx3/sMGTGYUVs8ODSh4cAdThdbDO8SlDVHLGOl2BEGmI6fTtwVdXR2adlAfqE3jBG1oI6YCmFlWEnhG//dp1npcGCFFJ2KoUpETWUR+CYmV2ejkyJYMR6rquyQRsjl5TUOh8bInWcKjob4wzfEB2dHDV3HsI53HWoHfRD5jatTJlTkTf40WUUTXUa6TsVOaE1ObY4baxec5wLpt63CtscniIatyXTsEDrx3V/jP6l/TAyKNFEpVP4LQFz0wHeGLjgyiTfwjUbHHbAtUEe552aspLA9IvikV5WjI7lVo2lu0Mep7Z6UGi28+YjB4c9Qdi44IgEDFjBoq0tFOSSVAoiL3+Oir7DyFPI8VwLHjCrNnhQYgX6HmxiKpP71OSo1XoErnTH4Wj+GZqLCHEkn167l23nvI/GiwrQRKo7XAqkKsCvUUQcJtkHHPJ2OzegM1jC04kv4jV5UVVb8K0S8BbV4dmxAhksZ0r690IqV5P2kcfEnHmGdj1SbyXkc8e04qg55scbvSCDYXOhyL71JThtmBYbkN+2IHR3TofpTWk6dO44ZwncaXHYlIkhuz5jNEqSBk6Hbcow9/IZVK05FwIMhmv5b3G2zuDT6UWRRGfq45tCTLKozu38b27612e3fwspvXrsPz+O6K3mSevIZwRJVhD6kht89iwGs3IV0TgNMhPKeOoNURdfDF9b85kmNRNnS14T63R7uZbnZXFUl+XKy8AQkQSOedX88tYI6/tuzOoOT6/j7V1n2KJMCKL6sLwUSP0Sfi9MKaqlgxLRvuk7RNgtruIkNmQJQRfXyoopI1CdtYjCHFezuyVyCJXYUjTHxr7KNc98mVTKw5oMKxpaVh3BidWOj8Rf0kFRiLxEadThdwP6fy0G3nly3KSVvwEm98HW02gZHsXQJmejF5hRZX4Ex/u/U/Q88wOL9FeKRdYrMTqe1D96msYvgueQ9MRfGYze9x13JKUgLFoY9Dz9hk281tiKXZNF/JfmkOfiKKqkhfWvYdxa/Ax2121O1jVP5nYftZTTh9tgZ4TQSKj+I8YJm6ScpnnvpO6s7YFq8uLTLeP5RYbti3Wph4vXQFBEHAePIh7n5Lb6+V4rcH3X9ldvZeF2avZXBqBq6y2y2RqDnedl7tKHZirx+D3B7fxJWgSmKkaTZTBT522V6c8CamDJnGl+zFe81xErajHtvXLQJ2KBpgWL+bx/Tk8Pe7pds7SEk6PH53Xwf29yjjjsitDlgngnuH38MP5P5D6yKNkfvtNiyKJzT0woWQixanjSDHcSKxVREwZ2elQd3uo1kSxS1aLx+9qaEzaMQx2D58cdHLFi7VYVq7sUnkAUGgR5VrSXFIS5MF1O7d6rBTbfiNxXx0OS/B1iYKGUo9P1DH594OMPdibjIiMjuc04Kj7C34ricJWGJxhFArEzNPwliqYdmwAUmdoxorfbsddWoroPr6fmp0eooSGENIpeGBsG9vfc/6SCozfCcXVj2NULglpXg/FUEq0aWijNbD+Dcg5o8sWAodRiWdfPc6qmcxMuy3oeWanhxSXgofrjURpU3Ds3In76NEukQmg5G+3MOP7fN4tM6Kp3hv0vDpnLWlHHdT97guJOxM0dElUSOrRCWUUVR0JetqK8q9YPMyEPtUFI27ousU8bRRM/yfJI02sHXEu27zBe50sTg8SVTlzhwjo7x7cIs22K2Dfuo2albVcUm+l3hgV9DypGMHEijgi1umwbQyOYxIqMh+/hOSB9ch9jqA3ZaPTSOEzTyHf4MIfQsHH5thZYmSH2Ju3fBfyL+/laGt3Ubn5uOJv35aHbM02euiDT1c1OTxENVidEm3nvGfxmngSNAlItFru/eM+ftr/XVPvrcaNIFqwYgyxFkyZVkPPM2pRT+9kSnA7cJeWUfztMT61iUjkxqD4TF6fH5PDTYLUTNwZ/VFmhVaQMljUH43msrUGeskuDmp8pDKSCbYX6L/NjctwamncbUEWH4/9rB5sSA6NA+PyV5G2RYl1b4iZhMEgMo3SdTGcd9iBxRx82QCA5z68mvzTp+PYe3x/MDu8RAi2QHEPZefeUQi0HmkPf0kFxmOTkVupwO2MwO4Ozlrwi372Gw7y4ugLSUs8Bk5jgPDZRbActFG9VkR0JKEUg+/tY3Z4iGjQdAVdLOmff0bC/fd3mVyxN91E4g1/A0caUXX7gp4X7Z/ANTUgOiVdXj8EAH0iUkk9D18Vx4G04Df8sRG3MPlwJj6PAOPv6trFPHMiumQX9enpFInfsLN6Z1DTzA4vntppLCspw6uKQJB07WsZdeEF9P7XLJwKAzXOQrxBkp5lYgyTbHoyLhGJPP/8jid0BrpEFuq0aJIXBE3k/e7wdzyatRXtUDtiJ93TY7JiUcolSAT40T+RI/5UrL/8g9nvrOXfvx3ku4mXc+hfz7IofxEeX5CKlcNNlHCM7YuTOLZyc6fkaoTNY8PiMtPjgXcof+IJPD4Py6u34UcgUgjNA7O9ajvVkd9SKZWC5tTCkm0h0iDybFkdCo+GuiDuo8nhQSsx8G2iAtvMISgyM8Mil8+rQWtzUmdzB21IlcojiL3cS8To8ChVQkQyUSlODiT8i/d3vd/xhAbk1J7OwFkVxM+ZFQaZEsk804RnWARl1tKg5/lFP/VJWsruvrAFZy+gzFsD7+cprGcdhdH/kgqMMsrDyHHX4jGNDDqMZPVY+bzoHvpFLUaz7T+BsEPykC6TKeac0WSfX4VaXsXmqj+CftlMDg+7kvZxZUQyPq800DPkFAtANYd+6hS0k0bzizYetyM/0JArSLli+jrIvC24LIyQoUukj8NGbOWtSDzBu2FFu5prftmC4Yi26xdzXSIeu4ReZUdxqNdw1BicJ8zi9KDHgblQhSsvhA7FQUKi1SJNzOC5uEjUyfODVhQMdgdaiR15QiTSqKgulwvAtKWQuGVaBGVV0Fym03qcxvQZj5GcaEGi7lyWSG5GNPNuHMP9M/ow/5aJxM96lmxJOUPrf+Ht1fm8tvwo9y1ewOPrHqfWEVz4zGT3oJDWszVLgjPx1PgTWrmWj8/8hOzb7id2zhzWlK7h3j/uZ1F0HNFYm3ouBYMqWz1jD5dgWRmFqOr6kK6iRyo5r9xJ/3g78diCqgVjsHuIUFTwRkQU+f7QQvmhIOHsbA6dDWtcN3HIcKjD8QfrD1IizMcltSHRh0fZQ5+ErqKenEPJ9IwMXkmSuoxIpCCJ7mIODIAgoO6ZzI/R+Thi38PtDc7IkQgSXrv0C06/9Tlk0cefLbOzIbmkC7PdWv3+sJ79fxSCRCROEXD11gfZqVQpVXJt1RRe/XYTjioRSrecVD/iVCBLSkOu9qOP3MXPVS9i8QRX+dbs9NDPpuS25SLHLpnd1Nuoq+Cz2qg9sIMlSflsUckD3a2DwDHvYj6JEiFcHBhd4CU+pzqP856/FZ/RGNS0Q9Z17DytB7p0EeTBV6QNCto4jAVaen6zBueBf3BuzwuCmmZxelHGLWdvrRb/njY7x3cafpuNuhWHuTnfSnz1aMqNzo4nAeurf+KVuCpqjkrxGoIvNBeSbChJs/oZVTgu6BoifWL6MKYqDtEO0lN4vnIzorl9Sja5GdFEDbsAUkdwl2QBStykmSv524oj3Ch7inhNcCXtjQ4PKf5I/jagnH4zgq8s3B4izz0X7bhxTE6bzILzFnCuoCdKCGQhBYtB0ePoXd0bhQ8E3amV528LTk00v2vURMqLg0qlNtrdxLpULF5qJOWOH1qSlbsS2jh6eyyoXePQyTvmtBSbi0mqX4Nrlwyf2Erftq6APgn7NjeXrbcwNDY4/p3Vbadc9zNbD0Xjrgvu/Q0VDmsc1+xx4aw6hypz8N/hqarGXVjY4pjZ4SFasCF0ZQ2wVvCXVGB8bgmbt36NJvPtoOsWKKVKBjldRMS6kCr8geqthaFVp20PXq+a+iMacutiOE3zPBpZcJur2eFlnFPO4D5ykp58skWzwa6A6YfvsV96E6MMc5hqt0P5jqDmuby19P5DRs3vBV0qTxP0iQCUJO7gYIo6KOKrX/SzU/yQzYPcqJIjj1dM7ipIpET2UyO7fCB+JEFvyBaXB9Ql/HqmH+/ts7pWJgLc1Oq5v5JWKiHNqaHCFFwl10ghh6sOg2mpAV9d1xeyA4i+8hoyp9cSJzUH7YEptZQif/wh6g/pkOu6aIEUBDj9KXTuaq6VLUPjdTGi8iinRccF3Q+p0W0OdKnl6Xe7MXz0Cal7KpGpY4iX2kLKQjLYPFT2iiNjal3YQkiVby1gZVEsUv0RaoO4jwa7h1jBSnS8i/jrL25JVu5COGqlRP4GCUdHBsVnmpE5g/57p+HZo0U8Be5Gu9AlkjKijneGX0C1ObhnvsZqId7sQLdDjccQeiXmYGA86CNujQ2ftT+VQSowh+oP8eXfL+boBS2NNbPTQ4zEjtDtgel6eB1SBm2vx2fPCDqEZHKZ+CUxk6hxZpQRvi5PRfS5ZFTlRTHcWIvHkRz0oml2etDKbOj6RrfsJN1F0E6YSOqrr6CNHo9fjICy4BSYqJpJjLa7EIXwEOHQBRSYmh4S3jx9CPKUlA6nCAgMMD7BBWXgV4QhRRJQpCQSlexDGruJT/Z+HNQcs8NL77JJPFtbj/eEdN6ugESroffyBUj7OZBp8ik1BFdYUOnvyfQYF9kPjUSREXyYLiSoYyiTKchLzWNvXXDP1jObnuGjS2KI6mVHpevC+9hzImSfzr2KhZwVvwXFf56kMKeeg/UHg5pusntQG46yY1EyrqL2e7iEAkEiwbRwIYXLf+JdlZ8oSWgcmB/yv2ZP4h5EQdK1hdmaQeoWuLbWQq4zhtogvNoGuxtBVcT8HCURc64Ii0wAqKPxewVkttqguExOj4+8jBz6zi5HGt+1ZPom6JNQRviw9VrJ/RuuCWqK4NcxwD+YvrPL0Yw/9bIdrSHugnEkzqhBoSzmWF3wTR3zx6Yj/fvdLY6ZHN5AHZhTSKEOBn9JBUYR4Sf3ypG4qs8NOoS0rXIbK1RfcVARESjB3cWpiIo+A8iZWYmzdzRFzo2UWIJbAM0OD48l1fCeyd12D5VTgDKrJxFnn40nopiFih5BeWBEUUTqMpAy2kjCtbO6XCagSYG5WRyKpXIafnfH91EQBNKOlpPwYzVuRxhSJAG/Mg7haDmJ3qPsCXJDtjgDNROqdkYgHgq+HkqwEAQBaWIv1mtUbEnbwlFDcM+WwWFBJbMjT0rs0t4rzeGpqcGxMpasUht1juCe35sG3URmvzNQRnpRdTVPYcCFqPx27pQtZNCq63lyw5OsLlkd1FSTw0NdpIsd2RKkkV2nKAgyGZnffsPOy4fzgb8OqcQWUhZSrcPABavqqdoT1/WF2RqQ9t4H9O1vJVvmDMoDY7S7cWrL+UAdBfKuV9oboR44gMzptRwdMY+Xt77e4fj5B77HE7cGQQJCJzPJOoQ+CbdFypl7nPRVjet4PI2F4az4FBoEVXhCW/KM3uyLlqHMeoe9tfuDmtMnpg/PXvclfS68tsVxs8NDBNaubSPTCrpEgREEIUoQhAWCIBwUBOGAIAhjBUGIEQRhmSAIRxr+j242/lFBEI4KgnBIEIQzmh3PFQRhT8NnbwoN6SuCICgFQfim4fhmQRAym82Z0/AdRwRBCKq5hCiVovAYUMgk1AWpwAxJGMIlK0agX6BEzJzU5amIQmQyMrUfvcJMufIDNlUEl7Zqcnq4plJk8idmLL//3qUyAYgeD85Dhymp/4LvIySINQcCRfzagd3tw5C8hO/02q7tJdIcqkiQqUgQjFy98yeOntlx5+daRy07EqvxTxKQJ4eWKhgsfJJoahaZGLS7NxenPhXUHKPDTkHyBmqLNFAeHq6J6bdlDDqgZU5NBhZrcOHJXc53+ZdXh3F7eGrAAEjUamSigusMWrAHV39iuL4fAw7b8LoENJFd/HxZKxEBiQDGLSp+KhzCtQOuDWqq0eFmslLF9dPiTrkI4YmQ6vVc1PsitsSfSZovtI7UufrLyHYpEFRdXBG7OSRS1kQnYFaXBxU6Ndg9TDBG8+XnTqoefSZ8cukSEIA4Qz+y9B0nXeyr28/IY0epP6Rtat3Q9TIlYatScsX6gwx0B9dra1vlNvb7DlGwLypsfCGPT0/GPinD8sfhcQTPlXIeOoynrKzFMbPDjU60/mlIvG8Av4mi2BcYAhwAHgFWiKKYA6xo+B1BEPoDlwEDgDOBdwRBaDQL3gVuBnIa/jW2Gr4BMIiimA28Bvyr4VwxwD+A0cAo4B/NFaW24PNK2LbyAMpeT1FkDo6jEaeOo1KWhT7JiaCLC2pOSFBoMRZF0qegDGn5A5zd8+ygplkcXi5120i9Zgia0e3nzHcG3vp6js2cyU3VE4mpnIgg+gO9g9qByeFB5bPS80cd5s0dM/87BUEAXSI7xHzy++7HN/3MDgnM+cZ8qtIWU9/LgTQmPAqMLCmV9Okm1qcMCrozr8Fhxaq2kH+lBev5M8Mil+X33/EdVTHZ66MqyF6A0a7hXLzLQ82S9u/3qUAaEUHmjX2JSXMGzYE5sGslPT77Dket4pRIvK0icyIIEkQRnCY5OjEJlSy4jd/k8BIjsYdt46t/+O/U/1KAWrRjDaEjdb3dg3+EnIQpwZdnCBV1n3xKzXIp6zVVQRmFRrubJJmD+MECUbMvDZtcaOMpWRvNlRucZGlHdDh8ds+7mLpf0/WNHJtDn0hEmoNV54yjBBV+seOMH7PLSWa5B98eoIt5jo3wOhSYt0Yytc5PnTk4j+v8g/PZfNNsKv/1rxPOZUaK/3/fAyMIQgRwGvAxgCiKblEUjcBM4POGYZ8Dsxp+ngnMF0XRJYriMeAoMEoQhGQgQhTFjWIgh/iLE+Y0nmsBMK3BO3MGsEwUxXpRFA3AMo4rPW1C9Ajo1liI8IzA4giOyHm4roCdGQLJI01hI8LVH9YScaAMkzkOlTQ4K9nksIPchn5EDooeXR+zlcXEkPr6a8Sddi4HPQMCB8var3xrcng4rWQQCVIPgjaqy2Vqgi6RSJ+NzZmJlF8wu0MC88CYoUTsuInBFdaw3UMhMhltrA11fCVLKv4dVAqu063m9qoBnO/w4JeEhzOU+uqrpN+YTZWilnJrcCGkCFsPRg2po+cL7XeEPWXoEpivt1Ih/yKo4X878BTfz05DHefpek5H2iiEnBk4BRVfXPY4h2+axU9HfwpqqtHu5tgeCzvey+9amRogjYpit9zGQp0WHMF76n6veZmNUVYETRgMr0YIAkMEDY+ZhOBIvDYPhyIqWT1Mj37qlPDJpY1HkIBK4qLC1LHmbrJ72Dm2D+lT68K3+aqikGoU1KXWsdB6LfnGjp+XeNkgxmRoyLonMzx1tQBl7niyZ1ZiyfFSZCkMao5eoWfTlYOJu/HGFsdFhzHwQ5g5MF1B/c4CaoBPBUEYAuQBdwOJoihWAIiiWCEIQqPJmwo0j4+UNhzzNPx84vHGOSUN5/IKgmACYpsfb2VOCwiCcDMB7w59EjX0usxMtPk8Ktwiq1ev7vCPnFf9Hba0TVAMu/PLqTd2PCdUDD1XTRVKJL6DvP5zEbn6/h3OcYgHOD8mkUe370UjXREe7VylYkftTgyRBZh9MTh2/MYBV9uyHaz3oVZ6SJ9czxpNBP4grm9nMMApZbK1DofxIbZuO4js6B5EXdvcFpNL5Mr9G6muiaY6t56yMMiVUFVHZo2CMbK9rE06yvJ1y0mSt1+3oajcyfmGKkoPRuHqURjU89gZ5NjgsRgHzrqNrFiZiFTS/kJosxXikgnk1xqoDZNMACnf7ifX6ufTKX5WrlqFpJ0FWhRFLk+5Hn/dOmR2P6s3bQeha5/5DHcMPXHyS1U0xzZ8RJG7iMjSjhWl0moH+9NETHo5pnBcr4kTeK94Ob0sKoR6A6tWrQpqM3PX1zFxgYeiMTUcSw5eLqvVGvyz2DOTPmelo6nJw+b2sXTFKpTStmU7Vu6gNsJEnU0gctkyCBPHCtHPpPEmFsaYKd55NRGGZ9sd/nbx12RGlOB3ylm7fkvXZyo2YKQQyai91exKz2Vv3l7KZGXtjt+Z72YUVoyOGA6E8V0cF6Hn24idGO1+Vq/uWOHVomV0n+vZXF8PzeSSOA0gh735ZdSawydvVygwMmA4cKcoipsFQXiDhnBRG2jtiRDbOd7ZOS0PiuIHwAcAg3omiAq/lX49YllfaGby5MntiNswPz+BmdfvpFQRzeAbJ0OPjt2RIaM0C2rLUCpXsl1I5P7J7bcUcHv9qJbv5fFtNjI2HiTnb8NbFBPqKrgKCsg3rEGdsoAqyyByfGUktnPNyvK2s7BqF9Msek6bdkab404ZtiX49xwAYOrc/5CcmUra+++1OfznQ5tYOUzFVSYjEUPGkDNoctfLdExC8bufcon/CNUDXuSy6R2H9V48OJd1qioyymVoJRImBPE8hgrngQMY54t8lFTHpd6R9Bs+hpSo9jt431PwAD9siWVm3wgGhkGmRtT8+hmRB46gqzydgTeMJUHffshmfGkO6377HWuklslTprU7tlPYWQGFX3Fa/lpurlCQ9s6vQYWRntqyggciqpCcez+E6XpNOPIYsnmXcLFoYcTYCehVHW/883a5SFLfSkxmFhkhyLV69eqg1sZG7Lb/yCHbZiQ2P/2HjSYtpm0v8gs71vBaiYD1BzdJzxiJvuSSoL8nVIjb4hhiVRCbMavDv+efX73MuE0V2NJjmTwlfJ4h34EM0r8sY6gniQue6rhe1Ee1L7Cq3M9sn4bJd04Om1zGhcn8s07KjbrJjJ0wEaWsfeNAdLtx7NqFIiuriffl9PjQ/h6okTZw5ATInBA2ebuCA1MKlIqi2Fg7ewEBhaaqISxEw//VzcY3b5PcAyhvON6jleMt5giCIAMigfp2ztUuRL9A5R49eytuwahYGtQfqRQTqIlPQpvoClts1F4jx7HRgKP0Cq7P6bhJpNnpIdonY1qciR4PX9WlmQ/NUfH4E0z64RCuY49RouoDdUfB2bY71uR00r/IhWqRHndRUVhkAkCfiNltRp/1OmtH5xB1Sfv9TtaV/8Ghfnnok1zhcw9rE0jKNZF/7uSg68BY3RbyMn3obk/GG6Z0ZU95OabNhQwyuonxSjqsBePzi2RUD2boVinmDeHjwADEz7mAxOFm4gVjhzwYu8fOwR8+I3npYeyEJ5OMqMCSkuytx1VVh9If3DLpc5gCHLEwPVuW1aspvPlZPDYpUYItaCJvvQjpE+vQ5Q4Ii1wAti1bsL+6jk+ESKIwd8iDMdjd6GVmki/uj2ZEGIzB5t91VM/5iytJFqZ3OHZW5Av0O+bGY+/iIpcnQBKdRPRFcr5JG4XT23HNFbdHoHeBiK3AGla56nd66LnXhN+dQJWp4/XrqZ/vpejqa7CuWtV0zNyiHtL/OAdGFMVKoEQQhMY2t9OA/cAioDEraA7QGEheBFzWkFnUkwBZd0tDuMkiCMKYBn7LNSfMaTzXxcDKBp7MUmCGIAjRDeTdGQ3HOpBZwLBPx0RrL1y25KD6IW2v3s6ewVqis+1h4084Kn0Yd4PaqcTt7tjiMzs86CV12PQi+tPGdnkPnUYkPPQgqQ8/RqImkcNkBw6W72xzvMKfxCyjhgidHEHVvpV/StAlovX70Yp6dvQZiP7009sdPjXxKs7bPAaPJXw9YdAloND7iI32UqX6KCj+hNvSmw9rZfRQhY+joJs6lT7znqEwQSBCu7vDarxWl5de5nj6n11F0kN3tzv21IVLYqdSQV3m1+ysbD99s8BUwG3S+eSdHYlbHab028iAAlPZK5a1Dz7ABwc+pc7RfiE/v19E4qpl47IkdrwfWpPYYCGLjUXs34t/R0chVZUFlUpdYa2gWPMam1TK8D3zgESlIiE+mS/Kq4gXTO3yYERRxOiw80485I9NRtmsh044II2MRKbzU22u6bAWjMEnwTVLR+z4MNWAaYAQkUyEug6x9z94Z+cHHY5P9kxgymmV9Lg9uOSOziLj7ilIJpmQag8GVfAyObUPe/5+MdoJx70sTW0E4E9TB+ZOYJ4gCLuBocDzwIvAdEEQjgDTG35HFMV9wLcElJzfgNtFUWxMH7kV+IgAsTcf+LXh+MdArCAIR4H7aAhRiaJYDzwDbG3493TDsXYhKpT0nV3BhOEz8dl6B1XM7ofCNzkSk48okZ1Sd832EHP2GPrOrkDQVfJbyXcd9kMyO72Y47ZxkyIZZ1lwxck6A82wYTiyk1FEb2a9r+FvX/9Gm60UTA4PmgQPaZemIU8MT7YPALok5MBk5zmI9n54ysrwVFW1Odzmgos2bKHugC58i7k6GrddSereA8i8NdQ5Oi4IZXF6EY5YqVja9X2QGiEIAuiT+SwyAlPSaipN7SswdTY7UnkdLpkQnt4rzWDdV4pyYRSZdQJGR/vGREZEBi9d8AEpkX68nexE3SEiUhAFCRnSOvZWH+M/O//TYV0mi8uLTjCyYZCAcXDwHaxDgXrQIPTPPMaKRCUSmTGodgJev5cRh+3oF0bisYWv7Jd68GCy/vU48ToPiYKx3QrndrcPhVjHSqmaYoO1y9ufnIjI0b0omu5lre9OdtXsanNckbmINaaXMSjDX78EXSK+Ig9jNvUjSze0w+E+W8M6Ema5pMlZ/KyVoEn/jFJjx96eW0bdxewrn0GedHyNMDm8fx4PDIAoijtFURwhiuJgURRniaJoEEWxThTFaaIo5jT8X99s/HOiKPYSRbGPKIq/Nju+TRTFgQ2f3dHgZUEURacoipeIopgtiuIoURQLms35pOF4tiiKnwYlryBDkEAsJsAXVDG7KZpbefHteuqPxYWN2CVEJCIIoNEeYGXNh5jd7SslZoeHdGscDy/1UPn2l2GRCcBTVUXtymXUyOfhdm4DBMhfAZ+f36oSs8/0B/9OtWPtZKO9oNHQTiBDYaHeYOPoGWdi+OrrNodvrFrGkqnJxPSxhU+BEQSctjhUS/ejP3gx52a03xPH4/Pj1a1hlVfEWR6eEuEAot9P5Qffc/MuB6dVDqO8A+vqaH0Rq1M3seNgNM6Cri+u1xzS5Ez0kR4mVmUi8bRfUVmv0DOwXEVyhQ2fIkzPl1SOoE+mv6+Gcz74nrW93mZowtB2p5gdHuJELw8kVzDl4hvbHXsqSIrOZnlZNQPtiqDaCcSpUog3DSEywoMkJryKaLkEvojQEyGtareEgMHuJtov8u06I32f3YzPHD7jCwBtPIPdZiIdF5Gqa9uzYvVYiSkrJHa9B48rjJ5jAH0yxnwtl+yoIFHecWjvkPghK3bGYysIT52oRjgq/Zy5TiSx4AIqOjByADyVldg2bcLvPD620QPjlyhAHt7r+JesxCtKpNTs1fHzxq/RZL4XVD8kwZOIra8edWqYrD7A61NRvUvPhFI950V+REQHFqbZ6SHTqWDgkHoSH7o/bHJZli7Fd99TzFS8wmiDhSaetM/daj8ohxtmrPdR+8WxsMkENDV0zFOupjTiXVJf/jcR57TtYt1av4gtOUYUsTJQhC/Gre0XT/R16ZToEjrs/GxxepFIXKwb46Pn4+GpAQOBcvTW9VvQ10sYIhU79MBIRT3nFCUQtUOFqyBM/awaoB6aS4+pPqKi3B1yYMqt5Rx96yUkO72IqvC9i0Sm0UNhxG9zIA2iM6/R7iFStCD6CF/9EODYZZdRsT2WKILjwBjsbizxWnqMNyBNTA+bXH6nk/qb/872kkg0mup2+V9Gu4cYLGiTnCTffTnSiDDeR8BtU+L6ScOQnRqSdW3XwhkQO4CcutnoykCUha86MAD6RFJGG/h40lkUGjr2vEZaBeKKpXhN4evcDeAot+Hap2WYS6Ta3P7z5fV7efrVWRRfe12LZrpmh4dIrPhVUWEz9hvx11RgEDAVahlXDB5jbochJJ/fxz73dkwjBTTZieETTBlF3SEdA2y12JyKDlMkzQ4vgrweZ4yIetjosImlnzGDjK++Ijk+nXWufoiNaatt9INSuoZwgd+MKjl8MXcAtHEgSOiFDJctBeXp01H17t3m8GnyR7h1pxqfEL4NBkAak0SE2ow0dgsv5j3W7liL04O6biTvVtWEvWpl9sqViGNUVOuKKTF1wOnwaegv6Mi6TiTi7PDG3QHQJbAkOZ8Nxvb5AMuKlnF/7l70Yy3hja9HpZGorOOO8bfzecRB/ij5o93hJocHlVDIwe9SOLYwPBwYAO3YsRxMU/JTcnFQHJgl+b+wPX0NJokQVsVKUCqJyMzhEbuNkT6hQw+MXH2Ml3tG4DtjQpc3oD0RkrhklFFenJg75DLtS8okZ2ZV+Hp/NUKXhFQpUpO+ivcO39vh8DR7LkPOryTy3PC+i9FXXE367ErEpBKOGUvbHevxe9BMnYzxlftbVJ42Oxo4MGHmv8BfVIEB6HWVitHn5uAxjukwhGT1WNnnfpOD6vDGRqWpveh7SQWG/vEctC/miOFIu+PNTg+/pRxkniUed3lF2OSSJyWhGT6MUjawS+vH2rch2+fqH1ptqeCym4nNtpJ8/YywyQQE+rpo45ktRuCuOZPqwjIcO3e2Pby8nF5rKnAYw2tdiZp4HLvq6VtdjaWDtgsWp5dIwUbF1kjqVx8Oq1wAh/SxzI0sodJe3O64Sks9ToUZryYibJ2Cm6PgOy8XrXXic7ev9J7V8yxumPgKSZE2pJqo8AkUmYbOVY0EP/MPfc3Gio3tDjc63EjlDpaN9yMd0nHJ+s4i4Z57qBkWiVfqpT6IDuxuj5SrVtipXxEDyvCFdAVBIP2dd0gaGEuy1NIuibfe5kYuryXPpcZjDK9HAUCWlEGP8Qa2jVzKa9veanPcovxFVGk+xA9hVfYA0CfhNMq4ep2HAUL7tVd9fhGlpyHMFmZOiRCZjEWpYml0HsX29nu5qWVqHj3zRcaec2OLXmlmp5cobEi6ukp2K/jLKjCCLhGpowaF3NthuqtWrmX6nos5/QMfTmOYCi4Bgi4eQYAYmYly6XfsrNnZ7niTw8PMKj1TF0vC0gepEX6HA8vq1RwpmI88Mo/a6KGBDyJbJytWSOfzYHxs+BcBCFTj9QasKuMXX1B09TWI/pNd/qIoslGzkcJzVKh7hZFYDAgRSdRuhnEHRc6Obz8d3uz04EpezDGnEq8tPD1OGmH8/gcy10r5qF5NnSEej6/t0MiOutX8IK+lcpvYwj0cLmiyYhij8iGa2u8Nk6BJoPfWctwGGTJtGBfIqDQkopf7d33NC+tG8cio9kpbBd7F3j4Fd2TbSR81NXxyAbOVqTxf4cfqbJ/kD5CuHkWGLAp1ogzClKXYCJ/fx6c6NTXK2nbD8ka7h/7WCF5b5ML5UlC0xVODLtDXJ6NmCGMT206ltrqtTNldTnVeRPj6IDVCHYPLrGLszgoS69v2GgMcM5RTKVtF3rZYvPaOw5mnAr/DAXvj+PeBOCx1HXNzHLt3Y9+6tcUxs8NDlKRbgQkrzIUy1i4rQpn9BBXW9su9yyQySmRZxPazIUsKXz8RFFrqjkQzcE8h2ooXuTin/bomZoeHsR4JmZdHtcv9OFX4zBZKb7mVJ3wX4Sy7jGoarGRz6+ROuVtg5ncyqr4+mR/T5dAlss9XiTbnafbm9iHtg/ehlewtu9fOMfmvHE5zI4sNvlFZZ2XKOqean4dM7rAfktnhRS542Xuuk4QbrwirWO6SYrxVfgY5DYh+GdXtWMkx0oFcmw/uLdawNY9rjqRLR5OQYeiQA7O3di/qd17HdEyDQhfGTSYywBdRyX0YfB2HOIx2D9F+C355VIfZg6cC48IfOfT8HqJcwXFgjHY33mw5cROjwiZTIyoffRx+quegwtIxiVewEjfYRvy994VdrsZ+SLcsKyBJ2XbD0AuzL6V3WQ9cZnn4jS+JhIh+kZRe3Zd9ykA4pi2YnR4yDDJUFfKwcvcAkMkw7PTRp8pCvVWK09N2htiG8g0sfPJqCv/xRIvjJoeH6O4QUnjhrIWEI26inLMwdaDVVtoqKYgtQDnUiiwhvPUBbDUadGV1GKwd3xqDw45ZbUXMjEWeGD5ujiw2hsxv5pM680JASpm/4eU2n1z+WhRFUmuyyYl0oAhzfQcA9In0cBrxWgZRG90D7dixrcbUtXItQwoe49L9VkRluFMkE5Cr/SRHlfNL7ePsrN7Z5lCL08PQiiHcbDKH3T2ccM899HzkXFbKbcjUhVQY285EEryx5Ka66PvsBKRd3Fm5VegSWKEGX48nKLdUtzns/d3v8/wNscT0s6LSh3GTaShmVzthAJ+OyeT1vNfbHW52eDAYqjjykRf3sfCR15U5OcRMzuHfcRIOOX/ocPzi0rdYkFiDRBv+e6jMyuKMjBzuNdRjsLvxtuHhM9o9FMWU8kn/GLSjw8fda4I2HnWcB0ucgv21bfcdMjk87BzYm4wpdeH3wABCVBLFuioOyB+iyNR2wU+ZGEXfiBSyL/F1eZfzEyFRKun77GRKBlmQag+1S/aPVcVSecNZRD7/jxbHzU4PkdjCn4rOX1iBSbh0Iv3OqqSX7GxMtvZj/Nsrd+GPXUCFJIwF0BqQfnEi+rOi8es28cPhxe2OrXWW8ZLWSV6+DZ+1fa7FqUCQyVAPGcIRIR9V3GqKPA0PpulkBcbh8aH3W0gcZib6ollhk6kJuiSyLDV4q2bit+qxbd6Cp6J1PtCAQ1sxrNGEf3HSJmCrVHDW4d34fFLE1rtbAAEOTIq9luLVMdgPB9dk8ZSgT+KFmCh0EVsob2dxqrSVY1Q4EdRRYWse1xy1vx+m57wIlOZsDO1w0h4a+RCTEs9BrvajjQzju9gQHu2vMVFiP8iSgiXtelaMdg/WOC8bJiuRJYQvRKkeOICESyeiUnnxeTq+L1J/NLd84aJuc3BVoU8FcX+7mZSLJ6Hy2VCJTurtrd9Hg92NWWGlvkaOt7bjZqenDLmamCGwZKyD1/ff3uawF7Y+TUVcQ9Xp/4Pwt1+VwKhNZgbsOY1YddvPssnhIUqw4lNGhV0mACE6jbkaP6r4Ze2mUveJ6cN9571I6tBxLY5b7S602MOelAB/YQUGbTwiIinKemqt7Rfs6Rs1ktsXZiJ8FxN2BQZtHDqfCXnkNpYUtJ/N4HTq+Ps+F3HfVuKrb59df6qwbdrM0RULkcctp9gqAYWu1RCSyeFhR8YqPoqM+L/hwOiTEEQfWWonhup6iufMwbJy5UnDjpmOsXRoPfoz6xAiwsuBQZeApVzFyC27iDbfxbCEYW0OrbLVsjNxO0avDILsQN5ZuI4cofTt3/l6Xy3JNUOpbKcWzH7nt3xbo6N29f+BUgUo+/UlNsNOVuVwvJ62WwSk+CPI2XwUj02KLJwxdoUWNLH0LDzCc5/uYOHEr9pV5EwODxfK3dxw+nCk7TQU7QqIqmieqawn0jC0w7EJ/nNISPagTAtz2LQBizw1fKfXEieY2szuNNg93FkjY/bXHkw/Bdfp+5ShjWesRcqk6NvaVESdHg+XrijHcFTzfxL+ECISke30kpGvRCtrm2D9R9nvbK+uoGxrm0O6FMbtdTy60klEybkdVuM1L/0d56FDLY75Gjuld3tgwgdnnZ+CLdFsqX0Yo3Rzu2MdLikViT2IH2AN+6Zsq5BiXWbAV3Atdw/4V/tj7XImxBvp+fD0FpUQw4GaN99kwrJKsmxvUmPzQERKqyEkk8NDdq2MMZ9rMP/ReqXeLoUuoIyYUt9iHd+R/uknRJxxcgPJfEMhdcnbsSb4w69Y6RJJGGyh+OYzOySIW1wu7FFybDMdaMaOD6tYol/EXWUkzimSJXe0204g0TWei466sOwJX3Zbc+inTiNxmJlYqYUqc9uL5vptC0n5eTVOoyz8m0xkGtFKG0X6JAor2y+2ZnS40bms+IQw1w8Bjtz5LtW7IpA6Oy5qZrC5SBtWR8SYjjvbnyoM878h9aEl/KzSkYCxzWffaHcTJbWQdnUO+ukd9yfqCpgLNUyeX0GipU+biuhF6Q+QZgKvqAZp+DPvhKhU+lxSwQ8DBnOkrrLtcX49WQYRqeX/Zru2FxmRlCno4Xe264F5Ne9Vjj1wN6afFrU4LjqMgR+6OTDhg1/U4K+Uc4ZnOE5rj3b7IW2v3MWB3hZieoexgmsDvC4l7io/WrcbQwd1Hpyecgo0IvLsDASFIqxypbzwPD3+/W+SItRUW5wQkdq6AmP3MM0QR0y6F3la+ApnNaGhmF0fXy9EZzbasWORxZ3cU2hI7DjOXjOFHiXhrYcBgFKHRK0hQW7BEvEJ/9ryUptDvW49N9UkMlYSXqsdQNWnN1nffMq+NAFfzN5249tqu56hI+ro+dwNYZcLAF0ifhG291zMgmPvtzns8Yr3+eDGNLSJblCFudJzVBrxCSZeGH8urxS/z2FD22nuFruLVQc07PnXqjbHdBViLzmLmnQfhT0+YUfVznbH7pc8ytwIbfg9x4A8rQdJUybxcXk18e16YNy8GudhbR8NivT/gzUCUKYmQLZAsbUAi9vS6hiT4/+xd97hUVVpA/+dqSmT3kkPgdA7oSNFsXdUrNj91NXddde6u7qr665l17aWXQv23kFRQIp0AqG3kF5I78lk+pzvjzsJCUkQlMxEvb/n4WFybpl37tw59z1vdVAxO5rQ8X3/WwSUe14DfoP+zYcHP+h1tzDNME4ZaiHpunFeEWvAg/ehObMRXdR2Sht7V5JHR41m62OXE75wYZdxrbVReaFaYPqOgElTGXReNTPTJ+G2xR6zmN3aimWUBu3D7aLPJ4KQWeNIP7cKW0QF7+U9f0y/u924nodcsbQc6Fv3EYAhOZnqQCc1+s+pbDvsUWB6diEF+NuInOmP/6hRfS5XezuBsxiEpWEE1v37aV2/oUe5Tj+wlfr9fdgHqRMOogjeeIDYWi0B2t4ftC1WJ7FF1RR/o8Nt7/uaGJhiWBEQQHbwgWOah1udhyjTafteSfBgr2vj0CdxXLTDnyAG9brfW+e+xxgRi1un7fMy5YQkoW89jF7nZF/TJqrMvffZcrY1UjTYRfEZff9AjrjyEiJjrYRYQ7E7e8+Qcks3Q4uCmbjIhDm/9+7xJwvTtGnEP/QQWr0kWjT0boExW6mxg63EqqTtegH/jGSaJltYa3iM7Krs7jJZG/lv7p2UBjYgvOH6BgiKpbXAn8uXJ5MWMLnX3ZosDkIxo/WWXMHx7DMa2Buxm+Ie4hzbmZs0lxvPfrBLvzspJTq7515TY2D6kEBllW5w1yC0rccsZjcx+Ar+/bqkIitC8Y33qVyKrzrQr5Ds+m8wO3oOzrU6XAQ3JnP/egv1H3d/YJ9sbHl5NH74MfnWrzC7K3Ga4qClEo7q7prXmM8zyWVsDPLeKgZggKaZGrOZutcWUfm3v3XbbVXJSl4/O4TYiU1eUWBc2jDcW6qILRzBGQm9p0eX2rJYGtSMHW2XYlB9RfmfH2LhVgNPNg85pnk4L/RLsvZE0LSl74vrAeiiogkbBqN0QQS6ei8EF1dpJ3VPOa1uU5+XKSckAWlt49Wlr3PtljOZkdC96nQ7Gmsjv/Or5fyLr+pbmQDpF0qUWZJZOZwoQ++ZfhqhIah1ApEDzegTU/pcLoCtLYU8Hh5OlKaR5fsryS7uuoJ3uNwIWyvP72wk4+UcnMdovnpSCYxiqK2JqObrGBE5ottmh9tBQpWGzG+bcTT3capyO6YYzFVGJhc0oHf3nt26of55VmwLo2mnFwKeAWthKcPXBPFY4UAamnq3otjr62j87PMuDXTb7C6CpHcaOcKvWIGRhiDKt4Tz5ZYl+MV9euzuqTY9DUPCCB5q7PNJ04WJwxtDOTXHwGXRb2My9KwINFsdRDh0jBxbT8JDv+lTmQDMGzehefJ//CXxXVzmDJoN0YBUlJhOWGyCS7a7iH6x5ZidoU8aen8whrBaswtj+oPobrxZqQVzFAfq93IotgqDyeWVFEljcjxJNwWwacCIY/ZDstq1lAwVxFw32CvZPm6zGYPGRBLN1LTasPfQ50dKyeCKiQwtBFtZ31v3ADQBAcTMjSI8ykF1S88m/lZ7K1uXvErU5sNYveByIzQRjRas8XHkyt6tPQ6XG6OjCUebBtcx9jtZ1H+8lNwvYolyNNDQ1rsSanW4sPlBzNhmDOlD+lwuW34+fuf+H8UVAQSJerIKG7jy1c1dlJjGNgdhooXAWBtJf7kGXVwf1tXqhFsfTuXHUZy5sZhI/+4u5qiAKMbqFxLqdCP6ugltO0FxDJjcyNLTRnGorvf07mBHNDGtEre77xc4AO62Nuw1egZamqhq6n3ueuDtq6l44AHs+Udkb2pvIwBqDExfIjQarC1+zG0NxN4w5ZgupD0N35M30klQRt+v3DWhMVjqDSS5mqk/hkzNFidav1JKgjQY0tL7XK6Q888jfc1qIgYoP/46rWcSOMqNJJwRnI2D8LHRaIP6PqARgKAYJrkE9ppTqQmJxNhD/ZlTIq7hT6sisLQG9n0xKJRqvH6OOnQh27h3ywJsrp4nApd5MP+qtRLsBasQQMJzz+I8LYmv9RWgbeTfy3O6rZJtTjdxbf4MPaua6Ntv9opcANIUw+rAWjY6b8MtuytWh1sPc2fYN6xdEIQjoG8bAAIQotSCsV06m28GFvD6nrd63K3J4sCkqyPr+xh2/eeNPhcrcMYpRE9o5UBkHn/Y1Lt1b2PZdnanfcF2o9ErGYHa8HAiz72AP0t/kqSihDqcbjYXHFGCG9vsBBoL+X1SOFUjEtEYjX0uF4AmLJbwwWaKQnSsL1vf4z5FEYnEn9qEX7p34nIIjERoNOTF7mN5Xe9xcgmWDCbPriL8vL6t8NxOwNixpP5+NOsS6mmWuVjsPRezGzd7ASWL7sd/7JEsy2arg1DaLTChfS7rr1aBAUi7JpYpk8JxmQcf04V0wPwpOaIFtyG0z2USoXGkn1NN/fAwtptfZ2/t3h73a7Y6KIndxtLycCyFvRf+OlloQ0LQx8ayuuYddEG7qZTt1Xi7NvxqsjiIiG4l9pJxaAK8Z4qdZrdir5tNU3kdTV9+iaO66zVprW9k0PZSzLVeWl2ZYmjcZee0nDIG+A3rVYFpsTowb3BStezYjdNOJlX+Qbwc6EBjrOKVdQXdVsl1bW1YAw5Tq9V4ZRXVTukH5Zz1pQ0/8xk43d2D6tNC0vj04q8YJR24DF74HkOVB1mavh6NsZK91Xk97tZkcRBEC1lTXThPn9LnYvkNHUrIKH8S3TpGhszqNU7O6TCycI0W/3fCkV6oIaILCyPuoQcJTE8gWihxEDqthslpR5TzhjYHgdpmRJ0OV753rHsABEYRPbqF3cPyuXvt3d0q3y4vWs5GywNYNVavuD4A0GixtEVz5zIrGS3n9b5fe1aPt+QCNCEJvGxyoQva2+MiB+CKUddw+tRr0PgfsTo2W5Tebk5dIGj73mL0q1ZgMEVjsdRg9K+l7hgKzOjaG/i/RXaa8/quRHgHAYplI0Jvplqup6S556Z7zRYHkyrTmLtKS8umYzfdOhm4WlpoeP99SvYtQ+tfTKnL82M6ygKzr+UbLk4IpsnopRgYgKBY/G21IOzU5edRfu99WPd2Vfy+a/6SJQuCCB3jpUA4UzQtJf5MLqtjQuBtBBt6thhYTJ+yPliHJtA716vx088Iea2ITYWHwZyOW3ZfJZc2VrM/ZCe5W8Kx5HmnDgxAyPQhJCY301g+jT1l3WO/9Fo9fhsPEVFkwd2HjQk78A8DfSCmr9by2NtNzIy4pcfdGtscxLid/D6kmsyz+z5rS0qJk1Cm1buYEHJFr65Hk2YAkf6xRAxpQ/Rl48tOVJoreSGgDXew0mjy6snJjE8+8uBtaLOTZPHnnrU2NC9/7RWZADBFIyUMr4rnyamvodd0fbj66fyYt9VKy8owpJ/3FAUnocQWm9HX9G6BLbC+yvq1MVjLj53KfzKpXJzPFysbMFTPYtGGwm6LHCklTTuyafj44y6tRpotDkKFGbeXFj6/agWmbruFLSvqMST/m9qW3n3JVe5gwjKtBGR4wbRoCKDmQBjj1+cQXvskZ6X13OOo2eok2a4h/fxqIm7oeWI9mbjbLFT+7WH+HXI9zppz+fJAKy5dQDcFxmAL4O4vXdQ+vrLPZerAFEOVrZagIQ+yqHkPltc+IHD69C67lFj3UBxhQxfe3f/dJwRGk3xqLatOmUdtS8/KsdXhQmcLoHSajahLZ3tFLKHXoQ00EeByEUEzAtDruq6ShTuQC4oGEFapw23+4Y7HJ4um0aMITzMT6K7nykUruq36ChoLKHjnBeQht3eyo4SA0ESCoyU7YjLIreq54GWzxUGYbMHWrMXt7ttyBgBISdGbLUTlKDEwbY6ev6P6NjvEaAif1Pexe+00Xnw1EV+WU+duZXCUP/uOeug2ttkJEy1Ej24m/rFHvSITAIFRlG8O5bplm/EX3eNuZibMJNIyGp3OjfBC24V2gkYlo7ncj12BLb1aaQe0RmJySq+4ZNpx1NvRtwniRX2Pi5xGWyPP/+dqKh56CDq1bmmyeNoIeCl78VetwLicBuKb7ERaFlLfSzCc0+2k1G8NdUNaMSQnekUutzsAP1vbMd1aDW0W6gKrqQ0LQhvW9ysGXVQk6Wu/p2jSqbgkbClqoMgRSkNF174voeYopkQ2Ezp7fJ/L1IEphii7GarnsLssjCu+LWdHRdcV/Ckt13PXFhtOvBA74ZFJCIj3r+e71jv48OCH3XZpsToJbxzGPfWNXnPVhJx3HkmP3MHbYUEMSthPTLCRd2+c3GWVbHVoGeDvR9qlgsApfe8SaWd/sxGnTSBS/ouIWNxlwgTYUrmFO+bmEzSnAY2XLAqEJBKW2sbSWQP5oOQhsgpruu3SaLHTJsooWBpDyeKP+1wkodEQe24yfkkO3ipfyH93/bfH/b4ufZsXE/NxedENGHnRpVw+7Qxmt5m5IMOfLYV1XeaxhjYHZaEF3JsWjt/oCV6TC79QgpLslA+KYm/NQZ7a9hQud9fYjj2paSTOaPCqq4agWA7om7FEPUtJU3drp9stidakMWZONX4jeq/ofbJJeuohciY50IQrGa5HL3L0Gj1xt92B/Oy/XSyAzVYHIaLVa6nov2oFJnrBqQydXstQ3SjqzT0HKrXaW9EYl7DfYez7JoAeYk6LwTQ3BEvgN7y17+0e96ky17LWVMq+fBOOqr6PgREaDfroaN4+sARjtNLioEKGY6s/6kdnbSAk2ULE/LP7XKYOgmIxSoiqH4HbNoBxJbvJ/eKbrrsUHMS+TeByeyu9OxpzlYF569cTYBvMANOAbru0WB3E2WvJXxpFc3aRd+QCCIrl/eAgNMF51Lc5GJXQdbV0uKWS8sAGzH5eCsL2kFzZSO7ncYwuSMPdnNllwgS4IP0C/jrudWL0dnTeUmBCE3E2lNBgaaPN2cA1b3zfzTLU1OYgQO9gxVkaTN5oTgiETh1EREQbqdrzmTyg5xoiATKJv7/rourb3jsKn2wib76J4FOVdPN5SeCW8N3+I9mIDW12/LRWEgsM2PJ6jinqEzQaAgcHYRtoZPH+Hbxz4F0Km44svv668a/khXtcWt6qtwLIgGhGr3Qwdv1M/DXdLT/NFgfBtOIWWjB6afEFEJLAOn9/aiMPYNRpeOeGSV0WOSaDiesn3MrwITOPktdJCGa0fdnmoxO/agUGUxQ2ARr3QQrransMVDIIE/NWT2fE+0E47d6JmCcwiiBXI1r/EnZXH+hxF4c9gN/t9yd+rRtndd8rMABNS74i42AWOlMuAFVEEu7qWpsgx7SE66KjvToJtLcTiNE0oDFWcnH+94zYcMS/3uZo48v0HTRfVo8h0TtWNEzROFp1RJSWE1h+To81RJqtTqoSllAaKdBG9HF/Jg+O8nIKb/8bH2yp4w+mSdidbvJrurpG9tXtYKe5nqqVTtxt3nMhDZw9k5ixTcQ5Irlu3GldJkwAf50/0V8uw1JpRG/y0io5JBFbaRsfvvsRydvPw2H372YZarQ4GONyc8eQaCLTh3tFLJcMxL/BQpjjVKYOmNrjPsFyFAOSJaHjvZOq3M6TZatYEhjAQH8zCWH+fLvvSKmFRrODC5p1nLlU0rTk2L3eTjYWfRiRjkZ274uhLfdBmpqPKAwDAhO4Y3Et1buDvFJmoR0REoe7Sk9qvcBs7d6+YFf1AQ43ZrNrbZTX3IAATauyuOIzLa9rZmBzugkN6OoatblsVH/xKc0rVnQZb7Y6CBNmNF5yd/2qFZi2gkbyV0ey1/Y/2rS53QKVABosDmoio4nLbEAb23uxoZOJuUJD0+Im/HLnc9PQ+3vcp9UKqTEw+PcD8RuS4RW5Gt5/n7N2W7h90EsADB6UgcFSDS4liEtKSVRrCL9/WUPlS91dJn2Gp51AfEYOgWnPoH3kzwx745WOzW3ONlp0hdSYNAiTl2JgdEZChxuw3TCeQpcBi8PSLTW4xepAL8JpmdNK4NS+7YPUjiYwEG1UNDotJOqV+IR9h7vGKUTrRnFNmUBb4+7zFhWdMWSMJjzDTHCAhSZ3GXWWrorChsMbCPz8I8zlRvyCvBSnEJqEPsDFltQRNBsD0Wo03SxDTRYH4Y5W7K0BSG9UUwbqNx6mdFk49uZ6ylvLeyx4Wd9qI2pgK8GTBntFJoDKhx/mlD+tJN+gR5irOWN4LOtza2mxKlk/9W12IjWtpN2QSNiVV3pNLoDqUiPxX1YzqL4Ch0PXRRE9L+Uq/DTBaA1e6JXWmaBY0s+pZtPIcP79/cpuzx/pCiDFZsSo773icl8gnQ7ASCLKAnV7SVe5VpWsYuszf6b8g64ego46MF5yw/2qFRj8wzA6YXj5cNzWBOxHBSoB7K/JpzTlEI5BNjQhfdswsQO/EDTSidFl7zUOpspymIMmM/bQMK9UcAVIfPl/JC16jfkTFCtGoy4KpBtalRWWxeFiaFMY8RktmGbN8opMQEc7gUtCB2A5fDnaiLguKdyR/pGcvXUm03bjZctQDOGyEZffHia/P7mLyRqUGJiJNWmc2+qd1vOgpMMnvfIK24eF86Z5K356TbdAS7vDj/RkG+l/zETo+r6pXQdGE053EDHaGr6qu4sVxV1Xd5/lfsbv7gonanQz/kFe+h5DEjGYXEy76wLqh3zN+JF7u1mGmtocZDdZKXi5AEd19xiZviB42hgSptfT5jjI6Z+ezrrD67rts8X6N/4ebET6ee+eD5w5k4E33M7vGpqgpZIzRsRid7lZdVCxEje22XkuyszbsXQpQe8NTGkJGMa4qPYPQ+9fx/qWf7Kvbh+gPHiLx8cTNtQOvRQP7ROClGdKffwK1tW8120RrZNhDI8NIPEc716r0IsvxnBtEq+58wkyNbDjKAUmIyyDmqfuIu6Jrg2HLeZWjNi9Np/9qhWYgGmzGHhqLfH6aKQzGK1GdFtd7a/NwaLfS71Z75US9ACBY4eTMqeG1rA2ntp9LwfquruRKmw7WdIiqM1u9IpMAFqTiUPN+fx7x0PER5nZ0eRREjyZSIr23UL40DZMc8/wmlz4hYLWyDiDxNUymsrdhdT+72VcnSq6js7fQd0B7/RBaselj4QVhYwtauOSgdcSoOtaF6fZ4mBoaRH5X0fjaDl2486Tze7AID63lZMRa2Jfedc+OaWtuewPsCO8GPzZTv7nQYzZU0G09XpOSTily7a/T/8712gvRKMFg8lLD+VQRVkfaWoiWKehydJ9QdFkceAXa2PbpTHoorxj4TMOGkxQghWDxY8HJj3AqMjufcdiGwdzw8t6GjZ6r8ZQ0KxZRPzfraAPgJxvGSdyiQoysszjRmpocxDZ6iB2vwtnnRfrwADR6akkDmuiNiCUJy6cgtldQ72lHiklN6+5gEOhpTiNIV511WCKpf5QIH9c4oe18sJu2T71bRaCRQvCSzElnRFBcbwtWkiNb2J7cWOXbWmhaVw77iZCIrq6J90Wj6KjWmC8gF8oaHScMtKJ3ljHacNiuq2uUvwn88DiUHSrgr3nG/X0aQqVdqqth2mwdY/N0baN5f7tFqzf995s62TTtmMH9pfeYE/VLoYM0LChxk/Z0KRMkE0WBx+k7OTfwdFI4cVbSwgwxaBvqyYp2kHZ/hXUPP00jjJFrq0V2bxwtpPAs+q9qsBoQqNxllqIbHVxRvxC4kxdf+zFzUUsTymkOQq0Id6boA7ffQ8XfqtjncXEiAGh7K9o7lIM7VDbCvYcDKBqae/lzfuKmNMiMaUJmmpGdLte+mYLKd9twtak81qaJqYY0OjI//1/eWB9JIdLJuJ2d60H1dxmZYGs4+rZ87xWWVYaQrDU64msP8zlQy7vMUg8tDWDmLFNBIzxTlwOKG7kj9b8nScDjVC2Bc3b53NjSg2rD9ZgdbhoMlu5L7eRgZ+W4zjsvbkLgMAodDYbaa1laGQgiy9YzIyEGTilkwnO4Vz5UQ2tVd4NXMcUjcOiJb7JgnQGd8v2WVX+Gbt32KnZ0PfNODvjqK7G/kYB322q5dSEORyqbqHZemSR1Wiuo+y5p7Ds3t3lONledE+tA9P3uJ1OildFsXTLRmKSNvbY3K7BbKd2cDjRE2xeKUEPIP3CKfougrNy93FR1HM9Bum5LZJh4+sY+OgCr8gEYN2zF927i1ly2gfMSZvIAbPH1NpugWlzcFahkbNf1tJyVHBXnxMUAy2VBERuYEnaN6Ru3YTf0KEAlLfUYQloQOilV11IIiSOgRc1803KZN7aVMDynINdttscGkSECf/T9d6rWozSWdwQFwEtVQwfEEKL1Ulp/ZGuwAmOuZxTZ8Fl9ULhxqMInZxGZFQrdZYGvilY0aVi6teb3yJ6yy7srVqvVkslOJ6wiZEYp02nyeKgoLZr0LOrrRF7ixZrXff2B32GMYSi5ZGML9hHfVsLGw9vxOo8Mn9JKXE4WwnPMOM3dJjXxGpduZKR//cu9c0et7bLzukBeVgcLr4/VIPb0oQpxsLAx6/BmOGd2L0OAqMo+T6Cu3d8xJaCekC5TkiYGbkQQ4gWTaiXFON2tHpiphgwzh+ELngnd5wtuyyig0U60XoXAV6WSxMQgNQY0LvdXNiwiLEcYmdJY8f2F9Y/ScuLr2DZvafrcVbPPqoFpu8Rej3oDVyoCWZq1IXsK2/u1txuV/1mNg1qwDTIeylsIigajV4SYnRS30uTSavcyaYAPzShUV6TK+zyBQzZuwdtaCjjk8NoJhCn1h+alZVUk8XBHJuO0Gkm/Ib0ffO4LphioLWKmbHn0Vh6GxbtkfLWI8KmcveyCEylOq9mGGCKRutoxR8ry6te4q7117KtqL5js9sRxtUN/gzRh3pPJiDqN7fjPncsf/dzYvAvAOjiRtJbJEPHNTDgtgu9KheAq82Bsbqagaa13LPuLgoaCzq2Pd3yBY//NgFTnM27KaWhSUSMdFM51Y+A1KfZXNi1gSmWBj4riGbfU594TSQRHE3izHoOp0SxtnQzt3x3S5e2I01WMzkJr/KePhjpRVegMSODqBsu5WGL537S6EgYdxoh/no+yS4jUFfMpYmx7IzQeM1a1UFgFJHDWyiadQqbC+qwOq2c8/k5vLb3NWpN4RinuAlM727J6nOC4hgS2IYxagXrK7tWJw50J3PGqCqiz8n0qkhak4mU+y6gLtnF47Wf86DpCSr2ft+x/bRRF3Hoi0cJu/SSrsfZPd+7GgPT9wghSF44iAmDtJySMgq7083Byq4BjYWtO6i0NuJ0h3pPsMBIkk6px5wRy6HWLM79/FyabEceMFJKWkxr2Z4bSsveCq+JJfR6EIJ7197LwZZVBBn1NOiiOhSYxjYbgQFmQqcnYkjyUkO0doJiobWKKUkZuG3xFL7wMi2rVgGKYjUop4SWKu80cuzAFEPdwUBu3/0Zjqax2KvPYlPBkSDPZquD6E01lH7dexXoviIsJIkVgf448l9jgja3SyBvvWu70gDQW26adkqzqP1yPSXfhvKW7SMeGHA7KSEpHZuXz1/O2U3R2LT+oPVicHFIIrKhlIHGALTuKLaVHKlrIqVEa2ukcaSV+uu6p8r3GQHhmAbY0Ae6SQ4cycunvcywiCOWliaLg3Ozoxn7tglHg3cyowAMiYlE3v039De8BwgYfiG65MmcOjSGVQerCcbMuGIXgdu9U/qhC6YoTHE2UsYmkFvdSqtVMDtxNg3WBl4qvJJqoxmdyXsu5nYsTUE0fphHXO5lJDlv6rLN3FKBE7xWGK6rYA2Y3G4KDTqadRJRvKFjU2ZcJucPuahLlqLbLTE62hWYn5kFRgihFULsEEJ85fk7XAixQgiR6/k/rNO+9wsh8oQQOUKI0zuNjxdC7PFse054SvwJIYxCiA8941uEECmdjlnoeY9cIcTCExY8MJrSthq0AUqGyK7Sxi6b4+UCHnrfSd1OL5rTPf2QIkUzxdWSMH0CrY4jZmub001i+RROzZaY9xR7TSxnQwM1Tz2NY38ODbYGxiaHUeoK73Ah5Tflc1Oii3XS3WuDuT7DFAOWBoZFG9H6F+H67B1a1ygrhsUFH/LkTSbCpvh5V6bAaJwWLQMs9bgsqWjME5k68Eg2Qa7lWz5MdyGSvGhNQKnnU3THf1l+qILLd3/FO/pHsRZu6theFLCGulVhNK7f71W5KFpHSFIbAyY3EOWyM7iqDKP2yCrduWsviVuKMLu8HKcQmkjNxhYiL/4Dk4y/ZW/pkcJwFocLk7uZ/9M0cNqZJz79/Gh0RiwWE6mV5djteqYMmEKA/ohybrXrCNcnEDOuEV3iIK+JJaUkK+97fn/oUxpSpkClEiNxxohYXG5JjFPDdTvs6D/Y6DWZOghUrNUTi77k6vJv2VJQzx8n/pGLBl3ExTviiP5cj9R697cIIP0jcLXZmRgdy6aCrvGO+6qfY8s3cbTsqezl6L6jclkVto0hfF1WwWSrm8VNaR3xX6U7N1D29JM4a44syFpsShE74GcZA/NboHO6zH3ASinlIGCl52+EEMOABcBw4AzgRSFEe5L7S8DNwCDPv/ZUlhuABillOvA08LjnXOHAQ8AkIBN4qLOidDxULTvMgZUO/rHtPiJNRnaWdg2WajDbMU2XhE5JPpHT/jQMAVTuCWfIt1mUV8WSteU8KuuOTE5NFgcRbjcZ51UR89sbvSaWdDioe/11HoxeyHUjrmNCchj5tmDcjUqwrMvhz1822Eh8Ige3uXtdij7FpKRSR4smTFHbuOMmPbF/+ysA9ZZGbDo7eCtzpUOmaGLGNhN6x8UA3Dg7jMiwThY+eyzaIS5i53kvRgFAHz+AoGFRaAGkGz1OwqqzOraPLptKis2JFF428afMwC9SQ3CiFanRskwTwdKCpYBSEXvFd68QfLAeu86Laa4AIYmYBliJ+c0NjI8PIq+6lcY2xarRZHEQSitttXrsdZYfONHJpbEwmGEbC2hqtVLaUspHOR91LByqW8yIUAehQ5xoQr1U+whljgg65/9IXbaPtrSZUL0fGoqYMSgSo05DuGghZlwzqa//x2sydVCvLFIda3Zw5fYVVOxSLLSJQYnogicQFGFDhHjPJd9OwIjBpJ5axaBJw6jUfMkH+44U+EuwDUQf4UAbGeN1ubSJQ9CljQFg56i/sN6a1lH08oXP7qX55UVdCl02W5Q2AhKN11y8J0WBEUIkAGcDr3YaPh940/P6TeCCTuMfSCltUspCIA/IFELEAcFSyk1S+RW+ddQx7ef6BJjrsc6cDqyQUtZLKRuAFRxReo4LbVg4KVobz037B2MSQ9hZ2lUDLnF9y5Z0G36p3nWJuAL9wKSk8zmcbjbld3I9WBw0hx4gx6j3XmE2QBcVxZA9uwm9SImNGJ8cRoUMR5irwOXEZfNnXnAD0ZdkogkM9JpcQEc9BVqqGOq3gLDWBzt6dEx2n8ZfljlwWrydYaBMOjMGuAkwaPm4/E88t/25js1uy0Dur29A5+UUyYBx44j7619x+ktujI3m/ZBgVloGUdNiw+WWmOySQXNqCbv4Aq/KRWImXPY21kYdy8yzWOUo5JHNjyClpM5ax59j1rNiYQDOQC+vkkMTCYh0EHb6OL5ufRBD5Ap2eAIamywO9IYadmyOYverL3tVrOAxIVTPjaDR6mRLxRYe2fwIpS1Ka49NFev4IHYPB7QRXk0L1hgMxNx/Hzfd8DzxIy5TBnO+ZV95Mw6Xm5qQQ1ycHMNO4X1XDWWKkh45tJWUs2rQlClWx5tW3MTi5A3ET2n0javGFAvSxcx4PfrgXawsPLKYCBPJZGbWEjDei73lPET95nZinnyNg0Y//tr6Llr/oo6CdrOv/wtt372JvlNl8/ZGjg5DMGi8E51yst7lGeAeoHMEbIyUsgLA83+77Twe6NxAp8wzFu95ffR4l2OklE6gCYg4xrmOm8gFZzJ4TCNj/GMYnRBKfo25S7qYw5lFUZ0Gl/Tuqi80MwrXeMW/qI/8jk+qb+tYXdWaW6kI2EvZzhBs5d1TrPsKIQRCCA41HGL+4vlo/YupIhIh3dBahbWlEk2Eg4hzp3dp8OUVPMoCrVWMiUsmYM9BDv/tYaSU2Csq0OU6cDu9GP8CEBiJpc5IxWPvc3a4E2ov4oYRN3RsbjM3U/RJKHXrujdx63OSJ+MXNxaTRk/90BvZLgezr7yJJouNutA88vR6r5mBuzBoHmXrI4nfV4G26TSWXrRUiVULTmbNxVnMMdtxG70cmxOiTNLu8jymBgwGZ3hHsbHGNgeh0sKe02wEXu3dyrLGuEhM4TaabS5OSz6N5RcvJzFIkdWPOO5fKtAv9m4FV4DwhQvxHzUKwtMgMgNylnbUNol0uzhju5vc77K9LhcpM0Bo0Qe60Jq0fNU8kNpWG2enno3R6XEv+0KBCYqlencQhof/jLHqXoLMF3VscjgqsYN3G0x2JjCCuAETSLW1YTLqOurBnJ5yOhPiMxGdFJVmq4NQYcblxd/nT46EE0KcA1RLKbOFELOO55AexuQxxn/sMV3fVIibUdxTREVFsWbNGgDC6isYDby75nVKnQOAVN75ei3DIrRIKUnbO4tz1hSSZ8inImDNMT7WyWWkW8/QwDqMLojVxTPGKPluzXfohZ6d1Q4uP5hOwr4DZK/dhL22+YdPeJIIWPEdNh24hrrYu2cHDr8IcML2NUs40LiHuZGJPLU3h7a2NV6TCcBgq2MqUPPdswwIvIAk22aqv9hH3oTxvCk+wnKDnXOCjGxf4125xukCsTY1Ee+spao2hZ2bK6k2KQGMbYEvs3EkTDVo2OORq7W1tePe7DPsdqL+9CcMEyJ5OqaCZUkTADdfrd9JSYyNBplD/fIwNiQsxpGc0rey9MDwWf5Y9YKSag27Nu/qGHesWk/aASuNIYJCL36Pwu1gpoRDtz/N6ZOnszx5Jit3FTDBWEF2lZN4l50FATY2tflR5UW5hjQ7CC5rpXjDBna4FMUlhxwAivPtTE/SEzhQ96Pvpx97L5pbqvm8+kPGDpjDuf7DSSj6ElPgfnRCS2arllEbtVSYv2XNMO9Zj9tJSbyIlJKP2aKZz8RdB3h9yVomxg3g7vcaKdOFUTOmhKaqNV6VKbipnGSjG0drIWf65bB0v5vVqxUFuaX6a/aui8U6aiv2cO8VJAQw7NtH0AcfYrh0FC/Urec3AYJ1B8tYuboG+5bVhNZZsJ19bsf+2VVOxmPG7NKzxUu/g5MRyj8NOE8IcRbgBwQLId4BqoQQcVLKCo97qD3svAzo3FEvASj3jCf0MN75mDIhhA4IAeo947OOOmZNT0JKKV8GXgbIyMiQszyl7ps/yifvq2g2pGRTH1EEpCLDk5k1Kx2zzcnTX+8maVYtxnlzyZg6q6dT9wnm7Jep+Lic669z83b1SJ64/S4MOkXbbdp5mMbdOgZdZUVz621etXaUvPUWmuAQPl/wOQAvNn4BB2F0WjQDSmK553Mbkf57SFvyL6/JBEDxJtgEUXVbuappNy9kjiH/vFEsPvtstG9/hFbjIHHwGBK92eIA4MAAgjOTMJ15Gc88voyDejtzJk4hJiAG/ebFBIzfRsa8c8gYqci1Zs0aZvWxjFJKqjZvwTQ4CHFwI6dnmIjf3YrFL5KxY1NxLE8iQuSSMHUaxkHeCwDtoG4CfrkbsDRCWWQ1ccERDAgcQMGbWTgrIDQ2idHe/h63xxJ3/mAMF9zCKaV6PtpWxvQZM6nefhi/XU1Y6sOZPnw4uijvxVC46z6h4aUShgUXMWvW1Wyt3Mr2qu3cMvoWVjZvwy+mjfjhk4n/kdfqx96LBddcja6qCM3Lg0kaPh4WfcbCIQ5GTJxB+OL/EXV1MINueRptkJddugDjMuCpjxmmc+NXupVV1gXMmjWLt//3PyaK/YydOgeih3pXpv3NkGEmggM8YPkHqyInkRtyBdeNms/GL6IwRBUx5szz0fh714JsiYyivqCQqFOvhA/f4bLIA3x1KJbY4RmsfPkzTqmOYMqT/+7Yv3prKaH7WjFFJfb5HNbOT3YhSSnvl1ImSClTUIJzV0kprwIWA+1h+QuBLz2vFwMLPJlFqSjBulkeN1OLEGKyJ77lmqOOaT/XfM97SGAZME8IEeYJ3p3nGTtudHFJ+IfbuTdiKovOeJW0yEB2ejKRqlvaaExYy94UgS7WuzEwuqgo/COtZA6KodXmZEtBXUcqdXFTCQdCq6j3D/a6qyZp0SISnnkaAIfLQXxqCgDVhwuJMBsYNbCJqGvme1UmAErasxokwuXgoppEJhjvA+CsnHGcv0apXup1TNHQWsWAUH8GxsLnlQ+ypnQNbXYX0Y0JXNrc6nVXjRCC2Af/guncq5HAhZsewD9mKfvKmzDb3AQF60g4S+Mb5QVwB6fizm1gcFMx7+W8x9cFX3Oo4RD3zyom5PQ6tD4oq05oIqEDnXwbVMjXzTdgcZk5WNlCk8VBoain4hsnlWu9W7xRExpN4um1bBs1G4Dsqmxe3/c6FqeFrc1v8ddADU6395WEqOtvYOq9T3Ja8mmQMFGpfp3zLeOTw/iXqZzHo7S+UV4AguMgehihUWU8f+cLrGzUIaUkPz2W8MFm79aJaqf2kOeFxM/hIEBXy77KatockgFBUQyaave68gLgP2I48f/+F4ahY9mVPJ7fab5DG1BISY1g8D+eIuKL97vs32x1EIzZq7/Pvoy0eQw4TQiRC5zm+Rsp5T7gI2A/8C1wu5SyPS/xVpRA4DwgH/jGM/4aECGEyAPuwpPRJKWsBx4Btnr+PewZO24Cps0hflozyYFaAvQBjEkMZWdpI1JKKloa8XcVUFvthzSE/sjL8OMwDhxI/OR6Jk8ZhFGn4a9bf8udq+4EoLDlIJWN9dRv0SHdXqz+2Yk6Sx0zP5xJuX4XbdJIfUUB0lmNZoCdoFPneV+glBmgUQyKQqun0TSelHdeoHXtWiLKDtFYEABB3jdZY4qhbn0lhZdcytxBg7GX3sSMAafRYnUyruoAOZ/EYa3wnguwM9IvFBGexgVuf0aET6Coro0DNcXsDaml1s/76aQdhKdRsSmUc8s2ckPa4/z7lH9zfvr5/Gv4+8S4XOgDfaDA6ANwl+0mdX8BZyWcBcJFdnEDjRY78UYn668JIXzGbO/K5B+GKczOwbomsosbuGbYNaxfsB5/nT9B9rE8+Lab2tXej68KmjWLoDlzlD80Whh0OuQuB5eTMU0OZm4Ge1GR1+XqYOAcNOVbmJIaRE5VC4cbLZhcnt+gL2JNUmeCRktldjCF30SSVn8Vzsbp1La2IvSNtHn52XM0zro6Bg4+jwXNzSS4rRwod3JG6hkkBCV02a/Z4iBUtKIL9J4SeFIVGCnlGinlOZ7XdVLKuVLKQZ7/6zvt96iUcqCUMkNK+U2n8W1SyhGebb/xWFmQUlqllJdIKdOllJlSyoJOxyzyjKdLKV8/YaE1WmWF0FrNJ4c+QReynZoWGxVNVhwOf67dkEja0kDv39iemgX+9nqmpUfSWjuOiwcp6biRIpPbD2kRhxxdgqi8Qeu69ZTfex/hxjAuy7iMKQmjqdFEYqsvIzssm9/5xeByeqc7dhcSM+HUh5XXcx+ElCkMOrSBVevf4dXpOdRe1YgI9IUCE41O04xx0CDmpIViax3InhIHLVYHW4ZsJn+kE12cF1P0PZTfey+FF1wI8RO4trKIcwcq5ZjWFu2iraSJxs9t3q/l40ETm0HKvBr2D0ulrkXXYWU0LXqJ5iJ/jCYv/xZLs6B4Ay15VvzufY0HNCOIDYwgu7iBJouDye42bsoYSUB03A+f6yRS1GbE1qxj0pYlXPnKJg6U29B5lHg/cwxJExsIme397BVXq5knP/ktz2Y/owxknAHWRijdzFWlLSSsbsRe6oPA9XYGzgGXndnlK/nX2udZv3wzZ36xidqCMNAZfvj4k01iJpzxOIGxNsLmTSI4bRKb8+vYVrkT944yir7zckJEJ1pWrSZ3+gx0hjHcXd/IdX5lbC0p4cA//kL9l1903ddiJ0SYEV58Vv6qK/ECuBobyfvYSOO6g3xV8BWVLiWFbVdpo9IHKSWEpDm1iBAv5+EHRpL/dRTVz/+PuUOjqaoYypAgZYXXYnURNczB4Hu9Pzk5Dh+mbetW3GYzvxv/O8ZEj8HiH4OupZxRjUH87g1B3Tsfel0uACZeDzo/aCpjWGIY19+cxLKJgehcoJPSq40cOzDFEJLcwoC/3M34QbEEBTbx1t73aWizYtKmEjmmGd2AFK+LFThzJiEXXqiY+FurSPWvQhhqKChJ5LJmQWCQn/czydqJGIhfqJNB/nXk1Vby5NYneXLrk7j3bsbWrMMv2MvfY9E6cLsJiLYRP70BvTWHcUnBigWmzYF/axstBTbcFu/WgdnXoKWtysDFe9cS0lTH5oI6Pj30Kc9kP4PDWog2yYb/MC/HcwCNH3/MOX9eTpwMVQYGzgGtAQ5+jX9QPRnPXk7g5Mlel6uD5Kmg8yPBdQh/t4PduwupHxSMJsr/h4/tKyZcT9CgICLG6hibZsIS/STLCtYSEqYlMNlH7jbAf8xoIm+9FW1iBjJhAkN0G9nbtJqSpZ/QtGt7l32t5ia0SK+1EQBVgUETGIh/YiA6Qxsvzn2RV05/AYNWw86yRnLqc9iYUkR9sh/ovN23IxLTABt+8SHMHaIoT0v2HqLSXElh21bWBDm8eqO0E7bgMtJXrezwYVeaK6kJjSRS1jK6TUv0dCfBZ5xQKZ6Th95fmZzyVjIsLhhL8S1cEH8ft3xnYtBuL/dBaifQUz2gtRpNm5nBKbXssS0ir6GQSXXhZFps3i/ZD4ScfTYR118HCRMAuG/b3QTFf0FxnY2YZCtJC0d7XaYO/EJwimim5OzHWnSYj3I+4qOcj/jzjQFEj2rxvgUmZQboDOj93QQn2jmjYRktps853Gghv7KJz8wBlL22FVdLi1fFGpicRHCKhefOnk9VYDhtdic5DTlsr95OSeDbvOiOwIX3YydMp8wk5snHmD9CaTTr0PlBygwa9n7MtKQBLKFeaUviKzzzRIB5Gx/c9Cgfyjgco4wYkn3gPmpHo4UhZyMPLmcGLbhtMRyuCmdsop2YmQN9JpYuPJyoO+9AHxvLtpRMboqy4+9opfL5x0n401+67Osye0p6qBYY7yH0euLPj8cUVEpA5V6MOi1DBwSzs6SRSnMV+oZGLE0+CP4MiCRmbDPBYxOIDfFjeHwQb5fezn93/Zdyx0aa9+ipz6r1vlydcLldzF8yny9MZqJpRKtvxDUkuKMLtE9IPxVqcxjq38S84q24//UosdXVWGr1vqnxYFIUmJqHf0/ezJlckDaL1rx7KK7yZ9SOHPK+ivVuX59OuO12ZORQ0PnxW2My6bpL0PoXsjzEjfCBUtVFtqAkQndUEZBbxOYrNrP1qq3c5FKCw71pogYUE//CJRAzApvFxLXGucxKmgJAVXUlifFmcu6agC7cu/fXkNRktHrJBROiGJ0Qwotr8hmqv4bX5r1BZm4i53xowNKp95a3MKalEX7u+Wj8/MhtyOWcz88hO3EUoq2OhQetpK6uQTqdXperCwPnQG0Opw5wgNNJmGxB+mKB05lh51GVpcV6y40MaLuG3JJo2nQW3wStd0K63bTt2MHQ+HN5sLaO080tbNwzgN1lXbuyS6tHgfFiUsKvXoGhNAuK1io+2jfP49+r/0hg5Ab2HG7CzzmcP34nMGb54DJ54jVcdUom+alDYjGXn8/pSRcSY76Mcwpt2KrajnWGPsFRXc3hu++hbds2tBotj057lNsSZ6MTbl6MreF9q+hSXtrrDJwLQEDpGgaJZqxFK7jj+ha0p9iVlZe3aVWqBwS6s4gYUs+ZAVVIRziLD2bxzvhmGsd4v9AYQMuaNeSMGo01twDiRjOtppjMAePRBe1Dt9ZI5ReHfvgkfYg+LYMBl9r4InIkGqHBUV1NyudfY6nT+8RiRWImzPwjFRt0THt3G1ePOhujTkOoaOUMp5kLJp+L0HlZEfUocnMMLTyX9ylzowR/+HgX720pIUQbS8L0evxGe9/N7LbbsR46hKuxkTC/MFJCUohKP5NQt5sL8+0Ylu4BrW/u+w4888SMurV8tfhe/D6x4LZ7uUXF0aTMJHSIhgGXDGLywAgMod/j/CiQ1s0+aHzZCWdNDcWXX4F1zS7OMqQxzbmd4e8+xkNPfNRR0BFAY/VuI0dQFRgoWkfp98GUrg0Hl42C2n0EBDbSZneRVViPYbKG2HO8H2SJ3p/GkjAO/e5tnDU1nDo0BkfzKMqrIhBtTaTNriPu5vO8LpbQaLDs3ImzVqmseUriKQyMGQXAAznNnP52G5bde7wuVwdRGRCcAHkrKTz7Kv68UHmoaPWhvpGnLg+AgCg7kUNaiGzdTVpSKXXu3cSFm4if4BtLhyE5mcjbbkMfP0CJgynfSURIBXrLAOZqWtFH+3Y1KiIHEaKpQ+doZWXRJs55Zw7aqgpcdo1vKgQDpJ9KzDgLsWcnYXObGZkQTCitNNQaaNnnva7wHbQ/KGwt2LZu5fHMMMYnh/GPrEfJSt2FNtGGbkCa18VylB2m8LzzaV23nkj/SP532v9ISpiEDEtFjDGTseiPvouvaid6KATFkaQ9SFFwLIZoJy0Bob6VSWfAb8rpBGmzGJmiwz9sLdvGuDEN9sHzpxP6mBgS//dfwq66iqzgqTwf5mBc3T5GWA52VFgG0NgalRdqDIwXSZlBYJyLgBgbCA3PT/orD0x6AIBi23peT7ZhTBrgE9H8E4OImJkAQjAiPpjoYB2fHVhPZeDnrPf380kMjC4ykvQVywk+o6OJOB9XlbPW34+5xlZKp8ZxMCD6GGfoY4SA9DlQ8D0j4gKx7n2EN9/RQrWPVlfpc0EoPzOJAYt1ACGR+9GHbOfCWjexfr5RFIypqUTdeQe6sDAlDsZlY2ftm2hilpIwupnWWT4MsgQIH4i1Qcc929+jvLSS8gjBozeY8I9zgMHLfbbaMQbhP3Ean1vXMvX9qQxP1BEqWllSGsneF9/yvjxaHRiDMYS6GLRuLRHTp/DbUwejMdRhc9az2hxC9mHvBhYD6ONiiX/6KQImdLL+lGZxr76F2UkJ1Cy/V7F8+xIhFDdS4Rp+O/d3pM6u4ctCexeLgk8Ydh6OumZm7fgGbVMm44fXU5ua7luZANMpp6ANCsIcE0pxtIYNV7fxUOI7zAks6tjHYFctMN4nMZPwf35CxOQYMMUikiaREhFIsJ8Ojb4e/wKJrdk3AWfGqACih9WgsxQghGD6YBO7XY/i1O7G/n0wbXm+jYFpZ1HZNzwdHsphk4a8+Gg217l++KC+ZOBcsDUxpSWbJ9a/hH+pDafDRxkGiZkw+08A1LvOpuiOh7kr9TrMBXcS8HUrJSsafSMXSkXetu07cBhTAbhapBLUMJJvAgN4am2lbyfziHRcNg0jqgqJrgtnz8I9XF+diEUb5NXmhEfjSjqVsbtruTfmQkL9jITRim5iK/+eNss318s/DGFt7CinsKukAdvhK7l1ox+pS/y7rJC9hcbfn+Azz0Qf1ymtvGgdd9U38eyqVgw5Qsns8jUD56CzNzFV7EUjJHXuQJ9cr6NlaiwJpfGpN0gvy2CM1c7j31f5XLGSUtL4xRdMO3SYRRVV/L6+ET1OHPlrAXC43Pi7PEHsagyMl0nMxDX6emRDGbLmEL9dcyfRyaswVE/msqWClgON3pepNAvqDiHrCrD8+0Lcues4a1g6bSXXkZk7l6Raicvhm6+v6vEnqPnP8x1/3znmQe6paWVhcBy11lYmp/g26Iy0WSC0pFl2o3c5MUx3Ycr0vim9gym/AWMIQSkuEp7/D37BsRjCN/LGTA37ggJ8Njk5KyspvuIKGpdtBFMsYaUHEH6HiPgwhMT8Mt9O5uGp+Mc4WHP2OPJC4mldt57E7/Noc/o2TsEZPAa5OoRz91TjdvkTKlq5wtlMvsj0zfXSGqAsG8eObym46CKmle7EoAkgeoAfcoaeyenea23QGeuhQ12L1aXMIBYdqXlazJX+SmaXr0mbjURwgU7pSt2iCWJymg9KLXRG70/oaZMZcJ6dYQ3FHPwoDkNtm88VKyEE9W+9ReuuRoYU6qjZFIrTqeWp3Gia2hy0WJ1KI0eNwauxhqoCA1gPHCD3zldorfBDHPqGSP9IEkMiMGmspJ1VRWumD1JKi9aBlLRVGyj6NpjWpR8xLT0SnW0oBn8D6WfVEDR3rvflAtytLTirqzr+PnPoCFL9o/jHBjPzvy5gXIqPo/n9QyFhAsHNWTxw1j1ExbfQiO9qKaD3g+HnY6hYTtDMKWw53IrWr4yaEQ7Ko6J8Njnp4+JI/N9/CV+4EBImkGw5wLjDMxgQZaE2MNy3k7neH01oIkOM1ZTWW3A2NmBstOI0+PB7BAzDxpFyZRTCby/jUw2EalspLwkgqanG+9erNAvq86E+D92Sa9EHGRiYFMm7N04mI0GSOCGZ8T5KDS677XbqFnWqK5qYCQsXk/rYrQx45T3lb18TGIGIG825BqWeyc2nT/DZ9eqMfvJ8QgJqGR5cSsTQVipNMb5XrICkl18m4dV3cI68GUutAcugM1hrSeXp7w7RZHEQTCsOfbBXLaSqAgMYBw0i/JprMKSlwsGlPDTlISZHXIyIWc7biYH8e2eb91fJKTNAZyQgys6AKU0EnnYR/gYt6YkNrE77jt1Gg8+CGWMffpi4Rx7pMrYrPJz9w9wk3b/Q9wF6oKRTl+9g9OFsmjcaWbqj0bdm2FGXgcOMY9OHTD+0EX9NNaOabLRg8unkZDrlFLSmQEiYiF9LEXfPCCZxUiNX3XmF7yfziDTSysqY8erDaE49HfuZfrhNoT4VSRgM+M++kLMD61lb/l/GDpGU7gjlt5ps718vzyIHQLitJN44kaDZsxmfHEZIbQsGH2bVhF99FTH339d1MDETZvwBkTTJN0L1RPpctE4zAIOSfRss28GgeVibAphevo+okS08cP2Zvv8tosQ/CiEI+81fSf/jRMJqtnB1ZjxvbSoiq7COUGHGaQz1qkyqAgMInY7oP/4R45TzoXQLmGtptjgIc1Til2vAbNZ4f5XsqT0hotIJGeqHNmMG2cUN5FY3MaLQjn5VENkFvumh066gOBuOKAR7DQa+iPfHOLUfrKwABs5FIPnNzk9pKfWn3tf+7aSpEJJI29L3MD7zGG+Yz+aM1wO4ICrE55NT89KlNOxSajok1itNMUcO9G7z0h6JSCfc2YBss9BcXU8IZty+7NHkwSIz+NtWM2dJfzJ0Lgqu1JN+913eF8SzyFGQYG1COhy4GhupXGuleqUPMqM8hC9ciMbfH7fNhmXnTgBczc1UPPgQbTt2+Eyubgycc+S1j+utdGAMwqIdQf0eIw6zltGDUnwtUQf1771HxV/+AmOvBHM1d6eVEOKv5x9LDxKCGenlRbWqwHTC5jcKa6MWmfMNK1r+wNBKyfhVBow26ZtVcmImnPo33M11NL36T/as346zLYn5xXHomnRsOWz2vkwemlesIHfGTGx5Sprw1YYBXFlgwbVvt89k6sKAMTiNoZjibYQONFNlivatGVajgZGXYNLvIO3jNxl65hRixjWSOGaY72Ty0Lx8BY2rd4LQ0LIhi9wvYrCVer8AWjci0olObuSR6VfT9NFHaLIdCF+lUHeiaXU28RsCGF+8gyhrK5eHRJGUPNL7grQX2Jv9J0ichFz3LHmnTKP66aeJm1hH9MU+ziQDap56iuJrr8NRXY2ruZmWVatwVlb6WqwjJGSCzhOzUV/oW1k6EXLJVYSktlG0IgoqdvlanA5ctXU0fvwJVV/uhcAoTAc+5O7Th9DkaeTYKrzr4lUVGA/S7ab47seoPRiNOPQtFw0+l/FThzLwnCr+75aLfLdKHnw60j+a8mffZ1x+NgadBleKHuOZkkkZsb6RCQgYN47whdegCQqC0iyi9y9m8hod1U8/5/sUSQCNFt2guQwfU0rcxCZuO3OSzy0djLoMrc6J0ZyNPkhH+OA29PG+t3TEPfw3Uj76CGKGo9PbCExwoY3wvc+dCCV9NFGWU19dj87uQuPrWh1A5K3/R/yDZ5F7eDNNlQWU7XNh81V35cRMOOUexVqbMY+I1FKC4prxC3XiN9j36beRt97KgCceRx8djSEhgcHr1xF85pm+FusIFTvBZVNef3Bl/5i7AE14PMGJFiKHtcCb5/UbuSLv+A2hl16Kq75BcYsf+pahwVaEgBBhZnOFy6uuelWB8SA0GhKeforYhXMhfxXXZ1zOWvch1kUbGD08w3eCafVoJ11J2pnVjLzzCt69cTJjogQRkTE+fSDrIiKIuftu9DExHc3u4iY2Ej2qpX+kSEJHtU2Awam+VxSIHgJxo7F9/y7lj72IrVmH9HHJfgBtcLCShpswEf8IBwPmGNFF+qBz99GEK5lj8w+swXVwH0nT6n1eVh1AFxXF1/ExXBwfzbvmFlq+raLZ15ZHnREufZvwM6YQWL6I5jI/HGUlvpUJ0IaGEjxvHgCWffswb97sY4mOovNc5bL3n7mrchemATbCM8z9Si4hBHEP/40Bjz8GY64EtxPztvcRQAhmGrzsqlcVmE4ETJyILvMicLRhzV9JSGET+oIg0Pqw8RjA2KsxBjkQu99nfHIYfltqaN3m9q1MHix792GxJYDWgF+4xC9K0z9SJEEpItdOo+8ncwBGXYarOIem1dsoWBqN8EV/ph5o/f57Cp7bjsshfFOqvydCk5EaHQF+NqoNgUgJBm83cuwBt83GhH3+PHvIwSRDG7vvH0r47FN9LZaS7Tb999iaDBxeH07LZ2/0m5W7lJLyP95N+b334Tb7zvXdjZQZoDWC0Cop6f1l7kqZATq//idXZ2KGwYBxjKtfSoDOTZCw0KrxblKCqsAchblCT11eBMH5q/l9TgAxG33TaK8LEQORydOp+d8bNH3xBdJmRUofK1UobrfDd95JzUcrkdd8SUvE1TjOWNQ/UiTBo7R4MqI+ub5/TOYj5uMf5STpTBtxkxp8Vxb/KLQhIWgjYynfFEb+W43941ppdRCWimGQGxrraTgUiF+Q7xU+odVif+ZlRjSkMd5h4zJcaOv2+loshbIsKrcrgc7BCZZ+tXJPfu9dYu6/H02gjyop94QnvZs5f1L+7y9zV3t8U3+T62jGXklAw0E+P1MpXnrBlOFe9QyoCsxRtK7fSH2OCbn/W6KnBZB2ne/iTDojJlxHa6EVy/pviZ1kIfaSsb4WCaHREP/sM8T/61+4w4dT9vxymnf1owC9LuZhR/+YzINiEOmzCQypIzTV0m+sHf5jxpD8z98TktJG0ID+43cXEQMZpKtC77IhJfiZfB+bI3Q6Bn2/hpZLJpPdFkDpsm24X+0f14uUGcRMsJJ2Vi06k65frdx1YWFdWpD0Gzzp3f1OSeivcnVmxMWgNTIo/00AkuLjvfr2qgJzFJG330b6/x5AWKvRVG5DH+PDvj6dGXIOKee6iJ1kBUujT/og9YT/yJFog4PRGI2kfPQhweec7WuRjtBfzbCjLlP+1xrhcLZvZelMyQZMA+xEDG3tP373iHSSZAVLpk4nYoi5XwTxghIDdvPhr/iwLZzW7cFIRz9RkBMz8b/rc4wX3te/V+4qvwz8w2DoOZC/SvlbTaP2LdqgIMTQM0CjozFX0FIsfS2Sgt4PMWYB7r1LKFwWQvPu/tEHCaBt+w7KH/gTfsOGKUG9/YX+ah4O8lj1XLZ+Y+kAcIaO5tAXMTTmm/qPwhcxEAN2MkSZ8nc/cblZdu7kX7uGMCq1jdormtD46/vH9YKfx8pd5ZfDmCuPvPZiI0eAfhDg0f9o25dH9Zok7HVmAhrzCSrN6h+TwbhrqHzuPax1BgjwbUn1zrjq62j++mv8MgYTeumlaIN9X2ysg8TM/vHddebwNpTYHHnE0tEPZNSNPBW/jMHItFBY+Jt+IVN7KvVoTb7ydz9xuVlzDuG/bBeXvflf9K17FeWlP1wvFRVvkzYLAiKhrVaJO0yc6LW3Vi0wPaAJDERq/EicWU/c8IL+s0qOGYY+KpywQa0ED/N9LEA7ptmzif/3v6j+179xlJf7Wpz+T391bQEpny4m8h9v9Z+HcfhAoP8pMKEXXkDEphUszV5DWUlE/7leKire5nA2WBuV11/e5tVnparA9IDf0KGk3nMa/hEOtAZ3/4kHKM0iKr2M2PHN8P3j/UOpQsnKCJwxg5RPP8GQkuJrcfo//dW11R8JisOl8ydO1GMTfqAz+FoiQOmJtL58A01ffknR6y/5WhwVFd/RqSeXt5MlVAWmF9wD51GzL4y2Wr/+s0ouWgfSU//F7eofSpUHrcmE//DhaPz8fC3KzwM1TuH40GhwhyoF7VpEoG8bch7F2KV56GdNI+T1F3wtioqK70iZoTwjfWBRVhWYXnAaU6nd448l7Iz+s0r24Y2iouIrWkxKl+A6pz9Xvrq53ygxcv1WZjXGMjJxgq9FUVHxHT60KKtBvL1gSIgn7euvMCQlgd73ReOAIzdK0To1aFDlV0OBO5ZwoJkAHE43mwvqfN/XCkj56EPqXn6F1u+/x3TKKb4WR0XFd/goWUK1wBwD48CBiP6ivLSjuh5UfmVEJCkdu5tlIHqdxrddxTshhKB+0SLMGzf6WhQVlV8lqgKjoqLSr0nNGA3AqGAzX5yn7xfWFwDrgQMETJ1C2BVX+FoUFZVfJT9ZgRFCJAohVgshDggh9gkhfusZDxdCrBBC5Hr+D+t0zP1CiDwhRI4Q4vRO4+OFEHs8254TQgjPuFEI8aFnfIsQIqXTMQs975ErhFj4Uz+PiopKP8PSBECUOZchy67qN9l30uHAum8/rsZGX4uiovKr5GRYYJzAH6SUQ4HJwO1CiGHAfcBKKeUgYKXnbzzbFgDDgTOAF4UQWs+5XgJuBgZ5/p3hGb8BaJBSpgNPA497zhUOPARMAjKBhzorSioqKr8AKnd7Xsj+U9IA8B81ivTly/AfPdrXoqio/Cr5yQqMlLJCSrnd87oFOADEA+cDb3p2exO4wPP6fOADKaVNSlkI5AGZQog4IFhKuUlKKYG3jjqm/VyfAHM91pnTgRVSynopZQOwgiNKj4qKyi+B1Bmg81ez71RUVLpwUrOQPK6dscAWIEZKWQGKkiOEaO+KGA9s7nRYmWfM4Xl99Hj7MaWeczmFEE1AROfxHo5RUVH5JaBm36moqPTASVNghBAm4FPgd1LKZk/4So+79jAmjzH+Y485Wr6bUdxTREVFsWbNmt7kU1HxGa2treq92SvjIb8N8tf4WpBfBeq9qNLfOSkKjBBCj6K8vCul/MwzXCWEiPNYX+KAas94GZDY6fAEoNwzntDDeOdjyoQQOiAEqPeMzzrqmDU9ySilfBl4GSAjI0POmjWrp91UVHzKmjVrUO9Nlf6Aei+q9HdORhaSAF4DDkgpn+q0aTHQnhW0EPiy0/gCT2ZRKkqwbpbH3dQihJjsOec1Rx3Tfq75wCpPnMwyYJ4QIswTvDvPM6aioqKioqLyC+ZkWGCmAVcDe4QQOz1jDwCPAR8JIW4ASoBLAKSU+4QQHwH7UTKYbpdSujzH3Qq8AfgD33j+gaIgvS2EyEOxvCzwnKteCPEIsNWz38NSyvqT8JlUVFRUVFRU+jE/WYGRUq6n51gUgLm9HPMo8GgP49uAET2MW/EoQD1sWwQsOl55VVRUVFRUVH7+CCl7jHn9RSOEaAFyfsIpQoCmkyTOyUSV68Toj3JFArW+FqIH+uO1AlWuE+VE5PLmvfhLuF7eoj/KBH0nV4aUMqinDb/WZo45Usof3UJWCPGylPLmkynQyUCV68Toj3IJIbb9lHuzr+iP1wpUuU6UE5HLm/fiL+F6eYv+KBP0nVxCiG29bVN7If04lvhagF5Q5Tox+qtc/ZH+eq1UuU4MVa4Toz/K1R9lAh/I9Wt1IfXLVa6KinpvqvQX1HtRpT9wrPvw12qBednXAqio9IJ6b6r0F9R7UaU/0Ot9+Ku0wKioqKioqKj8vPm1WmBUVFRUVFRUfsaoCoyKioqKiorKzw5VgVFRUVFRUVH52aEqMCoqKioqKio/O1QFRkVFRUVFReVnh6rAqKioqKioqPzsUBUYFRUVFRUVlZ8dqgKjoqKioqKi8rNDVWBUVFRUVFRUfnaoCoyKioqKiorKzw5VgVFRUVFRUVH52aEqMCoqKioqKio/O1QFRkVFRUVFReVnh87XAviC0NBQmZ6e7msxVFS6YTabCQwM9LUYKirqvajSL8jOzq6VUkb1tO1XqcDExMSwbds2X4uhotKNNWvWMGvWLF+LoaKi3osq/QIhRHFv21QXkoqKioqKisrPDlWBUVFRUVFRUfnZoSowKidOaRas+7fyv4qKioqKig/4VcbAqPwESrPg9TPB7QKdHyxcDImZvpZKRUVFReVXhmqBUTkxitaB2wlIcNmVv1VUVFRUVLyMqsConBgDxh55rTVAygzfyaKioqKi8qtFVWBUTgxjyJHXF7youo9UVFRUVHzCT1ZghBCJQojVQogDQoh9QojfesbDhRArhBC5nv/DOh1zvxAiTwiRI4Q4vdP4eCHEHs+254QQwjNuFEJ86BnfIoRI6XTMQs975AohFv7Uz6PyA9QeOvJaZ/SdHCoqKioqv2pOhgXGCfxBSjkUmAzcLoQYBtwHrJRSDgJWev7Gs20BMBw4A3hRCKH1nOsl4GZgkOffGZ7xG4AGKWU68DTwuOdc4cBDwCQgE3ios6Kk0gfU5YLw3DbVB3wri4qKiorKr5afrMBIKSuklNs9r1uAA0A8cD7wpme3N4ELPK/PBz6QUtqklIVAHpAphIgDgqWUm6SUEnjrqGPaz/UJMNdjnTkdWCGlrJdSNgArOKL0qPQFtbkQngYhiVBz0NfSqKioqKj8SjmpadQe185YYAsQI6WsAEXJEUJEe3aLBzZ3OqzMM+bwvD56vP2YUs+5nEKIJiCi83gPx6j0BbW5EDFIyURSLTAqKioqKj7ipCkwQggT8CnwOyllsyd8pcddexiTxxj/scccLd/NKO4poqKiWLNmTW/yqfSGdDGzNpcyvyGAJKH6IOtWrURqtD94qMrx0draqt6bKv0C9V5U6e+cFAVGCKFHUV7elVJ+5hmuEkLEeawvcUC1Z7wMSOx0eAJQ7hlP6GG88zFlQggdEALUe8ZnHXXMmp5klFK+DLwMkJGRIdUmZT+C+gL43knS2Dmg0UHpF5wyKgkiB/lasl8MagM9lf6Cei+q9HdORhaSAF4DDkgpn+q0aTHQnhW0EPiy0/gCT2ZRKkqwbpbH3dQihJjsOec1Rx3Tfq75wCpPnMwyYJ4QIswTvDvPM6bSF9TmKf9HDIKoIcpr1Y2koqKiouIDToYFZhpwNbBHCLHTM/YA8BjwkRDiBqAEuARASrlPCPERsB8lg+l2KaXLc9ytwBuAP/CN5x8oCtLbQog8FMvLAs+56oUQjwBbPfs9LKWsPwmfSaUn6nKV/yMHg95PeV19AIad5zuZVFRUVFR+lfxkBUZKuZ6eY1EA5vZyzKPAoz2MbwNG9DBuxaMA9bBtEbDoeOVV+QnUHgL/MAiMUP4OTYYa1QKjonIyyS5uYHNBHZPTIhifHPaD4yoqv1bUZo4qx09tnmJ9aSd6KFSrqdQqKieL7OIGLn95M3aXG42AWRlRDIoJwmJ38X5WCS63xKDT8O6Nk1UlRuVXj6rAqBw/tYdg0Lwjf0cPhbyV4HKAVu87uVRUfiFszK/F7nID4JaQVdjA+ty6jjEAh9PN5oI6VYFR+dWj9kJSOT4sjWCu7ppxFDUU3A6oy/eZWCoqvySsDiUcUCPAT6/hzeszyfn7Gbxz4yRA8dXrdRomp0X4UEoVlf6BaoFROT7qPBlInRWY6PZMpP1HXquoqPwobE4XX+woJz0qkAvHxTM5LbLDyjI9PZLkiAC0GsGT80er1hcVFVQFRuV4qfVkIEV0UmAiByt9kdSWAioqP5kPt5ZyuNHCW9dnMnNwVLftGTFBFNWZVeVFRcWD6kJSOT7qcpXideGpR8b0/hCWotaCUVH5iVjsLv6zKo/M1HBmDIrscZ+EsABK6y0oJbD6N9nFDbywOo/s4gZfi6LyC0a1wKgcH7WHFGXl6GDd6GGqBUZF5Sfy5qYialpsvHjlOHprw5IY7o/F4aLObCfSZPSyhMdPdnEDV7yyGYfLrWZMqfQpqgVG5fg4OoW6naghShCv0+Z9mVRUfgE0Wx389/t8ZmVEMTElvNf9EsMCAChrsHhLtB/F5oJahrsO8n+aLxnhOsjmgjpfi6TyC0W1wKj8MG4X1OfDoNO6b4seCtKlxMjEdqtBqKKi8gO8uq6QxjYHf5yXccz90u37uU37Ja25QOLZ3hHuRzDYcYBbDA+jwY0NA8WmkUC6r8VS+QWiWmBUfpjGYnDZe7fAgOpGUlH5EazOqealNXlMTgtnRHxIzztJCWv/RfKXF/EH3UdMWn8dlGZ5V9ATIKDwO7Qohfj0wsmgtp2+FknlF4qqwKj8MO0ZSD11nY4cBEKrBvKqqJwg2cUN3PjmNhwuyY6Sxp4DXvNXw8uzYNUjCOlGKyQatwOK1nld3uNBSklRdSNCgASQsNLaw8JHReUkoCowKj9MTynU7eiMEDFQtcCoqJwAda02/vT5HlxuJaPI6XIfiRUpzYKv/wD/OwXevgDa6mHmPSAEEnAKPaTM8Jnsx2J3WRPJ9jzMfrEQNxq30PD0NkdHgT4VlZOJqsD8QujTtMW6XPAPP9LE8WiihijF7FRUfmUs3V3Bcytzj/t3J6Xky52HOe3pteRVt6LTCLSiU3Xd0ix4/UzY+ipU7IRJt8Id22DOn2DIebjQ8QfjXyExs08/149l9fb9TNHsRzv2CsTFi9Dj4hzLF7yzudjXoqn8AlGDeH8BtDeAc7r7KG2xNrdn91E70UPhwBJwWJTaMCoqvwKW7DrMHe/vBOC5lbm8c2Mmk9N6ruGSXdzAd/ur2FpUz7biBkYnhvLk/FG0WJ1dO0y/9Q9wO5WDhBZMUYqVE2DwPHQHviSvxYDbLdFoek639hVSSmx7FqMVEu2oCyEyHTH8Aq7bv4wzVl/MgswkTEb1kaNy8lDvpl8A6w7VdDR7s/dFo7faXBg8r/ftUUMAqdSKiRt98t5XRaUf89HWso7XTrfkpjezufuMDAZFm9he0sik1HBMfjo+zS7jtfWFeLxFXDs1mb+cMxytRwHp+K1u/A8UrFYUFwCtoaurKG4MABkyn+oWG7Ehfn39EU+I3WVNTLGtpyUoiaDYkcrg9LsI2Pc559i/ZtH64dw5t/tCKLu4oasSp6JynKgKzC8Ad6fKnG4JdudJ9De3N3HsKf6lneihyv/VB1UF5udEaZYSDJoyo9+6JPozZY1tCKH44bUaDQlh/jz45b5jHqMREBXk16G8dJD1Ciz/Mwy/EDJvgZKN3b+XqCG4tEZGagopa2jrdwrM6u0H+I1mH85Rd0B7Mb64UTBoHrfmL2PO2nO5ZkoyoQEGQOn99M7mYv659CBuKdWidyrdyC5uQGuKiO1tu6rA/ALILmlgbmAR1yWU8UV9Ks+uhMggP66enPzTT97RxPEYmQThA0Gjhxo1E+mnkF3cwFf5doJSG/p+Es/9Dt5fANKtrPQXLlaVmBOgpK6Nwto2/jSqhRGO3YQNm0PGhBnc9+luPtymWGYEcOaIWM4dPYDff7QTh9PdvZN0aRZseBYOfgUZZ8NFryjVrpOndH9TrQ5H5DBGVBRR2tDGhGMUvfM2Ukose5egE250oy7qunHGHwjKPZ2znSu47o0IpqVHkl/dytpDNZjtRxZbNoebzQW1qgKjAijz4WX/24Q2MCy+t31UBeZnTnmjBUvBJt4y/h1tsYtpOj/CUx7nL1/sJaeihbhQv59mmq09pPzfKQZmW1E9Wwrrj5xXZ4CIdDWV+ieQXdzA5a9sxu50s7hwM+/f1Icr0bJt8Mn14HYAIF12RNE6VYE5Ab7dV8FEcYAbc/+JwA2liyB2MZdOHMSXu8o7lJUbZqQxPjmM6GC/7m6S0ix4/SzlexAamHJb91YdR6GLH8vwyvfJqjN74VMeP3sONzHVuo7WoARMR1thkybTEpPJLZVfMbPkVHaUNBIWoOf8sfGkRgTyr+U52JxuJJBVWM8N01346bU++Rwq/Yfvc6oZJXOwisZe91EVmJ85n+84zHmajWilEvgnnBbuHVzGPt0Q3tlSjACM+p9gmq31NHEMSwEgu6ieS/+3CbcEo07De+0PWlMUlGxWJmX1QXjCbMirxe48Ese0+mD1sb+vH+P+kRI2vwQrHsSsC8FPCjRI7FJDod9ohpyEz/FrYemeSm4P2oSwewJuXXYoWsf4GZm8e+PkbsrK+OSwrt+npRG+/mOHEgkCSrdAyvRjvq8uYSxB2xdhrcoFjl2515us3H6Q32j24Rpx2xH3USdWR1/NeVV38Kz+P7zmOps5M87h9tnKomiGfwEN+1axQzOCJ/bD/P9u5I45g8irblXjYvqC4k09uyj7GSF1O/jY8DCZoqXXfVQFBthSUMeqnGrmDYv9Wf1YpJR8ur2MF/3LwAGK0Vqi3f0hZ6ZPYkOeUkzqJwX21uVCWGrHyvDDbaUdwYg2p5tVB6sYr8mF4o1K9sSb58LCJf36h9EfqWzq2t9mY34tbvfg7pkmUsLOd5GL71RaOAgtYta9MPZqCB7Qs2JTmgW5K6B4AxRvQGacxcVFC4ix7+W/hmcokHGsaUnuXYEpzVIKqg2crX6vQEWThZ2ljaQluKHWMyhER8BtN2XlaHJXwOI7oaVSWRxI2T1gtzc8gbx+tXuBc37S5zhZSCmx7FmCXrjQj76ox30GJw7AvVtwpmYr8zTZtOV8A4eDoLWKIVV7QcIUnZGJZ7/JwuVmbnk7G41AjYs5mbgc8M09sG0RIEDn129dx263RF/wHRrhRql+1DO/egVmY14tV722BbeE19YVHjMVsr+xq6yJ4NpdDDHuh/HXQmgSGEzw/eNcvutayvXngtvFZjmUSak9+NSPh6NSqHMqFW1YI5SA4S92lvN/mq0EScV6gNMK+av65Y+iv1JYa+aT7YdZmFDFbOtKqmNn8Je9dl76Pp/bZ6crCsShZWA3K8qJZ8IXAqTbBav/ofwzxYC5Volr0Whh1AJF8dzx9pHU3MxbyMq4h4O7tpCrGcvDzqv5p/41/NkA9BCoXbIF3jhT6Ye19km4bulJ+26zi+rZXFjH5LTIn9UD6tu9lYAk2XoAkqdBW53S0NSvl1YAoHyHed9BxS449K2SubfgXeV7ORFLWvRQnEJPZEv/qbu053ATU6zraDXFYxowtsd9hth2IYVAINHiJrilELSJYG1RFDgAp5WJtV9w+aQ7O7K2HH2RVflrpHQrLPktVLcHmcsOq+Ex77veFkR9HPy/NrcGm6UVoQNJ7xrMr1qBsdhd3Pfpng6LgtMt+c17O3jjusze+5L0Iz7NLuMP+k9x+4ejmfd3MAYpGzLOQvvORdzjeA+3FmzSwLaCwZBygg3gXE4liDcgHEqz2KvJYFdZE1dPTiY2xI8gPx2Pf3OQe7YF84LWgMZlVx6e+atgxh9B+6u+vY4LKSV/+nwPmbo8/lr/N4TbAXlfcakfmNcYsW0Jwmito/037IoYzJd+F3OmZTF66cKBjg2D7+XU1ADY/ha0Vikndjth5ztd30xoICiG59fkE2ky8J/Lx/LM8iB2Vaxm2Na/w9SLwC+4s3Dw3YOK8gKKu2PZnxQl5gdiNX6I7KJ6LvG4Iv30eT+rVfY3eys5K7IaXWsFzP2L0uT0hUz44ja4YbmiPHamNAveOAdcno7tIy+F8/4Dek8W0Yk8BLR6agPSSW3Jxelyo9P6vhbpyh053K7Zi3vE//XoPgIgZQZCZwSXHaE1KMpbYqZybd48T7k2UsKu97kjsYZq3QgSZQVbGcbktKne/UC/FEqzIG+FEpt44CvFQnvqX3Gv+gcatx03As2xrH77FyM/Wgi4AYEwRStWHEs9fW3BeWtTMX/UHcIdlkZV667y3vbz/d3vI6wOFze/vY2Shjb0Wk81TK3A5ZZc8MIGnvnuEFmFdX1X3fYnYnO6KNm5ihmaXWim/+6I8gIQmggj5gPKF+wn7Ng2vIT9RMp5Swkbn1MehMWb4M3zWPbtYoKMOu4+I4PbZ6dzzZQU3rlxEhtsaVzv/gurBtxMxYibFF/+0j8cWVmp9Mpn2w+zMb+OuwceVpQXADQ4U2fzjeF0Cq1BSI/yItGwqGUSdzVezNXOP/OU8xKutD/AW5YZuCfdCuc9Bzp/pY6Izh+uXw7Xfq1MNEILWiN5AWNYl1vLDdPTmDIwkkXXT+E54y1oLbW41jzWVbjVjypxTRqtcrxGB2VZ8PaFYK77SZ/7zU3FHQuHdhfnz4GaFhtbi+q5Omy/ohAOPh1M0XDmk3B4G2x6oesBUsK6p44oL0ID0UOOKC8/gtbwEQwXRVQ0Wn545x/JtqJ6vsq3/+DcJ6WkeediDMJFYUwP3erbScxUHnZz/tT1odcx/mflXj3tYULL1/Oc7hn+qP+Qd3UPM7T8M7A2KfuXZsG6f3dpZtmnVch/rpRmwRtnw/dPKEVGh50Pt29hselS5lseIMedgNWtYWdbL9XV3W4av7gXpFsJTJASsyGyIxayiwXnJFNcZ6bs0HaGkY8m8yYOt8jK3vb9VS6RJfB/72SzLreWJ+aPYpTMoWH/KsKGzSF2+Ez+ungfz3yXy7MrcxH0Tz/s6oPV3OJ6H3tgJIaJN3XfYeBsWP90x8rmVNc6qp+fRfT8fyvbj2UCLNkCqx7pdHNKpMuOu3AdV067i2C/I6vvsUlhPHTucP7wsZM1+akYtBq+H68nLvtFCE6AU+7+SZ/T10Wu+vL96812/v71fsYnhzHKpEzQEoHQGdHNeYBRhqE89PzrvK59BD1O7FJHlhzGezdNwqibyuaCOoY0tPFeVikPf7Wfh86diFi4uPt3u3BJx9iTazQE+zm5anISAIFGHZddcAEfvL+MBVv+C2OvgphhsPZfisto3DUw+koo2aCcsy5fMUW/Mgtm/QlaDp+wKdnudJNVWMc4cYjJmgNsdg9lbOKkk3pt+4pl+yqREsa2bYTESRDocTePnA/7PlOUvowzFberwwJf/R4OfaMoLojjj3U5FgPGEFz6MbmlB0mMGP+TP9PRrM2p4ZrXFQXhq6LNx5z73tlczFn25TRpAvjbl7u4O2pM77+TxMye75PO4ynTwNKAWP+0MvcKF4Zld8Gyu5R2JtZGj4tUB+MWUuSXwXff78QkzTy5ajx333hNv5qnfcbWVxUFA5R7L24UuY1w32d7aJODud1xJ8sM9yLXPQ0Zz3c7vGrlf4ixl2NHi0ZKHOi4z7qQe2dlEP/ZhYAbqdEf24LzI3lnczHztWuRGh1i5CXA7b3u+6tUYMpb3azJqeGfF43k0pgKeH2BYh4v/i84HuGZi28AoGTXGiZrDpDlGsrmgkH96oexZ/1X3K3dj2vmP8EQ0H2H9pVN0TpImsr/Pl/ORY2vw2unKatp6VbcABe8pJjAqw/C3k+gfBeUbYHAKJh0G2QvApcDBzq2Mpznp6V0e6vKZmtHTIzd5eaBxgtYNKoOsfrvSkyMIeBH+UvbU4sdTjd6rYZnLhvDnKHR7Ctv9opSk13cwBWe1GZD54yrk3TuB7/cS7PFwROnhiE+/AzSZlEoE0mbcw0kZjIYyJx5OlescjFZc4Atcii/veISpg5UHprjk8OQUuJv0PHa+kJCA/T87tQeHhKeB0RuVQvL9q3lzjnpBHVSQucNj+V3A3/DWUVZ+H98I8bQeMhbrrg6znlGscAkTz5yrsjB8N4l8MUtgEYpdX+8pmQp+fa7ZdzV9iKXGNcBErvU8emuBKamX3IyLm2f8u3eSjLDzPjV7YNxDx/ZIASc87TiSvroGhg4B3K+gfp8mHU/pM46ogT+RJN7YMoE2AK2ku0wpgcF5ifGKLy+sbDj9bFiUKSUbFv1KVdpDiGB1zWP8vWOJMYn9xzIe9xknAWb/wsuO3a0vCAv4bZZAzEe/NLjvkCxDG97jRTgXq1i6LqJr1m8I/Gnv39/pmSLUjNoyDmQ1IvSv+tD2P0xIBTlRWugJHg8l7+yGYNOg9MtyXMm8Ll7BhdWfATNDyjuJQ9tFTmEbPg76xjL864LmMB+suQw9rYk89V7Zt7RD2WIKOF2193c7R7EyVShLXYXn2wtYrVhE2LgaUp26zH4RSgwQogzgGcBLfCqlPKxY+3vcINOIxgcEwTZjx9JZXS7YPkDsOoRHgkfjtGwAw2K9llsGgmk/2RZT8aKvq7FyuzyV2g2RhE88fred/Q8uAQwdf4wTnl+BN9Ev0hy8zZlu8sOn97Q/bgJ18O8v4MhEEZciPnQGq5fbSRt7Gyig7ubvienRWDQaXB4ajmsPlTLHcOv55nYHHTr/oXiLzWeUHZSY5udvy3ZdyS12OXmtve2d9lHpxE8fvEoLhoXj+jN9/4T+D6nGpvn/W3Hk9p8nLT3rrK73Og0grANjwACznuekp35pHW6Rgadlh1yMNtdg9EK2FPexMyMIz9qIQR/OmsojW0Onvkul1ark7BAQ4/314tr8gkwaLluWmo3me65cCofPzWHm2oXQ+0+pNAgJlzfPZ4DIGE8jFsI658C3IqV74eCAbPfgl3v4a4v5LzWStw6JWNOAEbhZOyuhykdO5LEtP6bzN1gtrOpoI6XBudAEcqDtjNBsUoV3bVPHGluetojMO1O5XW7EvgTiUwbjV1q0Vfu6r6xNAv3G+cq34nWiObaE8sIdLsl+8ubPfmMgBBdC+91Yk1ODfOtnyG0Sv6jXjqZot0P/EQFotPiq9h/DM9+YsWPIdx69gxPvIwdtAacCz7gs4/e4GLbF2iFxICTeeUvgPMcpTbVL43dH8HntyiLz43/Udxx0+/q+hvd8jJ8c7eivM74I5RnUxQ0josXO9BqBJ/eOoXGNgdf7DjM81kXc4FrI+7vn0Rz7tMASJeTyrduIELq8J//PPcEx7O5oI770iJIiQjg5re3UXQ4lsGaUrY60k96gPWXOw8z0r6TUEMdjLn8B/f/2cfACCG0wAvAmcAw4HIhxLAfOk5Kyb79e2D/lyiaqlaJFZj3KIy7mqDmPAzChU64MQoXQ6w9TBYnSLtF4V/Lcrjy1c1dfbY9+HZ7Y9uqT5mgycEy+ffH7UsfmRDC3NFp3NtwHrIjJsIAp9wP6aehTEEo4yEJivICkJjJS87zyXKlc/PMtB7PPT45jHdvnMxd8zL4+JYpPHDWEL45UM+79Rkd0RvSaYU1j4G1+ZhytnfrPfWp79l7uAmtRijplFoNt88eyPT0IxliTrfkDx/v4pQn1/Do1/t5b0sxz686/s7Ax8LmdLHyoBIQ264aLdldTr3Z/pPPvSGvtqN31XgOEF70NUz7rRK7dBST0yIw6jVdOxYfhUYjePzikUxMCePV9YXK/fVK1/urpK6NxbvKuSIzibDA7pP7gFB/0uJjO8KWXG44vHtl7x8i40zl9wIek34vQb22Vnj3UlhyB5RsgtZqXnCeR9G8RQhPvI7U6EgT5cS+NR35yQ2w6u/H9TvwNisOVOFyS6Y4tiitNXpqcKrr9HsU2k51Xk4eeqM/BZpkQhq7ZyId3rkcnFY0SHBaKc/++oTOveZQNVUtNn5/2mCSgjRoBMSHdm/Q6nZL/rt0MxO1h5BCgxstGp2B+DHH6Jl2IiRmwow/MGjCXE4ZHMUr6wpoixnXJY7mnwej+aBlNG6tARcanFJDcPU2pZt3Y8nJkeMosovqeWH1yZljjht7G3z31yPKCwBS+Z28MAl2vqeUsXjrAkV5yTgbrvyEbN1o/tpwBud+YUenFXxw82QGRpkYnxzGIxeM4JYL5vCuczZy+5tQXwDArk8eI82yh80Z9zJh5AjGJ4dx++x0xieHEWEy8sBZw2gmgGDa0Ot6V25/DFJK3txUzHWBm5B+oTD4jB885pdggckE8qSUBQBCiA+A84Fj5hmadE7m596nmH4vXgSNhV1NriPmI18/E6QLl9Ae29fXi8n24NbvaNi/isDBszigG8LTKw4xwnWQydoD7HCmc2iPYLzFBQXfw7bXPG6dY5vjD2Z9x5gdf6aOUGJO6SH25RjcPS+DuXsr+GfUE8z2yyFs2ByGTDzVI//6jpVNZx99q83JW5uKOH1YLGlRpl7P3bn2xfiUcEYlhPLCW/lcKj/HoBSpQZu/Evn0CGoT51FkDyJo5NnK+3v4enc5Ty7LoaiujdGJobx5fSbaw1s74pOGTBxCdnED24rrcTiVDIzrp6VwsLKFRRsK8egE+OnyePcnuHuklNzzyW72lbfw27npGHRa/PQanvg2hyte2cy7N04iwmT8UecGqDcrAZ1a4eZB/dvYA+IwTPttj/u2K4c/ZLXTaTVMT49ka1EDErA63by0Jo+XrhqPXqvhv2vz0QrBTb0ooQD1MZOxlr+BXjpxoOMvO0NJYT+xIUbMNhczB0cdef/ETMWilrsC9n+hxExFDoaMTpPO4e3w6Y2KG8WzpndLSIqNIW3qRZCYAEXrECkz+DzHTdSae5mz9xPl2I3/6Xf1hL7dW8ngEDemis0w+daed0qdoQRQ9/BbOpmU+WUw2bJO8Z10sj5udQzkfDzDgP7Q12D9Q9fssmPw5sZiooOM3DprIHG2Uh7YYOXZlbn886KRXfZbvKucM+rfwaB3IS56FdFY1GdptXfOTefilzbx3pYSbpyhWJW/3VvBa+u3c+3UeejHToOidbxWFs+2Pft5ruo19C9OgSFnw8QbT5pMX+0u5473dyAl6LW5vHvjJDJTT94D/GgObv0OuW0RA5uzMFhqYNA83AXfK9mhWj2amX+A/Yvhi073otDC1DvILrd0VPYG+OdFI7vN3wsmJvJI3q3Yc76n8cuHsEz+PUP3P0O2/2ROvezOHmUanxzG/tBIjK1O3rt2DONOovVlW3EDZRWVzAjYghhz9ZEu7MdAyJ95pogQYj5whpTyRs/fVwOTpJS/OWq/m4GbAYKjE8ZvfWAcgxvWsGfEn6mLnNjjucPrtjF0zz/Z6U6jZsYTBOi7uymCmw4yaudf0EgHEg21UdMAN5rmUiKsxR2r91qCQQgiZBOC7tmGkvYpXlCYeiUlyd3jAaxFWzit8DG0wo1davl20N8JTvhBY1MXXthpZWulCwHoNHDvRD/Sw7Q0l+1HV7MHZ9TILud894CNFcVOrhtu4JTEE0ud/TjHRkXR/o5ATSdaHtC9x2TtAaQEFxr+xdW8L0/D7NDg9NyKWgH3ZhqZKHIYveshhHTi1ujZNfoRmkOGkNfg4mC9iyHhWtLDFPPpZ7l2FucfWe2ek6Zn/uAfZ0b+5JCdrwocXDxIz7kDj5xjX62LZ7ZbiQkQXDLYQGmLu4sMx0OTTXLfujYGBGq4OeB7Lmt4if1D76I65hQAWltbMZl6VxSPRV6Diye2WnF4FDkJxAQIJsRo+abQyehoLb8d17vFLq/BxbJtu5nIAbLkUOpMGZS0SFxHfS+Dw7que3SOVkbtfghTaxGFqVchpBODrY4BFcuxG0IpTppPev7r4FYCkTcO+xvamK73rcstyV3/Pje5P0LrybsqTL2akuT5P+panGz21jp5apuNO8O38Lu2Z9k+9jGaQ4b2uG9w00FCG/fSGDqC5pC+cYnlZ33FDW2vsHnSy1j9YzrGjYe+YEr567znnM1hGcnv9Z/RFpTG7lEP4dQHHeOMUGl2c986Cxem6zk/3UBraytflupZWeLk0Wn+xJkUg73TLXl+bREf8weq404lN+O2PvmMnXk8y0K5WfLkTH8arJK/brIQF6jhgUl+6DzFHp1uyeNZVoa0buI53XMIJG6hZefoR2kO7fm7Ol42HHbw+l57xxwFEKCDSwYbiDMJ8hpOfC7oTE69kx3VLiL9NfjrILZ8Ode2voJWSNxS8C9xLe/L00i1K4HvW+VQTp84ivRQDUMOPktM1WoE4EZDUeqVPGo+l5UlnurswMWD9JwzsPt8aHdJajYs4nLXYhoJQo+TDRNexC+o9z5beVlLuLHtVTZOWYTdeGwFrqe5ujcez7Iwtnkl/9C9Qva4J2kJVvrvzZ49O1tKOaGnY34JFpiegh+6aWVSypeBlwFGpMXKwQ1r4JT7GDn7WFkysyg3Opi47THWOKqYddqCbnscXrIejduO8htyEVGzgTIZjZAuIoSiqLgl2PxjiQ/1g8rdnhtNsNQ1meRz72FkmBvx4ZXgtCKQpNlzSJs44kiGg5Sw52Psa/+NBuXppEES5SpjyqwTmzy22XLYWpmHRIkF+s9uJ6MSTGzKT8Elk9HVCu6Iiyc+1J/c6hZWFCumxfcPOTln5oQTsmoEpTZw5atudjkHo9Nq+OO8DEqyC5jYeBCtkGilm/vEm9xsXM6y4NNYVx/GDI1yfaYVm0ls3gHSY71x2xnn2g4zb2JWD3EZQakNLH9VWXG4JWTVCH5/4QQGHsNqdDTZxQ387/t8lhdUcXlmEv+4cESX2JpZwNgxtVz7ehbPbLchBBh0rhPKULvnk104pYW3TpfEf/MWRA9j2KUPMszzPmvWrGHWrFnHLXNnZgFjx3lirFLDabQ4eGjxPr4uVNJt99dLglJH9yqrcvw4NhfUcb/H2vPsd4d4dmUubgkuCW8d0vDujRNJjgjsevD06fDaaQwseOPIWPJ0/C57m4yAcIp2nsnHn7xP5Ii5XHfZZT2+f1ygC/vSzzEKOwJIm3w2aRk/7lqcTLKLG3h2xSbcQFrrNhz+4Yw79+ae44MA5Ur2LRUNDbDrFcYn6NGP9Lyfw4Ir6yY2uYbxTer9ANxakMz/zM8xPe9xuPrzYwZF/m3JPvTaYu6/bCbRQX6sWbOGf149hVOeWM36plBeOGccAG9uLOJ61+NoDAbir3iO+KBemwWfNPyS6ljw8mYKdUl8mVeOQe/krf+bTkJY1wSGkROsfPzMElxugQ6JRroYV/MJnLvsR9WlarE6+MsXe/liTzlD44IIrtnBBPaRxTAaw8fy5v5WAE/LlhObC9r5anc5//x2BwATxEHu1H3OTO2ejoeYG0GYwUlsQBDbK5V4OABTUzA3XjgR0gPhzc3gsqPRGpAjLmLzl4qru72a8eWnTuxVrix3DWL9YsJFC3apIyU2mCETZ/Uqb03xbiiEqWOHQXTviuG2onoeXbbJY7Fy8trCicwc3PX+k1KSU9XCa+sLOVBv5mHDWvLlABg1n1nH0az0l6DAlAGdgwcSgF4L3wD4WWshcQ6ccu8Pnjzu9N9Rnv06adv/CafP7/YjqK6sIL5dSUHPPQGPEDF0JonmPVxx8I4Oc3zr3H8iYoM7gtCEVs+ygAv4fqmDT2+dyqCFS6BwnRJln/UKvDQNZtwFzeVKHZayLZRrk4ilAp2ngFnYsDknfLFmD4nm1XUF2F1uNEIwNC6YHSUNOD1FORwuyVMrDnU77sdUxOzJ/XHQ/xzsX73bcV3qx9xGfNN2Li98i8s9CwQpweZKUUzAOUuV4kkAuz9U6pIMPl2pejpoXod5uPN7RZoMPPFtDvNf2sjjmVaCqjYfcZd56BxMPS4plK/3VPC7D3bidEs0Ai4cO0BRXoo3w4HFMPQcSJ7K1PRILhyXwIdbS5ESrA4393yyi4vHJ2Ay6mgw25k+KKrH67SrtJGPs8v42+gm4pf8RmkFUJcPZVtPmpn76DL2+yuaeWq5kiXidP3wd3j08dMHRfHS9/k4nG40GkF9q50znlnHPWdkMDI+pGtTz2EXKAGsAGiUTJwAZRL6/UYD+7mQl8f2nrNgiR3P1Y4/cZomixu0S6nbtZyYjDN/yuU4KWwuqMPhkuhwcorYQV7oXIb2qrx4B2P8KBw7tZgLswkd6QmazX4TbVs1z7pu5tHzhhNpMnLWs2buxsS/6h5HvDJbSffOOKvb/Wa2OflkWxlnjYwjOuiIlS7SZOTGGWk8uzKXW8oaGRhlYsXKb3lHuwk59Y9K4LIXmJwWQWZKOP/85iAAD5w1pJvyAhAT7EfaxNNxbP4YUCwQusPb4MOrYP5rR2L7joM1X79HxdYviHaEs2hECrMCixGNH4J0I7UGxPwl3JMVysfbyhS3rcPNxvwT66btdkseW3qQKzUruFn3Ncmaasy6MCrSriQs52N0nnlyxmkXMC56JFe+uvlIssTBav62ZB9/PnsiWk/Qc17AGC5a4iA0wMC/LhlKQa35BxNGXOU7cSPQItHgpmH/Kug0Vx6Nxl8p8upuazhmEO3aQzUdMXUOl+S617cyb3gMIxNCqGy0YrY72VHSSEGtGQEkiSomanJ40nkZAYX1jP+VKDBbgUFCiFTgMLAAuOLYh0ilpPfhbT/44BB6f3YN/SNn7r+b+vWvEH5KJ39j3kpGl79PliuD792jydaM4O4FCzw3y3AObo3sFL/huSE8N5pImcE9gSPY/NJGrn19K387bzg5rnAmD4lg/OgF8N4CpW+Fhy3Rl3J5yXk8MtFKWuuObg/k42V8chjv3tRVqcguqueKV7fg8FT2fPLiUYxJCiWnsoU739+Bw+XuNYD0eN6v849nyMRTOcj73a/Lsj8hN72g9L3QaPHLvAZm/OFIfFHSVKXK7Lp/QdbLyjFHxUl0fq/JaRH8/b9vMmvTX9DjxFbwMl9UvEzw4Gnk15h54tuDOF0SISDQoKXFdqTInwC2FjWQ2fgNLP6NpwniCxA/AYaey7XJYyjZcYix8gBZchjljpE88W1OR12Tx9YM476bFnb53G635K9L9jEqoIGrDv9dUV7gSCn5Por1mDowkhf0eR3dkU/0OzxaCR0Q6sf9n+3hb0v2096mqaNO0qDTlOKHLocS/5GqxH+8vamIHSWNCOCWd7J7XaVuLqhjuxzENucgwmjlooPvQsu9XntI9sbktAgEMFGTQ4hoo2a473sQxUeGckgmEFe+UxlwWGH90+wzjKQ+JLPD8vj0ZWNY8LKF6Sm3cmHFU0ptqI3PK0XjOqXhfrbjMC02JwunpigDpVkkFX8CpQHcOGMsb28u5olvc8hMCeP/7G/hDAhD10vcVl9x1shYsorqEcBTKw4xPjm8x/uo0G84r9of6HBdX5fWzLm5zyh92k65V2nFcax4HWszRW/exCnl3yqufj2Q13UX4bLBkt9y44SHKN2Vyzj3fja7h/J9Thg3zUg77m7a72wp5ryW97nH8BFSgkNqKZv7AhlTzubg1ou6zZPtv8XM1HC+2VPJog2FVDRaeWbBeA4ymKtf20KIv573b5pMYngP5TV6IGzYHOwFr3QsKn9oYawNVBQLS0s9x1IHM2KDOubEbWI4UUOnsz6vlm/2HqlLNyo+hEcvHEFssB8H378ftxR8JWby1HHOUz97BUZK6RRC/AZYhpJGvUhKue8HDlMm2eN8cIw67So2713E6HWPQebl4B8KNTnIj6+lUCTyR8OfuWjKEO4+auU9ZOKp3TXZTkWbEoHXr53I/Jc2ctNb2zwuCc/DYNzVStYOEjcavj8suGpKKleePwL4afUyjlYqxqeE895N3QNFkyMCuyk7J4Mer8uw8xFbXztSarw9+PHo4lf1+VC5DyV9t/deHskRgVwdV4Ku2IkQYJQO/Lc+z/UbDXT2OkoJKZGBTEuP5PUNRThdbiJ0bVxS9Sx8/zZHvJECGovhu4cYCrzX8csRCP9U6qWDUGsZAokDLY98qmX4Hbd1TGSf7zhMXNm3PBuwCI3V07zP7erTQE84/iDgHzpH5+Nev3Yit727vWMi6rDOzc7sUjSv/Xt5dZ1SV0RybEteezq+1eHmedcFXCLXw4Zn4Yx//ohPfhQ/oTZKUngAErgufB9ui5H0yef+dHl+IonhAax1pzKwbqdyE29/E1oredR+A2dMOKLwZaaGc+usgeSu/RKp1yBwK5lRn98MV30GEQORUvLWxiJGxocwNjEUcr+DDy4n1eWANz8haOFifjM7nYe/2o+2YDV3GvbB7MeOOzD4ZGG2uzrqTf3QffQf3RB2OgfjlrAjH6wjH2N+wZ8R712GUtbB0D1IXErY+ynuZQ+Q1FrVEZfolIJdSQsZf+oCpQq1y67EBjSVkfHNAt7XCtCCU+i5rPQBFi4SvLpwQpdaSz1RWt/Gkm++5n39p8p7CdAJyHAeBM7ucZ7s/FucmBJOfJg/f/96P2c/t47SegthAXo+vGVKj5ljvdHrorIXDCZFgbE21x1TgRlsP8AHhr+jEy4lpX/mEv4Tl8ZTKw4p/UsFnD4ilisnJYPDyozAtTTLeP43N5YhxzlP/ewVGAAp5VJg6fEfIU7owREfFsDzMb8hs+Y3yO+fQMz8I7x3GRa3jmvafs/DCycxd2jMD5+oB0bEh3DO6AF8kl3W4ZL4Ysdhxo+fA+ufQbrs2NxaGqMn8dezTyxg90TorYPuD3bWPVl0Lrx3rIdMygxl8nFalSJNx/gOo0eeCsUv4ZZKcPTp2mx2pb7Jd4P/zP3fluPyWJb+ep6SLnhBRBm6rBdJad6GLqcVhp4HucuOWBQWvAehyfDtfYh9n6M8kiXoDPj7CbAqFh0DLv7S9BBrn1jJ0DNvIczkx+Cv7uZiQy4yZoJiym6t7vOGaO2c7O9QCMGNM9JYsb8Kp1ui1Xay7BylcG4rqqe4vg2dRiClPKYVqF3Z+mhbCR9uhaKEc0ndtkhJMT8RK0z+GjjwJRhDlHooJZugXIkxUPq3nFh2U3ZxPSA5hW1oBs4+ITdEXxET7McBkcoCxxrFDbn+aarDxrGxYhh/HhHXZd/fnTqYB/ZPxNr4OQbhRGi0aFpr4MUpMOYKShwhjK5t47qRBsRrf1VcmnjUfKcFVv+DcaP+xHiRwxO6l6iWoZRFX8g4L3/mzvWmjuc+2lxQx8j4EL7dV8ndW0AXOIcL+Jb/b+/O46OuzsWPf55Zsq9A2EJY1Mi+poZF0VRxuy54VRSLSl1vta16rbvtxV+tba2KuNVqwSotgrUWK/fWCooUXBBEUFYB2RN2ErIns5zfH99vwiRMEiZkJsnkeb9eec3M+S5zZvLN5JlznnOO2NM6yIK7rWsrvjNs+9harX3vGgriTueF6st4zD27tlUicdhl0Gds3c+o7kPh77chGxcA4DbV/DX+tyzNH8S7zw8hd2A/Cg8fIG3whOOCAmMMT769mBflKUjohFSXgM9T98vbCbjlrH5UVnt5aqHV7V9U4WHf0cqQAhho4EtlA+KTrc+SqtLGh5K7d/6bGLEXkfVVwju38Z+n/YAdrmL6mHwqJIGrjiyFWWsg/0ti/F5iENI+uB66n9jEmFERwISqKrZTyItQjRp9Dn999xyuXf4HWD8fU3aQm6p/wdDBQ5sdvNS4Lrc3C74uoNru2/zz8p18k5/GNf1f4PCGxaxyDOKpm6cQ42r30/Y0rqGpxuvvM3UBzJtircvRyP4DBg6H/4Md6eOoHHsvA3ybSf3wMa468g25427jSP4WumR0J3PLClj0KQP2rMBa5tkBl78II6cE/+Y+5g5rltWaobKXv0A84H/9Mvw+DzicHO0xnjH5n5P03scYYCjgFyeOCx636t1E3du6nD7pvHFzLrfN/pJ+XRIY1Tst6H7PL95K50Rr4cjVu4uabAXK6ZPOqN5prNl1lMePXsIs3wIklFaY5S/Dvx469tgZW5uHA4C3yso1C+G9X7mjkKtdnxFbugcy2saoKKdD2J84ECqx1h0r2cufut5D706JDOxRd7SR2+ng7HP/gynzSmtndL4ibyw/yP8VzlV/ojfwdAyYb4HMHBhxA6x9C+PzWHlg2z5mxLaPeTvGSgqtNi6WfvMZo06J7Iy3obQmBgbtZ5+eweXDezJr7k4u8n5EDF5rCsWifFzz/6vOcduyb2LC2vO44/vZ7Ox08fGtEvU/o8bdZbVY+apBHLhOOYfR+7eQWDwbVlmNOtXb/8gm3qoTxPzt82/5r/xH6eSuwjX1/46tNN+cLzQitS1TJ5LndrLiU6zA0VvWeACzP+E0+mIvj+Jwgjjo9eWveSawd22dEzJHQa8zrFmGm2hZr69DBjDVMekhXyQXD+3Bvf/I5VqWQEkBXlw4HcK0y0++VSSnT3ptF86wXqlsO1jGq0u/49HdCcClxLgc7D5SUSe5rkPLyrWWP9iy8Lh5MOrYuwaAvpc/YudjnG99QMybQtaKx63M73ysuRMSOlOnu6h037HnCjY1f5DWIscPj3WfZGTlsv9wIateuYHxVcus0Wh+w95vFpPZJzpW1z3ztC48cGF/HluwgU+2HmJ8dt0RBqt3FbJ080EeungA407rwriAKWFlKwAAI+pJREFUSQgbIyJMHdeXR+aXcGjIlWScaCtMwRpY9D8BJ3LCOQ9Av7PxvX4ZDl+VlWN1dHdIr7Nk62f81vUH68EXf7CSy9tA8FnVeSC+fMG5bQnejMHMzM/ipjO7B52VeteRCtZwbATLqsWHORSTyV0iOMXgM8KB4XfS48pfWwfk3Mj2xbOtZS1SMil6+yek7l4MgAN/y8y42wzNbU0cc0pnvhg9gSkfVdXmxpw57iJ+5p0JK2cBBiNOFmypYkivdO6ZcDpu54CmWyWCfBYkAh+9dBd5B2bjFEMsXlIXPwgD34ekruwtKiPtg58y2LELJs2FboOPnasZTrRlqqWkJsZTauLwlTcewBx0dAWgauCVxI37kfX6Fk2zuoVrviie8wDkPRSwKnlo8ydF+Vf6lpMU6+Ly7oX47fwJMX7uzT5Aj9TQmuoaUjPj4fjsDKaO68sPRveuTZL0+drPar0R02MElB20Rmk1pCbBscfwgOOGWS0rtTMPO6w/oMlzjq3kfCJ/QPZMoXU+dOqVdeuczsFBN1FFDF7jwIOLz33h6wZsDdeN7k1mWjxPffAt9eeUemHxVtIT3Nwwpk/I571iZE9S4ly86JlodeF9+lzjBxzZBnOuhri0gNW3YyjPPJNHVsYxqfwhnvJM4hP/UFj1J1j7txOqR0W1j8xDn+HETrquyZ1rA86I3VObzSWHNzPUv5mLhgQP8mr+yTkF4twOHr1kIHtSc6jGjdc4qMbNp46AqTaycq05eLJyITWTtAsfxrjiWn7G3Qg6KzuDDa4BvOybyFfmdN5elc+erMvAFYcRJ9W4WO4byHOTR+J2hvCvMchnQWbu5bXvrcc46Vy+nbLpI1n/+j3sf/58zpcVHB0/DceApmebbUrgTOiRWHQ4Nd7NURIxFUWN7uctPQSA83s3HXtvBlwS8PcZa41UhIZXK29Ch2yBaa7MEedTvfAN3HjxiouRZ4cvmW/MKV2IcTV/9EjU6znCut27BlIzg+9TsBo6n3Z8suGpVn5RbbR/St6J5+CEqN/Ic7lp1c/JMetZJYO5f+T3W+S8bUWsy8k9E7K5/2/f8K91+7h4qJV/sXbPURZvOsD9F/YnMTb0j5mEGBeTc3sz65PtPDhyEgkrZ1offP0vPv53U3oQ/nylNaLr5oVs2rGLw+s+Yn3McP7wZilHyo6A3frwmv8SFnedQc9374CUTCuvoRFrdheRjrU2UM3CeOFMug7FSLPu2JS7fh8TErYwolda0H2Ddb+s6j2Jm2ZWnNi1mZVbp4WxLbRAhSrwPUhPcDN90WYufqeKX53xMtVbljL3QG+uvfIK+nU5+RynwMTY2NPOYd1hB9/76n4G7/gTAF7jYH/yEFoq1IhYriJWALPLJBJXdbTR/fxl1sKb7uSAltfGPmdPJIWgHg1gQuDNPIMp9vC8L2UwD3J6i67EGaglRo9EtW5DrH8oBWusqD6YvWsgWHdNQ39EzfgDakpOn3Tuv/VGlm87zP1R+nu8clQvXlm6jacXfsv5g7rhcjp4fvEWUuJc3Dg29NaXGjeM6cMfl21jkWcYE33zrMUjP3servwjDLG7L6pKrZaXkn0wdQGryrpw7fyteP1nATC8VzwPXNSfx95bT6XHTxVuDlw8i54LJ8GcSZAzFQZNbPD3/vW2Aq5yfoG3+0hcgy9rU/+8PVlnUrXtj8SJj2q/E/epZ+NwNNCdSpDRh6Fem2H4+4i0wPfgnP5dmfLH5dz9iReYgEPg0RAmvmxKYGLsKODTwxfj2/EyTrFaKgs3Lobc0KfCaG0JMU6KSSCxqvF17WpXDo+vN59LC15HGsCEYMX2I3VWBg53slQko+p2JyYBMgYeG11SX+kBKM63upqCieCHcbT/Hp0O4b4LTudHf/mK+avzGdwzlUUb9nPPhOwmh5I2JqtTAucN6MauLf+LoWYIsBf+dhOsnGkFp+vegSM74Lq5kHUGf563unZSRofABYO7M/mM3mR3Teb3S7by0cYDVMakwbk/t87z+YvWuRoYmZS04U0ypBgu/nXwYLgVJZ46jimLHuHWrAJm7u7JfaObNy9UNF+bjclMi+eKkZnM+HALYDVkLT/BCdSao/OQ86jeMfOE51tpq0SEckcybs+RRvdzVNo5MgnheT9Bc2BCciIrA6sI6jnCamUJtp5XTf5Lz5ERrFDHdeHg7gzrlcqMD7cwfdFmkmNd3DSu30mf96Yz+/Jx5en4HDHHVoz/3s1W0LL0KSv3xeGEhE74/IaVOwsRrDkmYgL+RnP6pPPSD0bRJSmWFxdvhcLtVgseWEPyty897rn91ZWcXziPbYkj2lzwApDVKZ6vzOncnf99diQMITdM/3ij2fjsDOIi9Jk+4IwJ7Lx0LitPuYOdl85t1kSkbUWVK5lYb0mj+8RUFVIuCeBs/peYpmgLTAi0W6eN6TEC1syxEnnr58EUrAbEStpVYSci3H9hf26YtYL8ogquzskkNeHkP7jGndqZxzJGcY/nMaZ0331sSGvKM7D4V4DfWsV9xzLePdCT/MIK7r/gdBA57m80zu3k9rP78et/buLbEcPp74y1hlXjt+ZSqefAJ6/RnSMsG/o7Gl7Du/VkJMUS63JQ5fVz/kCr606FJtKf6aHMt9KWVbuSia8qbXSfWE8RZc5UTmw+4ObRACZEHbnJtc1pLJF37xrokg2xja/Aq1pOgttZOx/Fgq/3cl1un5P+WxERvj+gK68uLeWfRb2J2ephTtdCcvqNB1dsbSK2J+tMnn1rM0MzU7nz+6cFHUoMMGV0H15e8h1PrkvltanvWXPC7FkBX79p5VINtJcJ8HlIWvkCq/2n0ft7rb8eUzAiQpekGPKLKjmta8vlbnQ0+pkeOm9MCvGV5eDzNrhIZry3mMq41LDWQ0N21X4FJvLWV7C64fwXFRbLtx/rE/e24ND/hBhr5qvAKeTrD7uct7c7eworuO/C/g0GLwCJsS5uOasfizcdYJ2jP5z9M5j0BvQcBfN/BAfthUzXvk1SRQGz3ZPoXX/l7TZi1c5C9h6tBOCZRd+yamfj83Io1VJ8sXZg0kgib5K/mOqYtLDWQwMY1X41lMhbsh9K9mr+S4QFzjXSkvkE47MziLG7RwxwRl/727I9/0ZFtxyeX7yV3H6dODu76cnybhzXl+Q4Fy99bK/Q546Da/9stei8NQUqCmHZM2yWflT2ndBoQNSaAgPE2sBOqUiIS7NuK4IHzZUeH6mmBF9seFu2NIBR7VuwRF57Bt7aLiYVEeGaUCunTzpzbx/DRYO74zfw7pqCOpPmvfH5Dg6WVHF/E60vNVLi3PxwXF/eX7ePzfvtRMTUXjDpdSsX5vfj4PBW5lefEbYRKS0hXAGjUk2RhDQATGXwuWCOVnhIlxJM/SHULUwDGNW+BZuRtyaBt7sm8EZazYzSLZ1TkNMnnT/ckMMdeafy5he7mPWJtcJ1caWHl5d8x/f7Z3BGCMHGTWf2I9bl4O55q491vfQbD7m3QUkBBrjL9S7nxG9v0dfRkiI9A6tSNVwJ1rVWWRK81a+opJwUqQjrEGrQJF7V3gVL5C1YA11Oh1hNbIw291/Qn52Hy3jinxvp3SmBdflHOVrh4WcX9A/pPNsPleH1GzbuLeG6V5cz93Y7AEjsCgiCwY2XU8pWA+eF5bW0BE1AVa0hJskOYIoPE2wxndKiAwC4ksLbKqgtMKp9q03kDciDKVit3UdRyuEQpl8zgmG90vjJm6t5+d/fMe7UzgzJDG20w/Jth2u7oap9fuavzrc29BsPrji8OPCJG+cpZ7f0S1Cq3YtNtgKTytIGcmCKrXWQ6iwjEAYawKj2rTaRd431uHivtZK0JvBGrTi3k5+eexoenx+Pz7BqZ2HII3AC80cEmP/VHjbtK4asXCqum8+z3km8M/Sldj91vlLhEJ9sdQ15SoPPxltlBzBxKRlBt7cUDWBU+xeYyFuTwKtDqKPat/tKqMnXbc6Q7cD8kd9PGUVSnIvrZ65gx6EyvjLZvOSdSM8h54Sh5kq1f8lJKVQbJ97yoqDbffZK1Ilp4Q1gNAdGtX+BM/IWrLG6lLoPbe1aqTCqaUE5mdXaA/NHTuuaxDWvfM6UmV8wqIc1+aGzkYURlerIUhNiOEoipqIo6HZ/mfWFIiHMAYy2wKj2rybfpWC19aMJvFGvpUfgZHdLZvbNoyksq2bRRisB8bbZX+rkcEoFkRrvptgkIpVFwXewV6KWBE3iVapxNYm8e9dYP5r/0iG09JDtob1SmTjy2JIUOjmcUsElxbkoJhFHAzPxOioLqSIG3OFcCUkDGBUNahJ5v30fSvdr/otqtqtzehGrk8Mp1SinQyhzJOKuDj6RXUx1ESWOZAjzLNaaA6OiQ88RVh4MaAuMaracPum8eZuuOK9UUyqdybi9O4Jui/MUUe4M70KOoAGMihY1ibyawKtOkk4Op1TTqpzJxHtLgm6LxErUoF1IKlrUJPImdIH961q1KkopFe08MSnE+0vrrkNns1aiDv+XgJMKYETkKRHZJCLfiMh8EUkL2PawiGwVkW9F5MKA8hwRWWtve17s1ddEJFZE3rLLvxCRvgHHTBWRLfbP1IDyfva+W+xjY07m9ah2zFNp3ZYdgDcuh90rWrc+SikVxXwxqbjwQXVZ3XK/IcWU4Itr4wEMsAgYYowZBmwGHgYQkUHAZGAwcBHwexFx2se8DNwOZNs/F9nltwCFxpjTgGeBJ+1zdQKmAaOBXGCaiNS8M08CzxpjsoFC+xyqI8pfSe3l7KuGHctatTpKKRXVarqI6g2lLqmoIp0STFsPYIwxC40xXvvhcqCXfX8iMM8YU2WM2Q5sBXJFpAeQYoz53FgLkcwGrgg45g37/t+A8+zWmQuBRcaYI8aYQqyg6SJ727n2vtjH1pxLdTR9x4MrFsQJzhjrsVJKqfCIT7NuK+uORCopOoxTDBLmlaihZZN4bwbesu9nYgU0NfbYZR77fv3ymmN2AxhjvCJyFOgcWF7vmM5AUUAAFXiu44jI7VgtP2RkZLBkyZIGX4jT6SQxMREJ8xCw9szj8VBeXt7a1agjZehjpBWtoyhtCMXflcN3S1q7SiErLS1t9NpUKlL0WlSNOVBsdduv/PRjyjodrC0/eGAPWcC+ogoKw3z9NBnAiMiHQPcgmx41xvzD3udRwAvMqTksyP6mkfLmHNPYuY7fYMyrwKsA/fv3N3l5eUH3Ky4uZv/+/WRmZhIfH69BTBB+v5/8/HxiY2Pp2rVra1cnQF5rV+CkLVmyhIauTaUiSa9F1ZiyynI4CKf3yyJ1ZF5t+erPFsEGOGXQSLLPymvo8BbRZABjjJnQ2HY7qfZS4DxjatOR9wBZAbv1Agrs8l5BygOP2SMiLiAVOGKX59U7ZglwCEgTEZfdChN4rmY7cOAAmZmZJCSEdwbB9szhcNCtWzd27tzZxgIYpZRSkRBjr0hdWXKYwAHTVSX2StSpXcJeh5MdhXQR8CBwuTEmsD/hPWCyPbKoH1ay7gpjzF6gRETG2DksNwL/CDimZoTR1cBiOyD6ALhARNLt5N0LgA/sbR/b+2IfW3OuZvN4PMTHx5/saaKe2+3G6/U2vaNSSqmoE2cHMNWlR+qU++wAJiE1/F9uTzYH5kUgFlhkd7UsN8b8yBizXkT+CmzA6lr6sTHGZx9zB/A6EA+8b/8AzAL+LCJbsVpeJgMYY46IyOPASnu/Xxpjat6xB4F5IvIrYLV9jpOm3UZN0/dIKaU6rsQUK4DxlhXVKfeXW+uHJad3C3sdTiqAsYc8N7TtCeCJIOVfAkOClFcCkxo412vAa0HKt2ENrVZKKaVUhKQmxlFs4vFX1F2xXSoK8RkhJjEt7HXQmXijRF5eHj/5yU9auxpKKaU6gJQ4N8UkHjeM2lFZSLEkgyP84YUGMEoppZQKSWq8m2KTiNSbyM5aiTolInXQAEYppZRSIYlxOSiRRFzVdRd0jPMUUe7SAEaFyOv1cvfdd5Oenk56ejr3338/fr8fgL59+/L000/X2b9+t9Pf//53hg0bRnx8PJ06deKcc85h//79EX0NSiml2ocKRzJuT90upHjvUapcaRF5fg1gwmTVzkJe+ngrq3YWNr1zC5kzZw5+v5/PP/+cV155hVdffZUZM2ac0LH79u1j8uTJTJ06lY0bN7J06VJuuOGG8FZYKaVUu1XpSiLOW7cFJtlfTHVs+NdBgpZdSiAq/b8F69lQUBzSMSWVHjbtK8FvwCEwoHsyyXHuEz5+UM8Upl02ONSq0qNHD55//nlEhAEDBrB582amT5/Ovffe2+SxBQUFeDwerr76avr06QPAkCHHDRZTSimlAPC4U4mvKD1WYOyVqGPTIvL82gITBsWVXvz2nMR+Yz2OhDFjxtSZn2Xs2LHk5+dTXNx0ADZ8+HAmTJjAkCFDuOqqq3j55Zc5ePBgk8cppZTqmHwxKcSZSvB5AKgsLyFOPJgILOQI2gLTpOa0hKzaWciUmcvxeP24XQ6emzySnD6RaVJriMPh4NhKDxaPx1N73+l0snDhQpYvX87ChQuZNWsWDz/8MP/+978ZPnx4pKurlFKqjfPH2YsIVB6FxC6UFB4gDnAkdI7I82sLTBjk9Elnzq1juPeC/sy5dUzEgpcvvviiTpCyfPlyevbsSUpKChkZGezdu7d2W2VlJZs2bapzvIgwduxYpk2bxsqVK+nZsydvvfUWSiml1HFi7QCmogiAsiKr1d6ZGJkARltgwiSnT3rEW10KCgq45557uPPOO1m7di1PPfUUP//5zwE499xzee2117j88svJyMjgiSeeqNMCs3z5cj788EMuvPBCunXrxurVq9m9ezeDBg2K6GtQSinVPjgSrP9xvvJCnEBF0QEAYlMzIvL8GsBEkSlTpuDz+Rg9ejQiwi233MJ///d/A/Dwww+zY8cOJk6cSFJSEo8++igFBccW705NTeXTTz/lhRdeoKioiKysLH7xi19w/fXXt9bLUUop1Ya5Eq0Aprz4MMlAdam1DlJcSvhXogYNYKLGkiVLau+/+OKLx21PSUlh7ty5dcruvPPO2vsDBw7k/fffr3+YUkopFVRMkhXAVJZYAYyv1F6JOi38K1GD5sAopZRSqhlik61cl6pSa74zf5nVApOSHpkuJA1glFJKKRWyhBQrgPGUHgGslahLTDxJCfEReX4NYJRSSikVspTkZKqMG3+FtZyAs6qQIkmpMx9ZOGkAo5RSSqmQpcS7KCYBU2F1IbmriiiL0ErUoAGMUkoppZohNd7NUZOIVFotMPERXIkaNIBRSimlVDPEu50Uk4ijylquJsF3lEp3WsSeXwMYpZRSSoVMRKhwJuH2WC0wSf4SPDFpEXt+DWCUUkop1SwVzmRivSXg85BEOb64yCzkCBrAKKWUUqqZql3JxPlK8NlzwJj4yC2howFMB7ZkyRJEhEOHDgV9rJRSSjXGG5NKgr+MssL9QORWogYNYDq0cePGsXfvXjp3jtwFp5RSKnr4YlNx4qfy4HYAXEkawKiTVF1d3eQ+MTExdO/ePWKTDimllIoycakAeA5uAyAmQgs5QgsFMCJyn4gYEekSUPawiGwVkW9F5MKA8hwRWWtve17s/54iEisib9nlX4hI34BjporIFvtnakB5P3vfLfaxMS3xetqjvLw87rjjDu677z4yMjI488wzmT59OsOGDSMxMZHMzExuvfVWioqKao/RLiOllFInQ+LTADBHrAAmPjUy6yBBCwQwIpIFnA/sCigbBEwGBgMXAb8XEae9+WXgdiDb/rnILr8FKDTGnAY8Czxpn6sTMA0YDeQC00SkJkvoSeBZY0w2UGifo23YvQKWPWPdRshf/vIXjDEsW7aM2bNn43A4mDFjBuvXr+fNN99kxYoV/PSnP41YfZRSSkU3V0IaAI5CK4BJjNBK1ACuFjjHs8ADwD8CyiYC84wxVcB2EdkK5IrIDiDFGPM5gIjMBq4A3rePecw+/m/Ai3brzIXAImPMEfuYRcBFIjIPOBf4gX3MG/bxL7fAazrm/Ydg39rQjqkqhv3rwPhBHNBtCMSGMDth96Fw8W9De06gX79+PPPMM7WPBw4cWHu/b9++/O53v2PixIm88cYbOBzae6iUUurkuJOsYdNxJTupNG5SUlIj9twn9V9MRC4H8o0xX9fblAnsDni8xy7LtO/XL69zjDHGCxwFOjdyrs5Akb1v/XO1rsqjVvAC1q09zXK45eTk1Hm8ePFizj//fHr16kVycjJXXnkl1dXV7Nu3LyL1UUopFd1i7QAmtWovR0gmNd4dsedusgVGRD4EugfZ9CjwCHBBsMOClJlGyptzTGPnOr5CIrdjdV2RkZHBkiVLgu6XmppKSUnJsYKzHm3olA1yFKwi4e1rwecBp5vyi5/H3zOn6QMDBdbhBPh8Ptxud23dd+3axSWXXMLUqVN58MEH6dSpE19//TU333wzR44cITk5mfLycgBKS0uJjY097nFTKisrG3wfVfOUlpbqe6raBL0W1YnYeqCYPMCJj6Mks/mTpRF77iYDGGPMhGDlIjIU6Ad8befh9gK+EpFcrNaQrIDdewEFdnmvIOUEHLNHRFxAKnDELs+rd8wS4BCQJiIuuxUm8FzBXserwKsA/fv3N3l5eUH327hxI8nJyQ2d5sT0z4OpC2DHMug7nsSs3JM73wlwOp3ExMTU1n3Tpk1UV1fz0ksv4XRa6Uc1H0ZJSUkkJyeTkJDQ6OOmxMXFMXLkyDC8mo5ryZIlNHRtKhVJei2qE9FlTyH+9YJDDGWOlIheM83uQjLGrDXGdDXG9DXG9MUKNEYZY/YB7wGT7ZFF/bCSdVcYY/YCJSIyxs5vuZFjuTPvATUjjK4GFhtjDPABcIGIpNvJuxcAH9jbPrb3xT42MA+ndWXlwvifWbetIDs7G7/fz4wZM9i+fTtz585lxowZrVIXpZRS0Sk1IZYS4gEod0Uu/wXCNA+MMWY98FdgA/Av4MfGGJ+9+Q5gJrAV+A4rgRdgFtDZTvi9F3jIPtcR4HFgpf3zy5qEXuBB4F77mM72ORQwbNgwnnvuOaZPn86gQYOYOXMmTz/9dGtXSymlVBRJiXdz1CQCUOWObADTEqOQALBbYQIfPwE8EWS/L4EhQcorgUkNnPs14LUg5duwhlZ3eMH6qu+66y7uuuuuOmXXXHNN7f28vDyshqzgj5VSSqnGJMe62E0icJDq2MitgwQ6E69SSimlmsnhEMocSQD44zSAUUoppVQ7UeG0AhjiO0X0eTWAUUoppVSzVbmsiVolUQMYpZRSSrUTiQ4PAF1MYUSfVwOYIDSRtWn6HimllGL3CsZWWJPXnbHhNxFd/08DmHrcbjcVFRWtXY02z+Px4HK12CA2pZRS7dGOZQjW0jkO47UmcI0QDWDq6dq1K/n5+ZSXl2srQwP8fj/79+8nNTWyY/6VUkq1MX3H45UYvMaBT9zQd3zEnlq/QteTkmIlIxUUFODxeFq5Nm1XYmIiXbp0ae1qKKWUakWr/Nn8tvoRzmADq3yDecCfTYgr/zWbBjBBpKSk1AYySimllApu+bbDrPJns9Jk4xTrcU6fyMwHo11ISimllGqWMad0JsblwCngdjkYc0rniD23tsAopZRSqlly+qQz59YxLN92mDGndI5Y6wtoAKOUUkqpk5DTJz2igUsN7UJSSimlVLujAYxSSiml2h3piHOdiEgJ8O1JnCIVONpC1WlJWq/QtMV6dQEOtXYlgmiL7xVovUIVSr0ieS1Gw/sVKW2xThC+evU3xiQH29BRc2C+NcZ8r7kHi8irxpjbW7JCLUHrFZq2WC8R+fJkrs1waYvvFWi9QhVKvSJ5LUbD+xUpbbFOEL56iciXDW3TLqTmWdDaFWiA1is0bbVebVFbfa+0XqHReoWmLdarLdYJWqFeHbULqU1+y1VKr03VVui1qNqCxq7DjtoC82prV0CpBui1qdoKvRZVW9DgddghW2CUUkop1b511BYYpZRSSrVjURfAiIgRkT8HPHaJyEER+d/WrJdSgUTkP+1rdUBr10V1LPoZqaJF1AUwQBkwRETi7cfnA/mhnEBEOurwchU51wGfAJNDOUhEnOGpjupATvozUqm2IBoDGID3gUvs+9cBc2s2iEiuiHwmIqvt2/52+Q9F5G0RWQAsjHyVVUchIknAmcAt2AGMiOSJyFIRmS8iG0TkDyLisLeVisgvReQLYGzr1VxFkeZ8Ri4TkREB+30qIsMiWWmlAkVrADMPmCwiccAw4IuAbZuAs40xI4H/AX4dsG0sMNUYc27Eaqo6oiuAfxljNgNHRGSUXZ4L/AwYCpwKXGmXJwLrjDGjjTGfRLqyKio15zNyJvBDABE5HYg1xnwTsRorVU9UBjD2H1VfrG8W/6y3ORV4W0TWAc8CgwO2LTLGHIlIJVVHdh3WPxDs2+vs+yuMMduMMT6sb8Rn2eU+4J3IVlFFs2Z+Rr4NXCoibuBm4PWIVFapBkRzrsd7wNNAHtA5oPxx4GNjzH+KSF9gScC2skhVTnVMItIZOBcrB8EATsBg/ROpP6dBzeNKO6hRqiWF9BlpjCkXkUXAROAaQCe5U60qmgOY14Cjxpi1IpIXUJ7KsYS1H0a4TkpdDcw2xvxXTYGI/BurtSVXRPoBO4Fr0YnEVHg15zNyJtaU8cu0tVq1tqjsQgIwxuwxxjwXZNPvgN+IyKdY336ViqTrgPn1yt4BfgB8DvwWWAdsD7KfUi2mOZ+RxphVQDHwpwhUUalG6Uy8SrUB9jfg+4wxl7ZyVZRqkIj0xOpSGmCM8bdydVQHF7UtMEoppVqOiNyINVrpUQ1eVFugLTBKKaWUane0BUYppZRS7U5UBDAikiUiH4vIRhFZLyJ32+WdRGSRiGyxb9Pt8s72/qUi8mK9c10rIt/Y5/lda7wepZRSSjUuKgIYwAv8zBgzEBgD/FhEBgEPAR8ZY7KBj+zHAJXAL4D7Ak9iz9HxFHCeMWYw0E1EzovQa1BKKaXUCYqKAMYYs9cY85V9vwTYCGRiTbj0hr3bG1hTuGOMKbOnZK+sd6pTgM3GmIP24w+Bq8Jbe6WUUkqFKioCmED2zJEjsbLluxlj9oIV5ABdmzh8KzBARPraK1JfAWSFr7ZKKaWUao6oCmDsVX7fAe4xxhSHerwxphC4A3gLWAbswOqeUkoppVQbEjUBjL3A2DvAHGPM3+3i/SLSw97eAzjQ1HmMMQvsVX/HAt8CW8JVZ6WUUko1T1QEMCIiwCxgozFmesCm94Cp9v2pwD9O4Fxd7dt04E6stT+UUkop1YZExUR2InIWVpfPWqBmhshHsPJg/gr0BnYBk2oWIBORHUAKEAMUARcYYzaIyFxguH2OXxpj5kXoZSillFLqBEVFAKOUUkqpjiUqupCUUkop1bFoAKOUUkqpdkcDGKWUUkq1OxrAKKWUUqrd0QBGKaWUUu2OBjBKqTZPRP5XRF5v7XoopdoODWCUUlFFRPJExIhIl9aui1IqfDSAUUoppVS7owGMUqpNEZEEEXldREpFZL+IPFJv+/UislJESkTkgIi8LSKZ9ra+wMf2rgftlpjX7W0iIg+IyHciUiEia0Xk+ki+NqVUy9EARinV1jwNnA9cBZwHjATODtgeA0zDWvLjUqALMNfetts+DmAw0AO42378K+AW4MfAIOA3wCsickm4XohSKnx0KQGlVJshIknAYeBmY8ycgLI9wLvGmB8GOWYAsBHIMsbsEZE8rFaYDGPMIXufROAQ1ppnywKOnQGcboz5jzC+LKVUGLhauwJKKRXgVKwWls9rCowxpSKytuaxiIzCaoEZAXQCxN7UGyvQCWYQEAf8S0QCv7W5gR0tVHelVARpAKOUakuk0Y1WS8oHwIfADcABrC6kZViBT0Nqussvw1qZPpCnWTVVSrUqDWCUUm3JVqyAYgywDWqDliHAd8AArIDlEWPMdnv7lfXOUW3fOgPKNgBVQB9jzOKw1V4pFTEawCil2gy7u2gW8KSIHAQKgP/hWDCyCysQ+YmIvAQMBB6vd5qdgAEuEZEFQIUxpkREngaeFhEBlgJJWIGS3xjzarhfm1KqZekoJKVUW3MfVhLufPt2HVbAgTHmIDAVuAKrVWUacG/gwcaYfLv8CWA/8KK96RfAY/b51wOLsEYsbQ/ja1FKhYmOQlJKKaVUu6MtMEoppZRqdzSAUUoppVS7owGMUkoppdodDWCUUkop1e5oAKOUUkqpdkcDGKWUUkq1OxrAKKWUUqrd0QBGKaWUUu2OBjBKKaWUanf+P3TTD72r/bHeAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "diff_7 = df[[\"bus\", \"rail\"]].diff(7)[\"2019-03\":\"2019-05\"]\n", + "\n", + "fig, axs = plt.subplots(2, 1, sharex=True, figsize=(8, 5))\n", + "df.plot(ax=axs[0], legend=False, marker=\".\") # original time series\n", + "df.shift(7).plot(ax=axs[0], grid=True, legend=False, linestyle=\":\") # lagged\n", + "diff_7.plot(ax=axs[1], grid=True, marker=\".\") # 7-day difference time series\n", + "axs[0].set_ylim([170_000, 900_000]) # extra code – beautifies the plot\n", + "save_fig(\"differencing_plot\") # extra code – saves the figure for the book\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [], + "id": "2-g92Cb2nUz0", + "outputId": "3cce4f09-5284-4ac9-b7b6-cfd9f82ea962" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['A', 'U', 'U']" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(df.loc[\"2019-05-25\":\"2019-05-27\"][\"day_type\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6owihmBenUz0" + }, + "source": [ + "Mean absolute error (MAE), also called mean absolute deviation (MAD):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "f4B4dv66nUz1", + "outputId": "dc34dda7-4364-4667-fba1-1ac258780c78" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "bus 43915.608696\n", + "rail 42143.271739\n", + "dtype: float64" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diff_7.abs().mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-cq8Pzq2nUz1" + }, + "source": [ + "Mean absolute percentage error (MAPE):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AxFHjI_QnUz1", + "outputId": "8c7a9140-96a1-4b1f-b81d-6a21903d2184" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "bus 0.082938\n", + "rail 0.089948\n", + "dtype: float64" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "targets = df[[\"bus\", \"rail\"]][\"2019-03\":\"2019-05\"]\n", + "(diff_7 / targets).abs().mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HqZvwmF4nUz1" + }, + "source": [ + "Now let's look at the yearly seasonality and the long-term trends:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9j5nGkv2nUz2", + "outputId": "d873875b-a839-444d-99b7-77e797a58966" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAEQCAYAAACutU7EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADg6ElEQVR4nOydd3wbhfn/36dt2ZYt7xk7HtnbmZBA2BsKtKWsDgp0UNpSoINf+23pboECLZRNoWW0rLJHCMQkkDjD2YmTeO9tecjauvv9cTpZsmVbDnFW7/16QWxZ0g2d7j73jM8jSJKEioqKioqKisqJhOZYr4CKioqKioqKykRRBYyKioqKiorKCYcqYFRUVFRUVFROOFQBo6KioqKionLCoQoYFRUVFRUVlRMOVcCoqKioqKionHAcUwEjCMLTgiB0CIKwN8rnf1kQhP2CIOwTBOGFyV4/FRUVFRUVleMT4Vj6wAiCcBpgB/4pSdKccZ5bDLwEnClJkk0QhDRJkjqOxnqqqKioqKioHF8c0wiMJEnrgZ7QxwRBKBQE4X1BEMoFQdggCMKMwJ9uAh6WJMkWeK0qXlRUVFRUVP5HOR5rYB4HbpUkqQS4A/h74PFpwDRBED4TBKFMEITzj9kaqqioqKioqBxTdMd6BUIRBCEOOAV4WRAE5WFj4F8dUAysBnKADYIgzJEkqfcor6aKioqKiorKMea4EjDIEaFeSZIWRPhbE1AmSZIXqBUE4SCyoNl6FNdPRUVFRUVF5TjguEohSZLUjyxOvgQgyMwP/Pl14IzA4ynIKaWaY7GeKioqKioqKseWY91G/SKwCZguCEKTIAjfBK4FvikIwi5gH3BZ4OkfAN2CIOwH1gF3SpLUfSzWW0VFRUVFReXYckzbqFVUVFRUVFRUDofjKoWkoqKioqKiohINqoBRUVFRUVFROeE4Zl1IiYmJUlFR0bFa/KQyODhIbGzssV6NSeNk3j51205cTubtU7ftxORk3jY4OttXXl7eJUlSaqS/HTMBk56ezrZt247V4ieV0tJSVq9efaxXY9I4mbdP3bYTl5N5+9RtOzE5mbcNjs72CYJQP9rf1BSSioqKioqKygmHKmBUVFRUVFRUTjhUAaOioqKioqJywqEKGBUVFRUVFZUTDlXAqKioqKioqJxwjNuFJAjC08DFQIckSXMi/F0AHgQuBBzA1yVJ2n6kV1RFRUVFReVEob+/H4vFQkVFxbFelUkjISHhc22fXq8nLS0Ni8VyWK+Ppo36GeAh4J+j/P0C5KnQxcAy4JHAvyoqKkeR8nobm6q7WFGYQkme9VivjorK/yz9/f20t7czZcoUkpOTke/zTz4GBgaIj48/rNdKkoTT6aS5uRngsETMuAJGkqT1giDkj/GUy4B/SvJQpTJBEBIFQciUJKl1wmujoqJyWJTX2/jK45vw+iWMuipeuGm5KmJUVI4RHR0dZGdn4/f7T1rx8nkRBAGz2Ux2djYtLS2HJWCORA1MNtAY8ntT4DEVFZWjRFlNN16/PJjV6xcpq1EHtauoHCu8Xi8xMTHHejVOCGJiYvB6vYf12iPhxBtJXkYccS0Iws3AzQCpqamUlpYegcUff9jt9pN22+Dk3r4TddsMvb7gzxoBjL31lJY2hT3nRN22aDmZt0/dthOLhIQE7HY7fr+fgYGBY706k8aR2j6Xy3VYx8CREDBNQG7I7zlAS6QnSpL0OPA4wPTp06WT1WJZtY8+cTlRt62g28HvNq8D4K4LZ3LDyoIRzzlRty1aTubtU7ftxKKiooL4+PjPVSNyInCkts9kMrFw4cIJv+5IpJDeBL4qyCwH+tT6FxWVo8vG6q7gz1mJauhaRUVl4qxevZrvfe97x3o1oiaaNuoXgdVAiiAITcAvAT2AJEmPAu8it1BXIbdRf2OyVlZFRSUyG6u70WsFvH6JAZdv/BeoqKionOBE04V09Th/l4BbjtgaqaioTAhJkthY3c3ygmQ2VHYx6FYFjIqKysmP6sSronKCU91pp8vu5pxZ6QAMevzHeI1UVFROVHw+Hz/4wQ+wWq1YrVbuvPNORFEEID8/n3vvvTfs+cPTTq+99hrz5s0jJiaGpKQkTj/9dNrb2ydlXVUBo6JygvPvrbKLQUqsEb1WUFNIKioqh83zzz+PKIps2rSJxx57jMcff5wHHnggqte2tbXxla98ha997WtUVFSwfv16rr/++klb1yPRhaSionKMKK+38fSntQD86OWdGHUaNYWkonIccvdb+9jf0n9Ulzkry8IvL5k9oddkZmby17/+FUEQmDFjBocOHeIvf/kLP/rRj8Z9bUtLC16vly9+8Yvk5eUBMGfOiAlERww1AqOicgJTVtONGHBd8vpENIKgChgVFZXDZvny5WHuwStWrKC5uZn+/vHF1/z58zn77LOZM2cOV155JY888gidnZ2Ttq5qBEZF5QRmeUEyArJzpF6nwWo2MKAKGBWV446JRkKORzQaDXLfzhChLrparZY1a9ZQVlbGmjVreOqpp/jZz37GJ598wvz584/8+hzxd1RRUTlqlORZiTFoWTQlkedvXE5KvFGNwKioqBw2mzdvDhMpZWVlZGVlYbFYSE1NpbV1yObN5XJx4MCBsNcLgsCKFSv45S9/ydatW8nKyuI///nPpKyrGoFRUTmB8fhEHB4/q6enUZJnJdaoo8/hOdarpaKicoLS0tLCD3/4Q7773e+yZ88e7rnnHn7+858DcOaZZ/L0009z6aWXkpqayq9+9auwCExZWRlr167lvPPOIz09nR07dtDY2MisWbMmZV1VAaOicgJjC4iV5DgDAPFGHc02x7FcJRUVlROYa6+9Fr/fz7JlyxAEgW9+85vcdtttAPzsZz+jrq6Oyy67jLi4OG6//fawGpeEhAQ+++wz/va3v9Hb20tubi6/+MUvuO666yZlXVUBo6JyAtNldwOQHGsEINaoxa6mkFRUVA6D0IGKDz300Ii/WywWXnzxxeDvAwMDYd1JM2fO5L333pvUdQxFrYFRUTmB6bbLEZiUQAQm1qhj0K0a2amoqJz8qAJGReU4pLzexsPrqiivt435vO5BOQKTFDuUQhr0+BBFaayXqaioqJzwqCkkFZXjjI1VXVz/1BYkJAw6Dc/fuJySPGvE5yoRmOQ4JYWkQ5LA4fUTZ1S/3ioqKicvagRGRWUSiTaSEsrbu1vxSxKiJJvTldV0j/rcLrsHvVbAYpLFSmxAtKit1CoqKic76i2aisoksa2uhy8/tglg3EhKKFOSzcGfdVoNywuSR31ut91Ncqwx6JwZHxAydreP9M+z8ioqKirHOWoERkVlkvioogNRIqpISigpgXSQIMC0tDjKarpHjeD0DHqCLdQAsYaAgFEHOqqoqJzkqBEYFZVJItsaE/xZrxs7khJKb8Db5fzZGby3t419rf2jRnC6Bj3B+hdQU0gqKir/O6gRGBWVScJs0AKQn2yOOn0E0Of0IghQmBoHjB3B6ba7SYkdisCEppAmi8Op61EZG3WfqqhMHDUCo6IySTT2OAGIMeiiFi8gCxiLSc8ZM9J49JNqfKKEdpRamG67J9hCDUMRmMkSMOX1Nq55ogyvX5xQXY/K6JTX27jqsU34RQmjXt2nKirRokZgVFQmicaApb/ilhstvQ4viWY9JXlW/vGNJRh1GuZmJ1CSZw27U3d4fDi9/mEpJDnqM1kppA2Vnbh9IqIEbq/IAx8eUqMGn5Oymm58ooTExGqlVFSOB0pLSxEEga6uroi/TyZqBEZFZZJoCgiYnkEPoiih0QhRva7P6SUxRg/AquJUvn9WMfd8cJBv/XMbHx/swC/K/jD3f3kBQFgRb7xRfp19ktx4p6fHB3+WgA1VXWyt71GjBp+DeTkJwZ8nUiulonI8cMopp9Da2kpy8tE/btUIjIrKJKGkkPyiRK/TO86zh+h1erEEBAzAgtxEAD7Y347XL/vDeHwin1XJdzgpIQLGpNegEcDujn55EyHHKrd4z8ocEjJq1ODzYTXLn59RTcmpHGd4PONPtjcYDGRkZAStHI4mqoBRUZkEvH6R1j4nBSmxwMTSSH0OD4nmIVGys7GX4acGjSCQmySLCWWQI4AgCJM6D0mZfn3Nsjy0gYiSGjX4fNR3y5E6t09kdpblGK+Nyv8yq1ev5jvf+Q533HEHqampnHrqqfzlL39h3rx5xMbGkp2dzY033khvb2/wNUczZTQcVcCoHBNO9q6L1l4XojQUPekamICAcXpJiBnK7i4vSMao16AVwKAVsJr1TEuPC965h6aQQJ6HNFlFvEokaXlBEjetnArAg19ZqEYNPgd13YPBn9v6XMdwTVRU4LnnnkOSJDZs2MA///lPNBoNDzzwAPv27eOFF15gy5Yt3Hrrrcd6NQG1BkblGKB0XfhECdNJ2nWhFPAunJLIazua6YwyAiOKUqAGZkiUlORZef7G5ZTVdLO8IJn397by7KZ6mnvlFFVoBAaUidSTJGACEZiEGAOnFqfw6PoaLCb9OK86cSivtwX389E6JhsCERiAtn4X+YGoncpJxns/hbY9R3eZGXPhgj9O6CVTp07lvvvuC/4+c+bM4M/5+fn8+c9/5rLLLuPZZ589Yqt5uKgC5jA5Fie6kwWl6wLkWo6ymu6Tbh829igCRt4uZejieNg9PkQJEs3hoqAkzxrcR31OD09sqOXD/e2YDVpiAn4zCrGTGIGxDcoRmESznimBFFajzcEKTvwUUnm9jS8H2pmPprCu6x7EatZjc3hp71cjMCrHlpKSkrDfP/74Y/7whz9QUVFBX18ffr8fj8dDW1sb8fHxo7zL0SEqASMIwvnAg4AWeFKSpD8O+7sVeBooBFzADZIk7T3C63rcsLGqi+uf3oIkjT8tWGUkywuS0QiyQZtWI5yU9RONNgdajcD0jHh0GiHqGpg+hywQQot4h7M4PwmNAPtb+8lNihnx93jTZKaQPMQbdei1GrISY9AIQ2LtRKespht/QFh7j6KwbuhxsCQ/iTX729UU0snMBCMhx4rY2KEIYH19PRdddBE33XQTv/71r0lOTmb79u1cffXVURX4Tjbj1sAIgqAFHgYuAGYBVwuCMGvY0+4CdkqSNA/4KrLYOWl5aVsjfjG6acEqIynJs5IfGFi4qijlpBR/jT1OshJN6LUakuMMUQuY3oCASRxDwFhMeuZky623w9NHIM9DGi+F1NDfwC8++wXP7H0GURKjWjdl/RIC0SG9VkNmQsxJI2AWTUkM/qw5SsLa5fXT2udidlYCZoOWNjUCo3IcsW3bNjweD/fffz8rVqxg2rRptLS0HOvVChJNBGYpUCVJUg2AIAj/Bi4D9oc8ZxbwBwBJkg4IgpAvCEK6JEntR3qFjwdESb5LE1A7MA4Xt0/eh9Vdg+M888Sk0eYgJ3GoS6gryhRSX6BINmEMAQOwoiCZ3U19YS3UCrFG3ajDHDscHTy26zFeq3wNAJ/ko7y9nN+t+h0Ww/gdML0OT7B4GGBKkpmGk0TAhBoCFqfFTUhYf1bVxY4GGysKJybIFfGXn2Imw2JSU0gqxxXFxcWIosgDDzzAFVdcQVlZGQ888MCxXq0g0XQhZQONIb83BR4LZRdwBYAgCEuBPCDnSKzg8UhDwN9jWUGSmj46THodHkx6DfXdjhMqbB5t91RjjzOY3kmJN9IdbQTGKQud0DbqSCiiub3fPWJdhqeQvH4vB3sO8qbtTS567SJeq3yNL077Ih9+6UN+uvSnfNr8KV9680t8UPcBUkCcj4Yt4BKsIAsYZ1TbdrxTFxDTZ89MZ3/rQLBIejxe297EtU9u5r41h7j2ybIJddbVBQp4pySZSbeYTqjvgsrJz7x583jwwQf5y1/+wqxZs3jyySe59957j/VqBRHGO2EJgvAl4DxJkm4M/H49sFSSpFtDnmNBThstBPYAM4AbJUnaNey9bgZuBkhNTS156aWXjuCmHB08fonvrHXgl2B1jo6vzxkZwrfb7cTFxR2DtTs6fN7t84kSN65xsChNy/YOP9+eZ2R51vFRTz7WtlXZ/PxpqwufCHoN/HiJiSKrdsTzPH6Jmz90cEWxnksLDTyx282BHj/3rTaPu/x1DV6e3e/h/tUxWE2j31/s6/JxzzZZFBkC65IQ18NG+0b22HppdtopSnIxKA7S4+vBjx8BgZLYEmYJ59Hem8SMJC1FVi217lr+3f1vWrwtFBgLuDDhQqaZpkU0pvrJegf5Fg3fWWAC4M1qD69VennsHDNG7ZE3sqqy+TnQ4w+u61h83uPyvVov/zno4VcrTPxqk4s5KRq+UGgYdblVNj/bO3ysrffhCWThNMAVxXouLhxbgCp8UOflxQMeHjrTzPMH3BzqESMeJyfzOeVk3LaEhASKiorw+/1otWMftycyR2r7qqqq6Ovri/i3M844o1ySpMWR/hbNVaMJyA35PQcIS4JJktQPfANAkM96tYH/GPa8x4HHAaZPny6tXr06isUfX2yu6cYvlQFgTEhm9eqR+7W0tJQTcdui5fNuX0e/C9Z8xKXLplO55hD9MemsXj33yK3g52Csbdu3rgqfeBAJ8EvgTsxj9eqiEc97c2czsJPcKfmsXj2NjY4Ktm6s4/TTTx/XrXLfuirYf5ALzjodk370E8O+dVVohIOIkrwue/X1lHU+jtvvxmRIRPAaSLPmkhyTRGZcJtOt03FUO7DmrOKbz24DvGg1Xq5clMNVS+bz1dyv8sDm53mp+kke6niIeSnzuGPJHSxMWxi2XPf6NUyfmsXq1XMA6Ets5rXKnUyds5hp6Ue2I6G83sY9a8vw+ESMev+40c7Pe1x+aNtDormVuQsWIZRtZG+XSFWfJ+Jyy+tt3Lu2DJdPVi4C8mgFg17D1WcviToq+9Hre4k3NXPROavZ6z/I1g01nHba6SPGTpzM55STcdsqKiqIj49nYGDgmHfqTCZHavtMJhMLFy4c/4nDiCaFtBUoFgRhqiAIBuArwJuhTxAEITHwN4AbgfUBUXPSsS0QHp6REU/P4LGvwj4RsQUKVZPjjBSnx/H+3rYTwtBueUEyiv7QjTIdurzexh0vy4HHRz6pprzeRkqcAY9PZCCKzqA+pxejTjOmeFHWxaDToBUkjBlv8VH3/UyzTuOdy9/hu4X/wFH7ff546sP8+fQ/c1vJbVxYcCEp+hQ+qugIvodfhJe2NXHNE2X8Z2szj72TSvu+H+HruJzmgXa+/v7XeWTnI/hEX+D5UticJiDYSh3qZXKkKKvpxuMTkRhqt4+WwzFKrO92kJccKy8nEJgebbllNd24/bJ40QgwIzMejQD/vGHphFLK9T0O8pLNCIJAhsWIT5ToVs8rKipRMa6AkSTJB3wP+ACoAF6SJGmfIAjfFgTh24GnzQT2CYJwALlb6QeTtcLHmvJ6G4WpsRSmxqknmsNEMUPrGnCzu6mPnkEP1zwxsdqBY0FJnjVYmPuDs4oiXqjKarrx+uWrn98vX/xSAsWh0XjB9Dm84xbwKuvy3DeXsWLJZrSJn3HdzOt4+rynyYrLItYoB1YjdSLlBOpyQu/v3T6R37+7H49PBEmPs3sZM8W7KYxZxd93/Z1vfvBN2gbbGHB5kaTw+pzcEC+YI83yguSwSES0xfLl9TaueaKM+9YcnFBNSl33IPnJZpYXJKPXyafG0dr8lxcko1NGKWg1nDkjDVGCtHhTVMtSaOgeJC9ZblvNSJBfqxbyqqhER1SjBCRJeleSpGmSJBVKkvS7wGOPSpL0aODnTZIkFUuSNEOSpCskSTq+r0SHiShKlNfbWJyXRFKsQY3AHCZKBKa2ezDY0eX1H//t6JIk0TUo151II6YTyYRedJUONUXARNNK3ev0jDCxG21dtvb9h10Dr3PV9Kv48ZIfo9PIwkURMJG8YJIC4uOyBVkYdJrgVijTq5Xf39vdy87tF+Brv4r93RVc+eaVvFO9Bgg32UuONWA2aCelE6kkz8ryqUmA7BkU7ay4sppu3D5xQjYHbp+fll4necmxlORZefYbS9AIcNHcrIhCtSTPyvXL8wB49PoSzpyRBkBNlz3KrQOfX6Sxx0HXgFyInW6RBczRKOQ92Ud5qPxvoM5CmgBv7Wqhz+klJd5AUqyBXocXnz96D43jnaN1UlMiMKcWpaDXjn2nezzRM+jB4ZEv9NWdkS9UJXlWlhckkxCjD9ZOKLOKopmHNHyMQCQcXgc/+/Rn/H3n37m08FLuWnZXWG1N/BgCpiew7/945TxevGk5K4tTUIIcGmBlcQoXz8sEZNHgsS3kC2n3khOfwx+3/4yYnGfxaobSUIIgMCXJHJy8faTx+EXmZieQaNbz+3cqojo+FaNEGD3VN5wmmxNRIuhPtKIwhbnZCbT1j75d8YERCquKUihIkYtQqzvkTqZovkuv72zGL8GW2h6ufbKMzsDxMdleMGv3t/OlRzdOOEKlMjHGa5BRkfk8+0kVMFFSXm/jjlfk2oYnN9Qy6JEvDko0YTLZWtfDg2sPTeqJZlN1F1c9tumonNSUfbaqOIXnblyGRoBL5kW+0z2eaLTJFzOtRqCmc3T/GpfXz6xMS3B7UicSgXF4x3Th7XB0cO271/JuzbvcuvBWfnPqb9AI4V/jsVJIPXYPZoMWk15LSZ6VH549LVBLIxeg/vDsaXzj1KnB9IhOq+H86XN57oLnuCT3RrTmav6w+5v8+8C/g+8ZZ9Sxs9E2KcdMW7+LgtRYzpuVwbZ6W1THZ0melVyrLERuOSNyqm849YGBiko6B2B+biJ7mvqC7rzD6XN6iTfp0Gk1WGMNWM16arrslNfbuPbJ8VNYz3xWB8jlNl6fyMH2ATTC5KeQ7l0jF3+rRpyTh16vx+k8OewFJhun04lef3jz1FQBEyVlNd34ArUNPr8YPMlMdhqpvN7G1Y+Xcf/aykkVFm/sbMF3lNyFex0eDFoNMXotS/KTyLGa8Y5ykTjSfJ4ok2I6VjLFSk2nfdQ7h2abk2zrkMV/UqwBQSAqM7s+p3fUFJJX9HJ76e0025t59JxHuXnezSPECwwJmP/uaB6xnT3DjOiUQZE/Ond6MGJUkmflr1+ROwK+sCCbkjwreq2exYlXMlh9JwtTl/G7zb/jyT1PUl5vY0djL112D9c+WcbWui5cPheD3sHPfQcqSRLtfW4yLCZS42URGO3xqdxguLz+qJZV1xUwlEseamGen5PIoMc/arRtuKlfQWoc1Z2DcgrLK6ewRisCbu1zUtHWj1YjoBXkdOMphSmkxBknNYVUVtPNgbYBQDXinEzS0tJobm7G7XarkZhRkCQJh8NBc3MzaWlph/Uex4f5xgmA0oEiSfKXviTPylu7WukedAOT1ya3qborOPhwMuez5IWcuCfbRt3mkOs8lLRHbtLRsaNXpmD7RQnjYQzrawpEYE6blsKWuh667J7ghVXB4xNpH3CRlTgkYHRaDVZzdOME+pyjF/H+Zdtf2Nm5k3tOu4dTsk4Z9T0UQ7Z3dreytqI9bDttgx6SYsNTVKGDIhUunJfJyi0pfFrVhV+U0GoEeh1eJH8896y6j3u2/5oHtz9IuuEDDDkeBI0Hjb6PGz6xo7TwZMdl88VpX+QLRV8gJSZl3G0fTs+gB49fJCPBxLycRB5eV4XE+Bddn18MFthXtI5show0iLWhx0GcURe2bxYERgvsbOiN2CLeO0xsFqTEsu5gJz85f0bwXCFJsCxQxxPK05/WAgIPXb2Qmq7B4LpkJJgmLYW0pbabW1/YTqJZT6/Dy+nTUrn1rOLjPvJ5ImKxyK7WVVVVdHZ2HuO1mTxcLhcm08QK10PR6/Wkp6cH99dEOW4EzPE+3bkkz0pxejxOt5/7v7KAuMBd7mRHYELv8PRR5vMPh9RA90SiWY/L42dthTwFYjI+C5vDG7ZdOYlmPjow+VMn/vFZ7YTFYOhx2WhzYDXrmZeTCEBNp32EgGnvdyFJkJMYPmTRbNCypbaH8nrbqMv0+EQcHn/EOUhvVb/FcxXPcc2Mazh/6vljrvO+FtkQSklNhG5nj8OLNTY6k7Wrl07hlhe28+NXd3HN0jx6HR4EAaxmM39Y9Qey47L5qO4zNIKE6DcjejK5Yt5spiYnIggCnzV/xoPbH+RvO/7GgtQFFMUtw+8opChhGn1O/7jfdeVCnmExBUVWbdcgj3918Ziv6x70IAUGhe4fJmBGE7F13YPBdmaFqcmxxJt07Gzq5ctLcocvRp4LFfJZFabF8XJ5UzBlmBJnoMvuob0/XLiuP9TJMxvrOKUwmQvmZob9zajTUNHaP+ZxEonxzp9yWmszXr+EXisgAHNzEo7Lc+3JgsViob+/n0WLFh3rVZk0SktLD8u/5UhxXAgYpe3R6xeD052BCQmaoyGA7C4fy6YmUZJnDRbcTbaAqQoJXz949cJJ27b+wAyen5w/g5+9todHS6v5x2e1kzIqodcR3mmTmxRDl92D0+MnxjA5rpWvlDfy3p7W4O/aKMRgeb2Nq58owxc4Lqenx5ObZKYgVa6TqO4cZNmw91CiNKERmPJ6Gy29cpHotU+WjbpPlTlIoftGkiT+uf+f3LvtXhanL+aOxXeMu60ri1O5f21lxBSBbdDD1OTxHYGB4JylV8ubeWd3K6unpZEQo0erEQCB7y/6Pt9f9H3+8Wktd7+9n99cNpvrV+QHX3/DnBuo6avhvdr3eP3gGrZ3PCJvU7MRr205f/v4PJ6/ceWox5eSpk0PtBevKExmR2Mvs7PGvltTvpslU6yBSJk72Am2/lBHRBF7sG0Ai0kfJhw0GoH5OYnsauyNuJw+pzfYRg5yBAbgiQ01iBI8+bUl3PnyLn7/7n5quuycUihHoW54Zis+UWLzMEFbXm9je0MvflEa8zgZTnm9ja88vgmff/TIYmh7vyhKGHSa4HdeReVE5biogfnkYEdY2+Or25uiKoJTUL7A905iAapflGjvdwW9GqyBi0w03h6HiyhKvLunlZiAqVlelBeew6HfJZ/MlDRH6N37kWZ4BEa5CDRNgpcIyMfHnS/vxi+BLmB3//VT8se9OKzZ34Yn5Lhs6HGQazWTlRCDSa+hJkJtREtgfk5oDUxZTTdKic9Y+7QvMAdJKeLtcnbxq02/4t5t93JO3jk8cvYj6LXRecSkxBqYnWUZcTGTU0gjx19EYlvI98jrE6nrHgz73BQUEZcSN/J9bb1W6qtWUrf7W9grf4az+Wp89hkYUj5Bk/0Iaw7tG3X5bX3ysZgRaC+ekWHBL0pUdYzdqtwxIAuf06enAuFpJKd3qGtQEXdbartp7XNxqH1gxPljfm4CFa39EYvoex2esGhZQarcifTStkayEkzMz0ng8oVZNPe6+EtgTtJr25uCRcH+EOuATkcnr+5fhyZ2F9rYA3h9vqi+e0payOuXxvzOhnZm6XUaEmJ09I8y8FNF5UThuIjAKBdPkL9cAuD2hjtwjnWxKavpCt5dTFadSLfdjU+UyAwIGJ1WQ6JZP6kRmBe2NNDe7+bM6al8fLCTgUk84Qy4fMQZdZxSmML9wiFEaeIFftFGwXodHqyxQyf+HOuQGVrxOHb0hxNp+7SyUzFWRRIlTHpNsJV7LKZYhwSjXqdhwOUjJykGjUZgakpcxOJOZQCgcpyAfPHQagT8ojTmPu0NdGfFmQT+su0vvHjgRTyih2/M/gY/LPlhxILd0UizmEgPpF4UfKLEgNtHUmx0Ff/LC5LRawW8fgmtVjOqQ7ASqeka9l2QC9A34Ql8N/XaRPz983H1z8c3MAdT5mv8p/VW7J9eyFdnfZXpSdPDXt/W70IQCKbpZmTKx8aBtgHmZCeMut5KBOa04lTu+eAgFa39rCpORZIkPq3sCj7vwa/IEc3fv1sBRE65xZv0iBI8+FElj3xSHRSEouJKHLiRcXgdaPQ96GOaEY3NxE2p56yXf4fHq8ecrwUkBI2XtQMi5mIXiDqkwTnEJer4xWfP8nb12/gkH6bACFzJk4Yn5huUtXYhIOAUR3a0lNf18JXHywitfx+tbVxp50+NM/KbL8zlF6/vZcClRmBUTmyOuYARRYlPDsknFQE57Bqj1/LilgYkCTTC+AWlU5OHBoFNVp1Ia6AzICMhvLtksgRMeb2NX74p351+WiXfUU3mCaff6cVi0lGSZ+XKRdm8Ut7Ms98Y3RZ9uJD4rKqL65/aDBBMA0Z6rSRJ9Dq84W6ugWjFeF4i0YTKI1GcJl/4lJTKjAwLu5siDw4LJTkQUdAKAn/+4jy+/+LOYHtuQWose5tHvkezzUlKnDHsQl+SZ+XyhVm8Wt7Mc99cNuo6Kymkd5of58OmV7m44GK+Ne9b5Cfkj7uuw0mKNWAbJtIGPPKVLtoamJI8Kw9ds4hv/aucry7PY3NtDykRxI/yfj3DopFlNd1B8aIV4EuLc8lOjKG8vod1B+byxy9cym7767xe9TpvVr/JdTOv4weLfoBJF3Ck7XOREmcMegXlJ8di0msiFuaGogiY4vQ4MhNM7G+Rn7+nuY/9rf2cPTONtRUdQeGVlSgvTyOMFO3K9zu0+6kkz8qAy4ek62J9339Z80ojLYPyeDhTvvy6QSmN1VkraOsfYGNvE6BB8OuZPyWLHXV2RE0//qRN3Lt7A0atkS9P/zJnTTmLN7f38++dW8gv2sTTB//E0wfl94vTxDF4aJDLiy5Hq5GPrQ/2tQfFizKLabS2ca9fpNvu4eolUyjJs2KJ0dHvVCMwKic2x1zAfFbdRW3XIFcsyua17c0IwKIpiSTE6LE5vBE7JIbjD2lTu+uimZNSJ6IUFIbeWSfHGgJdSEeespruYKjZJ8ph78mMwPS7vEFjrhWFKbxc3kxKfORUQ5XNz5/WbMIXUgj58rbGEWmSSJ/DgNuHT5SCKTiQ77CNOs24KaTQPH7oMsrreiir7Rk1KpNqkbfjypIcrl46hU8OdvDQuiocHh9mw+hfAeWz9UsSewKCR0l3FabE8u7uVv760SFOLUoNLrelL7yFWmFmZgISzRSljT51t9fhRRe/iw+bXuX6Wdfz4yU/HnN/jIU11hCMBinYA/o3KUIaaDTOnZVOhsVEx4Abm8MTcf31Wg0JMXp6hn0XlLSFEs27clEOJXlWPtjXxscHOsmxZHHx7Lu4ZcEtPLzzYZ6reI6NLRu5pPAS0sxp1PSLZFiGupe0GoHp6fEcaBtfwFhMOkx6LbMyLcFC3r99VIlOI3DmDFnAtPS6KMkDs14+Bm5cWcB5czLCjqGzZ6bx+PqaEfVEO9srMOc/Rotb4owpq7gi4Qqcznge/qgZvzsZr5TBFStXUJJn5QsPf0Zbn5OHry2hJM/Kwl+v4YK5mfzkwilsa9vGgrQFJMfI7ztQ0M5zG9z8ecW3MZhbcPvdOLwO7v30Xu7edDdvVL3Bg2c+SJIpiTiTvN4aQb5pEMXRa/KaA0Z9yvFrMeknxT1ZReVocswFzN8+qsSs13LxvMygb0V2Ygw2hxeTXkN1p+wnMdYU391NvcFQ9+Fe5DdVd7G5todVxakRL4JtwQjMkIBJijVQ2zW6odnnQTlRCsgXCLdPnNScdb/ThyVGPhwUM6+6rkEKU0desA70+IO+LYqQcIb4bYyVJulzKIWqQxdRQRDIscaMG4GZmTmUXlKWsbainRuf3RY8iUeKynQEukBuXDWVGRkWbIMeRAn2tfSzJH9ki6uCUt8Ua9Dyn62NwFC0SKMRkIAH1lby99Kh1EKzzcnMzJFFpkrapmfQE7bt3c5ubv/4/6jva0Ljy8SUuZWpcbO4reS2MffFeFgjpDcnGoEB+bMpybNSXm8b06MmOdYwIoVUkmclKdZAWryctlA+l1mB/bO/pZ8FuYkkGBO4a9ldrM5ZzW/KfsOD2x+U30ALiZZ5lLfHUJJeAsh1MB9WtI95TugYcAfTTtZYPR8ftHPxX9ezt0X2P/n1W/sB2YsF5NSlRoA7z58ejPYoLJ2aTEqcgbR4E7dfkIFds5vn9jfy8I5HQIIfznyQa0uWAvDwuir8dtkkzitIQYE9O8tCffcgJXlWHB4fNoeX7MQYEowJnJV3VtjylK6mAZef06fMCT7uS/dhn2Ln7k1389X3vsqjZz/KoNuHTiPw/bOKObUohXs+OMD2hsj1f4pYUb7blhi9WsSrcsJzTIt41+xrY0udDafXz3ef305uojmYmgC4ZmkeXXb3uHcKu5v6mJ2VQFFaHNvqeia8Hptrurnmyc08MIZZXGufC71WCLt7TYo1TloKaUFuIgDLC5N55htLgElOIbm8WAIRmKmBboq6USYMz0jSBmfmKJ4xFa0DxAfuCG8/d/qoUTAlrTG8GDQ3yTyhgYBKeuuDvW3A2AZnSjeLMmhvXq5cPzFad4lCt12+kz99eir9Lh+CMFSca4uQWpAkieZeZzAlEYoiWjrtDjodnbQNtlHWWsblr3+JbR0baevV0ObdhSQaObT3C+xujH6mTiSsZgP9rvBRF/aAgBnuAzMeJXlWmnud2N2+UcccJMUaRqSQvH6RnkEPZ89MDzsecqwxxJt0wXbv8oDDrtE3k/eufI8t127hrS+8hWA7H4dQx9ff/zq3rbuNFnsLMzPlKfCdY4xl6AwImPJ6G2/sbEGSCIoXZb0MWk0wLdxkc5KZEDNCvCgUpMQhxezlrq3X8b2Pv8eftv6JGJ0FR/23mZ5cFHze0ITwcBGfYzVjc3ixu31DRd6JI6N0MCRg+oaJC0EQyNKt5IKUX9Hl6OHKN6/kpY5vYp72c97s+Q4PVfwIyfoWFT37GHSPPE8o51Bleni8STepEV0VlaPBMY3AvLVLzhsrxXOJsXq2N9hINOtJiTNy1ZJcnv6slm11tjCL71D8osTe5j6uLMnB4xN5d08roiiFTbEdj3vXHEQaJ/3R1uck3WIKe9/kWAM2h3fCy4sGRaycMzM9WEw52UW809Llk6fVrMdi0gUN0YZTZNWSFGuge9DD8oJkkmMNNPQ4+PlFM3lwbSVV7aNffJUxAtZhd/K5VjPbx+keC61bUYSEMmcIRo/8tA/I4lNZZlq8icwE07h1MF2DHlLijJw5I51397QRa9Cxt7mfkjwrF83L5NlN9WGphe5BD26fGHZx6vf083HDx7xa+S6xxXu5ab0diaGUp0WXjqPuu4jurMAjElpB+NyF6EmxBiRJvhAqtTwD3kAEZgIpJAj3ArKOUgCcHDcyGqm0joe2GoN8MVZSO0pdk9cv8fj6Gl64SY5kZZhz6W9bzQ/nfp3Y1I08secJNry+gRVp56MxFFDRNkCaJbKBVqfdzfycxLA0rIZA1EySC6mT44y09soCprHHQU6EtB+AzWXDHf8BTd7XmJ0wi58s/Qm58bl8esDFD3fsCotIKa7Gw4vMcwMTwJtsjmAkN1KaEUYXMFU2P/esLcPrFzDE3MyZyw6w4VA3hSnJzMrQ0DDQwEHne5jyfJz32oukxyZjMVi4ovgKLi64mIYeBwadhrRAZMpi0jPg9gVNClVUTkSOqYAxBTw/lDuWVcUp7G7q4/29bZw9K53itDgsJh3b6m1cWZIT8T1qOu0MevzMy0lEkiT+vbWRqk57ROfMSB0sT31aw9Y6W7AIbjQX2tY+V1j9C8gXCX+gG2EiYflo6HUMeYIIgkC8ST/pERglgiIIAvkpsdR1j54eU1JGOxt6g6Z3Z89MZ09zHx9WtPM7v8iupr4R+1vp/kkcdhHNscbQ7/KN6UQbKjha+1zkWM1hJ9/fXz434kW/o99NWrwpLOUwJSmG9ZWdYxqGddvdJMcZSA5ctO1uX9CfY+nUZKalx+Fw+4P+PEpEJztQ6LuxZSO3l96O3WsnLSYTn306ZxRPZ1XBVLQaLQatgURpPl/dsze4TI0gHBF7d+XCanN4ggJGicBEM+06lFlZFkx6DS6vOOJzU0iKNY6IXCp3/cMFjPKe/97SyKbqkA5C/9DNg3Khz0lM4IvzbuKSwkt4eOfDvFvzLrGFHv7fxnXczf9x1rTisPeVJImOfjkCo0REvD4RvU7D/108G5tDFt0PrD0UTCE12ZycWpSCy+dib9de9nfvp7K3kr1de6nqrQLA17+AJ65+jHijvC39rrrAvhzf1Vgp/G7scQYjR6NFYJQW+uHpnQM9ftw+OZrmdaaS5VvKQHMtVy+fy1VLpsjv39vNGY/8jWlF3WTHCTT0N3DXp3fx8qGXcXadSlZqIn7JhwZ9cDl2l4+ECR4PKirHC8dUwAy6fWRYjFy/Ip/lBclYzXoeXleN2yeyfGoSGo3AojzrmGkh5aI2PycBXSAEXF5vGyFgIpnliZLEb96WWyj1AX+QFYWRC0Hb+l1BB1YF5e6/e9BzxAWMcgemXMzjTZPXNSBJUqALaehElp8cy47GyBERnyjh8PhZOCWRHQ29PFJazZQkM/kpsZw/O4M3drbwree2sf6QbEMfWpuipF6GX0RDvWASYka2yEqSxO6mXubnJLCrqS8Yim+2OYPh8OGOpwodAy7SLUMFyeX1Nsrre/GJEtc8URa86x9Oz6CHgpQ49reGpB9CInSnFKbwn62NzM+R11cpms1KNPHfyv/y602/ZmriVH614lfkxc1g/t0fMn/hTK6aURB8P/lCvZezZ6Vz5vS04AX28xaiK2mi0GGjAx6JhBj9qKmS0dBrNRSkxLK/dYDOgcg29ylxckdeaDRyeNoilFmZFpxef9i6CCEdh6EuvAAZsRn85tTfcFbaDdz8+t/oTVnHDz69jht7vs+Niy4jziDXag16/Di9ftLijaNGRACyEmI40DaA3e2iW9jEbv8eVrx4CJ8of8dSYlKYnjSdiwouorc7l4fe99I7CEpdu3KDMZrYDkU5tht7HHQPutFqhGAkZDgmvRajTjMiAjMjSYsgeOXOTI0QdAKfm504tJzEZDI0p2Gr13DX0vksnJLAG1Vv8MD2B+iRdkAinPHy3/jhoh8Sb5TT0v0urypgVE5YjqmAqWy3Myc7kVvOkPPIkiQRb9Qy4PYHL6aL86yUHuzkvjUHWT09bcSJfXdTL2aDloLUODQCWEw6niurZ1p6fNhzy2q6h+5gAheh0PoVvyhRnB7P/taBEQWCkiTR2ufivNkjIzAwOW68vcNcWeWL9OREYAY9fkSJYBEvQH5KLG/vbsHjkwVfKMo18cI5mVS09NM96GFxvryvlRP6RxVD8z9CL/rKBXW4Xb5yl/rE+hquXzHSZK6lz0WX3cM3Tp3Krqa+YP1Cc6+TWZkWBlw+1h3s4DurC0dsX3u/m6KQYuTQ1ELoXf9wuu0eluQbWF6QjEk/dCevXGTn5ybwzMY6qjrtzMiwsK7qAIbkj7jjsydpclSxInMF962+j3hDPJIkodMII1qbm3vli/y1S6dwxozDG2gWCSVNFHpsDnikqE3sQimvt3EokBb80/sHWZA7MsqQFGtAlOTjVvleNPY4MWg1pEdI9czOkkXfi1sa0AjyROupKbHB91XqljISwtd3X5MfT/dZeAfmEZP1Ek8d/CPPHrqXhekLKRFLyBuQL8xKEW9oRKRxoJGNzRv5tOVTdrtrGUzxcN5rd2PK6sVLNtfPup6StBLmpMwJdgUBbKjs5CG20GRzBsVIr8NLnFEXlRi0mvWYDVoabQ56HV4yLKbgzVYkEmL0wWJ3hcJEefipwyNPOh90+zDoNBSnDx3X5fU2WvtcYU6+lxdfznn557H0nudZWuxHit/M3ZvuJi92FoLuC2EeXCoqJxrHTMBIQG3XIGfPSg8+tr2hl0GPnJr4yWu7yUkyB1t7H/q4iic21IzoMtlY3U1SrIGdgfC93e1jX0v/CCvu5QXJwTSRYva0qVr2n1H8H86amcbD66o50DYQ1knS6/Di8YnBu0GFIQFz5FuplVRLQqBoMt6on7QaGCVcHR6BMSNKcofG8E6kwUAthd3twxMoEv34QEdwMrGynxVCzbV6HR7iTboRJ3BlH76xs4X397WN+Jz3NPUCcEphMvFGHa29Q+H/FYXJZCaYePSTmogpqPZ+F6cWDl2Qlhcko9dp8PhEtKOkDP2iRE8g/TLanfz8QERuTeV27t3xOmV9H2NMk2jozuO6ubdyx4pvoNfI6yIIAolm/QgBo4weGK0m4nBRIoK2EAFj90qj1rCMhewkHO4eG0nAgPw5DgkYB9nWmIg1FkVpcWg1cqH4sqlWcpNiKT04JHoVgTpc/ARbsz2piM238P++aKbTt4v3695nq30rGz4rx5gh8Peqh3ngkJ3pSdPJjM1ke8d26vvrAXnIZIoph3ZbP7mm6WytKuDxa65jRWFqxO1XjBZD29J7nZ6ooi8gf/a5VjNNNid9gQ6ksUiI0Y+IwAx6weHxkxpvZHdzHwMuH7MyLWECqqymGzEgzEMNQF0eHfb+LFZmzuIbp36Lt2re4tebfktM7jN02lcBo5sCqqgczxwzAeMTZRO74rTwO2MF5a5d6aKI5JK5uaabyg47AvKMmSsX5YxajDs3OwGNBvwi3HGe3CXzyaFOBOAHZxWzsjiVrEQTD6+rZv2hzjABo5xMlRoYh9fBRw0f4XJr0cTU80lLJ5/1VdPv7mdp5lL03s8fku2PkEKqH6UraCJEqgNShJEl5IScnzJ6K7UiYEJ9W0RRCr6vMRCtEAQBnyjxswtmDE1DHjZGQJREmgaaeKf6M/RJu9AYOtEYurj9s0fI3heP1Wjl7Lyz2duQh97UwY6+N7Gm9tPal4zXL9Le7yInMYbTpqXy8LpqfvH6Xr4WMibA6fEz4PKFFXyW5Fn529UL+da/yrlx5dSI0RebQx4ImBy4GEeqbci2GojPWMsTNR+hF0x4e1bh6TkFjT8Ry/TpQfGiYDUbsA2GX5iax+lKOVyUbrnwFBJkpk081Tm8liSS4FPGCHTbPRQFAkmNNkfE+heQTeUC9kbsaOhlZqaFLrs72EGkWCMcareH7feSPCsri1PY2dDLP4JGi2dwy4Jb+O07v+Xd/jXoLV6y40rIT8ygoruC/d37mZ86n6tnXM2pWaeSZ8ljQ2UXX926hczUbPyDzUxJHt2fR/neN9uGBEyfY/SW8kgoE9cHXD6WRphOHUokAdPukHfWd1cXcvdb+6npGuSCORlhz1E+J/cwYV4fqGWbkiQPq7y08FL67Ab+tOPHPFrxG1YV/T1ojjcZHO+DelVOXI6ZgPH4JXQMuaTC6CfKB9ZWIjGyy+TdwHA+RdzI0RXZD0and6ON28PODjvp5nS6+g0oHaXewA8H2/qZmhLLD86eFnzPXGsML2xuYHF+UvDL1tYvn7jSLAberH6TB7c/SIejA4DYfHi7FWJ18SSaLHzc+DEAL735EhdMvYDZKbOxGq3kxudi1kc/y2h4jn0iRbyjnTA2VnVxXQS3XCWMrBTxglwDA0T0uRn0yQJmcX4S7+xpDfu8QqMVBSmxfOf57WEDGm0OD4lmeKPqDT6s/5CdnTvpc8t1TKZ0EH1m8KaSa8kmRidR3VvNJ02fgKTBNFXk/u1APOxx76Wu+w9ImgH8hmrqB/pA4+DNXc2s2T8UwVHm4gy/k18dmJMzmpGd4gET2uUEcjqxvr+eTa2b+G/lf8FaQaxnOVfm38LD+5sjurkqWM0j3XGbbU6sZj2xxiP7VYwxyLUUocuze6UJdyDB6N01oShRl+6QiE9Dj4N5OZHv7kNvVvyihDMQea1o7aehR8f7e9tGHX5ZkBLHjobesMf0Wj1nWM5gStL1/ObtCu6/6rwx28WVVvcttT3oNMKI6GooJr2W1HhjmGDvHcMTJxI5VjObqrtxDetSi0RCjD5406TQ7gi0wJsNQXPAtRXtYUXoJXlWXrhxGdc/tYVlBUPnr2AtUsgstdW5p/Hr9y9mn/AWv938W36+7OeTImIi1R6qIkblSHHMBIxXlBdemDbUHj3aibIkz0pt1yCPf3Vx2MGvFLIpF40rF+WQkxjDnz84yLfONvPw/jt5eP/QMmOL45Bceexs/hZQxMFhqaLyehstSg75iTKeDxR3tva50MbU8vudz3Kot4I5yXP4w8o/0NwjcMdr65F88XjFbB6+8RTSrHaeKn2KSl0lD2x/IPjeRq2Rs6acxWVFl7EsY9m4J4tepxezQRusP4nWt2FbXQ9XPV6GJEkjThj/3dkc0S03UgpJaaWOFPVRgghLpyaN+nmV5Fnx+kU0wlCaxCf6qHS9g8P8ET//rJ/c+FzOzD2TBWkLKEws5Pbnm/B4zNx/1YLge0mSxL93r+dXH72E6ElC655Ofv4+mvXvcNUH5xI3zc0/64F6iJ8OoicJ/+B0Xt5nZ07OpcHC3tAiXgCjTkuiWU+nPXL6rzvweHJIzcjOjp3cX34/2zu2A5ATl8NpCbfzwZY01rvsZFiMXLc8jxWFKRFP0olm/Yj92dwb2bn3SJAUawimkCRJCtTAHF6x+XiO2KEF7SAXh/Y6vMHapuGERur0Og0XzM3kP9uaqGjtx+3zj+nqbImR06mRWoC77T50Gu2IGqvhKCNBmnudTEkyj9tKnGONCUsh2RweZmaMPRV7+OuV9HhWFALmQNtA2GOdDhFBgLruwWCU2S9KI/ZNSX4SpxanhA28bFS6wUI+i3iTDq/tFFbNMPLKoVfocfbwp9P+FBzjcKQoq+kaUXuoChiVI8WxEzB+KLbGjLgDjnSiXDI1iZ2NvSPu5uxuHyadhu+dWRS8aEiBb/fc1Dm8MucV2h3t8qTX3fvZ0VKL3rKTze5fsL7xHhoGmlg5O5X2wXbSzGlBMzIAt8/LGxWb2NHfwks1H2HO30uvJ43fr/w9FxVchEbQ8PCBKvyDM+TtEeS7ylvOKGK1ZTW/Wv0r2gbbaBpootvVzda2rbxb+y7v1r5LujmdJSnnonXN4KLpS1lREB4KBrkLKfQkbDHpsHt843rOvLe3bahAddgJQxsoTB5ui65EYEJTSIIgd0psiNBq7AikkBJi9BSmxo16QtJrNWQmxNBsc1LdW81tH/+UwbgD+OzF0Pdlfn3N9SwOccItSPJSF3AsDV2PhtZ03B0XAiAKkOL9ApUt6Zwyv5myg1r+dMk5tNv7uL90M9qYWnQJ23incxMf//seCmIXoTGWBE3sQkmNMwZdeiVJYkvbFg44D3C6dHrQVTYlzkB1bzUPbn+QdY3rSIlJ4c7Fd3JG7hnkxOewZn8775SVs6e5j2+ems/3ziwesRyFpFgDO4aZ5zXbnBSkRvY4+ryERnycXj9ecWIuvBNdFgwJv8YxOpAg8s1KhsVERWt/cFzBaNGsIbda74g2ZsWFdzxfpjijLnhToPi0jEV2Ygx7QmZf9Tkm1r0TmkobT7BGcsltd0hkWkysLE7lkU+qx0znleRZ+XB/e8AGwMj2ehuxBi37W/uD3y355k9gXuzVnDWtiD9t+RPf/ei7PHHOE0c0EhNao3Mk7AFUVEI5hhGY8PqXsShOi8MnStR3D1IUknLa29LP3JyEsIuGkosfcML0pOnBCbdvf5ZLnuhicZqL/zb/nls+vpnYQnijE954Bcw6M0nGDGKmaBFFAW1MPf9td0M7mKQsJNv5/GbVjzilIDO4rOGzXoZ/OTNiM8iIlcXJefnnceeSO1nXuI5nd7/CW/XPIQgSr7drmbdvMTfNv5bTck4Lnjx6HV4SQk7O8SY9kgR2jy8sUjKc0DTQcE+bjoAHRUFqLH/+4vzgyUxpz7aEvLa83kZN12DEMP5giIAZjiiJrG9az86OnbQMtuBNP8Q6Zzdr3+jDoInD2XQNvoF5aAXYXNsTJmBS4o1si2BmVxCox1EuaPNzE/i0qphU12p8tmYuKl6NUadl14E81h3s4OkbFuI1HGJ903reqHwX89RNvFLbw9fjriMrNgtBkA3NrPFemgZrWVtv4x/7/sHuzt0AfPjWh2RrT8OQ3MTf95XycdMaYnQx3LrwVq6beV1YKlDD0IXy+c0NXDgva1RBl2g20OvwBLvcFOfeVcWRi0c/L9bYoXECyr8TmYM0EYbmIcnLaRzDA0Zh+M3KzMx4DrQNMODyYTXr+ebKqRGjWaFmb8MFTFWHHUmSxvT3UchKiOGga4CcxPFTuzlWMx/sa0MUJQQhkEKKsohXfv2QaIkmhTTcZK7DIZKXHBtVOm9x4LHyehvJcUbWHepEGvY91mk1xBlla4YfzrwWk9bErzb9ilcOvcJVM66KervGwi9KvFreHPz98esXq9EXlSPKMU0hFUcwm4uEUidT2W4PChi/KLG/pZ+rluSGPVcJZXcNSw0cbBtg6dQkVk6ZxnOffo9T5zexuaaPX1+yGI1ugLr+OlrsLRg07fQ4BunsWsC85BIyTbN5s3wACbjhHzt5/kZTWKrkwrmZvL+3jefHmDKsYNQaOS/vPP72ZiyD7eeijalDZ66jWreP76/7PlPip/Dblb9lYdpC+pweEkLamhVhMuAaW8A4PH50GoFYo47kWD2LpiQCcoRhR2BOil6rCVvXgWANzND7ytEo+efhkRyHV8Js0IbdXUmSxIf1H/Lo7keptFWi0+jIMGdg0sXjtU/jllOWYnCu4O59jaPeWafGGbE5PPj8YliXkiJKr146hSsW5eD0+Hl4XTVb63tIizdi1Mmib062hff3tbEwNxWTPoPTck7D13UeL9U8yr8PPce/Dz1HrD4Wi8FCl7MLr0He7ttKId2czi+W/4Laylo+833GOtuTGNNgc1s81868lpvm3oTVNPLzPdQRblE/Vojcatbj9UsMevzEGXXYHF4cHv+kpZCsZgOtvfIgw6CAmaQIDMjfPSWFNJaJ3WjMzLSwobKLyg47N60qGDWalRA0ewtPqVbZ/OxqHEQicu3McDITTRxsH4guAmONweuX6BhwE2vU4helCRbxDu2HSKMmQkkIMbNTImbtDpEl0+T3GC+dNyc7AYNWQ3mDDZfHP+r32GLSBaOvVxRfwXu17/Hg9gc5K+8sUmJSRnv7qPnLhwc52D4Q9ItSRpSoqBwpjmkb9ViTeUMpSotDEKCyw84FgcdquwZxev3MyQ5PK8UZdRh1mmARJsjh3pY+F9MzLPIgOTGGvQdmofP5uWrW+RHz3zc+u5W1+zqAyCZmCsumJvH27lZyIpyohxfTltfbeGJ9Nfta+hGEWHz22QjOOfz18rvp1+zkL9v+wtff/zo3zb0Jm6uQouQhXxBFXMhiY/QT7t7mPmZlWbh+eR53vrKbH/1nJ9etyCclTh57EG/S0WRzhnnd9Lt8mPSaML+X5QXJaDVyF5FeGy427N7w6Muuzl38eeuf2d25m6kJU/nDqj9wfv756DQ6/rLmIA/tr+IbN10QGB3RyNdPzeeiuSMjFSnxRiRJvtiGdg0pdSrfOq2QKclmqjvl/H5jjzMo0GBo1lHngHvIr8OuI9l1LU9f/1N2du6k0laJ3WMnxZzCzlo/26r9PPu1s5ifOh+D1kBpayl3nn4nP3r1EzYcHGTj/7t41H2t7KdIHjGRCG1tjjPqgl0tR7oDKbg8s4EeR3gEZrJSSBCYzh74rLbX92LUaajqsEd91z0j04IvkP6clTn6zc1odvsVPf5g+3409RZ6jXy8K07AY5GTqNTMOILH2WiuxJGwmPTEGrSIElS0Doy5XqHbZ42VZ1oNeBh1nMpwTHotc7ItlNfZgvtz+HwmkM8pSqpKEAT+3/L/x5VvXsk9W+/hT6f9Kepti0R5vY2/r6sG5HMSoM5eUjniHFMjO6VWYzxiDFpyrDFUhhSmKYPg5mSHF9IJgkBKnDGsOPNguyxCZmTEy4PkjDr6nF7m5SSMWrxXlBbH2oqOofclctQgL6RbJ7TTpbzexlWPbUIMFNP+38Wzufutfbh9cmHrry+dzYMfVeITJTbX9HJq0WJevuRl/rDlDzy2+zFIFHBTwJN7LubSwkvDIjCjIUnyXKiL5mWRl2xGAP67s4X39rXxrdNkg7dzZ2Xw6vamsPD7cBdekO/ybjmjiAc/quTPX5oXdsId9PkQrGu5/I2H6HB00O/pJyUmhV+f8msuLbw0LIeeY5X9ZNr6XBxsH8Cg03DXBTMjGnmlxikDD93hAiaQ+kqJl/+elTB0wc8JKUxMCxTqtve7ggKmPTBGoNhaTLE1/I7+8cFq1m87wIzEBRi0Q9uvETQ4HPGkmMevBYgmpK9gDbY2e8hNMgdN7Eabw/N5scYa6HN68YtD0TfZPn9ywvjKdPbyehtr9o/eRTQq0tD54Mev7ibbao74utEETGpM5BqvSJTX21h3UP5+P/JJNadNizyFXkH5jJpszmDEbyIppPJ6Gw6vf0QqJxLDt68hUPidnxx9NKskz8qTG2qRgAvmZDAnO2HE8WmJCW8MmJowlRvn3sgjux4h35LPt+Z/C41wePN+y2q6g2JSOc8fLdM8tW37f4eojk5BEM4XBOGgIAhVgiD8NMLfEwRBeEsQhF2CIOwTBOEb0bzv3W/uizj5ORLFafFUtg9FQ/Y292HQaUZ4lIBceBkagTnQJofRZ2TGo9EIzAjc3U0fI4V1zqwMTHp5sqxBK3DNsikRTzpKWLR+2Nygjw+04xOl4LTi9/a2BqvxBaDP5ePm0wuxObzc/+Ehrn2yjIOtXn638nc8d+Fz+HrOQqvR8OD2BznnlXN4tuo3oB0cs5W6yeak3+VjTraFrXVD+9XjE9lQ2YnZoOXMgNtrU4inRb/LG1bAq6D4VYQWwHY7u2mMe5yBmPdJjUnlgqkX8JMlP+Gdy9/h8uLLRxQABk/8vQ4OtA1QlBo3qgupkioaPmm4y+4mzqgLFnzHGLTB8H1o+kURkB0hrx8+RiAUxa010mTj7kHPiBbq0VDE3ngnS2twPpH8GTZNcgQmySzXTa2v7OThwN3w7S/tivo7N1GS4+Tp7Buru0Z0EUVD6NT5sV43moBxy00+3LBy6riiqaymG/8wc76xUI6zV8qb2ForjzaZSASmrKY7WC013j5RioOV7VNmkkUbgQFZLCsCYt2BjogXc4tJP0JU3DT3Ji4tvJS/7/o7d3xyB3bP4U1FXxJw5hYg+H0fXpg8GWyq7uKLj27k3g8Ocu2TZZN2rKscH4wbgREEQQs8DJwDNAFbBUF4U5KkkAZlbgH2S5J0iSAIqcBBQRCelyRpTI/98WoGQilOi+PTqq5gfcS+ln5mZsRHtPJOjjMG/T8ANlR2YdRpaLE5yUyICV4oY42j32FHe2edmWBCrxWoG9YeG5pi0Wo0rChMZkNlV9jdYVmN7AQ83KRveuIcnB1n8+VF07lokZ7XKl/jn/v+RWz+Dg72pHEm6URCCdXOyUrAJ0oYdRpcAdHU7/QyNzuBvOShmUNK+q3f6Qsr4FXo9h3EkPoBL1buZqPNyKGeQ+zu3I1H76SIm3j83O+Puv8UlAhJk83JwbZ+Ti0cPbeufC5d9vDDpnPATcowMZGZEEPvMFdTRcAoNvQgD3IcrUg2NW4o5VQwTAh3293MHTb76vOiXPCU1ubmXifmEDF2pFHSRRsqu4KpBN8EvnMTJTk2MA8pcOUcyxMnEisKUzDpq8ZNx40mYA7ZRJJjDfz8oplho0AisbwgGeM45nyhVATmYW2o7AqKj4l8btGYASoM3z6l9X60jq5IOAIt2zD6edYSow+r4QLZT+e3p/6WadZp3LftPj5r/oyLCi7iupnXUZBYQLQotYpnzkjjikXZ3PLCDvqPQgrpkdLqUWt+VE4+okkhLQWqJEmqARAE4d/AZUCogJGAeEE+a8QBPcC4R+tETm5FaXF4fCKNNif5yWb2Nvdx8fysiM9NjjWwv0WOupTX21hb0S6Hbp/azP9dPDs4PfmFzY1cMj971AN8vGI5kO8ucpPM1A0zfLO7/QjIhnHzcxLoc3jRCHDTqgLOnZ0RfF+dRk4jhdvtK/OCDORZpnBbyW2UpJzGdz78AY9V3UaN92wunHohK3NWhrm97mvpR6sRmJ4Rj0mv5fmblvPg2kOsr+yipmuQs2alhwyWG4rADLjkXPugdxCT1oSExCO7HuGJ3U9gTJH4uA107ToKEws5O+9s3iydQtG0JWPuF4WMBBMaAfY199He72Z6xuhRr5R4RcCMjMCkDht+l5Ugt9yGpl+sZj16rRD0fnF4fAy4fRFn8UBIBCaCF0y33RN04T1SDA1YDAgYm5PsxJhxL7aHi5Kyygu58E1mK2tyYB7SW7taSI83cv2K0T1xIhHtTYNJr8GgHTnwsLLXz+KpyVHtz4mk/mAogiIxVDMzkRTSRJaXOEzA1HUNkmAUJmR2eMaMNJ78tGZMwWQZZUCsIAh8bfbXWJy+mBcOvMCb1W/yRtUbXFv0QwzO5VF9psoolEvmZ3FK4KZlsma5KbT3u9hcOzT4V23bPvmJ5huRDTSG/N4ELBv2nIeAN4EWIB64SpIkcfgbCYJwM3AzgCUthzsWGRio3UVp7fgrMdAr31H896NN+CWJfpeP3o4WSktHhmIdPR46B7ysW7eOt2u8QUXu8Yq8sH4fPv/Q3eiLa7cyUPj5LlTxuNhb76S0tBQAu93OugM15MRrWJCq5a0aG9vrbUy3alhhbmegtj24zV+Zrue5Cg+XFWiD+6JxQN51TbWHKHXWyOvul3DU3srMoo/Z0LCB9+veJ0mbxHkJ57E0bik6Qcf6PS4yYyVe+OhZ7KIdURJZnhFPWXUqHlFLW+shXigtxWxxs3Z/M/5BkR5fDw1SPU1SFctf6ECDBpPGhEN0sDR2GaXbL+T8/FiuLNbL+XAv/HvQTn93G6Wl0YVnE40C7+xsAMDdUUtpaWPE50mShEELOyqqKJWGnlPf7iA7ThPcvwC9PXKUpax8F7SG+OXoYXdlPaUxbWxplU+YFYeqKGXkMu0e+TjYuH0fcT2Hgp/dhx+vY8Dto7+zmdLSzhGvO1xESUIAdu6vpNRbz8EmJwlGIWy7jiR1ffJ3ZtPugwAsTpU4vyD679xEaWuVL4ZVHXa+Mt3AHE0zA7XNE17WbAEGapvGfJ1JK3Kgup7S0jYAel0iHQ4Jq882of0ZzbIAjL1+dBq5e1Lh1Q8/ZWbyxMoIo1meJ3B+2rnvIDmuWsoOOdAi8uR/P6LIGr1Hyx2LDBzo8TMjSRvxM+9p99DvlM+To4m+cziH5ZnLebT1Wf5x6M94e0v460eX8+PFcWOuS1XgfN1QVcF2m/zd2l0hH/fDsdvtR+Q7cN82F16fiMUge17dsmDyjvVoOVLbdrxyrLcvmm9fpCN7ePXtecBO4EygEPhQEIQNkiT1h71Ikh4HHgeYPn26dOPlZ0W9oovdPn5d9gGfdJrYG4iurG0U+eb580fcDVRpa3intoJFy1biT+/h1cptcjREr+Ga02bz67f3Be9Mrj57yecOMX4ysI//bG3k9NNPRxAE1q1bR6PDy/mzMzh7Vjpv1WzDJ0F1P8RPDV/f5V4///nVB1gzc1m9eiYgz3jiszJOXbyAU4vkuxdJktB9/B6nZ97Gj84tZEPTBp7c8yQvdr3Iu4PvsihtEQ0mL7q0fdzfHi4sDEVGdN4kPtK08XGHhDZbDp/tV2qU4wyk6Wdy1byrcPqcdDm7ODX7VM7PP58VlR9htqZw5hnzAXD7/Hjef585xQWsXj26aVsohQc2BmtyvnTuqWQmjF7zkb71Y2ISraxevTD42GDpB8wqyGb16jmAHFXbtWYTAM/s93HOqUP+ElP2f4bGoCN+6jSe/LAMgPfrRb523sjjRBQl9J+8R0JGLqtXz6C83sbba7dy7vKZQDlL5s5g9dIpUW1jtFjWryEhLYvVq+fQve59rAlxxE+dPSlh7iabg19tWkd5txadxs8N88xceM4ZR3w5CvqqLh7dtRmdRuDCUxdw2rTJ8bcBSCkvJdZqYfXqRQC8s7sV2M5Xzl7CgtzEI7681cDCRTaeK6vnvztkb5MHd3p5/saSSfnsjOveIzkzl/ipGTS+vxEQuHe7Z0JW/KvH+fshTTVv1RxgySmrgq7mkfi0qov+cjNuzZsYUz/Gp+9jv+8nuKWUUaNJ0oEOKNvKqmUlLJxiJbb0fZIycli9etaI55aWlrJ69XhrOzZv7mpmT9dOBOQuybR4AxO5vkwWR2LbjmeO9fZFI2CagFCzlRzkSEso3wD+KMk2tlWCINQCM4AtR2QtkX1cAHY1DblhjjYZV0kNdA26g2HXLy7O4StLpsg1JhnxR7RKfWpKLA6Pn84BuXum0ynR6/AyPzeRg20DwdBzpPU16bXMz0lkS0jos3fYIEeQw7rKPCS9Rs+ZU87kjNwz+KzlM9bUrWFD4xZ8ca2k6ebzoxV3McUyBa2g5bFNm3m36hMEfTe+7jO4fNbp1HS4aBvo5d4vLiErNovVf9zOuauKuXnejBHblhof3tGlhLUnOgdma50Ni0k35swZkOtgQmtg3D4//S4fqXFDKaTQ6cjD8/vp8SaqO+2U1XQHZ175xcjHiUYT6FgbcFNeb+PqJ8rw+kTerN0BTI5nSlKgTmRDZSd2t59djX0T69SZ4LJArvFZXpCEWX/kp6aHotQe+USJm/+1bVLn3gwfeLi1rgeDFmZnRW/vP1FK8qyU1XQHzSsns8YiIUZPr8PL2v3twceO9PKUzsN+p3dUAVNeb+OrT20O1DWdi+RNxpj5Ku93/wrXrm9g+NgS8XPudcrfYaXuK7Rlezze29NKVaedUyaQflx3QI6USoH/9QwenY4nlWNLNAJmK1AsCMJUoBn4CnDNsOc0AGcBGwRBSAemAzVHckWHV+2P1SqpzK/pGnBT0yVX0f/w7GnBgs9oalsmgtIdUNftIM1ioqZPvnDOy0nA5RXDZr5EWt8lU5N4Yn0NDo8Ps0FHn2OkgIGR85AEQWBl9kpifLN58d1NeP0+6rR6Uk9dxqxkefuunZPGu2WpeALL/+Ks5bzta2FvdSOL0xfj8op4/ZpRzfFS4oxhRbHBuUmH4UI6I8Mybn1CSpwx2DYKQwW9KSE1MGMVRKZZjGys7gq4JAv4JWnMXHhqvCxgymq68QQKnpV/u0eZk/R5SDTLF6bnN8sptUhT1o8UMXp5lpbHJ3LG9DSQIqfujhQtvc6hOpFJLqBMiNGHdRquP9RBgkFgd1PfpBZtTqQY9/OgCLS8ZPm7E01r+ERRvsP9Li9Zo3hLvb+3dagoG1iedh4OIZuDxocx5T6Nu+HmiJ/zUB2fPrAsXVRt1OsPdfKd5+VZYw/rq6IWwRmBTkONABpBwOMX8fjEMG8rlZOPcT9dSZJ8wPeAD4AK4CVJkvYJgvBtQRC+HXjab4BTBEHYA3wE/ESSpK4juaKKYdh4bc0w5BfSPeihumMQk15D5jh3/p+HqYqACRTy1vb6Mek1TEuPDxbv/ejc6aOu79KpSfhEiZ0NvcDoUY7RBjqW1XQH6nq0wWiDQqTl51jNDHr89Dq8IXOQImvZ1ECEQqEvQnRoPBQB4/GL47Y1yhGYoeV1BZYdGoEZa5+mW0z0u3zMzrKQY42hICV2zJNgWryRjgF38DMM5e639h/xNkyrWY7AVLT2IxDZYOxIIQgCcYHW89EKmY8kKwpTMAa+o5NdQBkagfm0qouaLgedTmnSW2ej+T4fCZTt63P50GkEvlCkP+LLi8ZbSrEk0ApyCv6HZ0/jrtVX4Gy6Do2xDVPOP1mUN9LKQhEwikiymPRRGdm9v7ct+LPLK3L/h4ei+jzjAjdgPzirmBtWTg2sw5hNsConAVFVoEmS9C7w7rDHHg35uQU498iuWjgTqeJXIjDddjkCU5ASN+5wt89DVqIJnUYI+jXU9InMyUoItniPF/EpybOiEeTZQKcUpdDr9KDVCCPCuvHGyGHY5QXJaDQCfjFytGH48nNDTLliDMq068iCJDXeSPegJziX5XAEjDPQ0rmrsXfcdElqnOweq7TLD5nYhXchjbZP0wLPa+hx0NTr5DunF46571Pjjexs7KN7UF5OUaKGql45AjMZLcdWs4FPDnXiFyW+u7qAWKN+0gy3yuttwY6nn762mzsWGcati/g8TLSz5/MQKmDe3jWU0T4arbNHOoIbiYQYPa19LnY09DInO4HLirxHfJmhKaRIuLx+PjnUyYqCJFYWp4Z9ptMti+ns9eKyPsfztb9lUd59GLVD39E+pxeLSRc0CrXE6MOsLUYjYdiN1KdVXWyr7xlXvHXZ3cQbdfzg7Gm8u6cVkG9g046CcFc5dpxQ8bWJGIYJAnTaPVR32idt2q+CTqshLd7IRxUdPLepjpo+kYyE6L84FpOe/GQz/93RTHm9TR7kGKMfkW4ZLQJTkmdlYW4iqXGGqO7SFG+WRpuDvgiDHENJjTfiF6XghfBwBIxyNxaaWhiNVGWcQGB5SjRmeBv1aCiRhvUBkTDcqXnE8uKM9Ay6+ehAB1OSzFw1XR+M9E1GFMHj8+MXJeKNWr5/1rSojufDJXQ/e30iB3r8Yzz7yBDtd/TzkhAjm7CJohRsd5+MNMuxQhmMubupd1KKkiE8hRSJh9dV0evwct7sjBGf6fxcK/6BRfx82c/5pOkTbll7Cw7vUOp3+KDN0Vq2h+PxSxi0AquKhvyiojFD7LYPGU9ah/ktqZy8nFACJlp0Wg1JZgMtvU6abM4RJmVHmvJ6G239slX+z9/Yh1+CD/a1RR3KLq+3Ud/jpKHHwbVPlFHXNRjRY0Ip4o3EgMvH/Nzo7gwVV9GXtjayPWAxP1pNy3C3WqU+ZyIupKumpUYtCoJmdgOesOUON7IbDUXAfHxAbrGanZUw1tNJjTciSrJB2erpqRRbdZOWIiivt/FeIETu9Irsa+kf5xWfj+UFyWEpnRlJ0bfgHu8kxMguwwNuHxJyiuPySUizHCssMXra+l24vCILQ+Z9HdFlBG5aIgmL8nobD62rAuCP7x8YcS4rSImlZ9DDeVMu5/crf8+29m3c9OFNOH2yv1SvwxN2kxMfwfU3EpUddqZlxPPDc6ah18o3cFrN0DmjvN7Gw+uqRqxPl91NcuDcoQiZHjWFdNJzUgoYkA/i8nobkgSFkxyBCZ3crCCKUtQW6vLr5Tfw+EWae50RBcVoERhJkmi0OaKaqguyTwdA6aFO/vz+AYBRi3iHCxilQ2q0iE0kJlI3MNzMrtPuxmLSBefPjIeSQtpS24PFpBt3zlBqYEyCX5Q4PdD2O1lRhLKa7uBcGEmK/vg4XIbv94l4iBzvBKMHTi/13Q6mJMdyaZHhpBAvEB7hXDRlcrZJSRuv3d8+QhBsrO4a4WgbijJCpaZrkEsKL+Ge0+9hT+ce7t50N5Ik0ev0htXwKXOXpOEnymFUtcvjRkryrPzzhqXoNAJnzkiTh+HW9XD142Xct2bkmIBQ40klAtOjRmBOek5aAZMSZ6Q2UFQbaV7SkUS501V25kRD2Upng/xaAY0gRGxTtph02D0+xGFDMHsGPTg8fnKt0VmNh6UWAqZZdcNmOSmkxoULij6nF5OWUecZjUa0omD4PKRILrxjkWjWY9Bq8IkSc7ITxu16Ut5bKwjE6Cf3Aj88InI0Uh1HK6VztAm126/rHgyOyDhZULYvJc4wacM+9wRGj3xa1TVCEChjRkY7lylp+dpO+bxxTt45fG/h93in5h2eq3iOvkAaXMFi0uMXpbARB8Oxu3209LkoDsyoW1GYwpkz0tjZ2IskSTy7qR6PXwxrYVfoHhyKwCjnTlXAnPyctAImOaRrRblbmCyUO93bz5vO7y+fy5XFEwtlK6+fnWXBqNfg8vpHTSFJEtg94VEYZShgbpSzUpQ5MKF87/ntEVNeI1JITi+x+skriFZSRcEIzIA7KGqiQRCE4FTqaDxBOgIt4n5J4oZnt1Jlm7w6kaPVwfK/QKiAqe92kD+BQYcnAsr2JcQY2B7oTjzSKAIgUm1aQeCcecGcjIjHam6SGa1GCN4kAtw490bOmnIW9227j27tOhJihm4Ixqu3AagORIaL0oZuOM+ZlU5bv4utdTY2VsuNrcNFlV+U6Bn0BM8deq2GhBi9WgPzP8BJK2CUgzkzwTShGSKHi3Kne82yKVxcOPFQdkmelR+dMw2Hx09LnytikexobY+NNrl4Lto7tZI8Ky/ctJwVBUnBx7yjTOSNNeowG7RBAdPv9GKeRAETZ9Rh1GmCAqbL7plQBAaG6mCUu8ixqAwZZnc0Cl1P1ojI0Ub5ftR02rG7fSddBEY5/ms67Vz7ZNmkCOvlBclBm/XhURblHPOFhZFnxem1GqYkmYM+WwAaQcPvVv6O5ZnLEZNeY4vrjzQNNAGhHU+jF/JWBgRMcYiAOWtmOgJwwzNb6bJ7SDTryUgwhYmqXoc8QDR0dllSrIFuVcCc9JzEAka+6E12B9KRZGVxSrB1OiFCkawiIjYPExrKYMZoIzAgX0jvOG9GVMW1KXFDbrxyBCbqxUwYQRBIjR9y451oBAYIFv9FI7NOLQovMD6ZCl1PZhQBozhzn2wRGMV/RYmOTIawLsmzMi8ngcxhggCiM6wsSImlpjM89Ryrj+VPK/+Kq/UKerzVXPHmFfznwH+INcqXmrEGOlZ2DGAICCOF2q5BBEFOL2kEWFmUQs+gh/k5QzcnilAJjbpbzfpg56TKyctJLGBkATDo9k+qsdWRxKjTctbMNEDOT4eud3m9jb99LHcF/PTV3WF/a7Q5sJr1Y84ziUS0KQ3FrRYmP4UEsoPsjgYbG6u6sLt9E4rAlNfbgnOXfjxsP0XiZC50PZlRBMzupl6Aky4Cc+HczKMirAtS49BqhBHf/f5ABCZ+jGL9qSmx1HUPjqjJ63f68PYu5TtFj7AgdQG/3fxbHjn4YwR9T1gKyelzsrZ+LVvsW+hz91HdYWdqSmxYfd3wBglJknD7RKpDhJMSrUqOC43AGCd1nMBo3VAqR5fJz60cIxTvkWjM044npgcK2EoPdLCpuiu43mU13fjEgNW9X6Kspiu4PY09jglFX0KJxpQrNc5Idacc3u0ccOPRSZTX2ybNfK26044owdf/sVVe/gQETGhHV7SmZqH74FhOrlWJHrNBi1YjUNVhR6sRyLGaaTjWK3UEGW4KOFC7a1KWkxxrCBvJoBB06B6lOxFk8ePyirT2u4JjWmDo3JuXmMM3VzzGK5Wv8Oct9xI7dS/v1ndT7Yllb9deNrVuCrZdv/jSi+ApxJqcyC8++5CsuCwKEwqZnp0fNoplaTG8X13Fc3s7mdMrL/NQqxdB7x+WQtKzp7l33O0vr7dN2HixvN7G1Y+X4fXLY2JOlGvLychJK2CUlMfRmMtyJPGJUsR5MkqnktsrIkHQ5Reg2eZkZubkDbFLjTdSVttNeV0PNocXG0yaKAytw/EEhjEq3jPRcLRm1agcWwRBCJq9TbHGnJQzb46GsE6OM+L0+oNz2BSUGpixBIzSHFHbORgmYEJHoQiCwJemfYmZCUv40qu38UHbU3zQBjlxOVxccDHn5p/Lgd0HaEvs5J871+LRDrCxpZZORycSEgICC5aUYPBPocO3g3srajHnwevN8n8KcUVwY+lTLExbwIK0BXQKffQbm3hmbxMl6SXMTJ6JThN+uSuvt3HtE2W4/SJGXfRCpKymO3hu8pxA15aTkZNWwFwwJ5PnNtXj9Z9YF7JTi1L4e2nViAuwckf2WVUXL2yu51+b6vH4RJYXJNNkc3LOrPRJWyevX6TX4eWOV4buAidLFA4XagD3rDnIoijt24+mnb3KsUURMCdb+uhooqTau+0ezEmhAkYWIXFjpJCU+sKaLjsri4ecc5VJ1KGNCMXJuTgbvskNZ8TwwzOWYDEM3XC5DrqI152No3YW3zlnGreeVYzD66C2r5ZPmj7hzeo3abGXsyh9EdfPuYrn13vQY+Wpr64E4IGPt/PS3k9ZeYqP3Z27WNe4DgBdCtxXvgYAs87MwvSFLE5fzNSEqWSYM9hQJeLyTVyIyINi5YnkgiCcMNeWk5GTVsCU5Fl5/qYT70I21gVYuSPTCHDvmkPct+aQPG3YL5JzmCmk8Sivt/HqdrmToLbLgVYQkMaZ8Px5ULb/gbWH+LSyCwnwT3Am0dGYVaNy7FEKTE+2At6jSdB3ye4OS0P3O33EBtJ0o5EWb8Sk0/D6jmZmZyWEdAWFT6IGub7PqNOi92eFiReAKpufP324G4CH1lVxSlEKJXlWZqfMZnbKbL4z/zs4fU7Menn9Kiv38dK2RpKMgRlw7kws3lX8YdU5ANhcNl7f2cjdr9fy+q0LafPsZ1v7Nra1bePB5geH1kljxpC6BK/tVLRSQtTns5I8K6lxRtoH3Og1AtPSJ9dnTGV0TloBAyfuhWy89Va82STk6AgMDWg80oS6xwrAVUtz8fS0cvXZSyZt35bkWfnh2dPYWtejpoJURkW5w1cjMIdPckgEJpQBl3fMDiSA7Q29uP0i2xvC6wz7RulgssREHidwoMePL2CoGWmAqiAIQfECsr+Tw+OntnuQwtQ4uu3u4ABfAKvJypQED9AIooXzp57P+VPPB6DX1UvzYDNt9jZ+XfoCruT1GJI2UqC5hkVTLhhvdwFyIbHN6WVFQTKbarr5wb93qtYIx4iTL3H8P8DygpRgzl9pADjcIt7xlyWndLQCGPUarlyUc1g+NxNFNX1TGY8ENQLzuVFaj7sDNYMKAy7fmB1IEKhXC5x/PCFGeL0ODzF6LaZhztajDXSckaRFE4j0RHOzMjfQQn3/h4cor7fRPegJ60AC2QcGRg50TDQlMjt5Nm2tRdRXXMFZ8X8hQSimlme5c/2d9Lp6x1w2yDU+Hp/IjMx4BEGeuzbcyVjl6KAKmBOQkjwrL94UflFXHGUnY1nHSkiopm8qY+Hxyd4oDs/4U45VIqN07gw3fet3eYOzkkYjbARKSC1Ir8MbeRTKKBGYIquWhbmJpMUbozrHKB417+xu5dony2i2OcI8YGBIwEQysyuvt/GLN/YC8MEOL6dZ7sLdcR5r69dy4WsX8tSep3D5Rj+ftgXOtV12d0QBp3L0UAXMCYqcZikO/v6NZ7ZO2h2AKiRUjjfK6218VCFPHP/xK+P7/ahExqTXEm/UBX2eFAZcvnEHtiqO3jMz4zHqNMwKdEL2Or0RncQtJn3QX2Y4drePeTmJUZ1jFJ8npVOzZ9Ab1kINYB0lAgNy5EiJXMspeA2e7jO4ffZjLEpfxAPbH+ALb3yB9U3rIy6/rU8WMMunDgk4rebkLOY93v1uVAFzArO7qQ+lxi7SxFgVlZMV+SIU8PsZZQyGSnQkx4203R+IIgIDsoi5+9I5ODx+bntpJ+X1NvpGicDEm3QMOCNbIrT0OslKNEW1vssLktEFTnw6rdzEkBKaQqovI37LX1miq6QnghuvIjSUmUqXzs/EoNXQ1GHhobMe4slzn8SoNXLLR7dwxyd3jIjGdPTLYu+0aam8cOMyDFoNZ89Mn9QbvGMhJLbW9fClRzdGnP59vHBSF/Ge7KieJyr/q0Q69gdqm471ap2QJMcZR9TA9EdRA6OgFWQx8P7eNkoPdpAaZ2R21sg5ZKOlkJw+iX6Xj6zE6Ge5PfCVBXzvhR2cPyeDN3a2DKWQqtbCc19EAP6l0/NURxowI+z1yhiCFYXJ3H7udEryrMzJtlAeiOwsy1zGK5e8wj/2/YOHdjxEn7uPv575V2J08vopKaQ0i5HcJDPzchIimgEeKcrrbVz12Cb8ooROK/DlxblcsShn0iPia/a1DUWqjlO/GzUCcwKjFrqq/K+iHvtHjuFuvJIkRdWFpFBW2xP82eMTsTk84RGYxi2w4T5meA9ELOLtccpXyWgFDMDF87IoTotjQ2VXcBsAWHs3cnJJQoePTNu2Ea9V5qxdNC8zeNwsyU9iZ2MvD66VC4P1Wj0lCV9iddL32Ny6mVs/vpWavhoA2vtdJMUaMOrkIuUZmfFUtPUHHcCPNJ9WduITpUDXqcTzmxuOSkQkLV6OiA2f/n08oUZgTnBO1FZxFZXPi3rsHxlS4o1hF0O3T8Trl6KOwCwvSMao1+AKmE+6feJQDUzjFnjmYvB7uFpj4HXxZ7i854Z1KHW7ZCuI7ChTSArnzErn76XVQKCb6rMHoW138O9+dLw/WETesLEnSr1Pakjhb6JZj0+UePCjSh75pJr/u3g2d7+1D48vG1PSl9jKq1z2+mVMTZiKr38xKfHLg6+dkWHhOVcDzb1OcqxHvhs00kDioxERUew6pqbGcs8X5x+X3zU1AqOioqLyP0xKrIEehyfo96R0+URTAwND0bAL5mQgSXKUIEGJwNRtAL8bkNCKPpZrKkakkXpcE4/AAJw7OyP4c3bPJvjw/wK/CXiNVq7x3MWa/rwR0YqOASUFNCSYnB65o02UwO0VeWhdJW6fLMg8tkVck/UoP1v6M5JMSTTyMh2Jv+CpPU8hSiIzM+X5dQdaBya0/tGSaJajS2fPTAsaC+q0kx8RUQZmxhl1x6V4AVXAqKioqPxPkxxnRJLAFih47Q/OQYo+QF+SZ+WhaxZRlCa70u5s6JVFQ9qs4HP8Gh1l4kzKqsMLrrudElqNEExZRMu87ASsAaEk7H4p7G+iz8t2cRowssGhIxCBSQsZEnv69LRgR5EEtPQOFe7qtBrOnjada2ZewzPnP4Oh/TaSdTN4YPsD/HDdD8lJlqNJB9r6J7T+0dJskwde/vKS2fzyEnl/3nne9EkXFaEDfI9XVAGjoqKi8j+MYgLXFSjkjWYSdSS0GoErFmYD8OH+dq59soyG2kPBv9/i+T7bpWnc/vKusIhIt0siw2Iac2xBJHY09gbF1nvVAcEhaEGjRS+5CJSooNWERyuUC3JKSApJ8dZamJs4Yjm/unR2UCx4/SI9tnQuTLuLny79Keub1nPT2utJzfmUspZt+EX/mOv8aVVXsM4mWpp7nWgEyEgwcen8LIBgtGwyqQlEYLrtnkmr7/m8qAJGRUVF5X+YlKAbrxyBUSZRR1sDE4oEaIQhjxZtxRvBv9WLqYCcYnpnT0vw8W6nGHULdShlNd3BC6sging1Jjjj/0HJ19GIPh7/stx9dO3yKeGmnwMurGb9iAnmJXlWfn7xLIwB53Hl79aQguQuuxtJgsyEGK6deS2PnP0IWkGLK/5tdvl/zw0f3ECXs2vEur5S3siZ967juic3c//aygkV4TbbnGRYTOi1GhLNBtItRg62T066SqHP6aXL7iY13ojHL0Ysvj4eiErACIJwviAIBwVBqBIE4acR/n6nIAg7A//tFQTBLwhC0pFfXRUVFRWVI0nKsAiMMok62i6kUEJHj2Tp+sjq2w65csFrinYw6Fv1+vZm7v3gIOX1Nnpc0oTrX2jcwhfs/2aprgqtAHnaDryJBXDa7ZC1CIAzcjWkW4wjzOw6+t2jpqsUc74fnTudR6+T30cxrgv9Od0ii74VWSv472X/5eqMZ3C3Xs6+7v1c9dZVbG3bGnzN+oOd3PHybmq6HMHHQtNam2u6x/R4aep1kh0y6256hoWDbZMrYGoC6aNlU+XLeKf9+EwjjSuxBUHQAg8D5wBNwFZBEN6UJGm/8hxJku4B7gk8/xLgNkmSeiK9n4qKiorK8YMyCFGJwCh324cTgVEKestqurmy6xGEfRJMPQ0ay7j73Bw+8E1nwOnl0fU1PLSuiic/rcHjnYCAqVoLH/8OWraTjcALBiOvlTzC8po+TOlz5OfEypEeBruYl5PI7ua+sLfoGHCTZjEyGkp3myhK6LUC7SE1IO39ioAJCKDGLVC3gTOMM3m8dxmnFC9jr++v3PDBDSxOX0yJWELngZHFtvpAEe57e1r5zvPbATBoBb4UweOl2eZkSf7Q79PT43i2phufX0SnnZwkilLAu6wgmbd3t9JldwfrmyaL8nobZTXdLC9Ijrq+J5ojdClQJUlSDYAgCP8GLgP2j/L8q4EXo1q6ioqKisoxJSFGj1YjjIjARNuFNJySPCslmkpY/7T8wMYHASiK81K0sIiH11UFn+vxiYhE2YFUuRaevzLkAQmN6OWLSTWwuxGSLpUfjg0IBkcX87KL+HB/O/0ub7Cmp3PATUHK+ANANYHC4vaQOXPtARfejASTLF6evQR8HpZqDSwSfspbW6dhNHyH689t4+PWl9nm2Eas9mWMabPw9S4HXwp+EX53+Vx5RMvz5UP7wi/xwuYGXt3eFPQ28vlF2vpdIyIwHp9IfY+DwtTJERU1nXZ0GoFFUxKBoejcZFFeb+OaJ8rw+ESMek3U3k7RyLdsoDHk96bAYyMQBMEMnA+8GsX7qqioqKgAHFoD634vXxSPMhqNEGZmN+DyoREg1qAd55VjULseJNnfBX+gfsIpp0iWFyRj0A4NgYQoPWBC6mmCaPWQMg1ELyRNlR8zp8j/DnYxL1CUuzcQhZEkic4BN6ljRGCCNG7h29rXie/cHnyord+FXiuQZDbILeI+NyAi+D0s11TItT9ePYnes3n/ive5IeUGpsTOQJ+0CXPhfSxb+j4aQwf6QH2NEkFRypeV2iElvdQ+4MYvSmQnDvnLzMiQ27YnM41U3WlnSrKZjECkqWuSO5E+3N821LY+gbE40URgIpWGj1aSfAnw2WjpI0EQbgZuBkhNTaW0tDSadTzhsNvtJ+22wcm9feq2nbicqNtn6TvAwh0/BSTEDfeza/5v6E8It7+f7G0z4uVgfQulpT1UVLuJ0cEnn3xy2O+X3OljLiAhIApaNJJIw4Gd1HpKAbhzsZ4Ht7txeOVLSXPlPkrbKsZ8z/wuJ/mAhAYJAQ1+Kgpvxn2wjgXAzoZ+egdK0fhdnAbU7NlMf2YOAK9/sh1PowG7R5KLUtubKC1tH3VZlr4DzN/5c66VvHgGX2T7Gx76E2aw65Abix52vvUY+bWvkxS4FEqCQJk4E5BHKxh76/lsQxPFUjGdfXPYWrWaCxdsZnP/p5inbuDJbfsx95xHVaOXDLPAzCQNpU1+pJDXl5Y2cbBH7mrqbjhEqVN2Avb4JQTgg7I9mLsPTviziYY99Q7SzRpq1z7NLboddO+oodQ7d8TzjsRxua/Lx792DgkkDUPbPx7RCJgmIDfk9xygZZTnfoUx0keSJD0OPA4wffp0afXq1VEs/sSjtLSUk3Xb4OTePnXbTlxO2O1btwnlnlAr+VmUNAirVoc95YhvW6B2g/xVkLuUpL2f0j7gJn7qfCzt9VgHej7f8qol2AfCouvRLrweXriKvPQE8gLvuRoQk6r5w3sHAMifMZdVxaljv6e0CRpAOONnCMlF8Mo3mDl9Gkh+2AULzvgCJE6Rn1tmpiAjgYJzz+DPOz9m0JjI6tWLqGwfgI/Xs2LhbFYHWpIjsqEcJDlypMMX/Ezu27OBRfo9LNj9KzR+NyCARod2+oX0NCygUCPw5xDX2tLSUqz6DDSHvPztivuxuXs4558/otb0Pn/u3kVbfAI5WVlcunQ1A59oqWwx8vTXlgZfb9vRBFt2ccHpy8NqUKbuKMVtimf16pIJfSzldT1squlmRWHKqCkan1+k88P3+U6xjcU7f8ZCHfi7X8dQ+DbkLg177uc9LsvrbfxlzSb8oizc/BJ86/RCbjx/xvgvJjoBsxUoFgRhKtCMLFKuGf4kQRASgNOB66JffRUVFZX/ceJDLqRagywqJpPGLfDsxXJqR2vgwHnPsafZjSjBtU+WMScrYcIeMCPoDtS5rL4LLJkQYw2mkBSK04cuyDf9c9v4dQ+99WDJgdN/DKIIhlvl0QF6M2j0YAmpbDCnwKDczpybaObTqk7K6224vHJEI9TELiL5q2QvfUnCL2nwZZ/Cvnobe5v7WaXdCTq3nJsQNBCXBs4epiTH0uf0jtiGbruHpFiDnKqLSWaB8XtU27dQmHWApq5KOsTN/N/Gj0EPUnY8L9aewgHHQualzKOhR07jZQ+rEUqzGNlc2035sDEJY1Feb+Oqx8vwiRImfdWo+/uDfW14/RKzbB8DEloAySsL3mEC5vNSVtM9wtNmIoXJ4z5TkiQf8D3gA6ACeEmSpH2CIHxbEIRvhzz1cmCNJEmDUS9dRUVF5X8exfxMgOv/e8QvEiPY9aJcuyH5we/Btv9jFJ8yr0+krc91WB1IYXRVgiEO4gN2/xEETEWI9f5wt9yI9DYMRVg0GkifA217wFYL1jzQhNTsxCbDoCxattT10Of0cc0TZWyplZcxroDJXQomeWr1f/xn0GqZx8bqLiQIpookkAVnxjxo30eKWT9iqjfIwyODwyaBwtRYWlsL+PKUX+Cou5W/rnibNy57gzNTvoNvsJAdHTv545Y/cs271/B003VY8p5jbeO7tNpbkSSJ8nob2+ps2Bxern0iej+ZD/a14QuIhdHqTMrrbfzwPzsB2NQsR6BEwIduUoS1YjCoDIy0mvW09jmjfn1UR6kkSe8C7w577NFhvz8DPBP1klVUVFRUoH1f4AcJEnPHfOoRwatcIATQGrDOOhP9IS8ev4hGI6DVCIfdgRSk6xAkFw1NBIxJBEf4BXN5QTImvQaPV4xu2nFvA+SvHPo9Yy7s+jdY88E6Nfy5salgb6esphtRGrpo72qUi3lD5yBFxNkbFFxWYYC2PhdZCXIUpJ1kNAL05pxJ4nk/g+btcOg9ppgGedfuRpKkYHEyQPegO8z1tygtDo9P5MP9cg3O7KwEEswpfMmcR3b7Tr606i5ips1iT9cefv/x29hM27nr07vkzdLHEifkoEtLQHCn43NN4bPq/KiiMPtbhkYdaAQh4v4uq+nG55f3V4wkHycdhjz+j2/z+GEI6/Fao4sCXVSrp6fyvTOL+fXb+2kN8d0ZD3UatYqKisqxpG2vbIEv+aGvGRJyJnd5HYFi2ewSOP8PzMhdyrNJXVz35BYunJvJtjoblpgIl4ZhdTNj0l0FU4YmNhNjhe7qsKconjEvrt3K1WcvGfsi7PdCf/NQBAZkAbP1CWjfC3krwp9vToH2/UFjPZdXRBBkb5sYvXb8DquuSgBEfSyzxHr2DriCqY7bZ9qgBhIv/CVkLQgKwkKpAZc3AYfHT6xxaP912z1MmTLURaS0Pr+/t42sBJM8+LJxC6euv54VOhHefgPt198iI+8c/tCjZ0X6ddxyfgz7u/dT2fgZ+9r30GWpw6+Voz3/aHqCT97MJ8+Sx8rslVxWeBlaTfj2vbS1gU+rulg9LYXtDb3MzLRE3N/LC5KVzBmztA0AeA2JfNI7dYQwG4/yehtfeXwTflHCoIvcGt3QI5v7XbVEdkvOTjRxYALdVeooARUVFZVjhSTJERjlYt/fPLnLs3dC6075Z1NCUIisKExh4ZREGnocYZ4pQRTPk49/C89eOna7t8cBfY2QXDz0WIQUEsgi5uJCw/gRhL4muS07VMBkzgv8IEWIwCSDo4uSKYk8f+NyTilMRpTktuQ0i3H8C3GXPMPJP/1iCjWt9PR0s7u5l3ijjsuTG0EfK6ewIDiwMsdbBwwZAip028MjMIqA6Rn0MDPTIj9Y8wlIfrSChOCX600kSaKl10mONZY5KXP4sjmf/7fxOV6o3M7Wpkbyq67inOQ7uG7WNWTEZrC/ez+/3PhLrn7nanZ27ARkEfG958v5yat7ACir6WHRFCuVHXbECPOUSvKspMUbKU6NZYlJPhbjxD7cPhG7e2LjBNbub8frlxCl0VOEjTZZwExJkgVeZkIMrb2uqGcvqQJGRUVF5VjRWw+eAZh2nvz7ZAuY6o/lf5MK5NqREJZMTWJPUx92t29kDYzieSKJ4HfLv4MsZDbcFy5oegKRlpSiocdirODqk4tvD4deORpAYt7QY6kz5cgVDHnAKMSmgs8FHjsleVZ+d7ncAryltmf8+heAroOgNaCbc5n8e/s+9jT1MSc7AaGxDHKXgDawj+JSwZxCukven12DQ3Uwbr/EoMcfHJgJYI01BGtiggImaSoCsp71a+R6k3UHO3B5RVloNG6B/34bRB8goZO8rBIbWJiymtsX387DZz3Me1e8x59P+zPdzm6uf+96rnrj61z93NO8V70BbcJWdPF78Gk6MOkFegY9VHbYR2z2gMtLW7+bq2fq0Ll7QWvA7JPTbl3DhNl49AUMEWHIeXg4SgQmN0lOz2UmmHB6/fQ5vSOeGwlVwKioqKgcK9r2yv9OOUUueu2bZAFTtVZOr8y8RBYF/qG76iX5VnyihCRFmESdv0ruuAH53/xV8kX1mYvgo9/I/759m/xYIP0SFoExJQISuMNt/cckVBz11suPhUZg9KahmiH3sItxiJkdwNSUWOYHTO36nN7xC1+7KiGpECFbblOO6dpDRdsAizO0gYjZsJRV2kwS7PJ2h0ZgBjxyJCElNlw0KaMMjMpASa0saDyCnifz76dcLObbz8kGers3f4j4jwuHhCGAVk+ZODOsaFgQBC6YegFvXv4mPyr5EVW91RhznsGc9xQxWa8Sk/M8MYX3skvzIwwpH1FaFS5ggWD6ZpEx4MGSuwyDtw8N4oTceEVR4tPKLhICqcjvnVkUMcrW0OPAatYHa66Ubqvm3ugKedUaGBUVFZVjRfs+QID0WWDJgv7xzbsOG1GUIzCFZ8oFtqJPTvUEohcleUnB+ocREZjcpYHW5HZIKpR//+TP4A9crP0e2PY07HwR5n1Zfiy5cOj1MYGLl9M29PNYKOLI7wOdEeZcLkdbQlulG7dAb8Ak/s3vyZ1ISm1ObEDAOLqD27d4SiK7Gns51G7n2ifLxm7b7jwI6bMhPoNejZWY7r14fKdyqqlWjkLlLgt/ftosYnY8h4AYJir6AwImNAJTXm/jULssuB5aV8UpRSmUdMp+OEa87PVkINZ0M8d/gBXafVwobEEjKhEJAZAQvvAI1a/GMWdwZFQkVh/L12Z9naffyabPswdBMiCIiZwzx0JRzgCV9o1s8H3Iw9Uf80xDDFqNlnxLPksyluCwTQeg0B8QN1NPR6jbgIVBOifgxltW201Dj4N7vzSf376zPzhbaTiNPY5g+gggMyBgWntdzM5KGHc5qoBRUVFRmUyGF7+G/t6+R07nGGLli3P/aB6hR4BdL4CjS64XUWpGbLXBC3xCjJ7p6fEcaBsY2YU00CaLl/gsOb0y0DY0KiAUn1vuyrHkyNukECpgoqF2fbg4at0DCdlDaRsIpLECtRL+YT4lioAZ7Aw+3RRSuKvUZEQUMD432OpgzhUAtMRMY9qAfEGfbfuQgAFM+GvSZqLxDpItdNMdIir63YqAGYrAhHZG+fyB9eg+MPRefU2cFSdxg+H3mPDIolLQICDIreJ+D5iTSI4jbFmhrK1op9Hm5QdnXYIh0OE1tK3XcfOLb7GpYy35OTGkWfR0e2t5Zu8z+CQflqmFbO2W0KXmMyD1M1enwyrYJxSBeaS0GqNOQ3aiiTNnpPFRRUfE4ZONPQ5mZweESuMWig6uY5FgoLVvdlTLUQWMioqKymRRv1GOJABojXD+H+H9n8gXSZ1RThvFpcqiJiEbKse20z9sGrfAWz+Qf9744FABbE8thARK8pNjOdA2QHv/sBB+01b539N/DG//EA6+B7UbZJ+XaRfAzhfk2hhEudYlpTj89RMVMEoKCOSLtiSG17+ALAC1RvmCPtwAcFgKCeDMGek8tb6agq56Tm3bx+mNr1Bzfw9++wD6zCz0WVkgioi2doQGC9ruQxib/oUtpphl9i38zfR34io+AyR48SvwtTeHBFOgkPdOw6t0tZkAuf5HSSGF+sAsL0jGqNPg9YW0j1ccgLh0sLdjsDcxw9WFKHiVeAtCydcgIVeOfr38NehrIjm2gJ4IdSnldT384o29ZFiM3HpmUURjuCJrEWt2adjcRqBD6EfMyDJwwdP3MmD8kB94+iAOqH8dcrMwOV9kbUsb5kMzyLfkU5JeMmohdOnBDjZUyvv9G89s5dYzinjN6WVrnY0VhUN1MH5RornXyQVzM4NF4rE+D88bdLzcmAMr8iO+fyiqgFFRUVFRmEircDTseSVkqKFHHkjocwOSXGTqc8lpjmcvhTlXgr0dfB7QGcZ82wlTtyFQAIocreg8IF/8Qwp5y+ttfHRA9ib50/sHmZ9rHbprb9oqu93Ovxo+vR82Pyq/x9m/gpW3wYJrZIO8bU9DXwPEp8v7UtmHMYnyv87e6NbXViunjAQNFJ8rR3WyFoQ/J3epLCKGfV6S34+zshn77njcB19A1K/Fbx8goX+A13psCI5BJK2WmBkz0OXmYow142tpxbllI0heNAYdUr8Of1kFvWu2khhvYmBGDOemlOE3CWgNEoLfEx7x8copkkuE9fgObYbGAshdGjGFpLSPB/1RcuKhuxLmfgl2Pk+Cpw13zjVoJA2C4EfQGWH+NfKyfB5AgN5GkmJnUNsVnpopr7dx9ROb8fhF9FqBXU19EaNM3oDXS2iH0LycAtoalvL/ZmczreEuzNMuJGb2FXz67nd5LM7CDvt/2LFJfv05eefwi+W/iPjR/WXNoaHl+ES8fgmdVuC+NQf52YUzg+vT1u/C65fkFFLdO+BzIyChF3xYOzcDXxr3MFEFjIqKigqEWOx7QaODhdfJF+zPI2RC/Ti0Bph5WbBlFkETEDeSLG5cvfLPA61yPceRJFizIZvXMfU02P2SHIEJEGrrHkxtKBe/xq1y1EZvgukXwuZH5PUPRB7IXSr/Z6uH6o+gaZssypQoxUQjMAffk03rzMlQUyq/blgExj8wgMdmwt2eh/PDd3BV3IuvsxN/dzeS1wtCHMb0HjQ5yejT0tEUFREXbyFmwQLiTj8NrcUCDZth5/PQUi+7+ippGtEHd+3CsbuC+h/fStvWxOBy9bE+LFO9WM7Ix6h4o7TsAOSuGG2I7X6/R8Js0GI2hF9qS/JCxGFXpfz5552Kb/erZAtdbPYWoROnUWJqxfjVl4eOQZ0B4jOhr5GkWOOIYuSymm68flkwi6I0aprs/NkZPLFB/uyVKFDz7k/4pfA4V1d+gkbyw753YMYVTOsb4EDXKbwknorJ5ODqM7p5vf5pytvLmaqZyvZt2ym2FrMiawVVrQK7m/vQauRiKr1OQ5rFhChKbKu3hdUeNXQHOpCsZjANjW4Q0VLmn8klURwmqoBRUVFRAaheF4iOEF6UGpoqmChKV1GMFa55SX6fjQ8CApzyfXj/p0MpkLxT4MDbch3MkRYwSs3GvC/Dkhvl9UiaGiZgFNO3sNQGyIKuZQeUfF3+XWlZlkR46Wvh+ydznixgFFGmRClMifLfh0VgJEmC4Z4f3dVync2Sb8oX632vyY8nTkF0ueh7/Q16/vUvPNVDXTkaiwXT7FnEFhWhS07CNGsWsbt/jHbaArjisci7RCkUFkNbdiVZvGiN0L4P8+KlNP34Jyx+8zvgBI9Ty8DAFLr399F9888xFP2DuJWr8NVV4NmdgjndTfwsN+ZAOqvfI4VFXyISKOAlbSaeuCyybV18VNHO9UIf7qxlGIcfewk50NdIcoYBm8OLKEpoNPLnG2pEN5a7cUl+EquKU9heb+OfNyylRFOJ780vcY3Wi6B8HKIfOvYDYGUAJD1eVwIp/qX8+6JzeWD7AxxoP8Cu/XvwSYFUliedxCnZXDZrCYODiZySN42qtjYkvIAGjzjI2kMHmZdbEvSAybXGIMVOl2t8gHdTb6R0YFhb/CioAkZFReV/i9HSRK4ILb7DUwUTQRShIRBzd/VD5nz5sf5WWHwDLP663H2krIsx4AkyGV4wdRsAAS7401A0xDpVLpaVJBCEkakN5c69fR/4nJCzeGhbAtUZI/bP9Auh7NGwuhTR6cTX1YVeF4vgtOGuqWVgzQc4tm/HtWcvqW4XjaecgnnBAgS9HqlmPdraGLRdSej0mWidZkSXh95/vE3/5r/i7+3FNGcOaXfcjmHqVAwFBRjy8hA0w2o9an4pp75CU1mh1G4IES8aeb5SMM3mDkaQDhln82jij1lmrWCLNJMzzrmEb82zMrBmDf3vvEvPP/+JPjMTncFAT4WB+roMCnK3o89uJ7mhEfeUcQpSOwICJmUaUkIu2b2NfLK/mV8IbQg5V498fmIuNG8nuciAX5Toc3qxBmpsSvKspMYZSYw18PvL545pEHh9Tjtza94mfcBEc92nZIneoPhBEBC0Big4A3HDX0j2ye3ViiianmTlkbMf4cn/fsQftzoRDS3oYivRxtQhmap5rV5uAf8gUIIUFzJc+rkWeP5fAjEaK3HFbi579/+RrIvlosR4LhgcRBOfTHuz7Hys1YxtOKgKGBUVlf8dgu25XtCZhqIHXifsfVW2p89eDDueky9uGu3hD7HrOgTOHjldU7tejnYYzLIYUIpcldQLBIQBsuvskaZ2gxwdCW1hTioAr0OuuwkMXQxLbSjseVn+N+BVQsHpsj9LpOLZkLoUr3kWtpc2YHvp+4h9fQi6BHTvvoe3578AGIuLiTvzDNra2nAfOIh97UchC7XClv8L/JwIgKApJ+7UpSTdfCsxixeP7abbuEUeZyCJ4amsUMzKdmrkgurz/yjXKFWvI1ScLS+4gb9pZ7DTNw29TsPPCpLRJVuxXn011quvRhJFWTw9eTY1VV4OfGIi/oEHAbgFcBtjaKpaRdzppxG7ahX6tLTw9eg8IPvbGOPQJ00hu2EHxv4adEYRMmaN3LaEHKh4iySzfPnuHnQHBYzL66fD7uYrS6eM7W7cuIWzt9zImTov/PcN1ud/nywCNTHoOJR5GXMv/DbkLkUTm8KCeBHakKM1Ie97oMePTxTAlY3HJbe4awX47llZnL/QQIu9BZvLRkV7Ox8daKGjT+Bn58/F7u/hjT378Hn8fHXhLKoOvM6/EuL5R6IFrfQvDPmpfPHNpxE0YxsfqgJGRUXlf4e6DeHtuUr04MNfgr0NTrsTlt4oG709dwUsvPbw00cNG+V/F31NFjDdlaCTfS5ImTby+SaLHIWZSCt1NEXHXic0bYGlN4c/rqSCemqHpkZHev+yv8s/v3az/LxRimchUEDboaXntSYG1vwDJIn4s88m9pRTcL/+R7wuI0nfvo34885Dn54OwKHSUhatXo2/v1/eT/+5Dr9Hi99nwpe1Gv++dSCJxOV40V0wH5YsGX+/1G0IL56OFEVr2Aw6M5z6fSg6S/57+iyo3xQmzkpyR4lMBQhGfkwJxKe1cdvp32frbSuwDPZxy+9e4mJ3I7G7djGwZg0A5mXLSPnWzZhXrJBFWOcBSJVDFPqkPFKEfuZpauT3TJs5ctsScsHvIUMrR0W67R6KApqopnMQSZIHRo7J1qfQ+N1oBPCLHlIGDyEI8F//Sl7iXO48/6uQG9jOmCSyJTndkxkYaKkwI0kLDKXgNIIcpVldnM/sZCuzkwPRp+lweUEvlz70GZrBOdyyPI831n1CrFdkZdJ8ftDxFD2pM9jYtpny9IW86IlhYNBIduLY26EKGBUVlf8d8lcRTH9o9fLvdZ/ClkCdxJqfy5GKorPkFIuj5/CXVb8JYtPkLhqQizV1gSnIqdMjv8aSHX0KqXEL/ONCuSBYaxy9Vqdxi3xBnnpa+OOKF8zmR+RIU6TX7v5PZCEQEjmSPB7633+fvnfewVm+HdFuRxMfT9LXvkbStdegzw6Yz7n+JadovvrViJujtVig7n0wSGgNPhCcMCsVPGLkaM9Y5K+SC7FF39DnHErlWjmyNP0COONnQ4+PIs4iRqaGY7QQI1YBYENPcn4+69LmMO30y7jsvOm4Dx7Evm4dthf/TcMN38RYXIxp1kyM9Q0YCrQYy95Cb5EHeZ6u2YUoaNEkF41cTsCNOE2UPW56Qrxgqjplg7xxBUxgoKeIHHFp6nUzD+hZ9SvunD7MNdecRNyAnF5t7XORG2I8NzVBFm+nFCZz8bwsbA7PqJOn52YnkJdk5m8fVVLXaQ+a+d311Ot8oK0n6ZRbubhtH3PcVv7R9GWqm6BJr0EwPBM74s0CqAJGRUXlf4esRQQFzLm/lS9Qb/9o6O+hF+nMedC66/CX1VAmT0k2WSAuIyBgjHIaxxy5uBJDLDSXj163EcqhD4ZqOMaq1dn9b4LdR6HY5ZZp9r8Jh9aMFECSBHWfyT8L2hECwtfTQ+9//kPPCy/g7+xCn5uL5cILMS9ZTPyZZ6KJHXbdiUmErqqxt0lnDF/e/Gvk/yba2p67FFbeDuv/BJc9HP66xi2yj4vkh8oPR+7r0LTeRDAlYPDJF+Uuu5u0eCN+STaxEwQB04wZmGbMIOmb3/z/7Z13eBzlubfvd3e1Rb27yLIl9wK4gTHGBtNChxBCQg2QcHJIQpKTcsiXnpMeDunkJCGE0EJJwHQw1cLCTe64d1kNq1i9rnZ3vj+eGW2xunZlS7z3dena1e7szLwzu+8885TfQ8OKFTSufIPm996loT4RtlXDinuJy04lPSeBJTk7qPPkklR+jLjc3PD8HrNbeVrnMSAxTMzuYFUzNiWtE3qkchcc2w52N37gltZvcY//BaoT87nrY914t+Iz8NRKL6qKCIn/FvPrd+mcsdx89sTIT4axpaSe8vo2fAGDv68p7nr9BuPNru2QkEmgWQwzAynDtjnjk3papzZgNBrNqUu0dVmaKpD7ToLVL5ZXJPIiPW4u7H5RKmcsHZP+7ueeV0QPZeZV8n7mNAkh2Z2QOUNKRrtbR8VWubD2lLcRinkhA4Jehsj9OPC2VFJhwFM3ha+zdL354W6ScQEKfgXVe+CMGyFretc62/ftp/bxx2h86WUMr5eEZctI//ltJJx77omJtKH00JE6jNbjIuh29n+Gn/PBnPupF4oB446QpC8OSd4N+AafpB2JOxlHZzCsYzU/zIyoQrI5naTdeCNpN94IT3wS/+636Wh00NHgoroyjcqtKbAVwEvVvy/DnppK/OLFJCxeTMKSc4jLmoACEts/BKaF9V46VNVMbno87jg7PbLhrxLKvPRnxL36deKUn4W2A7zecg5Tj9ad6D2JzyCuQ85bRUO4AdPcKb+htIQI47gbQhWIFWC3KeaxjzvtKzEA9cIXYcxsxtiDfa3iHDYC3tamntapDRiNRnNqYumy+LxyZ377y0O/0FhdjQEqzUaKbbXgToMlX4b8kIvmuLnyeGyHvN4TR9fBPy6X5w63JIO+9g35f9PfpY9P5jRJErbFSdiiO/qTtxGKPUTu/7z/lkfreNnjYPl3YPX/EpTbj1hnWDgtIjxTsgHe+6U83/0ixm0v0Hyghdof3EnruvUot5uUT1xH+m234ZoSIuXbG5YBY1Y9dUvFNpi4GJZ9o3/r7I20PHmsKw5/vWvcDCws1ReuZGz+Dpx0cry5g3WHpAQnTC23tEgSqq3vWWM5difEZwWIH+vn3eu/xqXvfJHOOgdvsxD7zCtY3FxKy7p1NK1cKZuZNo2MsekkN5SR7J5FbUj364NVzUzN6iV8dOBt0b2ZegmcfgP+177FPfbnSVatFPmmU9Odbkx8Bqq9ngyP7QQPjKU0nBYf0XqiGyLL9H9w1Rzmbn0G+7GQ76fPS4KvkTnjk6hr6eSPNy/gzJ+2dd9ICW3AaDSaU5XiQlN51BB9lmjcKVsGTHJOl8YFFVth4tlwXsRFc6xlwHzQuwGz9XGCRkKHXCCsclzrDj9zerBMu5sE3tatW2kpqKatIANfm8KRYBDXeAjj9e8SaG0lub6Oyo0bcc+YQdJll2FzOqXKxuYQ1/uH22RFoTo27/wouAFl675iaMIiqC+GTz8RfmwPvg1IZ+qG/TZqbvsqnVWNOMaOJfub3yD1k5/Enpra8zHpDk+aHJ/ONqnGiqStThR4F3SfIzNgEseIQRlpwIyfL495S+GiH0TH+wJdnp4U1crOigZe3CbJ2L9cuZczclNZaDsAD18qRqrDAzc8Irko82+D9DzIW0ZeYBoNW5PJyahhTWABt912E+MnpWEYBt4jR2hZs5a6Z56motBN9Y63+ML4FloD8/CfPwEjKZkjNS0sn5HV/f6VFsFTn5bv5OF3oXovzTlLWVq2CoBttlnc3J1ujBnunJbs48P69rC3ujww8X17YE4o05+YCptN1V7L+5k5Dfa/wbzZabzywYcsmJja6zq1AaPRaE5N8oLqnGCc2AtnMNSXAAqmXSIy/+2N0nl4znUnLpuYJc0L+8qDaaoMPjcCQcMoNCRllUgDZM0g0N5OoLWVztJSqv/0J1pWF4LNhmv8GOISK+iMm0z72m0olwtbfDzOujrqNm/B6OzEcf+vSbn2GjrXv0l72Rjsyak4bWvwzG0hSSkcLgVKYQT8pqPDBpOXw/Jvn3ixzpoG9Ue7eX0GbbVxVG5Ooe24E/eMDLK//SOSLr4YFdf33Xa3WOGjw6tg5pUnvm8dZ8vAGCpKyXcm0oBpLAcMOOPT0TNeoMuAyY33sauisUuuv0vVuP25EA9bB2x9TPZj8d3S+RpYCLSkZ0FdDV9Zns9k0xuilMI1eTKuyZNJu+Vmmn54BfVFFSzZvxbn7gL2//v3qGkzuC0whnn5l+Bvnog9MSIP5vB7ITo3YlinzP84lK2iw57An67IYWZ3icrx6QBMS+xgY4QHptnbzxCSGdpcmLeMhReYx3zNH+W3cvoNUm2Vt0yM/V0rmJ7uoKGts8dmlRbagNFoNKcmE86CuHizMqcM1vxepOrzh5APU3cUksfLRXLzI6J8i2Em93bDuLm9GzDeFhGrm365hLl2vwDeZvGMLPgMxpwb8Lan4d1bTOeBeNpr42hbcx/e0v/qWoUtOVm8GjfehL3ifXjyU3DXfUHhOKCgoIDzzz+fljVrOf7QQxz/20M4EhXu8UkE4sfRsreGhiN7OWYbhyd/DL6mDjqr63Cn+UjK9eGcciH+9UdhbTGO7CwcmVlgBAiUG7RvaqHlrv/AV3sc1+Qp2NPTaFn1Ft7SLOyJTsbfewfJd/5X77orfVFaBOv/LM+fvRNuf+XEc2jK8XeF7qJBWp6c81AsL1xq70mnA8Y0YLIc7bzxoaRtKEIUcddHlMc3VUolmNWOAaC0iIR68UpMXvv/YNqcE46TstlIPi2LZNcWnsz4JcVH4CeT2ih/t5Br97xP3P3vsf+3P8Rz+unEn3UWjqwslMeN48NSHLVxOJMC2D2mYW0alS5/CzPfvBXGdaeXIx6YSZ52Xqro3gOT3psHpjvtpYAf3jJ7Ke15WUr8cxd1VUfNSBbD5VBVc09rBbQBo9FoTlXqjogxcM4XobYY1vwWju0082EGKe9fXyIXrmxTn2LrE/LY013/uDNg/0oo+CVMufDEbe59TRr5LfmyJMXufomAP0DDQTf1azbR8eG7GF7rLjIVmzNA/IJskq+7HntyCvakRBKXL8eeYiaa9tIzSClF4tJzSVx6LoGWFmy/yYdF18Gsa+DhS2mvs9NwNIk2WxKeGQtJ8gRo3bKZ6u3VsP3/ejkoSTjzy4jLmUDrls34qqqJnzWRtOx6Un7yCvbJC/t1aHslsplkd+HAiq1icJh3/FEhbZIYmKF5N5ZBE20DxlRSbmuqBXKw2+C88Q7uuXoRC8fGiUDelIukn9TeV6F8E5z+yfB8oOJCguHIHo5TaRHsew0CPr5R9f/4fNIPyfrSl/j9+PP519qDPHa2m8mle2ldv57jDz8Mfn/Ih7NQDhtJ5y8m7ZjCfuR9aHTgcPuxqx7yrkwDZoKrjYa2Tlo6fCS4xHRo8oLLYcPj7CFpuLQIXronqL1khYKL3+9+nAnSRXxyvHh6DlX3mP4CaANGo9Gcqlh35OPng1laCYGhyfvXl0hpc7apbX50jQiDJfaQNxDnAQx471fw/u8iqniKxLCJz8LIXUxHSSXNe1Oo2+/E12rHPT2JtNuuwT1zJk5XM453voTD7UfFrYKrv9b9/nvMi3cf+jO2zuMShsicBkffB6Vwp/lwpzfChcvDkmB91dX4GxqwJUpyp6+qCl9NDcpuR5VvwLntF8R9c0WXaJoRCKA2/BneeB/GTe7nge2DvGUSTvO1Sz5Od4mzFduiFz6ySMuDjkYxCC3DqL5E9iG0iisauMWASVQi+oYBGR5p0cBbPwJvkwgkZs0QwxcDdr8Mi4rCE6vtrt51b4oLxYOBNI6c3bGdTcW1PFVUgt8exx3bDf551+0s/Np/YXi9+FtaMDb/C99L38WXcxkt3pk0vPACje9YuUaigmd3B3Dtfh/n2004MjPxHjlMx4ED2BI8uJpTyGlax7KqKVRsGce0c8Rj2dxpkN5T+MjSKQrrNRWQ0vxDBRJihfBxJsjvMJNGPHF2DlVrD4xGozmViazMsCjfIpN59my5c1v1M7qtmOkvfp/kP6ROBFeSGV4ohvHzev5Mi9nMxYgwnEqL4NGr8TV7qT+SSP0lF9JZUQV48Ewby7jP3UbCtXcGwy6FvwZPD9VAofS3a/NxU08lY6ocn14ueo6sLBxZQQMtbmyI6u4RG+wPiCaMacAom03+tzuDTRiHSu4iqSJ7+mZIm3zi2A+8Lbk4Uy+JzvYsrLypuuIQA+aohCXtg8zl6QkzhJRmb8MekNDRzHS7VHSt+Z0ss/LbMO8muqq/Isu4e1E57iJvmey734uhHKzzz8LYW4XfLFHu9AU7iSunE8exrbDm28Sl+6HzLZLu+ApZX/saLWvXYHg74fhBfAe20NHsxlvZROPKlQQaGoibMAHXtGn462ppPOrBcXAd32Edvjuf4Og5i8m65x5a2v2kxneTkA1i3If2mhozWyr/DpktIy75Ofjbw8dpentsbceZnDVBGzAazUeGaGumDAelRfDIVeJNcLjCcyMqtklvInucvDb5AhF5u/XZwY2vsVw0VqyLWtJ4ubAl9OB9AZh2Kax7gC4hONM4COx9l5rNTo7vS4OAIn66jYwf/w+J5y8nbkz2ievJWybj60tR1tKbaetDAbgmxIBJGtv3Ra8nEs197fJwmTRXSRXPUPJeIsldJAbKwbfCQjrJDXuh0MyH2PoYzI1icm1oKXWOmedkhRGjjRlCuvvsLMbHz2Dx5AyajmwP5lmBGUoxev8u9CWkl7sIrvwNvHQPe2Z9mS1bppNTK14fS8q/qwv14fdgxX/I9x66wjX23EUkf+xj3a7eMAyMzk6pdLNe++l4Gqd8imtXn8b3xjUz8Y1nOXrLrfxUKVo9SZTsnkfqtdeSeMEF2DweePHLYqgoG12/ndxFIqKHIa/7208slzdDSLTWMCVrJltLezfktQGj0YwGTI8Avo7wJoWx2la0DKXQ3kS+EM9EwC+lwfNuDi6bv0zKP3uS4e+L+pDch9Ii6Q8Ekgcz96buxzL5PFHHzZoNl/0cY8JZNK18g8qfvYyvOpGUvFYyTvfi+sqjfV90+mNk2OxyJ9+dB+boWukVNOVC8cA4E8XIsNY/mHNhGW8tVeGvN1cGjZtokrMAtj8pDStTcwFIrd8pF1aQ8x4tYTmQHBgInnsQAyb//OisPxRnIqDI9XTypQukBUDBEYKqy1Yp+2DVhUMxy/rjkuUcvb7zGNOyE/n4/PEsnpwpYatDBfD4x+kynrorpe8GpRQqxHgBUK5Ekho2k542iQ8WX8GF3/w8ja+v5C9PFTA1rpPUfXsp/7oYIyrOgc3WgTMpE2dKAM+ChSRe9TnisjNEVLE3I96VLFpJLTVMyUrk5Q8qTlwmhH4ZMEqpy4DfA3bgIcMwftnNMsuB3wFxQI1hGDH4hmg0mm4pLpT8AhhajkhfWIaSv1MmoaEaSnnLZGI1/IABE5fI68cPSgJvaE6EVa1RtVd0WwZKaPXJrhXBkta+LpopEyFpDB2dWVR+7i5a1q7FNWsWOVckEc8uuPXF/h2D/hoZnvQTDJjkhr3wyHfkOL3/WxhzGmRMGbqHxJMmF4zmSAOmKjpl65FY1V4VW7oMmPrU04Ll8tEUlgMJFcZnBEupfR3SLDMWHhibTfJgOhrDX7fCKOfdG2waCUP73ZihxmRDqp18AYMbF+XyuaUhOUub/0GX8dJbKX1flBZBSxW2lkqedO7lbx9mY4ufQer1n+DxbS4+sXAS118zm9YNG2jdupXAxqcIVB7F2+SgucxJw6Fd8O+v4xg/DmfWOTiTDZIuu5KEcQs44durlBjVLTVMmZzQJZbdE30aMEopO/An4BKgDNiolHrJMIzdIcukAv8HXGYYRolSKgamu0aj6ZGckB4mNkd0LwKhHHwraCj52mHVz+GC7wx+Ms5dJBe18k2AAR2maviOZ+XRFjJFWZ15q3b3bcBYXiJPBrQdl+NhJW8m5/QvWdIk4Mqm5rX9HP/ZtdjcbsZ873uk3fhp1MMXg3th9A1FT9oJSbyp9TuDYQBfhxh4Uy8e+ra6LhiRIaRKKWOPNmNPE4OpfDPMvhaAxpSZEJ8l4YOrfxf94xmqBdNQhmgKxcCAAXClBAULLSp3y/ZCm0YOeTvJYHPQ1lDT9dL/vrGPebkhTScbKwAV9LwMxniBsMooBz6yjm8EbsEfMGjtFBVeZbORcM45JJxzDjz6OhzZAcqGYXPiveDPNB9soH3XbjrLymjcdpD6wt9g/+1jJC5dimfBfBKWLME5wUyqTsgwQ0h9NKSkfx6YRcBBwzAOAyilngauBXaHLHMzsMIwjBIAwzCqTliLRqOJHU0hrtbl/y924aOknJB/DBElK1k/NE9Me53I65dugG1PSB5I4a/lvZe+InkMuYvkIuBMDArF9URpETxyRTAsARJWy1smeS8OZ79COr6aGupXPE/d30vwNXSQct11ZH/j6zgyM8VbUHMA5t0yuDH3Rnz6CQZMY9K0kP8MuUh216l4MCRmhXtg/D5JXrbCU9HE4RIjpnxL10tx3kZoqYQl98Tme5uWF6xos7xwaTHwLoGE/9ojPDBVu4Nl+9FCKfCk0doQPG+hybu01oqX6/RPBkXiBnts85ZJxZDhx6/ieL1pCtOO1pGfmYBBNyJ2tUckxDV5OSpvGa7cRbiWBt8OeL00v/ceja++RvPq1TS88AIAnnnzSL7mapJJxdFS09WQ0p6YMZYe6I8BkwOUhvxfBkTe/kwH4pRSBUAS8HvDMB7rx7o1Gk002PqEVIy010dXRyMy38Vmlj5OXCyGCwwtZBXwiy7HzCvlTnnj38SQ6Uo6DFm3UjIZm2JXPVJcGG68gHiLyjfJnavVfbibkI5hGLRuKKLumadpevsd6Owkflo2OWftJf5nP5UwAUDTMQlxZU4j6njSglVG1n5Znqjpl8OBN83jE6UE24Ts8ByYlmrAiE0ODIjHbce/IRAAm43EZnOsvVWDDQV7nOTAHF0XngcVC9zJYR4YFegUQ7c75eGh4kkjx9WOOy7YX6greXfvK1LhdM6Xhl6anrsIZl1DYO+r3NLxHTb5J7PhofXc98kzgIg2Ak3HoKEUzr5bDNJusDmdJF9yCcmXXGK2SCim6Z23aXzpJSp//BMqbYqECVBf8gtu2F/HHxLScrpdEf0zYLr7lURGphyICvJFgAdYp5RabxjG/rAVKfV54PMAWVlZFBQU9GPzI4/m5uZROzYY3eMbiWPLrFrDacWFfDj2QsYde5fDOzdS0pR3wnIDHVtyw17mbv8+tkAnAVsc2+f+hMyadUxQcWxLv5Z5pRtRhp+AsrO9NoHGQRw3V3s15wQ62Vfdid/mZHbAh9F0zHxXnbDu6f5Uso6tZ82qVSfkf1jjS25IIHzKlpJV1VaH0VZH4B9Xsn3uTyR0ARAI4PpgB84dO3Dt3o29ro5AfDxt551H27KljPFvIf7ANta+9SJel7jnU+s+YB6wrbyN+ih/X6bWtjKmqZo1IevNrpHGkx+4zuQ03sQG+Fffz/bG1OA4BsmMZj/ptWWsM7eX2HSIM4GdxdXUtBT09tFBMbYpnpkdjZT+/Xaqs88lvkY8aoWHmvAfje72khv2Mm/Hc9iMAP5Hr6YqayljsbF6ywEM2+GobgvgtGYvro4aNpvHUtXsB8PP7hqoivL3ZL7XDvVlfHOBk721fmam22k6sp2CI3DG9odwe8ZRtK8e9g99u5NaPeQHvGz35wPg7QywolC+k6UH91DQcACAzOr1nAZsqbYPbD6YNg2+/nUc5eWMfeMhvHsqsK14ms/6/fyhFzu9PwZMGZAb8v8EIDI1uAxJ3G0BWpRSq4G5QJgBYxjGg8CDADNmzDCWL1/ej82PPAoKChitY4PRPb4RN7bSIlj9GwDG1awFh4fJY1KY3M0YBjy21ZshIBVCdsPPgvQWaGmHrOks+PgXwVMO6x7A/unHWNBTh+We9tny6vjGwHqYsfhSyYvYq1AYgA2mLMe+/NssCPWSuPfCyrdYfuZsSAoPcXSNr3kObP0WTP2Y3Pm2HRctjgNvoELGElh0Ds2rV1Pzhz/QceAgtsREEs5ZTNLFF5N06aXY3G5Z8Z5EOPBXlpyeH/QSFB2A7TDvohsgeVz/x94fjHVQ/irLz1vW5fGq3H0/JE/gjOzgbG4nIOdk2fKhbc9XAGsLWX7++WIU7vfCZjht8UWQG4M8mO2VsA9yy18mt/It6hImQ/oUll0cAy9F4WZAkrXtgU7GUQ2puZx/4UXR3xZA7VNQUtX1O9vzdAEAsy+4gdlWDle0qMiDhjLuui5iLPvfgIIPYO5NLL/gguhsa+NBKH6SbHsL5f4UHHbF4tOnUlC2l/PPOZMzJqTKcm8XgM3BgivuMEUgB8HEY/DuT9hy6x7u/HsR/OObPaby9seA2QhMU0rlA+XAjUjOSygvAg8opRyAEwkx/XZwe6/RaPrNkQiJdlcitNb0/pn+Yg9xDdvjxODY8njwIp5/nmikxGf2f52lRfCPyyV84HDB4i/I62l50vfI4Q4m1naXdBiayJvUQ45G5Q55XPIlqbywtnvkPdqqDeoPJ9Ja+AreiochEMCZl0fOb35N0iWXdN+oMMk0ULo8Q0hYwJkkGizRpkvMrl4SGoHkxgOQf1ZQ0bYfycf9JiFbKmUstdpmszllT8d3qDRYGQkG+L0kNh+BWVfEZltWsravXbZXeySoBxMLIkJICS1HJWk5WvlKocSnS6f0UEqL4OlbAAN2PQdn3hmdvCKzFPwP107k+hUNXL9gQlf/o7AQUtkmqZAbrPECXVowC7ICPHz3+Zz9QH2PtdR9GjCGYfiUUvcAbyBl1A8bhrFLKXW3+f5fDMPYo5RaCXyAmLsPGYaxc/Aj0Gg0/SLVco6aYlGJY6D1+NDXaxjSmNDuEpG58+6FsWdIDsEZnzK3beYR1B/t/5262cMFkItwaZFUGiVPECOmL60Us2sv6/8s+izdLXPMnHrGnC6baW6mcc1h6tbPp+PgUZTLScLSOSRd/XE8c+aQuHw5ytHLVGh5WEITpWv2Q+bU6Aq9WVg5TG11YsC01eFpPya5I/3VkxkIVq5LS7VpwJiGWkKMcmDyz5NzHvCBzUacvzV2+S/W8TpcIHli9Uel0s3Kg4o2rmRZvynUl9ByVHSLoq36C2LoRuoFFRcGy7b9vujJKZgGzMIsg/zMBOpaO6lrFe9sRt122LVWJBAqtoqm0pC2Zd4QtdSwcNIE/M3Hj/W0aL90YAzDeA14LeK1v0T8/7/A/w50XzUazRCwykOXfk0qed6778SS2MGw/v8k6XXxlySxtr1OEkuNAGROl2VSTOPJquzoD5b2CsikbrOLIWQ3p6K+tFJqzbyFA2+IqFs31U+B0u00lI2n5Ts/wVtSgvfwYYyODlwzZzLm+98j5eqrsScn93+fE7KlFDXSA5N3bv/XMRC6PDBmJVJoTygYvGhdT1hids2VcrFtrpJqmjh39LYRSu4i+MyL8PStkggN4nmLFdbxSsiCV/5Luos/ek1sxB7dKZJg7W0BVyIJLcUwPUbhKk8adLZCZ3vwXOUto6tNQTQ1dSwxvtbjzBk/kW2l9UzKjOcs2348T/5cvL82hxhP1vd3sFjfx6IHYeEdvS5qG9qWNBrNsFJaJCXGpaaK7J6XIPdsuPiHwW6ufTQC7Nc23vyePN/0d0ifIq7hmn3ymqWE60oU0bWukEA/qNpDV13Ax34qol+W3Ht/KC4MPjcrlAyfj9ZNm/CsKuDD73+fA79Yx7H3oX33bhzZWaTddBN5//4X+c+vIP2WWwZmvIAYVwnZpq4G0NEMjWWxqUCCYENH6+66y4CZF5vtdbUTMCuRmitjU0IdSt5SOPcrQW/Bm98LfqdjRVutKW1vBKvboo3Z0JH2Bjj4Nu6O4yKmFwu6PHUhv/f0KYAhXa+jaaCFGTAplNW1UVzTwrK4PSirPYJ1Ltf+fmjnsrFcHrc9CY9eQ5KThJ4W1a0ENJqRQmjfILsLrv8bHNsBl/wkuEx8xtBzYA6+E/SU+DtlUq7YKoJcqPB4furE/ntgOpqlN8v8W0RSvLnSbKY4gJyEvGUYARveJhve1nhaV5bR8J0L8FfXkAw0JieROLaNtOuvwvMffwg2UxwqSWODHhirxNnyREUbqx+SZYgefAevIwlnzYHYhD2sUJHlubP6IMWaUJlVs0dPTHt4DUC8cNCYDR05ugZeNMuItz4Oc2+MgeBhiKGbPF6el2+Wx2Vfj+72Qrqkn5YjRtraQ8fBPsvKkQ4y1NBV9V7ziRiayS7VowWoDRjNR4PulFmHo+Fh1PsGdchzfwe8+1N53pUHgxgwna3gbQVnD11i+yLFVMS0FDynXiTaLLueFwGw0AS91Fyo3t/9eiI5vEr2+4wb5TO7X5TJNz2/Xx/vrKyi7rm11L+cg7/N1ImJe4fE888j5aqr2dbexrJF+agHz4Mly6Obn5I8Pmio7Vspj76O6K0/lNCO1KVFcHQtcRixC3t40kSoLNQDM1TtkP6QvwwcbgI+L7ZYGRShxCJ/KBKzoSNH1wZ7fEW7v5OF9T0J9biWbZTfbbTPn8MpYzM9MABN7T6Op02ANmDCIgnNBXxDNw6nXATv/Qorr6+xw+yX0N1uDX4rGs0QGM7OyUfXwSNXBsXRABye2DY8hKDHxPpRD3V71l2QFeOuMQ2H578g8vi5i8JcvYM2YCzRtLPvhjnXSRXOqp9D7SHpzhxK6iQ48HZYd+Ee2fe6iO1NXCzVQavvk9d7CCEZgQBtmzfT9O4qWjasp2OP3Jklnp5DcsIunP/1Os4pU7AniuR4oKAAVRmewBs1ksaKEVdaBIVmqt9LXw6qBEcTdyqgxIDZvxIwJOgWqx5XNpvZTsA0YJoqITEG1VWR5C6C21+m+N3HmHzhZ4bnhiLa+UORWB6YdOlTZRgGKlbGWXchpLKNkuju7DHqMrTttR4nPcFJTqqH8vo2cu1mmHPx3ZITF405feLZovjtSYWrf0fT989u6WlRbcBohp9QqffhMCTWPRBuvEBsGx5a7F8Z4jEZ4vZKi2DNHyAuQXIHqvbC7udPXHdXO/rj4Z6ZgVCzT0o/L/mxJNoahlzQmo+dmPeRkgu+NlN6PqvndQb8sOdlMXgqtkYYMOEemM7KKuqeeIKGF1/EV1WFcjrxzJtH5pfvIeXqq3GWvwori2BaLsRH9Es5+LYYYNGoxAolabys83BBeNl6rAwKT6pcmFLzADFhYnYhBLOdQLWE+TpbYqfCG0nuIkomtTJ5OIyX4cAyYJLGgiuFZnsqSTc+GJt5JtRTByJNUL5Z2gfEgviMrt/VnPHJlNe3kWMZMEnjo2scpucDRp/r0waMZvgJlXr3d8TWkGitlbwLZTP1o82ArT2GDQ8tbJY+ghqaWzU098XmgCkXyt/+lSfG87s8MEPIg6neJ3kuVumnUtL5uPlYuDYMBEupG0p6N2A2PiQJu5U7JRRy63Ngd2H4OmgpXE3znucJtLXhb2qk+b3V4PeTeP75JN97L0kXLMeWEHJHWW+VWVaHtU1Ibtgrpd9GAB6/LrqGsaX34rDCZ0M8p31hdaSOzwQUxZM+Tf7Fn4vd78TuEk2R9f8n/3t7vOnV9IYVQvpwG7TXUTH9RmbE6pyF5KUA4pHtaIxNE06QucUMM84Zn8KbuytR1rajrYeUNCaYvN4L2oAZCQxnuGU4CC31MwzRD4gG+9+QJnFWy/rSIlj5bZmMP/5naCqX54W/hvP+O/bHssHMmUidJAm3g91eaO6LYcj/y77RfTzf0lAYSiVS9T5puGdRWiThE4B1f5JybWt7XVowJZCzsOd1bv6H+UQS87wFj9K4w0n94RQ6n/kjNo8bW2oayhlH2g2fJP2OO3BO7KFfTUKIAWNVRAGp9TtCko+j7GGztGD2rwRssOxrMP2y2H2HrI7UHVshayZH828iP1bbKi2Si4Xhh1U/k9fW/A6mXTI65pvhxKpC2vc6AA0pUW7iGIrTFH60PDAfPCOPkTcZ0SI+Qzy/gDtOCpiN1uMQB1vq3CyIYgs2ksZB0+vhid7doA2YU53SIvjHFVKiNhzhluFg3DxAiZu6uRLW/0n0QIYyriOF8KQpsLbm93DZL+H1e02vhR0yJsO8G0Uz4f3fxi4B08Iw4NAqea4Y2th60nbozmVreSRaBuCBObpW9nXaJSJWV3ck3A1dXBg0DAIRFQZWmKq3SqTGCqjaR2e7k8ajLhpLPLQfLwSS8GR1kHV6C0m33Yntwnv7t7+WTkSE3k1zQp75LAbeEUuN9+j7MPViuOgH0Vt3d1iKuI0VMO1jsd1WcSEntLeLVeLpaMfhlu9e7SGIz6A1fkJst+dJk1BjaZHMeyDVT6kTo3/uQkJITe0SRh2j6qg1EllX0sKCKVHcVtJYKUboaOx1Ma0Dc6oTpqwYI+2C4aauGAjAgtslPLHnZXj06qFpB2wI0VX0d0gooctrQfC4xbkhYxpU7hr8tvpDzX5Rbk3IgoZyiU8Ployp9FvbwZ0qFSX9zQEpLZJjv/o+edz1ghgrIZ6NrvJTZT/RMHCnyF/9iVowhs9Hx+HD1P7m2xS/k8bBFzKp2poE6VPJ/o9PM/XjDeRdXE/KlAC2acv7t78QYsCEG2mGzQx5zb81+oa+ZcAAjO/F0xQtPGkiltdSHfuKIOv8WpcDq/os1iHW0YhSwTDSxHNio9QciicdWuvMm4yIDu7RJj5d8qM627hgZjbuOBtjVR3VpAe7YEeL7tp3dIP2wJzqhE6WVj+akY5VPdNWC4bpWRiKyz/gh/KthIWlunQsupmMx8yWUFMssbwvc2+CtX+QCo/BxonLNsljf7QdbDazWqCfHpjD74VL+x98U55nhhgwvZSfGoZBR+d42t7eSsfmH9Nx5AiBxiYCra10VlRgdIgR6cxIIOurXyT58stx5uXJh0uvGFxo1JMOqBMMmIQW0wt00Q97z8cZDDUHgs/X/h6mXRxb74QnXe5AQXRyDvZYSTp0Qs/vcMsMjEbcKfL7m3gOeGO8rXgzV6rrOhHD3Kyu/LpaFk7K4Z93LSb7iTqSs/NJmTRE9d1IrPlbGzAxYrjyUvwhoY5rHxgdk4plwMy8SvqT+Nrlrm+wP7r3fyv5LQvvkCqKnc/Cjn9J7smCz0jvldDjNmaOaJq0NwZj1oPhSCGUFXX/HTi8Sqpr8paKAdNQNjADJvT7NVBth/jM/ntgwiTcFTg8dLY76Nj1Ie3PF9K+ezf+hkYcmZkojxtv8R/wHjmCcrtwZGXh+/AYvqoGoAFb/PM4p07HnplBnCeXxAUzcFX8G09qG650G1y1EHLzgpsbbNWC3SETd0QIKb61RMYebeMFJHRkMRyia1aFic0h39eD62O3LYh9efFHCbODOO7k2BswnlQxrm2m92zuzXDmHbE5l6ESDSk5LJyURoeqw5UdpRzGULQHJoYcfk+qHDDE9RrLvJQjq4PPk3Nis43hpuaAfEGnXAC3vwyPf2LwE2jJhqCg2/Zn4LJfSBdWIyBf/kjjBaRbKois/cSzBzeGrU/Ai1+S53anhC3GzpW7V3cqHHpXchcsUbj6EphwZv/WvfdV6SirlHy/smcNTNshPgNaejdgDJ+PxpVv0P7883SWZeHrjCfQ0obvxffwt2bDC18BwJmXhz09nbZdOwm0tOKcNInECy+Azk581dXEzZxEYv5B4rPaiEtxou74a/B4F/4a3mlGZMbt0b3ox2eeYMAktJQEu1VHm7xlZqfszuEJr1gGzJg5setJpIk+pUVBpebX7iX59B8By2O3PU+6JHuXbZT/L/1pWGVeVAk1YAD8PpzeBimhjjZWJ/SmD3tdTBswg2HbP0+MN8bKgDn8nnlHXRN9bYtY05OXqmZ/UE8kdxFMOifYZ2ag7HyWrgREv1d6A1mhpMiEUwuro3HVrsEbMJsfCT73e2HTwycuc+BNOOtz8ryhrP/r3v0iXaEwv1fydebf0v/PJwSrBSIxvF6a3nmH6j8+gPfwYZTdIC49Fce4HJy27bidHbinTcd92y9xzZzZJRLXI4W/hndekv0NRPwW8paJEWZEubEcmMJrISEkw5DOvzOXR28boZiia8NWDWhdhJQ99j2CNNGjuDBYOeP3klq/M7bbszpSl22S3L5YGS8QNGAs4byWKhSB6JdQg/SPciZpD0xMUHbrSWzvxlqOQ+UOOPOzcoEcSGXJycZKDvV5wRHipTIM8cCccUNw2TFzJGfE5xXJ6oGgrMRDM8F01rWivNtbv5OUXEm0G2wir98nY1A2c7LqodQv4JfyVFfywAwYT8gkZLNLGHEg2g4h/ZD8zS107NlNx+EjJL/+Ovvv/RaBxkacU6aQ8x/nk9T4FOqq30j47f5pkhB4xmQ4s5/eorxlkpvl90q4I/R45y6SYx3ngWv+GOUOypnh56+hFIe/HbJnRm8bkQxnmKW5Uh4rtsKj18T+Tl4THbo8dTL/1Kee1vdnhkJ8uhR5FL8PM6+M7bYidWcaTe9Icgw8MCBemOaPigEznFop1kEdPw8uvy922ys2w0dzrhMDZiR5YIoLzVLliATd5iroaAhvhDfmNPkR1uyDsQOUgK8vERfmoruC537M7N6/C0pB9uzBGzDFq6G9Hi78ATSWwtYnTWG+AF3en9BKjh3PDaxjM8hnA35R3vV7B2TAGJ4MOisbqPv5z6l/9jkCrZIM6or3kPSxS0lamE9iYB1qz9Oyu298VwzA9gZZwc4VcNZd/fte5y6Cq34r4bTzvxX+GcMQo3vh7dH/jSRkhScqV+2Rx+zZ0d3OycLS9jB/PzG/k9dEh4iE98ZDrbHdnmVUdDT2P0Q96G1ZvZfM61CT6TWPhQcGTC2Yj4IBU1oE/7hcJnyHO7Y5KYYRVAj0pMXWWNrxrFzIbHFyIRuKONlwExo+sNmDd+ZWAm+oJL2Vk1K5q28DJtRQzVkoXV9nXyvCbhb9uVNOyIQDb0kOzcSzMQwDf309ePuRdbfjOfGqnPMlyU+Ye3N4BUdkJUfKhIEZMHXFUjo94SzY8qh4sFqOnyjjH0KgtZW6f/2LxpdfwXtoP4H2bLA/SfIVV5By9VW4pkxhzb59zJnsgkevCuq6gBl6ezH4mhEYWFh0xhXyGJmr0VorZZcpg2xp0BsJWXKR93eKB6hqt7yeFUMPzHAy7WOw9oHhu5PXRI/Q+edQQWy3ZRkVEDsFXgu7Q/L7ugwY07iIRQ4MiGFk5fb0wOgwYIoLw0tBY5mTUndEJk5lG1hYYKCUFkkyJ4YkDJudQEcMuYvky95WK92HrfPRZcCEeGAypppS5juk7XxPWGEpv1eWv/LX4jXoRwjPCAToLCmhfc8e2je8Q/t76/E2pmA8fxt4MvA3tWJ4vWQ7HBw980wSzl5E3MSJOHNycE6dGswFKX4fdvxbkoOtC3ZfBlPKBKlW6i/1R6VJYN4yMWB8HfD4x7s1zANeL3WPP87xh/6Ov64Oz9y5pFywEGflGyR951/EnbY0uPCBA6LWGWq8WGHQ/oTeesKTJvHqSDG7LiXiWBgwIQmFSWOhag/trgzcntTob+tkMNx38pqRiZXz4vBAdgxVf7u2FxSzo7ECAxsqIQZVfyC/64+EB2bs3ODzWFcIWPohk86Vxln96cI7GA4XEJacarONLAOm5Xgw2Ss0k7zmAMTFh1vtdodUj1T24SYvLpSSa5BjsvsFeT7p3BMW7Tx2jNrHH6fxlVfxNzVhtLcHxeTsCleSwpPhlXSm8dnYZy7FkZXFkc2bcR8tofr3fwhbX1xODq5JY3A3vo8rReFqLMS5dD0qb3HfxyJlghi9Hc3g6iMp1jCg7ijkn28aAN3r5ATa2yUZ93e/p7O0lISlS8n84heIX7BAKqAeXwFJ3ehUWhd4ZRfP2PxbRaumP6G3nlBKjJRIA8b632o3EE1C1XhNA6YlYRKjql5nOO/kNSMTK4SUmA0VW4YhuTwjzAPT4UrDbetmnokGiWOD830PjA4DJlTL47q/xPYklm+RMNW0j8lk31YXm8zv1EnmEzOXIjkn9gZM8fvS8yYaeURVZn5JykQo3xQ09Mo2ijepfFOENstpcOCN3tdpduYFxAPW0SxaKynB8vL2vXup/cc/aHj1NTAMki68gLicCSi3C2duLq6ZM3G567E9eZ0kx9qdcMd3u/ZlR14eZy5fTqClhc6KCrylZXQcOEDHvn20b11L8zEPGPGyC6/fhS01DVtCPM4Jubhnz8Izfz4JS5Zgc4dcSrsaHpb1nWTaelzCLmmTJEQWkhBoTDyXlsJC6lesoPm91RitrbimTSX3oYdIXBpixFn9kDY9LIm1occ54Jcxn/+tE0vMh5KkmjrxRDVe6/9YhZBADJiAH6r2YE+aJl46rWei+ahQf9R8LJEmqbFuNROfAY1m5KGpAq8zI3Y3Df3IrRkdBoxVdw/BDrqxomKL9ItJz5f/G0pjY8BY41h0F5x+AxT9LdhQbyj0lOy849/w3F2ImFkU8oisBNkFn4FVP4Xaw5LAW26qykb+2MaeBtuegKbKoAZAJPXF8piQLSHDql0YM6+mdUMRLevX0bp+A21bt6Li40m/5WbSbvsMzgk9aOd8+gl48gY4s/tkVVtCAq5p03C560iKa4IrPg3Gpwg8+DE6GuPoaIqnI/cGAiQSaG6mo/gIxx95FP72EMrjIWHxYuzJyRDnwJ3tJqHRjrO+FNWXAVMnE1JnIA1/awqBhffj3V5Ie72L5s9+j87ycuzp6aRcfTVJF19MwjmLUY6In7FlOOx4Fva8En6caw5IueV53+x9PwZK6kQJQYXSUCqhpdA4fbToMmCOiyhhoJOUhj3DM4lrNKcKx3bSk5c2JsRnSNdygMYP6XDFsGw7tH1HD4wMA6avCqPjB8UlbvglmS9W5WR+H1Rsk5JTS6CsoQzGze3tU/0jcow1+wEFl/xYylB3rhh6Em9pkSRw+n1yFx460e96wVzIAF8brPo5XPCdwf8YKneKJ2DmFWLAlG2Eg28H34/8sVnaLO/8jxzf7ra752XxSlz6c4y/X0prlZOqgg9oL74d7Hbcs2eT9fWvk/bpT2FPSel9/6ZebCZHu3pe5lABPHGdPLe74No/YnOAZ8mleM79arf5KG2bNtH45pu0Fm3EaG8n0NFBw/HjwBjiNn6fhIvWkLB4Mc78fOLGjKF9335aN27EFh9P0oUXwIHNVK1Jo+np/wlbt/J4iJ8/j+xvfoOkiy5COXspN7cSWrub1I4fGHilV39IyZXqsrb6YJiqvkRCS7EIsYZ2pD4sbRvUcE3iGs2pQn542XbMBRb9HVLiX7IBGspweoid13NUeGCOFMJj15hiWA6Yf1tQ8dS62B8/KB4RvzdYThkLdjwrF3d3StAtHo1E3rCO024RzKreK2GEOI8sE58B3iZJ6HT0ctHtjb2vBrswR070tgjP1eFVULJ+8HezlbvEKMmaCc5EMWCq9gKq+2ZxPrP6Z9uTYqxFbre+lPbdOzhet4S2J+/FVzUOw69wxFcx9mufI/mWL2FP7KdSLUhOUeKY3pPEdvwrmPDq98IHz8rzS38u5yZylU4nCUuWkLAkXFrbe+QIzd9fSktHDo0vvUz908+Ef9Cs1qq67z7z8LjIuOtO3KfPwxYfT9yEHJwTJ6LsdvrF5PNh1c+I7F6tAp3i4Znzif6tZyB0hclKQwyY0tiEj0ASxG0OMWAaKwBFAIVNNyHUfJTopU9Z1CktMr2dPnj4MiBAcue+2Hk9R4UBU/jrkItIZ7jiqXWxP37I7NhL7AyY0iJ46R55vua3MOVC2f5A9T26Y8e/T+w4Xb0/vKGeFaZqrYXkvl1r3ZIYEpqJnOjbaqUyKGWCJIGG7kt/v5iWF2niEjkPZ35WEkVzFsgXv/U4nH23JJxF/tiObTefhN9FB1paaC4spPHxB2janI0tvpzEOeNwpBTjTOokJa8D22w7DMR4segry90e4uWwx4n2S/rkbo2X3nDm55M+N4H0pHaMX/2R9pZkOktL6PzwQ5yTJxO/cCH+xiaa330X34anSMvaR9w37x34eCysXJbaI3DjP7uOs6ftmHgpeynHHjRWpVF9SdDD01ACE/uR5DwYlBIPX9VuU6n4NorrDSZf+BntfdF8tBgugcXiwpAKRnlUEDuvpzMB4uLJSWrq0ZI5tQ2YhnI4urZnxVO/V3oFHT8Ek5fLRebg24NTdO2Oo+ugZK1cbIsLQ4wMnzR3S5kwdA/MoQLY9lTwf2UTA6DglzD1ouDrlsu89fjgDRjLc6NscOMT4V+4qt0w7VIRHTuyWqzsgXS/Li2CR64yP+cQT48VFppwlqzT7oTpl0kPpEjylmHFcn2dLpr3BGj65xdoWbsWw+vF7lFkzA2Q8YP7sScnitU/VLdp0lj57vRESzU44sHXCgtuF+9QqIJwfyktgtZqaKlEPfkJPLe/hOf0K8LetxcXkn7BMiAOOgZmIHVLzpnw4QfyaBLfWi5PMmJhwJj7bOXftDfIXyxKqC0SsqRdAwYsvpuSPdVM1saLRhMb8pZJKN3v7WpYGfD7Yuf1LC2CzjbGJqoemwCeugZMaRG88jWx+G54REIaYYqnyIU4a6aEdTKmSMJgwCchpTFDVOTc9hS8cDddSa0XfNd8I6R9wJHVQzNgSovgiU/IXbHNIdU5KbniofB7ISvUAxPRSGswWBnrRiC82V9ztVysx8wWo+ayX8Jr3xxYDsyOZ4Ods32moWkZMC6zSszfCU/d1K270atyaK4+naadVbRW2yHwMHHjx5N2040kzUzDs/VbKJuC52+Wz0fDbZo0VoTweqJiK8y6UhJftz8lIbzJ3RhffRF65xJ5t1JaBI9caRp+Lgm/TDxn4NuIJGOy/C6aPuyq0vK0mQZM5tShrz+S+Awpj7dKp2NZgWSRkCnHNX2yKPDueS9229JoPupEhquA4ncfi53Xs7iwz0X6ZcAopS4Dfg/YgYcMw/hlxPvLgReBI+ZLKwzD+PEAdjUc627e3yEX9qRxcNXvwhVPC++X/BBLVyNjarAmvmp3/w2Yg29LYm5oSWlnG7z1fXMBI+jpAVj8BZH2txRWD74z6GFy6N1gU0jDgKzpUL4VPtwmr4WqinYZMEPoh1RXLJN9Z7s0PZz7aXm92pJhNzv5zr9N5OWbq/q/bkuGHugyMDua5dHXTneZ8oH2dhpefIm6Z56mY7fsgys1QOZ/fomkSy7GNWsWSilY8Z9gI/zzy74x9B9N4lgpg+8ur6ipEhrLYfx8MShe/bqMob8doUPJWybf44DvRI9RcaGMCeSxuXLAIapuSZ8ij7WHugyY+NZyqeBy95HgPBiUEmPFMpKt0GpqFMbS80blIefM2CQKazSacCLCVSWTWmPn9TT7Shk09dBsrh8GjFLKDvwJuAQoAzYqpV4yDGN3xKKFhmFcNaQdtiguDN7NG0bwjjX04DVXQsEvoNSUGs6YKhd5Ze9/HkzxGnjiesJKhwHe+J54JKyLjrLB8f0yUV72i+DnU3Ilh2KwISubefitpNYZV0ri7JbH5fXQXIUuA2YIlUiWAZM+WbbhbQVnPFSap9LqIxPnluPcDwsYkHNUukEqhDqagmq7/7xBjumUC+H933WFfAJjF1H74N+ofeQR/LW1uGbPIvu//5ukMcdxbvop3PnJ8AZhlvfCatgYLXdlV8v2YycaDZYROX5+iJiSAU/fMvCEtdxFEoLa9He46enwz2ZGlFUbAVHhHSoZpgFz/JAY55gGTCzyXyxSJwYNly4Ruxh5YEqLgr3Cdr8Ii/4jNtvRaDQnB9PjU3nf4oqeFumPhN4i4KBhGIcNw/ACTwPXRmsfuygtkoTd0qKQsuReuj1PuRAwYPMjprLrOLmLTs4R70J/WtDvMQ0WDDGYtj8p7vyyDRLju+J+EWJTNrn4TwqvLpFSaiPY1GogYwTxFLlSYPl35KK48A65SB9eJUq1oXfKkY20BkNdsVwcZ14l4YWXvyr7UrVbvFehSb55SyWHoq2+7/V+uE1aLCy8UzRrLELDJbe/RGDZt6hN+yqHPvtdqn/zG9ynzWHio4+S/9xzZHzuszhnzJfPnaDoehSyZsGF341utrulM2B1/g2lfIuc97FnmL2vbOFjGihWo7W0CFXagOl9iU8PeuOi4bVIniAhqdpgjk98a3kw2T0WhKrx1pfITUGsZMaLC4PKygHf4M6JRqM5tcldRHmT0WOlRX9CSDlAaKlNGXB2N8udo5TaDlQA3zQMo/+tfo+uE8PBCMikd+Zn5fWz7oIzPtX9BWv8fLnAN5ZJ1YNScjFuLAfDT+efr6Ux827U2GnYXG5sHjfK7SZuwgTc06fLOkIFtowA7H8r6M43kMqcJffA62ZFSNGDMOvq4P5YWjD1pX3fNVt9fHxeMbRu+TfsfwNOux7O/++Qcc2TFgVZ07te8tXVYbS14XCloPpjwJRskCTj0KaCmdPMpMpJweqaHf8SbZW0PPG+hLrh85bKQShZBzMu7317u54Xb9LMKyX/qPA34Pdi2Jz44mfjXb+Btg8+oO7xV/FVV+NZsICc3/2W+IULw9djleLWh1SvdLaLAXH2f4Y3bIwGlsEW2urAomKrVIG5Ek1XpmtoScOJ2fLYXCUeMIvSjfKdv+1F+Ot5gCHVTkPFZhNpgeOH5f/WWuJ8TbH3wLTViRfuw+0SbivbGJv4eHfnRPcL0mg+UvTHgOkuuBwZk9oCTDIMo1kpdQXwAnDCTKmU+jzweYCsrCwKCgoAOP2DH5Nh3n0avna8m/+JN3EKmxOukkmphz4gcxJnk9W+juamRva/+BdS63eSb/hRQEeDn6oVT3f7uc68PNrPXEja0XW4SjPoTEghyVWNK6UGd4aduIQAhs3O9toEUus/IN88CAGflyNvP0p5cin22lqcNDGvzcbBlS9Q69wPPh+B1DRa4hwUrFoFSqHa23FUVDDm6Fvk1PlxuMHmaqN65f2MaWvmg+pMmh/6O7b6emxtrWQ2JJJV56ZhXzENT1+CqqzD1tICgM0Zj+3Nt2n79cXYGhsJpKfjnTkT75TJ+DMzMeLjSdn7PjlbnsIIiAPBEe/HM/Y+Ds/9PDP8sHt3JZ79jzPZHJPhaydQc4Bj4/I5UBA8zja/l6XYaXz1fzi89yiNKcFQR3Nzc9e5S67fw+k7H6I1YQpbiz4An480/024t2/FX9KE+ufXuz7XMXMGLbfcTOeMGRQ3NUHI9mSbHZwHHNlSwNFaueCn1O9mvt/LjsYkjkcsP1TivPWcCxzY8j7lVSnBsa1axZLiDdSmL2CvNc7Tf0Rq/U7qU0+TxnoD7E2T0FzGWcDODe9SczjY32P+7rcxEiZzuGgt81AoDALPfZ7tByvDjvlgOC2Qgqf0AzYWFDCu4g1mAIcOHqTUO7B97y9ZVc3MAWr/7zLSGqSvVeAfV7J97k+GPJbuiDwnod/L0YYe28hkNI8NTv74+mPAlAGhgewJiJelC8MwGkOev6aU+j+lVKZhGDURyz0IPAgwY8YMY/ny5SIxX7jDLJUOoDBwddbjOus2li9f3vuedb4LNetIbClhwY4fSfXM0ach0EnCWMX0F/+CkXkagbZ2jPY2Am3ttG3dSt0zzxD37HP4HQp/mgeanBw/nAiG2Go2tw1HRhZpu1bhzkmjoS4Ff3uA5go3nbWryep8t2sXDjIWeI10Xut6LRMgLg5bfDyBBklu7QSKCbrTlWMfdb7xOHmKUDFmL1BOOqgOEtKKcS+/GOdpZ2Nzu2h//n466gzc02fiSE+n49Ah2t55h4Q3wnsIVZNMJPY3XmBf23jsrMAX76EsLRNXcgcOdwC7O0Bq/gyW5OURN2mSJM6WFsH7BqmNe+TYhoRuCgoKWJYdwL/6r9hL3sYIBLCXlTK76VXq316Pv6YGlZVJyvILiV+4AGdeHs68POLG9aP8e+sY8tNs5FvnvlCaZ55++eeCpeTRIhCA9Q6mjU1k2vLlUFrE4XefZXLKFOisZ2z+LMZ2fQeX97ye/tBcDZu+ymkTM+Fsc12d7bD6MJzzRRa4W0xBO7Abfhakt8CyIW7T+zZseJDl+W5Y/TcAppQ8xZQLbomNV2TTUdgN6Q3BppxRG0u3hK+zoKCg7zljhKLHNjIZzWODkz++/hgwG4FpSql8oBy4Ebg5dAGl1Fig0jAMQym1CEkY6DvWYRjw7zvl+YU/gModsPM5+b/obzDrmt4nWiPkid8r4ZKLfghvfQ91+a+wzzg/fPnSIjz5VaT9+fv44ibieOYK1Lg5sOQrGA9fQ0dtgLY6Nx1jrsHvd+GrraXx/a3UN0rliStvAmm3XIxzcj5x48YTKN2O/9WfouwGjgQH6vKf0hlIZf/6DeRlZRFoacGRnYVr+gzsLYfxv/gdfOkL8Fcfw19bgy0uQFyiHcc1P8Ax5zzsKckE3vsjgTV/xZXkw+a0wYVTYdkd5jBfkBDZ3Q90DSnQ0kLHwYN4y8rw19fjKl+Bu+EdbA6F4TfoaHTQWhOPN24mjpZdOD7+M9oPFtO6ZjXN+45BwDyI656Bnz+D58yFZN3zZRzFL9N60I2/3YbdDbZnHsGX+gHe0jKyCt9l/4dVpsGXHfJFeIXE884n7dZbSTh3CWowXUpTJ4bnwJRuEN2SaBsvEFTjba4Ug+3hy8g3/MFauo0PwZyPR+diH58u+U2h+TYfbhdtoQmLJMRkd0ZXEjxjquR27XstXMMoVlL7zZGhuF5y2DQajWaI9GnAGIbhU0rdA7yBlFE/bBjGLqXU3eb7fwE+CXxBKeUD2oAbDcPosfSpi8Jfm9UeCt77Fcy7qcsTg7+z74l21lVQ9FdZ1pooHWZvTEvO3MLS2/B3ohxu4m75NzQUw9wbIHcR6rMv4S4uxB2hK2IEAngPH8bm8RCXE6GnU7gBpplxd2WHtOOw7A5aU1PJjrRKn3sSprjgmytgze9FqA5DPpfVADPMnJcl18KBv4M/cOLkH58Bx3aErdaWkIBn7lw8c83E5z/9EVLnw6yrUEYAz7s/xXPlbeBtgd0H4NY7gmMrXkPgr1fha7fh63TTPvU/qV3xDiV3WMuEHMONq4BV2FNSsKfZyZjTRFy8n4DPhmEo3BkK9z3/xD4zwmgcKKmTgg0fAwGpypp19dDW2RtWO4FDq8AMP3YRiOLF3maXhNZQA6bMTObONQ2YaEuCW6XUbXUAGChULA2K0Gozmx3m3wpzb9LKuBqNJib0SwfGMIzXICRGQpfhYj1/AHgg8nN9ssFahelBwQgq/fVnos1dJK0EQif9FjNqFZmYeWR1uN7GnpfEULK0VnqQY1Y2G66pPVRu5C0LNpHsbn/3vyHJoO5k2LVCVGjjPCeUFYd9rrfeFvHpUoVkGN3rXjRWiKbLJT+Bc78iy21+VDwa3uYTSoVV6XrsbrC7fLhUGwkLE0j7wps0vvIKKBsedhG39X/xL/0fAlOuwjF2LPbERLY+/0eytn8PucOOi+6FKnUi7H4BAn7pidReH0yAjQVJ46Q6yy1hNwMz6au7fk1DJTE7XFuntEgSqK3xRVsS3Cql3v4UuFMpHnsZ+Rd9LnYGxXD2ZdFoNB95TpoSr8PXDC3NcgEMmN6GuTcHxer6OwFGTvrxGbKuSAPGaooIcnGyRO8s8bbBkLtILtzb/gm3Phe+H4ffgyc/Fb78gbeCnTt7m+h7upDFZ4gmSWdr94Jqh6Qrr5SYI0ZO/vmw71Wp2Bo/P3z5UGlo82Jtc7lIvf56eb/mdPjgf7GNyYYQI87viJcnp38SFn0+uheq1Ini+dj7GrzwBXlt3QNi/MWk4+kYKF0viso2B8UTP0n+aeeENwuNFla4Ckx9o/el7D9m3VzHmee3A+beyFHP5eTH2qgYrr4sGo3mI89JM2Dc7dWQMgM+8WCw35A18Q1lAlRKJOIbIwyY4velg61hSNNCv1c6MFtu9sGStxS2PRGuoQKw5bETlw0NSQxmom83c6UPvgOzrznx/UPvitKqJeEPImK27QkJI8y5Lnz5vgyp1ImAEg9FCAktZo7KefeGlXtHBctLdPCt4cnbSBonXq19r0PeUo5OvIn8M5dHfzsgxlKlqS6w91Up02+ri10317KNQa/j5kdIPj2fIScjazQazSnCSTNglOGXpD+bPfr6Hknjwz0w9SWwfyUs/bp4MDb8VZRzM6YOveljer481h0J7zHTFSqwAYGhhyRKi8QTAfDcXZD0SvgF7+h6SdacuCQ8vGSqsALda9X0Zkg5nKJ1050BY3eG65lEC0vErdEqdItBKCcUy/CsPQRn3illYLEicQy0VInHcc/L5ovh7RWiSnGhWdlkgL+T1PqdfX9Go9FoRggnt5ljIBCbiTt5nKjIWrz7M5nEx82TfIN1D0gTv0iPxGBIMw2Y2iNdL9n8HZKIOvMqyFkQLig32LEWF4oHB05McC4tgseukVBB8XvhIYnkcdLyoKE0RBJ/IOPLCxsbmAZMxjTpOh1tUiYASnpUOZNgyZele3WswhJJIaXdUy+G3d2o8kaLxDFyDttqpV0DRL89QigRIcL61NOivw2NRqM5SZxEAyaGJZZJ4ySB1jDkYv6BKWi34j/gthck/6WtVi6QQyUxG+ISRM/GJOP4JslTOfs/wz0gQ8G6GPna5K66p4aAkUZhaVHQm/HWD2D8goEZA2l5cixDiG8tgakx8og4XJLr01oDMy6F5d+KzXYsrH5IruRgiC5WdKnxVooqctJYySGKVcJrRIiwUSvVajSaUcQghDqiQ4crPTZxfxADprNVLhL7VwZf93thx9PBzskfPN2/nkm9oZRc5OuCXoqs6jVSMjvp3KGtOxTrYjTmNLnYTjgr+F7eMglRQffdji3BHCuXZCCk5UnYwytqwHQ042mvkt5EsaC0SIxLkDDLUM9PXzSZbTY6GuGxa0lu2Bu7bVnhquZKOLZTmoNGo6t2b+Quiv02NBqN5iRw0gwYrzMtdpOq1cm46UOINwXQrBwUEdCX1wL+6DSBS88PhlkOryazZj3kni35PdEkdxEs/gK01wWTQa3XE7KkoirSKLQ8N4MNVVh5M1YeTPU+eRxK9VZvFBeK5wwGZ3ANlGM76eqW4ffGNk/EMmDqiiXnZowO6Wg0Gs1gOWkGTEyx8hoaK4KVLMu+IRf3uTcN7YLeHWl5clE6uh7+eT02ww8H3oyN92DyBfJ4uCD4WksNNB+TEvTuSrJvf2nwnZy7kpSL5bF6jzzGyoCxxAhjmRsSSn749mKaJ2IZMIffEw2i0GoxjUaj0QyIk5vEGyuSTQOm6RhU7oTkCXDh94LvR13xNF8SaPe/HpKL4o9NgnJKjpSBH14lnbIBykzl2pyF3X9mKNocaREGTNUe/DYn9r66bw+W4RZDG848EVei5EtZxudY7YHRaDSawTI6DRjLA9NUISGCyAtFtMW2rIt8giRpGhBbyfbJF4jOjK9Dkl7LN4kHYfy86G/LkyY5N1aIrGQ9PkcC9vLNsVV0Hc6cjdDtDbDL9IBJzJZ8KWcipObFdlsajUYzihmdIaQ4j1x464qhZn/scw2sMIuZr3Fs7EWxS1AGmLxcqpFe+6aEqco2Qfbs7tV5h0pXknKxbKt8M06vKb4W6wTb0YgVRsqeLc0kNRqNRjMoRu8MmjRO7qYNf+xd9Sm54gHZ/zrEZ7B/+pdi60Gw2iJseSxoSEzoIXwUDSwDZu0fkJaABMXXNAPDKqXW+S8ajUYzJEZnCAnEgKnaLc/HnB7bbdnjIDFLcm4mLMKIdvVRJBVb6Kqm8rXLY86ZsduewwXHD8LxQ6BsBAywDUeC7WjGlXiy90Cj0WhGNKPXA2Ml8sbFB0M8saK0KNg64NA7sdUSAbNSx2X+Y5Ycd/0fZUqLYNcL5nYM+NjPKM6/JbYhstFKaZG0ewDY8KAOwWk0Gs0QGL0GTJKpBZM9K/p6LJGEapcE/LHvOZO7CG5/GeZcH3ztpa/E5oJYXChhOBAtHV8bJZM+qY2XwVBcKErJEGzsqdFoNJpBMXoNGMsDY7UTiCWWR2Q4tEQschfB2Dl0ncJY5aQMVQhPEyTie6KPpUaj0Qye0ZsD09EsjxVbJdE1liEPyyMy3D1nrAui2awvJhfE7nRZYl1qPFoZbo0bjUajGcWMXgOmrc58YgS9E7HuOTNcWiKh2xyOC+Jw67KMZvSx1Gg0mqgweg2YGZfD+j/H1jtxKqAviBqNRqP5CDJ6DRjtrtdoNBqNZtQyeg0Y0N4JjUaj0WhGKaO3Ckmj0Wg0Gs2oRRswGo1Go9FoRhzagNFoNBqNRjPi0AaMRqPRaDSaEYc2YDQajUaj0Yw4tAGj0Wg0Go1mxKEMqwnhcG9YqSZg3zBuMgVoGKZtZQI1w7QtGN6xwfCObzSPDfT3Mpro72V0GM1jA/2biybDMb5JhmFkdffGydSB2WcYxpnDtTGl1IOGYXx+mLa1abSOzdzesI1vNI/N3J7+XkZve/p7GZ1tjdqxmdvTv7nobW9YxxfJRymE9PLJ3oEYosc2chnN49NjG5mM5rHB6B7faB7bCXxkDBjDMEbtidVjG7mM5vHpsY1MRvPYYHSPbzSPrTtOpgHz4EncdqwZzWOD0T0+PbaRy2genx7byGQ0jw1O8vhOWhKvRqPRaDQazWD5yISQNBqNRqPRjB6iZsAopXKVUquUUnuUUruUUl81X09XSr2llDpgPqaFfObbSqmDSql9SqlLQ17/mVKqVCnVHK39GwpRHttKpdR2cz1/UUrZT8aYQony+ArM17aZf9knY0wh+xOVsSmlkkLGtE0pVaOU+t1JGpa1n9E8b59WSn1grue+kzGeSAY6PqVUhrl8s1LqgYh1jeg5pY+xnVJzSpTHNqLnk57GdirOJ+Z+RfPcxX5OMQwjKn/AOGCB+TwJ2A/MBu4D/p/5+v8DfmU+nw1sB1xAPnAIsJvvLTbX1xyt/TuFxpZsPirgOeDGUTa+AuDMkz2mWIwtYr2bgfNGw9iADKAEyDKXexS4aASeuwRgKXA38EDEukb6nNLb2E6pOSXKYxvp80mPY4tY70mfT6I5vuGaU6LmgTEM40PDMLaYz5uAPUAOcK2589YgPm4+vxZ42jCMDsMwjgAHgUXm59cbhvFhtPZtqER5bI3mMg7ACZz0JKRoju9UIxZjU0pNA7KBwpgPoBeiOLbJwH7DMKrN5d4Grh+WQfTCQMdnGEaLYRjvA+3drGtEzyl9jO2UmlOiObZTjViM7VSZTyCq4xuWOSUmOTBKqTxgPrABGGNNHOaj5QLMAUpDPlZmvnZKE42xKaXeAKqAJuDZ2O91/4nSufuH6Rb9vlJKxX6v+0cUv5c3Ac8Y5q3FqcAQx3YQmKmUylNKOZDJKXd49rx/9HN8I5JojO1UnVOidN5G8nzSH065+QSGPL5hmVOibsAopRIRN+Z/hdwZdLtoN6+dUicwkmiNzTCMSxFXnQu4MKo7OQSiNL5bDMM4HVhm/t0W3b0cHFH+Xt4IPBWtfRsqQx2bYRh1wBeAZ5C7wGLAF+39HCwDGN+II1pjOxXnlCiNbaTPJ/3hlJpPYOjjG645JaoGjFIqDhn0Pw3DWGG+XKmUGme+Pw65SwC5+wu1yCYAFdHcn2gS7bEZhtEOvIS45k460RqfYRjl5mMT8CSnQGgpmudOKTUXcBiGsTnmO94PonjeXjYM42zDMM5BepQdGI7974sBjm9EEe2xnUpzSrTGNgrmk77WdUrNJxDVcxfzOSWaVUgK+DuwxzCM34S89RJwu/n8duDFkNdvVEq5lFL5wDSgKFr7E02iNTalVGLIl8ABXAHsHY4x9EYUx+dQSmWa64wDrgJ2DscYeiIG38ubOEXulqI5NmVWd5jVBV8EHor9CHpnEOMbMURrbKfinBLFsY2G+aQvTpn5BKI7vmGZU4zoZS8vRVztHwDbzL8rkGzkdxDr6x0gPeQz30UqIfYBl4e8fh9ytxgwH38Urf08mWMDxgAbzfXsAv6IWN8nbWxRHl8Ckk1vje/3dFPBMxLHFvLeYWDmyT5n0R4bMonuNv9OemXcEMZXDNQCzebcMdt8fTTMKSeM7VScU6I4ttEyn3T7nTTfO2Xmk2iPj2GYU7QSr0aj0Wg0mhGHVuLVaDQajUYz4tAGjEaj0Wg0mhGHNmA0Go1Go9GMOLQBo9FoNBqNZsShDRiNRqPRaDQjDm3AaDSaYUEp9YpS6pGTvR8ajWZ0oA0YjUZzyqGUWq6UMiwhM41Go4lEGzAajUaj0WhGHNqA0Wg0UUcpFa+UekQp1ayUqlRKfSfi/VuVUhuVUk1KqSql1L+VUjnme3nAKnPRatMT84j5nlJK3auUOqSUalNK7VBK3TqcY9NoNKcG2oDRaDSx4H7gEuB64CJgPnBeyPtO4IfAXKTHTSbBnjCl5ucA5iBdlr9q/v9T4HPAlxC5+V8Af1VKXRmrgWg0mlMT3UpAo9FEFaVUInAc+KxhGP8Mea0MeMEwjDu6+cxMYA+QaxhGmVJqOeKFyTIMo8ZcJgGoAT5mGEZhyGd/B0w3DOOKGA5Lo9GcYjhO9g5oNJpRxxTEw7LOesEwjGal1A7rf6XUAsQDMw9IB5T51kTE0OmO2YAbWKmUCr3zikMaymk0mo8Q2oDRaDTRRvX6pnhS3gDeBm4DqpAQUiFi+PSEFfK+GiiJeK9zUHuq0WhGLNqA0Wg00eYgYlAsBg5Dl9FyGnAImIkYLN8xDOOI+f4nItbhNR/tIa/tBjqASYZhvBuzvddoNCMCbcBoNJqoYoaL/g78SilVDVQAPyBojJQghsg9Sqk/AbOAn0Ss5ihgAFcqpV4G2gzDaFJK3Q/cr5RSwGogETGUAoZhPBjrsWk0mlMHXYWk0WhiwTeRJNznzcediMGBYRjVwO3AxxGvyg+Br4d+2DCMcvP1nwGVwAPmW98HfmSufxfwFlKxdCSGY9FoNKcgugpJo9FoNBrNiEN7YDQajUaj0Yw4tAGj0Wg0Go1mxKENGI1Go9FoNCMObcBoNBqNRqMZcWgDRqPRaDQazYhDGzAajUaj0WhGHNqA0Wg0Go1GM+LQBoxGo9FoNJoRhzZgNBqNRqPRjDj+PzoM+45VQ/GnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "period = slice(\"2001\", \"2019\")\n", + "df_monthly = df.resample('M').mean() # compute the mean for each month\n", + "rolling_average_12_months = df_monthly[period].rolling(window=12).mean()\n", + "\n", + "fig, ax = plt.subplots(figsize=(8, 4))\n", + "df_monthly[period].plot(ax=ax, marker=\".\")\n", + "rolling_average_12_months.plot(ax=ax, grid=True, legend=False)\n", + "save_fig(\"long_term_ridership_plot\") # extra code – saves the figure for the book\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "sGsLZwB3nUz2", + "outputId": "461b969c-6406-43f1-fb37-f4b7ff42e510" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAADICAYAAAD2r9syAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACmBUlEQVR4nOydd3xcV5n+v+dOVdeoV0vuvcqxZdKcQgg1dFKABAjsD5YtwLILIZQFwu5CYGGXsoQQkkASCKGFQCDFceIkVmzLseNuy7Jk9TqSZkaadu/5/XHuvTOjZrk7YZ7Pxx+PZubO3Hvn3nOe877P+7xCSkkaaaSRRhpppJHGqwna+d6BNNJII4000kgjjZNFmsCkkUYaaaSRRhqvOqQJTBpppJFGGmmk8apDmsCkkUYaaaSRRhqvOqQJTBpppJFGGmmk8apDmsCkkUYaaaSRRhqvOjjP9w6cD+Tn58t58+ad7904YwiFQmRlZZ3v3ThjSB/PhY308VzYSB/PhY308ZwcGhsb+6WUxZO99jdJYEpLS9mxY8f53o0zhs2bN7Nx48bzvRtnDOnjubCRPp4LG+njubCRPp6TgxCidarX0imkNNJII4000kjjVYc0gUkjjTTSSCONNF51SBOYNNJII4000kjjVYc0gUkjjdcwGlv9/OCZJhpb/Sf1WhpppJHGhY6/SRFvGmn8LaCx1c+NP2kgEjfwOjUe+Gg9dTW+lNdiuoHbqfHArYnX0kgjjTReDTgjBEYIcQ/wFqBXSrnMfK4A+BVQC7QA75VS+s3XPg98BNCBf5RS/tV8vg64F8gA/gz8k5RSCiE8wP1AHTAAvE9K2WJuczNwu7krX5dS3ncmjimNNF7taGgeIBo3AIjqBg3NAzZJaWgeIGK+FounvpZGGmmcPkZGRujt7SUWi6U8n5eXx4EDB87TXp15nM7xuFwuSkpKyM3NPaXtz1QE5l7g+yiSYeFzwNNSyv8UQnzO/PvfhBBLgOuBpUAF8JQQYoGUUgd+BHwMaEARmGuBx1Fkxy+lnCeEuB74L+B9Jkn6MrAWkECjEOJRiyilkcbfMurnFOJ0CGK6xKkJ6ucUprxmweXUUv5OI400Tg8jIyP09PRQWVlJRkYGQgj7tUAgQE5OznncuzOLUz0eKSVjY2N0dHQAnBKJOSMaGCnlc8DguKevA6xoyH3A25Oe/6WUMiKlPAY0AeuEEOVArpRyq5RSosjQ2yf5rEeAq4S6It4APCmlHDRJy5Mo0pNGGn/zqKvxceslswH45JXzUyIsi8vVgJPrdabTR2mkcYbR29tLZWUlmZmZKeQljQSEEGRmZlJZWUlvb+8pfcbZFPGWSim7AMz/S8znK4G2pPe1m89Vmo/HP5+yjZQyDgwDhdN8VhpppAGU5WUAUJzjSXm+ezgMQDhusGZW/rnerTTSeE0jFouRkZFxvnfjVYGMjIwJabaZ4nyIeCejo3Ka5091m9QvFeJjqPQUxcXFbN68+YQ7+mpBMBhMH88FjPN5PPuPqYFh175DlI82J54f0AGIxg3+8vRmMpwzXyWmf58LG+njOf/Iy8sjGAxO+pqu6wQCgXO8R2cPZ+J4wuHwKf3GZ5PA9AghyqWUXWZ6yIoRtQPVSe+rAjrN56smeT55m3YhhBPIQ6Ws2oGN47bZPNnOSCnvAu4CWLhwoUxbOV+4SB/PmcMe/QgcOkxJ5Sw2blxoPz/Q2A7bdwOwaNU6ZhfNvJdJ+ve5sJE+nvOPAwcOTKkLSWtgJsLr9bJ69eqT3u5sppAeBW42H98M/CHp+euFEB4hxGxgPrDNTDMFhBD1pr7lg+O2sT7r3cAmUyfzV+AaIYRPCOEDrjGfSyONNMCuNAqE4ynPd4+E7cf9wcg53ac00kjjwsTGjRv55Cc/eb53Y8Y4U2XUD6EiIUVCiHZUZdB/Ag8LIT4CHAfeAyCl3CeEeBjYD8SBvzcrkAA+TqKM+nHzH8BPgZ8LIZpQkZfrzc8aFEJ8Ddhuvu+rUsrxYuI00vibRSSubq3xBKZreMx+PJAmMGmkkcarEGeEwEgpb5jipaumeP8dwB2TPL8DWDbJ82FMAjTJa/cA98x4Z9NI428IiQhMqkiuezhMUbab/mCUvmD0fOxaGmmkkcZpId1KII00XsOIxBSBCUZSIzCdQ2GWVOQB0B9IR2DSSCMNhXg8zj/90z/h8/nw+Xx89rOfxTDUOFJbW8udd96Z8v43velNKWmn3/72t6xYsYKMjAwKCgq4/PLL6enpOSv7miYwaaTxGsZUKaTukTDVvgx8mS4GQorApHsjpZHGhYdzfV8+8MADGIbB1q1b+fGPf8xdd93Fd7/73Rlt293dzfXXX8/NN9/MgQMHeO655/jABz5w1vY13QspjTRew5gshRSO6QyGopTneSnK9tAfiNLY6uf6u7YS0yVeV7o3UhppnGn8+x/3sb9zBF3XcTgcM9omEI5xsDuAIUETsKgshxyva8bfuaQily+/delJ7Wd5eTn/8z//gxCCRYsWcfjwYb7zne/w6U9/+oTbdnZ2EovFePe7301NTQ0Ay5ZNUIWcMaQjMGmk8RqGRWCSU0g9ZgVSWV6GIjDBCA3NA8R0ZaEUNXsjpZFGGucXI+E4hulsZkj199lGfX19invwhg0b6OjoYGRk5ITbrly5kquvvpply5bxrne9ix/96Ef09fWdtX1NR2DSSOM1DCuFlDzwdZkuvOV5Xgqz3ezrHKF+TiFCgJRM6JuURhppnD6sSMjJ+KY0tvq56e4GYnEDl1Pje9evPq+RUU3TUA4mCSS76DocDp544gkaGhp44okn+OlPf8rnP/95nn32WVauXHnm9+eMf2IaaaRxwcAS8Ubjhk1mrDYCZXYKKcKaWflkuFRY+wP1Nen0URppXACoq/HxwK31fPqahecsrfvSSy+lkJSGhgYqKirIzc2luLiYrq4u+7VwOMzhw4dTthdCsGHDBr785S+zfft2Kioq+NWvfnVW9jUdgUkjjdcwrBQSQDAcx5PtsCMwZbleinM8BCJx2v1jjEYVwdEnbcaRxplAY8sgW5sH2DC3KE0S05gR6mp85/Ra6ezs5J//+Z/5xCc+wZ49e/jWt77F7bffDsCVV17JPffcw9ve9jaKi4u54447iMcT0d2Ghgaeeuop3vCGN1BaWsrLL79MW1sbS5YsOSv7miYwaaTxGoYVdQFViVSY7aFreIxcr5Msj5PCLDcAW03NiyagZSB0Xvb1tY7GVj/vu6uBuCHxuprSQuk0LkjcdNNN6LrO+vXrEULwkY98hE996lMAfP7zn6elpYXrrruO7OxsvvCFL9DWluinnJeXxwsvvMD//u//MjQ0RHV1NV/84hd5//vff1b2NU1g0kjjNYxI3CDL7SAU1e1S6q7hMOVml+qibNWluuGoIjBrawpo6U8TmLOBhuYB4qYiM2YKpdMEJo0LCckNFb///e9PeD03N5eHHnoo5bkPfOADtqZn8eLFPP744xO2O1tIa2DSSONVglPxg4jGDYpyFEmxSqmP9gaJ6gaNrX77tRePDpCX4WJtrY82/xgx3ZjyM9M4NdTPKUQziztcDi0tlE4jjdNEmsCkkcarAFY1wrefOMRNdzfMmMRE4oadJgpE4jS2+mnuD3GsP8RNdzfQbfZE6h4Js6A0m9qiLHRD0uEfm+5j0zgF1NX4WFyuVqo/uGlNOvqSRhqniTSBSSONVwEamgeIxA0MeXI+LZGYbqeJAuE4LzQlPBlicYND3QH773klOcwuygLgWFoHc5agQjDWeU4jjTROHWkCk0YarwLUzynEYZpLObWZpx8icYPC7EQKaU5xNqCmUZdT45L5xWR7lBRufkk2tYVqYm1N62DOCF5s6ud/Nx2xI2aWoeD41g5ppJHGySMt4k3jgkRjq5+G5gHq5xSmQ+2o9MM711Ty8I52Pr5xzozOSVw3iBuS4myVQgqG48wrUQTmfRdV85611dTV+CjKdhOMxJlfmk1Rtpsst4OWgdGzejx/C1Bpv5cA+IFZdRQMpwlMGmmcKaQJTBoXHJr8Ot98soGYbuBJ9+Wx4XEqo7lsz9S9UJKJn6W3yPI48bo0ApG4rW35+yvmUV2QCYDXNLCLxAyEENQWZXEsHYE5bWw92o9lqWNVHQVsAhObesM00khjRkgTmDQuOBwc1ImaVTDpctMErK7R/eb/49HY6ueGuxLE7//eXweAx6mR7XERCMdo94/h0ATleV57m8M9SgfzyYd28sCt9dQWZbGvY/gcHNFrG8sq8+zHLqdGXU2+fV2nIzBppHH6SGtg0jivmKw0eFGBA6uVmMuZLje10B+MAjBg/j8eDc0DRHUDiSJ+LzUPAuBxOcj1OgmE43QMjVGW68Xp0OxtLFhk0evUaB0cZduxdEPH00GVT0W4yvO8PHBrPfNKEv1vRtIRmDTSOG2kCUwa5w0Nzf2898dbJ5QGz/M5KMxy49BEOn2UhMGQRWAmj8Ck+Iw4NZZV5gIqApNjEph2/yiVvoyUbdxODYdQ2/gy3Ty6uxMp4QM/3XZSnjNppMI/qn6vDLeDuhqfrX+Bc9NVOI00XutIE5g0zhv+uLsL3ZAYMrH6txCMxtENydKK3PO4h+cHW4708d2nDk8gDxZxGQhNHoGpq/FRW5iFQyjiN79Urfg9TgfZXieBcIwO/xhVSQRmfLM4/2gU3XKL1Wderp3GRFiRspExFW2xKpAgrYFJ47WDLVu2IISgv78fUG6+yX+fTaQ1MGmcN8wpViW7VkmvlSqK6JKw2UV5eCxmi0xPhNdCo7zGVj8fvGcbUsL/PXvUjkDFdQP/qJr0pkohAehSokvJ8so82+PF49TI8bjoGgrTPRKmKj8jZZvxzeKcDo1o3MChiXT67jRgRcyGx2JIKVPSRmkNTBqvFaxfv56uri4KC8/9WHHWIzBCiBYhxB4hxC4hxA7zuQIhxJNCiCPm/76k939eCNEkhDgkhHhD0vN15uc0CSH+RwhliiGE8AghfmU+/5IQovZsH1MaZwaluUpIevmC4pRUUSCaaIc8NDqzlWpjq5/33tXAnU8cPimn2gsNDc0DWJ3sk6NSg2Y6IsvtoC8YSWl3nwxrYhyNxu1Gjh6XRrbXSevgKIZMaDMmQ12Nj++9bxUAH7tsZuXaaUwOK4UU0yVjMT0lhZSOwKTxakA0OvViyYLb7aasrAxzSj6nOFcppCuklKuklGvNvz8HPC2lnA88bf6NEGIJcD2wFLgW+KEQwlp+/wj4GDDf/Het+fxHAL+Uch7w38B/nYPjSeMMwBrQl1XmpUyUwSQCMzw2s4G+oXkgkfo4CafaCw2rq/Ptx86kfjnWan5+aQ7RuJGSjrAgpUxJV0TiKorldigNjHV+kjUwk+Hi+UUA+DLdp3cwf+NIjpQNj8UIRuKsEYf5l8w/UTb8ynncszTSmBwbN27k4x//OP/yL/9CcXExF198Md/5zndYsWIFWVlZVFZWcuuttzI0NGRvMz6FdC5xvjQw1wH3mY/vA96e9PwvpZQRKeUxoAlYJ4QoB3KllFulWnreP24b67MeAa4S54MKpnHSsCbh8RUZgVMgMPVzCu3KJceruFFemVneDPC5axfZxM6aDBeaupbJ0kjhmGF3Ox6N6kkRGAc53oR3TNUJCEyOx4lDEzOOfqUxOfyjUdaIw3zC8QcixxrwdjfyS/fX+ITxALf1/xu0bTvfu3jm0LYNtnz7tXVMFwrO8bn9xS9+gZSSLVu2cP/996NpGt/97nfZt28fDz74INu2beMf/uEfzsm+nAjnQgMjgSeEEBL4sZTyLqBUStkFIKXsEkKUmO+tBBqStm03n4uZj8c/b23TZn5WXAgxDBQC554OnmHsaBnk+aZ+Lp1f/JoM5VvpjpFxJCWQ9OdMCUxdjY9Mt4NQVOcD62e9as9X90jYfhxN6gjdbwp4F5SZBCYUoXZcP51kIhiMxImYOiKlgVG3uhBQnjcFgWnbBi1bELWXkpfhYmjsxOHjNKaGb3AX33J/FQ0D+ehvKXAV4RaKVDqIQ8sWqF53nvfyDKBtG9z7ZtCj4PTCzX98bRzXmcbjn4PuPWTocXDMcOqNjEDPXpAGCA1Kl4HnJAobypbDG//zpHZz9uzZfPvb37b/Xrx4sf24traWb37zm1x33XXcd999aNr5rQM6FwTmYillp0lSnhRCHJzmvZNFTuQ0z0+3TeoHC/ExVAqK4uJiNm/ePO1On280+XW+sS2MIeH7m47wuYu8zPNNLmYNBoMX/PFMhgNNalI+1tGTsv8DgTDWz9q45wBFgSYO++Ps7tVZXeKc9DzEDUkoqiaH/cfa2Ly5b8J7zhcm+32a/DoHB3UWFThSjueFDkVCnAI2vXyEhbINgJda1PNj3c0AbG7YSeBY6u3bGUwQnq3bdjJsRrJ279xB56A6N/luwYvPPzdhH3OHD7Jy9xfRjBiG5mKN/AKHW3Q2b56YigsGg9z9u6cn3f9XI87W/TOn72mcQv0m0oiRG+lCSkUiDamxczCLkbPwved6PJjV+giz9SgCkPEIxzbdz/GaM9eK4tU4vuXl5REIBFKe88SiaHocJMT1mYm4xagfTRrq3EoDY9SPdE6tYRsPIxYlMm4/poOu66xYsSJl35999lm+853vcOjQIUZGRtB1nWg0SlNTE+Xl5RiGusaDwSAej4fR0dGUv2eCcDh8Sr/xWScwUspO8/9eIcTvgHVAjxCi3Iy+lAO95tvbgeqkzauATvP5qkmeT96mXQjhBPKAwUn24y7gLoCFCxfKjRs3npkDPEvY90wThjwEQNyAP7S7+cqaZZNGFjZv3syFfjyT4c/9u6G1HVdmLhs3vs5+/jdHnkATMSRQXDGLnNklfOvJrcR0yZPHDR762ERvmN6RMDzxNACF4RY2OkJQe+nprQTNiMTpfs7436ex1c+dTzUQiRt4nDoPfDRxPPueaYI9h9gwr4iOoTF7ux1/PYTj8FHeefXruHPHJsprF7Bx/ayU72ls9cPzLwIwb/FShkajrNnzG97oGKW6ajU/2wdzy/JTzrWNLY1gxACJQ8a5PLOZJ3I2sHHj+glvvft3T/PNHVHT8Vd/1Xv1nK37554tvwDAMEkLgC4ETiS/Ni7nxrf93akLH6e5Ns/5eNCWCfc8ANJACI05V36QOWcwAvNqHN8OHDhATk5O6pNv+w4AgUBg4mtToW0b3Pc20KMIhxvHe+456bHoZJRsDoeD/Px8e/9aW1t5z3vew0c/+lHuuOMOCgsL2blzJzfccANut5ucnBw7CpOdnU1OTg6ZmZkpf88EXq+X1atXn9RxwVnWwAghsoQQOdZj4BpgL/AocLP5tpuBP5iPHwWuNyuLZqPEutvMdFNACFFv6ls+OG4b67PeDWySU5VovIqQrOkA2NMxwk0/efVW10yGqTQwwajEl+kmx+NkeCxGQ/MAcV39pFHd4MWjE7ODljfKu4o7uDN0O/Lpr6kb/1Tzxq0N8LM3waY7TutzGlv9PHY0mvK7NTQPEIkrx9xw3OBHm5tsN+Lu4TB5GS7W1hRwrD9EyDxHA6EIBVluiszO0v2TmNklV7aEInFy+1/mIffXyW34JvVbbmGNODy1gLf20sQsC7TkrJkyfWe1epDAkvhBopu/9bepfTiBNqEo1s2ols2D+pUYwo2ORhwXAXcpRQzbIuuTRssLZ+TaPGOoXge5ZkY/uzSdPjqTqF4HNz8KV35B/X+Oz+2OHTuIRqP893//Nxs2bGDBggV0dnaeeMNzhLMdgSkFfmeuMpzAg1LKvwghtgMPCyE+AhwH3gMgpdwnhHgY2A/Egb+XUurmZ30cuBfIAB43/wH8FPi5EKIJFXm5/iwf0znB6up8HA5BaY6HzqEwEjV5v5b6AlkamPETZSAq8WW5icR1hsdivG1VJZom7Cqag10j/OCZppRO1Zao9b25e/GMxBT50yMz1xmMX9Hu/bUZkUDl9k9Br9DY6ufGnzQQjRs81tJgRyrq5xTi0IQtuH3qQC+bDvbidmosr8yjLNfLsspcpIQDXSOsrS2gPxilMMuN26mR63VO6sab7O4aiupU92/DiY4ANCNGvXaAnSP1NLb6J15D1esgsxhG+0HqZHgzGOqdnMCoVg8xVovD/NL9dVzH4hj3/hTtlr8h7UPbNkUijBg4MyZMLmOROPViD+2FF/PF9ptxrL4RV9uLbNUX8/fZz7Cycysj4XEeRzON+O168LSvzTMKPQaBLsjwQaAThtshr+rE26UxM1SvO2+/7/z58zEMg+9+97u8853vpKGhge9+97vnZV8mw1mNwEgpm6WUK81/S6WUd5jPD0gpr5JSzjf/H0za5g4p5Vwp5UIp5eNJz++QUi4zX/ukFWWRUoallO+RUs6TUq6TUjafzWM6V+gJhInrkjevqMBl9q1xaq/e6prJkBDxpuaDgzFJQaab/Aw3Q2Mx6mp8rJ9dgC/TxfySbP60p3tC+4GBUIQNYi9r+h8FTBGUlDBrknTJeFgixKe/mljRWitKBDjcalI5yWqA5EhLcml3XY2Pa5eW4XII3lOnBnrLjfj44ChleV6WVqhGgHvNpooDwQiF2SoYXJTtoX8SN95kMXQoEqc1pw7dvMWlcNBgLOal5sHJfXLGhiDUAxf/I7izuLnrDmaN7p30uOb5HGS4HLw55yhO4gjAiEfp2PXEjM7LawItWyaSiCSMtL1CiRhiqPxicjxODjoX87D3vXTkLCdYuJIy4We0vy2xwdHN8NNr4OmvnziqklsBgIHA0Fzq2jyfGGwGIw6r36/+PpZ6Luz7Zse96UqlVxlWrFjB9773Pb7zne+wZMkS7r77bu68887zvVs20q0ELlC09Csh1KXzi7jj7csA+PQ1C14z0RdIpJDGYjrRpHB6MCrxZbnIy3DZ0Zm4LllQmsOGuYrAjW8/4OjYzs/d/4kz4icuHOx0rAAkNPzwxANmyxY1CUFiMnJnq78L56rVNcA9b0glOSdA/ewC+/H4ppRSQLUvk+vXzUppXBmOGZTneSnN9ZCX4eSRxnYaW/0MhqIUZqn0UWG2e9IITLK762gkzvHMpfxKvwKAvWXX8bJcMIFM2ejZp/7PLIJ4hOJIK3fLf0dvfUk9n0TeQjHJaEynM7/O3ncdja36khOek3OCc1F2Wnspdv2A5phAIvQjzwAQqb6MvEx1HQcicbI9LiKlKtdvtDcmNtjzaxTtNiYlRMk4MqTulb1GLTdGb6PRmH+mjurU0H9Y/b/0HZBRAMeSROJt2+C+t6j75rF/SiVobdtg83+d+d8pXdJ9yti8eTPf//73U577x3/8Rzo6OhgbG+Ppp5/mve99L1JKamtrAbj00kuRUlJUpPyjNm7cmPL32USawFygOD4YAqCmIIt6c9IuzHptGYtN5UwaiEFBljuFwPQEwpTkennjsjLbW+MiZ5NNCnJ7XsKBUusLKTkQKcKQAnngUbjvrdMPZimTkVP9PdKh/tZjKnzbvFmVMgLEx+CZb5xwgKwxy5wLvRObUvaOhCnJ9ZgppQLyM13c96F1jIRjlOZ62Xl8iEA4zt7OEW66u4HekUQEpjDLM6kPzEg4hssh7HLySNxgVFP7UFqQh8eVaNo4IZLXY0ZbRvvt43QRJ9r0rJkueaM9+Yi+AwDMra6wZTM/Md7G7NVXTHs+zgms1M5URPNEk9tMJ7+qi9AdilB2L3z/hBB/VtOjDBg5FDNgX8eBcIxcrxNRvoKYdODsejlpiyTFmxXxmwJd7a0AjOFhe3ze+Tdt7FPFBhQthNmXwpEn4TnzHO5/FOLJZNskaLsfVFHPzd9Q/58psmFHU09TA5fGqwLpXkgXKFoHRnFqgop8L6MxJQN6rRmLBSNxCrLcDIaijITjFGZ7kFLaIl4QjJh9ZHpHIpTkeNjgbOKXnq8rsuL4A5q2AVjHPtcKLhVqDRvDCQgkJkOPn0AnULoUu/L+ytvV+7bfrf4eOg7RUTtsb6P5GTjeMK2wrnNoDIBMl5gQOesZibB6Vj4Ar5tbxNbmQfIz3UgJ5XnelJYC0biBIbEFvIXZbl46NrmIN8frwqEJQpE4XpeDPE35ypSKYR64tZ6G5oGEdihZc9H9CmQWwoI3QsOPIB7GQMNfsp6MpqdUigBAj5Lj3wvUcJn3iP3dVy2vZvH5ig4mH0dKamecBurIU/DAuwANnJ6Jv13bNkV29Sg4Jnn98BPQtQvmbGT3aAErdXVuX9x7lJr1SbqipqfIHdiFFOD7603U+f6DPWMLCUbiZHudZGdncVwWU9b6Z2h7l/qOEdPmKqsYrn9wWs1DqUOlFeeIrsnJ6LlG/2HIrQJPNuRVw2gfPPN1eM4D+ValnMC+xxwu9beelILb/F9Q+7rTrxzc/4eJ0dS/FV3W3yDSBOYCRevgKFW+DJwOjRxNKGfU15CxmGFIgpE4y4vyFIExIy2BSBxdqgiMRJG2QCTOWEynNNcDux/AjTmZGjF7gDoUL0MAQ5Ub+VjrlcR1g3c5tuAlqqIE41e0yZNeMlxmlc6IpbSXMHAkMdjO2gDHt6rHJxggLQIT0VOL4qSU9IyE7V5Qi8uVMdWzh5WbQFmel/mlObidGpG4gTAH/4KshAbGPxojrhs4HYkg6shYXK3whSAU1RECckREzRvBntSmjbb5WFxN5nlVyvRq1nq4+Y/E730rmyLLKM1fSUXseGLnHW72OlSqqHiwkbC3hLGxUUrlOYoCjBe6Hn9JRYekVMdx7X+SmCxF6u+7+yHzgTH5b9eyxYwWyImvb7sb/vwZ9ZlbvsPAnM8AEJEuFtHCM80D1GlH4OgzsOOnAGgCpB5jjbGP56NzCITjZHucFA7uxid6cYQMFSX4wO+gfYf6nvAwVNZNewp8upIMFothHvrgElaf77Ry3yEoXqAea+aUIg0Vqew/BEvfBWVL1T21/W54wzfUtbbjZ4nPOPoUNG+anDjOFK0NsOeRxN+OC0AflMZZRTqFdIGidSDErEKzW7MQyhn1AorANLb67dLfU0EwqkhIRb6axK1Sar8pTvVlqhRS3JC0mnqgkhyvPUAakBJq9wRUWD3/ko/yqQ/dxC4W8OPa/0bMvlwNpjnliS9v2wb3XJsIM+//Q+K1YXMlHOiC4kXqcd9h6HwZvPlw9b8nBukThPrb/YrAjG88PDKm+hSV5KiIyqJy5ZWw6WCCwNTV+Hjwo/XUFGQizLu00CYw6n+rwaMFKwKT6XYQMp14czS1D4TGGfsds3Q/5mQ+2KxcPgGq1xEuWESWGGNoNKqIAaj/P/gHXpbzyXRruNsbGC65iC5ZiCN4DkorrQhJso6i8V6QeuI4xgbU7wSqLLxwXmJ7PSlqlSTMntX6iPqs2kuxT3ayrmXb3fD4Z80NFblZFdsFwHPGcuaLdq7OPKL2afM3INiDIRzEpQYON535dfSMRNANSY7XRU5PAwKZqJTb91uIBmD2ZeoYhpPEvZPAHe5nTKprYHXmeU4fGQb0H4Eik8AsenPierFw6M/qXF72r+rv2BiUrVDnuuZiWPJ29bw8sf5nSlham2A3djruLd9LR19e40gTmAsQUkpaB0apKUg4LuZnuhiaoa3+2UZjq5/r79rKt/566JQ7P1v6l4p8FfGwKpGspoWWBgbgcI9yhSzJ9UBQTfIx6SR+4yP2AJUVMgf9gtlsmFvE0oo8tsXnwdv+Rz3/yi8TX777IXPSM1farS+oEtD8GqV9kRJGuqD2EhAO6DuoUgflK1WEYsMn1ee88yfTDpCdQyrFMD4C0xMIm8ejyFtlfga5Xic7WtR5LM9V56SuxsffXzHP9sAptFNI6v8fPnM05dyPhOPkZjjJcjsVgYkbZGMSmGBP6s5ZEw6o8yB1tSq2nsmfTY3oVRqkfjNVFI9AwWz6xyRr80YQgU5CZevplAU4zzaBadsGT30F4mHAUP+3bAFTjwMoUjJrA4SHYPHbVNrrd3+X0EFYWo3MgoQw+943M/vYLxT5gET12dpb1W/b9LSKvFj6J/N7CgqKAXjCWItL6Cwc2GTuG4Bgu+8t/J/jBsTNjzJUtNoWrGd7nbjnXEYUV8Iu3GFq21aZVTwDTdOeCm+kPyHcHTg6g5N3FjHSAbFQ4nqqXgc3PwazN2ITCYuU5JSqVFPnTujeo665+k/AqpvMDzv1ir+U1KElzHKeX83ga8CO7JzgdM5TmsBcgBgajREIx6kpTCIwGS6GL5AITEPzADH99Do/WwN6pUVgrAiMGVXwJROYXpPA5Hiho5GwuwCPiDM4mlhR50fMyEl+DQArq/PY0z6MkVcDNZfA9p8lhIX9Ce0GmgMiQbUizKtWEZjIiBqUfbVQMFsNtj37oWKV2ma2uTLPml5ln0ghqZSZhd4Rtd+lZgRGCMGi8lzihiTD5SA3I5HZfcOyMpyaGpC7h9XnWRVI929tSSGQgXCMHI+LLI+DUDROJK4nCMyYP1VMadkrZZcmJuekccRRNIcK0c9IcDR1Qu0/zEBY8m6xWZ0+by5dshB3qGvac3FasFbXrS8kPWmmiDpfVhExb54iJXnV6rWCOWqFf+QJRU4OPa60Gt48GBuG8lV29ZmwiOzRZxJalLh53vb+Nuk7zYnxHf+HNOL0yXx2GAvVc1bVGoDTy7MZV/HHnOuhep19HYNqlKnVrOejfIlj2XXq3B/fqiKEczaqN/VPQ2BiY3j1II1yoZKsn4DsnHUcMIlgMsGrXqeM15xetQBIjlRWroGORugwU2aVdTD3SvV49mUJYnnfW2DT19HvfSsv791z4kXSrIuRgERgaCZxSb7PZ4ozVMHkcrkYGxs7rc/4W8HY2Bgul+vEb5wEaQJzAaJ1UKVMVsjD9s2Un+m+YDQw9XMK0axFzil2frZKfm0CY0aXBkPqf+UDoy7qpp4gAGViEAJddC+6mZh0EDv0FKBErqXxbkKuQiUkBFZW5ROIxGnuD6moSaADNn1NDYwtz8OSd6iBdfblMNRKd9ZCDobziAweV9EXUJNK8SIl2DViUGFaXeeZ3S6sdNMU6BhKDGBjMd1+3GM2bLQ0MABLTB1MeZ43xV6+qTeIYa5QPvPwbhpb/fb1Mb6UfGRMRWAyPU5GI6oKKYuknjTJaaSOHer435DU6O2xf7IHbk/xPBxCYvhblQao2Gzo1n+YyrGDvGVERbRmvfA5AFzRYUUEzwZatighNgBCpR2cmSoFqLlgwbUQDanJMGD+dsFebBV0PAKvPKwer3q/Im+DR6F0ReI7HC4l1JaG+o4+s2WbtYq3JmIAzYE+cIxWWUK3s5yQ9GAcehyQKvJz86Ps0OfbmqX8jEQkIMeryGmzdwn3VXxBfWZHI2T4OHhgDxFHFr0t+6Y+F2YkrV0W0W4UEe87hUn6TKFtGzz5ZfX4idtTJ/2pHGQr68DfoohlTgXklqvGht58FcWpXpfQIkkDGY8S69pzwkjv7jHlXP60vpobo7cRya5KlHefzPHc91bYNAMvnhOgpKSEjo4ORkdH05GYKSClZHR0lI6ODkpKSk68wSRIi3gvQLQOhFgjDrP22W8o8ajTy8rKO3k4VHHijc8B6mp8LCnPZW/nCP989fxT8qaxyqZLcj04NDFRA5PlYiSciMBkuBxk9e0CwL3gKnbuepwFxzerbUajzBK9hLKqsfozr6rOB2B32xDzrIkHaUYhBKx4r5q09v4GpM6du93Mlk7+ztHFkSMHmA9qQitaAAcfU5uXr1L/W2mGE2gVOofGcJqOu6FInCyzI3QihZTQCiw2dTDJpAZIiW7FTCfmNywt4+4txxCklkSrMl0XAqEiMDGDTDmmoizBHvXPckjt2KmiTkPHsEWvekIU7Siaq8718DGVpljzQRhqJdJ9kFWGH+FQK25hxMjHbPw20gHFC6c9J1NiOhfamksSj51euPorSre09fuKxR3+q0oXBboT5e+zL4d9vzMjKRKiQRV9Wf4uaPiBmtxciQgnl30WOwQ1+1LoekURoNEBopmlNJa+m1Dxaq7c9jG6D22j2N9Cm6zhysXlHD9YwuK+AyoN+a67welhMLSZRWWKlCZHYLLNayDH66Iznqn2s+lJZO8Bav50A22yiJ4DL9M2mVsy2CnUPplPiyyjpK/p/A3iLVuSqtNiE0XRkznIVq5R/x/dBIvfmng+sxBGzWvd/L0lEEcZMMaM6V3IDx45zErgEf0ytst5dLtmUTMdgWl9EVq3qt/a2sfpRNwnidxc9dt3dnYSi6VGzsPhMF6vd7LNXpU4neNxuVyUlpba5+tkkSYwFxAaW/00NA/w8nE/9doBRFI54LLYHn4yVjzhveerhNKywXc7J3YiTt635AGnsWWQhmMD1M8pslNIOV4XuV5nQgMzGsUh1EBvDfxtg2PUFmYiOraC5qJw3hoeMFawfvhhePqrjBZcyiyth1huYqKbU5xNtsfJ7vYh3rXmSnj+v5M0ChIe+TBccRvsUSvziC7pEEU4hcHAkZcUgckpT0zI3nyVUgIV5cnwTRuBCcd0BkJR5pVk09QbtDtlg0oh5XidZLoTt59ViTQyFkux+q+fU4jbqRGLGzZZqavxsbg8h6HRGN+/cQ11NT7iukEoqjM/eoCiwW20R6oIxleTKUehYI1JYNTkhx5XqZfVH1CEwek1S4eTQv0FswEo9TdCbBSK5kPRfGLdB2mVK8xkigYOFw2RJbyVl9T5OBUC07pVRcakMXkVSmYBIGHhm+CST6nXjj2HTbysdNhweyJ6tuAa9Tnbf6r0T0eeUPqYZGG2EQcEuubCEepX58eVpUrJjz0HoT4ixxt5MjCbTw5eDAfgKXcZ7S9voUx0clxexAcqe5h/yCRNkQB07YbqdQyGonYEJiWF5FWPczOcisRXz4OmJxFIXMSJ4KSGLv4w1WRtRmD6yadZlvO6oRexW1yfCyQTTat/lpQnFLTbKF+F/bslV1slExizokkAD+pXsFMuwOuaPtK7xqfu7V6Zj8uh4S1fBEd+qUTG2rhEw7Et6npDqGvfut6Sj8fygzoN5ObmTjoxb968+ZQaF16oOJ/HkyYwFwgsYaylLRkUizGkwCEkCI2B4nUEm+PEdINX2oZ4310NGFLidmr8yxo3G0/ny0+h67KlVWkbHE15ftuxAd53VwNI8Lg028CtsdXP++5qIG5IvK4mPvS6WkARldwMV0oEJsctEO3bKW56ljXCyU65wNa/ULYMjzeLMU8x6MCW7zDL8QMEYTotggE4NEFNYQZP7OvmulV11N38R3jmP1Q6yFphmfoBCXzT9RPujL8bgMVxM32QTGAyfNC+PXF+LL3MFLDSRwtKTQITSZQiJZdQW7Be39+ljOus81ZX45vo3wJcMq+I+7a2sqJKtRwIRuKsEYd5197/QDNivA4nt41+FY8MKzfh4y8mhLx9BxQpqVqbCPWP//2zihnDy4IRs2S8cD4ULcBx9EV8Yo56bsMnCM55E8/eY650rejHyWLf71J8ZiasfJtUqpBr/yNBImdflkS8nGrlPNymevE4POr3ql6nJqM9Dyty1L5DOQ7nVasIzJgfShYzEtXwHX8R3NkE8xfwdFcu1wG0vogn2M4eIzGRHZCzuEY0omHQJku4ObwbIdQ9K6VEtGxBr7wI/2iMpr4gja3+cQQmEYHpGQnDsndC470Y8SgxHOwx5vBex7NsmJVlb5Nyfwa6AfD4Kjg2VI4zFlSpwexTC8GfFNq2KTdqKRMTf/Filb571/SCdhveXPPeOa7IooXMwoT+KKSatRoI1mtKeP3zj6yfNtJb7VLeOD3Sx+feuIhSdyfsH1XXw/i+THt+bT4YF2mpugjcORAZhrqb0xVMrwKkNTAXCBqa+23yArBTLqBJmimjmg2Ey9RqZXgsxpMHeogb0tZAHBzUJ/vImcG2+p65c6WUEr8pKD4+jsA8c7APKZlgWd/QPGBHbWJxg4PdKu2Q17eDD8vfUTy0G1BVSOudh+Het+B59hs84P4Ga8Rh9VzbS7b+ZF5G0Az4S4QeRRPgKppt70djq5+D3UG6RyIqf27Mhys+nyos1Bxguqy4RZxKofw18gZ2KUt0lxfCI+oD/S2p5+cEBMYS8M4rUamh0aQITM9I2C6htrDz+JDyDWGiMNqqRkoewFdU5RONGxwyz+PIWJx67QAOI4KGgYs4S8OmVX2BSTisCEyH+by1Aq5eB5d+JnXAFoJeVwVVsRb1d5EiMBmjHbxea0TPrYZrvo6rtp4eWaCKgodPkcDkVSYeT+bdceRJRaCSCGqKxuIGU98y3Ka8RnLLExGJ1ucT20hDTVZF85U/SUcjVK5hOG8JdO9B79jFH7sLuMP8iYde+gUAe+Rs2yd3v1GLR5jXvlFCR34dUekiLjXChoOD3pX8ulGlFhuODnDT3Q0pJD+RQnIqHZh5HJsrP8pN0ds4klWHJiRrsk29R9s2uDfJWbjzZXQ0ikoqaJFl6j3P3DEzvcbpClSbnjQ1QkkTfzIRngnatiWI7pNfTOxLZiGMmi3xzOv0aX0NS7VWvuS8n0WxA5N8WAIRv6qC68WnjD+tqqj+wxOPOzkikxw5CnQr8gIJLVUaFzTSEZhzjSmiHVYKwYImINMcKOncTf5yNYQOjcaoyle5e0sDsahgYhpnxrDzvsy4e/NoVGeFvp9LHHs52lsPXGS/Nqc4sapK1mdU+zLs5x0OjaIcD9eI7WQ+8N+8H0F89JfQtoS2wTBv1fchiajjE3He6djC+zq2gIyqapK2bfQWrkMP/gInOlJoIA0yShM9YRqaB2zxayRm5s+vGBdtANj1EOhR4jjZpK/mw86/qJV56TIaW/1Et/yVejTEePOzvColBoaJpngtW4iMzQccLChVouJQNDkCE2FdUp8kmDxVNB2syMuejmGWVeYxEo7RYCxGORBLYjjZGa1Wd3hWkYpIWATm0OOKyIX6VXRmCgy6K6mJNauVck65mviBS7U9iLnvByHwODViOAm5CsgeGUforPOSUaj8WaaK8DmTolFrPpj6nuioOs8XfWTidskaC28+DLWpFFJuEiGqvVRFZJJTZME+2PZjNRlX1jGsj4B8GEc8xD5jFr3kMyIzyWlT/Yz2GrXccnEtTb1BDjXX2B8dyKhi8+hsvhS7jfXiAA3GYi4fnsX9W1XUwCKjB7tH7G2yvckEJmYfx//pOjvlIKXObogAz38H1n3M9OtJcqztPYCfXPKyvPgyDYgDjffB7l9NbwBnLVT0uDoPp2IWl5lIYeNwK63Kc3dCTtnMP6NlC7bWKFk3k1mgUkhSQkhdp88bS7na0cgtjr/ArzbDzX+ccp/14U76ZS4xnOw6PgR1JoE58pQyFoxHElGjkSRycsODic/s3qP+z58FbdvPbWruQscpROnPBdIE5lxiGqvy/EyVL3/nmkrW1hTgH41S8UIAsmfB0HFmjarKhKHRKBluRVgWlefw9bcvJ3Bsd+p3nMyFZpl3SWPG3ZtDR1/kIfcdOIVOOPQY8vgqxKz1QMLbJC/DyT23rLOjBsmRmn++ah79wRjr3bsRgMOccjt2PcHB7tVc5ZAIlyXiU5eoQ5qDuLmKNirfwj8e+SQ/dH+PMUcu2fFBsssSBKZ+TiEeszmiBOK6wQ+eaaJ+znzqLk06Lyah+cL2XJ4fq0B35+CIBhhyFvG+H29lJcX8wuXEq+mI5NVaXpVarR3dBA/doPQ1wmHn0C8XTuq0zzO7SOlyRiMqAiOlpDcQThHwAlOmiqbCrIJM8jJcvNI+xA3rZjESjrFTLiDuzsUVHeaW6L/iJ0fd4Z4cyCpRKaS2bUr0ioT7r5t2IhvJrIYQiuQIYa9qNSFpzr2IOagScK9LY8RdSnZyBMbqn2SlhpL1BpB6jQ4dV69VrIYDf1Si49mXqdd23KOItVX5NRXyzYhYoBMq1yaenyxF1r0nUfZbWcfIUCcqGG0ghYrKNclK1sgjDGdUMxLO5p+ums8T+3u488gscKnmlUuzhqmfU8j/OhaxM6YaZR57sQX/aAy3Q0M3FBm9bEEx//tMEx6nZneWD0V0hsdiNLYMsmqWj72dauU/NtIPDpSj7IHHYN1HE8eiOcDhok/mk+1xMdfTg4yTKAOfbvGx59dJC5VTFKhamjxXFnzw91CyWEVgTiZ9NRmhBBWBiYchNsrxtuPMAooZBplwNJ52n0e66JU+ynK97G4fguw68ORCW0NC+6ZHlLbJiuQOt6kqNgvdr6j/625REa/htqRWCKeIC3TiPym0bYN736Lu5VMlv2cJ6RTSuURSeeB4x0krzPzxy+dy4/pZ/P3F5TjiY7D8PaA5Ke9V7x0ajdkOr4VZntSJ7lQamVVdpKoxvHmAVJUdJ9jOaN6CA11FSIgROrzZfs3yKAmE4yyrTESV/rKvm7lmdMbtdBCMxOh1Kndci6g8H12EBK50vIwhVYTpR9mf5Ld6kkOqOehV+TL5s7GecOUGsuODjOJFy0kMpBYh+MTGuWS4NL779BG+/cQkxntm+uSluIpERDPVPjWFc4gbkkZjAR+I3UZD7f9LvXGtvPrhvyYmBqmrm1zqaEaMqzOO2PoHKwLjH40R0yWlORNV+5OliqaCEIIVVXm80j5sn28PUVXODByXpQkPGE+OmmSCvXD4LyRWwNO7no5lq8FbSh3attEYKMCys/nPTe32efS6HPidxakamH2/TyIvYKcddj840U136LiaUOZeoUL3m+5Qr+24F578ktr86X+f/rq0JqSRLpVCSsb4FJmla9KcEA2RFWq1z8mXXfezRhzGWbYEgI6MBbidGnkZLuaXZFMl+sweWwZ3BL9InXaEB26t54Z11WhC/b4OTfCVty3l09cs5IFb61lbW0COx0m2R10Lja1+/ri7E0PCTXe/xGO7O1VUsyqPJcZROzWKHlUTrjPDLBd/I1KP0mPkke110l24PtUMbzrRqR2VEhPfO9PUUtcu9X8spMS4AVNTlV06/XbJmKq8OtOMSI4O0NN5HEMKnjFWoaMhJRja9G0BHKFuemQ+ly0oomckQvdIREUNO3YmvUuAr0ZFWNd+OPWYQBEYXy3Mu1r9fbqNIK2J37qeX62NJff/QZE/qZ+6U/JZQprAnEvUXmrqLki1KidBYKp8ZmmnFe4vmAslSylseoQ14jBDYzHa/Oq9/cFxDf1aLHt4OfMLLdSvSkxX3qBIwsHHTti9ucu3FsvUy8BBW26immAgGGWNOMz/0/5A3371/Y/v6WJvxwgXzysix+Ok3T9GMBJn1KUGLb+nkg/pXyRcvpbrtU2s0ZrYJNUq2u3xsFMuIORbogYkc9CrKlApqd+jOiCHhVeJbJNQV+PjX69dxNVLStUgKFU66btPHZ7gKWG1aRgzCYwrXw34AtjrWIR742dTVx1WRCA3SSBol2sL4rhoy60jy6w0GjVFur2BiR4wp4oVVXkc6g4QjumMjMUoFwndTIEYIUeYBMadkyilttIRQjvhpJftNKMUPfvhvrdx+MmfACpQ9z3tuxx7WaVYvE4Hg45ipYGxPC8s7VDyEONwA8IkfEkkfrhNRVBspYn52v7fJyqMrBX4VLCEuXpE+YtMh2jI/Jo4/PydlHY/k9hFqbRE0uyJNShzKM72IIRgbkk29ZrSYgjAKdU+1dX4qLTuW/ME+UejKWTU61IRGatCTzeZYFQ3+Os+Jcx947JyGozFSCsqIIRyD17+LqjZAP5mZKCHXplPjsdJtLyOPcYcZE7FiVfFVpRkVn3qe0/G+6RrN/ZvFOhKiMJPhsDA5JqrTDNlOjpArTfEIDnslAv5rXE5QsDW100vEnaP9dItC7h8gTrOll3PmCJ9RTcpXqyueSt9tOgtitR1JUWvu/coa4GSpSrKdLqEo3nzBTvxnxTs33cS8nuekSYw5xLV62Dhm9Xj+k+k3JDHB0cpzvHY6SFLic/oIPTuwznay4PuO3B3bbfJTn9wnLFd8oU1WRmgtdLacW9ixdVv2qtHAgkn1hPcbMczlxI1UztP6HUcdC2yX/N07+Ah99f5tPNhyv/wPg5uf4p/eOhlAH61vY2CLDft/lEC4TiFTjXBuoizNTYXb3cjd7juUVEY1x5AUB5VjQTdoU6Ye5V9zixX4j80qzkzXw5h3Ds58brldbNxOdTAK4Hnj/SnRGJ0Q9rGeqNelc/3FCgCM7ck264ISoEVgYkG1afOuQJu+ZNKfbiz+YTjS7ws59OxdzOfcPyB7D51DnosF95xKaRTwYqqfOKG5GuP7Wd/1wiVot9+rVCMkJUSgSlVpLhrtyJdV9x+wknPZ/iVDACJ1KPM7X8aiUAI9ZttcOwHEpMzsRAcfVr9IMdfVKv0q26H5e9VH/jOu0yibE6CFokfMkP1czYihQMJGJozUfI8A7JFXlUi4jO+c/h4dO9NPLbSIqa4Oy5cDMpslnb+BoD1/j9xaUaz+livi8MZq4gJD3GppUQFLA2TQzBBw9TY6qcvGMU/GuOmuxvwZbrxOJOGXgGZbgeXLShip1zAi5fcp/pSGXHlY1OxRpWAd+9FBHvoI48cr5PK/Az2GrOR8ciJQ/pjJmHPKp6kgWX4xH2IIgHlbGttezoEZjLYBGaQIjFMv8xjw9xClq9XC5QebZrv0ON4IwP04mPD3EIcGhzb8ReklSYUAmovVmaUW+5UAv2i+ao1SOeuxPENNisC43CqHloHHj09ElOyxHxwYU38244NnFwfO6u3VemyCyp9BGkCc+7hmFx2dHxwlFlJvY8sIRtDrXa+3kUcX+822v1jXCUauT78K4zWlxLbJOdrN/x96oXW2mA2MPyqcly1QvhHnlCvL3ij2eaeVPJz4E/w7LdSbuSwvxOvKTAu1fwcH0g4zpb1PY+bOE4hEXoM//5NdvWR6p4saPePEQjH8WmKiOVEesggTPzoZjRhIADNiBNz5+EdbqKIYTyRAdrctfb3NPUp19fV2lEMhFIwxKN07Hpiwrmtq/Hxy49t4OK5apAcX+kzktRjKq6rc62PBVK2n4DsUhXWf1lVqvD6f1fne+k7IBqgedRLRk8j8/58I592Psx1r/w/aNvGtmPqO/sCkYmfeZKw4hUPvnScn29tpSI5AkOAbDEuhRQLqQlq5fVw2WdOOBAFZl1FGDdSONCFk9+O1aFrbnQ0NKebylXXALBaHOHiIVPb8tAN6pwMHlXC20s/A2s/pF5zZarvzDZTPGs/DKVLYbQf8mfRqM/jU9H/hwB+EbuC/sEB5bh7+edOPHDmJ2lkTkRgZl+aUo3WU3aFndb4Sv5/UCCCCDPyI9BZL/bbm4bL6viY+BLfib+H5zb81N4nK2VppY2Sr5mG5gF7cRCLG/hHozzw0Xoum1+MIWF7i59lFXnUmM1b92iLVNNQC3/9ghJhIxFSVxoYr5OKvAzaZDHa2AAvH0nqGD4ZLAIz1Jr6fO2l2FfSdJNs915AKtdjUNVeFoE5GRHvVEgiMHqwj36Zy5WLSpg3RzXj1JOFt+MR6kUg6cPHsb4ghoRf99cSli6laXK4FYkuXqS6fWcVqWht+SoVpYkEEqS2bLka63r3KZJ2gmj0tLCuw7IVF8zE//SBHt7744bJ0+lTwW9eM66MC+IYkpEmMOcYI4Pqpvd3HE55vm1wbByBMW3f52y0UxOG0NjrWs6Cka3c7fk2n3L8GvHzt5E7bPqWWKsJSO17A7D3kUQ4Xn2a2ciwQYVLF70ZbjQbHlqVIEefgV/dqMo0k8PL/hYAZME8lmmttA8kqixajRKEUN2i48JJ1oKNQKJiamFZDh3+MQLhGPkiIeytFT00DmWZFldqxdLnrWUuHSzU1OC8M5yoLnnd3CK8Lo0GYzFRVBlrDCdb9SVMhroaH5++ZiEOswdC8irZapK5Rhym+vjvAVi0/7usEYdpHQjZpCYFmqYGqJF2RWbKlC39T9pVZOZ12j4u1vbiIYZTSDRDiZR//KxazX/qV7tOuZO3hSNmjyiJiiLVaAkCUyhGyBkfgQFFhpe+fWZfUL2Om6K38WDWB3jv2Of5pXEVH4x/gZ1lN6DdkqgIWSP3omGeIz0Kz35TkQNrAC8yNSf9h1RVUUCVvBINJkrR82Zx/9ZWfq9fzMvGPDawh5zmP6t93fhvJx44k0W+yZ3Hpzgubv6jrcMYyVtkpzUajXk0GIuVeFw4iOGktzBRZTevJJvNo7P5oX4drpr6lI+dSsNUP6cQjys1OlNX4+P7N60mx+OkLxDBkJJD3QF8mS7a/aPQvdvWfUk9yrYDzabAWJm1ZXucDI/FOC5VyuQr9/95+utpbAiAcN+xiRowT476rg/8furzbGlFFr5J/W8RGM2V6P59OkhKIRHspZ88sj1OXHnmbznSPfW2JrkJuIpoODYIUtlQvD9ZuzZrfcLRuf8Ixr1v5fnjIUCq1NGBP6rXpG46DCddz6ea+rHG8PzqC2bitzrej29DMi1M0hvqPXraYxaoiGRyBKix1c/3Nx05pc9+TRAYIcS1QohDQogmIcTnzvf+TIXGVj/tHWrA7jy23/7BonGDzuExqpMJTNC8+OddrQbbrBIOafP4y0gN12nPq+odIUGPkT9krh66dgFCeWYkd+mFhDYhRZPgAhmHonlqQp57pVrpWaHXA49ZG6fcyK7hFgDE8neRQQSjN0HGeqMq3NijlfP1wv/EX6gcGt9dV8UDt9azZpaPQCRO13CYnKQ+PbNFF24UkWivUtUxWk09s0UXyzX1fbVLEhOJteJdtO5qbtZv57/19/Ah43Zmr75iyvNfV+PjX65RlTSff+Nie6IZMk356rUDiZW3oVOvHSCmy5SeRimwJs15rwch+OPuDu5oiNIhC9mg7SNPhGxjT1242KovSXjh6KfWBDMZ9XOK7NQYwCznIOSUIzUnBWJkoogX1O8bHZ3k0yaic2iMnXIBX+i/hp1Snbft8Xn8yvX2lAH5cMZK4rgUaQFlUiZ1+OX7FenNKlQTVN8h87o0nU57DygBL6DnVbPjuLofHtYvZ77WgUcPQtmymZ0M26xMzCwiMJkOAyWG3ikX8AnHV4hvvI2bIrcRKUtUNc0rSTRtLM+bmY5pquhMrtfF65coYtnY6rfTS+3+MbtaRwoHYcPBfx2p4KihjstHgByvk2P9IZvAlBvd6npq28as1kcmRA0G+9XCyRsf4e/u3pSYLPS4mT42oND0C5pM1Nu5S5Hg4oVKVBzoUinJ7JKJTrenAm+eIlGjA2ihPgakEipbZNQx2jv1tqZny6inxE7lAexiYap2LSPP3EBixKO8cvgYAGOPfAIafqheeuQjquw/uQeWFZU6WR8dS8cYHp7Z+0+EM9BoMnmOmYldA0CgWxl+ZkUH+Mjdz54WiWls9XPjTxIRoAdfOs4NP2ngzicOc+NPZhgRSsKrnsAIIRzAD4A3AkuAG4QQky/DzzMamgfIM/vGzKKHhqNKs9A5NKYqmMdHYDx5ykyteh3Mv4Yq2cOBrmFcqFy/pc4fyjcH+c6XValr1Vo1OSTD36w6NV91O1z0MfXc1V9WN5m1QgalwjcjLHZlAKSElzNDx9HRVOM6IKP/FfvCyxpTq2unU+OJkRpeaOrH7dD46nXLqKvxUWX6wYxGdXIIKbIFzBbdrBZNxD0+js69BarXUTZ3JW6hc3PBfmIZRaxclCiTBjUxfOMdy/m3j36QzKv+lc/e+sETVvC8v74GhyZsMS0kIjANxmJ0TU3EuuY0fVWguS80+YdZ/iUFtQD8ZW83INhqLOV12j7e5VbpvYhw8z9V32b26ivsJpgzHTymQ12Nj/s/vI5Mt9KNzNIGFKnKLLRTSHFHhtKaWIR4bEiVT89gEBzvsjyV71Bb1nK+kHuHimgk97dJXr0WLVQi2x4zHTP3Kug9aF9rd78So8M/xo3rqgl6K8zOwmA89dWZDdhZJYoUubPUfXCKCJpaqGdGa+lY9nHTBTqhV5qfRGBKZ0hgYOroTKUvwzLWJxa3UqyjUL2Og2/4BQ9kfYCborchJdSiJuovun5B8dArbFxYbBOYWkc/V2W3wD3XMvvYzycIcvv7ExGMMr07QZ5H+7HzW4GupErGr6amT45vVUS4fbsZeexUxm9nQv8C6hrN8MFwG1p8lH6pIjBkFWMgcI+dmMBEM0uoq/Hx4EfrWVCaTYZLY2lFkr/WgmvBmYGOiqwdN1QKLyNwLHEO9KjyLPrgoyoyPfcKNf7aKfiTaPRoyQDCQ6d0SlJgia1P5vsngS9TyQRKcz2Ta/vGQ0pcI20MSGXIWab3nNbCq6F5gEjcsCNAj+/tIhZXC+bJFnWNrX4c2YVTrkhe9QQGWAc0SSmbpZRR4JegnMAvNNTPURNLWLrIEWNcXKlOv+WRkmz2RqhP5WotVKwiXw5RGO9nrqZuWCFgx9o7VQhcSjVwV6xWud5Alx02Jh5R/WYWXKtWna//d+XF0HtQVYCYvUcAk8CYOU8r5ZRZmJLDzR1rp08roTFcTlB6ma8f4aafNNDYMkheVA2UBbEeekZGeepAD2tq8m1xclVStUaWEYTccmJZ5czROlnjaEKrrkuIPE1iVT6yG1f58inP68mUH+d4Xayuzuf5IwnBqyUI3ikX8MvFP4Arv8BDC7/Py6jzcrRvki7Lbdvg2Gb1+Lk7oW0bTtPjo8FYQoEI4jMGoXItXqIcpZq6Gh/LK/Moz/PObPCYATbMLeITG1UJeLHRw6CrFLKKKNICZDNG3GkaC460k2jaOLOw+CXzi/GaqQ+3Q3Dj+lk8cGs983ypBCbD5WA3C9S19bp/VCt0S3tgrV6LF6gITM8+pYVZ9CZTk/M8hubiv14YAuC3L3fwtpJeu4x+Kl3TBHTsAENXaalTHOANQxKMxinKdmNIONClUqPJnj1WBMblEBzpDkz6OSeDjQtLUtJLi8pyaPeP0dgyyNt+H+N2M/pVrx1Qfi+AE538npdYW1uAyPARFFl8eIlg0ejLSKnsDeS43zhfjNqT0GxHf4I8B5OIQaDbrGQ0NWFx8zOOPqPSCANH1bl1ZydFYM4QgQElru1TRQX95Kq2Cw4nQ+SSETHv18miEIFuVW6dqcbLuhofX3nbUoIRPTVVa5Zw75z7cW6K3kaBCKp0tY0kse2s9VDzOkXUAPb9xhwPTyB2Toa1aDgTERjbcPQkvn8SDIbUbxsMx1kzKz/1xcnO7ZgfrxFiq7EUgFpH32ktvBaYzuQATofGG5eVJyRYmpggfn/fj7fiyPJVjv8cC68FAlMJtCX93W4+d2Eg6aKoK/eQIaLslcryflWWurEsAjOrcFwEJtkgqkJ1cb3csZtFWhvheSoXPTpmrpKtqoCK1cpgCqDP1Ma071DVDHMuV3+7M5WQ8ZVfqb+LkghMfo0K6xt6oh19JJhiDlYYaWfAXUHDMT+tspSrtUaWGgd57kg/ZVLdtA4Zp4QhmvtCXDIvQcSqkkhahqE6BBsFc1khjjFXdNCdk0RUkolV6dJpTvLJ4ZL5RbzSMWynjobNCIwQcNSzBC79DIfci/FlusnPdHGsf5IITMuWRFrOLPEdCEaZU5TFFauSIkXdqkwzc0yRzpguWVKee2rkZYoQ8rLKPAQGxUY/jxwVBLR8ijVVRq27zIiB1TtoPLGYBsmpj4c+toE73rF80v32uhyMxUyyO5XPR9ECGBtUviYli1VFA8DRTQy5SjDMoSgWN3hRX0wU9wl1TSlIHtBPcYAPRuNImSApezrUxFOS5NnTMqDut5guuemnL522JmB8emltbQGRuMFf9/cQTdJeNRiLweHBMKMHjrnq9yvL9TLoKqck3kVLNMeejmMGHPSutLfP1EfYY6gU0b/WZyR+x1ASgRnpTBhbglm9cynsvM98g0l+paE8f4LdZ7YHk5VmBDMCo6IFQ5qPnFjf1NGhQDeDwkduZuJ38jg0BPD43u5UsWr1OvbMvpWdcgGvuJYjnJ7EPbH2Q6nXbPlKFcmOJaK1wOTtLiaDHYE5AwQm+Xc5jUaTgyGljQxFdbsiEoC2bRg/exPy6a+lVnOa+pcXTQJz2+syT2vhdbg3QfpvXD+Ld66pxGEuWN++qmKC+D1urWSmwGvBiXeyw5MT3iTEx4CPARQXF7N58+azvFuQO7SfVbtvR0gDQ3Oxf/FnWA7sMuayVjvM/hf+RG9pkBcORXEKOLCzgUPmj3lRbwujmVXsM/dT06O8DgcfcTwOwP6s17FEPok8+hwhdyV7nvg5y4GdPZKof4h64NDzf6CrIkztsQepQeOFNkm8W31eJbXMj6smeduODTPaq54v74uy0Iix9YnfsqJ1F1kAeoQXn/wdUY9ix6v0LnY4a6nueIKFog0HBr9wfYPftruoEn3EhQunjFEl+uiRBXhHjrN5szI5k1LidUBYB2fYT5d/jIFoFss09frt29ysWhoE87jrPYV4IwMc8DvoOUO/WVZAR0r4u59s4vWzXOwbUJNvnltwtLWdzZv7aG4L4zAMfG7BziPtbN6cGtrMHc5ipXAgpEQKB7sGMtnd2s+qEieLR3epcmMkUo+r1MvQUTZv3kzX4CgF2ui011/u8EHyh/YylL9MRdfM51buvh3NiGFobnav/Jr92mNHo5QwjFvotMcLOTo8QCEj+MkgGHew3fyu3OVfSXzu0VE4OrPzuVRA4Fg7m5VkgGAwmLL/g30RRkL6uGOqg6TvKBiIsAKgdx9dZVfTdLCPSwEiIwxn1ACYui6Q2VW8v+021msH2MFirpF5J7xfc4ezWKm5EEYcKRzsHsxiZIbXi3U8A2OKMGTGVeTl2VdaAGja00j/ETV5PHY0YV0QjRk89NR2AnPdnC6sczzYq1JYz+1R3y0AhwY7jQX8rvbLePr38LO+BXzyeAStbTNabIyWeAGFnQfY21dKLRCUXo4YFTzwisFbQpsBWDfm57hcyIjMxGh/2T6fpd3PYS53aNnTQEtwNnWZ1eSEWohrLl44EmBl2yGUzaWGFA76ZAElw0ov1joQpuUM3ZfLRiVFMbVY6Jd57H15O10ZGnlaPjmxAZo33c9sPaoiTPEwxzbdz/GaUVa07qPbyCPk77OP67GjUXsSGP87Pb9PTdzPh+ewbf1XKBnZp+6J7EUp12zRoJNlUqfx8fupbWkkz5GJUx+lrfQajs7g/lnZfhgfIMMBnn1mk01Axt8/M8Wa7LnkBg7TUnUdLSdx/yZj/9EIa8Rh6rUDvPCHVgpnqcVB1sGHqdNjCAF6PErjn+4ltGiU4t4XWIqas8bwIDp2Ttj3qY5n/DgmpeS+LWMsKtAYDEtePtzGfbFuWxfY3d2T8jnhHst9XU6Yzy28FghMO5DsM14FdI5/k5TyLuAugIULF8qNGzee3b069Dg0/JedhnFIneWZKgy621Ah/zmFbpZs3Miv2huZVRTgynmZCdvpl0Jk1S4heT97d85jfugQYeFhzVv/jl2v/IK5soVj2dksj7cCgjXLl0LtJfDyp1mYr7Nw40bYfxvklnHJopLE6mKgGv73bkCwbulc5ZMAcFTC4R+yYUExbOuG0uXQs4fXLa5UJlhjftgchOKFvK1mDNmkgrAe4mwsGiKjpZ9g8Wrye7dRKfrZoy1mxcpVrJudCA3W7HqOQz0BMgmTO3sRTb0eGPwrAC8bcykYc/OP1nEfroHOARYvXMDi1YlzcTrIPDYALzXwUpfO7n7JVYtKyPb0U5jrIbcwl40b1/DA8R0UGqMsrcjj+aY+Jl4vG2HNGvv3qspbQaDhaa5as4A5sz4I9z0CehThcEE8TIU2zOWXX07oyb+wdO4sNm5cPMmeYea6v6SiOsntJrY02j4nDhlnTUEILlX7lDPbT1vLzwHo0YqprJFkHthFj8jFm1+StO9n5vxt3rw55XxsHtnHzr72Sc5REobmwB5VGly+6vWU178R9tWCv4XsqsXgh3evreL6i2ZRV+Pjkw8WctfehfzqY/XU1RZM/bk2Nqb8HmtOourDOp5D3QF49jkuX7WQTcf30T6mIYTOW16/0U4P5sz289ixBmK6ahNww9UXnZFUoIWKngDf3fkcB/0GK6vyuGZpGXOKsvj4AzsxFr+VXT0bOTR0nCuvUGL1X3fupPNYJZdFdnOp7zhH/JU8YdTxd47HeP8lc1m1cC4YBsbmEENk0SaLKROjid/q+V1wEKKOTLI8Qj2/MwYZPpxjfi6visMLTbD0nYiyZVB7KWWdL8PjzwJQu2wdtRdtPDMHP/wIDCjdWL/M4+rLLyUv08XzLxVQGWtlcMnbMZp/oYoXJMQWvJGNGzYi90fYIQtYPLeGjRsVqc+Z7efR5gaipnVD8u9015EGQC1I8upvYs64PnQ2hubAvv+krsSAPQdgzU1wvIFq0UX1TOaPfWZkF4ONG9aqTtxMvH9mjP0uCEDtrGpqT3H+evHAT/lXz9fMliy/x3nFY1C9jkeGBqnrehCQGAhay67m3Rs3wgu7YT+0yRI6RSlzs/QJxz7p8bRtg3u/qCL5ZvuBn7eX0Du6j+vr59IfivLork7GcquBI8wqyERkZbFxY+K+HXq5A3btQg8NTZjPLbwWUkjbgflCiNlCCDdwPfDoed2jo5uRD12PDA+lWn2bXYG7KaRLFjDcqVI0bf5RrshqUeFRyxFzbFCZTiXBn6/CeAFnEXTtosm9iIqxQ+QP7oJd5sX3wHt45NHfE8qdqyo+jj6jPA1GulK1AaMD2JqIX7wr8bzV8bf5WWX8NN+01TZ1MZHeowBE82qh9lKEqdY30OjMUtqPaNUGAKpEH1Hd4L/vuZ+OR79uf0eVLwMncZz6KHjzKZut0gmDRg4Lnd0JkWjbtkR/kj995oxZcW9vSYT9Y3GDlv5R8jJcZLqdtmNuKBIny+NkTnEWPSMRQpH4xA9KqmTZ36lW7Usq8lLTKB98lCguCuLdhKI6Ud2gIGuaFfvRZyZvN5Hs4iy0lBByXY2P/7gyH4B/fNdVlJRVkk2IAgJIdw5nGxluB+G4Pv2bcquU9gWg1EwJlajrOehVlSYWeQFYVa1M+uaVnMT+T1FZNFNYzRVnFWbi1ARDozEKszw2eQEz5fPRyf1ezgQq8xMp1hvWz+Lvr5jHlYtVmqZrOEwwHCfHm+jfU5Dp5mi8EPQIuZ0vsE0u5S9GPU5hsOrlL6l7JjKChsGwzKZdliQ0bkBPVxuj0sPhWAn7Dh1kZ3O3SiWtuF6lKv7yOXUd1n88cW6Ty9TPpAYmM7HIGSSHLI+63sdcPgoZ4omhSnpkPkNGFkJAV/Me9eahNorkEAuiCb+euhofP71Fpb3fuaYq5Xc62he0m+dOKdAHJYjP8Kl+XLFRlYJf/m4lZP7r7YnxaKrqoGCvWoTAmUkjBU0htplmOxXUDT2BE135dBkJd+vZq68giErBvSLnJqo5/S2MajkEyOSYXow0RffjS6EnnIN9vzfTjcqFuGPXE3z5UdXP767nminP9RKMxPlFw3EWluawoDSHnuHUVN22lkHe62mgTAxOeTyvegIjpYwDnwT+ChwAHpZS7juf+9Sx73kMKZQI0WIwNzxkE5LCkgqOyxL0fuUJ0twXYv7IS0p4Z01cANmpBEZkqpuwMNaBce9b0d0+XDLG0n3fxMqaGfEozdv/wrZeDf34S/DwB82tx4k3W7ZgZ9+Sn8+rUhPkkSfV33OvUv+budCxniPq03y1ajD7gJqgX3JdRK/MB8BVtphRl49qrY814jA/175Kxc5vwc/eBI99ioWxA+RaJdTePOarzfBpAR50f4M12pHEPlol3Seykj8J1M8ptPOuLqeG1+0gP9NFptvBaFRNxKGorghMkRLBTqqDScJ+U/C5qNyccK3JdNZ6Bh3FFOu9DJrOydMSmFjS9yTn2qvXQflq8/H6CZP0HJe6yZcuWmJPBFWiXzW0O8vwOh3EdDm5X44FyzcHIGbm3s2y1lhUnZdsTyIgXGZW+HSPjNMfzAATBtcZImCS1LwMl115lFyBZOFkROMni4PdATsn/pVH99HY6sfjdFCU7aFreIxAJGZ3tAZ1LR2KqN9bSJ3n9cW4ZFSJUw8+phYtx1S0JCiyGc2qImcs0fJhqK+DfplLj/RRLAfZf2A/IJWh26wNyp3Wk5vwRYFUo8DsM2BiZ8G8bsOObDRXhk0cwy4fDiGpywtSJob4mX4te4xaNnTcB/9Th4gGWKU18ZZdH08hEZfOL2ZucVZKy5VgJE7PSISrTVLYPE6gn3LtCKF0MP2HzEXDJaq1C6iecVa/rvveMrH/nB5Ti1Cr27tFYKYoc59yHyzEo+aiE+WIfIoIxBOKCwnKh6ltG3UVXnLFGGPSzSrHMepKTWrgb6XHqX7j40Yx+FtobBnkmz+5n9Gnv8m37r6fkfb9GPe+BSNZP5M8dznc/Gag1p4LY7pBxKw86g9GWDe7gLI8Dz2B1Hs9eORF/lP8L2XZ4jUt4kVK+Wcp5QIp5Vwp5R3ne3+ejy2yzdV0M0u3L5BhX4CZ+cUMuivJDLXx860tjEZ12objdjklmjlAjYvAhCNRpMR2na3UlYeGS1eTnoESPQ7KbC4Rr+DQIxAZUWZT48WbtZcqi+jxzztcisT0mKubsmVqkDJXbcax5wAoEqYYq6aejuzl5ER70QfVe7JKZiPzZjFL6+dixz4cKHddjBhyxz38Q/tnqNcUxzwWcqnqBjAdeJN8bazOtSchPJ0J6mp8vHet8g352S3KW8YiMJYYNRSJk+V2MKdYCTr/79npTZz2d41QXZBBbtLq2ILfWUyZ7KU/pPLPq1vvmXwAM3RlqGWtRMe7KY+aVQ1Dk7iuDrcrLw1vrl295hExhPfsR2C8LnOiiU9DYNq2waAponn4A2rg3/MIAHOP/JQ14jCZVhsNEh4rXcNTePBMgcZWP9fftZU7/3oSTqMmrHYSuV6nXSI9vmv42UZD84BdhJdsNFaR76VzOEwgHE8heoXZbruUGmBUeux+TYDZEFIR/4grF0/xHNxEufsv6tyUaiP0k0eP9FEm/Kzzmfe1rybR9DISgJ+/PXHNpkRgzrCIFwg4fCkkLeZRKcR5oUY0ITkoq9mkr8Iz2gmDTarbkVBjx/hFzsqqfHa3D9syCouwLK3IoyLPS3PSwsTyKEm5dspXmcdZpojDgOV5ZS4ID/xBkYvxC0SrFUyhchImPGyLkCcrcx+/DxOcci1BcGahcrm2KsVOEtlxPwFnAf3OMhwY0Hgv3Pc2xvYqz6/f6JeqHl+HVUqfoVY6Ub/xcVmCiI3SueNR7nd8lU87HuZn2tfJbnsa4hE001+nY9cTCU8o4PDiT/L9IwW2xu0iZxM3RH/Nm31qHCvK8VCW62VoNEbYHH8HQ1Gqh3fYlXdT4TVBYC40zFt7FR/Sb+c78ffwpdgtAPzPb56ms6tD2bBn+DB8s8nXBxj489dYIw4zV1NpPgGw+C3qg7JSB4fdOZcTTqrOCBmehD8dGoGKi+3yQGE5owoHrHn/xKqQqapFIJFGyipRIVRfjYrAtG3Dd/BXSAlrX0ysdkaLV7CQVka71c3tLqwlq2Q2dXkhVi9ZaA7Iwj4+F3F7kN03iArNJpXe2r420+3jaaLebCtQmO1haDRKfoabTI/TThVZKSRLtf+nV7qmnRAPdI6wuGzyaMewq5gq0cfo0Rd5yP115u75zuQW5c9/R6146z8BebNUybGFeEQRF2+eKn0PjfNi6H5FVRm1bYPMRNWX8GRztuF1qcHKGnwmxfgqoQN/UISNhGlgVkoERqVSuodPLgLT0DxATJcT2kXMBFYKKdvjosxstjlZBOZsYqqeSmW5XrqHVRPUnHERmGKGbN+c/3N/l0GZjbTSjQ6XbVAXdeVhmOaLGS98i2/dfT+EeumT+fRIH4VihAUOlaa474Cke8yaHsZNztmliYqYM5pCUkRlxKGaVVrQvep5V8tmACoWrCEu3NaySL1HCuQk1UErqvLoC0TsSJ6VMppbnMWc4uwUAmN5lKRcO27ThiBgpuAzChPH7nDD4uuSqoMcie+3XHiLzIrEyIjdbFfAlJVyLx7tZ6l+kP+n/YFl+sHE9Rsw00e1lyotnOXVNQUmi+JE4jpL5VG689fQXPYmdcGYEf/o4acBeNxYx7DIVemg1gYYOk6rUUx1QYZNlC8Z/C1u4jiEND3JhF1FqKOpqsHBo5DhI5pZSufuJ4jqEqdD8NmlIzzo+joVjXdy5+iXWCMO88NnmuyFY4/5O21vGaRFllqL+ilZTJrAnAXU1fj47Ec/yJ45H2GTocL+JUYfA32djJBFdoaHLPP+/AftNzzg/gav13bwuFGP4fDYK6bxEZgl667mQ0bCdfZY1dsI41YXj9ND1htu5xWxUHW0dbgTkYuVN06uDZhKM5CvqkLs8ur8GhWBObYFpI4Yt9pxV63BI+LUDmxRTR6zSiB/Ft5QB1dWmERq5Q12ZCmOgxapVnHzZlVNICpWdc20+3iasPrOtA6MMjwWIy/TRabLwVg0EYHJ9jjZeXwImNg/KRkvNvXT3B8iP3Ni9AUg4CqhUATwtD6LCxVpIx5JHcBat8ImM3j43J1QdREc3aRWv6CIjTQSRnFmeTagSEvbNlVGf9/bElb9gOY9+ymkjJkQmNpL1bVoXZOLr7P/tkwDkyMwJTkepXM4SQJTP6fQNgt0Ok7OLNCKwOR4nXa38OQS6nOBqVx7K/Iz6BqyNDCpBOYiTS0crMVBgQjSsuIz6g3XftNO88TdeUizS/j1jk38TPs6rlAX/TKPHtT3DBx6gah08NVnh/jn3VUYjklK7x1OtbBxehIatTMBMwIzKPJTIjCqDxRkdb5ARLqYPX8ZocqLieLCwIEuXDykX0nLmx+aME6sqM4HYHebSuE09wXRhNI5zSnOorkvaEdn1ialBO1rJ25dfzJhcjfv9arD+82PwtpbEhYPaz+S+H4rYmIadRIeTu07NUUpdL3rKL9yf43POB/mAdfXeU/3d9S9bRGY2Zep/00dzGREpbHVzw2TRCGH+rqo1voIFK4gOvdqpBXfcLgZcapzv7xAJ8sIIvsOwr1vAj1KOBpnSXkubSaB8XU+qxzGAc3pJlh9JXtlLQD369cq/czAUSiczx8dr+cysZvPOx9gpTzESn0PmhFFIO2FbFw36DVLuq0Fy2O7O+3WGT1B+ZoW8V6QqKvx8c9XL2BQ5BOVDqodA1S6Rxk0ssn2OHHrIaRU7QDcxMgRYRZcdQva7MsSF3+ykZ35mZ+9NeE6W7DwEm6K3sa+qhvh5kc55l1K3JDslAv47bIfnnrkworAxMbUzeOrUUZomSoMqEuRos8oXLgegLVyH/2OUqV3yJ+lWsnveVj1CXrHj+CarwHQs+HLrF+hhJyLas0CsrNEVKZCjel63DoQYmg0Zop4HYSiOlJKQlGdTLeD+jmFOM0ZcbIJsbHVzy33bgfgdy93TBqhCXrMEGy8IJEmRKoySCsKs/k/7FfQo+DNUf//8Z/UewaUnTdL36n+70oiMAceS92296D9Uld4clJ1JuGxUkixaVJI46Npa2+x//7V4h/wiliY0qHZ5dAozvacdASmrsZnO1p/+a1LTkqnEgzH0YTqDK2bCfsTipPPAibT2JTleQlE4nQPh1NTSFkeGozFGA6v7RHTYCymxaeE9Hiz7UaOcU8+a7L99rjjIk6GEaSfPLql+i5XxzY6ZRE6Gtvi8/jt8h9NHEfatsHooCLhp+EKOwEmgcmL9bGKw/bTwiQwntgITbKC2uJccuZt4MbIbXw7/m5uiN3O7fGP4K6tn/CRS8pzcWqCV9qHADjaF2JWQSYep4PZRVkEwnH6TW1aJCkF+i/XLFTn33TvTSFxZcuUqLeyTr05Zur5rMUGJEzsklNIVt8pgFU3TjrW1fpfwCV0NS+IOCWHHjTPcYN6g0Vg+g/zzKFe3v2jF/nWXw/x3h+/yOd+oxzRn9zfTXSSKGS4VY1TsbJVFC66lBeNJYS0HA6+4RcMx9U1dVm+Hyx7P7OC9ibxF67IbKEQRQIloEuISw3t5kfJrVpCsVuR/8ococ7bYDNNeimP95cggI86/sTPXd+gujCxoIrjYJtcjMupcbHpFdYTiNDY6uexPV0sFMfRpaAz4k06salIE5iziLoaH9cuq6CbQt49D/LkCIPkkO11UnDRu4mjGKZAYgiNuVXlMP/1amOHW6ULJvlMa3ArzHazUy5ge9E7lfW46Qzq1ARbwnNOnRCY5bp07lQ3j6Gr1f+RJ9Bx8P3424m//w/2Z/sqFjBCFk5hMOQ2Q8pWZ+yBJtWQEtTKBaipKOUNc81qi0mO8VwgP9NFjtfJ/q4R4oYkP8NFpsfJWFQnEjfQDUmWx0ldjY9vvls1avzQxbUTJsSG5gHbCls35KQRmlGTwPiGXlHptHmvBwS0PAc/eyM89ikltBRaYqA0m0Oy9zfqNzi6Sf1ddZE6t8kExoqkm9sezKlXJBO466W+M9KAbTrMKIUEE0mq+XeTZwmZbgfCEn+YKM/z0nUKIl5rIsp0n5xLRCAcs6Nuv9yu8vP3vdhy1s/fTGBpggKRuG3wBuDLcrFTLuCva+9iS/XHuCl6GzvlArowFz9DbTaBkd58KuvehBRCaemcLjSgT+bRaxKY3EgX7ajIr1PT1Gp6/DhyBkwDJ4WZFpkXO8jtA5+ziVGGx82gVKnQQ7KaOcVZGFI5Z/8gfh074irKkTdJBNTrcrCgNIdX2tXke7QvaOvarP8tXcwT+7vtxYpFyidNY+eUq8ndEtUGzK7cydEoaxFalERg4lGVSko61vEYdKnItF38YUV+OncjEfzwFZ1optLjPLy9zc6t6Ab8cnsb19+1lUca21kjDvMJxx+4yNmUWHR1NKJLgVaxmqHRKDvlfDL0IO95dIxg73GGZBaFq64lhislPefAYHHkFS72HsNA2GIAlzCI+tTx+XSl+SkYbSY8GoCRDn5/3MsCrcPWKHk1naqRXfbnDqz+e654/Vt54NZ6rlikxsie4TBbDvchJSwUbbTKMjR35pRCvjSBOctYUJZDu1FEfrQbGRrAL3PI9jhZdNHVHH3TQ4RcBUqAJg146PpE2sjpVeV606AoW+Xnh6PqMj7UHbDtmJt6J9rfz7g6wy75M2+eUVOQdujPHM6/lJ84b8CVtNoRmsYxt0o3hTJMwbhFYCBBYHLN14bbEv1BzhOBEUJQU5hpD2z5Zgopqhu2M6+10n3H6koq8rwcnaTksn5Ood3h2j1FyiLqVb/p64JPEiATUb0+0S7BiKsyTVBh5bqb1UAZHiKlSqyjUaUCvLmqMiKZwPQ3QVYpXKEG2adDs/Gj7vlhw3vaTSNPhBkTmClg6Y3GoyxP6T6ScaJrWErJYEitqMf3cjoRAmaJckPzgB2BmYqUnmtUJJVXJ6dXfJmqou2QczF/zL2BjpzlCKAn4lZdooeOQ3iIMG7c3gyoXkdbyRVEcDJ05X8B4M4rpUcmiHk8R0VFP3nlFJVWtZeetKvzjGA2o9UAh0ykqDOc2ATrKNVU5GWwcWGJPcU6NDWpZk9BWCvzvWxvGeSl5gGO9gUZGYvR2Oq3KwzveeEYO1oGeWp/L1ctLsHj1Dg+kHTtjCfelu4n0KVcyqMBdT76DibEtcFecGbQ2COJaRl09/bapCbuyIS2lyYV4o7EFQnb7LwYw0zxGJqLvf1x+mUu33riKDtCRYQ69iUcxJO2j+mSWaG9/NL9dZWGcn+DOrOq09O7myZZic/nY+fxIY4Z5TiEpEzvwhHooIci5q6+klv029lZdJ3dTDSGk7HKDTRnrSYu3Oho6ObiO9hzDEc8RKYcxUAwl3b27NkFQIsso8FYTMwsZBGaps5ZwRxweKjM1NViXDtC7vb/YYPrKN0jYXIz1PsXacc5LGZhREfTEZjzhfxMF50UIYfbYXSQQZlj57AXrX8DWWtvSrxZj6pVOUIx9ROEZwuz1eA1YhGYngC1hZksrciluT9kD8IAW4/2857/e3Giun0yLH1H6gA172r7pT1yNppgwvb+PJUSKtZ71D5bnZqFQ1VBgWphkFmoKmbCw+p5VwbnCzUFWXafozxTxAvQF1D5WEuTIYTgysUlPH+kf8IkXVfj4+rFpXicGg98dHJfkLjHR0Q68RJlu3udEi1b1VVJan0MXVWAVa9LaEZApeTi0UQ4unyl0sQ8cwe0vKCiN4veBJepQbZ+TiF+VKg2rGWedtPIEyGhgZkmhTQNRs103XiU5XpTNDBWx+bpruGxmG5HYNr8J0lgTIFsspDWfQaabp4JWKJiIEXg6nJo5GW48I9G6Q1EKMv1kuWCwdEo5FerxcKYnxFyyDIneMeiN+EVcdq7VOSgrGIWg+SgC/V6j0NpZrInIZXA2RPXm8QojoYuEilqTQiimlqs5WV60TSVprhyUQlel8ZVi0vIy3ShaWLCRza2+tl8uI9I3OB9dzUQ06V9HT13WKV5/rqvh+t/0kD3SJiFpTlUF2ROf+1Y3c4DPUp3BlBzsRq/rfYroT4i3kLed1cD/XoGW/Y0ceCISgP3F9WrtNMkTUeFX1XqHb/0W9wXvwYB3Dr2D/QOj9IjfUhgyMjAM7AfrWMbVy4s5ob1s3A7VeuEjeJlfuz6Dm6hRLaaEbXbnuQP7mG3MZeCLA/1cwo5hqlDdPRQJPvxO4twOjQGClbxqdDNHLz2QVpW/DM3RW/DUbMef+Eqbsu5g/s87+eL+ocBGO1vwRNRBL/du4BiMczel5TD+3HK2c0CbjFuJ+bOh9xq6N4DS96udEOdu+wmlWLT1/iZ42tk9DQyNBojkzA1opcVa16HjI5N6WGRJjBnGXkZLjpkEVqwG8fYAH5yUgeGJW9LzbEimNSfZRJYEZjtXXEaW/0c6g6wqCyXuSXZRONGygr0kcZ2DIndBTR5VTlhVVu9Dm7+Y2KAMquhJPDWoQeYF9k/YQLJyskHYNbwduUFYJbIInV48L0JIpZbmSAwGfmJSMR5wKzCTLuKyyqjhgSBSf6drlxUwlhM5/bf750wcRpSUlM4dY8Qr8tBv1SEot9bmzoBvPk7kzc/rF6nOuJ68qBslTKxssLRTpP0PXunKm+NBhOpRxSpKitX0a7Pv33dWfErST0+SwNzahGYYCQ+6WRZlpdBIBy3K8MamgeIxFQn2+gUgmor+gLQ7j9xCXZjq5/HjkZpbPUTCMfI8TqnFNKeT5Tmeu1bJVnEC1CY5WYgFKUvEKE4x0O2W+APxRJ9zcaGGCaLTNMYrnSJct12Nqm2JFXVtbidToIulXY6ElVVP+N9OVJwNjRr1euQH/wD39Xfw8NLfpBoHjt8kKUoz6xbog/YY8kblpYRjhm0+8fIy5hc65UcTbNgaUP+si/RoTuuq/f8+Llmcr1O2ganuXasCEywOyGunX+N+r/btIAI9jKIMmMMyAyyZYjmY8ouorfEdD2fZGz3BFrokfnMLi/mSUMZ8UVwUiKG6JX5rBGHeb22E6eMcY/8d/7Zt4VvFD3Bo9e5+NdlI/zUfSdFYgQpldWPBDWmHPgj3pgfP9nkZbioq/GxZJnqr/e5dS4K4v2EvKU0tvo51h+izT/G2x+N8fvs69kpF1CQ5aY0x8umUC3/EXwjXaWXAxAdOI4nrIhgW8HrAKjp2wzAp6+/lk9fs5B/ufUWXJd/GvzNaj4omGNGkV9RhSHxCKC0oOX+HWxrGeTakiEEkooFa5kOr4VWAhc0fJluXpCFCGkAhhmBSbrZrMnMaiEAsOshRV5OEJ7dZ7q/7h0wuOknDYTjBu+uq7Kb0R3pDVJrhkmtcCOklmdavhkxXeJ1aYkBu3pdYnDa8m0gtQR6d3wBDc0D9uCuGTEMCZqQxONRAjsfIU851iSIWPU6FZnxH1Mdbc9T+siCJeSFyQlMclrD61SvPdLYzmOvdKZMbD0jYbtqZTJUjB6kTCjx5NsDD0LbTannt3RJ4vdPnhBq6uGiD8ML31MaJKuiIWKl+CzTQwGurJTvzCkog25YXHv2+5paKaSxUyQwo9H4pHqV8iQzu7nFauC1pqLxnWstWAQmx+M8YQTG8tyIxg0ea2mgPM/L7CJ179TV+C4I4mLB7dQoyvbQF4ikVuigKpEGg4rArKrOI9ct1HmorlbOzpmF+GWWfT27ShYyKjKZP7YHBFRUzaIo+wh+UUge3ewbUwSmN7nZ3zlCpHwt34/186+WBw2QP7TX9gNxSN0eS9aYv8++zhFWVE0+lljRtFjcUKleIdDNNhBvXFbO9pZBIjHDvq7iunrcNjiKlHKCLgtIisB0J8qsay9RUdXuV2Dl+yDUh5ZTAv0wQhZ52iiVeYoQhrJqFbnc+Qvw+iDst+/9rFAbXVo5eztHOGyoKPYicZwSMcQBZvPm3KOIsIowukWc5bu+CkJjkcPDohXvRQolwDXQ6DAKqZJ98OL/wME/AXCL8wkcHduheh0XLZ5N/6FcfIHD5MphohllNDQPYJiELxo37IamBZluSvO89v21aM5sIv0u5HAHQlcL6UNZa7mYn3Gxto9+mUtOXgF/v8K8hyJLEufvz5+F9X+nxrGC2UknVvBMeCG7hoe4aU4fjJBw7Z4C6QjMWUZ+porAWJgQgYHU1cxJhGeTV6BW59qFZTk2gbF0MLoh2dU2hNOhbsbvXb/aHpwt3wyYelWrQrsZGCJR5eAaF1pvyl1PJMmjpjHrssmN8vKqEhGY80xgkrt/W60EAPqCFoFJpDVebhuyc83hmMF3nzxsR2J6RiLTEpjykPJzEUL1MZqw8ppuNbv8vQk3YitcNO/16tzakEo/lZxuND1W7OqlswiL3J26BkZPOdcWbDfe4TDPN/Xzrb8eJNt8380bJgqqIUFgllXm0TkUntYdeLzvh380NiG6cSGhwjwf48ePgiw3fcEIg6EIxTlesl0mgcmfBbEQcrAZv5Flp5DQHPTmLMEldMakm9nlpRRkuRk11Oue6BCQ8OQ4lwia0bbkNNlQ/jJiQo0tUkukluYWZ9nWBVNFYMZ3VH8oqQ3Ejetn8cCt9XYKxvLeWVmVRyAST1n0pcDpUaXdgUQE5u5XIoR8C6EnEYFx5qpITdyVw8oiQY1bSTm84R41Bvqb4U+fSumu7Yt00O+qoH5OISFXPj0ynxWOForECBevXs7GN7yTmG2SqpnVQuZCZsxvjlEawunhXt2MCh34oz2GONDt8Wd+SQ7NshxX2wsAyFz1vS6zGtChCXyZLhyaIC/DRWmSqeO62UV0ygK0kXa0sX4MKdhlzCUovXhETOlfkueSnldIySxEzaxQ505AgjsHQzh4Pqiiastd7WpRll87+W9gIk1gzjLyM9x0JhGYZA3MlJhheLZ+TqFdempFSReV5ZDrVRebRWB2tfnpD0a59RJlaJXc1yfZN8P6e9L9uflRjq/4FDdFb2Ne3ZUTQuvz6q5K8ajJu+SjkxOxvCql7xluO+8EprYwEbXIz3BPG4Gpn1OYqEwAtjT1c9PdDWxvGaQvGEnRKIzHiG+Z7cxsJA3AM0I0iH3jP/M1RVKq18HNjymrdwvJ6ca2bXD4L+rxwx88c2WuU8DrnoET7zQ4UQRma/MAt9yzjeGxONG4VBUNromEB8A/qgjMiuo8dENO6yOTfK27nBq6IafWfVwAKDfN/SakkLLdtPSHMCR2CsnWwAAi0MVwUgQGwChX6YN+8mnqC7HO1cSCyF4k8CP396jTDtMbOPcRmKDpxZO8ryN5i/hG0X/xnfh72LTuJ/ZYIoSgbpZZPTUFgYHUys3xJep1NT6+8Y7lKcSmfo4ar6dPI5VBsIfujlYi0sXXN3XR0OtEb31JeTqN9hNwqu+IOHPIkiFFdjILyRs+wARvtngUjm7Cpw8wlFFtE69wwRLelHUIDYOKqhqGCldzU+w2ZZIa/7BV8Gz22purHm/4BOLmRyn0kngdMBDoJMafeSXZtMhyMsYUCXPkq55R995yEQK4blUFbqcDn6kvSh7j1tb66JRFeEY7cYX76SeP5TWlHEVFfI9TnjqXjBd+L3270kC+9GMVuXrHj3DKGJdrqpKrcmSXkhh07Jj6NyBNYM468jJddMrED2lVIZ0J1NX4ePCj9SwpUD+jyyHsyXdeSTZNvYrxP7GvB5dD8PHL55LrdfJS82DKZ1grXUNCUXZqn55nDvXy/U1HaDTm81TRTeyUC/i3axdNWP2O96ix01DjiViesvBnoElVSZxHlOV6cTs13E4Nr0ubSGCSJlVrQLl0foKMxuIGmw72ohsyZXUyHmP5i+xBZ9O6u09ON5BSspoUvaleB6//6uT6mbPUQ2oqWGQicsoaGH3SKiQrqrX92CBxuyrIINPtsH+j8RgMqVXzyqp8YHoh79KKhCfF929YQzimp6Z3LzBo5mg9fmL1Zbrt81Oc7SHHJfCHokjrXgOGyCYrSSgdKFRl+pqM862772fR2G6EOd25iPOW3ObzGoFJHiOb/Dq/6Cjlh/p1/MPzrhQNmpVGah8cPa1y92RiU12giOL0Qt5SCHQz3NtmalOOcJnYjUMfU015pYG7fz9rxGEGdK+KOAd7IbuMofxlGJoyILVpjBDgU+mUsaxqe59qllyEa8ysAs1WUY2XjQX8UL+Oh/QrafVtUJGKD/5BLXbcOfD6r0H1Oo5lryYmEuaRf3K9ge9Wfssef7wuB/6MGvuQMotU5ejr5hUxryQbfyiGPxS1e7dZ92Nlfgb5mW76tGKyxrrxRPrpkgWsm11ATZX6jEsXVabOEeMzC7WXKH8xPap6uy14I1FXHtc4dvDOjJ04e/fASAfc9zZy3KTmx5OQJjBnGTkeJzHhJuRSeWXVZfXMrfLqany8bZ4LgSqhe/9PX6Kx1U+u18X+rhGeO9THo7s7qczPoKkvyLrZBWxrSe3uOTwa443LytAEfPbXu+2B4MWmfj70s+18+4nD3HR3A1uO9FGS46Ewe/LJekZN7qzqJGmc9wiMpgmKs924NMHO40OJFNIkERhImBMmG9vNNtNQ06WQhBAcdi3hh/p1GJUXndxOTleyOlW68Sz1kJoKVgrJcjE+WYxG4ymTq/25LgcFWW72mKXumhniL8nx2Gm+8fCHojg0YZOT9mlW0ckmeUKo++dCTSE1tvp5Yp+qePk307DMQnJz0JJcDzluocSj3oT+aUhm2VV2AG3DKlJVLgb5mfZ1BoxsotJpm+GFKuoJhOOn/JueKiw35GSdz8FB3dZlxPXUNLf1e73SPnzSva+mQrWpjZu2DD+nHALdlDuG6COfeu1Aon2LaQBX1vMsD7i/gRYbNQlMN2SXsNOYz/WR27gz9h6+pN/KWO4cyK1AmnqaeF6CVFC6LOk7y+xIsGZWyGkL36gawOaWK/1N2XKb6Q4VruZzWV9X48Mtf+Lf5a0MFa5JOQzdN8d+nFuasL5YWpHLvs4RBkNRu1TfGuPcTo3GVj9+Vyk5sX5yor10yULKRl4hv0stloqPTtKwMnlBm9wbra0BOnfSXnI5b9C2cYf+vUSASo+S6xFpH5jzBU0T5Ge6CWnqN5jr6MPtPLOnvclvpDSA+83Odp460ENMl3zwZ9voGg7TOjDKTXc3UJmfwbH+EL3m6ioYiROK6nZF07YWvz0QPH1Q+RZYGoH9XQG7Df0pI2lVeL4JTGOrn67hMKGozk13N9iGVpNpYCzU1fj47BuUwPArb1tK/ribeypY0Z1pO1FPhhNpoiaLcp3FHlKTweUQaOLUXGsNQ6oy6ilIfa7XyWhMp6Ygk8+YIf6awqypIzCjUXyZLiryM9DE9KvozqEEudl5XE18FyqBaWgewJCTT+KFSVHT4mwPOeafg3qmEsujhKTZSdfzam+XMrMTKuIyNzvCTdHbeH6WMsPLX3AJAL3TVSIl4VQ7gI9HyNbAJCJhiwoceFwT+0OBIqwwfauPk0Wu10V+povj0xGY7FII9pAb6yeSUUKDsZi4MJvmak6Un41yO843hpTf02Az5JRxYFBnW3weP9Sv44H4lbxc+GYYbiPW+pL6bKuDNUwgMFYk2LoXZq0wnXmPv6QqoMpXJDbN9fDMaC1c+hmMyovwj8YoyEqNMGaUqbFsRGZSXJiILi+tyKN7JMzRvqB9fbUOKN1KS3+Im+5uYMBZjIZBYayLLlmAr/elROTX0KeP/Jql3cnvbXNUky0ieIWKohpoqs1BRKZ9YM4nXuc+SlFEuSb+0PntM65JWFTgSBGhCZiydNB6+quP7aex1W+vQgdDUft6ssS81b6ER4vToTEYipw+gckuTfjCZOSf3medJpIHu1jcYG+nWun3BSK4HAKPc3KdxTVLVRWCy6HZYXYrDTcVrGhOYfZJEhg4tZLVc9iaQQhBhstxSj4wVuVS9iRksbHVb08incNj1M8ppK7GR3GOZ0oCY4W8XQ6N8ryMCavoHS2D9kTbYRIYAexsHQIuXAIzVZNHgIKsRETU0sAADI7FbEPJIZmdojOqXHUN0qnaD2hON845l7FTLuAe8U6aPEuoMSOLPTOoRLKqub51Ch3Ax8NOISX9DvN8jinL2i+ZX4x3CnJzOphVkEnbdGX4OWVgxGCwmSFHATvlAj4Q+wKRyz4Pb/o2OL3oqIKGA9KMbIz5IbuUDGdqZVPBko0AaHseZlhmkp2f1AOvaH7CK8rfCoyLdJcuVRHaPQ+rSExZgsAkd3geCcfQDZlyrQAUzVqELiEinZQMJ8wxrQjmQFIK6aVjg2giMZf0kNjPflGIa+5lM4/81l46ochjXqEHQ6poqI4gUHEx3PwogShT+sBcmHfrawzrtf1Ycion8URJ8RmCdYM3NA/YN/BvdrZPWjq4sFStyB57pYunDvTwuWtV48R1swt48kAP0biB0yxRtRg3wOULinlifw+Ly6eM5s0Mmga5Faq79XmOwCSXWLqcGhfPLeIHzxwlGIlPWdUAUO3LwOUQHO0L4hAq+lA0RVrNghXNGT+AvFbgdTlOqQrJWnFPJuJtaB5ILNJMR1yLwPQHIxiGRNMEja1++9ofSAp5VxdkpExCzxzs4UP37kCgrOKvW6lSLLPzNHabvXKSV/4XEqyVt3WcyZN4oTnB5HideF0OckwC4w9FVcq2dz/DZKVouqheh3bLH+3yfTFaC2xnX+cIpbleO6I4Ex1MQ/MAUVPAbS1+TrUEPTCJBsY6/sk+c7rzcjqo9mVyoGtk6jdYpdRGnC49j6JsN9uD89lcUscblpZB6RIe/d0v+XlXNeUiKWWfXcrefp0cr5PawiwOdI9QvmgD/DUDZ6ibVjk7dSzpfDkR1fjFuyZGVB0uqFgNR55UfydFYErM37B3JELMUJ9ROC4CvFxrQQBF2gji52+3P39Jkj7MGrPGj5earwq61HuCnlLErPWpliDTzXHj7UOq11EJGK/8EEOPoTld5L3xSyecJ9ME5hygNWcNsdBDOImj48R5FjQJ42/w8YTGejw+6rDtmLq5LltQTEVeBh/9+Q4+dPFs6mp89nurfBk8c0ilk047AgNqUL0ACMz4wW/NrHzVZVVO40KKikbVFGZxtDdIboaL4hyP3U5gKuiGIrBH+4IUZBWc4SM5//C6HKfkAxMyNRaTpeusfL81YFrXcnG2h7ghGRqLcaw/xPt+vBVDStsrZXmluq4yXQ5eah+ksdVPXY2P3+zsAJJToiMU53iYlavTPDxx5X+hYapJ3Fohl+SoiSbHpa7FgVAUnGaKk8GJ5zjJi6ioIxF9XFSWQ2nOzAlM/ZxCNE2gG3JKf56ZwqpCOplCh7Ph2eN0CFoHRtnRMsja2knuV7PDN0BbPI/LFhbz173dPHe4TxGY6nU85NbZ5xgiy9hlv7dx0M2uPp33rK3i5g21vOV/n+f3e/q4uWottGzhuCylJpnATNZ3avykXlkHx7eqyHZRwj/HqhrqCYQ5bPbJGwilRtSqRhqRZrpL6lGE+fn5mW4q8zPoGBqjwCxVHz9ePrnrmE1gxjJMc79kf6sTYfx7x5HqmXxOOoV0DjDoW8U/uv+dX2V/kK8X/ec5CetPVTpYP6cQhymYcTk18m2FuYcrF5fg1ITtF9MzEibX6+StKyuI6RKHEAyNRqf8zhnD0sGcZwIDqedJCEGmWVEz2YSajLnFWTT3h+gZCU9bQg2qiuJQdwAJfMAUWb/W4HFpRMalkJ7a38P3njo87fFOF4GZyhG32Jxc+wIRnj/SR9yQtsP0YCiKL8tNY6uf5470K33TT1RaI9k+wOVUQsiK/AwqsxPD4IWaQpoOFoGJxg0aW/12CsnduR0OKbfdr7t+Rv7AROt6C8mpzdJcL7kZTjxObcpUXTLqanysNyf599fXnBaZCEZiODRhuzufDzS2+vnzni50Kbnp7inu15xS+2FrNJfibA+Ly3N57JVOGs0iicHRKHOKswnIhN/UnS8OAfDork4icYPZRZn84JkmOvOVuLaQYcpGkppCzqTvVJVZGJBZaPaTUrCiaFuPDvCVPyovqv/6y6GU42nKXGVbPIQNBwe9K+3XKvLV9sPhxH2TPF7m5ObaTTbj2eWTnsuTxkmmvtME5hwgL9PFi5G5/Nz1brpyVp54g7OIuhofN65XOdm73r8WlybI8TrJdDtxaILSXC9dQ2rV1TUcpjwvg1mmKl+Xkg/es+30J2BhXnbDnaf3OWcBGeZEeqJOxnOKs2kdCNExNHZCAe/BQd3WHp0poeGFhoxxKaSn9vdw6/07+O5TR6bVRYSmSBlYmKyyrdiMNPQFIilNDl1OjXBMpyDTnSJ6jeoGDc39drf2TLdKuQYicSrzvSkEJvcCLqOeCpYjd5t/jJvubqA9oON2aOT3brPTD050sroapvyMZHF5Wa4XIQQluZ4Zl1JbAm7B9JHIEyEYVm0lJnXAPUdIbj8Q06e4X5MiMJ1xZXy3q22I4bE4N5qkxx+KMr8kmxESBKbbyAeUEPs3O9tpGxyjNxDh7kYVAVunHaTot+9J6CRnIsjXzHsn2J3SP89aWL183G+blerjjufpYC3vNy0ePhC7jaeDtYAicS8fHwLgB5smF2cXZLnxmwSm1jU0xdk8u0gTmHOA/Aw3gUicodEouRfACu/yBUp8leV10j0uglCR77XFjT0jYUrzvAwklaye9gTctg32/Fo9fvxfzrrJ2snCirycKIQ9tzibmC5p7gudkMAsKnDgnUKA+VqB1+VIqUL6/jOqA+6JqkNGzRTSZM0cp4JNYIJhXI7EEPa961djSPBlue18vYXqgky6hsPMK8lmNKozqyCTzqExKvIyqMhOTJYXspHdVGhoHrBpQyxucGjQoCDLzV73cnB47NJo55zLpvwMj9Nhu9+WmoL00hzvjES8kChJbz/JBprjEYzo5/03qJ9TaF9XmpgiJebOVH3KgF6ZT38gYhPmmG6w9Wg//tEoswoyGdOy7c36pNrGKrawtskwVDdnh5CI8T3wThSV6DvEZP3zrCiaVYwgmDj+1M8pZJ9jET82rmOvY1GK5MCuejMmv39nj+2jVvQgJXy87V/Py1ieJjDnAJbddc9I+ILIsVutBo72BekeiaRU0FTkZ9A5rAhM13CY8lwvG+YW4TlTE3CKydoktvrnGRkzTCHNKU54K52oAmmez8EDH72wmgOeaXhdmu0Z0tIfsr1bYPprJhSd6Lx6IiRHYCy3aUh4iBRmue30U/2cAqSEIz3qfR++WJmFNTQPEI4ZVORnkOcWtg/Nkd4pKzYvWFhaIev+XFTgwJflZpdcADc/yrOVH+XDxhdx1Kyf9nOsNJK1oCnN9U7f0NGEbkh6zFTTTBpoTodg5Py3c7AMQjPdDi5bUGTfrxNKxb25SKFRK7pYVpmXQnqWVeZhSBWlcGXmAyBdmQTJYHmR6jn3zjVVNslukEtUuwSzdPikvJtmT55mEkJQludlq0k+3rO2asL4M1WadiYd2SuHG83vmaJFyjnAWSMwQoivCCE6hBC7zH9vSnrt80KIJiHEISHEG5KerxNC7DFf+x9hxhGFEB4hxK/M518SQtQmbXOzEOKI+e/ms3U8pwOLwBgnEIeeK1T5MnA7NI72BekZTm1EWJGfQfdwmGjcoD8YoTTPa9/QZ2QCrr1U3WTnyGTtZGFNpFknSCHNLUqsqizx5HSYkcnfqxheZ6KM+gu/34sQgtcvUTqBb757RcpxJ08Eo5GTj8BkuR1kuBw2gbEmvOePqK64PjMdUlfj4+tvX44EfvxsM1W+DN6wVO3TM6bHUUW+l6NDBqNm+uuMpEjPMcZPQvN8DgqyXGZDx3U8WfR+jnimb4oH2AaVFoEpzvHQN4MITH8wgm5IPE7thA00T4SpOpOfa9TV+FhVnW87O287NsC7f/Qid5ql4ge3P6WcYqXBA+7/4PKMYzx463qcmuDaZWW2GV5Blpvs7Gyiwk00oxgQXF7lsrWJajzN5xWxkK/k/we/zP7gyXs3TZNmKs3xMjwWoyjbzTfesXzKSq7xY9NMOrKL2ktOvUXKGcLZvlL+W0p5Z/ITQoglwPXAUqACeEoIsUBKqQM/Aj4GNAB/Bq4FHgc+AvillPOEENcD/wW8TwhRAHwZWIuKVjcKIR6VUl5QI5BldgYXRpWD06ExuyiLIz3BCX18KvK8xHTJ/i7Vkt3qR3PGlP6TlM9dSLAm0hNFBPIyXRRlq3LeE0Vg/hbgdasU0l/3dfNCUz8CeO6wIhRWKTQo8nKD2QHa69K4YZ3SY53MpCWEsL1gmvqC1M8pZHvLIM83qZVmQdL9Nq8km7nFWRztC7GoLIfCbA9F2R67qq4iP4OnBnXb+TN2mmXA5wvJ9+fmY4CEY/0hW7x8oogigKndpycQZjl5lOZ6CUTi5vZT/z5Wv6nVs/JpaB5keCw2rQ3BdAiG4zYBPd9YUJrDr3e0YRiSP+zqtM1ho3ED//5NIBOtF0oHt1P2umuYU5xFOGbYBnu+LDeF2W7Cfg/OeIw14jClWQkdZF2Nj09eMZ8P3budX3aX8frFK3l/9dqT39kpqn+sxoxrawpwOk4uXnGiMT9jzgZuit5GvXaAy658O/XnYSw/Hymk64BfSikjUspjQBOwTghRDuRKKbdKKSVwP/D2pG3uMx8/AlxlRmfeADwppRw0ScuTKNJzQSE/6WbOuQBWFwBzS7LY3jKo+viMSyEB7DRXoSeqsDklnEOTtZNFIoV04t+p2LQ8HQyegcqsVzm8TgeRmMEfdythtkQJFR2aSEknjfcMaTJTOycSTY9HcY6HzuEwLf0h5pVks7Qil35Tq+VLchttbPXTOqCiAs8e7qOx1c/i8hz8o2plXZGfMa3T66sRTX6dhmOD+Edj3HR3Ax3+sROe38ZWP42maPOTD+6ksdVv9/f67xNUknWZmrmLzEqk09HBBE5Als4lFpblEIrqtibQgiGhUSzFSNIXWdGHWQVZHB8M2V3RCzLdrNGOkE2QjNFOHnB/g/mxQymft35OAS6HQEqmbNNyKrD8kQA2Hew945HFvAwXL6P6Mmmz6s/oZ88UZ5vAfFII8YoQ4h4hhEXlKoG2pPe0m89Vmo/HP5+yjZQyDgwDhdN81gUFK4UEF0YEBpQI1dIMJJMUq+OtZa1+IoHqaw2JFNL0K9bGVj+Hzcn3X8f1pvlbhNelMRbTkWa4xSIDc4qy2NORIDD1sxOeGk5NoyjHg8shTrq9RnG2h1fah4gbknnF2SwpTzbeSqzgk8WIlhnewlJlxuh2ahRmuad1en01Irl3UCxu0DsSmdTpOBnKNDCxTUPzACNjiuTd8/yxaSvJrAjMWpvAnLoOJhiOXzCLvAXmdXK4J0C7f4wqXwavX6xSkN/en8+N0dvYVHErN0VvI2Ou6gxfU5jJ8cFR5cEDFGS7WRHboxxmAZeIUxLYl/I9mW4na2vUuSs+FafuKZD8m+pTCHFPB06HZkfaTrpFypnah9PZWAjxFFA2yUtfQKWDvoZajH0N+DbwYZi0zk5O8zynuM34ff0YKj1FcXExmzdvnuxtZwWhWGKXWo4cZPNw0xn9/GAweNLHE+1P1Pa3H9nL5t4DQGJftx5WLdab9zbSe/jcljSeyvGcKfj71Sq+q62FzZs7pnzfY0ejKZPEQ09tJzB38pv4fB7P2cBkx9PfHSEUjnPweC/VOYL1ZU4WFTjY2hXmheNBNj3zDJoQdAQSXjHX1miMDPTg1uTJX7+BiK25GW4/hAip38KlwUsvbLHLcD1DOk4BcalIlWeoFfn/27v34Ljq64Dj37Pa1VuyJVkORrZlyzYQTErASVBoSQQkkAJpXk1LSlLahkmb0mlTptNSOg2dpEwnDJO0CUkaahLShCSQB3lAG/NUwA0CWw42D7+EZNmyjW1JK+tlabXaX/+4v7tarXa1q/W+rnQ+Mxqt7t17957d1W/P/p5jznF1pYZf/epXjI6OQs9uNguM9PQ5TTAetrYiRIkIYTst+1ToDBOjk/M+x4mep+1vOGVExEBoKvl7/MV9Ifw+GD70CgDtO16m7NS+BV1zV3CafYPTDI5O0XnwKFsfOcXGOifpKtT/z7gtCx/79W5e6J7i8iY/y8LOHC8GeHFqI0ND57HfROjs2I5PhMmBKSamIjzd6ZSnr3R2sD+8mssJAGHC+DlWtoHDcfE0lTgJz7Mv91A71heN/Wwkek3b2/tSH7gA5Tjvkb0v7aCvNP9D388qgTHGvCed+4nIfwGP2j/7gDUxu1cDx+z21Qm2xx7TJyJ+YBkwaLe3xR3TnuRa7wPuAzj//PNNW1tborvlRCRi8D39P0QMtG65hHduyG4VdXt7OwuNZ8XR03xjz3YArr/yt6PTThtjqHxuGwMT05T6fVz/3ra8z8mQSTzZsn30NdqP9PDWzRfQ9vY1Se9Xsz7Io4c6orPEfuw9b0/6zb2Q8eRConh2Tu7n8cNdHBmDP7l8PXdc92YAance4akf7aH5orezobGarc91A07hvnFDC70D4ywfHljw87Nn+iBPHz4AwB+8790cDZ7hvj3P0lhTzpVXXhm9XxtwyaXBWVPNv3L0NPe/sp3y8gpq1l8MPbsX1etDezv/cdF53Pq93/Dn797AtldPsPZNNbS1XZr0kDbmPk/r9p7gyW87Sy+UBpK/x398/Dc01Q1xw3vbuH37NsobzqWtbXPKy+zsDfL86/2EwhG+vuN1puwXgoNDEe7ZFYrWhhXy/+fcnU/xUrCEiekpPvw7b2HVsgp+0vVrIsZ5Ttafu5I3Jga4yn3P7T/Jd/fu4FSkmvLAMNdefSWDNRu46ZEwl5fspeK8Njafc+6ceAZr+/jRwd3sPjXNviGTlZrANua+ptm27KVneWN8hFXnXZx4xuIcy+UopNip+T4EvGJv/xy40Y4sWg9sAl40xhwHRkSk1fZv+WPgZzHHuCOMfh942vaT2QZcIyJ1tonqGrutqPh8Eq1qK/QQQZc7DFgEemMWvBORaD+YVcvKCzqhVCG4qyJXpqhyT6eX/lJSHvBhjNOv5a1rlke3u9P6f+kJpx/F9q5+WhqrWFlTRl9wnPFQeEEjkFzuUOpVy8qpLvOzobEKf4kQjpg5TR3xoyxGJpymkd5BZ4X2ruDCl0AodtduPge/T4gYZ7LAdJ7j+OfJnS/qnRsa5n2Pv3H6THTyu9V1lWk1Ibmdue95/ABffrormry4imXCx/POqaG731kT7rL1ThLwwbc24RP4zicvIxDTjALQ3OCUq68dG452Jq+vKmWXOY97wx9A1ibu93f89MSshRKzFXsuRz929gY5eMKZduDjBZphPJd9YO62Q6L3AFcCfwtgjHkVeBh4DfglcKsdgQTwaWArTsfe13FGIAHcDzSISBdwG3C7PdcgTvPUDvvzObut6LgjkYphiCDA3uMjCM4Ikfjp7d2RR0ut/wukPwoJFv/Q6IUoD8x8QF6ydnn0tpssPLbnODdt7eDXXf28a1Mjq+sq6AueYSw0HU0aF6LRdnZ05zTa3XeaSMRwcmQy5YrIuw4PzZr4bd/g4ktg/CU+1jZU0nNqLOUoomTcD+eNK6vnfY87M3Y7ZYX7uqbS0T3AVHimObHEJ9EPI18RdaZ2+0ttaKyKJs1b1tURMU6s8SOumpZX4BNn9md3NFXsAorrGqpIZL7VxotV7GKrhUo4c/Zpaoz5xDz77gLuSrB9J3BRgu0TwEeTnOubwDczv9L8cN/kxdKJt6N7INpZKH7oaJOtgcnJCKQi5846fPQsJ+RaaspsAvOm2rJoR3CAHYecRMJAtM/KqmXlDI5V8tKRIVbWlKXsMJ2I+2EyHgrPGm0BqYdCxy8SeUH92fc3KEYtK6ro7h9lPDSd1jDqRBqqSqMdUhOJRAwnhidYZcuM1XUVvHgo9XfI1pYGSnxOjVl5wMdnb9hMcNxZSTw4HspZk8dCuR15q8v80UVB3fLxaPDMnASm1O/j3OVOEud2bI0dWbSuoYqTCT7nc7Wqdi65/0ehqUjBkq7i+DRdAtyWmIMnRmYvl14grS0NlPt9TE3PffO5H0Crltj8Jp29QR749SEAPvfoa7x5Va0nCpJi4A4/v2TN7OertaWBMr+PyZhv21964gDXvWUVx4bOUB7wRavdF8IdMr2rd4ibtnbw2Rs2U+qfu3J1IvEfFiM9uxf8+F6wfkUVvzrgLHa50GHqrvqq0nmnCegfm2Rq2kTLijX1lYxMhPni4/t59/krk/7/bGmu46oLVvLcwX6+e8tlRft/5rerzO/pO81NWzt48JbWmQRmyElgVtdVzDqmuaFyVgITO0KnuaGSk0keKxeraueS+3/0/Sd3zNsHMJd0KYE86OwNsueIM5T0Tx/YURRDbrc01yWd3t5dhfTgydGiuNZ8iV3ELX7RMzW/Y3aujMa4WYndWZyv2LRiptlmOsLoZJhwxNA7MJ5RDcy+N0Zm9RkIjocW1CdpKTT/rV9RHV3EL5PnGGwCM08NjLsGkltbG7LrYd37TFfKprwSn9BUV1HUr0Hf0Jk5fVOabMLSZ2tgYqfJAGcuGIA6222gttxPic95DdwFRReLLc113LChtGCvoSYweRA7F0WxdE6D5IW4u0LwM/tOpiyEFhMvtkMXg87eIPc+7UwN8NDOIwk70X7mPefNmizushZnxMJkOJJRH5hEr9VSSEoWYv2KmZqtTCeHa6ievwnJnQPGrbU9ZWtrIiZ1WTcwFpo1a3IxSvQ+qyz1U1cZiNbAxM863Nwws4wAOH2upiMwFppetJ3GC0WbkPIgvs292D8YRybDTgdfvDu1eia82A5dDDq6BwhHnCYit+Yq/rmLf26XVwb4/KPOcOpMOrbra5Va7IKjmSYw9VVOn5RIxODzzR2RuKPH6e9ycmQCWMYNb1nFA/93CEPqLwGDYyE2NlYn3V8Mkr3PmuoqOHhihOmImZPArLXrIO05ejraPyu2PF2MncYLRROYPPBaYXv5hhV8NdDlmYQrm7zWDl0M3G+pqd4vsc/txNRMIZ7JMOr486m5VtaUUVlawnhoOuPnuL6qjOmIYXhiataabuDUvH3L9hm79Xu7nKa7dfV89G2reXhnH1+58dJ5X5/gWIj69cVdAwOJ32dNyyvYfrAfgOUVs2MITzvJ/FN7T7D94Ck+e8PmJdFpvBA0gckTLxW2Xku4VGFl8n4pD5REF2RMtfK3yoyIsH5FFa8eG854+gZ3CPDAWGhOAhPbZyy2pvbP372Bh3f20Ts4lvS8kYghOB6aNcTYS5qWVzIWcpLw2rgamCNBp9+M24zm9s9a7J3GC0FLDpWQlxIuVXiZvF9W11VwamQy5aSBKnPuQrK9A+MZzZTq9uMYHAuxoRF2HBrkxZ4BWltW0NrSEP2gjq1529DoLK75i93HuOWKloTnHTozRcTMdHT1mqaYkUfxnXgT1UjOWS1cZYV24lVKFcTqOqevQLFM7rjYdPYGecH2UbnjkZcz6ozvJjADoyE6e4P8wTee555tB7hpawcAv7V6OefUls0Z+fV7F5/L7r7T3PXYawkfd3DMGQbfkMXFC/OpafnMFBPxfWB0lu780ZJDKVUQJXZyJHcki8qu2NGP4SSdq1NxE4zBsRD73xieM/OqT2BDgpl619kRUFuf6+E7Hb08eEtr9JpaWxqiTU+FWsX4bDUtr4zejk9gQGuw80UTGKVU3nX2Bnlsj7NW6xcfP8Db19VrgZ9l6Xauns9ME9JkdI00mGky+ulvjrKyZu6El10nR4GZkTc/3tXHD3ceITxtKAv4+OurNs46v9fM14Sk8kcTGKVU3nV0DzDt1g5Els5Q/XzKRmf8Mn8J1WV+BsZCrLHDg8+pLeOrN21hS3MdIxPhhAvUuksFTEcMAb8PMUQn1ZsKR3jJTuzp1QSmrjJARaCEcCQSnYVa5Z/2gVFK5V3sBGGlS2yofj5lY3I/dzbe122tSlmgZNbK3jXliZtQPnP1JgDufP9mLmleHt0X8Puio4+8msCICPXVpQRKfOw6PFToy1myNIFRSuWddnT0DjeB6TrlJDDDZ5wVxqcjhrHQdMIaGIAb37EWgKHxKY4NzfRzuvsjv0V5qVOzU+b3Zu1FZ2+Q40NnGLez6y6V2cqLjTYhKaUKQjs6ekNDVSnHT09wYthJQoYnwhhjGJ1wlhxJlsA01pSxcWU1Hd0DDI2HqCn3MzIRpjxQwuBYyLO1L8CCVj9XuaM1MEoppZKqryrl1Ogkh/rHKfX7mI4YxkPTDE84NTG1CZqQXK0t9bzQM8DuvtP8ka2R6ekfY3AsRJ2HExhdN604aAKjlFIqqfrqUk6NTBKajnDRubUADE9MMZKiBgacD/qJKWdq/fPPqaGhqpSe/jEGRr07Cy9oE2ix0CYkpZRSScUmGlua69h1eIjhM2FGbA1Mok68rtgROnc88jLrGqro7h8jOB7iQpsMeZU2gRae1sAopZRKqr6qLHr7krXOB3a6NTD73hiJ3p4KR/D7hO5TYwx4vA+MKg6awCillErKrYFprCljtZ3A7fT4FCOTbg3M/E1I5YGZviIXr1lO/+gkoXBEExh11s4qgRGRj4rIqyISEZG3xe37RxHpEpH9InJtzPYtIvKy3fdlEWc+cREpE5GH7PYXRGRdzDE3i8hB+3NzzPb19r4H7bH6H6GUUlnkJhoV/hKODI4D8TUwyZuQ4vuKXLFpxZzzKpWps62BeQX4MPBs7EYRuRC4EdgMvA/4moi4jaFfBz4FbLI/77PbPwkEjTEbgS8BX7DnqgfuBC4D3gHcKSJuw+MXgC8ZYzYBQXsOpZRSWXJs6AwAh4Pj3PbwbsCZCyadJiSYPZne+hXV0e1e7sSrisNZJTDGmL3GmP0Jdn0A+IExZtIY0wN0Ae8QkVVArTHmeWOMAf4b+GDMMd+2t38EXG1rZ64FnjDGDBpjgsATwPvsvqvsfbHHuudSSimVBQdPzvRjCU87I4qGJ8KMTIQJlAhl/vQ/RpobKrFreHp6GLUqDrnqA9MEHIn5u89ua7K347fPOsYYEwZOAw3znKsBGLL3jT+XUkqpLPjtjY2z+rGU+322BsZZRkDcjCQN5YESzl3m9KPRGhh1tlIOoxaRJ4FzEuz6J2PMz5IdlmCbmWd7JsfMd665FyTyKZymKxobG2lvb092V88ZHR3VeIqYxlPcNJ7U/u7SUvYNTnNBfQlf2z3J/p4jTEUMfhNZ8GOVRpwZfR995nk2r0g9k4e+PsWtkPGkfPcYY96TwXn7gDUxf68GjtntqxNsjz2mT0T8wDJg0G5vizumHegHlouI39bCxJ4rURz3AfcBnH/++aatrS3ZXT2nvb0djad4aTzFTeNJLfZsPzz0LJXLKwmFI6z0TdLWdkXa5+nsDXL48ecB+MruKR68ZUvKuVT09SluhYwnV01IPwdutCOL1uN01n3RGHMcGBGRVtuH5Y+Bn8Uc444w+n3gadtPZhtwjYjU2c671wDb7L5n7H2xxyarEVJKKZUFtRV+O5FdmJqy5COQEunoHsApumfWEFIqU2c7jPpDItIHvBN4TES2ARhjXgUeBl4DfgncaoyZtod9GtiK07H3deB/7fb7gQYR6QJuA2635xoEPg/ssD+fs9sA/gG4zR7TYM+hlFIqR2rLA9Fh1KlGIMXTNYRUNp3VUgLGmEeAR5Lsuwu4K8H2ncBFCbZPAB9Ncq5vAt9MsL0bZ2i1UkqpPFhWEeDAyRGmp828c8Ak4s4L09E9QGtLg07Fr86KroWklFIqbbUVAYbPhIlEzIJrYEDXEFLZowmMUkqptNWW+xm2CznWZpDAKJUt+u5TSimVttqKALYf7oKbkJTKJl3MUSmlVNpqY5KWTJqQlMoWTWCUUkqlrbZiJoGp1gRGFZAmMEoppdJWWzGTtGgTkiokTWCUUkqlTZuQVLHQBEYppVTalsU0IekoJFVImsAopZRK2+waGG1CUoWjCYxSSqm01ZT7EZm5rVShaAKjlFIqbT6fUF3mp8QnVARKCn05agnT9FkppdSC1JYHKPEJ4lbFKFUAWgOjlFJqQfwlgjGGzt5goS9FLWGawCillEpbZ2+QI4PjnD4T5qatHZrEqILRBEYppVTaOroHomshTYUjdHQPFPaC1JKlCYxSSqm0tbY0UBbwUSIQ8PtobWko9CWpJUo78SqllErbluY6HryllY7uAVpbGtjSXFfoS1JLlCYwSimlFmRLc50mLqrgtAlJKaWUUp6jCYxSSimlPEcTGKWUUkp5jhh3PNwSIiIjwP48PNQy4HQeHmcF0J+Hx9F4MqPxZEbjyYzGkxmNJzO5jqfZGNOYaMdS7cS73xjztlw/iIjcZ4z5VB4eZ6fGk9HjaDyZPY7Gk9njaDyZPY7Gk9njLKp4EtEmpNz6RaEvIMs0nuKm8RQ3jae4aTweowlMDhljFtUbSOMpbhpPcdN4ipvG4z1LNYG5r9AXkGUaT3HTeIqbxlPcNJ7iVrB4lmQnXqWUUkp521KtgVFKKaWUhy2KBEZE1ojIMyKyV0ReFZG/sdvrReQJETlof9fFHPOPItIlIvtF5NqY7XeJyBERGS1ELPYashnPL0Vktz3Pf4pIicfjabfbXrI/K70aj4jUxMTxkoj0i8i/ezUeu/0PRWSPPc/d+Y4lk3hEpMHef1RE7o07l+fKgxTxeK48SBGP58qDZPF4tTxI8frktjwwxnj+B1gFXGpv1wAHgAuBu4Hb7fbbgS/Y2xcCu4EyYD3wOlBi97Xa840uknhq7W8Bfgzc6PF42oG3LZb3W9x5O4F3eTUeoAE4DDTa+30buNoD8VQBvwP8BXBv3Lm8WB7MF48Xy4P54vFieZA0nrjzeqU8SBhPPsqDRVEDY4w5bozZZW+PAHuBJuADOE8a9vcH7e0PAD8wxkwaY3qALuAd9vgOY8zxPF7+HFmOZ9jexw+UAnnv9JTNeIpBLuIRkU3ASuC5nAcQJ4vxtAAHjDGn7P2eBD6SlyBiLDQeY8yYMWY7MJHgXJ4rD1LE47nyYL54ikEu4vFSeTBPPDkvDxZFAhNLRNYBlwAvAG9yCx/7261ebAKOxBzWZ7cVnWzEIyLbgJPACPCj3F91cll6fb5lq1j/WUQk91edXBbfbx8DHjL2q0qhnGU8XcAFIrJORPw4Bdya/Fx5YmnG4xnZiMeD5UEqXisP0uGl8iCZnJcHiyqBEZFqnGrRz8R800h41wTbim44VrbiMcZci1MtWAZcldWLXIAsxXOTMeYtwBX25xPZvcr0Zfn9diPw/WxdWybONh5jTBD4NPAQzjfHQ0A429eZrgXE4wnZiseD5cF8vFgepMNL5UFC+SgPFk0CIyIBnCf7QWPMT+zmEyKyyu5fhfOtA5xvjLGZ4GrgWL6uNR3ZjscYMwH8HKcaMO+yFY8x5qj9PQJ8jwI1LWXz9RGRiwG/MaYz5xeeRBZfn18YYy4zxrwTZ72xg/m4/ngLjKfoZTsej5UHSXm0PEh1Lq+VB0nlujxYFAmMrTa8H9hrjPlizK6fAzfb2zcDP4vZfqOIlInIemAT8GK+rjeVbMUjItUxbzg/cB2wLx8xxMpiPH4RWWHPGQBuAF7JRwyxcvB++xgF/LaVzXjEjgKxIxT+Etia+whmyyCeopateDxcHiQ7j1fLg1S8Vh7Md67clgemgL23s/WD0wPaAHuAl+zPdTi9oJ/CyfqeAupjjvknnNET+4Hfjdl+N843zIj9/S9ejQd4E7DDnudV4Cs4mb1X46nC6ZnvxvMfJBjN45V4YvZ1AxcU4n8n2/HgFLyv2Z+8j3A5i3gOAYPAqP2/v9Bu92p5MCcej5cHieLxcnmQ8P1m93mxPEj2/5PT8kBn4lVKKaWU5yyKJiSllFJKLS2awCillFLKczSBUUoppZTnaAKjlFJKKc/RBEYppZRSnqMJjFKq6InIoyLyQKGvQylVPDSBUUotKiLSJiLGneRMKbU4aQKjlFJKKc/RBEYpVVREpFJEHhCRURE5ISJ3xO3/uIjsEJERETkpIj8UkSa7bx3wjL3rKVsT84DdJyLy9yLyuoicEZGXReTj+YxNKZU9msAopYrNPcB7gY8AVwOXAO+K2V8K3AlcjLP+zQpm1o45Yo8D2Iyz6vLf2L//FfgkcCvOVPT/BnxDRK7PVSBKqdzRpQSUUkVDRKqBAeDPjDEPxmzrA35qjPmTBMdcAOwF1hhj+kSkDacWptEY02/vUwX0A9cYY56LOfbfgfOMMdflMCylVA74C30BSikVYwNODcvz7gZjzKiIvOz+LSKX4tTAvBWoB8TuWouT6CRyIVAO/FJEYr+1BXAWolNKeYwmMEqpYiLz7nRqUrYBTwKfAE7iNCE9h5P4JOM2l78fOBy3byqjK1VKFZQmMEqpYtKFk1C0At0QTVouAl4HLsBJWO4wxvTY/R+OO0fI/i6J2fYaMAk0G2OeztnVK6XyRhMYpVTRsM1F9wNfEJFTwDHgs8wkI4dxEpG/EpGvAm8GPh93ml7AANeLyC+AM8aYERG5B7hHRAR4FqjGSZQixpj7ch2bUiq7dBSSUqrY/B1OJ9xH7O9XcBIOjDGngJuBD+LUqtwJ3BZ7sDHmqN1+F3ACuNfu+mfgX+z5XwWewBmx1JPDWJRSOaKjkJRSSinlOVoDo5RSSinP0QRGKaWUUp6jCYxSSimlPEcTGKWUUkp5jiYwSimllPIcTWCUUkop5TmawCillFLKczSBUUoppZTnaAKjlFJKKc/5fwSpFrjg842YAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df_monthly.diff(12)[period].plot(grid=True, marker=\".\", figsize=(8, 3))\n", + "save_fig(\"yearly_diff_plot\") # extra code – saves the figure for the book\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fzpl1DZ2nUz2" + }, + "source": [ + "If running on Colab or Kaggle, install the statsmodels library:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "24AYoEUUnUz2" + }, + "outputs": [], + "source": [ + "if \"google.colab\" in sys.modules:\n", + " %pip install -q -U statsmodels" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rBItcYlYnUz3" + }, + "outputs": [], + "source": [ + "from statsmodels.tsa.arima.model import ARIMA\n", + "\n", + "origin, today = \"2019-01-01\", \"2019-05-31\"\n", + "rail_series = df.loc[origin:today][\"rail\"].asfreq(\"D\")\n", + "model = ARIMA(rail_series,\n", + " order=(1, 0, 0),\n", + " seasonal_order=(0, 1, 1, 7))\n", + "model = model.fit()\n", + "y_pred = model.forecast() # returns 427,758.6" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "djxOGE4znUz3", + "outputId": "a26a7e54-1906-4802-8883-d5ffdb27a7a9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "427758.62631318445" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_pred[0] # ARIMA forecast" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "CM3wx7fJnUz3", + "outputId": "25e1a8c9-2cb3-44ac-db9d-12575f0bcd10" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "379044" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"rail\"].loc[\"2019-06-01\"] # target value" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "eGB-TGIdnUz4", + "outputId": "3eb125cd-bfba-4627-ca25-be9bda98b1d4" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "426932" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"rail\"].loc[\"2019-05-25\"] # naive forecast (value from one week earlier)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "R3nnE82_nUz4" + }, + "outputs": [], + "source": [ + "origin, start_date, end_date = \"2019-01-01\", \"2019-03-01\", \"2019-05-31\"\n", + "time_period = pd.date_range(start_date, end_date)\n", + "rail_series = df.loc[origin:end_date][\"rail\"].asfreq(\"D\")\n", + "y_preds = []\n", + "for today in time_period.shift(-1):\n", + " model = ARIMA(rail_series[origin:today], # train on data up to \"today\"\n", + " order=(1, 0, 0),\n", + " seasonal_order=(0, 1, 1, 7))\n", + " model = model.fit() # note that we retrain the model every day!\n", + " y_pred = model.forecast()[0]\n", + " y_preds.append(y_pred)\n", + "\n", + "y_preds = pd.Series(y_preds, index=time_period)\n", + "mae = (y_preds - rail_series[time_period]).abs().mean() # returns 32,040.7" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DVCRZDUGnUz5", + "outputId": "95d8547d-d22b-425e-d6ae-6504bbc8a7dc" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "32040.72008847262" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mae" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "8wRjk8CRnUz5", + "outputId": "7942edcd-2469-4de2-e208-3f8f72d29e1d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAADgCAYAAADrL6QAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACqV0lEQVR4nOydd5gb1dX/P3fU6xb3umvjhhsYY2zTbDD1Teg4EHoPJKQBecH8SCAhEEgCSUiBECCEBEIPLRgwYNNs44Ibbrj3ul1dmrm/P2ZG2ySt5NXIid/9Ps8+uzuaGV2NZu73nnO+5xwhpaQLXehCF7rQhS4cmlAO9gC60IUudKELXeiCdegi+i50oQtd6EIXDmF0EX0XutCFLnShC4cwuoi+C13oQhe60IVDGF1E34UudKELXejCIYwuou9CF7rQhS504RCG/WAPoNgoLy+XQ4YMOdjD6MIhjHA4jM/nO9jD6MIhgK57qQvFwuLFi/dLKXtkeu2QI/pevXqxaNGigz2MLhzCmDNnDlOnTj3Yw+jCIYCue6kLxYIQYku217pc913oQhe60IUuHMLoIvoudKELXehCFw5hdBF9F7rQhS50oQuHMLqIvgtd6EIXutCFQxhdRN+FLnTh/zTmb9zPL99Zw+ItdQd7KF34D8biLXX8cfb6/8r75JBT3XehC/9nMW8ezJkDU6fC5MkHezT/8ZBS8ocP1/PwrK+QwJOfbuK56ycxvqriYA+tC/9hWLCphsueWEBK03DaFZ697r/rPuki+i504VDAvHk6wadS4HLBBx90kX0GLN5Sx/yNNfT0u3hx8TYWbm62zhIpjfkba/6rJvAuWAspJe+t2sOMV5eTUDUAkv+F90kX0XehC4cC3n4bEgn970RCt+y7iL4VFm+p45K/zCee0ifsoNvOjVMG8/TczcSSGhIY2Td4cAd5EGAufiYN7vZfRV5WYvGWOl5ZvJ3FW+tYu7uJfuVuIIkAHHaFSYO7HewhFoQuou9CF/4LsWBTDZ9vquXYw7rrk3Pb6mpTphycgf2HQkrJk59sTJO8AK46rppbTh3OqSN78+/lO3nqs80s3lzHScN7HtzBlhDm4iepajhsSjp08X+Z/BdsquHix+ejSf3/G6cM5rbThvONP89jS02Ex684+r/umnQRfRe68F+GxVvquOjx+UgJv1XW8ZtvHMHZe/eC0wnHHQezZ8OyZXDssQd7qP8R2FYb4c5/reCTdfsRQid5p11hyjCd0MdXVTC+qoJdDTH+Nm8zN0wZTNDtOLiDNrB4Sx1zN+xvXtAVGS8u2ppe/MRTGlc+tYAhPf3YP5/PMVuW82D1Edxw+6VMO7wnX2yt/z9B/o9/vDFN8jYBAbcDu01h6vCe/Ob9rxjay39wB3gA6CL6LhSGLsFXh7DaGpq/sQZpTESqJvne80sZ9fK/cYw4kn/d8Seukt+l7Ac/gAkT4Oij2x2/aHMtn2+qPeQn7MWba/nTnA18un4/dkXws3NGMbJPMOtn/85JQ5j55W7+Pm8L3znp4PfLWLyljosfn0dSlfzBvr44QsFPP9Wf32nT+Jd7AC8v3o4AhABFCMZXlWOfP58/PTcDm5YiOfd5LtU0vj1wFEkjRu1y/PeJ0fJFQzTJ5xtrUIwFYUs3/Yk164jNfZFNbygc8Y0zD+5AC0QX0f834D+FXD/7THcJS9kl+MoC0xWaSOnqXCtU3ObEY1qmV4wsp/qX6/nDgIv4zYcbeG7cdXy8bg2u6dPhiy+gQn9/KSUPzlzDYx9vRHBoT9iLt9Rx8V/mk1QlioDfXXwUZ4zuA8DR1ZWtdzaer9FTpzJ1eA+e/HQTVx9Xjdd5cKfHVxZvJ6nqK7qk2kkBWCgEd90FjzyClBJ59z0smnYDx1xwOTedNIQVOxqY3D/AUQs/IPHmL3GqSf04NcV3lR38of+x6bSy/0YxWk60mF//UFtGKKHyqwvHsqcx3rwgfOABjphxJ0cg0eY+B44X4bzz/nPm5g7QRfT/6Zg3D6ZNg3j84JPrM8+Aqup/dwm+MmLmil2tXKEPvrOaP3zzKHquXFK0CWHcgHIAJh/WjVtPG874lfNAanw+cDQAe5x+/vrdB7jxx1fDWWfB//wP8RNO5Cd7grywaBsAEoglNT5au/fQmbBbYP7GmjRJCmDDvnDmHf/yF7jxRtA0cLu549nXOGNtiuc+38p1Jwwu3YDbYEtNmDeX70z/b1NE4QKwefPgrbdg5054/XWoq0OiXw80lftmPYrc8gFi+SmcuG4dLFkC+/fjHDgQzW5HpFLYpMZJZx9P8OjDufDRuUj+O8VoWTFvHpx0EiSTaE4XS79xL9PPOoULxw/QX5cSfvUrmDFDv26ALZWC88+H4cNh40b93nE6C5ubi7xAWLylDpu/W+9sr3cR/X865szRSV7T9N8Hk1xrapr/FkK/SbuQxpc7GnjRIFLFmBUWbqrj5u/+iX/8807sqSS4XCgfdm6xFkvpi60pw3roJP3ox2gOB6uqDkcR+tz068YKTvnGlQx59gnkZ5+Bw8m6i+7jgrNO4d8rdhE3VOYvLNzGmWP6cHifQ0ttPqZfGdDe/ZqeYHv0gFdegXfeaT4oFmPEoo+YNPgs/vLJRi6fXIXLbiv52BsiSa55eiE2RfDzc0dz12tfcuWx1YUtyMx0SzMT48QTWTPtbKruvROHmiJps1N34830/eQD+NOf9H0UBR56CH7wA5TPP4fnn4e//hV+9CPGf/wxQ3r6SWqSh6YfcegsDl95RZ9XAWJRzlg3n7NO+47+fyIBN90ETz0FJ58M8+ahxhOkFAXnDdcjXnsNksnmffOdm+fN08+XSByQ8TZvw37+vXwXlT4nmoTFW2qZv7EWm6+iX7Zjuoj+Px1TpyKFgkBDahriyCMPzjhUVY/vTZ0KsRjMn6+vYv+vwyCOL4eO4+IVgjKPg/vOG83W2iiTBneju9/J0uvfwJGMI4BUPM6uf82kXyeIPprQid7jNEjoo49QJkzgyZumMn9jDSP7BnlszgZe/TTBbQgUJM5kgj/u+5g+02/lkolVzN9YQ4XXyW/f/4pz/vAZp4/qxVXHDTpkJvC9TfrkfcnEgZx/VH/9c5kTbCym7xQM6hP500/rk66qwgsv8P0XruGbL9fy3eeW8K0ph1l2TRZvqeOtDQkCg+rS77Hy5Xf49MlXqOgxnPvuuZojB5Rz12tfUuEt8FmbM6eZhGw2dk2ewnR1NEMvvo9JW1ewoGoMJ51/Lt/p2x1WrNANCSF00lMUnXgmT4bLL9c9itOmMexbv2GXt6w416OtRZtMwr//DZ98olvLxx3X+ffIB2vWACCFQEjJVQv+he3O2/Qx/fjHsGmT/vuee+Dzz1nx99f4WVMPHv7pTVRPnAhXXqlfL6czf8PHNN6kLNgz+u/lO7n5uSUYEh0UAWUeh/6/yH5cF9H/h2Nx3xGI3kMZtncTrlSSLb95DOXoE9jTGOOLrfWtREVrXn2XupmzqDjzVEacf3pxB/LRR7BnD+t+/AvmDDySq645A8eNN+qEbyu91fMfgXnz0KaehEjEGWazc9K3f8edt1xNnzJP8z6qim3jUgQYblPJp30P56JOvG00qRO922GDcBgWLYLbbkurxwGOO6w7D21fRXzu8zjUFAqSPu++CWedxfjrrmP86tUwdSo9zx/D9c8s4s3lu3hv1Z5DpjLcW8t30q/cw8/PHY0Qxgz48svNJC8E/PCH+gR++eX6ZOvzwW23Meamy/BM+RHvrdrDx+v2WaJjWLy5Nq0heH3jPL415TAGrPyCc390BcM1jStsdracOwb34NNx2hUaY8nC3mDqVJ2AVJWU3cH3d5fjGqLwZdUolvU/HIddYcbgbuCeqluViURmsjr6aL1Gw2mncc8DN/DeESfBOKVzXsWWCy4hoKwM6uvTL8uHH0acfjpceilUVsLy5dbEwDduhHfeQbvwQp6JVbKqvB/3u7fDY4/BH/+o7+N0wplnphc/rupRfPG7T1iyrY7q44/X9znvPLj11vzHN3WqPmemUgUtENbvDXH7K8sZt2M1k7au4POqMUy58hyOG9KdS5+Yr4twsqCL6P/DMX9jDec07WfW0ElsrujLD2c9x7U3/ZIPhkwE9EVc33I3R25fzcOP3cJQNUXi6d+z5oU3ikv2L7xA0uPlrI1BYtt2sva4K/n167+Cxx/XraL/g9jxr5n0SeiWukNNcffyV+kebHEtpIRbbqH/sgU8M+FsejTs58yv5pL4clWn3jdmEL3HYdMnzVQKTjyx1T5Ou0Lw5BO5bMt9TNyygoUDRvG9sgZOePIh3XISAtxu6n/5NwReJEUQfP2HoD6S4NN1+7n2+EHNJL9ype6GBn2SdTrhdOP5MK1XgD598F10Ec/s+jEfDR7P/OojmL9xaNGvye8+WNdCaCf5y3ureONvd+BSU/oOaoq6mbPg/NMJuu00xVKFvcHkydRPOg6xdBlXn3cX7uOO5d1vjmNzTaR1RkjVZN11nCtefNxx8MADdP/e9/jm+/+Az17pnFbo/feRsZi++JUSMWwYdTY3wXmfYEMiAe3jT7C9+27zMW43fPhhp8m+VUbM/feD3c5j532XXy5v4genDMV+yjAoC8LDD+vPr6q2sriH9QrgddpYurWe847tpZ+00EXI5Mlw2mn6Aur553Mfa3g+No2awHc/3ssP57/OVXNfRkhJ3O5gy7ljGFE1lGevm8TE39bvzHaaLqL/D0dPGad/4z6e7VHF3yefz1W7v+ChDx/jxP6jaHT7kYDfaefyD/+BU9UrNzlTSRY8/SqVp06hZ8Dd+UEkk8RffIl3B00g5tDP9/LwE7l57MdUz5ihu9p69Wp1yP+FghsvBQ7jewgkEk0odP/oA/je9+C3v9XJ5KGH4JFH4Ic/ZNT3f8z8DftZ/52LOevZ3/Lh5d/g5CljDuh9owld7Odx2ODjj3VrI4Orc9Lg7vy+ahRL++kWnPe6SeBNwK9/rU9i0SgnLnwPx4Dziae0AxN8/Qfi3ZW7SWmSr4/tq29YuhROPVUni+eeg82bs0/O06ez+/1PmPD47xm/YzXxeS+y5dwxQPHS7d5YtpOP1+3XdRwSKlMR3pvzMJX7t6IhEEhSNjsVZ54K6HnchRL94i11NOyJ0dPfnWUDRvLPU4bSze+im9/V/nlsudDJhlAIMLqgdVKIWztvEZWAiiBhd3DtqIuJJVWeXTg/rR/4x48f4/odn+v6ASl16/+ddzpF9Iu31PHNv8wnmdIY0LCXD//6NK8c83V+ubwJgMc+2sAJQ3sw/oIL9PfN4OWwKYIj+pezZFs9BIx7oqmp8MF4vfrvYcOy7zNvHtpJJyHiCaqAmYbD3hRUurUUI9Z+AZzO+KoK1FDN7myn6iL6YsCiFAtNkyx862OmA8OnTeZvV5xAxYX/QE6cyI8/eoo7zvgeFakoz896jIrVn6MKBUVqKEg+dvbigV/N4ewj+tK7zK3fwAdAuFJKXn/o75xbX8eyC0/DZVdIqhoagpuPu5Y3Vn8H5aqr4MQT0U6cwmc9h/LYnA1EP/6USVtX8KvBR/Cje64+5Mj+46/28epuyQ+QfDj4aP5ywkX8xrWF3n/4g65e7tULXn0VvvEN+PWvGa8ojK+qIPHS3xFHHkH4ez9g+5w36V/hLfi9Tde9x2nTQyrjxunx5jYYX1XBs9dNar3gOv983S1pCDx7/v1JPjplN8+H/VSef/Yh8T29tXwXAyu9jN66Eu7/B/z977oL+IMPYEjHhN2nug8SndTcUk1Ppnkjx3ywcHMtt724jGOqK7nltKHMeuVdbnvyPjwb18M//8nGxhSDvn0V8WOPT3vkAm47jdHCXPfzN9YwLhEj4nCBlCzcXMcxgzqxiJs6FYRAkxLhdCIOVIj70ktUznyD1w8/kbU9qpk/cAza+GMY06+MKxTBhM3LmT9wDF80VBLpPYGbXS5EPIGQGuLNN+GOO8Dj6fh9MmD+xhoSRkbMjfNeQBMKb51xGSKqk2c6bfCk3F6OIweW85ePNxJT7Ljt9gMj+rCRBdLYmHWXHf+aSd94PB3223v8SfS88VrE9ddDNIqQMm++6SL6zsJYdZFMgrPziuqWeHnxdmyrdDfvuZefDlUVUDUecdttTH/wQY52J+m7eS2ufXvgoYdYVz2K2D9fYOwbz/JIwwKu7nsGzy/UVeCPfbSh4Fjjgk013PvWKq549p9EPX5u/+0P+Z/9MeZvrKG6m5dHPgjw6ogTufCdd5DvvAMIBpT14kGp0bdxHxJIzH2ef48fwPibpxflmvwnYG2tym8+WMRN+74EYPddP+O2kyfRu6oCAi7dkgfd0r7pJv23AefokdT/8DbO+vUD3H7no/SffnbBVc/SRK8m4fPP4Tvfybpvy7g9oN+b5iQ2fjw8/ji9XnmF7wPqon/BsdWly+oo9gL5pZeIvfoaJ60PM9mbQMx4t1lk9re/5UXygC6AtdlBLSyGCuifacoUPZxit8MTT8A3vwmLFlH773f5/Z5y+o84ksevGE/5ay8z/qffwiElzJwJ06bpfoPNqyj7xS9g8WIYP56A205TgTH6SYO7YUvGqHcHipMON3ky+4eOJLZ7H93feBnPgXxf69ejXnMtK/uN4Lav/RDV7tA7wX19pF52d1w/5m+s4Yf9y/hsfQ2//0Tw0YX3MmnrCjykuPmTfyIuukhXyjsKr1xoXoP+DXuZvuJ96i69ih9cNY2FT+hWfqvrlMPLMW5AOSlN8uXORo72+ztH9A0NWXd5v9fhXG54DON2Jx9fdBMXXjodBg/W00L/+lc9fTKf+1NKmfMHGA4sbfHTCPwAqARmAeuM3xUtjpkBrAfWAqe32D4eWGG89gggjO0u4AVj++dAdYtjrjTeYx1wZUfjHTZsmLQS8zfsl3e//qX84+x18vGPNsg3zr1earpzSSaFIrf/6MdFeZ/6SEIe9bP35FtTL5Sa3y+lpjW/OHu2lEJIabyvfPTR1gf/7ndSgvzg1vtk9e1vyarb35KD73hL/uHDdXm//6LNtXLQHW/Jobf+Sza4fHL/+Re12ycUS8oXzrpOqsY4VJD7q4bI0LDD09ckhZCbb/l/B3gVcmDuXCnvv1//XUI89/kWedgdb8ljf/G+jJ19rpT9+7f+bu6/X0pF0b8Xm03/vy2iUVnbr1ruCHSTDx1/qbzoqofkos21eY9h5opdsur2t+SmV2fq7/Paawf+ge6/X2rGeFWhZB5vgfh8437521lrW3+md9+V8vvfl/Kpp6T87DMpf/97KV0u/Rp5PJ3/Hp97rvl5AKnabM3/Z/secmDtN66WEuTeV14vbBz3399qHBKktNulJoTUQKoImezRU8pAQErQnxOXq/Xnr6+Xsnt3KadOlVLT5I1/XyRPeWhOYeOQUm7tUy3fH3l8QfdWzvNNOV2u7l4ldzdECz84GpWR0WNlvccvz77tH/L1JdvlHz5cl3Ns9/17lawy5q/q29+Sc753t349Tz9dyvvuO6B7Zuidb8t3TzhHqg6HlFu3Sin1ua6jsbTEnsaorLr9Lfn4RxukHDBAyiuvLHgc8qij9M/y8ssZX47EU/LEX34otwV6yDXdqzLPETfeqPPAJ59IKaUEFsksvNihRS+lXAscCSCEsAE7gH8BdwAfSCkfEELcYfx/uxBiJHAxMAroC7wvhBgmpVSBR4EbgPnA28AZwEzgWqBOSjlECHEx8CBwkRCiErgbOBrde7FYCPGGlLK5t2QJ8dbynXy3RWoDwD079rZQVMO8AaO5sAjv9cgH66iNJJiS2IMYPVq3SkzMm6f/L6UeC65rczluvhlee40pj/2CqiseYXOwJ3ZbYav6+Rtr0CScsPkLgvEwbx19Cl9vs4/PZUc57VTiM59Jx9Zm33Y/F47vj2aoam1IwrM/RsbjCJfrwC9IS7S0mtzu3MKgIlqNH6zew4xXVwBQ1xjFNvtD+Mb01t/N1Km5VcwAbjfLz7ucKX+4lx98+izx+S8V5PUwxXhlC+bqG0444cA/1NSpCKcTYjE0mw2lk7URFm+u5cGf/JVTv5rPpw4XfQc66fP5x7rCORuKUXzpww/Tf6aEgu266/QCT7m+hxyIjNL1E00DBtOjkAPN9xFCvw9mzKDx3+8QWDDPmCck8Z69sQd9MH++7n5NpVp//rIyPRvg5pvhrbcIuAcWLsYD3IkYSsBftHCMLCsjEI/QFEvRq8CyC9u+dj4DvlzOn0+9jt/dfi7V3X0dHnP6qN48M6+5s+D66VcwJbpTt2bfe6/jZ78NNE0ydfWnnPLZmyhnnw0D9KI47bxeHaBnwE3/Cg9LttVBIFB0172UkjteXc7W2ggVTkHjMcdkDn/+6le6buHqq3UdSg4oOV9tj2nABinlFuAc4G/G9r8B5xp/nwM8L6WMSyk3oVvpxwgh+gBBKeU8Y/XxTJtjzHO9DEwTulz2dGCWlLLWIPdZ6IuDkuPzjTXc9tKyVvmL359SzTd3fsHqnoOYPXg8NqkxYefqTr/Xuj1N/G3uZi4+egD+r1bD6NGtdzDJxFQPt53EFAX++ldsiuDl93/Nt+e9wO8GRgu6mScN0suEnrX6E+rdfvpeeFbG/QaddSpXX/YLfnPiZVx92S8YdNYpMHkyyocfIu67jxWnX8DIJZ9QN2acXoJz3rwCrkQWPPWUHioxRTpz5mTezywactddei5wJ9/7vZXNWpfR21Zjb2psVm6bMF3j996bcxIa4gEN/QF0qCkmb12R9zhM173387kwZowefz5QTJ6sK3+B2Wde2unF0Oyn3+D55+7gxgWv8P3PnqPspedoSGhIYzEkFQWuugr+8AfdtQ36784WXxo+HICUEEinE3HllXl9D9lgM8oGJ/bVdLBnG0yerLuVTzhBX3z85Cf8+czridmdpIRC3O5k5o136eEdtxstWw72DTfoQq3//V+CDlGw6x7AGY+hejsm1HwhysoIxMOE44UtOr58+M8M+HAmGvCt2c8Q+/jTvI4zNSY/mDaUqkovv3t/HbU9DYFlyxz0PBH/5FP+9NoDCE3TCbIT88G4gRUs2VrfeaLP4Lp/6rPNvL50J7edNhxfNMTIEQMyz91+v+6+X78errqKfpC1Ml6hRH8x8E/j715Syl0Axm+zt2M/YFuLY7Yb2/oZf7fd3uoYKWUKaAC65ThXVjhra4tDJqCf5xe/4KOnX+eyJz+n0ufEZVewCT196ZwN83Ht2Ibj5/fyxs8f59/Dj2PAL39W0M3XFlJKbn1xGTZF8LVeCuzf357o8yGTqiq4+Wa6r1vFbR//g1O+d2lB12V0/zJcyTinb1hA6pxzOWpor4z7ja+q4Ef3XI337h+3XnVOngx33snIt1/i5XOup2LdauR99+mWfme+n7o6eOMN3WIyvRqRSPv9pIQZM/TJQNMKnhQyYXAPvWuVAKZsXqKT1imntN9x8mT9vXOQS7/zzkQqNt0T5HLS77z8m2REEyp2NYVzwfzitKM1PkO9u3NduWrDCco+mIld0xciKaHw0mlXcPXU7xCzOUgJhZhiZ81ZF+u6gnff1YVVRx/d+Rh9VRUAzxz1dXa98mZzjLWD7yEbbN30+zhVW6DzUNP0RejJJ8PkycSSKi/Y+3PpN+9rtxjmgw/YfM01mZ9hhwMefBDWrOHiB29h+KYvSRlNZfKFOxZB9RQu9swGpaKCYCJCKBIv6LjIzFn68eiL2jrj/3wwvqqCH5w6jH9cNxGbIri7sSfSXCAW6KlRZ8/BJjW9rkwy2an54MgB5exqiBH3+NIZCQXBPKaNRT93w37uf3s1Z4zqzbePG6jPbWVl2c8zdSpMnw4vv0zvHNyYtxhPCOEEzkaPv+fcNcM2mWP7gR7Tcmw3oIcEGA+oU6aw7De/oXHUqA6Gmh3BlSs54vvfR6gqx9idfP2GX3DK1HHsCjlZU6syokKhx4xfEunfn+2H9eFcpZG/X3MrIx78Hn3PPY8lf3mcRI+CnH4AfLI9yfIdetnKv/zpdY4Hlqoq9ZluysmTm8viZsDAffsYBChIZDLBxqeeYms8v4c0lJBcs+h1PPEI23uU82UHD8UoAU2btjNnU/vX+nhVNAQ2JFo8zsI/PkE4z3G0gpSMvPdeutfU8NVtt+GsqaH7p5/if/BBlvbqxaJ+I1hTozGyQnDGs4/S/6OP0BRFX8FrGkvdbho68XDX7dItmSl9JdP3LKHx8MNZsmzZAZ/PN+UMJsz+N3N/dj9qju+xLVZtSDB6zwZEOMzKbt3Y18kFDFJyvGIjtW8vczpxrseXx7mwbh8AqlDA4WD0mUcwSxvCpegV2eYPHMPgOsHX58wBRaHqoosY9PTTLPjrX4kMGnTA791r8WIOB16afA5aQjCkk9ekcc9uRgIbly5lf//yvI9TolFOBDbs3Mm2OXOYuSnJ/lCC06cdwZ7UWE6ptNG0aVn6OQmdc47+TGYYb3D7dsYJwWHzPuDZhZ8wf7yb1JGj2+2XEarK1FSCkCY79Z22hC/USD9gyWfzSO4qz/u4cKWxaBKCpM3OvsOqDmhMN4yy8atFVUw7+gzOnf8Wb9/+U7wFPDdqoJyT0QlEs9tZFgzSeIDXRtbri9kt4Th99+9mUYHnOTEUQgG2rVzJBuPYxbuT/Hl5ggonnNOnkc9mzuR4YN3evezIcf4qn4/qDgfcgbjN/EF3r7/X4v+1QB/j7z7AWtksxJvRYr93gcnGPmtabP8m8OeW+xh/24H96CSf3sd47c/AN3ONczzoYqhOioq2/+iutKBMRcitt93Veoc5c3QxxWOPpTfVRxLy4u8/KSNOt1RHj5by3nsLFozc8sKStADlZ9Ou199jz54D+xBz5+pCIJBxp6ugsex9d7ZMCUW/Bp0US730+xdl1OaQEmTcZpcv/f7FAzvRM8/o1+PnP5eLNtfK33/wlfzX+8tlfb8qWReokMfe+JQc/KPX5YujT5ES5LMnTJfnXfYr+dLok3Vh1cWXH/BnkFLK5xdskVW3vyVff/5VXQRzzz2dOt+yGfdJCXLjlxsKOu7X766Rfxv3P/q1eOutTo3BRGOgXL5x3DkHfPxHa/fKkT94UUZ9ASlPOqmVUHLR5lo57P+9nb6vZ63a3Xzg/v1Ser1SXnFFp8a/6scPSAny6O/8XQ6/6+1OC9A2LfxSSpBf3PNQYQfu26d/L7//vawPJ+TYe96VVzz5edbdZ8+enf1cLYSdKSFk3V0F3G+NjVKCfPuq2/I/pgPUPPInKUH++43C5oIvfvmolCDnnnW5XP3KO50aw71vrpR3nH6zlCBP/N4zBX3Pq3c1yJjNLmuOmthp8WcsmZJD73xbLp92jpRVVYUdHI83CzWvu05KqT8jg2f8W1bd/pYc9v+M+3fDBn2fv/419/nmzpXS7ZZHgSaz8GIhrvtv0uy2B3gDXRGP8fv1FtsvFkK4hBCDgKHAAqm795uEEJOM+PsVbY4xz3Uh8KGUUhoLgNOEEBVCiArgNGNbTmhFiPmtxpcW2SlItoTU1jv8+tfQvTtccUV6U5nHwXe+czZ/OuYClC+/RP7kJ2gnFxYbHmSIVBQBI2q2kOzWHXr27OCoLDBqVUvgZ99/pCAXpvLRHBTTzdVJt/egs07h1nP/F4AnJ56vuy4LxaZNurv3+ONZ/M1vcdGf5/Hr977iB7O2cv6Zd2BLJnj2+Tt5+6/fZfqX7/Psmdfw9Lnf5ot+h3Pb127hD8deRI/n/67XNT9AmDXm+y37Qn9M28bnC4TdsHTCewuLA1cuX8ylS41mLNOnFyVUFfMFcIUOINYIRBIp/t9rK/jOhtm4w03wwAOtXObjqyp47vpJXDm5GqdN8NicDel8Zrp1g+uv1wvZbN16wOPfsFX3JEQdrnQ+dGfg7qkLV2VboWtHiEb13x4Pf5qznsZYkjvOHHFgg5g6Nd1PQhU2aiccm/+xhmtY+IoXo3d2069Jsqawa6I26WMZeO//63S1zgqfgyaXHo5wR0IFfc+RaAKXmqLh2BM7HSpy2W2M7BtkR+oA8ujDLTopGq77+RtrUDXdWZ0yKlSm4/e5XPegf5YPP2QPZK2MlxfRCyG8wKnAqy02PwCcKoRYZ7z2AICUciXwIrAKeAf4jtQV9wA3AU+gC/Q2oCvuAZ4Eugkh1gO3oCv4kVLWAvcCC42fnxnbcuL3k77B4r4H+HAZ6Fa3Fw3488QL2FzRh0nPPwZbtugvrl6t5y/efHO74g3HD+3OYX3K9biD1F3VO/41s935s6G3USf9uuMHcyY1OMYeWPW0NEaORAHm+3JKG9qhdrz+IEghDki13BLjqyo464eX6cMZXWAXLtAbXZx0kl6O8u9/54m5W0gZD4Ui4NTzp1B/2wyq6nczfP9WkoqN8dd9g19ccARuu36LP3zcJdROOh6+/W29dvYBIGKI4Hp/sVDv8T5hwgGdx4Szmy6ii+0vjJT6Lv0cRRpEWQTtAUAiUIY3nL14RzYs3lLHlU8tYNe+Jq5d9IauGTjmmHb7ja+q4KfnjOLX3ziSRVvq+OmbK5tfvOUW/ffDDx/o8Olt169HwuEsSt64p7JCr1JXnz3POSMMvUitZuOvczdz/rj+B94ZsIVQ8skJ57B39FF5H5ps1MlH8ReP6F3d9edWbVGXPh9oBhG6ywOdHsOkwd2JuPXPVJ6KFfQ9x+v1cdiCnR8HwLiB5WxNCNTGJhZvKWDxk4HoJw3ulu54mb5/8yV6gMmT2QFZK+PlRfRSyoiUspuUsqHFthop5TQp5VDjd22L1+6TUh4mpRwupZzZYvsiKeVo47WbDasdKWVMSjldSjlESnmMlHJji2OeMrYPkVL+NZ/x7vaWd3pF3+PjD1jRdxixn99P6F9v6gKj6dP1mPjDD+upHd/+dsZj48efoMeBgKTNzryB+ZN1NKHHga87vgr/+rXthXiFwqiYFtpXQ7IAMU/t4KEIoP7EkztX19rA0WOqUIVCRTxLX/BsmDdPV8xv2QKpFF8uWsN7q3ajCNKiyFNH9maAVwGh3852ASPWfqGrdg1LUnHYuWv6DGR5OXzta3D33QVbwtGEikDSfdEiXcDWyWY+7h460Sf2d7h2bYU1I4wJvwiLMBPJQBBvpAlNayeByQqzpOjCzXWcvfYTXLt2wI9+lPOYs4/oy7emDObZz7fywMzV/HH2ehbLAFxyiZ42VXNgz205KZKKjUuPH1KUJjQet245Kg31hR1oWPSvf6VP/LeclqPEaT4whJIN7kBB1fFidTqBKEUiNQCH4YFSC/RySMO74K0s7/QYxldVcNxRupbjrhP6FvQ9xxv0a2ILdE50aqLc66TB7sGWSnLVY5/kT/YZiH58VQUjegfoX+Fpvn8LIfoOUKjq/r8CwWRhK7220Pbspe+6FWyZNJUfnDKM0VPG6y7fhQvhrLP0lIYzztB7WmfAkHNOY2t5bzZU9m9W2eYJM3XKt3un7n4b00mL3iB6XyzCrvpY3oelDCsz9PVzi1K1LOB10ujytc/57whz5uh5xoBUVT587EWqu/l4+upjuOW04c0PxdSpCLeecihakJ9pSf78nNG8vVfy4fRvwfbtesZCgSl3kYTK2LptuGpqOu22B/AY7uFkbX1Bx62tHqUrUqdOLcoiDEANlhGMhQkn8k+dmr+xhmRKV7JcP/8VaquG6J2+OsD/nj6CI/qX8dhHG3novbVc+sR8Vl72Ld0a/sMfDmj8WjhM1O7imuOL02rXaVdo9PixNdYXdqBh0c/e0sSZo3vTr/zAyrWm4fUi7XbKYqGCcunj9TqB2ItEagCUl+u/C/VyNIVIKjbcviL03QD6D9SzyPqKwlIOUwbR24u0+KlpihN26t+vq5Awgqm4dzhapdfZbQpDeraoe9BF9LlxSn9Ppx72rc+9giIlgfPPad543nm61TFrlu5CzpGHOb6qgvry7oQrexRc5z1ixIHda4wOZ5216I2bJJCIsK0uQxpaFqQMK9PevThNTlx2mz5x5ij5mBFTp4KiIIG4YmfxoLE8ddUEThzWg++cNKR1Ol+OlMOLJgzg/KP6sXjZRgw3ErJAt3c0qXLSliX6P0Ugel/P7gBoBaZwqaGI/uCecUbRytXKsnKC8XBBZDJpcDcURXDC5iUcvm8zjTf/oFW532ywKYITh+mLZE3qNcbn2Hvqi+iHH4af/rRw3UEkQszhwussXsvkkDuAI0ct8kz4avNeQNcKvPPl7sJcupkgBLK8gmA8VFAufbzRJPriWfTmXCIaCw9nRJweRB73Rj5wdisHIF7gAjlpaAWcRSL6yYd1SxN9mZbI37g0Lfo+fVql10USqt6oykQX0WeHJgRlqfwt10yI/OsN9voqOOrcaa1fGDmy+e8O8jCTXj9lycKK1IDuHnbaFWyrjBhmJ1IEgbRF749H2F4A0WuGC9XRo3jdzELeAPZCLaTJk2kcfwy1/gouu/jnfOfOK6jqliXumCNvWgjBz88dzcaRRyMRaEBM2FgzPP+4ZzShctqXH5EoL4dt2zrcvyO4u+uue1lfqCvUEP8UUWhFRUXBVuP4qgquZCf3zXqUZEU3qr93fd7HTh3eE7sRlExXbfza1/SJ76c/LbzAUSRC1OHC6yxe+46I148jdGBEH7O7mkVVnYSorKAsVtgiLNFgkFpZES16g3AKXawr4RAxZyc9Gy3gMZ6bRF19Qcephm7BWX6Amok2OH5od0LG53rk6wW0MjYt+jZEH02oeqMqE11Enx2aUHJ2BOoIMpFgwMJPWD3ueMp8bUq2nnyyLr7LVpGuBZK+AK5ogfFodKvR67TBl1/CwIEZu5IVBOP4YDLKttpo3odJw8p09ujeufdvgagviLNAa2DxljqW742xJdiTZQNGYjMVKwcAr9NO3/85mTXdq9ha3pvLv3kfH1Qclvfx/ZfO5/AdX+Gory9KpT18PlKKUrjgy7QI/MWbxJXKClxqklBDAQriefOY8avvMLBul06Iixfnfej4qgoemn4EAJdPrtInyVpDq3AAVc9ENErU4cLtKN6UFvYFcBdI9CPL9IVG3F4cUSCAqKigIh6iqYCKdKYYz1lWHFLTT+Yk7nBhKzA7wxYJE3cVx20P4OtmagXqCzpObdQJ1lVWHIve77ITc+sZAKMCBcxL5vPbt6/OVZqunUrP/SYaGnQtmJF50RkcckSvCgVxIJWKDGx+cxaBWBjb17/W/sU8y5sCJH1+3AdA9JGEitdhEH1n4/OQJvr+tmRBrntRp0+67p7FI/qYP1jwxDl/Yw3uZIyIw42myU5bSF8b05ddZT1ocvn4smpUQRPxkfPeQ0BRUg4BEIKw24/SVNg1UULFJ3oz1S9aSKrfnDnYUnpxJzSt4Otxzrh+DO3pZ8V2Y6EzdWpzxcMCRYYiGiHhcCPEgS8E2yLuC+IuMBOh2qtPqYcP6V0UUSAA5eVUJMIFifHMeLS7SNariajXj6NAordHImlCLAYCPhchpwetwAWyZvBCsWL0QgiEea5CUuxaEr2U6f8jiVRrj1RDQ1GseTgEiV4TSsETZ0vsf+FfJBQ7h19xQeYd8iyrqfn8eGMHYNEnVHw2qafwdTY+D2mi76ck2F6Xv0WvGCk0ziISfTxQhqfAiXPS4G54kzGiDndRLKTxVRUkg2V0S0ULnoi3de8PGPXai6R2j3gD2Av0cihhYyFbRKI3U/3ihdR2nzoVaegnDvR6/M+YPizYXMveppj+TA0fDkOHFiwytEWjJIpoNQLE/QG8kcKMhoRBJkePKEwRnhMVFQXrJzRjMegqQkpbS8R9QVwFLtYd0TDJIhJ90OMg5PQgC/Xchor/3NhMj2shRN/SdQ/Q2IimSWJJrX2MvovoM0NTFGzhA7foe3z8AWuHHUm3Pp0jOC0QwJ2M67H8AhBNqgyp36UfVwyiN8Q4vUmwrTZ/i97WUE/C5mhXJ6AzSAXL8Eea9FVsnhhfVUGFTKJ5vUWzkNRgGcFoqOBz7QjqArId555bNLV7zOfHWaCFpESKb9GbBWISNQWk+k2ezPIh42jylx/w9fja2D5ICe9+aaQA9+unZ7MU2oQmFiVZZKJPBspwx6MFPcPJJv27KWpsvKKCYDREYwFiPNUgE19FcYjCRMIfwFPg4scRi5IsYs39gNtOyOlFNBb23EjTki5mEaHyAyD6lhY9QENDc6Oqtq77LqLPDCkU7JHCLWmAzYtWUr1nM7FTO98gTx7ISg/dfTNsn1GYpxhEb7eD10sPGWdvUzzd4rQjOOrraPL4W7dg7STUsnK9HkG4sO/HlYhhL2K7zVQgiCcaSsfG8oVipE5tP//8oqndE/7C3cN2K4jeEF2qBWYAxBU79T36HPD1GNYrwJCefv69Ype+IRjM2NGrI9jjMVLFJvqgMckWUCAmGdLvEXcRvxsqKvBFQzQV4LqnKUTM7sTrLVJraAMpfwBvtLA5zRWPkCoi0TtsChG3D6WpsPtEWKBtcZgph4USvRDQy2gU1tiYzrbqIvo8oSkKrgJXnCa2/P0lAKqv/EanxyEMoo8XKBiJJlQG7dmkC/5GdK66XxplZVQYmQj5uu+dTY00eYsb38No/VloLr0rHkUrYrvNVFk5NqkV3HXKFtUncc1dPEJJBoIFW0h2YxzFnLBchpJZK/B+dcWiJDr53fzPmD4s2GS478vKDkhMa4/HSLmL530C3fMDFET0qVCYlFDwFClnHIDycmyaSqqABZAMh4k43Lrep4hIBcvwxyLEU/kZDKDfI6q3eEQPEPX6sBf4/KY9YUUci7vSuEcKGUsopHsVTBJvbEyX1/Z0xejzg1QUXNH8XdQt4Xv/HXb26E+P8Z0XwQlD7RrbX1/QcdGkSvXOjXqcsliEEgwSTOoEn2+KnSvUQMRX3PieSfTJQuLAUuJORJFFDCFI8+EpcMFhEr1aRKJXg2X4oiGzaVOHSKqa7k6GohK9SC/CCqvS545HSHk7N46vjemDZrrvD9CidyZiaEUm+gO5T9RwmKjDhd9VvDS/9AK5APGZiISJOt0onchSyQQZDBo96fMnek8iitbJe6Qt4l4/jgIXyLZImJjTnVeth3wRLPeTUAqsdx8O68+u6fVtaCCS1PUXXTH6PCEVBc8BqN3fXbCB0V8tYcvEqUUZh91w6cQKdIVGEir9dmwojtveRDCIP66T1LY8LXpPqIGov7jxPZsh+Irs3Zf/QYkENk1DFjGuJsrNibO+oOMcMf3aFZPoCZYRiIeJp/ILI0STKr5k8YnerHqmFEiynlgEtZMW/bBefg7r4dPd98GgbtEXoOMAnehlsYneuE8KaWyjhSPE7C68FhC9rSH/cSjhcFFz19MoKyMYDxPKVxgoJZ54FK2INfdBT192hwtM84tGSLiKe03KvQ7CTk86yyEvhMO6RW8SfQuLvst1nyekouBQk3r6U55YvKWOL+64H3cqwQdxb+erWQEOQ6RRaPUmGQrTbfc23YooQlcyAIJBnJEQTpvC9jwFed5wEzF/cV33DrOJSyEpXEZcnCK67oXZH7sA4VlK1XDGo6Qczk7XuG+FinL8iSgNTfktwGIJFW8ipjcbKqKXA7ebuMNZENFrmsSbiKJ1csEhhOBrhvs+5PbpJF+IK1RKXIk4WpHdw4pBsKkCFutaOELc7sRXxAp9JtF7Qo1596uwRSMkirkgNSDKy3GnEoSa8jOmUtEYdqkhfMW16NUDSF92RCMkiqj+Byj3OAk7PSTqClgg53TdG/dNKqUvCLqIPjOk6ZYpwJWy6c33+dGcp5HArbOfZtOb73d6HI6KcgCSBcY8T1w2R/9SZs8uTlEWgGAQ0dhIvwpP3jF6f7iReFl559+7Bcwqe4kCXPdmQ4xiduGymTnjBYwjmlTxJuNFFRUB2IxJPJTn4ieaVPElovo4iuiCBIh4AjgKSE2NpfSxaEXwtvzPWN19/2WTYckXEqdPJHTNRTEXPoAwn+ECugtKo3CPr5gWveFtKaRyoT0aLTqpAdiMaxLdl98iOWoQoCiyRa8Gg3jjkYIEtY5YlGSRvT4VXgdhp7sg/UTadW+WJ84kxjPv/y6izwyT6GUBF37y1hXp3usONcXkrSs6PQ6XUY+5EKKXUnLU5mX6P5pWtBakZtyzf4Unv6I5ySS+eIRUoLiue4+Rk1+IJW22lhRFbM5hehYKWXBEEyreZAy1yERvN6p8RfIci77giHXaXZ7x3P4grlD+z000lsSXjIG/81qO4b0CDO7h4/MaI/ZbyMRpen18Rf5uDIFiQf3XIxFidie+IpbiNS36YCz/ojnFzl03YTc60MXz7LgYrTWIvpg196HZ7V2A58cZK676H/QOdmGnB62QVD/TdW+z6b8bGtItsNNEX8Tyt3AIEr1p5RTiSul33plIoRf+UFwu+p3XcQeujuAxyzQWELuJpzQ2lRu5lXmU2c0bhpJ5QKU3v1x6I3adMmPZRYK3eyUaArUAoo8aXbhsRe2rbRB9AeOIJFQ8FhC90/AuxPbmOXEmVHyJWFGzEEwk/IXFPWPGdyOLMIkLIfj6mD4sqdcnvDVrt+d9rFkcRhT5mjgDutCqkKZDIqZb9F5X8V33wQIsemc8ilpkDwc0F1ZK5nlNzC56xeoBb8LMapIF6Gxc8agFRO8g5PQiCyF603UP6bnZbE+eVt13EX0HMIg+UsgqfPJkNg0czv6KXigfFqcQisdY+coCiD6SUNkbMCq//fCHRSvKYgqcBpR7qIskCXVUM9sQH6lmjmiREPQ5aXT7ChI3mT2ki9mFy9NDX3CkCrhHdKKPI4scB3aZ4Yw8Fx2mRS+LHPMEvUCMN5L/hBU3FtNKkbwt1d19eitj4NcvLchbKxMzJllbkS16n8tOo9uHWpv/glCJRkk4XDhsRZxag0GkEIbrPj+LXif64i8GzUVyvq2VE0bvhGKVnTWhFCh2VjWJOxEruo6jwrDoRSFF2kzXPaTn5rTr3tFl0ecHg+hjBYrgUkJhb9/qohVC8XtdBZdpjCRSeBNGDP3224s2FoJB0DSqjAV+Ryl26fS3IhN9wO2gwe1HFET0+gPkKOJEEfS6CLm8aAVM4GmCLbLV6Olh9qTP00JKaniTUWSRY54AaiCILxpC0/JTvCeMRZjS2cZLBnY1RAkZqmh3NJx3X4OYQSbF1HGALoxqcPsLys5QYjFSzuIWqUFR0IJByuIhGvO06N3x4ueuQ3PnODXPZzhhpAQWm+jtRsW/yL78xhFN6iJWrcgLZFN1bytEPGq67iEdVo20FeMdDKIXQpQLIV4WQqwRQqwWQkwWQlQKIWYJIdYZvyta7D9DCLFeCLFWCHF6i+3jhRArjNceEUYHCiGESwjxgrH9cyFEdYtjrjTeY50Q4soOB2uspBMFEr0rGiZZxEnc57QRcnoQBRB9LKnqMU8obuqUMREPtOuTREdd7OJm+ltl8VrUgt7tqcHtx9ZQn/cxSeP6OYpYUtTvsuuWYwF5yVHDoi9qa1jA27OwinS6GC9W3PvDgFqut0MNJfIjk6Rh0duKRPSTBncnZFj05clI3n0N4kZXMnuRid7ntNPk8iEK0AvYLCjcA3qqXzAWztuidydiRb9Xodmil3k+O2YXPUeROsaZcBqiwFieXrlIIoU3Wfxr4nbYiLm92AvJ6W/pujcs+mhCRRHgshuUfJAs+t8B70gpRwBHAKuBO4APpJRDgQ+M/xFCjAQuBkYBZwB/EkKYAatHgRuAocaPWWv2WqBOSjkE+A3woHGuSuBuYCJwDHB3ywVFJgjDok8W2NnIFS+OetiE3aYQcXlRCqhjHjFSpzSbDVxFtArSjW30SaKjOH3SENoolcWN0dsUQdhTWBOXZKPZV7t4qX4Bt77gEAUsOMyJotjq4XRP+jxFm1HjHlGKLW4CRHkZwViIxkh+qamm/sRWpEl8fFUFfQb0BOBb43rkXfLY7L1uL/Lix+u00ejypRs85QN7PIpa5FK8AFRUUBbLz6KX8TgOTbWE6IXh5cv32TF7wLvKiyvsdZmiwDyJ3hTTYoUnzOfHGY3kV/tBSl08at6rZow+qeJx2Jq7L5aa6IUQQeBE4El9nDIhpawHzgH+Zuz2N+Bc4+9zgOellHEp5SZgPXCMEKIPEJRSzpN6GbBn2hxjnutlYJph7Z8OzJJS1kop64BZNC8OMsNmEn1hZTS98Qhqkd06UbcPe4FE70sY5V6LWGPeJPryZASv09Zhil1q/34AbEXsRW8i4gvgKqBGtdqkT+KeIrbbDLgdNLp9BXkWokldjFdsoicYRBMi74lTDyFEi5qFYEJUVGCXGqHa/L6flNnzvIjfTY+++j03wFZA73WjhrkjWGSiNz1QBSxMHYk4qgUWvVJZmXeMPm6EMqzw+jTfr/ldk2aiL25NDncPQ1Cbp+c2HEvhTcSKns8PIP1+bGoK4vGOd45GdbLP4LpvV/4WSmrRDwb2AX8VQiwRQjwhhPABvaSUuwCM3z2N/fsB21ocv93Y1s/4u+32VsdIKVNAA9Atx7myQhhErxUggtM0iScRRRYhTaglYh4fjgJEGmYcuJieBSBN9KKpKa8UO9VYJTsqK4s7DvRWtYX0pDeJ3l1E15/TrhBy+wvKGdctgji2Yk+eiu75yTfEEzNc9zYLLPpCe9JrZliliNZaud9NyOUtKL0u0Wh0jAsW23Vvo9Htw1HAwtQZjxW1XLMJpaKc8jxb1cbMkIoVRK8oRF1ebHk+O2YPeE+Ru+j5DE9YKk/PbaypCQVZNOFoK5jPYj61W9q2yk277lPtq+K5XEXz7OaT7GkHjgK+K6X8XAjxOww3fRZkMkVlju0HekzzGwpxA3pIgO49ehJxuKjdupU5eeagx6MJTldT1CbieR+TDxSnm261O/M+56LdKUYkokRtduYWcRy+DRuYAHw5dy4e3zGs2RbJOaaKNWvwOz18tX4ttrr1RRsHQKPTjSfcyJzZs/PyWqhbtwKwZNUK1m9aXbRxhD0+bPvW5/3dLN+c5NxkjB2NDYRCoaLeJyPcPrT9+/I656oNCS5PRtlZX8vmIo4BQGtsYCjw5dz5NCQ6JvvGdfq9sWL9V6yLFV6fPuM59ydocnpoXLuWr/L8fLG1axkJfLV5IzVz8q+I2RGSmqTR5cfR2JDf/SolU5NxIpqW9/2R7700LBYjGA/x1aZtzJmzN+e+sbWbOQPY3dRY1PvUxEiXF61mf17njm3V7bRFXy7D8VXxagvUR5K6BbphY17jWL+hhqOAXQ31bC3yNTFNufmzZhEzW89mgXvXLiYBq7duZc+cOVTX1VHd1MS27bvQEqQ/y7DVq+nu9RaNB/K58tuB7VLKz43/X0Yn+j1CiD5Syl2GW35vi/0HtDi+P7DT2N4/w/aWx2wXQtiBMqDW2D61zTFz2g5QSvk48DjAsOHDZTiSoNKmMCrPHPR9W/RhdKuuZkIx8tYNzAmW49u9gal5nnP/4u14kzHc3bvnfUxeqK4GYPTAgYyrHMAri7czZcqU5nhQG+z83aM0uPwce8x4jhhQXrxxAC/3eBmHmmLqMcfkFUP84rFnidscnHbqSbjsxctNfin4R3zRcN7XedX7a3GnEgwcMZxtfn9Rv5+t/iD+RIxJeZxzUdNyXGqK6lGjqC7mPQLs3K9bJNUV3Tghj3PPf3kWAMeedgrBnsURbq4VG2hy+hjs9tA3z8+39J3PADj6uGOpGjm4KOMAvYDVEs8z2NUUUydO7LjrWUwX0noKeH7nzJmT375vv03i3ffwV3Rn6tTxOXfdFP8IgIEjhnN0ke8RgG2BMgLJeF7364I/6c/vKadOyzrfHAhiSZWQ00OF3c6ReYxDJBYCUHX4CPoX+ZrsePsLACaNHg1jx+beeYVejO3wo4/m8KlTYfFiACrdbjSvi6lTj9P3e+wxKCIPdOi6l1LuBrYJIYYbm6YBq4A3AFMFfyXwuvH3G8DFhpJ+ELroboHh3m8SQkwy4u9XtDnGPNeFwIdGHP9d4DQhRIUhwjvN2JYVAgi5vIim/F3mMSMmaSuyWyfl9xfUYMcsb1r0+GuL5gn9Kzw0xVM05KiwpdTX0+j2tXYlFQnp3Pw803OE0W7TWcy8ZPT2sO5YRK8pnc/+xv1kt8D1F/cH8y5Uo7Z1/RURZtwzlWfaoTBclcXUT1T4nIRcHlIFVJRUw3ooyltkZbcQgpjZwTEfQZ5RoU8UuSgLABUVOFNJonkUZkkY1SSLmZLaEnGfH1eeIUkRDhFxeopK8qCr0/V5Pr8Qgtl0xlFEUa8JpxG6yiuV2tCTtHLdA6KhwbKGNpCfRQ/wXeBZIYQT2Ahcjb5IeFEIcS2wFZgOIKVcKYR4EX0xkAK+I6U0exreBDwNeICZxg/oQr+/CyHWo1vyFxvnqhVC3AssNPb7mZSyw1ko5vaiFBAbN2NaShEvLIDqD+CJGWrMPG70qKHsLrqiukVN5f4V+iS0rTZKudeZcXdbXR31ngADi1mv24Bs2Tmuf/+c+wKISISY0130iSJl9hpvaIBuHVujKYPohQVK5lQgiHvbto53BGSTdUTvM0sU5ylwEqEQEYcLr9NRtDFUeJ00uXxoBWTNSIPo3UVMwTSRMBs71ddDB25ZorrIVfitIXoA8lgAJUyRZJHFiSaSvgCeXbvy2lcJh4m6PBQ3f0dfhEXcPpQ8e5qYaX7OIi8GAVxmTn9tPR3ODibRt6yMh75o9vRv4Qg/GEQvpVwKHJ3hpWlZ9r8PuC/D9kVAu/6rUsoYxkIhw2tPAU/lM04TMbefQAGlPM2iDsXO9ZT+gN5sIxLJy00dMcqbFp3oHQ694UdjIwMqdaHQ9roIY/pnvpHsjQ00uLs1V2kqIsyUPVlbm1GA0RYiEiFe5NaSAKrZsKe+Pi+iN0VFVqQsqcEyyqKrkVJ2uKCR5sRmAdE7jeI9+XpblEiIiNNLMWmtwutgt9OLbNyT9zEyEiZus+P1Fj+tLWH2e8jjmiSbQjgAuwWFatLFq/LwLDRnQxTXcEmfP1hG2aZ1ee2rWPT8gi52tucrCmwqfoaICZeR0x/ZnwfRt51HDIveFmrE1dai79OnaGM89CrjAQmvD0ckf5e5mYpXTPUw0Mplng/MXuOWKEPTjW0Miz6H8t7ZWE+9O1Dcet0GFINU43k2cbFFI8QtyEuWJtHnSWpak3VEL8v0/PVoUu14Xwtd94XmSNsNa62YKPc6aXJ5sRVQaEpEIsQcbmxKcb0+AKmyFhZ9B4gZ+fzFLsULNPekz2McZkqb2wJSA9ACQQLRMGoeFRTt0TAJC9INAeJeP448C9WoRltdlwXhDF/3ciDPaqxZXPeOUBMeh3Wu+0OS6JNeH64CKhWZ8Zti53qaX2K+KSDRhFEZz4q0GKMwQ5nHgddp4+0Vu7PWEnc2NdDk8Rc9Lg7g6K4Tfb496W0WtJaE5l7j+ZY3lW1dbsVEeTmBeITGcMeKcdF2oigm7HYiTk/ePelt4RCxIndIq/Q5Cbm82ArwyBGNEHcUueysATVYrv+RD9GndRwW3CMm0Td2PA5Tx+EutyZGL8vKCMTDhOMd5/Rb0QPeRNIXwJWnQWeGvOwWxOj9BtHH82mk1nYeMYk+HGoufwsHLUb/X4WUL6ALrdpA0zT2799PfX09qtpsPdknjWb1zJmo3QOsXl28FK6e55zA6ikz0WIxlDzOe0Y/lW3/ehlRVgZFHAcAjz4KNhuJFSt55IyeSKB+5yaWNe7EaW9B6FLC668x1u1jzZo1xR0DMGBQUL/WZeXsyuMzJn//S6SiFPV7ARh18ihWz5yJLC9H5HHuqWeMYvWxM6FXL8qgqOOR117M2ulnkty2gbrdmR9Jt9tN//79UUIWEj0Q9gaw55k37ohGik70ZR4HTS4fjqghlLR3PEUp0ShxpwXV6ACtAM9Pui+DFYtBg+h94SZiSRV3jrCa2c3PV2mN616Ul2OXGuHaRoL9chfVcsYiRHoUzwXdEil/AHc0T4MubJ1Hzm82+snHoGvrujfI3BkONYvxVFXfr4voc0Pz+/HE2q/0tm/fjhCC6upqHA5HOh4a2rYTv8NGasQI7K7MArUDQeO+WoJbNpIcNCivsMDW/SEGkoR+/YoanwH0Zj9SsrdvNaJRTwMSQK+gm57BFpNkIgGRCLvKe9JnyMDijgFoiibxqwmSPXvjHNixGC+eSJJyuPAdPrzDfQtBTV2Ibhs01IEDsfXs2eH+u7bsoo/TBsOG0aRpBIqoo4jt2oN7xzYigw/Dm0HIJaWkpqaG7du3o0SsJfqoL4Arz7inMxom7C0umdgUQcqsXtbU1CxCywElGiVhEdGLAmLjcYNgnVZY9MY4yoxWtbmInqYQGgKXFeOguXNcdF8NdET08SiqBS2VATR/AG+eWU3SQo1NRbmPuM2e9gznRBaL3htrQfRm2KrLdZ8bMhDAlUpCsrVrKRwO069fP5xOZ2vRk2HdK0XM0wYQNv18Ms8ULlRN/20rfmwcmw1UFZ/LjjBkcEIIfG2V9ca1kIoFYwAURaAKJe+0NkXTkErxb1Pzu5apjuPiAGjGd2PBWIQxFi3LNRFC0K1bN2KxGDaLiT7uD+LKs3KhKxomYcEkLs0JLs84vS0eI2lFfXnA6XUTdbjzIvpkk1mhz4LvxiDXYDyPxjaRMFGnO933o9iwdTMqKO7vOA3TbSHRy7IgvkQ0PWflgmKkPlpB9GUeB2GnFy2fnvThMDidukAa0s9xIB61rBc9HKJEjyG4yJTXqGS6+TUNme21TkAYbsf8ycTYz4oHtAXRl3nsCCEY1N3XnugNspFWLDbQLTZVsYGaH9ELKS25HorNhiT/RZjQrFuEpe+THGI8c2Fqt5joE/5g3j3pXbEoSQt6nqdFrHlqBeyxKCmLiF4vg+vPW3UP4LZCTOtwkPL60hZ9LijhMDGLPBwADkNlnsijoYwnHi16a2cTwrhP4nm4zJVImKTNrpNskaE3MPPkXwK35WLDZkMLBPAnIs0WfRfR5wdh5EjHa+rzO0BV0YRS3EYy6GQCIPNYcQKWWo3YbOnzuxw2pJStxR8mTIveZk1URyd6Ja9VOIAiNbDAu6CYC47/AIteMYk+j8WPPWqdZQJ66pQ3z7inOx5BtWActvLCLHp7PIbqtobYPE47DS5ffmltZj6/RSI4taw8L6IX0Qgxi1LaAFzddYs+2RHRaxqehAW9OwyYdU/CeQh7bRam+QHE3T5EPj3pw+F2i3TNH8Af7yL6gmEqK8N59vhG09AsdMnmS2rp/axy3adSIGU6DSljeozVFr0wXPd5XBOpSRQp0x0JizoOM4SQr2fBSqJ3GIuqPBYdjliElKOF66/I0MrKCEZDHadOSYknHkX1Ft96tRsWY74WvTMRQ7VI2e1z2mhw+dDyKFSjGjF6j0WxcVlebrSqze26t0fCJCwkNbeROZPqwMuRaAqjIC3zPtmNQjXhfR3P8/aYtUSf8Hix5VOkLRxut0hP+QME4uHm9Louos8PdiNNLrY/zzKrmoYUFpCJTUFDdMqiF0Lk/LnqqqvyHUz6Pey5iN4cax5q5wOBEKApNkQe10RTrQtlKKIwz4KQenin2F4fKMzz44pFSFpRYtWALC/HH48Q6qgnfTSKTWpoFvT3NguQ5GvRW9UxDsDjtNHg9iHzKAusGXFgj0UWvaioyCtGb49ak5Jqwm2ozDta/MTq9O/PipbKAA6j+FYsjxCCPRK29LlJeX355fS3dd2jE70/EW32sFpA9Iek6t6MIeWV14hO9FZY9IoQ+nnzJZMMceBdLUpNvvXWW1x//fWttnnaTHDJZBJHJmvP/Hya1qFFL2kWEhYbQgg0xYaSjHW4r6aq2MASUZFNESSFDUc+Cw4pUTSJVJSil+LVB2Nc6w70AlJKvIkYSY8Pq6ZxpbwCBUnTvhrK/DlKvhrxSOkrPqmZNfeTtXXk47dwJeNoFhG9z2Wn0e1H1m/qcF8tEkVDZMycKAaUygqC67Z36Lp3xCIkLei7bsJnNjDqIJwRrW8gCJa0VAZwGaLAeB6FapzxKEmLvD4Aqs+Pc9/ujnfM4LpP+PwEdu9C63LdFwaXEeNL5FmoRmiqNcpu0z1sEniH42hv0ffu3Tv9U24ob83/Y7EY5eXl/POf/+Tkk0/G4/Hw5z//maeffhp/m5tpzrx5iAkT2L9nT5ro586dy5QpU/B6vfTr14+bbrqJxvp6VKEgLKgyZkKz2RBaHq57C0MZNsOiz8uzIKVu0VukYkZR0ITo8JpICd6EdSpmAMVUVHcQ9zQVxtICa83TPX9LTUqJOxnruLPcAcLrtNHo8iHyCCPIcISYw4liQagJwN6tm+G6z030zliUlIXWq83vI6nYEB14XExDy5JKn4C7WzmQnyjQ6msi/QHcGVK62yGD6z7h8Ruu+y7VfUFwm2KRPDtgiQNI4Vq8pY4/zl6ftbocGBa9yI9MpJTNE32BxDZjxgy+/e1vs2rVKs4999zMO9ma9QI2IVi3eiXnnfU/nH322SxbtoxXX32VpUuXcs1tt6EqNizkeaRi02PvHSyANCPdUFgwceohhDy/Gw1sFqn/TeQTzpCALxmzlOjtlbo1Hdu7P+d+ccOaExZYa8HKMlJCIZ7HBB5PqniTcQuJ3k6jy4fSUN/xgj0WJe6wTu0uKsopj4U6dN274lE0r3Wue4Qg7PahNOZe/CSMvHK7RV30vEYIIZ/Ko654FNWiewSAYABPPEpK7eAeyeC6j3l97VX3TicUUWB6SLruvcZKT63vOMb30zdXsvKr3Tr5fJJfTL8plmTN7iY0CYqAEb0DBNyZnYxaOKzH0z9ujvGN7Bvk7rNGtdpPSnTyg4IJ5bvf/S4XXnhh7p3auO6f/vPvOef8C7n11lvTuzz66KOMGzeOX//v7XiscFEbkC1d1TnSXcy0RGGB6t4MIeTjWdCkRLHSoscg+g6IxHTdS8O1bQWcxuSZ6CBHOlHbgAdQLJjEK3wuQi5vXgv1SGMYN6BYNIn7nDYa3H49zbOpKaeVJSIREk5rSvECUFGBNxkj1BTNuZs7EUOzQCTZEhGPv8OGMul2uRaUnQXwGyEEtYPeDKomdfW/FamgBpRAAF8iSkMkQbdADoLO4LqPevx0T0RRWhJ9kTupHpJE7zPcj1oBjTHyaqVmoDGWwgxva1L/PxvRS4Q+SXQAk0yAgon+6KMzNRZsA/OcqopNEaxasYztmzfy+qsvN4/VGOf67Ts54mgLTfo8sxGkQcJWWPTQxrOQ45qbrntLsiHMsdg69i7oFn0UaVG6EoDH6GCX7EB8ZlprZi5zMVHh08vgijw0NjFjHIoFokDQxXiNbuPc9fU5J2AlFiNpUc19IF0lUM2RTaRpEk8iirTSegUiXj+OUO688VSTSfTWWPRmiV/ZQUW6iNH+u8nC58ZRHsQuNeprmzom+jbjiLh9+BNRpDm9dBF9fvD73UTtLsijUtHdZ41CXRwjWlaJf8igvM6/eEsdlz4xn2RKw2FX+N3F4xhflblUZ9OqtbiTcRxHjM15Tk3qOeOaoqAUaE372tw4iqKkSdtE0iQRVUUIgdQ0vnn5Vdx1x49a7SfXrsXfq58VGW3NyFd8lnbdW0OwskU4IzfRG94WC+MZUrGhJDsS44E3EbMshx7A08uwkjoQOKUMb5kVQqsKr5Napwd/B65hgFijHhdVLLomPpedRpdhgdXVQVVV1n0VCyv0AWmilznS2mLJFJ5kHGFRSpuJuDeAq4PGQ2a7XFeFNRa9sNkIOb2IDoletZ7ojVS/pn21UNUj+44ZXPdhl74o88aj4HN3EX2+cNgUGlweRB41uzVN6vHXAshkfFUFz143ifkba5g0uFtWkgd9Au/IJQumsju3ZZkvevToQSQSobGxkaBhcS398kv9RYPwR405grVrVjNkyJDW4w2FqHX6Cl5sFASzGE9HFqxFpYnT52+54MiRl65Jid2iwj0tx6LE4zl70mtS6ha9RSpmAF8vvXZ5R+lkqUaztXPxJ/Fyr4PNLh+BPBbq8UYLO8YBHodRGQ86VJlbWaEPSJfBFfXZiT5U34QXibDIw2Ei4Q9QvnNLzn1MwabbItc9QNjjQ+nAsxBJqFQkYmCRKBDAbQjAw/vrs++USum9RNoswpoMj5Et1ASVFZYQ/SEpxgOIuLx5VSo60Fzt8VUVfOekITlJHkAqCkrecWBZlDjwxIkT8fl8zJgxg/Xr1/PKK6/wp8ceM95IX3Tc8N0fsvSLRdx4440sWbKE9evX89abb/Ktn/0MVRTuVSgEzaWBO7BgjbEqVrnMbfmFEJotegsfF5tNz0vPEeWR6Ba9ldaaq6IcDQEdCJzUBsMtm0ezpoLHYLcR9fiw5bFQjxvjsFl0TfT0uhau+xywxWNoJbDoRY7vJlZrrdLdRNIfxNNBi1jNKAnsMesiWICYx6cTZA5EQxGcWgphoUXvriwHIJxLQJql1XXIaQgnTbV9F9Hnj5jHl1elIpNsrHQP56Uwl2ArktVYWVnJs88+y6xZsxgzZgyPP/449957r/FG+jhGjR7Dc6+9w+bNm5kyZQpHHHEEM+68k96VlZar7oWRRpKtiUsaFqrugQKIXtdPWDYOAJsdRVNRc9wnUkp8yRg2K5qmmFAUQnkoqrUm6yx6gITXjz2PnvTpRjIWWfReozIe0GG9e2c8hmpRPj+QJnpHjp70UQtDKi2hBYP4OyqVbMy/VhUQAoh7fDg7aMKUXgxaeE28Zk/62hzPTZYOeo0OQ09hasoOluteCLEZaAJUICWlPFoIUQm8AFQDm4FvSCnrjP1nANca+39PSvmusX088DTgAd4Gvi+llEIIF/AMMB6oAS6SUm42jrkSuMsYys+llH/LZ8xxjw9HHkSvWVl2tuV58xB8KVLLWe71wgsvbBV7r66ubheLN3HOOedwzjnntNp22ejR6RvIpghGjh3HO++807xDPA4rVrBNUVAsZPrmrn4deDqstujN6n8dLDg0sxSvha577DYUjJTCbKEKw9xXLJ7EQ94A9g6UzDQ2Ebc58HitsWBT/gCujR0/v0lj8rSK6F12hSZPfq57RzJOysKKdCbRO5sasoZ4Eg1mKMNai14LluFPRJCpVNpD1w6hMGGHG5/Tughx0hfA2cGitJnorbsmXsOij+eqtxDO3JCq3mk90RdiopwkpTxSSmlKvO8APpBSDgU+MP5HCDESuBgYBZwB/EkIYc5cjwI3AEONnzOM7dcCdVLKIcBvgAeNc1UCdwMTgWOAu4UQHTeoBpJeH848ehXLlMVWo5Kf1WhlXfc0jA52AHZFtK+MZ7ymCZulrnubTUEVSsed4zTVsrKz0CKEkJfr3lqL3lz8aDkEeWYow25hzBMg6vXj6MBKkqEQYaenOfe3yNACAdx5PL8pw6J3WeTlEEIgA0GkEDmJXkqJMxm3rBQvkI7R+6MhYsnMnp+EQTROi5TuzWPRiSiWw4JVwiFLu+iBviDs6D5JWpzPD83ZJ8lcKd1ZLPoGu3GNGhv1ObiDNM4DQWdmrnMA07r+G3Bui+3PSynjUspNwHrgGCFEHyAopZwndTP0mTbHmOd6GZgm9OXq6cAsKWWt4S2YRfPiICeSXn9eE4U5yVvlujeJO18ysdRqbEH0NoPoW3kEDOJNKYqlrnubwOgc1xHRa5Z0FTTR7FnoWCsgsPAeoXnRkTOcYXxXVqUrmYj5Ou5JLwyiTzfiKDJksAxnKqF7mXLAbCRjFdEDuF0OYp7crWrjKQ13Mg5WFqrxeFCdToI5iuYkDAGc0+LFoCgrByCco7CSEg5b2kUPQA0E8HRQkS7ZaG2aHwCGl009AIu+1iT6hobmVrcHiegl8J4QYrEQ4gZjWy8p5S4A43dPY3s/YFuLY7cb2/oZf7fd3uoYKWUKaAC65ThXh1D9/rxKEmqWE71hqXXgpi5NHLg10Utka/GXQTJ6jN5Ciz7fVrUWNRsyodj00rMdhRDSi0ELxXhKHgJF06J3WJC73hKJQBBPB/FxJRQi5PTgtsiiV0yi6qAWhmZMnlYqu30uOxFfIKdFH46ncKcSCAvLrAIkg7k72KlGFoLVFr1iCOxi+7JnZ9ii1hO9DATxx8I5uy2mzGtioUVvEr3WkOO5ySLGq1VaWPQWlL+F/NPrjpNS7hRC9ARmCSHW5Ng3E0PIHNsP9JjmN9QXHzeAnlo2Z84cYhI8sShz5sxJ71dWVkZTU+svIhWL4QPiiQTJptyT24HAzF+PhkLIHNwZjUvKNI2kppGwYBwAbilRkkkiTU0kE/plbGhqwmGY746wXmVMFQrhcMgysk9qEqdQsCWT7b6PVlBVNEXk3qcTSCQkqlBQYzEiOd4jGdc7uUUTCVJNTaiqWvwxJRM4gHg01ryqbwPT2l+xaSN1Le7rYkPYHfQNN7Z6dtqiz/59RBxuFsz9NN0NsZioNT7r3HfeJTGgf9b9arbrtsPCFctIbsud7nWgUONRGhxu5IYNfJnlmuwNq1yQjFMXi+S8bm0RCoUK2n+My01ZLMScuQvYXt5+kbVn3QYAVm1cz2qRu1RuZ7C/oY6JwPK581gvMntdyhsbiTpcBX2+QpFSVXzJGP9+7wN87sx0tv2rdQCs3rKJhEVjEakUU4BEbU3Wz9vj888ZBSxctYpwrLmp17ZoEk0Iti5fzr6KCiYAK7dvZ18Rx5oX0Uspdxq/9woh/oUeL98jhOgjpdxluOX3GrtvBwa0OLw/sNPY3j/D9pbHbBdC2IEyoNbYPrXNMXMyjO9x4HGA4cOHy6lTp/LpU//Ck4oz5bjjEEaO9OrVqwm0ETKFDPGKN+DH4Sl+PEmmdEJ1ORw4coioIjKGIiU2txuXVWIrlwuSSQKBAFo0yf5oGI/Hi8cUyxgxJE2xEQwErOnUBqRUjbBiQ9GS7b6Plggb6Ya59ukMZCyJqtiwC4E71zgiusvW4/NBIEBTU1PRx6QZFr0jx+c1F15HHHccTJ5c1PdviXm9nyawOMzUqVOz7rNTU9nr8nLKySdZMoYPP/8KgJGDhlB+/KSs+816+k0Ajjv1VMsKCfVaM5eov5zBNlvWa7J6y35sUqPngIEMy3Hd2mLOnDk5r3NbhHr1oqwmhG/kWKYMa1+Y5cM3PwXguGkn4awemPd5C8WKen0hNqh7Tw7PMv6vUgmi/kBBn69QLH1jNgBHDB9J/0GZuy2GP1gOwMQpJ2AbO8aysSQdTtyJRPbPu0VfiE446SQY1KI42/wPibt9VFdUUD1sGACjjj0WinjdOvRFCiF8QoiA+TdwGvAl8AZwpbHblcDrxt9vABcLIVxCiEHoorsFhnu/SQgxyYi/X9HmGPNcFwIfGnH8d4HThBAVhgjvNGNbhxCGmybaUQtDU9ltUVEWYTNjrx247jUNBWmpe7it6x7atKpVVV10ZFU7VgNmV7+O6swLi133NmF0F1Q71goAlubRK/lkAJh6CournsmyMrzJGKlY9vi4PRohamHbT6dRxjrcQRc9zFxuC0VwHqfeqjZXjD5muIdtFqn/06ioIBjL3pNeGpoFq133ru5mqeTs18QZi5Cy8B4BsJmFanKEEKSRZ2+z0nUPJDpK6c7iuo8lVRJe30F33fcC/mVM/HbgOSnlO0KIhcCLQohrga3AdAAp5UohxIvAKiAFfEdKac7oN9GcXjfT+AF4Evi7EGI9uiV/sXGuWiHEvcBCY7+fSSlzl+wyoBhxzMi+Wry9cpQkNKuvWRSjV/Ks627mjFtZTx0zLi5lZqJPpfRe8VYq8TC6+uXRrc3q+vI2RZBQFOgozU+1nujzyuk3FxwWE70obybZsoGZrSRHJEyim3Xk6u2mN9eJ7M+duy6jMeJ2Jy4LvxufmUu/a2PWfWJmWpvPYmLrVklZbFn2nvRZyKTY8PQw+onkMKRcsSgpCzstAjiN0rOxXPdJia5JyufDFY8SS6q4M4lUs6juIwmVuC9wcIleSrkROCLD9hpgWpZj7gPuy7B9ETA6w/YYxkIhw2tPAU91NM62sBs3QKSmg3rZqoYmBIpFE4VJ9B2p7uUBVugrCDabbhVKid2w2FNtLPoDqbV/INBsHTeUEUWqFJgNihCowobQciu70Urw3Rg96XMRvSiRRa9U6pN4ZM/+rETvjIZJWNgNzGd00Yt10EVPiUaIO91Y2EoGj9Om5zrnEOPFjSpwDotLz+pEH6IxmiX+HgqTtNlx5OgKWQx4jeZHMke9BXc8imYx0buMBWEsR0U6Ecqsdi82NJ8ffyJKfSRJ77IMRB8O6xlELbxPmiaJJlVS/oBO8hYR/SFbGc+s2BXL4VoCQFP1FC6LoKTdw/kVh7HUom/Zk9606Nuk11ldFc9EqzrzWSCKVPs/G0z1f4c96Uvx3ZBHT/oSEb3dtKb3ZXebu2IR3d1oEQK99TEkO+hgp0SjJKwsOwv4nHZqnT7dIktmJth4g6nstva7cVRWEIhHaIokMr6uRMKW564D+INevXFYjnQydyKGZrEV7TZCPIkcngURCeuL6CL2d88EGQjgS0Soy/LdEA6D19tqTosZ3sSUz2+pRX/IEr3TqCKV6GCiEJreMc4qKIrQFxIduu5LZNEb7yWEXgykbYze6tQ6E7IDV7UsQQ94RYAmDKLP1Uq4BDF60Psi5NQtSKOugMUTlhkfj2eLe8bj2NUUKQst+jKjuU4yj0YySYuJzeuyUWOWKc1CbEnDPey02KIXlZUoyKyxcSUaIW5xShvo/QiaXF5ElushUyk8qbjli1Jvd/1eTdXVZ91HiUb0xY/F85owetLXR7J5W9p3roskjCJlwWAz0TscRX/GD1midxu9ipMdNOcQmmq94EtROqx1n8tq3LdvH9/+9reprq7G5XLRq1cvpk2bxqxZs9rtu3fvXtxuNwMHDkRr+542G9Vnn43weFAUhQlDenPChCP51a9+pRfOSaVQFYWd27cihGDRokXpQ4UQCCH49NNPW51SVVX69u2LEIKXX36Ztnj44Yex2Wz8v//3/9qNxThBq81Tp05FGKEU5/ij8A0bghCC+g4m/AOBEALNZtNzOHN8P6KTRL958+Z21zMTtA46HQpNEnN7LJ+wXD0Mkq3JQvRG+l/KZ2FJ0YCXuM2B1sHza4/HrO0YB3gddmpNos9yHyZDZj6/tcTWUU96eyRMwsoyvC0Q9vixZ2k8ZJadtToubhJ9rkI19kiYuMta7QSArSyIPx6lPpdF32bhEzWJ3t8iRl9WVvRn/BAm+nIAUh1MFFhs0YuWVmPOcWS36C+44AIWLFjAk08+yVdffcVbb73FmWeeSU1Ne9fq008/zVlnnYXb7ebdd9skKBjk+pPbb2fXrl28/fFCrv/297jzzjt5/PHHdYte2LLeYwMGDODJJ59stW3mzJnYs9W6Bp588knuuOMOnn76adSW18CWXWV+9dVXs2XbdnbOnMnGBQvZtWsXZQfoykoksjx0BmQ+JYpLZdHbbDk7HQopSVisYgbw9DR60mcjejMN00LXvRCCsNsHHfQat8ejqBZ7OHwuGw1mq9osyvuUQfRWx+hNoteyEX0sSrIEpAYQ8fixZ+kcFzU8qVZ2WgSwG3oSmeM+sUcjJVn82IO6RV+XzaIPh7Na9ATLmmP0RXbbwyFM9L70Si/3RKFo1rqHhRD6QqKjVLIsqvv6+no++eQTHnjgAaZNm0ZVVRUTJkzgtttu4+KLL253nqeeeoorrriCyy+/vB0pm+cO+Hz07t2bqqpqpl96JWPHjuW9994DVSWVo0XtVVddxUsvvUSoRfvfJ598kquvvjrj/vPmzWP//v3cc889eDweZs6c2fxijmwEr9dLzx496dO9O7179aZ3797pdL9XX32VMWPG4HK5GDBgAPfdd1+7Rj/33HMP11xzDeXl5Vx66aUAzJ07lylTpuD1eunXrx833XQTjY2N6RCCTCZ56KGHGDp0KC6Xi/79+zNjxgxAt+jv+P3vGT5yJB6Ph9GjR/O///u/xFoWvdi2jXPOOYfKykq8Xi8jRozg+eefB2CQkTM7YcIEhBDpPNsVK1Ywbdo0gsEggUCAY84/l08+n5+1URFSkiwB0XsNoteypZMZFr1m8SQe9fhQOmhV64zHUC2exD1OW4etatVQBADhtfj7Merdk6UnvSMWIWVlvf0WiHn9WTvHxY2a74rFKW34fHr8PUcFRUcsUpLnxllRbhB9FuMio+ve6J5aFoRIBGpquoi+EJguHdlBCc0DFnzNmwe/+IX+uwPosdfcrvts7mG/34/f7+eNN95oRSyZ8Mknn1BTU8MZZ5zBZZddxptvvsm+ffuadzDPbdYOEPDZJx+zevVqHAbhpUT2znVjx47l8MMP54UXXgD0MMHbb7+dleifeOIJLr74YhwOB5dddhlPPPFE8+ftoOSrNFvUtrgeixcvZvr06Zx//vmsWLGCBx54gF/84hf84Q9/aHXsww8/zIgRI1i0aBH3338/K1as4LTTTuPss89m2bJlvPrqqyxdupRrrrkmvfi58yc/4d5772XGjBmsXLmSl156iQEDBuhdwqSG1+vlqaeeYvXq1Tz00EM8//zz3Hdfc2LJt7/9bSKRCLNnz2blypX89re/pdyYlBcsWADAO++8w65du3j11VcBuOSSS+jTpw8LFixgyZIl3Pnd7+N12LP2pBdSI2lxiVWAQGUZScWWXWVuEL30WzuJx73ZLUYTzkQMzeJr4nPaaXTlJnpp5vNbTfSGRa9kUbuXIqXNRNwfxJWlVLJJ9FY2kgFAUYi6vChN2T23zli0JIsfe1kQXzJGQyGu+6RRXtuoB8D27ZYQvXX9Aw8yHG4XMbuzw1rZ9l8+iH39+sKaUTQ0wPLlzalhY8fm/HI8kSg2TW3+ko88En7729Y7ycxEb7fbefrpp7n++ut5/PHHGTduHMcddxzTp09n4sSJrfZ94oknuOiii3A4HAwaNIiJEyfyzDPPcOutt+o7GKT2/+6/n3t+9SsSiQTJZBK32833broJMIg+x0e/5ppreOqpp7j22mt55plnOOGEE6iurm63XygU4sUXX2T2bL1y1RVXXMH999/P7t27dQvdTDtMpdrVOX788cd5+umn9esrBJddfjmPPfYYDz/8MFOmTOGnP/0pAMOGDWPdunU8+OCDfPe7300fP2XKFP73f/83/f8VV1zBRRdd1HwdgEcffZRx48bxk5/cSzAS4Td//CO//e1vdfIHhgwZwuTJk40eBJK7brgBZdw4ALp168add97Jr3/9a+69914AtmzZwgUXXMARR+iZqINaVL7q0aNH+rjevXunt2/ZsoXbbruNESNGANBPceCq209Ka65z0BJCSlIlIHqnw0aN259VaGW67oXFrVCTvgDOHDX3k6qGKxm3tgc8ukXfketeC0eNnS0mFIPos7URdiWiJVkMAiT9AbyRzAViSkb0QNTjx9aUvVCNKxYl1aPS8nEQCGCTGqG6LJwTDkOP1jVdzBi9zeSPbdvAqI5XTByyFj1AxOVF6cAiEMjChQ8NDc1xW03LmWKSL0QOMd4FF1zAzp07efPNNznzzDOZO3cukyZN4v7770/v09jYyMsvv8zll1+e3tbOfW+c+5YbbmDp0qW8/NZ7HHPsCdx9990cO2ECgJ5uluN6XHLJJSxZsoS1a9emCT8Tnn/+efr378/RR+tdjQcPHsyECRP429/0JoU2xWxV2951f9FFF/HZx5+y9NlnWfDhh/zsZz8D9BLGxx13XKt9jz/+eHbs2EFjiwWd+Z4mFi9ezD/+8Y+0d8Tv96fPs3nbNlZt2kQ8HmfatPZlIfRe9Bovf/ABxx9/PL1796ZPnz788Ic/ZOvWren9vv/97/Pzn/+cyZMnc9ddd7F48eKs19DELbfcwnXXXcfJJ5/Mfffdx1ebN6FImW601BJSSgQStUTWWsjjz96T3qzFb1WpZgMpfwCXaSlnQCSh4knGkRZb0bpFn7snvYyWluidGUIaKVXDnYghS3SPpAIBvNHMBGu2hnWUgOhjXh+OHAtCVyKKarWnBdLPQ9bWvTlU93bToregRS0cwhY9QNTtRQllX+lJKeGWW4hW9MB/WFX+J543D6ZNg0QCnE549tmctcdD6zZR1lAD48dnXFRIKfU0PyGyxsfdbjennnoqp556Kj/5yU+47rrruOeee7jttttwOp0899xzRCKRdkSoqiqfffaZvt3wFnQrK2PIkCEEevbnoT8/w7lTj2biqFGc1KcPKZE7j76srIzzzz+fG2+8kV27dnHeeedl3O+JJ55g7dq1rYR6mqaxb98+br/99nQOuy2D676srIzBVYMIaCkS1YNxGsVTpJRZFyEtt/vaPEyapnHdddfxwx/+sN1xiivIvg92ttuePlbC4qVLuOSOO7j77rv5zW9+g91u58MPP+S2225L73fttddy+umn8/bbb/P+++9z7LHHMmPGDO65556s577nnnu49NJLmTlzJu+++y4//elPeeyOO7jo8NHgcrQbh5DS8rxkE1FvIKuiWmtsQkFPJ7ISsiyINxbK+r1HDaIPWTyJe102og4Xmt2Oki2cEYkYO1tMKH4/mmLDHWpod10iSRVfIkaDxdoJE2qwDJfZStjVumRRymyXW25tp0XQW5I7s3gWkqqGJxEjUorFj/E8ZM30yqG6txvicaArRl8o4h4f9hwWgdQ0/QIU2hp28mT44AO49179dwcNRqSSO4VLpnvR5z+OkSNHkkql0nH7J598kptvvpmlS5e2+vna177WXpRniL3siiBYXs5N3/4OP7zzTqSUqIrS4TCuvfZa5syZw6WXXoo7g+J55cqVfP7557z33nutxvL555+zefNmPv7443RVOpmlzrxZKbBlD4KRI0e2S+/79NNP6d+/f84mM0cddRQrV65kyJAh7X48gQAjBw3C5XLxwQcftDtWk5IFS76gX8+e/PjHP2bChAkMGTKELVvad0rr378/N9xwAy+++CI/+9nP9EwGwGlUKVMzWOpDhw7le9/7Hv/+97+56puX8MRrr2XULUgjhCAtTGlriagvkFVolTI8WHaL66mLYBB/PEJjlnKv4YTRGtbisrNepw2EIBkoy+q6F6ZFb3EGAEIQ9QUIxMJ8tqF11k0kruJNxhBWK/9NBA1CyuDRVA1XuqsERJ/yB/Bk8SxEEvo1kaVYIKeJPofrPosYz2lkDwBdFn2hSHh8OHI0GdBSqm6ZHEjFs8mT8+8g1jJnPMN7aVJik1pzqlcL1NTUMH36dK655hrGjh1LIBBg0aJF/PKXv0wrtpcvX86iRYt48sknGT26dYXhyy+/nGuvvZbf/e53OhkKkV5wmHHgG268iV//6pe89P77jL70BmwdhDJOOukk9u3bl5Vcn3jiCcaNG8cpp5zS7rVp06bxxBNP8OjEY1EVBUeWOvPSyFIQLRZht956KxMmTOCee+7hkksuYeHChTz00EOtQhiZcPvttzNp0iRuvPFGvvWtbxEIBFizZg1vvvkm9/7qd3j9Ab539dXMmDEDl8vFiSeeSE1NDYsXL+aqa69nyMAqduzdy7PPPsvkyZN5/fXX+ec//9nqPb7//e9z5plnMmzYMBobG3nnnXcYOXIkAD179sTj8fDuu+9SXV2N2+3G6XRy2223MX36dKqrq9mzZw9zFy5g0rBh6Xa0LaEZrntZokk87g/SfdvejK8l6xtx0iKuaBGUsjL88Qg7wnHKPI52r0djSTypOIrF1prP6O6YCARxZbHolViUhMOF0+IUzMVb6uhm91IWC3Ht0wt57vpJjK/SSSIUidNbTSJK5PUxCSlRU4ezZ89WL2mGRe+qsPYeAVADATxbtmT0/EQTKsFkzPJ8fiBtrauNGSx6KTO77g0xnrvLoj9wJLx+XNHsFn26o1yhFn2hMMk9i0WvSXRrLcMk4ff7mTRpEr/73e+YMmUKo0aN4s477+SSSy5Jq9+feOIJhg4dytixY9sd//Wvfx1N01oTk2HRm0Rf2a07l19wAff85S8kJTlj9Ca6d++Oy9W+wngikeAf//gHF154Ycbjpk+fzssvv0yoqTFn+VlTdd+y2dBRRx3FSy+9xCuvvMLo0aO54447uOOOO7j55ptzjnXs2LF8/PHHbN68mSlTpnDEEUcwY8YMevXqpYcQhML9t97K7bffzr333svhhx/OBRdcwPbt29EkfH3Kidx6zbX84Ac/YOzYscyePTutGzChaRrf/e53GTlyJKeeeiq9evVK6xHsdjuPPPIITzzxBH379uWcc87BZrNRV1fHlVdeyfDhwznvvPOYfMxEHv7BDzJa9KbrnhJZ9MlAEF8ks2WiNjaRVGw4fdbGox2V5dilRkOWfhWxJv3Ztlm8+PE49XtQFQosXpwx00aJxUhleB6Kjfkba2hw+yiLhUiqGvM3Nlv1McNlbLM4pGJCMfQCmfoRaIZF76m0nuhlIIg/ESGcaD+XRGIJvMm45fn8QNqil41N7VNkYzF93s3guheiuRol0GXRFwrV58e9fVPW1033sMhgSRcVxkJCqmo7hTno1pqiaRkXHC6Xi/vvvz+n1frII49kfc3n8xEx44fA5g8/bDGs5g52j//iF8h9+1hhszGourrdjZo1tzvD661S+trgmmuu4ZprriGR0gjt2Q+p1qkoc+bMAaB+2y6gvbfl/PPP5/zzz896/s2bN2fcfvTRR/POO++0214XSehaAU2mFw4t0RRL4pCS+370Ix58/M/6NqMf/U1GpgLA73//+6xjArjuuuu47rrrWm177rnnWv0vIxHEqlU0ZPBySFVDYH1c3IQaLMOXxR2qNTYScbjxOK2dPkx3ZtOeWhjer93rMcNqtJrofU47R+1YTXDrJj07Ztq0diE7WzxGqgQ15icN7kaT209ZLIRNEUwa3C39WsxQe9ssrrdvwlZRrr/vvhraOehDIVSh4PVbL4ITZUEC8TANsSR+V+t7MmZU6Csl0bvjUT5dv58ThrZQ2OfoXOd12BAtyb3Loi8MaiCAJxbJ+npa3WxxsxKTrDIpzMEg+gJj9AeMlj3pRYtWtalUunhMKWrdd9hQphStYTFLFNuyVsZLL8JK8N2kawtkGItmhDIUi1PaTAQSEVypJBgLr1ZjaWwi5PTqsWsL4TZqYYSzNNdJGD3g7RaTiduhMGnbCr1tMugi3BbXRdMkjhIU7gEYX1XByJFVBONhTh7RM+22h+ays44SEb3D7ImQoXOcCIeION3Y7RYbUeghHm8yTmNT+zojZppfKRY/yxv0Z9SXiHLd3xaxeEuL65KlVW40qeoLZp+vWajdRfQFwu/Hm4hktUbTFr3VN6NBoJlir2C67q3tvZ6G2ZOe1hY98ThIiTcRs7wfPejFehSp6Z/bTNdqiRKVnbV10HRI00r43eRo9JMOZZQgXYl58zhyll7UR555ZjtXtQzpk7gnU8/tIsIsehWtqc/4ukn0TosXP0IIlg4+Es30/DmdYFQ3BD3O6k7F0awW4hmo7N+Lbskwe5tat1dONJpEXxqvj9ki1vfKi+3uERGOEHWWpkKfzShMFc6w4DAXP6UIZ3y+Xy99609E24VV0kSfwXVvij0JGn6RLqIvEIEA3mScSCRzv3HTwlastug76ElvKqpLbtEbhK5EwhAKIVIpBtftwJYjU6FYEOEwFRGD4L/6qtm1ZaIUPeAx2ggrCiKL+t8smCOs1nEAKAoSUJNJwvHW4zHvHXspXPdz5jR7WtpYrwA0NRF2enBbbNF7u+tu6WzNddL15Uvg5fhq8BgWn3yO/s8777Ry20fiuvpfK1HpWSoq8EdCrNnZ2Kr7ZMogNVe59XFxgEojLFrx3r/1cEYLsrdFwsRK0EUPdC0HQDRDt8WUmc9vcYYIwFEjBwC6Ra+I1mGV7K77VPOC2ST4LqIvDKJMXyGFs1gEpJXdVrvuzXKv2axGWVqr0fRkCIFNEdiNzASBLvhScmQqFA1NTXqxItBFKm2teqOugNWd2mwKqCKH616TKEjrdRxAOKG3CZYplU37w63J3iT6MuvTldYMP4qkot+zSaGwZvhRrV5XQk2EnB7LLXrFIKxElhakSUOM5yqBW9bnsrGpSq9gyGGHtXotFE/hTsatL5ZjorERm5riyPVfsLmmeVGeMp4hVwlIDaB81TIkhki0zYLQFgmXpF0ugMsg+kwhhKTh9SmFl2P8YT3Q3B66yThHDSxvFVbJ5rqPJNS02PM/wqIXQtiEEEuEEG8Z/1cKIWYJIdYZvyta7DtDCLFeCLFWCHF6i+3jhRArjNceEYa8WwjhEkK8YGz/XAhR3eKYK433WCeEuLKQD2em/0QyqEKhhTvUYte90oFF3+y6L5FFL2WrFLuUQWISkEKURvAVCCBNEheiXZU1oWmWtg82YVr0iqZl7EmfKc3PKoTjKVShYNM0pJStiN68dxwlIPoPKg7jmgvvBuCFsafxQUVrYhPhMBGnx/IYvTnhZWtVqxlWkrMERO912qnxGBNwG7FpJKHiTiVKQ/Tz5sFf/gLAX1/5GbtmNotrVYPUSkX04uSTkMZyXXO0DmfYo+GSdFoEcBlagUwLQtW8R6xuH2xACfgZ4pZsq4u2fqEj1z38ZxA98H1gdYv/7wA+kFIOBT4w/kcIMRK4GBgFnAH8SQhhzgiPAjcAQ42fM4zt1wJ1UsohwG+AB41zVQJ3AxOBY4C7Wy4oOoJZVjBaW5/e1ipen6EoixVQbAoaIqfgyyZLYzW2jQPbFIEtEQMhCFf2ZGNlv9IoVP1+9nbvq//dq1e7B0BY3FXQhJleB2T+fszmOiXwtvhcdqQATyqGNxnD10JBLFMqaBrOEhD9pMHdWDjkKPZ7y3BKtbULErCFQyWx6M2JT8tSYjrdMa4EOdJep4193sxEH4qn8CTjKKUoszpnTvo+dahJ1Nlz0i+ZC59SeH0AVlePZv6A0dS5A1xy8c9Z3HdE+jVHrHQ19z2GliOZiegbSxvOIBCgl5JkV0OMvS3FgblU9ybRm6LfpUuLPqy8ZlIhRH/ga8ATLTafA/zN+PtvwLkttj8vpYxLKTcB64FjhBB9gKCUcp7U2faZNseY53oZmGZY+6cDs6SUtVLKOmAWzYuDDuE0ijXEDaJ3OBxEoy1WWpqmu55KEAfWlOyCr7Qo8CAIvuxC4A3r9ZUbK3sQd3ryyqMvBuLegO68z/R+sjQWvRACLQ8RXCn0E75kDFcqiSuVZHDtDnzJ5okilUpiD4VwVZTABVlVwZ8uOYot5X2YqNW3dkEC9nC4JDF6k+hFlsZUWqk6xqET/R6XQaB7WxcSiiRSuFNx61vUgm41G5UWNcXGR31GpV+SWcjEKizdVsei/iMpi4dZ1n1wK/GZKxYh6SnNOFxGGqaaoSKdmc/vKtHih0CAblJPGf5yR4sFajaL3lTdz5sHCxfqZH/KKXl1RS0E+c5evwX+F2hZ8aWXlHIXgPHbLI3UD9jWYr/txrZ+xt9tt7c6RkqZAhqAbjnOlRecRp5nsk6/4D179mTHjh1EIoYSX1XRRO4mLsVA2mrsoDhMSQRfbUjNk4jhUFNQUaHHo0uguDeh2BRSih2SyXavlcqiB5orEmbKiiiRKBBI6xQEtNItaJrG/toayl57rSSue4Cpw3uwtaIPlbu3tXvNEQ0TdlivusdmI+7yYMuUlQHIiLFoLxXRO41Juo1FH47rrnubxaV4geby234/68dM5A1vix4dYSOVuEREP2lwdzZ0H4BNagxp3NXK8+OKl6iRDKQXhDJTEyZDb2QrUSYCgQDBZAxFwPLtGYg+gxjP67DpnhrT25xJANtJdFjxQgjxdWCvlHKxEGJqHufMxBQyx/YDPablGG9ADwnQo0ePdNGV5I4tVAObVq0mbGyz2Ww0NTXp5F7XgCOZILlkSa7P02lIwL6vBupqUTN0WYrFUuxvqCGZTKLu2GHpWJREAmddHYkvv0RzOpENjdTGosQVhaYkpDSI7S4N2YeTktqGWmz1tSTb1BAX+2tRBKhtCupYMo5wnFCoPn1NWiIWSVDbVEcilUIzKp/laq7TGSjJJI7aWgT6PZPUNLTduwEIrfiKoS+9xKeXXoq6bl3R3zsTdnXrjX/VHD567z2kcV2EqjIlESfq8vDZJx9bPoYj3R7socb0M90SIcOy/vSLL0ht2GDpOJrq4mxN6t6fbQsXsqnFeL7YlmRKMs6epkaWFDhBh0KhjJ+tI4wZNYrK7dvZH4rz2rsfUu5SiO7Tr8ecBQtKI+wFhNEM7AfBXTRtWsYcoz7ZuFiEkOSAPluhsEWjnACEdu5q936NO/XCW5988QVqCRZAY5JJHPv20ccnmL1sI0fa9YZZA1esYDDw0aJFSEdzOeemSJzafbv4IhjkCIcDkUwi7XaWBYM0FvPaSSlz/gC/QLekNwO7gQjwD2At0MfYpw+w1vh7BjCjxfHvApONfda02P5N4M8t9zH+tgP70Uk+vY/x2p+Bb+Ya77Bhw6SJhpVrpQT50R0PykxYfMw0ubnnwIyvFROapsnP+4+SW8cek/H1Pz38opQg5WuvWT4WuXix/l6vvy6lqsrG7r3ke0MnSU3T5DV/XSD/53cfWz8GAw+9u0a+M3SS1EaPbrU9nlTl8l6HyU3HTCnJOL5/59P6NXn55fZjvO33+muffJLeNnv2bMvGkvz5z6UE+e6t97faPuvib+vjSKUse++2+OUld+rvuWZN88baWilBPnD6t0oyhtqBg+Wbw4+XkXj7z/3P841rEolYPo47X10ux/3sPSl795byuutavfbEJxtlXLHL6K0/Kvi8B3wv3XWX1BRFDr/lZTl7zR4ppZRvnnaJjDlcB3a+A8QT766QEmT4rrtbbU8odvnphddlPqjY0DSpCiH/Nu0yuWhzbauXZl54Y2mfm298Q8rhw+UtLyyVR/98ltQ0Td8+Y4aUDke73Yfc+W/54MzV+j9z50p5//367wMAsEhm4cUO/ZFSyhlSyv5Symp0kd2HUsrLgDcAUwV/JfC68fcbwMWGkn4QuuhugdTd+01CiElG/P2KNseY57rQeA9pLABOE0JUGCK804xtecEsuGE2WGgLeyRC3G39Kk8IQdTjw5YlbS0dWyuFCM5UdjY2wvz5BPbv4a3hxxGKpwgnUtYrqVugIZpkd6AbqW3bW22PJFJ4k/HSdJwCRLkRg37uufaxsSwuN6tgN8r77ou37oughMPE7c6SWWoAkQHV+h8trWXjXk2VSGilBYIE42HqIu09OyXrGIculIwkUtCjR3vVfSSGU0uVJJ8/jfHjEZrGyL2bWLXLqP4WjZQspc3EYVU92R7sSWTZivQ2GY/j0FIl67S4eGs9IacXtb6BS5+Y36oinRIp8XMTCEBTE2P7l7GvKc6eRqOGS4bOdUlVI6nK5hDY5MkwY0b+zdIKQGcCjw8Apwoh1gGnGv8jpVwJvAisAt4BviOlNIPTN6EL+tYDG4CZxvYngW5CiPXALRgKfillLXAvsND4+ZmxLS+YqnsydRNCjzWWShka8/hwZnDbA9B0kIj+xRdRnS4+GDKRhmjSSPUoTfuDxVvqeG7BVvb4u+FoqOeLNc0hi3BCxVOqjlNAdZ3x3v/6V7vCH+k+46XqCDZkCCnFhmfd2lab7ZEw0RJP4qlBg/U/1q9v3mjEy5Pe0kziMqg3LKkNtyd6WyxK3Om2vNYCgMdhI5bUkD17thPjJczmOqWI0Zs4Sq9tcHzTVlbu1IneHomULKXNxPDeAdZ3G4CyZk16W6ze0JqUaOEzf2MNTU4vgXiEZKp1RTolGiFWgtLEaRhEP6a/zj3Lt9fr2zN1rjOa8HhKYFwVRPRSyjlSyq8bf9dIKadJKYcav2tb7HeflPIwKeVwKeXMFtsXSSlHG6/dbFjtSCljUsrpUsohUspjpJQbWxzzlLF9iJTyrwV9OqeTuN2RucQq4IxGSFjc4tJEwuvHmaXinAgZ4ysl0dfXw8svs//4qYRcXuojScIJFZ+rNCvf+RtrUDXJrkB3AFYtbM7cDMdTeEtI9MO3rMa4EdsJYZRIaS16HA5q+lRRsXVjq816AZLSTuLufr0JOz3IlkRvWPRaiZ4bvVVtlPpIe8GmEouQdJWm7Kz5XKQqu7ez6M3CPSUrmAMwYAB0787E2s2sNojeEYuSLCWpAb2Dbrb2Goh/y8Z0bY6okeZWKqKfNLgbIbcXfyKC3aa0EgXaI2ESpVwg+/0QCjGydwCbIlhhKu/D4Yw59EBJjKtDujIeQNTlzVrpzR0Lo5Zowkr6A7himYleyZJ6YQncbj095913YccOmr5+LkDaovc4SmPRTxrcDadNYXdAfygnOJrTHsPxFJ5kDKUU1wPYc9RkpKn7bFPH3BYtsUUPhAYPYeCeLbqr2IAjGiFe4km8R9DNlvLeqOtbuO6NRbNaou/GVlFOIB7mhYVbWzcJAeyxGKkSEb05GSe7dctO9KVSmYPuxRg/nmE71rGpRq+i6IhHUEvkoWwehiAyeBjORAy2bgWau+iV6vkdX1VBz4CbEXs38Ys+oVbpoPZYtLREHwiAlLiTcYb1CjQr7zO47s3nuxTh0kOe6GNuL/a2ddQNuONR1BLFkVSfD1cinjGVLG01lujBIBiEjz8Glwv59bMAnejDiVTJLPrxVRU8e/0kQpV6VuZwtTkHNhKJ41JT2AKlIdfGI49mSd9hyL5927UftZtx4BISvTp8BFV1O9m2uznk5IiV3i3b3e9iS3kftAyue61E92qDw4M/EeGt5bvaxV8d8RipEi1+zMk4Xt4NGhr0JlAGUuGDYNEDHHUU3baux5lMsGZ3E85YrHQpbS2gjNQL5chVqwBIGAWO7KVKaZs3j/LN66iq381Zt17RKvTmjEZKFp4FmheBs2cztl8ZK3Y06ELy/ybX/X8j4h5/upZ7W3jj0ZJNWKrfuOkzhBHsB4PoAU4/nWAv3aKujySJxNWS3HQmxldV0G/0EP2f7c2CvGi641RproffbWdNz0HIeKKdEMYejaDa7dAiJcZquMaMwi419i/5snlbLEKixNZaj4CLLeW9sW/Z0txNMF2UpTTfzS6cBBJRhKa2ir/qrWGjJWkNC80WfbRc79jG/v3p11Qzf73UJDt+PEoqxfB9m1m2rR5vIlqykEpLBMeNBSC0VBfkxetLW6GPOXMQUvfJKcnWrZWd8SipUi2Q582DRx7R/54+nZPq1lMbTrCjPprZdZ80XfddRN9pJLw+nJH2RK8mU3hS8ZKRqwy0EMG1gT0aQbXZ0xWvLIepQB03jjKPTmA1oTgJVcNXIjGeiarqXjS6fKgtiD5hdpwqVe91t4MdwZ4oNfubVfboqaeOeJRkiS3pyvFHABBd3pLoo6RKVGnMRHe/i60VfVAScTDrO5gL1RJZa30H9gL0qoEOe3P8NZpU8aTiaCW26MMm0bcQ5GkH0aIHOKZ2Ews31+JJxpAHwaKvGl5FjSdIaKl+v6YaS9cxDtBDbXZ93kopNuSUKemX9MI9JXpu5sxpLrqVSHDEhqUArNjekNF13xyj7yL6TiPl8+OKRdptjxhlcYW/NDejCGYnekc0QsLtKYl6mHnzmtOlfvlL3IsW4LIr7GzQy62WMr0OYETvALv93Yhu3JLelmgwm5WU5rsJuO3sCPbQ/9nWXAkuntLwJErnHk6PZ9wYNARidbNAsaSVxgzoFn0f/R/TfW9W7wuUxlobUK2/f081xrPXTkzHXyMJFXcygSwRuZohrVDAiP+2iNOnK/SVmuirq6GigmMbtrJwc50hYC1hip+BYb38rO82ALFGv1+ThkfOWV4ii37yZHj8cQD+OPFCdo0cl37JHY+ileq5mToVjKJaAN2+dhoOm2D5jobcrvsS6KIOeaJXfX480fYiuJhRFleUoPMVNLfMzUT0zmiYRKmstQylFsu9DnY16JNVqdLrTAzrFWB3oBvJrc0WfdKoe1AqiyDgtrPTJHpDUARGZ6lkrOQCJ7xe9lb2wrfhq/QmT6KElomBCq+TbRW99X/MxWEohCYE9hLpJ8wwky3cRN+KZiKNJAyPXIkmcXMybsxA9FrkILnuhYCjjuLwnevYH4rjTcSgVN9LC3Tzu9jRu5rAZv0e0YzFoLtUrnuAyy5Dc3soj4XSSvdESsObjKGVSl9jlic+9VS9AVV1FSN6B5st+naue93674rRFwEhlxdvPMKiza3T782OdrZgaW5Gm5HT37bUq5QSVzxasgIkTJ2qK+9ttrTCvMzjYGe9TvSlEuOZOKyHnz3B7th370xvS5mNKEpk0QfdDnYGjVYNLYg+ktTz+Q+GwKlmwGF039acYudJRNFKbK3ZFEGiT39Sdnsz0Tc1EXG49UYcpYDxfAbiEb7c0UKwmVD1HvAl+m7M56LBX65vaOG6TxfuKbVFDzB+PL22rMOhJvGWMFOlLcKDD8PXVA/79qEaz6+7ooREb7fD+KM4ctdXOrGiL9Q9iVjJCm8BOtk/+qj+9/PPM6Z/Gcu31+tF0bJY9F2u+05i8ZY6VjZJfIkolz3xeSvFbqLWqCZVIqK3m721n/l7K1VoPKXhTURJlagASXrVee+9aYV5ucfJrnrddW95o5I2cDtsxHr2xlezLx3fMjtOKSWL0dvZ469EEwo7VzQXqtEt+jjyIAicwocNpf++bajJFMlEsqSVAluioszL/m590kQvGxsJOT24S3WfGM9NIBFh5c7mLIRIQsWTjJekRS00W10NLp9OKi0s+jTRH4QFoS7ISzJm93rsUsN2kIheHD4SAG3lqrRg01NRotawBpRJkxi9dyOrtuhCyUhCX/yU6h5J47DD4Jhj4J//ZGy/MkKROCIezxqj77LoO4n5G2vwR0P4kjHGbF7RqmJSvF6fNBwliiP12K1bis5XXm5VfS2aUPEmSuhegnalFsu8DpriOsm27IFeKtgHDECRGuzZA4AWKm2Rmo37QqRsdnb7K1kwe0l6QWi67g8G0cvDD8edSrD3y7XEGkpYUKkNegRc7KjsmyZ6tSlE2OkpnZbDWIgPcaltLHrdda+UqBqdKVKNJLVWZXATKQ17wmgnfDAsekOQN3mHntpWsi5tbRAYNwaA+i+WI5tCxG12PL4SX4+JE3GmEiS+WIKUkkhjBLvUSqbDaoVLLoElSxgf24M3aaRitnl+0xZ9CRbNhzTRT6vbwPkrPwTg7y/8mGl1zYU/Uoay21miOFLPDXqJSNGm+lo0qeIrZRwpA0zlPZRejAfgG6x3wIpt1gV5pe6r/aVRWWxHsCe9G/amF4SRRMooxVt6S807djQA9QuXpRelB4Pou/udbCrrrRO9lGgNjYSdntKlYRoW/VlrPkHMb/aEmRa94i+RRW9MxuGEqhO94bqPGqJAfaeDQPSHHQZlZRy/WxfC7ddKv1AH6D92OBGHi9CSFSjhEFGHG1sJW14DMHEiAIM3fMnOhhhxY4FcqnukFb7xDVAUBs96k3LNIPoMrnunTcFegvbkhzTRj1j7BXap5/86tBQj1n6Rfi1piOJclaVxL0WmnoyG0WO3RfW1SELFm4geFLesifJWRF/6iaLbCL2m+u6VxkKsxGVnjz2sO4qAncEe9G3cl07h0mP0ccRBINjKCXqKXWzFlyTqTKV76S2THgEXX/l76kViamvRjBh9yVz3RubB2MUf8cgTt9HwwUcARKJxXGoSe4kWYYoi8DhsROKtG9uETFEgHByiF4Kmw8cwaqOew/7XZfvaVRAsBYb1CbKhsj9y7RpEOEysxH0ZABgwgGSPXkacvj69QD4oXo4+feCkk7A9/0+GePUFz6Zo612iiVTJFsyHNNEzdSrCyE2XQmlV2lQzVnulEoxokyaxtM9wEj16tqq+Fk3oFj0Hw71koNx7cC36/kbRnNp1RjPrEneMG19VwTlH9mNXWQ/6h2sYP0Bf/MVMq/EgWPS9q/qyz1eObe3adF0BpUQZIi3Rw+9iY9BQ3q9fD6EQIaendFqOBQsA3RPmUFPUvj0LaG4kYy+hteZz2YgkVejZM030kXgKdyqOZnekc7lLjfUDhhOM69ejye5qFaIsFQJuB7t6VxPYtA5bNHJwiF4IlEkTGbdzLSt2NJAwsnfsB+G5AeCb34T16+mzTL+Hfz13e6tFWDSplmy+PbSJfvJkmDWLlM3O7JHHtap6Js0UkMqKbEcXFX6XnYUDRqHU17O455D09mhSt+gPhtVo4mC77vsPHUjCZie6SdcxKKXuGAd8bUwftgd66JW1DK1AxIjRHwyBk00RbO9djX/TOpIG0dsPkkW/ucLIpd+wAdHURNjpLR3Rn3QSKAoSSNrsfDFY93QkGvXwTilbw3qcLSx6w3UfiqfwJONoJWiVmw1lx09M/510e1o1dSklQoOHULl/N766/cRLXGTKhG3yJAbV7WTDmq2kDGOuZBX62uL881HtDi5a+g4ATUrrRVgkUbpKpIc20QOccAL7Rh5JZc0eakLN9alNoveVyKLftD/Muu4DcSQT3PXQa+mVXSSexJeIlSyfPxPKvM0V+Q6GGM9mU6gt75Eug6tEI6hm+l+JMG5geXMu/RZdK6DH6OMlK8XbFjUDD6PX9o1pPUmpMkRaorvfxbYyvTodGzYgwiHCTnfpFoSTJ8M55yBcLn54/a/5sOIwoLmRjLOE343PadcFVD176vUw4nEiCRVXKoF2MNz2BgaffmL67zsuPLpVU5eS4vDDAei/eW3J+zKkccwxANgWLUzX43AehAUyABUVNJ10Kkfu0uthRJ3uVoswvS14F9EXDdrRRzNq70ZWb21eTYlQiIjDhd1Zmhrmq3Y2sra7Ljqr3r05vbJLNIVQkNgO1s1Ic4xeEeCyH5xbItKjN669uwG9JHBJO06hF/2gSv9+zFx687uxHySijw0Zhi8WxrZBr0pXspKiLdAj4CLucBHtqQvylLCuuneX0vNzyikQj1M+/DBWGsVQUoZgs5RCK01K1u5uYotikNi+fYTjKdypxMGJz5sYOjQt1Dx8SJ+DNgxTee+JR0peTTKNCROQQjBk0yr27dZrp5SsQl8GlF97RfrvoYN7t1qERRJqyTxj/yeIvnzKcbhTCXbNXZTeJkIhos7S3YwnDOvBhm4DADi8Zmt6ZWeWiyxZp6cMMF33XqcdUYoyvBkg+/alsn4fteEE9mik5PXlAfqMGaaPxbDo1UbdajwYBAugjNQtJMcXiw/aOLr79ZKe9X0Gwrp12CMRXXVfynoLo/UMhGOju9hcE6Exlix5I5nFW+pYvzfEltoIv/rCKL61bx9hw+tzUHLoTSiKrr4HWLs2974Wou/4MaSETinJEvdlSCMYJD5kOEfuWsuWLXp4xV1+8OZWzjpLL1AGiK++avVSJKmWrPDU/wmi951wLADq/M/T22yRMNESksn4qgpOHFfN1vLeXBpoSq/sTKJ3HKw4Es1ivIMRnzfhrB5In6Ya1u5qxBGPoR6EmOfIwwfQ6PTStE6vSJcKmek5B8ei9x2hW0iBFUsAcB2Ee6Tc48CuCPb17A8rdGV32FFioh81CoCRtXofgtU7G0mZtRZKRLDzN9agGZWj97qN72HfPsJxFXcqjjiYFv28ebBypf73pZe2KshVShzWv5Kthp5DPYhZRI5jJ3HErnXU7NEXZAfjuUlj2bJ0a/Ifv/Qge9+dnX4pmkiVJIce/o8QPYMG0eQvI7BiaXqTLRwi7irtKvxrY/uwtnsVvq+aV91mXeiDZTUClHv0WPjBJPryIdV4UnHWrt2K+2DUl0dfjO0M9iBkEL1ZyrOUosCW6D1iMI0uH9136h4GZylLihpQFEE3v5Md3fqkG9qEXSUsmAPQrRv06UO/7XoI48udjcgSW/STBndLh7VqvEZK7t69aR2HcjAt+jlzmtsIt2nTWkq4HTZ29qkGOCjtck3YJk+iMtrIsL16Fo9yEL2lLXuL2NUU+956L/1S5D8pRi+EcAshFgghlgkhVgohfmpsrxRCzBJCrDN+V7Q4ZoYQYr0QYq0Q4vQW28cLIVYYrz0iDD+xEMIlhHjB2P65EKK6xTFXGu+xTghx5QF9SiGoOXwsh21aRdioAOeIRoiXmEwmDq7kq+4DcW5crxfNAVKmYOQgrjoD/7+9ew+OszoPP/59tJJWMpIlWZZtWbYuDr7LGNvY2CElCo6BhPwGmoYWeolJaMmkdCZtEjoJnZQMLmlS0qbttM2vDCEhGSCXAr+QTAI/F6xCwFwMAd+EL9iWkfFdsi1Z15We/nHOymtZtmVh7Xm1ej4zmt09776vzsqv93nP5X1OXjYiYe6hTyrwSXP2btzhFpIJ8EUxc1Ihh4onQaMbo+9Lc+KegSpLL2Fn6TQAEpJFfkGYYFJWGGdP0ZT+123pHqMHqK0lf1sDkwrjbpw+zQvJLKkq4dE/W86KD5RyON8H+sOHaevqJS/RTVbAFmz/qmkp61eE0lrj7ijSgHcRJRPnfLDxLfc6Av82GovRE8vh+Yr5/Zs6Ijbrvgu4RlUXApcD14vIcuArwLOqOhN41r9GROYBtwDzgeuB/xCR5Kf5LnAHMNP/XO/LbwdaVPVS4DvAt/yxJgD3AFcCy4B7Ui8oLkTvFUuZeWQv23ftB9yKcT1pDvSTCvNomTGLrN4E+PGaZF73WMBAn5UljMuJcbyjO0iyDQCZ7uYvHHl7F+O6u4Ksqx3LErqnTafgoFtgR9Ocineg/NwYTVOqAWjPzScv0IVYWUGcbYWT+1+3p7vrHmDBAti6lQXlBWx57wTant6ue3DB/vu3LaVkahmJrBiJgwdp70qQ39uNjAvYdT/I+hXBzPEz73dsDjaEQG0tibx8Zh/ZSyIrvXfvnMH/28iaNdx/17/zZHx6/6ZI3Uevjm/akON/FLgReNiXPwzc5J/fCPxYVbtUdTewE1gmIuXAeFVdr6oK/HDAPslj/Rew0rf2rwPWqmqzqrYAazl1cXBBiq/+IDHt42C9O/nine3pW0gmReFidx9w30Y33ilt4fKYJ73e2EJ7dy/7jnXyRw++HCbYV1QAkHfogE87Gya4xmfUML79BG1HjyFpTtwzmGNVbpJVe24eOWlIlTmYiQVxtuSV9b/uzMtPf11qa6Gzkw/KcXYcaiXRmv5AD657+t6bFnB0XBHbNr7Dye4E4xLdYSfjwRnrV4RSXuAuRitff5G+a1aGCfbZ2XRddjkAnbn5bjnfkPy/TemqD7P9YBstJ7tRVTqiNhlPRGIi8iZwCBd4XwEmq+p+AP/o1/mkAng3ZfcmX1bhnw8sP20fVU0Ax4HScxzrgk2ouwqAhJ+Ql9fZTiLNy34CVF+1iIRkcfRVl463P697wECfmsShJ9EXJLMW5W4ST3nrkTArTnkT57mux+2vbU17hr7BdM+cDZDWO0QGKiuMs7s3Fy1xnWmJEOOvfub9ohP76FNoa/EL3ASYBPfhWWX0TJjI/p1NNOxvJS/RFfb2ugiJH9xPH5CF0tfVxb4nfx2mHh9yFzztuXnBeikHusJPwH69sYXOnj5U0zcvakiXE6raC1wuIsXAkyJSe463D3b5pOcoH+4+p36hyB24IQHKysqoP8tklHnFZeT/dgP19fUs6WqnVfWs7x0piY4+9pRMpeuFl9hSX0/bfnfv+ItvvUVPylro6RQ/1ktOFiT6ICYQP9ZIfX3T+Xe8yJYVlzC57Sj5PV0c6eykIcCkotwsN3fitWfq6Wp2s3bXb9xIV8r6421tbWk7bw4Uu/Hg9ty8tJ+rSccO9JDoU46XTaK4pYXO3Hja65LV0cHVQHzDC1DxKXdLG/D8hg30BeianVdaQOmhY7z57jHi3Z1see8Ih4fxN0nnuZQOG4unUZ2dS05vgp5YNk9kT2BBgM+XyCrgo7iUwLf+50v89dI8Li0JN9kYoLtXyRZ4/IW3aG9ydzo17dlFvb57nj3fvwvqN1DVYyJSj+s+Pygi5aq633fLJ78Jm4DpKbtNA97z5dMGKU/dp0lEsoEioNmX1w3Yp36Qej0APAAwe/ZsrTvLZJSG+YuYtWUjUz70O2R1dzJuyhQ+GGDiyrqpNczb18j8ujqOfPdxAK667rpg3X91wKLFLby86yjLZ5QGy6zVW13NlBNHGdfTyaTqauaGmFQ0YwZ88QvktrRxiV8QacVHPwoTJ/a/pb6+nrOdYxdbS0EjXV/LpqSzjfnxeJCu2da33uPRt39LzuQpsH0bc08epq7uc2mvBzNmMK+7naL8HPJ6ulARrl61KkzX7JzZZO//DQDxnm5eOpbD4pqFF/x/J53nUjoU1izkM/v7WLL7LV6vWchdn1sd5Pvk4YMx4F4u6e7gsqYGulbdRF3dpefdb6Qt3P4SB3uVRVcsgufWcdn8OdRdMf38O75PQ5l1X+Zb8ohIPvBR4G3gKSA5C3418HP//CngFj+TvgY36e5V373fKiLL/fj7pwfskzzWp4Dn/Dj+M8C1IlLiJ+Fd68uGpW/pUqYfO8CODVuJaV+w7vLuOfMoO/Qu2t5O1smT9IkE7/pbUlXCnR+5NFz6TCBWOZ3Kdteij40P1F0+dSq9WTF6du1BOtKfc3+guXvfJruvlyktB2BlmDHPiQVxFu9rIH/9iwB8/dE1YcZea2uRzZuprRhPfqKLnnjA8ddJk7iktQXRPuK9PbRn5YQZ8oqYJVUl3PX1zzDunq9x19c/E+z75MqcdhSY3NbMjx77m9OWKA9pafUENu07Tku76zmMzGQ8oBxYJyIbgddwY/S/BL4JrBKRHcAq/xpV3QL8FNgKPA3c6bv+AT4PPIiboPcOkBzA+R5QKiI7gS/iZ/CrajOwxv/e14B7fdmwFF/txukPPeUWGQix7CdA4ZKFZKmy98XXibW30xXyCytKKiqY1ryfLJQjfelJTXyG7Gw6J02htPkAPSfa3EVYwAVLpm98FUXcf9Tu7iD3SJcVxlm+d1P/vdqx3kSYe7Vra2HbNhaW5ZPf00Ui4L8LZWXET7YxqdetPdoTzwu2mEzURKHRMGfbGyCCAHnae9oS5SEtrS6hp1dZ/467KIzMGL2qbgQWDVJ+FFh5ln3uA+4bpHwDcMb4vqp2Ajef5VgPAQ+dr55DMeWaq+hDyH3erWmdFSjQV33YLbzw7m82kNNxkq68cdhUHth3yQQqujsB+PGWo3yssSXIl0VWVSUV7x2meVwRPXn5xANehI27diWd9/0d9CbIysklK0A3b1lBnJcrF9CXk0tfTze9sRyyQ3Q3L1gAvb0s7TrE0UQ37bE4DYHOEcrcXQjfX1kO/wi/f/VsKgMGNjNAXR2Slwfd3W6p8ogMj1xRNQGA/9nuljnOz0nPrPtwGVICiBWNZ++UKmZscjPvs4uKgtRj6pIF9MSy6XjjLXI628Ot9BQxDbHx/bdUtMZyeXnX0SBf4nkzapi2/Tne6ZlGIp5PPO01OOWNirncd+t9LG/cxBszFnLX1DksSXMdxudns7lyPo9+4yH61tXz3sJl3B3iNi4/875413ZO9nTRQjZ/9ODLPPKny9N/nkxyNxnN63EzuisrrDUfKcncAvX1LsgHvu0wqWhcDrMnF7JhjztvItOizzRH5i1k8XNuakAsUNpZyc3l8NRq8na8jSJpT9wTVZULZvY/D7mutlRVMuXEES7p7giSijfVy7uO8mbFXN6YOpeYEOTiR0SYWJDLW9Pm8du6cuaWB0ruNGsWZGfTt2kz4xJddOTE+28HTXugLzt9SePg99GbM61YEZkAn2ppTQnbDrr8KVEao88ofVcs7X+eWxymRQ/QPXceNft3k93RHua+5AiatXhO//M/v+HCZzBfNFVVZPcmqGo5wIms3KD34S6fUUpudhYxgZzsrGAXP2WFcQ63dbm0nenOipeUmwuzZ/OBQ3sYl+iiMzse7m/iW/T9gd7uozdDtLR6Qv/zKKXAzSjJCXkAuQGXLyxcfDnTThxiUltzkLzukTTt1N2Xl9ZMPscbR1hlpavD0b0c7ssOly0QN7HpkT9dzhevnR2mi9qbWBDnSGtXWtN2Dqq2luJ3tlFbksPk8gnh/iYDW/QW6M0QnRbobfW6kTH9I1fSHXMjFnklxcHqMeFKN7/x0uamoCs9RUphofuBsAtR+EBf2N1Be248XLZALwqzmCPRogc3Tr97NwXHm6maNjHc36SoCHJyIJnkyrruzRBNLc5nYoFL8rTtQGtafueYC/Txcfk0lbopX4c3vBmsHlJ76uaDvpBBLWp8zvsoBHqAjpy8oF3mUTGxIM7Rti66En3khQ70ALt3hw2uIq5Vby16c4Feb2yh+aS7j/6zD7+Wlt7CMRfo337iGSoPu5SDc+78DG8/Mez8O+9PTQ2JuLsPuKknFpl8zMElu+9DBvrx46G4GIDK6WVBu8yjoqwwTp9PPp2uccVBLVhw6nno4FpWBgcPuufWojdDFGJtkTEX6Ft+vZZkuvyc3oR/HUAsRtuMWQA0tPYFHQeOlByfKGfr1rD18K36WTOmjPkgD65FnxR0jL6m5lSADx1ckxPyIPxFhxk1QkywHXOBvuRjq+iJ5ZCQLHpi2ZR8bFWwuhyY7pYgPZmbH3wcOBLWr4e1/sLr5pvDrWcNp7rvbVgFcC36pKBd91lZMH++ex460JedWrrXAr0ZqhATbMdcoJ/zyeto/MlTvHb7X9H4k6eY88nrgtWlYIlbm37JvgaWHtg25seBqa/vT7MaKt1rPwv0p0lOHoL0zRQ+q+Q4fZQCfei6mFEl3RNsx1zCHHDBnoABPmlaqVtU5yO7NvCRfZvJumMFVEUvwUPa1NVBPO6CfOi0lRboT5Paoo9MoF+/3v2ESopiXfdmlBhzLfpIOXYMgCxVsnoCt2CjIJm2cs0a9xgyq1VVlXtMBpMxriCeTTzbfV0EHaMH130P8PTTwVb0A0616GOxU3NLjIkgC/QhffzjriUQi4VvwUbFihXw1a+GT1154oR7/NWvwgaTiBCR/lZ9XuhAf9TPZVENO8STDPT5tvqkiTYL9CFFqQVrTrdvn3sMHUwiJDnzPnjX/Q03ROMCOdl1b932JuLG5Bh9pER04YUx7/rr4f77ozFfICKSLfrggT4qK5MlW/Q2Ec9EnAV6YwYTlWASJT5hzs5DbVRPDDxJMQoXyNaiN6OEdd0bczZRmS8QAa83trBu2yEA7nz0DUvuBC6DYk6OBXoTeecN9CIyXUTWiUiDiGwRkS/48gkislZEdvjHkpR9vioiO0Vkm4hcl1K+REQ2+W3/KuJmsIhIXER+4stfEZHqlH1W+9+xQ0RWX9RPb4wZkpd3HaVPXZM+0WvJnQA3Aa+oCJqbx/xkTRNtQ2nRJ4AvqepcYDlwp4jMA74CPKuqM4Fn/Wv8tluA+cD1wH+ISHJQ77vAHcBM/3O9L78daFHVS4HvAN/yx5oA3ANcCSwD7km9oDDGpEeItJ2Rt369uwOgsdHuzDCRdt5Ar6r7VfUN/7wVaAAqgBuBh/3bHgZu8s9vBH6sql2quhvYCSwTkXJgvKquV1UFfjhgn+Sx/gtY6Vv71wFrVbVZVVuAtZy6ODDGpEmItJ2RV19/6rY6uzPDRNgFTcbzXeqLgFeAyaq6H9zFgIgk00RVAC+n7Nbky3r884HlyX3e9cdKiMhxoDS1fJB9jDFptKSqxAJ8qihlcjTmHIYc6EWkAHgc+EtVPSFnTxAx2AY9R/lw90mt2x24IQHKysqotytrM4La2trsHDMAjL//forffJNjl1/Oia6uC27V27lk0mFIgV5EcnBB/hFVfcIXHxSRct+aLwcO+fImYHrK7tOA93z5tEHKU/dpEpFsoAho9uV1A/apH1g/VX0AeABg9uzZWmdX1mYE1dfXY+eYAd53K97OJZMOQ5l1L8D3gAZV/aeUTU8ByVnwq4Gfp5Tf4mfS1+Am3b3qu/lbRWS5P+anB+yTPNangOf8OP4zwLUiUuIn4V3ry4wxxhgzBENp0V8F/AmwSUTe9GV3A98EfioitwN7gZsBVHWLiPwU2IqbsX+nqvb6/T4P/ADIB37tf8BdSPxIRHbiWvK3+GM1i8ga4DX/vntVtXl4H9UYY4wZe84b6FX1Nww+Vg6w8iz73AfcN0j5BqB2kPJO/IXCINseAh46Xz2NMcYYcyZRPWNu26gmIq3AtmHuXgQcv4jVeT+iUherx5kmAkdCV4Lo/E2iUg+ITl2GWo+RPpei8veA6NQlU+sxW1ULB9uQibnut6nqFcPZUUQeUNU7LnaFhiMqdbF6nElENgz3HLvI9YjE3yQq9YDo1GWo9Rjpcykqfw+ITl0ytR4isuFs2yzX/el+EboCKaJSF6tHdEXlbxKVekB06mL1OFNU6jLm6pGJXfeRaG2ZzGXnmLlY7FwyF8u5zqVMbNE/ELoCJuPZOWYuFjuXzMVy1nMp41r0xhhjjDklE1v0xhhjjPFGXaAXERWRH6W8zhaRwyLyy5D1MplFRH7Xn2tzQtfFjD72PWWiZNQFeuAkUCsi+f71KmDfhRzA59M35lxuBX6Dz9I4VCISG5nqmFHmfX9PGXOxjMZADy517g3++a3AY8kNIrJMRF4Skd/6x9m+/DYR+ZmI/AL4/+mvshkt/EqNVwG34wO9iNSJyPMi8qSIbBWR/ysiWX5bm4jcKyKvACvC1dxEzHC+p14QkctT3veiiFyWzkqbzDNaA/2PcQvn5AGXAa+kbHsbuFpVFwF/C3wjZdsKYLWqXpO2mprR6CbgaVXdDjSLyGJfvgz4ErAA+ADwSV9+CbBZVa/0KaONgeF9Tz0I3AYgIrOAuKpuTFuNTUYalYHen/jVuKvkXw3YXAT8TEQ2A98B5qdsW2uL4pghuBX3JY1/vNU/f1VVd/lFmh4DPuTLe3HLOBvTb5jfUz8DPuGXBv8sbhEwY96X0TxW/RTwbdx69aUp5WuAdar6uyJSzenr159MV+XM6CQipcA1uPFVBWKA4r6oB96LmnzdmbJCozGpLuh7SlXbRWQtcCPw+4Al0zHv22gO9A8Bx1V1k4jUpZQXcWrSy21prpMZ/T4F/FBVP5csEJH/wbXel4lIDdAI/AGW7MSc33C+px7EpUd9wXogzcUwKrvuAVS1SVX/ZZBN/wD8vYi8iGuNGXMhbgWeHFD2OPCHwHrgm8BmYPcg7zPmNMP5nlLV14ETwPfTUEUzBlhmPGOGwLfGvqyqnwhcFZPhRGQqrit/jqr2Ba6OyQCjtkVvjDGZRkQ+jZud/zcW5M3FYi16Y4wxJoNZi94YY4zJYJEP9CIyXUTWiUiDiGwRkS/48gkislZEdvjHEl9e6t/fJiL/NuBYfyAiG/1x/iHE5zHGGGPSKfKBHkgAX1LVucBy4E4RmQd8BXhWVWcCz/rXAJ3A14Avpx7E3x99P7BSVecDk0VkZZo+gzHGGBNE5AO9qu5X1Tf881agAajAJZR42L/tYVzaUlT1pE9D2jngUDOA7ap62L/+b+D3Rrb2xhhjTFiRD/SpfAapRbhZqZNVdT+4iwFg0nl23wnMEZFqv3rdTcD0kautMcYYE96oCfR+RbHHgb9U1RMXur+qtgCfB34CvADswQ0LGGOMMRlrVAR6v8DD48AjqvqELz4oIuV+ezlw6HzHUdVf+BXGVgDbgB0jVWdjjDEmCiIf6EVEgO8BDar6TymbngJW++ergZ8P4ViT/GMJ8Oe4nNLGGGNMxop8whwR+RCuq30TkMwUdTdunP6nQCWwF7g5uQCEiOwBxgO5wDHgWlXdKiKPAQv9Me5V1eRSpMYYY0xGinygN8YYY8zwRb7r3hhjjDHDZ4HeGGOMyWAW6I0xxpgMZoHeGGOMyWAW6I0xxpgMZoHeGDMkIvJLEflB6HoYYy6MBXpjzEUnInUioiIyMXRdjBnrLNAbY4wxGcwCvTHmDCIyTkR+ICJtInJQRO4esP2PReQ1EWkVkUMi8jMRqfDbqoF1/q2Hfcv+B36biMhfi8g7ItIhIptE5I/T+dmMGWss0BtjBvNtYBXwe8BK3PLQV6dszwXuwaWU/gQwEXjMb3vX7wcwHygHvuBf/x1wO3AnMA/4e+A/ReSGkfogxox1lgLXGHMavyT0UeCzqvpISlkT8P9U9bZB9pkDNADTVbVJROpwrfoyVT3i33MJcAS39sQLKfv+MzBLVT8+gh/LmDErO3QFjDGR8wFci319skBV20RkU/K1iCzGtegvByYA4jdV4i4IBjMPyAOeFpHUFkYOsOci1d0YM4AFemPMQHLOja5l/gzw38CfAIdwXfcv4C4QziY5VPh/cCtOpuoZVk2NMedlgd4YM9BOXOBdDuyC/uBeC7wDzMEF9rtVdbff/skBx+j2j7GUsq1AF1Clqs+NWO2NMaexQG+MOY3vpv8e8C0ROQy8B/wtp4L2XlzA/gsR+XdgLrBmwGEaAQVuEJFfAB2q2ioi3wa+LSICPA8U4C4o+lT1gZH+bMaMRTbr3hgzmC/jJtM96R834wIzqnoYWA3chGul3wN8MXVnVd3ny+8DDgL/5jd9Dfi6P/4WYC1uhv7uEfwsxoxpNuveGGOMyWDWojfGGGMymAV6Y4wxJoNZoDfGGGMymAV6Y4wxJoNZoDfGGGMymAV6Y4wxJoNZoDfGGGMymAV6Y4wxJoNZoDfGGGMy2P8CZULMhM1p3BkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# extra code – displays the SARIMA forecasts\n", + "fig, ax = plt.subplots(figsize=(8, 3))\n", + "rail_series.loc[time_period].plot(label=\"True\", ax=ax, marker=\".\", grid=True)\n", + "ax.plot(y_preds, color=\"r\", marker=\".\", label=\"SARIMA Forecasts\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NMYra1CfnU0E", + "outputId": "97077c37-fa36-4132-9624-09c978fd7838" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAFACAYAAAABGrWZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/aUlEQVR4nO3dfZxcdX33//dnJyzZJMQNYFZyI1CJEWI1QEoulOpSij/A9gLUtnD1R1Gxqb9LuKzW/uSy/XnXq5Z6c7WKN5QWflIuhUsrClUsYmRLrYDcRSDEhYhAQmgCgSXZ7Cabnflcf5wzyczszOyZnTN7bub1fDzmsTtnzjnz/Z5z5nzmM9/v+R5zdwEAAAAA8qEn6QIAAAAAAOJDkgcAAAAAOUKSBwAAAAA5QpIHAAAAADlCkgcAAAAAOUKSBwAAAAA5QpIH5JyZDZqZm9mRba7nmHA9a+IqGwAgWWb2pJl9qIX5Y4kp3cTM3mlmozGsh22PyEjykGtmdqKZFc3s32ewbNcmNWY2ZGZfrJm8RdJRkjbMfokAoDuY2VfD2ONmtt/MnjCzz5rZ/DbX+3Eze6TOS78m6cvtrLvJe74tjMFfm+HyXZvUNEi+f6IgDu9MoEjIGJI85N0fKgherzWz45MuzEyZWW+daXPMzGarDO5edPf/cPfJ2XpPAOhSP1TwZf5XJP25pP8q6bMzXZmZHdLoNXd/zt3HZrruabxH0qclnWdmizr0HrOi3jasF5s7yd0nwjjss/m+yCaSPOSWmfVJ+i+S/l7SP0m6pOK1uq104bR3hE9/Gf69N5w+FM7TY2b/n5ltMbN9ZvawmZ1bs54lZvY1M9tpZmNmtsHMTq94/Y/MbLOZTYR//7BOOd5nZjeZ2R5Jnyr/Cht2+/iFpH2S5pvZy8zsajPbYWa7zexfm7U+mtkRZnaDmW01s3Ez22hm76p4/auS3izpfRW/Jh9Tb5uZ2ZvM7B4z22tm283sbyqDXtgi+GUz+5SZPR+W8bNmxrkHABrbF36Z3+LuX5f0NUnnSZKZ/d9mdm94vt9hZt80s6XlBStav84xs5+a2YSkP5L0MUmrKs7r7wznr2oxMrMPmtlDZrbHzJ4xs38ws/5WK2BmyySdriA5vVvS79e8PqWVrjLOmNkxku4IX3ounP7VcL5Dzexvw7iz18zuNrPTatb/GjO7xcxeMrNRM7vLzH41fK1pHK8ox4Vm9iMzG5f0Rxa0sn7XzD5sZlslbQ3nX2pmN5rZi+Hje2a2osm2eZWZ3Wxm/xFu5wfM7LcqXh+SdLSkz5T3V5Nt9raw/PvC+vyZ2cEfgMP9++dm9ndmtiuM/X867Q5E5vFFC3n2DklPuftDkq6X9AfW5NfMOk4J/56l4BfVt4XP3y/pTyV9WNKvSvq2pJvMbLUkWdCl5l8lHSPp/HCeT5ZXambnS/qipL+V9FpJn5f0ZTP77Zr3/5ikW8PlvxROO1ZB4vo7kl6vINH7nqSlkn5L0omS7pT0IzM7qkG95kp6IJx/Vfj+f2dmZ1TU7y5J/39Y76MUdNWsEn6p+L6kB8P3vUTShZL+qmbW35c0KekNki6V9MeSfq9B2QAAU41LKsevXgXx4fUKzuNHSrqhzjJ/raAV8DWSbpb0OUnDOnhe/98N3quk4Dy9SkG8OUXSlTMo87sk/cDddyqIwe9pcfktkt4e/r9KQZnfHz7/tII48m4F8edhSf9SjntmtkTSjyW5pDMlnaQgjhbC5ZvG8Qp/paA30AmSvhNOe7Ok1yn4bnCGmc1TkIzuDV87VdKzkn4YvlbPAgXx80wF+/Fb4fu/Jnz9bQoSyE/q4P6awsxOlvRNSTeF9bhc0n9XEGsrfSDcRicpOC4+bWanNigb8sLdefDI5UNBovWh8H+T9KSkt4fPj1Fw8l9Ts4xLesc08zwj6aM104Yk/a/w/z+UtFvSkQ3K9e+Srq2Z9lVJP64px5U183xc0n5JAxXTfkPSqKS+mnk3SPp/w/8Hw/XVLU84z42S/qGmPl+smadqe0j6S0mbJfVUzPNOBYnnvIr13FWzntsr34sHDx48eBx8hPHguxXPT5H0vKT/3WD+14Tn5mXh8/I5/+01831c0iN1ln+yHCsbrP+s8LzeU7P+ZjHFJD1REU8XSNoj6eSKeaasp06cqTfPfEkTkv6gYlpB0i8k/Y/w+V9KekpSb4PyTRfHy+X4kzr75jlJh1ZMe7ekxyVZTXl2Svrd8Pk7JY1Os9/vlvTnzfZL7fZQ0ML7ozr7eWvNem6omefxyvfikc8HLXnIJTM7TtIbJX1dkjw4q31Nrf+SWLvehZKWKEjUKv1YwS99UvCr4kPu/nyD1Rw/zfJl99VZdqu7b694frKkeQq6soyWHwpaCF/VoA6FsDvHQxZ0Jx1V8KvhKxuUt5HjFSRwpZp69Eo6rmLaQzXLbZO0uMX3AoBuclZ4Pt+roGfFnZIukyQzOyns6veUme3WwVhRew6vF0OmZWa/YWa3h936ditoJeqV9IoWVnOGpEWS/lmS3H1UQUtYWzE49CoFrZoH4qi7FxVsp8o4/GN3n6hdOGIcL6u3DR9x930Vz09W0Mtmd0UMfklB/RvF4flm9mkzezTs3jkqaY1mFofr1WNpWM8y4nAXmpN0AYAOeY+CX9KeruyaLklmtlxBd5QD08LprXTlrHfRc3lalMFQmi1ftqfOPLXTeiRtl/Trdebd1eC9PyTpTxR0V3lYQUvgp9T6Cd9Uvx6qmb6/zmv8wAQAjd0paZ2C8+c2d98vHbgc4DYFA7NcJGmHgu6a/6YgEatUL4Y0ZWZHK7gE4O8lfVRBa9RJCrqDtjLIyHsk9UvaUxODd5vZn3gw0MuUOKyDXVKbFjP8m6Y4vEHSBXXmfaHBe39WQQvphxS0qo1J+ke1to0l4jCaYAcjd8xsjqSLFfRLX13xeL2CX7PepaC7hVTdz311zarKvwCW+/DL3Xcp+AXstJp5T5P0aPj/A5JeZ42HfN40zfKteEDSgKSSu2+ueexosMxpkv7Z3a939w0Kuri8umaeCVXUu4FHJZ1q1YOonBYu+4tWKwIAOGAsPI8/VU7wQq9RkNR9xN3vdPefK/oPdFHO62sUJBofcPe73P0xBa1ekZnZ4QoGiblYU2PwPgXXy0szjMMKLhOYUEUcNbOCgmvhKuPwaVZn9MuIcbwVDyjovfJ8nTjcKMk7TdI/uvu3PBg3YKumtvpFjcP16rHV3Xe3Vg3kDUke8uitCoLg37v7I5UPBdeevVtBoLlb0ofNbJWZvUFTh6feoeBi9//LzAbM7GXh9M9I+lA46tarzeyTClrSPhe+/vVw2e+Y2a+b2bFm9p/t4Oian5F0kQWjZ64ws8sUDE7y6RnU9YcKumrcbGZnh+91qpl9wszqte5J0mMKLhY/LbzI+4sKuppUelLSKeEIY0da/dEwv6wg+H/ZzI43s7dKukLBtXydGo4bALrZ0wri16Vm9ivhefcvIi77pKSjw+6eR5rZoXXmeVzBd8M/DuPJhQoGYWnFRQquS/9anRh8kw522dysYHCVj4ex9C0KBoqp9JSCVqe3mtnLzWyBu++R9BVJV1gwgujx4fMBHbzf35cVXAf4DTP7NTM7LozZq8PXp4vjrfiagh41N5vZm8Pt9iYz+5w1HmHzMUnnh/viVyX9LwWDolV6UtKvWzByZ6MfjT8n6c0WjL79ajP7fQU9dWbyfQI5Q5KHPLpE0h0ejOhV65sKhiX+TQXJniTdK+nvVBNcPLgf3H9TEJC2KRidTJK+oCBAfFrSIwpG0Hx72CqmMAC9WcGF3f8saaOkTyjsOuHu31FwbcUHFPwK935J/9Xd/7nViobXGp4j6UcKutcMS/qGpJVhmev5H5J+qmBkrzsVdD2pvVHtZxX8iviogl9bp1wn4O7PSDpbwbUPGyRdq6BLz0darQcAYHru/pyCFrLzFJyfPybpgxEX/5aCEZvXKzivX1hn/Q8piEkfDNf/HgVdCltxiaRvh9fJ1fqmgsTl1WEL5QUK7gX4MwVxsip+hHHmYwoGUtmu4EdJKRgV8xsKRoHeoHC0S3d/tmK5NylolbxDwSjQlykY6VmaJo63IvxR800KBpr5pqSfS7pOwTV5LzZY7IMKfgz+NwWx+O7w/0oflbRcQc+Y51SHuz+gYLTtt4f1uCJ8fLHe/OguFnxHBAAAAADkAS15AAAAAJAjsSR5Znatme0ws0cavG5m9gUz2xwO235SxWtnmdlw+NrlcZQHAIA0ID4CAJIQV0veVxUMBdvI2ZJWhI91Ci6QLY+G9KXw9RMkXWhmtfcoAQAgq74q4iMAYJbFkuS5+51qfC8QSTpXwVCx7u53S+o3s6MknSJps7s/Ed6w8sZwXgAAMo/4CABIwmxdk7dUwTC5ZVvDaY2mAwDQDYiPAIDYzZml97E607zJ9KkrMFunoCuL+vr6Tl6+fHnLhRjZ5xrZN3X1/Yea+g+tV5R0K5VK6unJ9tg5Wa9D1ssvUYe0yHodOlX+xx577Hl3f3nsK06PVMRHiRiZNlkvv0Qd0iDr5ZeoQzPNYuRsJXlbFdzro2yZgnt49TaYPoW7Xy3paklas2aN33fffS0XYv2m7brshgc1NnHw1i3zegu68sITdcbxAy2vL2lDQ0MaHBxMuhhtyXodsl5+iTqkRdbr0Knym9lTsa80XVIRHyViZNpkvfwSdUiDrJdfog7NNIuRs5UW3yLpD8JRxP6TpJfCG1beK2mFmR1rZr0Kbop5S6cKMbhysVYv71dP+IPkvN6CVi/v1+DKxZ16SwAAmklFfJSIkQCQJ7G05JnZDZIGJR1pZlslfUzSIZLk7ldJulXSOZI2SxqT9K7wtUkzu1TSbZIKkq51941xlKmeQo/p+kvW6uzP36kXXtqjv/69EzW4crEKPdnrhgIASL+sxEeJGAkAeRJLkufuF07zukt6X4PXblUQ5GZFoce0aF6vbGIsk91PAADZkaX4KBEjASAvsn0VIwAAAACgCkkeAAAAAOQISR4AAAAA5AhJHgAAAADkCEkeAAAAAOQISR4AAAAA5AhJHgAAAADkCEkeAAAAAOQISR4AAAAA5AhJHgAAAADkCEkeAAAAAOTInKQLgGQVS66h4R3auG2XVi1ZqMGVi1XosaSLBQAAAGCGSPK6WLHkuuiae7Rhy4jGJ4rq6y1o9fJ+XX/JWhI9AAAAIKPortnFhoZ3aMOWEY1NFOWSxiaK2rBlREPDO5IuGgAAAIAZIsnrYhu37dL4RLFq2vhEUY9u25VQidKhWHKt37RdX1j/uNZv2q5iyZMuElKE46NaeXvcvHmC7QEAQErQXbOLrVqyUH29BY1VJHp9vQWdsGRhgqVKFl1Yp+K6zYM4PqrVbo/bnn6wq7cHAABpQUteFxtcuVirl/er/F1sXviFdXDl4mQLliC6sFYrf4m/7IYH9Te3P6bLbnhQF11zT9e21nB8VGN7AACQTiR5XazQY7r+krU6bvECLevv05UXntj1v8DThbUaX+KrcXxUY3sAAJBOJHldrtBjWjSvV0sX9emM4we6OsGTDnZhrdTNXVj5El+N46Ma2wMAgHQiyQMq0IW1Gl/iq3F8VGN7AACQTiR5QAW6sFbjS3w1jo9qldvjyLnW9dsDAIC0YHRNoEa5C+uiedIZxw8kXZxElb/En/35OzW2r6hPnLuqq0fXlDg+apW3h02MsT0AAEgJkjwATZHUAAAAZAvdNQEAAAAgR0jyAAAAACBHYknyzOwsMxs2s81mdnmd1//UzDaEj0fMrGhmh4evPWlmD4ev3RdHeQAASAtiJABgtrV9TZ6ZFSR9SdKZkrZKutfMbnH3R8vzuPtnJH0mnP+3JX3A3V+oWM3p7v58u2UBACBNiJEAgCTE0ZJ3iqTN7v6Eu09IulHSuU3mv1DSDTG8LwAAaUeMBADMujiSvKWStlQ83xpOm8LM5kk6S9K3Kia7pB+Y2f1mti6G8gAAkBbESADArIvjFgr1bpjlDeb9bUn/XtMN5Y3uvs3MFku63cx+7u53TnmTILitk6SBgQENDQ3NuMAjI+MqFottrSMNRkdHY6nDyMi4JCWyPeKqQ9yibpO0lr8VUeqQ5DESxWzvh05sjywfS3k5p3ZIx2NknPFRys/+zPJnSsp++SXqkAZZL79EHWYqjiRvq6TlFc+XSdrWYN4LVNMNxd23hX93mNm3FXRtmZLkufvVkq6WpDVr1vjg4OCMC/yV4bs0MjKidtaRBkNDQ7HU4SvDd0mSBgdPbXtdrYqrDnGLuk3SWv5WRKlDksdIFLO9HzqxPbJ8LOXlnNohHY+RccZHKT/7M8ufKSn75ZeoQxpkvfwSdZipOLpr3itphZkda2a9CoLULbUzmdnLJL1Z0s0V0+ab2WHl/yW9RdIjMZQJAIA0IEYCAGZd2y157j5pZpdKuk1SQdK17r7RzN4bvn5VOOv5kn7g7nsqFh+Q9G0zK5fl6+7+L+2WCQCANCBGAgCSEEd3Tbn7rZJurZl2Vc3zr0r6as20JyS9Po4yAACQRsRIAMBsiyXJAwAAyJtiyTU0vEMbt+3SqiULNbhysQo99cbSAYB0IckDAACoUSy5LrrmHm3YMqLxiaL6egtavbxf11+ylkQPQOrFMfAKAABArgwN79CGLSMamyjKJY1NFLVhy4iGhnckXTQAmBZJHgAAQI2N23ZpfKJYNW18oqhHt+1KqEQAEB1JHgAAQI1VSxaqr7dQNa2vt6ATlixMqEQAEB1JHgAAQI3BlYu1enm/ypffzQuvyRtcuTjZggFABCR5AAAANQo9pusvWavjFi/Qsv4+XXnhiQy6AiAzGF0TAACgjkKPadG8Xi2aJ51x/EDSxQGAyGjJAwAAAIAcIckDAAAAgBwhyQMAAACAHCHJAwAAAIAcIckDAAAAgBwhyQMAAACAHCHJAwAAAIAc4T55AACgqxRLrqHhHdq4bZdWLVmowZWLuck5gFwhyQMAAF2jWHJddM092rBlROMTRfX1FrR6eb+uv2QtiR6A3KC7JgAA6BpDwzu0YcuIxiaKckljE0Vt2DKioeEdSRcNAGJDkgcAALrGxm27ND5RrJo2PlHUo9t2JVQiAIgfSR4AAOgaq5YsVF9voWpaX29BJyxZmFCJACB+JHkAAKBrDK5crNXL+1W+/G5eeE3e4MrFyRYMAGJEkgcAALpGocd0/SVrddziBVrW36crLzyRQVcA5A6jawIAgK5S6DEtmterRfOkM44fSLo4ABA7WvIAAAAAIEdI8gAAAAAgR2JJ8szsLDMbNrPNZnZ5ndcHzewlM9sQPj4adVkAALKMGAkAmG1tX5NnZgVJX5J0pqStku41s1vc/dGaWf/N3X9rhssCAJA5xEgAQBLiaMk7RdJmd3/C3Sck3Sjp3FlYFgCAtCNGAgBmXRxJ3lJJWyqebw2n1TrVzH5mZt83s1UtLgsAQBYRIwEAsy6OWyjUu7GM1zx/QNLR7j5qZudI+o6kFRGXDd7EbJ2kdZI0MDCgoaGhmZZXIyPjKhaLba0jDUZHR2Opw8jIuCQlsj3iqkPcom6TtJa/FVHqkOQxEsVs74dObI8sH0t5Oad2SMdjZJzxUcrP/pzuMxX1c5zU+S/L54Qy6pC8rJdfog4zFUeSt1XS8ornyyRtq5zB3XdV/H+rmX3ZzI6MsmzFcldLulqS1qxZ44ODgzMu8FeG79LIyIjaWUcaDA0NxVKHrwzfJUkaHDy17XW1Kq46xC3qNklr+VsRpQ5JHiNRzPZ+6MT2yPKxlJdzaod0PEbGGR+l/OzP6T5TUT/HSZ3/snxOKKMOyct6+SXqMFNxdNe8V9IKMzvWzHolXSDplsoZzOwVZmbh/6eE77szyrIAAGQYMRIAMOvabslz90kzu1TSbZIKkq51941m9t7w9askvUPS/2Nmk5LGJV3g7i6p7rLtlikOxZJraHiHNm7bpVVLFmpw5WIVeur1nAEAoD5iJAAgCXF015S73yrp1pppV1X8/0VJX4y6bNKKJddF19yjDVtGND5RVF9vQauX9+v6S9YSxAAALSFGAgBmWyw3Q8+boeEd2rBlRGMTRbmksYmiNmwZ0dDwjqSLBgBAooiRAJB+JHl1bNy2S+MTxapp4xNFPbptV4MlAADoDsRIAEg/krw6Vi1ZqL7eQtW0vt6CTliyMKESAQCQDsRIAEg/krw6Blcu1url/SpfWjAvvN5gcOXiZAsGAEDCiJEAkH4keXUUekzXX7JWxy1eoGX9fbrywhO5oBwAABEjASALYhldM48KPaZF83q1aJ50xvEDSRdnRhjiGgDQCXmIkQCQZyR5ORX3ENckjAAAAEA2kOTlVOUQ11L1ENet/uqal3sikaiiGY4PAACQFyR5OdVsiOtWk7w4E8akdKpl87ubJ1Qc2J7JhCAPdYhLJ37IIGkEAABJIcnLqfIQ12MVid5Mh7iOM2FMSidbNm97+sHMtWx2og5ZTmri/iEjD63fWd6fAAB0O5K8nCoPcX33EztV8vaGuI4zYUwKLZvVSGqqxf1DRtaPkazvTwAAuh23UMipOIe4zsM9keK8eW+zhCAr4q5DZVLjqk5qsiDumztn/RjJ+v4EAKDbkeTlWHmI66WL+nTG8QMz/gU+D/dEijNRjTshSAJJTbW4f8jI+jGS9f0JAEC3I8lDJHEljEmhZbMaSU21uH/IyPoxkvX9CQBAtyPJQ9foRMvmkXMtky2bcdch60mNFO8PGVlv/c7D/gQAoJsx8AowA+WEwCbGMjGQRj1x1qGc1Jz9+Ts1tq+oT5y7qutHYyxv30XzlLljhP0JAEC2keQBiEWWkxpMxf4EACC7SPIAAAAwLe6fCWQHSR4AAACa4v6ZQLYw8AoAAACa4v6ZQLaQ5AEAAKAp7p8JZAtJHgAAAJri/plAtpDkAQAAoCnunwlkC0keAAAAmirfP/O4xQu0rL9PV154IoOuACnG6JoAAACYFvfPBLIjlpY8MzvLzIbNbLOZXV7n9d83s4fCx0/M7PUVrz1pZg+b2QYzuy+O8gAAkBbESADAbGu7Jc/MCpK+JOlMSVsl3Wtmt7j7oxWz/VLSm939RTM7W9LVktZWvH66uz/fblkAAEgTYiQAIAlxtOSdImmzuz/h7hOSbpR0buUM7v4Td38xfHq3pGUxvC8AAGlHjAQAzLo4krylkrZUPN8aTmvkEknfr3jukn5gZveb2boYygMAQFoQIwEAsy6OgVfqDavkdWc0O11BADutYvIb3X2bmS2WdLuZ/dzd76yz7DpJ6yRpYGBAQ0NDMy7wyMi4isXitOsYGRmXpLbeq5NGR0djqUPUenZie0SpQ5zirGvU4yjN4v4sJPWZies4iruerWyP2f4sRNFKPbP+WeigjsfIOOOj1D0xslvOa3HL+nmtVVmvQ9bLL1GHmYojydsqaXnF82WSttXOZGavk/QPks52953l6e6+Lfy7w8y+raBry5Qkz92vVnCdgtasWeODg4MzLvBXhu/SyMiIplvHV4bvkiQNDp464/fqpKGhoVjqELWendgeUeoQpzjrGvU4SrO4PwtJfWbiOo7irmcr22O2PwtRtFLPrH8WOqjjMTLO+Ch1T4zslvNa3LJ+XmtV1uuQ9fJL1GGm4uiuea+kFWZ2rJn1SrpA0i2VM5jZKyXdJOkid3+sYvp8Mzus/L+kt0h6JIYyAQCQBsRIIKeKJdf6Tdv1hfWPa/2m7SqW6jbSdxW2SXq03ZLn7pNmdqmk2yQVJF3r7hvN7L3h61dJ+qikIyR92cwkadLd10gakPTtcNocSV93939pt0wAAKQBMRLIp2LJddE192jDlhGNTxTV11vQ6uX9XX2DeLZJusRyM3R3v1XSrTXTrqr4/z2S3lNnuSckvb52OgAAeUGMBPJnaHiHNmwZ0dhEUZI0NlHUhi0jGhre0bU3imebpEssN0MHAAAAusXGbbs0HiYzZeMTRT26bVdCJUoe22SqcvfVmzdPzHr31Vha8gAAAIBusWrJQvX1Fg60WklSX29BJyxZmGCpksU2qVbbffW2px+c1e6rtOQBAAAALRhcuVirl/er/F19Xnj92eDKxckWLEFsk2qV3Vdd1d1XZwNJHgAAANCCQo/p+kvW6rjFC7Ssv09XXnhi1w8wwjaplnT3VbprAgAAAC0q9JgWzevVonliYJEQ2+SgpLuv0pIHAAAAADFKuvsqSR4AAAAAxKiy++qRc23Wu6/SXRMAAKCLFUuuoeEd2rhtl1YtWajBlYu79joqIE7l7qs2MTbr3VdJ8gAAALpU7TDvfWGXsm4eMAPIA7prAgAAdKmkh3kH0BkkeQAAAF0q6WHeAXQGSR4AAECXKg/zXmk2h3kH0BkkeQAAAF0q6WHeAXQGSR4AAECXqhzmfVl/36wP8w6gMxhdEwAAoIuVh3lfNE+zPsw7soHbbGQPSR4AAEgMXx6RRuXj8rubJ1Qc2N7VxyW32cgmkjwAAJAIvjwijWqPy9uefrCrj8vK22xI1bfZoOU3vbgmDwAAJIJ7tCGNOC6rcZuNbKIlDwA6YLJYUsldkrRn36RckruHfyW55HKFs6hYcr2wZ6Luurw8U+30KfPVm6fuxGm5pP3FkiRp+669cj+4rvL7lOu0b7Ikl7TlhbGq15f0z9WcAr8lorFmXx5n2kJANzu0qxPHZZaVb7MxVrFNuM1G+pHkAYidu4dJQXViU5nUHJw3wvoqspIpy0squTS6b/LAe9e+PrV89d+nWApeGBmbaFh+eZD8uEtP7xzT/lJJk0XXZMXf/cWgnuUyPbT1pWnruHd/ScP/sXva+WbT+P4goD/x3J6m8+2bLMrdtfXF8arpAy87lCCDpuL+8kg3O8SBpKZa+TYbdz+xUyXP7m02uu36X+IvAElTE7NSRVJWChOdF/dMaH+YxEwWS9pfDP4v/929d79c0t1PvDCrZR+fKOrhCInUdPZMBEnZpmebJ1vl5OeZkfGm8wFoLu4vj1w7hDjkJamJS/k2G2d//k6N7SvqE+euylyC1I3X/5LkARGUSq6JYil4TAaPoPVCemz77gOtPKVSdWtVqSJxqidKN7zqWWpaqbzRK81byMrvu3vvfpXcddcvdjaeWQdbpH4+TUtThEY5ADgg7i+PdLNDHCqPyxde2qO//r0TM5nUROm2HLV1K+u32ejGH4BI8jAjpZKrVKe1p+QHE5soiiXXS2P7JU293ieYVvF/xQuNk6AG1yCFytcY/cdLew+0TpXCLnoH6uOu8f1BAvfQ1hFNTAatVLWC65BcO0frX0eVBSRlAJIW55dHutkhLuXj0ibGMpcERO223E2tW934AxBJHuqamCxpfH9Re/cXNT5R1N7Jokb3TcojtPq0Yu/+kh59dvZGZyp3s/vl882vMSong3v2FZvOBwBID7rZAdFbrbqpdasbfwAiycuAcgtW5Yh2ZcWSN+zyd2Bed+3dX1Sx5Cq6y0tS0f3AshPhIBKbd+zW+ERJeyeLmqzTclWK2jwHAEAC8tDNLm7dMthE1Hp2w/aI2mrVTa1b3fgDUCxJnpmdJenzkgqS/sHdr6h53cLXz5E0Jumd7v5AlGVn08jYhPYXy90Qg2HBJenJ5/cEyZG7iqXgBFGeJ/hfqtfxrVFO5HVeP5DITbNspT37ivrpL5sPcLF7b9AV8sGnRxrOszds3Xpud3a7HQJAWuUlRmZFlrvZtSJKstIt3fGi1jMv22O6fR+11aqbWreiXv+bpx8B2k7yzKwg6UuSzpS0VdK9ZnaLuz9aMdvZklaEj7WSviJpbcRlZ80vntujiTCxk4JhwSXp2Zf2JlEcAEDG5SlG1nbV3xX+iBhHF/4411Ve33SDSkV9z7jLFtWefcWG71kquT71/U3avGNUE5Ml9c7p0XGLF+gjZx+vnoovpA889aLuf+rFAz9aj00Udf9TL+qqoV/opKMXVa2zE9ujWR2iKpVcG7aM6Mmde3TMEfO1enl/VR2l6PVsZXtI8R5HcYmy7+fOKejYI+fr0Wd3yV06dE6Pjj1yvubOKVSVM+p8rdY17m0Sx3FUVugxHdY3R/N650xpKIn6uWpVo+Po1FcdMeN1RhHHXWpPkbTZ3Z9w9wlJN0o6t2aecyX9owfultRvZkdFXBYAgKwiRiJ2G7aMaPOO0XAAsGAgsM07RrVhy0jVfE/urP7xWgquuX9yZ/Pr0tOi/KX7Cz96XP90/1Z94UeP61Pf33RgwLSyqPXM+vaQou37nh7TR84+Xkv7+3TEXOm//caKuolK5XwvX9DbcL5uEfVzJQXH5gNPvaibHtiqB556ccoxmQbW7HquSCswe4eks9z9PeHziyStdfdLK+b5rqQr3P3H4fP1kj4s6Zjplq3n8KOP9zM/cu2My/zos7s0OTmp1y0/vGr66L7JquvOnto5Jkk6+oh5M36vTpocH9WcvgVN54lSh6j17MT2iFKHOMVZ16d2jsmLRR2z+LD4CjjLotYhyWMkiriOo7jr2cr2mO3PQhSt1LPecXTYoXMU9EScuW+89w33u/uatlaSoNmOke3GR6lxjCz/Ol8W5+c97nNHlHNbls9rz+3ep+frjOz88gW9OvKwQw883713Us+MjFddAmImLe3v02FzqztzpfG8FrX8cc9XFudxFJeo+75ctiRifNzbZLrjyN01ui8YLHDuIQUtOLTQMPY0K1vUbevuevqF8QMjsZtJfYcU9MrD++q+b6P9sHDuIQ3rFFWzGBnHNXn1tmJt5thonijLBiswWydpnSTNGzhWIyMjLRSx2pI+qVj0KeuoHVhkabj/J8dHm65v6+5guWWHNf4yE2WeVudzuZaredmi1CFqPePcHuX5pqtD3NstzrounSd5yWPdHnHN18r2iFKHOLdbUp+FKOuL+7PQymdmtj8LcW+PesfRS3u789fgGh2PkXHGRyneGBn3uTnOc1sSsS/KPO6up3cH2/vl+3dr/hxN+eJ4iLtM1QeDSZrjE5ocP5iMz3XX3B5pb/HgATW3R5pbGtfkePU6kzivleeT6m+Tsb1Tb8nkLo2Pj6vPD84ftZ6tbI9yXeM6juI6N0fd91HLX55Pmt3YF1eMd3c9MyqNh5cVmqS5BWnpgqmfm+nKFnXbju53jU9Uj6MxPlHUS7tHteCQ6MfRSIdjZBxJ3lZJyyueL5O0LeI8vRGWlSS5+9WSrpakNWvW+G0fPrutQg8NDWlwcLBq2v1PvTilGT+KT353oyTpo7+1qq15Wp1vcnxUn/ydta0UdVbEWYe4t1vcXti8QYcft7rpPJ3Y99PN18r2iFKHOCX1WUjqGIkiic9C3Nuj3nF00tH9OnROoa312uVtLZ4GHY+RccdHqX6MnMk1MXEfZ1k/t003T7l74v5du+RuemFfjw5/2dRrglq5dijKNW2dEOW8Viq5PnzTQ9q7v6jzTjl2StkeeOpFfeFHjx+4hk4Krht795tWTLmGLmo9W90ecR1HUY6P6bZHeZ5Wrhub7c9BVK1sj7HxcZ13yqsbXo/5hR89Lik4RlxSyXp0/tqpx8h0om7bmx7Yqn+6f+uU5U97zTK97aRlddddbz/EcU1esxgZR5J3r6QVZnaspGckXSDpv9TMc4ukS83sRgUXlb/k7s+a2XMRlgUAIKuIkYisfE1QufWq8pqgyi+s5WupoiQrPT2mk45e1PIX3k4rf6Eud5/8wo8en/KFevXyfh23eMGUL92rl/dPWV/UemZ5e0it7fssi7o9ml1n2eo+jrptjzlivnrn9FT9+NA7p0fHHDF/BjXtnLaTPHefNLNLJd2mYIjna919o5m9N3z9Kkm3KhgaerOC4aHf1WzZdss0U69dulCl8B5yJXeVwtsjTLllQinoRlEM5zmkp0cuadH86r61lV0M5vQEY9z0zzuk4n53PmXe8jCth82dM2W+yvX1hE3Qfb2F8LX611Z6+Fq5HtzqDgBmT55i5Ex+dS5fcxLXKHKtrG9oS6Hjo9dVilK26ea598kX6n5hLbnXXeaNK46caXE7buHcQzSy1xrWdf2m7frl83uqEtpfPr9HeyeLVbe+uOVVp2loeIce3bZLJyQwpH1cx9F0+z7q9iiLuu9n+3MQVVzbY2xiUt97+Nkpt4E467WvmHG9p9u2pxx7uP79F89PuRXHewdf1fDYTGI/xHKfPHe/VUGQqpx2VcX/Lul9UZdNyky7FZUTrde8ovF9ReaF8xx/VPN7j8zvDXbJa5e+rOl8Cw6do5Fxq/trVjOlMGENEtSDyWqx6No7WdT4RFF795c0vr84o66rAIBqeYmR6Lxuum9Z1BtxF3pMZxw/kOt7HkrddWPyKKJuj/JNzmsTrk7e5Lx8z70kf3yIIpYkD9nR02PqkUXa8cWSa3x/OfELHvsmS3LXgZbN8o3gS64DLZ8AAKB1SXxhTUo3JbRRsD2qRd0eSSVcWfjxgSQPDRV6TAsOnaMFh7Z2mJSb4Ncee3j9oVIr5hvZa/q1Y4I+05WjFJUdFr73SUf3N+xq6q4DZSy3bHqTdz6YpAZvWvJg7nLiGkyT9hdLmiiWNDEZPoolTRbJYgEAnVH5hfV7P/mZ3vqG16eyhSAO3ZTQRsH2qNbK9shCwpUEkrw2FUuuF8cmNLavqPWbtuf2ZDwTUS8CnlPoafhaefjb6brS1l6j2CmlkmuiWNK+yZL2F0t68MkevfKIeXIPrncMcsTwfwWJ4yFh/V5+WO+U9VUmruX5jlzQOyVFrXd956L5h0xJfMvPg3lcC/saf8TL877UE1wDWvKD5faKVtryNK7pBIDOK39hLWzv1WCOv7RmpcvbbOmm7RHlu3M3/eDRKSR5bSiWXBddc4827xhVyaXLbnhQq5f36/pL1nIQ5lRPj2luT0FzDwmSyUMKpqX9fU2X6QvnPW6am5GW51sx0Hy+eS1cA7pqSfNrOyXp+ccL014DKgWJ3/6ia7JU0v5J1/5SkOhOFv1AK+f+YmlKouthS6mHSaOFt/6aU7Ca9Ve/X3m+Qo9VDSxEngkA+UALTLVu2B6tfHfulh88OoUkrw1Dwzu0YcvIgevQxiaK2rBlREPDO3L9AUV3MjP1zjH1qie4e9cMHTY3OO382jGHR5rvlGObz1c7glvtSLPlp1G7EUuqaNU82HpZm7wWS67JYkmTpSC5LZYOJsHlhHeyFIzAezDJBQCge/HdefaQ5LUhqZGQys3cO8edLqJAjXIX34PPq1+P0o24oM58ntzrt3AedugcvbTXdNLR/Q2XLV+feuIrG88jTb0+Vap/jWp5vtcta9yKW7lUubxSRcLqB9d9/1M9es0rDjtQN0k6pKdxV2wAQPdhFNHZQ5LXhiRGQkp7F1GuUQQaM7OKpNOqpkvNrz0tz1PuKtxI1OtTy/PNb3FgpUYKPaZF89to4gUA5B6jiM4efmZtQ3nkn3m9we/+82ZhJKRmzdxJq0xAt46M67IbHtRF19yjYofvq1BOLJ95cVzrN23v+PshezhGqrE9gNnH5w5I5rtzt6Ilrw1JjISU5mbuJPpZ07KZjvdMs6wcI7PV/Trt2wPIIz533Y24fFA3jSKaNFry2lQe+eeyM1YEIwB1+CAtN3NXSkszd7MEtFNo2Uz+PVuRxC/ZWTlGdu71Wdlfad4eQF7xueteaY/LSZjt787diiQvY9LczJ1EAppEYhlVEkE9zV8kkgp0HCPV0rw9gLzic9e90hyXkW8keRlTbua+8sITdf6KQ3TlhSemprtHEgkoLZvJv2dUSQU6jpFqad4eQF7xueteaY7LyDeSvFkQdxe1cjP3f35Vb6qauSsT0A+e+epZSUBp2Uz+PaNKKtBxjFRL8/YA8orPXfdKc1xGvjHwSod128XW5QR0tgaBSfMFvOWgvmHLiMYniuqbhaCexHtGldSwyRwj1dK8PYC84nPXvdIcl5FvJHkd1sqIk4y+NDOznVhGlURQT/MXiSQDXRaOke/95Gd66xtePyv7K63bA8gzPnfdKc1xGflGktdhUW950G0tft0iiaCe1i8SBLr6yvursL1XgynbZwCA9qU1LiPfuCavw6L2xe620ZfKrZbPh/cGq3edIjeOzR+GTe4sPjMA0iBKjAfQWSR5HRb1YutuGn0pyr3Buu2+MlG/nPMlvlq3fJGIst+77TOD7sP5LxuSuP8ngKlI8jos6oiT3TT6UpRWy25q2Yz65bybvsS3mtTk+YtE1P3eTZ8ZdJ9uOv9lHeciIB1I8mZBlC5q3TS8cpRWy25q2YwaELslcJLUVItaz276zKD7dMvnPQ84FwHpQJKXEkncYy4pUVotu6llM2pA7JbASVJTLWo9u+kzg+7TLZ/3POBcBKQDSV6KdMugFFFaLbupZTNqQOyWwElSUy1qPbvpM4Pu0y2f9zzgXASkA7dQwKyLcm+wbhpuP+r947rlhqpRb5reLdsjaj276TOD7tMtn/c8SOr+nwCqkeQhEVHuDdYt95WJ+uW8W77EzySpyfMXiVb2e7d8ZtB9uuX8lxfc/xNIHkkekAJRv5x3w5f4mSQ1ef8i0Q37HZgOnwMAiK6ta/LM7HAzu93MHg//Lqozz3Izu8PMNpnZRjN7f8VrHzezZ8xsQ/g4p53yAMiHbrk+FflGjAQAJKXdgVcul7Te3VdIWh8+rzUp6U/c/XhJ/0nS+8zshIrX/8bdV4ePW9ssDwAAaUGMBAAkot0k71xJ14X/XyfpvNoZ3P1Zd38g/H+3pE2Slrb5vgAApB0xEgCQiHaTvAF3f1YKApWkpsNcmdkxkk6UdE/F5EvN7CEzu7ZeVxYAADKKGAkASIS5e/MZzH4o6RV1XvozSde5e3/FvC+6e90gZGYLJP2rpL9095vCaQOSnpfkkv5C0lHu/u4Gy6+TtE6SBgYGTr7xxhub12wao6OjWrBgQVvrSBp1SF7Wyy9Rh7TIeh06Vf7TTz/9fndfE/uKY5KGGBl3fJTi259/dc+4JOm/r+1re12tmu3PVNx1zfo5QaIOaZD18kvUoZmmMdLdZ/yQNKwg6EjSUZKGG8x3iKTbJH2wybqOkfRIlPc9+eSTvV133HFH2+tIGnVIXtbL704d0iLrdehU+SXd523EqSQfScTIOOKje3z783ev+on/7lU/iWVdrZrtz1Tcdc36OcGdOqRB1svvTh2aaRYj2+2ueYuki8P/L5Z0c+0MZmaSrpG0yd3/Z81rR1U8PV/SI22WBwCAtCBGdoliyfXi2ISeeXFc6zdtV7HUvJcUAHRau0neFZLONLPHJZ0ZPpeZLTGz8ihgb5R0kaTfqDMM9KfN7GEze0jS6ZI+0GZ5AABIC2JkFyiWXBddc4827xjV1pFxXXbDg7romntI9AAkqq2bobv7Tkln1Jm+TdI54f8/llT3JlfuflE77w8AQFoRI7vD0PAObdgyonJONzZR1IYtIxoa3sGN2wEkpt2WPAAAgK61cdsujU8Uq6aNTxT16LZdCZUIAEjyAAAAZmzVkoXq6y1UTevrLeiEJQsTKhEAkOQBAADM2ODKxVq9vF/zegsySfN6C1q9vF+DK5veFhEAOqqta/IAAAC6WaHHdP0lazU0vEOPbtulE5Ys1ODKxSr01L3UEgBmBUkeAABAGwo9pjOOH2CgFQCpQXdNAAAAAMgRkjwAABA7bhAOAMkhyQMAALHiBuEAkCySPAAAEKtmNwgHAHQeSR4AAIgVNwgHgGSR5AEAgFhxg3AASBZJHgAAiBU3CAeAZHGfPAAAECtuEA4AySLJAwAAseMG4QCQHLprAgAAAECOkOQBAAAAQI6Q5AEAAABAjpDkAQAAAECOkOQBAAAAQI6Q5AEAAABAjpDkAQAAAECOkOQBAAAAQI6Q5AEAAABAjpDkAQAAAECOkOQBAAAAQI60leSZ2eFmdruZPR7+XdRgvifN7GEz22Bm97W6PAAAWUOMBAAkpd2WvMslrXf3FZLWh88bOd3dV7v7mhkuDwBAlhAjAQCJaDfJO1fSdeH/10k6b5aXBwAgrYiRAIBEtJvkDbj7s5IU/l3cYD6X9AMzu9/M1s1geQAAsoYYCQBIhLl78xnMfijpFXVe+jNJ17l7f8W8L7r7lGsGzGyJu28zs8WSbpd0mbvfaWYjUZYPX1snaZ0kDQwMnHzjjTdOW7lmRkdHtWDBgrbWkTTqkLysl1+iDmmR9Tp0qvynn376/TVdGFMlDTEy7vgoZf94lLJfh6yXX6IOaZD18kvUoZmmMdLdZ/yQNCzpqPD/oyQNR1jm45I+NNPl3V0nn3yyt+uOO+5oex1Jow7Jy3r53alDWmS9Dp0qv6T7vI04leQjiRgZR3x0z/7x6J79OmS9/O7UIQ2yXn536tBMsxjZbnfNWyRdHP5/saSba2cws/lmdlj5f0lvkfRI1OUBAMgoYiQAIBHtJnlXSDrTzB6XdGb4XGa2xMxuDecZkPRjM/uZpJ9K+p67/0uz5QEAyAFiJAAgEXPaWdjdd0o6o870bZLOCf9/QtLrW1keAICsI0YCAJLSbkseAAAAACBFSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBH2kryzOxwM7vdzB4P/y6qM89KM9tQ8dhlZn8cvvZxM3um4rVz2ikPAABpQYwEACSl3Za8yyWtd/cVktaHz6u4+7C7r3b31ZJOljQm6dsVs/xN+XV3v7XN8gAAkBbESABAItpN8s6VdF34/3WSzptm/jMk/cLdn2rzfQEASDtiJAAgEe0meQPu/qwkhX8XTzP/BZJuqJl2qZk9ZGbX1uvKAgBARhEjAQCJMHdvPoPZDyW9os5LfybpOnfvr5j3RXevG4TMrFfSNkmr3H17OG1A0vOSXNJfSDrK3d/dYPl1ktZJ0sDAwMk33nhj85pNY3R0VAsWLGhrHUmjDsnLevkl6pAWWa9Dp8p/+umn3+/ua2JfcUzSECPjjo9S9o9HKft1yHr5JeqQBlkvv0QdmmkaI919xg9JwwqCjiQdJWm4ybznSvpBk9ePkfRIlPc9+eSTvV133HFH2+tIGnVIXtbL704d0iLrdehU+SXd523EqSQfScTIOOKje/aPR/fs1yHr5XenDmmQ9fK7U4dmmsXIdrtr3iLp4vD/iyXd3GTeC1XTDcXMjqp4er6kR9osDwAAaUGMBAAkot0k7wpJZ5rZ45LODJ/LzJaY2YFRwMxsXvj6TTXLf9rMHjazhySdLukDbZYHAIC0IEYCABIxp52F3X2ngtHAaqdvk3ROxfMxSUfUme+idt4fAIC0IkYCAJLSbkseAAAAACBFSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBH2kryzOx3zGyjmZXMbE2T+c4ys2Ez22xml1dMP9zMbjezx8O/i9opDwAAaUGMBAAkpd2WvEckvU3SnY1mMLOCpC9JOlvSCZIuNLMTwpcvl7Te3VdIWh8+BwAgD4iRAIBEtJXkufsmdx+eZrZTJG129yfcfULSjZLODV87V9J14f/XSTqvnfIAAJAWxEgAQFJm45q8pZK2VDzfGk6TpAF3f1aSwr+LZ6E8AACkBTESABC7OdPNYGY/lPSKOi/9mbvfHOE9rM40j7BcbTnWSVoXPh01s+l+HZ3OkZKeb3MdSaMOyct6+SXqkBZZr0Onyn90B9YZmzTEyA7ERyn7x6OU/TpkvfwSdUiDrJdfog7NNIyR0yZ57v6bbb75VknLK54vk7Qt/H+7mR3l7s+a2VGSdjQpx9WSrm6zLAeY2X3u3vBC+CygDsnLevkl6pAWWa9D1ss/U2mIkXHHRykf+zPrdch6+SXqkAZZL79EHWZqNrpr3itphZkda2a9ki6QdEv42i2SLg7/v1hSlF89AQDIC2IkACB27d5C4Xwz2yrpVEnfM7PbwulLzOxWSXL3SUmXSrpN0iZJ33D3jeEqrpB0ppk9LunM8DkAAJlHjAQAJGXa7prNuPu3JX27zvRtks6peH6rpFvrzLdT0hntlKENsXZtSQh1SF7Wyy9Rh7TIeh2yXv7YESMTl/U6ZL38EnVIg6yXX6IOM2LuLY+BAgAAAABIqdm4Jg8AAAAAMEu6Mskzs7PMbNjMNpvZ5UmXZybM7Ekze9jMNpjZfUmXZzpmdq2Z7TCzRyqmHW5mt5vZ4+HfRUmWcToN6vBxM3sm3A8bzOycZutIkpktN7M7zGyTmW00s/eH0zOzH5rUIUv7Ya6Z/dTMfhbW4RPh9Czth0Z1yMx+QH3Ex2QQI5NHjEwe8THmsnRbd00zK0h6TMFF7FsVjGx2obs/mmjBWmRmT0pa4+6ZuG+Imb1J0qikf3T314bTPi3pBXe/IvwyscjdP5xkOZtpUIePSxp1988mWbYoLBiC/Sh3f8DMDpN0v6TzJL1TGdkPTerwu8rOfjBJ89191MwOkfRjSe+X9DZlZz80qsNZysh+wFTEx+QQI5NHjEwe8TFe3diSd4qkze7+hLtPSLpR0rkJlyn33P1OSS/UTD5X0nXh/9cpOBGlVoM6ZIa7P+vuD4T/71Ywkt9SZWg/NKlDZnhgNHx6SPhwZWs/NKoDso34mBBiZPKIkckjPsarG5O8pZK2VDzfqgx9ACq4pB+Y2f1mti7pwszQgLs/KwUnJkmLEy7PTF1qZg+FXVVS24WgkpkdI+lESfcoo/uhpg5ShvaDmRXMbIOCm1vf7u6Z2w8N6iBlaD9gCuJjumTqnNBE5s4JxMjkEB/j041JntWZlsVfoN/o7idJOlvS+8JuEph9X5H0KkmrJT0r6XOJliYCM1sg6VuS/tjddyVdnpmoU4dM7Qd3L7r7aknLJJ1iZq9NuEgta1CHTO0HTEF8RNwyd04gRiaL+BifbkzytkpaXvF8maRtCZVlxsL7LMnddyi4D9MpyZZoRraH/cfL/ch3JFyelrn79vDDXJL090r5fgj7h39L0tfc/aZwcqb2Q706ZG0/lLn7iKQhBX31M7UfyirrkNX9gAOIj+mSyXNCpaydE4iR6UF8bF83Jnn3SlphZseaWa+kCyTdknCZWmJm88MLamVm8yW9RdIjzZdKpVskXRz+f7GkmxMsy4yUTzqh85Xi/RBeDHyNpE3u/j8rXsrMfmhUh4zth5ebWX/4f5+k35T0c2VrP9StQ5b2A+oiPqZLZs4JjWTpnECMTB7xMeayeJeNrilJFgxb+reSCpKudfe/TLZErTGzX1Hw66QkzZH09bTXwcxukDQo6UhJ2yV9TNJ3JH1D0islPS3pd9w9tRdtN6jDoIKmd5f0pKQ/KvcbTxszO03Sv0l6WFIpnPwRBf31M7EfmtThQmVnP7xOwYXjBQU/tH3D3T9pZkcoO/uhUR2uV0b2A+ojPiaDGJk8YmTyiI8xl6UbkzwAAAAAyKtu7K4JAAAAALlFkgcAAAAAOUKSBwAAAAA5QpIHAAAAADlCkgcAAAAAOUKSBwAAAAA5QpIHAAAAADlCkgcAAAAAOfJ/AMTuQVfPpmiQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# extra code – shows how to plot the Autocorrelation Function (ACF) and the\n", + "# Partial Autocorrelation Function (PACF)\n", + "\n", + "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n", + "\n", + "fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(15, 5))\n", + "plot_acf(df[period][\"rail\"], ax=axs[0], lags=35)\n", + "axs[0].grid()\n", + "plot_pacf(df[period][\"rail\"], ax=axs[1], lags=35, method=\"ywm\")\n", + "axs[1].grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oem3FzxTnU0F", + "outputId": "b2bc7a9d-f9bb-43cf-cfb5-c5247007ff5c" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2022-02-17 19:19:46.679147: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + }, + { + "data": { + "text/plain": [ + "[(,\n", + " ),\n", + " (,\n", + " )]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import tensorflow as tf\n", + "\n", + "my_series = [0, 1, 2, 3, 4, 5]\n", + "my_dataset = tf.keras.utils.timeseries_dataset_from_array(\n", + " my_series,\n", + " targets=my_series[3:], # the targets are 3 steps into the future\n", + " sequence_length=3,\n", + " batch_size=2\n", + ")\n", + "list(my_dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EH_puC2XnU0F", + "outputId": "133dd4e9-1e62-4257-c582-284f320b2515" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 1 2 3 \n", + "1 2 3 4 \n", + "2 3 4 5 \n", + "3 4 5 \n", + "4 5 \n", + "5 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2022-02-17 19:19:46.784180: W tensorflow/core/framework/dataset.cc:744] Input of Window will not be optimized because the dataset does not implement the AsGraphDefInternal() method needed to apply optimizations.\n" + ] + } + ], + "source": [ + "for window_dataset in tf.data.Dataset.range(6).window(4, shift=1):\n", + " for element in window_dataset:\n", + " print(f\"{element}\", end=\" \")\n", + " print()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UB_UVVeYnU0G", + "outputId": "430ff2d3-22e7-47e3-c27c-c0be0a7c5390" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 1 2 3]\n", + "[1 2 3 4]\n", + "[2 3 4 5]\n" + ] + } + ], + "source": [ + "dataset = tf.data.Dataset.range(6).window(4, shift=1, drop_remainder=True)\n", + "dataset = dataset.flat_map(lambda window_dataset: window_dataset.batch(4))\n", + "for window_tensor in dataset:\n", + " print(f\"{window_tensor}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "sGIcFoymnU0G" + }, + "outputs": [], + "source": [ + "def to_windows(dataset, length):\n", + " dataset = dataset.window(length, shift=1, drop_remainder=True)\n", + " return dataset.flat_map(lambda window_ds: window_ds.batch(length))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "QKW6YPHfnU0G", + "outputId": "c29349b6-0f05-43ce-d249-8f7eb43cdaff" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[(,\n", + " ),\n", + " (,\n", + " )]" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset = to_windows(tf.data.Dataset.range(6), 4)\n", + "dataset = dataset.map(lambda window: (window[:-1], window[-1]))\n", + "list(dataset.batch(2))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6RlHPlL8nU0G" + }, + "source": [ + "Before we continue looking at the data, let's split the time series into three periods, for training, validation and testing. We won't look at the test data for now:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gG92WzuEnU0H" + }, + "outputs": [], + "source": [ + "rail_train = df[\"rail\"][\"2016-01\":\"2018-12\"] / 1e6\n", + "rail_valid = df[\"rail\"][\"2019-01\":\"2019-05\"] / 1e6\n", + "rail_test = df[\"rail\"][\"2019-06\":] / 1e6" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "QBF5r-s0nU0H" + }, + "outputs": [], + "source": [ + "seq_length = 56\n", + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "train_ds = tf.keras.utils.timeseries_dataset_from_array(\n", + " rail_train.to_numpy(),\n", + " targets=rail_train[seq_length:],\n", + " sequence_length=seq_length,\n", + " batch_size=32,\n", + " shuffle=True,\n", + " seed=42\n", + ")\n", + "valid_ds = tf.keras.utils.timeseries_dataset_from_array(\n", + " rail_valid.to_numpy(),\n", + " targets=rail_valid[seq_length:],\n", + " sequence_length=seq_length,\n", + " batch_size=32\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XXgpFLvrnU0H", + "outputId": "a7323ae2-3017-40cd-9615-c1886c542fe9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/500\n", + "33/33 [==============================] - 0s 5ms/step - loss: 0.0098 - mae: 0.1118 - val_loss: 0.0071 - val_mae: 0.0966\n", + "Epoch 2/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0070 - mae: 0.0883 - val_loss: 0.0052 - val_mae: 0.0768\n", + "Epoch 3/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0059 - mae: 0.0796 - val_loss: 0.0050 - val_mae: 0.0741\n", + "Epoch 4/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0055 - mae: 0.0761 - val_loss: 0.0049 - val_mae: 0.0732\n", + "Epoch 5/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0054 - mae: 0.0749 - val_loss: 0.0043 - val_mae: 0.0666\n", + "Epoch 6/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0051 - mae: 0.0724 - val_loss: 0.0041 - val_mae: 0.0638\n", + "Epoch 7/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0047 - mae: 0.0696 - val_loss: 0.0040 - val_mae: 0.0615\n", + "Epoch 8/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0051 - mae: 0.0735 - val_loss: 0.0038 - val_mae: 0.0599\n", + "Epoch 9/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0045 - mae: 0.0670 - val_loss: 0.0037 - val_mae: 0.0599\n", + "Epoch 10/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0046 - mae: 0.0677 - val_loss: 0.0041 - val_mae: 0.0658\n", + "Epoch 11/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0044 - mae: 0.0664 - val_loss: 0.0038 - val_mae: 0.0611\n", + "Epoch 12/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0042 - mae: 0.0634 - val_loss: 0.0034 - val_mae: 0.0551\n", + "Epoch 13/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0046 - mae: 0.0680 - val_loss: 0.0056 - val_mae: 0.0829\n", + "Epoch 14/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0044 - mae: 0.0671 - val_loss: 0.0039 - val_mae: 0.0637\n", + "Epoch 15/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0044 - mae: 0.0673 - val_loss: 0.0037 - val_mae: 0.0610\n", + "Epoch 16/500\n", + "33/33 [==============================] - 0s 4ms/step - loss: 0.0045 - mae: 0.0676 - val_loss: 0.0035 - val_mae: 0.0584\n", + "Epoch 17/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0044 - mae: 0.0662 - val_loss: 0.0033 - val_mae: 0.0544\n", + "Epoch 18/500\n", + "<<396 more lines>>\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0440 - val_loss: 0.0023 - val_mae: 0.0404\n", + "Epoch 217/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0029 - mae: 0.0500 - val_loss: 0.0028 - val_mae: 0.0526\n", + "Epoch 218/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0458 - val_loss: 0.0023 - val_mae: 0.0387\n", + "Epoch 219/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0027 - mae: 0.0454 - val_loss: 0.0023 - val_mae: 0.0396\n", + "Epoch 220/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0444 - val_loss: 0.0026 - val_mae: 0.0425\n", + "Epoch 221/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0452 - val_loss: 0.0023 - val_mae: 0.0387\n", + "Epoch 222/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0025 - mae: 0.0433 - val_loss: 0.0024 - val_mae: 0.0432\n", + "Epoch 223/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0441 - val_loss: 0.0029 - val_mae: 0.0489\n", + "Epoch 224/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0031 - mae: 0.0524 - val_loss: 0.0023 - val_mae: 0.0394\n", + "Epoch 225/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0025 - mae: 0.0424 - val_loss: 0.0023 - val_mae: 0.0386\n", + "Epoch 226/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0438 - val_loss: 0.0023 - val_mae: 0.0383\n", + "Epoch 227/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0027 - mae: 0.0463 - val_loss: 0.0023 - val_mae: 0.0405\n", + "Epoch 228/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0445 - val_loss: 0.0023 - val_mae: 0.0384\n", + "Epoch 229/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0025 - mae: 0.0430 - val_loss: 0.0023 - val_mae: 0.0382\n", + "Epoch 230/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0451 - val_loss: 0.0023 - val_mae: 0.0397\n", + "Epoch 231/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0025 - mae: 0.0434 - val_loss: 0.0023 - val_mae: 0.0401\n", + "Epoch 232/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0027 - mae: 0.0459 - val_loss: 0.0022 - val_mae: 0.0389\n", + "Epoch 233/500\n", + "33/33 [==============================] - 0s 3ms/step - loss: 0.0027 - mae: 0.0464 - val_loss: 0.0025 - val_mae: 0.0469\n" + ] + } + ], + "source": [ + "tf.random.set_seed(42)\n", + "model = tf.keras.Sequential([\n", + " tf.keras.layers.Dense(1, input_shape=[seq_length])\n", + "])\n", + "early_stopping_cb = tf.keras.callbacks.EarlyStopping(\n", + " monitor=\"val_mae\", patience=50, restore_best_weights=True)\n", + "opt = tf.keras.optimizers.SGD(learning_rate=0.02, momentum=0.9)\n", + "model.compile(loss=tf.keras.losses.Huber(), optimizer=opt, metrics=[\"mae\"])\n", + "history = model.fit(train_ds, validation_data=valid_ds, epochs=500,\n", + " callbacks=[early_stopping_cb])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "P1HuSnTFnU0I", + "outputId": "856d2630-65be-4699-e5bc-4e7ba7ed2f92" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3/3 [==============================] - 0s 2ms/step - loss: 0.0022 - mae: 0.0379\n" + ] + }, + { + "data": { + "text/plain": [ + "37866.38006567955" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – evaluates the model\n", + "valid_loss, valid_mae = model.evaluate(valid_ds)\n", + "valid_mae * 1e6" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XicWRNranU0I" + }, + "source": [ + "## Using a Simple RNN" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7_hYzjkfnU0I" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "model = tf.keras.Sequential([\n", + " tf.keras.layers.SimpleRNN(1, input_shape=[None, 1])\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PqUXwAI_nU0J" + }, + "outputs": [], + "source": [ + "# extra code – defines a utility function we'll reuse several time\n", + "\n", + "def fit_and_evaluate(model, train_set, valid_set, learning_rate, epochs=500):\n", + " early_stopping_cb = tf.keras.callbacks.EarlyStopping(\n", + " monitor=\"val_mae\", patience=50, restore_best_weights=True)\n", + " opt = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=0.9)\n", + " model.compile(loss=tf.keras.losses.Huber(), optimizer=opt, metrics=[\"mae\"])\n", + " history = model.fit(train_set, validation_data=valid_set, epochs=epochs,\n", + " callbacks=[early_stopping_cb])\n", + " valid_loss, valid_mae = model.evaluate(valid_set)\n", + " return valid_mae * 1e6" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Dv1Vx7fnnU0J", + "outputId": "24fbf80e-8aff-4773-e269-87b18f8c341d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/500\n", + "33/33 [==============================] - 1s 11ms/step - loss: 0.0219 - mae: 0.1637 - val_loss: 0.0195 - val_mae: 0.1394\n", + "Epoch 2/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0170 - mae: 0.1553 - val_loss: 0.0179 - val_mae: 0.1482\n", + "Epoch 3/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0166 - mae: 0.1555 - val_loss: 0.0176 - val_mae: 0.1501\n", + "Epoch 4/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0164 - mae: 0.1558 - val_loss: 0.0173 - val_mae: 0.1534\n", + "Epoch 5/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0163 - mae: 0.1572 - val_loss: 0.0172 - val_mae: 0.1479\n", + "Epoch 6/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0162 - mae: 0.1555 - val_loss: 0.0170 - val_mae: 0.1496\n", + "Epoch 7/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0162 - mae: 0.1556 - val_loss: 0.0168 - val_mae: 0.1552\n", + "Epoch 8/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0161 - mae: 0.1580 - val_loss: 0.0169 - val_mae: 0.1448\n", + "Epoch 9/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0160 - mae: 0.1563 - val_loss: 0.0168 - val_mae: 0.1451\n", + "Epoch 10/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0159 - mae: 0.1562 - val_loss: 0.0167 - val_mae: 0.1454\n", + "Epoch 11/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0159 - mae: 0.1564 - val_loss: 0.0164 - val_mae: 0.1491\n", + "Epoch 12/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0158 - mae: 0.1559 - val_loss: 0.0165 - val_mae: 0.1445\n", + "Epoch 13/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0158 - mae: 0.1556 - val_loss: 0.0162 - val_mae: 0.1514\n", + "Epoch 14/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0157 - mae: 0.1564 - val_loss: 0.0162 - val_mae: 0.1533\n", + "Epoch 15/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0157 - mae: 0.1553 - val_loss: 0.0165 - val_mae: 0.1420\n", + "Epoch 16/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0158 - mae: 0.1562 - val_loss: 0.0164 - val_mae: 0.1425\n", + "Epoch 17/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0156 - mae: 0.1570 - val_loss: 0.0164 - val_mae: 0.1407\n", + "Epoch 18/500\n", + "<<687 more lines>>\n", + "Epoch 362/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0103 - mae: 0.1130 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 363/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0103 - mae: 0.1128 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 364/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0104 - mae: 0.1131 - val_loss: 0.0102 - val_mae: 0.1029\n", + "Epoch 365/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1133 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 366/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1128 - val_loss: 0.0103 - val_mae: 0.1028\n", + "Epoch 367/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0103 - mae: 0.1129 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 368/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1135 - val_loss: 0.0102 - val_mae: 0.1030\n", + "Epoch 369/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0103 - mae: 0.1129 - val_loss: 0.0103 - val_mae: 0.1028\n", + "Epoch 370/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1129 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 371/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0103 - mae: 0.1130 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 372/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0103 - mae: 0.1131 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 373/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0104 - mae: 0.1132 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 374/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1130 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 375/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1132 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 376/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1134 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 377/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1131 - val_loss: 0.0103 - val_mae: 0.1029\n", + "Epoch 378/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0103 - mae: 0.1128 - val_loss: 0.0103 - val_mae: 0.1029\n", + "3/3 [==============================] - 0s 3ms/step - loss: 0.0103 - mae: 0.1028\n" + ] + }, + { + "data": { + "text/plain": [ + "102786.95076704025" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fit_and_evaluate(model, train_ds, valid_ds, learning_rate=0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FghhlLfknU0K" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "univar_model = tf.keras.Sequential([\n", + " tf.keras.layers.SimpleRNN(32, input_shape=[None, 1]),\n", + " tf.keras.layers.Dense(1) # no activation function by default\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ctOHKXu5nU0L", + "outputId": "db999cfd-d8bd-4cbe-be01-2bce08fd5a23" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/500\n", + "33/33 [==============================] - 1s 13ms/step - loss: 0.0489 - mae: 0.2061 - val_loss: 0.0060 - val_mae: 0.0854\n", + "Epoch 2/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0060 - mae: 0.0813 - val_loss: 0.0052 - val_mae: 0.0825\n", + "Epoch 3/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0042 - mae: 0.0647 - val_loss: 0.0041 - val_mae: 0.0656\n", + "Epoch 4/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0041 - mae: 0.0636 - val_loss: 0.0042 - val_mae: 0.0714\n", + "Epoch 5/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0039 - mae: 0.0595 - val_loss: 0.0023 - val_mae: 0.0387\n", + "Epoch 6/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0033 - mae: 0.0542 - val_loss: 0.0026 - val_mae: 0.0423\n", + "Epoch 7/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0502 - val_loss: 0.0021 - val_mae: 0.0354\n", + "Epoch 8/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0030 - mae: 0.0500 - val_loss: 0.0020 - val_mae: 0.0345\n", + "Epoch 9/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0033 - mae: 0.0539 - val_loss: 0.0050 - val_mae: 0.0825\n", + "Epoch 10/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0034 - mae: 0.0573 - val_loss: 0.0023 - val_mae: 0.0399\n", + "Epoch 11/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0030 - mae: 0.0493 - val_loss: 0.0022 - val_mae: 0.0377\n", + "Epoch 12/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0029 - mae: 0.0478 - val_loss: 0.0019 - val_mae: 0.0328\n", + "Epoch 13/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0028 - mae: 0.0460 - val_loss: 0.0024 - val_mae: 0.0404\n", + "Epoch 14/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0029 - mae: 0.0487 - val_loss: 0.0022 - val_mae: 0.0371\n", + "Epoch 15/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0029 - mae: 0.0469 - val_loss: 0.0019 - val_mae: 0.0306\n", + "Epoch 16/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0027 - mae: 0.0465 - val_loss: 0.0019 - val_mae: 0.0348\n", + "Epoch 17/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0029 - mae: 0.0485 - val_loss: 0.0024 - val_mae: 0.0426\n", + "Epoch 18/500\n", + "<<201 more lines>>\n", + "Epoch 119/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0024 - mae: 0.0428 - val_loss: 0.0020 - val_mae: 0.0334\n", + "Epoch 120/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0024 - mae: 0.0423 - val_loss: 0.0019 - val_mae: 0.0362\n", + "Epoch 121/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0023 - mae: 0.0408 - val_loss: 0.0019 - val_mae: 0.0356\n", + "Epoch 122/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0023 - mae: 0.0397 - val_loss: 0.0020 - val_mae: 0.0395\n", + "Epoch 123/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0024 - mae: 0.0429 - val_loss: 0.0017 - val_mae: 0.0297\n", + "Epoch 124/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0025 - mae: 0.0437 - val_loss: 0.0019 - val_mae: 0.0359\n", + "Epoch 125/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0024 - mae: 0.0430 - val_loss: 0.0017 - val_mae: 0.0305\n", + "Epoch 126/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0023 - mae: 0.0399 - val_loss: 0.0021 - val_mae: 0.0409\n", + "Epoch 127/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0023 - mae: 0.0411 - val_loss: 0.0018 - val_mae: 0.0314\n", + "Epoch 128/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0023 - mae: 0.0394 - val_loss: 0.0021 - val_mae: 0.0392\n", + "Epoch 129/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0023 - mae: 0.0416 - val_loss: 0.0017 - val_mae: 0.0329\n", + "Epoch 130/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0023 - mae: 0.0418 - val_loss: 0.0020 - val_mae: 0.0389\n", + "Epoch 131/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0023 - mae: 0.0398 - val_loss: 0.0017 - val_mae: 0.0297\n", + "Epoch 132/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0023 - mae: 0.0415 - val_loss: 0.0018 - val_mae: 0.0333\n", + "Epoch 133/500\n", + "33/33 [==============================] - 0s 12ms/step - loss: 0.0023 - mae: 0.0398 - val_loss: 0.0019 - val_mae: 0.0319\n", + "Epoch 134/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0023 - mae: 0.0401 - val_loss: 0.0019 - val_mae: 0.0333\n", + "Epoch 135/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0022 - mae: 0.0384 - val_loss: 0.0020 - val_mae: 0.0398\n", + "3/3 [==============================] - 0s 6ms/step - loss: 0.0018 - mae: 0.0290\n" + ] + }, + { + "data": { + "text/plain": [ + "29014.97296988964" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – compiles, fits, and evaluates the model, like earlier\n", + "fit_and_evaluate(univar_model, train_ds, valid_ds, learning_rate=0.05)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZdYPD4atnU0M" + }, + "source": [ + "## Deep RNNs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "QsPivmsOnU0M" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "deep_model = tf.keras.Sequential([\n", + " tf.keras.layers.SimpleRNN(32, return_sequences=True, input_shape=[None, 1]),\n", + " tf.keras.layers.SimpleRNN(32, return_sequences=True),\n", + " tf.keras.layers.SimpleRNN(32),\n", + " tf.keras.layers.Dense(1)\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4EYqrB9EnU0M", + "outputId": "a7facc7e-b2c8-4a65-9376-a29b0b613c86" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/500\n", + "33/33 [==============================] - 2s 32ms/step - loss: 0.0393 - mae: 0.2109 - val_loss: 0.0085 - val_mae: 0.1110\n", + "Epoch 2/500\n", + "33/33 [==============================] - 1s 25ms/step - loss: 0.0068 - mae: 0.0858 - val_loss: 0.0032 - val_mae: 0.0629\n", + "Epoch 3/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0055 - mae: 0.0750 - val_loss: 0.0035 - val_mae: 0.0638\n", + "Epoch 4/500\n", + "33/33 [==============================] - 1s 27ms/step - loss: 0.0048 - mae: 0.0678 - val_loss: 0.0021 - val_mae: 0.0429\n", + "Epoch 5/500\n", + "33/33 [==============================] - 1s 27ms/step - loss: 0.0043 - mae: 0.0606 - val_loss: 0.0020 - val_mae: 0.0408\n", + "Epoch 6/500\n", + "33/33 [==============================] - 1s 27ms/step - loss: 0.0042 - mae: 0.0591 - val_loss: 0.0027 - val_mae: 0.0502\n", + "Epoch 7/500\n", + "33/33 [==============================] - 1s 25ms/step - loss: 0.0045 - mae: 0.0635 - val_loss: 0.0025 - val_mae: 0.0469\n", + "Epoch 8/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0042 - mae: 0.0592 - val_loss: 0.0027 - val_mae: 0.0498\n", + "Epoch 9/500\n", + "33/33 [==============================] - 1s 26ms/step - loss: 0.0039 - mae: 0.0555 - val_loss: 0.0034 - val_mae: 0.0619\n", + "Epoch 10/500\n", + "33/33 [==============================] - 1s 25ms/step - loss: 0.0041 - mae: 0.0590 - val_loss: 0.0022 - val_mae: 0.0400\n", + "Epoch 11/500\n", + "33/33 [==============================] - 1s 25ms/step - loss: 0.0037 - mae: 0.0526 - val_loss: 0.0022 - val_mae: 0.0408\n", + "Epoch 12/500\n", + "33/33 [==============================] - 1s 26ms/step - loss: 0.0037 - mae: 0.0543 - val_loss: 0.0019 - val_mae: 0.0349\n", + "Epoch 13/500\n", + "33/33 [==============================] - 1s 23ms/step - loss: 0.0034 - mae: 0.0493 - val_loss: 0.0019 - val_mae: 0.0334\n", + "Epoch 14/500\n", + "33/33 [==============================] - 1s 23ms/step - loss: 0.0035 - mae: 0.0505 - val_loss: 0.0020 - val_mae: 0.0341\n", + "Epoch 15/500\n", + "33/33 [==============================] - 1s 23ms/step - loss: 0.0034 - mae: 0.0494 - val_loss: 0.0020 - val_mae: 0.0360\n", + "Epoch 16/500\n", + "33/33 [==============================] - 1s 23ms/step - loss: 0.0033 - mae: 0.0496 - val_loss: 0.0027 - val_mae: 0.0474\n", + "Epoch 17/500\n", + "33/33 [==============================] - 1s 23ms/step - loss: 0.0037 - mae: 0.0559 - val_loss: 0.0020 - val_mae: 0.0332\n", + "Epoch 18/500\n", + "<<103 more lines>>\n", + "Epoch 70/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0026 - mae: 0.0422 - val_loss: 0.0022 - val_mae: 0.0363\n", + "Epoch 71/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0027 - mae: 0.0458 - val_loss: 0.0019 - val_mae: 0.0321\n", + "Epoch 72/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0025 - mae: 0.0413 - val_loss: 0.0020 - val_mae: 0.0335\n", + "Epoch 73/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0026 - mae: 0.0435 - val_loss: 0.0021 - val_mae: 0.0354\n", + "Epoch 74/500\n", + "33/33 [==============================] - 1s 25ms/step - loss: 0.0026 - mae: 0.0436 - val_loss: 0.0021 - val_mae: 0.0357\n", + "Epoch 75/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0026 - mae: 0.0432 - val_loss: 0.0021 - val_mae: 0.0347\n", + "Epoch 76/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0025 - mae: 0.0421 - val_loss: 0.0027 - val_mae: 0.0477\n", + "Epoch 77/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0027 - mae: 0.0444 - val_loss: 0.0019 - val_mae: 0.0320\n", + "Epoch 78/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0028 - mae: 0.0468 - val_loss: 0.0019 - val_mae: 0.0318\n", + "Epoch 79/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0027 - mae: 0.0466 - val_loss: 0.0021 - val_mae: 0.0366\n", + "Epoch 80/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0026 - mae: 0.0442 - val_loss: 0.0025 - val_mae: 0.0454\n", + "Epoch 81/500\n", + "33/33 [==============================] - 1s 25ms/step - loss: 0.0026 - mae: 0.0438 - val_loss: 0.0019 - val_mae: 0.0313\n", + "Epoch 82/500\n", + "33/33 [==============================] - 1s 26ms/step - loss: 0.0025 - mae: 0.0419 - val_loss: 0.0020 - val_mae: 0.0350\n", + "Epoch 83/500\n", + "33/33 [==============================] - 1s 27ms/step - loss: 0.0026 - mae: 0.0438 - val_loss: 0.0021 - val_mae: 0.0391\n", + "Epoch 84/500\n", + "33/33 [==============================] - 1s 27ms/step - loss: 0.0027 - mae: 0.0446 - val_loss: 0.0019 - val_mae: 0.0325\n", + "Epoch 85/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0027 - mae: 0.0456 - val_loss: 0.0019 - val_mae: 0.0318\n", + "Epoch 86/500\n", + "33/33 [==============================] - 1s 24ms/step - loss: 0.0025 - mae: 0.0419 - val_loss: 0.0021 - val_mae: 0.0372\n", + "3/3 [==============================] - 0s 9ms/step - loss: 0.0019 - mae: 0.0312\n" + ] + }, + { + "data": { + "text/plain": [ + "31211.024150252342" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – compiles, fits, and evaluates the model, like earlier\n", + "fit_and_evaluate(deep_model, train_ds, valid_ds, learning_rate=0.01)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ODHNQykZnU0N" + }, + "source": [ + "## Multivariate time series" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pR8ITQO_nU0N" + }, + "outputs": [], + "source": [ + "df_mulvar = df[[\"bus\", \"rail\"]]/ 1e6 #use both bus and rail as series as input\n", + "df_mulvar[\"next_day_type\"] = df[\"day_type\"].shift(-1) # one-hot encode the day type\n", + "df_mulvar = pd.get_dummies(df_mulvar, dtype=int) # one-hot encode the day type\n", + "df_mulvar = df_mulvar.astype('float32') # one-hot encode the day type" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7ANb0CqGnU0N" + }, + "outputs": [], + "source": [ + "mulvar_train = df_mulvar[\"2016-01\":\"2018-12\"]\n", + "mulvar_valid = df_mulvar[\"2019-01\":\"2019-05\"]\n", + "mulvar_test = df_mulvar[\"2019-06\":]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yEZPaUVwnU0O" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "\n", + "train_mulvar_ds = tf.keras.utils.timeseries_dataset_from_array(\n", + " mulvar_train.to_numpy(), # use all 5 columns as input\n", + " targets=mulvar_train[\"rail\"][seq_length:], # forecast only the rail series\n", + " sequence_length=seq_length,\n", + " batch_size=32,\n", + " shuffle=True,\n", + " seed=42\n", + ")\n", + "valid_mulvar_ds = tf.keras.utils.timeseries_dataset_from_array(\n", + " mulvar_valid.to_numpy(),\n", + " targets=mulvar_valid[\"rail\"][seq_length:],\n", + " sequence_length=seq_length,\n", + " batch_size=32\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DjDtp4XsnU0O" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "mulvar_model = tf.keras.Sequential([\n", + " tf.keras.layers.SimpleRNN(32, input_shape=[None, 5]),\n", + " tf.keras.layers.Dense(1)\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "G4QC81zAnU0O", + "outputId": "73ce9ee0-7787-457e-bf12-071b88c21a9e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/500\n", + "33/33 [==============================] - 1s 17ms/step - loss: 0.0386 - mae: 0.1872 - val_loss: 0.0011 - val_mae: 0.0346\n", + "Epoch 2/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0029 - mae: 0.0585 - val_loss: 0.0040 - val_mae: 0.0790\n", + "Epoch 3/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0018 - mae: 0.0435 - val_loss: 7.7056e-04 - val_mae: 0.0273\n", + "Epoch 4/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0017 - mae: 0.0407 - val_loss: 0.0010 - val_mae: 0.0362\n", + "Epoch 5/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0015 - mae: 0.0386 - val_loss: 8.1681e-04 - val_mae: 0.0306\n", + "Epoch 6/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0372 - val_loss: 0.0011 - val_mae: 0.0380\n", + "Epoch 7/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0014 - mae: 0.0366 - val_loss: 7.9942e-04 - val_mae: 0.0289\n", + "Epoch 8/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0013 - mae: 0.0344 - val_loss: 6.9211e-04 - val_mae: 0.0271\n", + "Epoch 9/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0015 - mae: 0.0374 - val_loss: 8.2185e-04 - val_mae: 0.0299\n", + "Epoch 10/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0014 - mae: 0.0363 - val_loss: 0.0017 - val_mae: 0.0494\n", + "Epoch 11/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0013 - mae: 0.0357 - val_loss: 0.0016 - val_mae: 0.0473\n", + "Epoch 12/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0013 - mae: 0.0337 - val_loss: 8.0260e-04 - val_mae: 0.0287\n", + "Epoch 13/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0013 - mae: 0.0349 - val_loss: 0.0011 - val_mae: 0.0389\n", + "Epoch 14/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0363 - val_loss: 6.3723e-04 - val_mae: 0.0245\n", + "Epoch 15/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0012 - mae: 0.0340 - val_loss: 6.2749e-04 - val_mae: 0.0255\n", + "Epoch 16/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0013 - mae: 0.0342 - val_loss: 0.0020 - val_mae: 0.0549\n", + "Epoch 17/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0332 - val_loss: 7.3463e-04 - val_mae: 0.0275\n", + "Epoch 18/500\n", + "<<181 more lines>>\n", + "Epoch 109/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0319 - val_loss: 6.3961e-04 - val_mae: 0.0244\n", + "Epoch 110/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0354 - val_loss: 0.0013 - val_mae: 0.0433\n", + "Epoch 111/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0010 - mae: 0.0307 - val_loss: 7.3263e-04 - val_mae: 0.0281\n", + "Epoch 112/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0014 - mae: 0.0377 - val_loss: 7.8642e-04 - val_mae: 0.0293\n", + "Epoch 113/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0340 - val_loss: 0.0013 - val_mae: 0.0415\n", + "Epoch 114/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0344 - val_loss: 0.0011 - val_mae: 0.0376\n", + "Epoch 115/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0314 - val_loss: 0.0010 - val_mae: 0.0344\n", + "Epoch 116/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0013 - mae: 0.0374 - val_loss: 7.2942e-04 - val_mae: 0.0264\n", + "Epoch 117/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0336 - val_loss: 0.0011 - val_mae: 0.0393\n", + "Epoch 118/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0392 - val_loss: 0.0015 - val_mae: 0.0455\n", + "Epoch 119/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0369 - val_loss: 0.0011 - val_mae: 0.0363\n", + "Epoch 120/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0348 - val_loss: 0.0011 - val_mae: 0.0372\n", + "Epoch 121/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0316 - val_loss: 0.0012 - val_mae: 0.0408\n", + "Epoch 122/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0330 - val_loss: 0.0022 - val_mae: 0.0583\n", + "Epoch 123/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0402 - val_loss: 0.0014 - val_mae: 0.0438\n", + "Epoch 124/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0392 - val_loss: 8.6813e-04 - val_mae: 0.0323\n", + "Epoch 125/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0319 - val_loss: 6.3585e-04 - val_mae: 0.0243\n", + "3/3 [==============================] - 0s 4ms/step - loss: 5.6491e-04 - mae: 0.0221\n" + ] + }, + { + "data": { + "text/plain": [ + "22062.301635742188" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – compiles, fits, and evaluates the model, like earlier\n", + "fit_and_evaluate(mulvar_model, train_mulvar_ds, valid_mulvar_ds,\n", + " learning_rate=0.05)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GsxaywDznU0P", + "outputId": "7b8360ec-ac65-4c30-f10b-a5bd6670f455" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/500\n", + "33/33 [==============================] - 1s 13ms/step - loss: 0.0398 - mae: 0.1953 - val_loss: 0.0073 - val_mae: 0.0998\n", + "Epoch 2/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0039 - mae: 0.0632 - val_loss: 0.0012 - val_mae: 0.0384\n", + "Epoch 3/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0027 - mae: 0.0509 - val_loss: 0.0010 - val_mae: 0.0362\n", + "Epoch 4/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0024 - mae: 0.0488 - val_loss: 0.0018 - val_mae: 0.0491\n", + "Epoch 5/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0023 - mae: 0.0473 - val_loss: 0.0012 - val_mae: 0.0372\n", + "Epoch 6/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0022 - mae: 0.0463 - val_loss: 0.0011 - val_mae: 0.0361\n", + "Epoch 7/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0019 - mae: 0.0442 - val_loss: 8.8553e-04 - val_mae: 0.0322\n", + "Epoch 8/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0018 - mae: 0.0427 - val_loss: 9.3772e-04 - val_mae: 0.0339\n", + "Epoch 9/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0017 - mae: 0.0411 - val_loss: 9.0027e-04 - val_mae: 0.0324\n", + "Epoch 10/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0019 - mae: 0.0440 - val_loss: 0.0014 - val_mae: 0.0427\n", + "Epoch 11/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0017 - mae: 0.0415 - val_loss: 0.0021 - val_mae: 0.0546\n", + "Epoch 12/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0017 - mae: 0.0412 - val_loss: 8.3458e-04 - val_mae: 0.0311\n", + "Epoch 13/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0016 - mae: 0.0399 - val_loss: 8.2083e-04 - val_mae: 0.0311\n", + "Epoch 14/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0015 - mae: 0.0391 - val_loss: 0.0010 - val_mae: 0.0358\n", + "Epoch 15/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0016 - mae: 0.0407 - val_loss: 0.0011 - val_mae: 0.0361\n", + "Epoch 16/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0378 - val_loss: 0.0012 - val_mae: 0.0380\n", + "Epoch 17/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0015 - mae: 0.0394 - val_loss: 9.6802e-04 - val_mae: 0.0346\n", + "Epoch 18/500\n", + "<<215 more lines>>\n", + "Epoch 126/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0317 - val_loss: 6.8940e-04 - val_mae: 0.0271\n", + "Epoch 127/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0328 - val_loss: 0.0013 - val_mae: 0.0412\n", + "Epoch 128/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0012 - mae: 0.0344 - val_loss: 7.6342e-04 - val_mae: 0.0292\n", + "Epoch 129/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0328 - val_loss: 8.3261e-04 - val_mae: 0.0311\n", + "Epoch 130/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0011 - mae: 0.0316 - val_loss: 6.7921e-04 - val_mae: 0.0263\n", + "Epoch 131/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0320 - val_loss: 7.7970e-04 - val_mae: 0.0297\n", + "Epoch 132/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0334 - val_loss: 7.4201e-04 - val_mae: 0.0286\n", + "Epoch 133/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0330 - val_loss: 9.3328e-04 - val_mae: 0.0339\n", + "Epoch 134/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0011 - mae: 0.0322 - val_loss: 6.9349e-04 - val_mae: 0.0267\n", + "Epoch 135/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0011 - mae: 0.0317 - val_loss: 6.6078e-04 - val_mae: 0.0261\n", + "Epoch 136/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0011 - mae: 0.0322 - val_loss: 9.1503e-04 - val_mae: 0.0322\n", + "Epoch 137/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0327 - val_loss: 6.7553e-04 - val_mae: 0.0261\n", + "Epoch 138/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0010 - mae: 0.0311 - val_loss: 7.1123e-04 - val_mae: 0.0276\n", + "Epoch 139/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0011 - mae: 0.0317 - val_loss: 6.7194e-04 - val_mae: 0.0260\n", + "Epoch 140/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0012 - mae: 0.0342 - val_loss: 0.0010 - val_mae: 0.0361\n", + "Epoch 141/500\n", + "33/33 [==============================] - 0s 13ms/step - loss: 0.0011 - mae: 0.0325 - val_loss: 7.6832e-04 - val_mae: 0.0293\n", + "Epoch 142/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0011 - mae: 0.0324 - val_loss: 6.7870e-04 - val_mae: 0.0264\n", + "3/3 [==============================] - 0s 5ms/step - loss: 6.5248e-04 - mae: 0.0259\n" + ] + }, + { + "data": { + "text/plain": [ + "25850.363075733185" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – build and train a multitask RNN that forecasts both bus and rail\n", + "\n", + "tf.random.set_seed(42)\n", + "\n", + "seq_length = 56\n", + "train_multask_ds = tf.keras.utils.timeseries_dataset_from_array(\n", + " mulvar_train.to_numpy(),\n", + " targets=mulvar_train[[\"bus\", \"rail\"]][seq_length:], # 2 targets per day\n", + " sequence_length=seq_length,\n", + " batch_size=32,\n", + " shuffle=True,\n", + " seed=42\n", + ")\n", + "valid_multask_ds = tf.keras.utils.timeseries_dataset_from_array(\n", + " mulvar_valid.to_numpy(),\n", + " targets=mulvar_valid[[\"bus\", \"rail\"]][seq_length:],\n", + " sequence_length=seq_length,\n", + " batch_size=32\n", + ")\n", + "\n", + "tf.random.set_seed(42)\n", + "multask_model = tf.keras.Sequential([\n", + " tf.keras.layers.SimpleRNN(32, input_shape=[None, 5]),\n", + " tf.keras.layers.Dense(2)\n", + "])\n", + "\n", + "fit_and_evaluate(multask_model, train_multask_ds, valid_multask_ds,\n", + " learning_rate=0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oEQT4UcfnU0P", + "outputId": "83fe7100-eaca-44a3-aa71-86cf62457c31" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "43441.63157894738" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – evaluates the naive forecasts for bus\n", + "bus_naive = mulvar_valid[\"bus\"].shift(7)[seq_length:]\n", + "bus_target = mulvar_valid[\"bus\"][seq_length:]\n", + "(bus_target - bus_naive).abs().mean() * 1e6" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4eTyuKS6nU0Q", + "outputId": "12329332-731b-4aba-e556-19e10c6a47e8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bus 26369\n", + "rail 25330\n" + ] + } + ], + "source": [ + "# extra code – evaluates the multitask RNN's forecasts both bus and rail\n", + "Y_preds_valid = multask_model.predict(valid_multask_ds)\n", + "for idx, name in enumerate([\"bus\", \"rail\"]):\n", + " mae = 1e6 * tf.keras.metrics.mean_absolute_error(\n", + " mulvar_valid[name][seq_length:], Y_preds_valid[:, idx])\n", + " print(name, int(mae))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FM3LegmZnU0Q" + }, + "source": [ + "## Forecasting Several Steps Ahead" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [], + "id": "5uwNUqFhnU0Q" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "X = rail_valid.to_numpy()[np.newaxis, :seq_length, np.newaxis]\n", + "for step_ahead in range(14):\n", + " y_pred_one = univar_model.predict(X)\n", + " X = np.concatenate([X, y_pred_one.reshape(1, 1, 1)], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "CEpi8jVBnU0R", + "outputId": "10d729d4-4a0f-420f-97da-0ae4291d6579" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAADsCAYAAABqkpwSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB2LUlEQVR4nO2dd3gcxd2A37k76VROvVuyJUuy5YaxMbjQLDAdHJPQnFC/ACa0BAIxJSS0kNACoQQSWkwLxPSSmGqLauOCDe6WLMlWs2X1Xu5uvj92Tz7J6rqueZ/nnrubnZmdXZ12f/urQkqJQqFQKBQKhT9h8PYCFAqFQqFQKIaKEmAUCoVCoVD4HUqAUSgUCoVC4XcoAUahUCgUCoXfoQQYhUKhUCgUfocSYBQKhUKhUPgdgxJghBA3CiG2CiG2CCFeE0KECCFihRCfCiHy9fcYp/63CSEKhBA7hRCnOrXPEkJs1rc9LoQQertZCPEfvf07IUSG05hL9X3kCyEudeGxKxQKhUKh8FMGFGCEEKnAr4EjpZTTACOwGLgV+FxKOQH4XP+OEGKKvn0qcBrwlBDCqE/3NLAEmKC/TtPbLwdqpZTZwKPAA/pcscCdwBxgNnCns6CkUCgUCoVidDJYE5IJCBVCmIAwoBxYBLyob38ROFv/vAh4XUrZLqUsAgqA2UKIFCBSSrlaatnzXuoxxjHXm8ACXTtzKvCplLJGSlkLfMpBoUehUCgUCsUoZUABRkpZBjwM7AUqgHop5SdAkpSyQu9TASTqQ1KBEqcpSvW2VP1zz/ZuY6SUVqAeiOtnLoVCoVAoFKMY00AddJPNImA8UAe8IYS4qL8hvbTJftqHO8Z5jUvQTFOEhITMGjduXD/LUygUCv+kpaUFgLCwMC+vxHXY7XYMBhVPMtrZtWtXlZQyYShjBhRggJOAIinlAQAhxNvA0cB+IUSKlLJCNw9V6v1LgbFO49PQTE6l+uee7c5jSnUzVRRQo7fn9hiT13OBUspngGcAcnJy5M6dOwdxWAqFQuFf5ObmApCXl+fVdbiSvLy8ruNSjF6EEHuGOmYwYu9eYK4QIkz3S1kAbAfeBxxRQZcC7+mf3wcW65FF49GcddfqZqZGIcRcfZ5LeoxxzHUusFL3k/kYOEUIEaNrgk7R2xQKhUKhUIxiBtTASCm/E0K8CXwPWIGNaNoOC7BcCHE5mpBznt5/qxBiObBN73+tlNKmT3c1sAwIBVboL4DngZeFEAVompfF+lw1Qoh7gXV6v3uklDUjOmKFQqFQKBR+z2BMSEgp70QLZ3amHU0b01v/+4D7emlfD0zrpb0NXQDqZdsLwAuDWadCoVAoFIrRgfKcUigUCoVC4XcMSgOjUCgUCu/zz3/+09tLUCh8BiXAKBQKhZ+Qk5Pj7SUoFD6DMiEpFAqFn/DBBx/wwQcfeHsZCoVPoDQwCoVC4Sf89a9/BWDhwoVeXolC4X2UBkahUCgUCoXfoQQYhcKDbNhTy99XFbBhT623l6JQKBR+jRJgFAoPsa64hp8/s4aHP97Jhc+uUUKMQqEYGg8+CKtWdW9btUprH4UoAUahcCN2u2RtUQ13vreFy15YS4fNjgTarHa+KTjg7eUpFApvMRxh5Kij4PzzD45btUr7ftRR7lunD6OceH2YDXtqWVNYzdzMOGalx3h7OYpBIqXk+711/PfHCv63uYJ9DW2YTQZmjotmw55arDaJBNbsruG6EyQGQ29F1xWKQ3n55Ze9vQSFq3AII/ffD4cdBmvXwh13wF13aYKJzaa97Pbun6+9Fs4+G66+Gp5/HpYvhxNO8PbReAUlwPgoa4uquei5tXTa7JiMgjvPmsoJkxNJijBjMrpWcaYJSlXMzYxXgtIwkVLyY2k9H/5Yzv8276OsrpVgo4H5OQncNn0SCyYnYTGbuoTS/Q1tvLR6D/d8uI07F05Bq2+qUPTP2LFjvb0ExUhoaYHvvoOvvtJeTU1wxRXd+9x44+DmeuABWLBg1GpfQAkwPkVtcwdf7DrAyh2VfLx1Hx02OwCdNskd722B98BoECRHhpAaE0padCipMaGkOr3vb2jj+711zBkfS2aChaqmdqqa2qlu6qC6qZ2qpg6qm/X3pnbK61rZ19AOQLCxgNeWzFVCzCDZsKeW9zeVUd9qZcPeGkpqWgkyCo6bkMBNp0zkpClJRIYEdRszKz2GWekxSCkJMhp4/usikiJDuDo3y0tH4R08pV0MNC3mf/7zHwAuuOACL6/EiQcf1G6izlqAVatg3TpYutR76/IkfZ2DL7+EWbMOCizr10NnJwihaV0uvxzKyuDdd+HnP4f/+z8wGMBo1F69fd6wAW66CeLi4PPPITUVfv97uOYasFi8dgq8gRJgvIiUkm0VDazaUcnKHZVsKqnDLiEuPJh5mXF8s7sKu11iMhpYeloOYcEmSmtbKKttpayulTWF1exraMMuB79Pg4DYcDPxlmDiLWZiwoPZ39COBDpsdr7cdSAgLvTu5r8/lnP9axu7zv2MsdFcf+IETp2STFRYUP+DASEEvz9jMgca23ngox0kRJg5d1aam1ftG2zYU8vPn12D1WYn2GTg1StcJzTXt3SytbyezWX1fJlfxbe7q0CC2WTg1Sv9Xzh/+umnATcKMMMRRg4/HM49Fx57DC68EPLyNNPI8uXuWaMv4jAH/eMfYLXCa6/Bhx9qZh+AoCA48kj47W/huOPg6KMhJuagD8sf/gBPPw1XXtm/OWjVKrj1VnjnHa3fk09qc95yCzz0kPY3uuYaCA/3zHF7GSXAeAjHk+CMsdE0tVvJ21nJqh0H2NfQBsBhqVFcd+IETpyUyPTUKAwGMainx06bnX31bZTVtfLSt8Ws2LIPCQjgxEmJnD0zlXiLJrDEWcxEhwZ187nYsKeWC59bQ4fVjl3C1vJ6D5wN/6WxrZMnVxbw7FeFXcKLUcDJU5I4/8ihqfcNBsHD5x1OTXMHt7z1I3GWYE7ISXTDqn2LN9aX0GHVtIttnXZ+9fJ6jhofS2a8hcyEcDITtPee2que/w9VTe1sKatna3kDW8rq2VJeT0lNa1f/yBATUv8btVntPPjRDp74xUwSI0I8dqx+h+NGfO+9MHYsfP01PPGE5nNxzTVQXX3oq6VFG3vxxXDDDdDWpt3AR5NfRm4uXHCBJsg5mDULFi3SBJbZsyEsrPsYh/Di8GE54YTu33tj3bru26+7DqZOhTffhN27NQHmwQdHjSAjpBzC47sfkJOTI3fu3OntZXRjw55afvHsGtr1izaAxWziuAnxnDApkdycBJdcVB3CSKfVTtAQnmwdN4aCyibe2VjGc5ccyUlTkka8nkDCZpe8uaGEhz7eSVVTByfmJPDN7mqstqGd695obOtk8TNrKDzQzGtL5jJjbLRrF+9j3LR8E299X4ZAE+JmjI2mprmDvTUt2JzUifEWM5nx4WQmhBNsMvDa2r1YbRIhICYsmOrmjq6+6XFhTBsTxdTUSA5LjWLqmCiKqpq7hHMAKSHIZOCcI9JYcnwm4+P97+Kem5sLQF5enusmbW/X/DK++ELTnnz9NXR0dO9jMGgag7i4Pl/1r79JVN5nWv+wMLjoIs3RdMaMfnefl5fXdVx+SUeH5lj73HMwcSLs2qWZdP70p/7HucP0tno13H03fPwxxMdr87S3wzHH+LyJTwixQUp55JDGKAHG/fx9VQEPf7yzSzNy/pFp3Hv2YQSbXB/FPhKbf7vVxqInv6GqqZ2PbzieOIvZ5evzR9YW1XDPh1vZUtbArPQY7lw4help0S71r6hsbOOcp7+lud3GW1cf7Zc318Hy06e+oaXDxk8OH9Pt3HVY7eytaaHwQBOFVc3a+4FmCquaqWnufkOdnBLBz2amMTU1kqljoogK7d1s5/w3igsP5pmvCnlzQymdNjunT0vmV/OzmJ4W7e5DdhlDEmD6ukF++612Q8vL04SW1au1m5wQMH065OZSs6uI2BXvU/qLXyLvuYcGcxhNHXaaO6w0tllparfSpL83tlkJ/foLrnjyNl6deQaXfv8BzJ1H1HffQGurZi655hpNO2E+9Jri1wJMVZV2XF98oZnPPv5YE9qeftqt0UEDXnu+/VYTZD75BKKiNLPW8uVwxhmHan58BLcIMEKIHOA/Tk2ZwB+Bl/T2DKAYOF9KWauPuQ24HLABv5ZSfqy3zwKWAaHA/4DfSCmlEMKszzcLqAYukFIW62MuBe7Q9/0nKeWL/a3XFwWYDXtqueCfq7HaJSE+bovfXtHAoie/4cRJiTx90RGjOjqmrK6Vv/xvOx/+WEFKVAi3nTGZhdNT3HZOiqqaOefpbwk3G3nr6qMD0tTR1G7l8Ls/4er5Wdx86uArK3+xs5IrX96AzQUar8rGNpZ9U8zLa/bQ2Gbl6Kw4fjU/i+MmxPv8731IAozjRvXSSxAcDC++CK+/rqmirFZNYJk5E+bPp3XeMWxMP4w1dZIDH3zEzc//kVdmnsFFG//HdYtuZXX69F53YRBwQvlWHnrzz1z7k1tYnT6deXt+5Pn/PUTYy8ugsBCeegry8zWNwBVXwFVXaTdPXbjqEmB8UCvQL1u3wk9+ojnh3nQTPPPMQaFgkEJCp83OmxtKWV9cQ3pcOMmRITS1W2npsNLUbqOlw0pzu43mdivNHVZaOmxUNbazt0Yz2w3o2+UsyAihaYpef93nhBfwgAZGCGEEyoA5wLVAjZTyfiHErUCMlPIWIcQU4DVgNjAG+AyYKKW0CSHWAr8B1qAJMI9LKVcIIa4BpkspfyWEWAz8VEp5gRAiFlgPHAlIYAMwyyEo9YYvCjAA17y6gc+2VfpFlM8/vtjN/St28Mj5h/OzI/zPsXRDcQ0fbd3HvKw4TshJHPJNqaXDyj++KOSfX+xGCLjq+Cx+NT+L0GCjm1Z8kB9K6lj8zBoyE8J5fclcIkIGdgj2J1btqOT/lq3j31fM4ejs+CGNdXVEUWNbJ//+bi/Pf11EZWM7U8dEctX8LJIjzawrrvXJyKWqqioA4uMHee4efxx+85uD3ydOhIULqT3qaL5LncyaGjvrimvYXtGAXcIxJT/y5LsPcI2TMPLMfx9k+9+eo/P4+VjMJiwhJiL099AgI+Khh9g5dhKLtgbRbtUSNeaWb+G6iFpmPP5nTAItWuapp+D99zUBas4c2LYN3n6bPKORXCl9UivQJ//9rxY1FB6uRRB98cWgzUH1LZ3k7arks+2VfL59Py0dtl53EWw0EGY2Eh5sItxsJCzYhMVsYl9DGwWVTV39cicm8I+LZxES1M/1adUqOPFE7fMf/gD33DPcI3cbnhBgTgHulFIeI4TYCeRKKSuEEClAnpQyR9e+IKX8iz7mY+AuNC3NKinlJL395/r4qxx9pJSrhRAmYB+QACx29NHH/FPfz2t9rdFXBZglL62nuLqZT26c7+2lDIjNLln8zGp2VDTy8Y3HMyY61NtLGjSOCBeH30OQUTA2Jowx0VqY+ZjoUMZEh3SFnadEhRJsMnTlwum0SV5fW8K+hjZ+cvgYbj19ksePP29nJVe8uJ45mbH867LZbjE1eov7/ruNF1fv4cc7T+n/gutB2q023t1Yxj+/LKTwQDMC7WHV1RFSXqGujqYFp2D5fh1rzvkl/znvetYV11Baqzk7hwYZOSI9miPTYzkqI5aj3niO4vFTWLQtqMuX7r0pneSU7BhQM+IQMMfGhrJ8XSlfF1QxJSWSe8+eyqz0WK1TSYmmqXj2Wdi/H4xGSs4+m7FffOEfwouU8Mgj8Lvfadqr996DtIEf8oqrmvls+34+276fdcW12OySeEswKVEhbClrQKJps648PpOr52cRFmzq8//eOfACwC4hMcLMdSdmc8FRYzGbevm/WrkSTjoJjjgC9uzxnXOtmzk3ZM5gzrQJZdbGqiE9MQ81CmkxmnYFIElKWQGgCzGO8IlUNA2Lg1K9rVP/3LPdMaZEn8sqhKgH4pzbexnjV1TUt5ES5R+CgNEg+Ot5MzjtsS+5+Y0feOXyOX6TLXZNYTWd+j+2QAtvTowIoayulZU7KznQ2N6tvxAQHRpEXWtnV8RKZnw4b/5qHkdmxHp49Rq5OYk8cM50bnrjB25+4wf+dsEMvzn/A7G6sJojxkX7jPACYDYZueCocZw3ayzX/vt7LZJPQqfVzprCap8SYJYtWwbAZZdd1m8/u12ytriGr595g//bvpPnj17MRf97k0ZLDoedtID/O2Y8R2XEMDklkiDnxJi330oO8KqTtisnPQb4yYBrc+Q4Alg4fQz/27yPez/cxjlPr+a8WWnccvok4seO1SKc/vAHeOUVuPxyxr71lvbdF26o/dHervm3/Otfmt/LsmWHRPk4hLjZ47Vrx2fb9/P59soujcmk5Ah+NT+TBZOTmJEWzcaSum6BF6dMSSY6LLjfZcxKj+HVK+Z2/X2sNjt//WQXf3xvK//8opDfLJjAz45IPZjwdNUqLUJq6lTNuXr5ct/Rdh11FB3nnMvTC67DGB4z5Hv7oAUYIUQw2q/4toG69tIm+2kf7hjntS0BlgAkJCS41kPfRew50EysMPnk2vri/AlGlm2t5g8vfcbJGf5hyjDX2RBCe1AyGeDUpFayYzp0sddEp91ITaukuk1S3Wqnuk2yqdJGrf6rEsDMmA6ain8kr9h7xxEHnDcxiDd+KKe9vpKfT/J/h+qmDsnWshbOzg7y2f+D6aFWVuifjQLMdXvIyyvtd4wn+dvf/gZARkbGIduklOxttLOmwsZ3FVZydv7Ak+/d3+XDsmbcdJ59688UHB5EXdpMagr28E1B3/uaKqCxqJS8ouGtNRy4a7aB93cH8fb3pfz3h1LOmRjMCWNNGIQguraWw4G6iRMJf/xxtsXEUDdz5vB25maC6uqY+sc/Er15M8WXXELxpZdq5iEn8mutPLC2HavTHcooYFKsgQsnBzMjwUhCmB3YR0PhPr4s1PrcfEQwO2psTIo10lj0w6DPt+PvA3B1juT4eDNv5bez9K0f+euKzZydHcycFCPpr79O4+23k7hyJQlffsk3QPTttxPx+uuUeNvnSwjyF17Ocy/dwyfhQ39QGIoG5nTgeynlfv37fiFEipMJqVJvLwWcE2KkAeV6e1ov7c5jSnUTUhRQo7fn9hiT13NhUspngGdAMyH5mkd7u9VGw0cfMWtyJrm5E7y9nEEzX0r2vrieNwuq+L8z5pKdGOHtJQ1ILvBt/Vq+K6zhpcvnDDqM3Pkp6BcnHeUTT93z50vCP9jGsm+LaQ+O4foFE3xiXcPloy37kGzgFycdyVFe0m4NRC7w/PZPSYwI4d6zp/nc+Y6OjgboFrWzt7qF938o491N5RRUtmAyCOZPTOC3dU1UPPMiG3eaMVrtbMyeQdkzLzGjZIeWt8RDnHYSFFQ28sf3tvLytmo21ofwSEItE++/HyZMQEZFEfyPfzDDV7QCPaO3Nm+GxYu1nDevv07GBReQ0cuwfz6zGqs8qOH9yeFjuO+n0wb0Y8t10bJPAK6Vks+2V/LXT3byzx8bydsfwY3X382pU5MQBgN8+CG5U6d2HZsv5P9uXKtJbInNfbq29slQBJifc9B8BPA+cClwv/7+nlP7v4UQj6A58U4A1upOvI1CiLnAd8AlwBM95loNnAus1KOTPgb+LIRwXEVOYWANkM+xr15LVpcS5V9RJUII7j/nME599Et+u/wH3rr66O7qZh+lwyqZkBQx6JtPT5Wsr9y0hBCcNT2Fl1YXk7frAN8WVvOaD0ewDcSawmpCg4wc7uNhyznJEbR02HzyPLdZxtAWOZaVO/ZTUtPKu5vK2Li3DoDZGbH86expnHlYCjHhwYBWI2c45iBXk50YwatXzOHDHyv403+38dbb7xB77V9Y9P1HmL/5kg2ZM5i1fLmm1fC2AONI5rd8uVar6PzztVwvf/+7ZorphX99U8TqwhqMQgCSIJOBS4/O8LgTvhCCk6cksWBSIv/dXMGjn+3iV69s4LDUKK62x3IGsHPld+QsXujRdfXH+HVfAlAZFNI41LGDEmCEEGHAycBVTs33A8uFEJcDe4HzAKSUW4UQy4FtgBW4VkrpcLO+moNh1Cv0F8DzwMtCiAI0zctifa4aIcS9gENXd4+UsmaoB+ltKroEGP/wgXEmMSKE+356GNe8+j1/X1XADSdN9PaSBqS8rpXJKZFDGuNsv/clvis6+HP3RZ+MofDt7iqOGh/r807J6XHhfLRln7eXcQjri2vYN2UxCAO/XLYe0HwqbjltEgsPTyEtJqzXcb7y2xZCsPDwMZwwKZHHZ6Ty4FeF1NeHs7TmAEv+vpJnrj2RWd4WXkAToJYvh4ULobkZTCYts/D55/fa/b1NZdz9wTZOnZrE5ceO94kINoNBO9enT0vm3U3lPPDRdu4ql5wBvP7iR5w171if+E2wahU5779Gh8FISWfbrqEOH5QAI6VsQTPLO7dVAwv66H8fcF8v7euBab20t6ELQL1sewF4YTDr9FUq6jWP/5Ro/9LAODjjsBR+OjOVJ1YWcEJOIof7cKZYKSXl9a0smBwYKfnnZsYRbDLQ1mnHYBDMzYwbeJAPcqCxnV37m/jpTN8Py8+IC6OmuYP61s4+E+R5g3c2loFBc34WwGVHZ3DnT6Z6d1HDwGI2cfsZk2lut1KwU/M2GFu517eE8/h4TXgBuPnmPoWXvJ2V3LT8B+ZmxvLY4pmEBBmZPd53/kdNRgPnzkpjb3Uzj3/eToM5nMzKPb5zrteto2j8FMy11VC5d8jDfftRKEAor9M0MGP8UAPj4K6fTCXBYubG5Zto6+w9b4EvUNvSSVun3a9Cv/vDYd5KjDBzWGqUb1x0hsGawmoAjs7ynYt7X6THaZEle6tbvLyS7sTrmbENAsxBBs46fIyXVzQyfjozlYI4TYCZVFPqW8L5G29o70uWaCUCVq06pMv3e2u5+pXvyUmO4NlLjvSpyLqezM9J1Bxm48YysbrEd8710qUYm5uoTRreg40SYDxARX0r0WFBHkmE5i6iQoN4+LzDKTzQzP0rdnh7OX1SXqdru/xYWOzJrPQY5mXFHRIC7k98u7uaCLOJqWOGZtrzBhm6AFNc3ezllXTHYXr79YIJ/p+fBjgyIxZDdhadRhM3pPqQz9GqVVquF4C//vVg2LGTEJO/v5FfLltHUqSZZf832+cTTs5Kj2FycgTlY8ZzRHOF75xrKUk6UEZL2rhhDVcCjAeoqPOfHDD9ceyEeC47OoNl3xbzTUGVt5fTK2W6AJMaIBoYB9kJFsrqWmlut3p7KcNiTWE1czJjD+am8GHGxWq+JHt8TIApq2sl1GAjeNdnvnMDGiFT0+PYE5tKclmht5dykHXrtCitxESwWA76xOhh02V1rVzywlqCjAZevnwOCRH+keLgsLQo8hPSCao6oNVw8gHaKquwtLdgS88Y1njfv5oEAOX1bYzxswikvrjltElkxodz8xs/UN/a6e3lHEKFLsCM8VN/o76YkGQBYPeBpgF6+h7lda0UVTUzL2topQO8RWiwkeTIEIp9zIRUXteKreEAy5cv9/ZSXEZ2goUdsWOxb93m7aUcZOlSrQhlZubBthNOgKVLqWnu4OLnv6Op3cpLv5zN2NjeHad9kfHxFjZZUrQv27d7dzE61Zs1bb4pe3gB3UqA8QAV9a0kB4gAExps5JELZrC/oY1fPLOGDXuGHrvvTsrr2zCbDMSG95/N0t/ITtQEGOcaKP7C6t2a/8s8X7G7D4L0uDDf08DUtmLqaPD2MlxKVqKFgvixiOIiTWjwFQoLuwswaIVI/+9faymrbeX5S48acqSjtxkfH05+vG6q2brVu4vRadyuBR6FTx5edKsSYNxMa4eNupbOgHEqBa1WkkEItlY08PNnfUuIKatrZUx0qM9XFR4q6XHhmAyCfH8UYAqriQkLYlKy7ydCdJARF+5TGhgpJWV1rRjbA0uAyU60UBA3FmG3w64hR9G6h85O2Lu3mwDTbrXxq5c3sKW8gb//4oiuUgH+xPj4cCoi4rGGhWuFNH2Ajl1aKujYqYOvTO9MwAkwVa2S1bt9w74HTiHUAaKBAc2fwa4XDnLkJvEVyutaA858BBBkNJARH+53GhgpJat3a0nU/KmeU3p8GAca233G56i+tZOWDhumABNg0uPCKHBoBXzkpsrevWC3dwkwNrvkpuU/8HVBFQ+cM52TpiR5eYHDIz0uDGEQVI3L8plzLYqKqAqLIjE1YVjjA06AaeqUXPqvdT6jFfDnJHZ94chNAvhcbpLyula/DlfvjwmJFr8TYEpqWimra/WL8GlnHJFIe3xEC+OoHh1oAozZZKQpNQ27MPiMXwaFukNxZiZSSu56fysf/ljB7WdM4txZvp/HqC9CgoyMiQqlOCnDZwQY895i9sWlDDu5ZcAJMOBbWoHyAHQq9dXcJJ02O5WN7QFlrnMmO9HCnupm2q2+m4enJ9/q2tB5fibApMf5ViSSI7ru+Sce8tlCmMMlPspMefwYn7mpOgswj32ez8tr9nDV/EyWHO8LlYNGRmZCONtj0qCiAmq9/5Afta+UmmHmgIEAFWB8SSvg0MAkRQaOAAOaEHN0VhyVDW3eXkoX++rbkDKwhEVnshMt2CUUVfnGTXUwfLu7moQIM1kJFm8vZUikd+WC8Q0NTHmApgcASLEY2BGThvQlDUxwMPdtqudvn+VzYk4Ct542ydurcgnj48NZF5asffG2wGi1El9dQUvq8HLAwNCKOfoFRgFTUyL71Ao0NDRQWVlJZ6dnQoCPjO7ghUUpFBX4iIOaC/lFjpEzx8Wwdds2DD7gNNtutfHsT1KINzew3eliGBQURGJiIpGR/hU10BPnSKRJyb5/LFJKVhdWc3RWnN85VVvMJuItZt/RwNS2EhJk4IWnn0AIuPnmm729JJcxJlywKzaNBevf1Rxog7ycFK6wkKYxY3n2mz0AfFtYzfd763xG0zwSMuLCWRmZqn3Ztg2OOcZra5ElJRjtdmzp44c9R8AJMKEmQXl971qBhoYG9u/fT2pqKqGhnolUKapqxmqzMyHJfyIwBkt9ayd7qpsZn2AhzOz9n1JtSweGmhYmJkV0pfWWUtLa2kpZWRmAXwsxWQkWhID8/f7hB7P7QBMHGtv9KnzamYy4MJ/JxuuIrvvvBx8CgSXApIQb2Bo3DmG1QkEBTJ7s3QXt3s3e6OSur/5eRNWZ8QnhlEUmYAsNw+hlDUzDtp1EMfwcMBCAJqRgI1Q1tVPddGja9crKSlJTUwkLC/PYE2GnzU6QH2QfHQ4huuNVm9Xu5ZVodOrrCHY630IIwsLCSE1NpbKy0ltLcwkhQUbGxoRR4CfJ7L7d7ah/5B8J7HqSHhfuM0685XWtAWk+As2E1JWfxNtmJClh924aUrQaTUYBQSaDz7gkjJTM+HCkMFCf7v1IpMZtmlUibPKEYc8RcHfWID1Uc+f+xkO2dXZ2Ehrq2YtAp81O0DA9rH2dYJMBgxA+U9yx02bHZDD0Gq4bGhrqMbOhO5mQaKHATzQwq3dXkxodythY/7zxZsSFUVHf5hO/77K6VtJi/PM8DkR4kKBunJ5zxdt+GbW10NBAdVIaEWYjvz0lJyDqTjlIjQ4lyCgoS830+rlu31lAp8FIbE7mwJ37IODurI56iTv3HSrAAB61xdvsEptdEmT0L/v/YBFCYDYZaPcRDUyHre9z7W8+GH2RnWjpMkv6Mna75v8yzw/9Xxykx+tVqWu8q4Vp67RR1dQRsOkBANLS4qmMTfb6TdURgbQrLIHMxAiuPSE7YIQXAJPRwNjYMPLjxkJpKdTXe28xRYWURiWSGjd8B/+AE2CMAmLDg/sUYDxJp+1Qk0agYQ4y+sQTKgS2uc5BdqKFDpvd6zfVgdixr5G6lk6/y//iTIYeSl3s5aivrgikmFBCQ0M9rkX2BFkJFnbF+kAkki7AbAqKId2P6hwNhcz4cDZFjNG+ePF8h5TsoTwmmajQ4TttD+pqL4SIFkK8KYTYIYTYLoSYJ4SIFUJ8KoTI199jnPrfJoQoEELsFEKc6tQ+SwixWd/2uNAfzYQQZiHEf/T274QQGU5jLtX3kS+EuHQw652YZOnVhORpHAJMIN9UQ0wGOm12bHbvawQ6bfZhJ0TyF/ylJpK/5n9xJj3WN5LZOVdYX7FiBStWrPDqetxBdqJFy0+yYwfYvPhApAsw3xuiuwTYQGN8fDjfmvVswl7UeEXuK6U2KW1EGtrBXu0fAz6SUk4CDge2A7cCn0spJwCf698RQkwBFgNTgdOAp4QQumGHp4ElwAT9dZrefjlQK6XMBh4FHtDnigXuBOYAs4E7nQWlvpiUHMmufY3Y7XKQh+ceDgoww/8DCSH6fV122WUuWu3wMOvRPu2d3hVgbHZ7QJvrHDgEGF+vibR6dzXj48P9OgN1VFgQMWFBXo9EKqt1JMP033M5EFkJFvLjxiHa2mDPHu8tpLAQW0ICjcFhjNNzAQUa4+MtFIbHI0NCvCfANDQQ0VhHc2r6iKYZUIARQkQCxwPPA0gpO6SUdcAi4EW924vA2frnRcDrUsp2KWURUADMFkKkAJFSytVSSgm81GOMY643gQW6duZU4FMpZY2Ushb4lINCT59MTIqgucPW9eTiLTptmgBlGoEGpqKiouv17LPPHtL22GOPdd+nhx1VfSUSyXGuA1nbBRAREkRyZAi7fViAsdrsrC2qCYjIDV+IRCqva8UgIDkqhHvvvZd7773Xq+txB46ijoB3/WAKC2kao0VEpQeoBiYjPgy7wUhz5gTvVaUuKgLAmpExomkGk7wjEzgA/EsIcTiwAfgNkCSlrACQUlYIIRL1/qnAGqfxpXpbp/65Z7tjTIk+l1UIUQ/EObf3MqYLIcQSNM0OCQkJtJTnA/DmZ98yM/HgIUZFRdHY6DnTUnOrHaMQNDcN/2YTHn7wKcBsNndr27NnD4cddhjPP/88L774ImvXruXee+/FYrFw8803U1FR0TX2q6++4swzz6SoqIi4OO3G8t1333HXXXfx/fffEx0dzRlnnMHdd989pFwpUkoE0NjcSpD90NB1T9HSqReXbG+j0db7Otra2gIiDXtcUAff764gL6/O20vplcI6G43tVqLb95OX5xslPYZLqLWNHVV2r/5uNuxoJ9os+OarL3nrrbcAOO6447y2HlfT1NTEzo1rKEnUBJjdH3xAicU7mZvnbN1KcYaWh6ZsxyaaiwPvgai2TXvY3B2VQM7Gjazxwm87+osvmQHsCw0Z0f/WYAQYE3AEcL2U8jshxGPo5qI+6E2HL/tpH+6Ygw1SPgM8A5CTkyMvOP14/vTdJwQnZJCbm93Vb/v27UREuCah3IY9tawp1Krs9uWlfqCtCXMQRES45p/R4bznOAaL/k9+zz338PDDDzNr1iyCgoL47LPPuvUDCAsL6xoTERHB5s2bOfvss7n77rv517/+RU1NDTfccAO/+c1vePPNN4e0rpDWRuwGAxER3lO5djS1Q0sr0RGWPsPWQ0JCmDlzpodX5nryGrayfH0Jxx8/3ycrPG/P2w3s4JdnHUdChNnbyxkRGzt38d3KfOYdexxmk3HgAW7g6Z2ryUyS5OYeTXR0NAC5ubleWYs7yMvLIzc3l+QtX1MXFUdWRwdZ3ji+zk6orKT++EWEBhlZdOoJfhtB1x9SSm7/5mOqsqZx+OqV5M6aBS66Lw6W6i++BSDnpFxyj5867HkGI8CUAqVSyu/072+iCTD7hRApuvYlBah06j/WaXwaUK63p/XS7jymVAhhAqKAGr09t8eYvIEWHBESRGp0KDsGEYl09wdb2VY+tAqvjW2d7NjXiF2CQcCk5AgiQg71pG7tsGEwcMiFb8qYSO5cOPw/Wk+uv/56zj333CGNeeihh7jgggu46aabutqefvppZs6cSWVlJYmJif2M7o45yEhLu3VI+3c1nTY7AoEpwH1gACYkWWjpsFFe30pajO+pub/dXcXEJIvfCy+gq9ulVg3aW/WcyutbOWJc4ITy9kVWQjgF8eM40lsmpL17wW5nd0Qi6XGeS3bqaYQQjI8PZ2tdGgtAc5w+6iiPrqF9VwH15nAS0pIH7twPA+rHpJT7gBIhRI7etADYBrwPOKKCLgXe0z+/DyzWI4vGoznrrtXNTY1CiLm6f8slPcY45joXWKn7yXwMnCKEiNGdd0/R2wZkUnIEu9wUSt3QZsXhH2yX2vfesCMRvSqRXMuRRx455DEbNmzglVdewWKxdL2O0eti7N69e0hzhZgMdNg0J1pv0anngAnUi44z2Qm+G4nUYbWzvrjWb7Pv9sRR1NFbNZFsdklFXVtAO/A6yE60sCUqVQulll64lugRSFvMcYwL0BBqB+Pjw1kb6r1IJFFUxN7o5BH/rgdbwOZ64FUhRDBQCPwfmvCzXAhxObAXOA9ASrlVCLEcTcixAtdKKR1xcVcDy4BQYIX+As1B+GUhRAGa5mWxPleNEOJeYJ3e7x4pZc1gFpyTHMEXuw7QYe0/tHY4mpANe2q58Lk1dFq1LLuPLZ55iBnJarOzraKBlKhQtz+JOvvJABgMBmSPC0BP51673c4VV1zBjTfeeMh8qamHuBn1y8FIJJvXaiJ1jIIcMA4cdbUKKpvIzRm8pswT/FBaR2unLSAceEErfgdQXOUdR94Dje1Y7bKrjIDDfy0QyUqw8E3cWMT3jVBWBmlpAw9yJboAs94YwykB6sDrYHx8OM8YYpDBwQgvOPKaS/ZQEj2GSVEhI5pnUHcbKeUmoLfH/AV99L8PuK+X9vXAtF7a29AFoF62vQC8MJh1OpOTHIHVLimqaiYn2bX2vVnpMbx6xdx+fWA67Y6oGM9rBBISEmhpaaGhoaHLIXfTpk3d+hxxxBFs3bqV7OzsXmYYGs6RSGFeshp0Wu0+UVDSE8SGBxMbHuyTGphvC6oRAuZmxnp7KS4hJiyIiBCT1zQwZXWa4JSqlxFwOPEGItmJFl6Md4pE8oIAI4ODKQmJDtgQagfj48PpwEBH9kTMntbA2O1E7iulet7sET90Buwjq0No2bFvaP4tg2VWeky/aaYdhQW9oRWYM2cO4eHh3HbbbRQUFPDWW2/x1FNPdetzyy23sHbtWn71q1+xceNGCgoK+PDDD7nqqquGvL9gkwEhBO1eysgrpaTTLgkeBf4vDrITLT6ZC+bb3VVMSYkkOizY20txCUIIMuLCKfZSKHVp7cEkdoHOuLgwChP0vCDeyBBbWEhb2jjsBmPAJrFzMD5BE9BqM7I9b0IqL8dk7aQ5bdyIpwpYASYz3oLJILxWUsCbWXhjY2N59dVX+fTTTznssMN45plnDskdMX36dL788kuKi4uZP38+hx9+OLfddhtJSUlD3p+jJpK3csFY7RIp5agxIYGeN6Oy6RBToTdp67SxcW+dX5cP6I30uDCvaWDK69qAgwLMbbfdxm233eaVtbgbs8lIeFoKTZYo7+SCKSykLlnTADmyMAcqmXqdr9KUDCguhmYP/r51U501Y/yIpwpYnXuwyUBmQji7vFRSoNOmOfC60oR07rnndrthZWRk9HkDW7RoEYsWLerWdtFFF3X7fuSRR/LRRx+5ZG0hXoxE6vCitstbTEi0UN/ayYGmdhIjRmZHdhUb9tTSYbMHjAOvg4y4cD7ass8rtbbK6lqIDgsiXDePrl692qP79zRZiREUJYzjME8LMFLC7t1UHH8mJoNgTLRv/E+5i+iwYKLDgtgZO5YjpYSdO+GIIzyyb3vBbgyAKWvkAkxAX/FzkiMHFUrtDjptdkyjJCoGvBuJ1KXtCvA6SM74Yk2k1burMRoER40PDP8XB+lxYVjtsquooicpq20N6CrUPclKDGdbVCpy2zbPRiLV1kJ9PUWRSaTGhI4oe7q/MD4+nO/D9aKOHnTkbd2Zj00YsEzIHPFcAf1XykmyUFrbSpMXNAOjoTKyM12RSFbP+8E4ygiMJh+YCYkHI5F8hW93VzE9LQpLgDlTZ+jqdm/4wZTXtXU58I4GshMs7Iwdi6ipgQMHPLdj3ayxIzQ+4EOoHYyPD+c7YwwEBXnUZNeev5uKiHiS46NGPFdA32FzkrUIHG+YkRx5SUYLXZFIXijq2GnTSjYYDQH9c+5GUqQZi9nkMwJMU7uVH0rrmRcg4dPOOGrieNoPRkpJWV3rqHDgdZCVaCHfEYnkSUdeRxVqU0xX6HygkxkfTmmTFfuEiZ71OSoqdEkOGAhwAWaSHonkaUdeKSWdNjvBo0gD0xWJ5AUNTIeej2c0IYTQIpH2+4YAs664BptdBpz/C0CCxUxYsNHjuWAaWq00tVu7CTBpaWmkeTq82INkJXipqKNDAxMSH7BFHHvi0Cw2Zk7w6LkO2buHvdHJLtEsBpautwep0aGEBRs9LsDY7BL7KIuK6YpE8pIGZjSdawfZiRa+2OVBNXs/rN5dTbDR0GdaAX9GCKFXpfasBqZM97lxvtC/8sorHl2Dp4kKDcI6JpW2kDBCPCzAdMbF02wOG1UmJID9aZlE/e99aG2FUDdr+1paCKs5wP7DxxAZMnLxI6Cv+gaDYGJShMcFmINOpaPHhAQQYjJ6JRfMaDPXOZiQaOFAYzv1LZ0Dd3Yzq3dXM2NcNKHB3il46G4y4sIo9pYAM4pMSADZiRGUJKV73ITUOEbLS5I+SkxIDlNZUWI62O1aJJK7KSoCoDl1rEsCXAJagAHNjLRzf6NH82U4nEpHm1YgJMjzkUh2u8RqH13mOgddkUgHvBNp56C+pZMt5fUBl//FmfS4cEpqWj362y6r1UxWzr4CN9xwAzfccIPH1uANshLD2RatRyJ5isJCDiRoJVRGiwYm3GwiOTKEHyL10jGeON+OHDDpGS6ZLuCv+hOTIqhp7uBAU7vH9tnhxSR23sQbkUijMYTagSMSydt+MGuKqpGSgHTgdZARF0aHzU5FvedCqcvr2zCbDMRbDmY13rRp0yFlQQKN7AQL22LSEBUVUFfn/h12dsLeveyNTiYp0hywWsTeyIgPY31QHBiNnhFgdA2MMTvLJdMF/FXf4ci7a5/nLvKdNjtCCEyG0WXW8EYk0mgVFkHzjTCbDF6PRFq9u5qQIAMzxkV7dR3uJN0LRR3LarUIpNGSS8pBVqKTI68nzEh794LNRn54QsBn4O3J+HgL+XUdMMEzjrzW/N00BYcSPW6MS+YL+Ku+u2si9UanTRJk8M8kdm+++Wa3dS9btgyLxTKosX1FIuXl5SGEoKqqyqVrhdGZA8aB0SDISvB+TaSV2ytJjgxhS5nn/sc8TUa8ZlbwpB9MaV2rS0JN/Y3sRAv5cXqdHA+aNX4IjmXcKIlAcpAZH05tSycdOZM8cq7b8/MpiUoiNcY15zngBZg4i5l4S7BHc8G4IyrmsssuQwhNKAoKCiIzM5Obb76ZZjfXsLjgggso1P/BB0IIwelzp/PE3x7t1n700UdTUVFBXJzrTQwOE9JoyJzZG46aSN5i5Y797K1tYU91Cxc+t4YNe2q9thZ3khQRgtlk8GgkUvkoywHjIDkyhNqEFDqDzZ7RwOjXtx+D40gfJf4vDhyRSDXjsqCgANrd7GpRWOSyHDAwCgQY0LQwnoxE6rS5Jy/JSSedREVFBYWFhfzpT3/iqaee4uabbz6kn9VqdZnTcmhoKImJiYPuLwRYbd1NSMHBwSQnJ7tFI9Vp1YRFgx9qu1zBhEQLZXWtNHupDtX7m8oBkGh/izWF1V5Zh7sxGATpcWEey8bb1mnjQGP7IbkyJk6cyMSJEz2yBm8hhGB8chTlSeM8poGxBwez3xJLevwoMyHpVan3JmeAzQa7drlvZ1Ji3ltMSVSSy2pNDeouK4QoFkJsFkJsEkKs19tihRCfCiHy9fcYp/63CSEKhBA7hRCnOrXP0ucpEEI8LvQ7mhDCLIT4j97+nRAiw2nMpfo+8oUQlw7nICcmRbBrf5NrSms8+CCsWtW9bdUqrR1HEjv3hPWazWaSk5MZO3Ysv/jFL7jwwgt59913ueuuu5g2bRrLli0jKysLs9lMc3Mz9fX1LFmyhMTERCIiIpg/fz7r16/vNudLL71Eeno6YWFhnHXWWezfv7/b9t5MSP/973+ZM2cOoaGhxMXFsXDhQtra2sjNzaW0ZC8P3fuHLm0R9G5CevvttznssMMwm82MHTuW++6775BClX/605+46qqriIyMJC0tjYceeqjbOv75z39y3FHTmTE+kYSEBE499VSsVu/cyL2FIxKp8IB3qiWb9N+5UWiO1HMD2JHXk7lgKuq1KtQ9n1SfeeYZnnnmGY+swZtkJVjYGZPmMQGmdcxY7AbjqNPAjI0JwyBge6wHTHb792Nqb6MkJpmkSA8KMDonSClnSCmP1L/fCnwupZwAfK5/RwgxBVgMTAVOA54SQjjcup8GlgAT9NdpevvlQK2UMht4FHhAnysWuBOYA8wG7nQWlAbLpOQIWjtt2OwucC496ig4//yDQsyqVdr3o44CwGqXSA8lsQsNDaWzU8sBUlRUxL///W/eeOMNfvjhB8xmM2eeeSZlZWV8+OGHbNy4keOPP54TTzyRiooKAL777jsuu+wylixZwqZNm1i4cCF//OMf+93nRx99xKJFizj55JPZsGEDq1atYv78+djtdt5++21SU9O46oal7N5T0rWfnmzYsIHzzjuPn/3sZ2zevJn777+fv/zlLzz55JPd+j366KMcdthhfP/999xyyy0sXbq0qxrv+vXrufbaa7n2t7eycs1GPvvsM0477bTedhfQTEjSBJj8Su+EUh9o7CA9NozfnpLDq1fMDchEdg4y4sLYU92C3QOh1OWjNAeMg+xEC5sjx8CePeBmMzmFhVQnadmNR0sWXgfBJgNjY8PYGJIABoN7BRg9AqlpzDiX3R9HkgpvEZCrf34RyANu0dtfl1K2A0VCiAJgthCiGIiUUq4GEEK8BJwNrNDH3KXP9SbwpK6dORX4VEpZo4/5FE3oeW0oC3XUROrs7cJzww0w1LDEMWPg1FMhJQUqKmDyZLj7brj7bgxSktlhIyTICH1FIc2YAX/729D22YO1a9fy73//mwULFgDQ0dHByy+/TFJSEgArV65k06ZNHDhwgFA9u+K9997LBx98wMsvv8zSpUt57LHHWLBgAb///e8BTT29bt06nn/++T73e++993Luuefypz/9qatt+vTpAISFhWE0GQkPtxAdl0hseHCvczzyyCPMnz+fu+++u2u/+fn5PPDAA1x//fVd/U455RSuu+46AK6//noef/xxPv/8c+bNm8fevXsJDw/nuJNOY1xSHCnRoRx++OHDOpf+THpcOCaD8IofjJSSLWX1nDApkWtPyPb4/j1Nelw47VY7+xvbSHFzheiy2t4FmCVLlgAEvBYmKyGcd+N1rcCOHTBrlvt2VlhI+bzTiAwxER3W+zUrkBkfH05+QztkZblXgNF9jTrTx7tsysGKQRL4RAixQQixRG9LklJWAOjvDkeJVKDEaWyp3paqf+7Z3m2MlNIK1ANx/cw1JCboavZOm4vCe2NiNOFl717tPebgU6fDCuIOl4yPPvoIi8VCSEgI8+bN4/jjj+eJJ54AtBopDuEFNC1HS0sLCQkJWCyWrteWLVvYvXs3ANu3b2fevHnd9tHze082btzYJTT1hm4T7DcXzPbt2znmmGO6tR177LGUlZXR0HAwksUhGDkYM2YMlZWVAJx88smMS0/ntHmHc/1V/8eLL75IY6N3E7p5gyCjgYz4cK9EIpXXt1Hd3MH0tJFXlfUHMjwYSl1a14oQkBzVXdW+a9cudrnTT8FHyEpwikRypyNvTQ3U1bE7IrGrNtBoY3x8OEVVzcgpU2DrVvftSBdgTJmuE2AGq4E5RkpZLoRIBD4VQuzop29vt27ZT/twxxzcoSZULQFISEggLy/vkEEJoYL2DuuhN7l77+1lF/1j/PJLQi69lM6lSwl6/nnafvc7bMcfD0BDu6S6zc64CAPG/vLADPFm29nZyTHHHMNjjz1GUFAQKSkpBAUFAdDe3k5oaGi3Y2ttbSUxMZGPPvrokLkiIyNpbGzEZrPR3t7ebVxbW5u+vMZevzva+hIWpJQYBTS1dtBo0PxRWlq0C35TUxNmsxmbzUZHR0e3OZz7CCGQUmK327v1sdvt3fb96co8Pvj8a35cncd9993HbbfdRl5eHikpKb2ura2trdffhr8TJdrYXNzs8WPbsF/7+3bs301eXrFH9+0NDrRoD0CffPs97SVBbt3X9zvaiQ4WfPv1l93a6/TEboH0O25qajrkeKx2SUlsCjaDkdIVKyhyUwHLiJ07mQVsMkQSYj10HaOBzppOWjps7AoJY8KuXXz16afIINf/vnO++QYi4mhra3DZeR6UACOlLNffK4UQ76D5o+wXQqRIKSuEEClApd69FBjrNDwNKNfb03ppdx5TKoQwAVFAjd6e22NMXi/rewZ4BiAnJ0fm5ub27MKMveuxI4iIiBjMIffNqlVw2WXwxhuYTzgBTjuNsPPPh+XL4YQTaLK3YmjvICoywqVRN0FBQURERDBjxoxDtpnNZgwGQ7djmzdvHnfddReRkZFkZmb2Oue0adPYuHFjt3GOLJ+OtpCQkG7fZ86cyTfffNPN1NNzLUYhscmD5zosTLMrWywWIiIimDZtGuvWreu23++//560tDTGjNESHAkhMJvN3foYjUaCg4O72uymTuYcczwX/vQM/vrg/SQmJpKXl9elZu9JSEgIM2fO7HWbP7OhYyd/X1XAvGOPw2zyXBbR9R/vxGjYzUVn5mom0wDHZpfc/s0KzPFjyc2d5NZ9/XPXGsYn2cjN7a6pjI6OBqC3a5y/kpeX1+vxpH2fR2XyONKbm0l31/HqGt1t4cnkTs5w+9/VFzHmH+CV7WsxzDkew39eY35qKkyZ4vL9dNzxBzZFJTFv+kRy52W4ZM4BTUhCiHAhRITjM3AKsAV4H3BEBV0KvKd/fh9YrEcWjUdz1l2rm5kahRBzdf+WS3qMccx1LrBSaiEpHwOnCCFidOfdU/S2IZOTFIHVplWJHhHr1nUJK4D2vny51o4jrNf7SexOOukkjjnmGBYtWsSKFSsoKipi9erV3HnnnXz11VcA/PrXv+azzz7jL3/5C/n5+Tz77LO88847/c77+9//njfeeIM77riDbdu2sXXrVh599NEuDUpGRgbrv1tNSWkp+yt7r5R800038cUXX3DXXXexa9cuXn31Vf7617+ydOnSQR/fhx9+yJNPPM72LT9SUVrCv//9bxobG5k8efKg5wgUshMt2KVns8QC/FhWz4REy6gQXkBLHDg2NswjkUjl9a0uS/blr3Rl5HWnCUk3axRHJI66LLwOHLlgdse7ORKpsJCS6ORDUgOMhMH4wCQBXwshfgDWAv+VUn4E3A+cLITIB07WvyOl3AosB7YBHwHXSikdDhFXA88BBcBuNAdegOeBON3h97foEU268+69wDr9dY/DoXeo5CRHIIH2kaa5X7r0oPDi4IQTtHagwyZ9IqmaEIL//e9/nHjiiVx55ZXk5ORw/vnns3Pnzi4tx9y5c3n++ed5+umnmT59Om+//TZ33XVXv/OeccYZvPPOO6xYsYKZM2cyf/58Vq1ahcGgHfM999xDRXkpZx13BMlJveePOeKII3jjjTd46623mDZtGrfeeiu33nprl8PuYIiOjuZ/H7zPVT8/m2lTp/Dwww/z3HPPcdxxxw16jkDBEUrtyUgkhwPvaPF/cZARF+72XDB2u6Sirq3XCKQZM2b0qoUNRLISLPwYOQbpzgRrhYV0xMbTbA4bdVl4HYyJCiXYZODH8GTNedMdfjDt7QTtq2BvlOuS2AHahSiQXhMnTpS9sWtfg/zkmw2yprm91+2uYlt5vdxb3ezWffg6rR1W+UNJraxucu+5Lq5qkjsqGgbdf9u2bW5cjfdo7bDKjFs/lI9+utNj+yypaZbpt3woX/q2yGP79AXuen+LnPyHFdJut7ttH/vqW0fVuV21alWv7W+sL5HXL/ydlCDl5s3u2fmCBbJy6gyZfsuHsqKu1T378ANOfiRPXr5snZSZmVKef77rd7Bzp5Qgbzjzt7K+taPXLsB6OcT7vfdVBR4iIz4cIbQMl+5CSonVTUns/AlzHzWRXI27Egb6GyFBRsbGhHk0EmlLWT0A01JHnwampcPm1ur2ZY4cMC5UtfsjWQnhB4s6utGssT8+FbPJQGKE2T378AO0SKQmzffFHedaN9VVJaQSGeI6B+FRI8AEGQ2YDMKtlZKtNonEM0nsfBkhBGaTYeTmugFwR80pfyU70cJuDwowm8vqMRkEk1MiPbZPX8CR6GyPG81IB3PAHGrSuOiii7jooovctm9fIivRwu7YVKQQ7rmpdnbC3r0URyUxLjYMQ39RowHO+HgLe2tasE+ZAjt3gqszmusCjDXDdSHUMIoEGNCEGHdqYDr0PDPqpgohJqNbz7VdSjptdoLdUHPKH5mQaKHwQPMhdajcxY+l9UxIihg1DrwODuaCcZ8jr0MD01u9mNLSUkpLSw9pD0QiQ4KIio2kOjHNPY68e/eCzcbOsIRRl4G3J5nx4XTaJLXp2Zpgp+cKcxmFhbQHBRMydoxLpx1VV/8go6DTZsfqipICvdCpBJguzEEGOmx2bG5Ku25V57obWYkWOmx2SvSnd3ciHQ68o8x8BJpZx2gQbtXAlNe1EhliIsKFqnZ/JTvRQlHCWLeaNX4IiiU9bnRGIDlwJPErTkzXGlztyFtYSFl0MqkurjU1qq7+jpudu0wbnTap72f0qiIdhATp59pNfjAd6lx3w5FtOn+/+yORSmtbqW3pZNooi0AC7RqSFhNKsRtDqctqVQi1g6wEC5sjU5FuNGvkWxJHvQbGEUq9LUrXkLhYYLTv3k1RZJJrI5AYZQKMo3Kuu0wbnTY7BiH6z8A7SnAkVHOXz5HSdnUnSxdgCg643w/G4cB72CjUwICjKrUbfWDqWkntxXw0GslOtLAtOhXR2dklcLiMwkLswcHst8QybpRVoe5JvCWYCLOJghYgPd21AoyUyKJi9kYnu7w46ai6+psMBoxC0GZ13001yGjwehI7X8DdkUid+t8wWAkwgOYvkBwZQsF+9wswDgfeSckjzGrtp2TEhVFc3YwcaVLMPtAEmN4v9PPmzRuwXlkgodVEclMkUmEhzclp2A3GUW9CEkIwPiGcwqpm10ci1dRgbGygxNU5YBhZNWq/xBzkPudSFdZ7EHdHInXa7JgMhlEdOdCT7ESLRzQwm8vqmTgKHXgdpMeF09hmpbals8+K68Oloa2TxjZrnyHUf/nLX1y6P18n25GNFzRH3rPPdt3khYVUJaZiEIdW/R6NjI8PZ8OeWpg6FVauBJsNjC74H9c1Z3ujXS/AjLrH15AgLRLJHU9PKqy3O+6MROpQwuIhZCdaKKhswu4mx2nQHHg3j8IMvM5k6P4S7vCDcYRQu/pC768kRZohIoL6uCS3aGBKYlJIjQlV0YxoEXZlda105kzSMh+7ymSnz1MWk0ySi3PtjLq/WkiQEZtdYnXxRd4R1hvkB/8IFouFZcuWuX0/7oxEUsLioWQnWmjpsFHR0Oa2fZTWtlLX0jnqEtg54zA3uKMmUrkjiV0fAsw555zDOeec4/L9+ipCCLISLexJynC5WYO6Os2Bd5TWQOpJZkI4UkJFqp6rxVXnWxdgOsemu7zMzqi7A4R0OZe6VjNwMKzXtVoBIUS/r8suu8yl+3Ml7oxE6rSqHDA98UQk0uZR7sALMDY2FCHcUzyzbAABprq6murqapfv15fJTrCwPToVduwAV6XA0G+qW8xxo7YGUk8ckUi7Yl3sc1RYSF1EDDFJMa6Zz4lRdwdw3FRdLcA4Qqhd7VRaUVHR9Xr22WcPaXvsscdcuj9X4ohEcrUfjM1uxyaVCaknjqKOBW7MyLu5rJ4go2BSyuh04AXtdz0mKtQtGpiy2laCjQbiLaM3rX1PshItbIoYAy0tWvI5V6ALMNtD40kf5RFIDhy5YAraDJCW5joBpqiI0hjX+7/AKBRgTEaDnpHXtTdVd4X1Jicnd72io6MPaXv99dfJzs4mODiY7OzsLiHHQUFBAbm5uYSEhJCTk8OHH354yD5uvfVWcnJyCA0NJSMjg6VLl9LWppkhiouLMRqNrF+/vtuYZ599lvj4eDo6OvpcuyMSqc3FGpiD+XZG3c+3X+IsZmLDg90rwJRqDrwO4XS0khEf5paq1GV1rYyJDlHO6U5kJVjIj3e9VgCgJCpp1EcgOYgMCSLeEkzRgWbNkddF51oWFlIY4focMDAKBRjQbqyu18C4x4TUH++88w7XXXcdN9xwA1u2bOE3v/kN11xzDR988AEAdrudn/70p9jtdlavXs0LL7zAXXfdRXuP0vTh4eG88MILbN++naeeeorXX3+d++67D4CMjAxOOukkXnjhhW5jXnjhBS6++GKCg/uOwnBXJFKHVeWA6YvsBIvbBBjlwHsQLReMGzQwda3KgbcH2Ynh3SORXEFhIe0xcTSbw0Z9EjtnxseHU1Sth1Jv3z5yk52j3lRkklsivUZdGDVojrw1zR1IKRFCkJube0if888/n2uuuYaWlhbOOOOMQ7ZfdtllXHbZZVRVVXHuuefSYbXTabMTbtZO6dVXX80FF1xASUkJF198cbexeXl5LjmOhx9+mIsvvpjrrrsOgIkTJ7JhwwYeeOABFi5cyGeffca2bdsoKipi3LhxAPztb3/juOOO6zbPH/7wh67PGRkZ3H777Tz88MPce++9AFx55ZVceeWVPPLII4SEhLB9+3bWrFlziLanN0JMBlrcJCyqHDCHkp1k4b8/VnT9tl1JSU0r9a2j24HXQUZcGLUtndS3dBIV5rqU/2W1rcyfmNDn9gULFrhsX/5Celw4TeFRNEfHEe5CDUxtchrAqE9i58z4+HBW7TygCTCtrVBcDJmZw5+wpARhs1ESncRhSgPjGkKCjNil7HqSdwV2KTF4OIHd9u3bOeaYY7q1HXvssWzT/8m3b99Oampql/ACMGfOHAyG7n/2N998k2OPPZbk5GQsFgs33ngje51szYsWLSI4OJi3334b0LQvs2fPZtq0aQOu0RxkpMPq2kikTpsdgejKrKw4SHaChfrWTqqa+jbtDRflwHuQrkikGtdpYdqtNiob2/vMAQPaw4bzA8doIMhoYFxcGKUpGS7VwFTEphBvMXc9dCq0qtQHGttpzpqoNYxUYHSY6tyQAwaGoIERQhiB9UCZlPIsIUQs8B8gAygGzpdS1up9bwMuB2zAr6WUH+vts4BlQCjwP+A3UkophDADLwGzgGrgAillsT7mUuAOfRl/klK+OILjBbo78pqDjP1qRMLCwvrdHh8fT15eHvn7GzEZDV2e3A7Gjh3rMo1Lb/T2lO1oG0yumzVr1rB48WLuvPNOHn30UaKjo3n//fe5+eabu/oEBQVxySWX8MILL3D++efz8ssvc8899wxqfSGmg5FIYcGuuVA4EgaqjMeHMiFJj0SqbCTBxTkXHA68OaM0A68zXVWpq1uYnhbtkjn31Wt+Z8qEdCjZCRZ2xqSRszUPpISR/O/rZo3CyfOV+agH4+P1HEeJ6UwFTYA566zhT9gtiZ3ry2MMRQPzG8BZ/L0V+FxKOQH4XP+OEGIKsBiYCpwGPKULPwBPA0uACfrrNL39cqBWSpkNPAo8oM8VC9wJzAFmA3cKIUYci9UVSu1CDYw3svBOnjyZr7/+ulvb119/zZQpUwCYMmUKZWVllJSUdG1fu3Ytdie75jfffENqaip/+MMfOOqoo5gwYQJ79uw5ZF9XXnklq1at4qmnnqKxsZHFixcPao3mINdHInWoHDB94ohE2u0GP5jNZXXkJCsHXjhodthT5ToNjCOJXVo/Aszpp5/O6aef7rJ9+gtZiRY2WlKgvh4qKkY22d69YLNpEUhKgOnG+Hj9+mENgjFjRq6BKSrCajLRHJ/klurqg7oLCCHSgDOB55yaFwEObciLwNlO7a9LKdullEVAATBbCJECREopV0tNNfBSjzGOud4EFgjt8fpU4FMpZY2u3fmUg0LPsDEYBGYXZom1S4nV7vmb6u9+9ztefvll/v73v5Ofn88TTzzBq6++ytKlSwE46aSTmDRpEpdccgmbNm1i9erV3HjjjZhMBzUhEydOpKysjFdffZXCwkKefvppXnvttUP2NXHiRI499lh+97vfce655xIZGTmoNQa7IRKp0+ofCQO9QXJkCBaziXwXCzBSSjaX1nNYarRL5/VXQoONJEeGuDQSqSsHTD8mpNbWVlpbW122T3/BoYEBRm5G0rUCm4PjVBK7HqTHhSEEWiTSlCmwdevIJiwspCpuDCmxFtcssAeDvQv8DVgKOD9GJ0kpKwD090S9PRUocepXqrel6p97tncbI6W0AvVAXD9zjRitpIBrtALeqox89tln88QTT/Doo48yZcoUHnvsMZ566ikWLlwIgMFg4J133sFutzNnzhwuueQS7rjjDszmg6aFhQsX8rvf/Y4bbriB6dOn8+mnn/ZpHrr88svp6Ojg8ssvH/QaDS6ORJJS0mmXBCv/l15xZC51dSTS3poWGtqsyv/FifS4MJdGIjkEmOQoVYm6J1mJFvLjdV8+F/ll7I1OVhqYHoQEaTmOxr/wJEREdI9EWrUKHnxwaBMWFlIa4/oq1A4GdEoQQpwFVEopNwghcgcxZ293FtlP+3DHOK9xCZppioSEhD59TqKiomhs1LKUCruddqukvqFhxM63rVZtSdb2Nhrt7QP0Hj6nnnoqDQ0NXccAcOGFF3LhhRd26+e8PSUl5ZDcLxW6CtbR7/bbb+f222/v1ueiiy7qNg9oOWGysrKYOXPmIdv6w4idlg77kMb0hdUukVJi6+yksdE6pLFtbW1u9UfyFSLs7Wwutbn0WNdWaOe6Y18+eXkuqpHi55g729lU6brzvGF7O9Fmweqvv+qzT11dHeC6SEZfoKmpacDjabVKDoTH0BJmofazz8g/7LBh7y8zL48xpiD2W2Kp2rODvPr8Yc8ViEQb21kVlsIZ7z6LqbWV1cuXE1pRwZS772bbnXdSN4Tf3jG7dlGQfQyypcYtv9nBeFUeA/xECHEGEAJECiFeAfYLIVKklBW6eahS718KjHUanwaU6+1pvbQ7jykVQpiAKKBGb8/tMSav5wKllM8AzwDk5OTI3sKiQYvKiYjQHBBtxg7q2lsIDgkjdITOpdaWDmhuITIiPCAr9DY1NbFjxw7+8Y9/8Pvf/77rHA6WFtlGc0MbYeEWjCNM0NXcboXGJiLCQ4kIHZpNNSQkhJkzZ45o//7ADrGbr1fsYObsY1wW4rt6xXaCjcX84swTVAkHnW0U8OVHOzly3rFYXBDJ8mzBGsYn2cjNPabPPo5kln1d4/yRvLy8QR1P0trPqEzLJKO+ntSRHP/f/05dShp2g5GfnXycyyuK+zuf123hvWYDxj//GW68kXlvvglffAHvvMOME04Y/ER1ddDQQGFkMkdNySY3N8vlax3wSiSlvE1KmSalzEBzzl0ppbwIeB+4VO92KfCe/vl9YLEQwiyEGI/mrLtWNzM1CiHm6v4tl/QY45jrXH0fEvgYOEUIEaM7756it40Yh6DR6gLTRmeAJ1a77rrrOOaYYzjmmGO46qqrhjzeORJppHSZ69RNtE8cNZEKDriuJtLm0npykiOU8OJEhouLOpbVDpzE7qyzzuKskUSF+DE3fP8uVaaw7iakYZo1DiSMIcJsIsaFOXwChfHx4TS0Wam5+JcQFQVvvQVXXQVDEV4AiooA90UgwcjywNwPnCyEyAdO1r8jpdwKLAe2AR8B10opHXeuq9EcgQuA3cAKvf15IE4IUQD8Fj2iSUpZA9wLrNNf9+htI8aR5t5VN1WjQYxYu+CrLFu2jPb2dt54441uDsCDxZWRSAeT2AXmuXYFrq6J5MjAe5jKwNsNh//EHhc48trtkvL6tn4jkABuvvnmbikORhNtM45gSv4mOHAAqqo04eX88+Goo4Y2UWEhe6KSGRcXplIx9ML4BE0wr/pk1UH/l8ce0873UHDKAZPWj2P6SBiSACOlzJNSnqV/rpZSLpBSTtDfa5z63SelzJJS5kgpVzi1r5dSTtO3XadrWZBStkkpz5NSZkspZ0spC53GvKC3Z0sp/zXyQ9YQQhBico0jrxZCrZ5M+8KVkUidNolRCIwGdb77Ii0mDLPJQP5+1wgwe6pbaFQOvIeQ3pULZuQamKrmdjqs9n4jkEY7xgUn8vi8C7QvN96oCS/Llw9NM1BbC3V17ApPVA68fZAZH868PT+Sfs0v4d13Ye5cCA6G884bmhDTTQPjAwJMoBES5JpQ6g6bXaW17wdXRiJ1qBDqATEaBJkJFgoOuEaAURl4e8diNhFvMbOnauQaGEcOmDFR/V/oc3NzA8r/ZShkJVj498zTsQeb4ZVX4Oqrh27W2L0bgM3mOMapEOpeSY0OZcb+fN699RE48UT461+hpkZLaLdu3eAnKiykNSKKllALiRG+Z0LyS5yz04YEGei02bHaRnZjtdrsHk9i52+YTQYXaWCGl29nMFmJA4kJiRaXaWC2lNUTbDQwMUll4O1JRlyYSzQw5XVaFl6lgembrAQLU/cXYjPogRIjMGsURSaRoTQwvWIyGvj4zEv4IlUvFXP00XDuufDGG3DRRYOfqLCQqoQxJEeGuM29YlQJMEFBQd2SQDl8M0aSkddul1jtyoQ0ECF6TST7CGsiDTfjcWtrK0FBo8dhLzvRQlldK3/7bBcb9tSOaK4fS+uZlKIceHsjIz7cJT4wZXXaHEqA6ZukDd/y9/cf4LVbHoGsLIiJ0cxIQxFiHH4ZUUmMUwJMn2TGh1PknGX6/vu1EgxDqcNVWEhpdIrbcsDAKBNgEhMTKSsro6WlBSnlwZICIzAjeSuJnb/hikgkTVgcmrlOSklLSwtlZWUkJiYOPCBAcMh4j3+ez4XPrRm2EGO3S7aU1yvzUR9kxIWxr6GN1o6RaRfLaluJMJuIdEO69UBBrF/PI5ffw8dph8NDD8GePXDhhUM2a7TFxNFsDuvyYVIcynhdgOl64MzKguuvh3/9C374YeAJbDYoLmZ3RKLbIpBgCMUcAwFH+vvy8nI6OzsBOFDXSvN+IwfChpcLoL3TxoGmDuw1wewLwBwwrqLTZmd/Qzud1UHDLupodcwRHkT1EOYICgoiKSlp0OUPAgFHegC71ML81xRWMyt96GXE9tQoB97+cNwE99a0jKjIZVldm9K+DMTSpbQs38Tugmq4/GyYPx9efRUKCgY/R2Eh1YmpBBsNJEeqjMd9kREfTrvVzr6GtoMOuHfcAcuWwc03wyef9F9Qs6wMOjvZHhrv1t/1qBJgQBNinG9kf/zHt0gJb159+LDme2N9Cb97/0fybs4lI15J9H3RabNzzh8/4vJjM7n19EnDmuPr/CqufP87Xl8yl8mZcS5eYWBxwqREnv5iNza7xGQ0MHeY56vLgVeFUPdKhlMk0sgEmIFzwACcf/75w95HIJCVYOHt78t49LNdnPq7u5iy8ES4777B54IpLKQsaSJpsaEBm/bCFYzX72VFVc0Hf5cxMfDHP8INN8CKFXDGGX1PoEcgFUclc4YyIbmP2PBgfiyrZ0Px8NLLVNRrzneqfkn/BBkNjI8Pp6By+MnVyh3F7tz4DxEozEqP4dlLZmEyCOZkxg5L+wK6A69JOfD2xbiuXDAjc+Qtq20Z1O/6mmuu4ZprrhnRvvwZx0P/EysL+NmaVqp+tlhz5i0cRHmLzk7Yu5fdEYldgqeidzL1qtSFPautX301ZGfD734H1n5KuTjVm3JXCDWMcgFmw55aPt9eSYfVzi+e+25YfgIV9a3EhQcHZAkBVzMhKYJdI4iMKa9vRQhIUqrfQXHipCR+eex4vs6vonCYIdU/ltYxOTlC+Xj1QVRoELHhwSOqSt3Y1klDm3VQqvaWlhZaWlxXAdvfaGzVbpoO0+iH518DJhPccsvAg0tKwGZjS0g842KVA29/JEWaCQ0yalWpnQkO1rRd27bB88/3PUFhIdJgoCIiXjnxuos1hdXY9fDaDt1PYKhU1LeR4kYnpUAiPNjI3poWvi2oGtb48rpWEiPMKhpmCCw5PpNgk4EnVw7BT0DHbpdsLWtQ5qMBSI8Lo7jnk+oQcIRQD+ZJ9YwzzuCM/lT3Ac5JU5K6TD8mo4HD5kyFpUvhzTfh66/7H6zngCmwqCR2AyGEICM+vPcUAWefDccdp5mTGhp6n6CwkMbEMViNJqWBcRdzM+O6boYSLXRsqFTUtZEyQPIphabtemdjGQCX/WvdsLRd5XVtbv1nCETiLWYunpvOu5vKhqyFKa5uprFdOfAOREbcyEKpu0Ko1W97QBym0SCjYMbYaM00evPNMGYM/Pa3B1Pf94aTWUMJMANzSCi1AyG05HaVlfDAA70PLiykKiGVqNAglxQ67YtRLcDMSo/h1SvmcvX8LIKNgv9t2TfkOcrrW0lR/i8DsqawGpsektdhs7N699C1MOV1rQNmKlUcypLjszQtzKqhaWEOZuCNdsOqAof0uDDK6lp5bJg5d8p0DYy76sUEGidOSuK6EybwXVGNdr7Dw+Evf9HCqf/9774HFhZiCwpmvyVWhVAPgvHx4eytaelKFdKNo46CX/wCHnlEM831pLCQ0hj3+r/AKBdgQBNibjl9Er+an8UHP5Szce/gL0BN7VYa26xKAzMIHNouh+N/U1s/DmC9IKXUIzWUsDhUEiLMXDQnnXc3lvX+RNUHDgfeCUkWN67O/3EkeX5smDl3ympbCTIKEixmN6wuMLniuPHEW8zcv2K7lmX7ootg1iy47Tboy0eosJD6pDFIo1EJi4NgfHw4NrvkgRU7ev9N//nP2o//97/v3t7cDJWV7I5IJNXN1+tRL8A4WDI/i3iLmfv+u33Qaecr9KgYdVMdGIe266ZTJjIlJYLX15dQ09wx6PG1LZ20W+3KhDRMlszXfGGeWJk/6DE/ltYzOSVSOfAOQF2LllPKOefOUCirayUlKhSDCusdNOFmEzecNIF1xVogBgaDpg0oLdXMG71RWMj+uDGMiQrFbFJBFwPRoWtenv+6qHfBPD1dK6r58suwYcPBdj2EeltIvNLAeAqL2cRvT57I+j21fLx1cKakcj2EWmlgBses9BiuPWECf1s8k8Y2Kw99vGPQY8u7hEV1rodDYkQIF81J571N5YNyOLXbJVvLG5iu/F8G5CczxnRpFoeTc6e8rnXQ/i+XXXYZl1122RBXGJhccNRYMuPDeeCjHVo9u+OPh5/9TEt7X15+6IDCQoqjklQE0iCpamoHNP/QPgXz226DhAS46aaDqkjd12hXmBJgPMr5R6YxIdHC/St20DGI+kj76rWbqvKBGRoTkyL45TEZvL6uZNAmu7K6wVXrVfTNkvmZmAyCJwYRkVRU3UyTcuAdFLPSY3jqwiMwGQRHjIsecs6dstrBJbEDJcA4E2Q0sPS0HPIrm3jr+1Kt8YEHtHwvd9zRvXNtLdTVsT00QTnwDpKjs+IxOwW5zB0fe2inyEi4+2744gt4/32tzclZ2t2O6UqAccJkNHD7mZMprm7h1e/2DNi/vK5N5SUZJr85aSKJEWb++N7WLufe/ihX5roRkxgRwkV6RNJAWpgtKgPvkDhtWgo3njyR1YU1fLnrwKDHddrs7G8cfBmBqqoqqqqGl4YgEDl1ajIzx0XzyKe7tHpU2dnw619rKe83bjzYUb+p7ghLUA68g2RWegz/vnIuJ0xKxC4hv7KPKMYrr4RJk7Rw9s5OKCzEGm6hNjTS+xoYIUSIEGKtEOIHIcRWIcTdenusEOJTIUS+/h7jNOY2IUSBEGKnEOJUp/ZZQojN+rbHhdDyKgohzEKI/+jt3wkhMpzGXKrvI18IcalLj74XcicmcGx2PI99nk99a2e/fSvqW4m3qLwkw8FiNvH7M6ewuaye19buHbB/RX0bZpOB2PDh1axSaFyla2EGikjaXFqP2WRgQqJy4B0sVxw3nvHx4dz1/tZBFy3dV9+GlJA2yAv9ueeey7nnnjuSZQYUQghuO30y+xvaeeEbzfeCO+6A2NjuZg09B4wKoR4as9JjeP6SIzk6K457PtzWe8Zpk0krrrlrF/zjH1BYSMOYsSCET2hg2oETpZSHAzOA04QQc4Fbgc+llBOAz/XvCCGmAIuBqcBpwFNCCIfH1NPAEmCC/jpNb78cqJVSZgOPAg/oc8UCdwJzgNnAnc6CkjsQQnDbGZOob+3k7wNc5Cvq2xijzEfDZuH0FOZlxvHQxzup1u2tfVGm+wmI/gqIKQYkMSKEC+ek887Gsn7T3/9YVs+UMZGYlAPvoDGbjNy5cAqFVc0891XRoMaU1irfrpEye3wsJ01O5B95u6lt7oDoaM2ssWrVIWaNEuUDM2QMBsHD5x2O0SD47fIfeteYn3mmVrH6jjtgyxaqElIxGQQJ678dfJ2q4axtoA5Sw6E7CtJfElgEvKi3vwicrX9eBLwupWyXUhYBBcBsIUQKECmlXC21MJ+XeoxxzPUmsEDXzpwKfCqlrJFS1gKfclDocRtTx0RxzhFpLPummJKavhNUlevRA4rhIYTgnkVTaW638uBHO/vtWz7IYneKgfmVQwvThy+MloG3Xvm/DIPcnEROm5rMEyvzu/y2+qOrvpcK6x0Rt5w2ieYO60HN4pIlmlnjd7+Djg4oLKQ1OpZmc5jSwAyDMdGh3LtoGhv21PKPL3Yf2kEIrZxDQwPs2UNpTAqnV23HuPgCLWeMmxhUijxdg7IByAb+LqX8TgiRJKWsAJBSVgghEvXuqcAap+Glelun/rlnu2NMiT6XVQhRD8Q5t/cyxnl9S9A0OyQkJJCXlzeYw+qXYyLsvC/t3PzSl1w941Ati5SS0poWMsPaXbK/0czJ6Sb+s76ECaYDZEf3Ht5YtL+Fw+KN6ly7iONTDbz1fSlHhVeTGNb9Oaa8yU5zh42gxgry8pS/xVA5Od7Oyu12fv2vL7h+Zv8a2q8LtFQC+T+sZY9xYO1iXV0dQED9HzQ1NbnkeI5NNfHiN0VMMuwjIcxA7KWXMv222yj47W+J27CB6uhEIoJhw5pvRr7oUUiUlMxONvLIJzuxNO4hPbLHtXrCBA476iji1q3Dkr+Ne/PeY9O9d1EnBLjp9zooAUZKaQNmCCGigXeEENP66d7bf6Hsp324Y5zX9wzwDEBOTo7Mzc3tZ3mDp8iwk8dXFnBr5uHMHNfdclXf2kn7x58we+oEco/PdMn+RitHzrOy8a9f8M7eYN7/ybGHlLnvtNmp/3gFR0waT27uRC+tMrCYckQbXz64inXNcTx0xuHdtr27sQzYxHknzWFScqR3Fujn7Asp4KGPd0LKFHJzEvvst6LqR+ItlZyy4IRBzRsdHQ2Aq65xvkBeXp5LjmfSzDbmP7SKbxpi+NsZM2H+fHjhBbKXLQOLhW3jppOdHE2u7NCy9i5dOuJ9jjZmzunglEe/5JUCEx9cf+yhRYzffReOPprZuzbwyc+u5JQbb3TreoZk4JZS1gF5aGac/bpZCP29Uu9WCox1GpYGlOvtab20dxsjhDABUUBNP3N5BEdyuz//79DkdhWOEGoVFTNiLGYTd5w1ma3lDfy7l+gvh6OjqhXjOhIjQ/j57HG8vbGMvT3q+GwuqyckyEB2gnLgHS5XHDeezEE49JbXtw7JfHT11Vdz9dVXu2KJAUdyVAi/PHY8724q16LoHGaN5mbYv598SyILKrbC+ee71awRyESHBfPQeYeTX9mkCeg92bkT2dzME8cs5tjP39T8kNzIYKKQEnTNC0KIUOAkYAfwPuCICroUeE///D6wWI8sGo/mrLtWNzc1CiHm6v4tl/QY45jrXGCl7ifzMXCKECJGd949RW/zCI7kduuKa/l46/5u2yrqHEnslADjCs48LIVjsjWH3qoeDr0qiZ17uDo3C6NB8OSq7tl5N5fWMyVFOfCOBLPJyF0/mUpxdQvPflnYZ7+y2tYhpVu/4IILuOCCC1yxxIDkV/OziA4L4oGP9CSZl18OZ50FQGpJPr984lZYvhxOGJzGS3Eo8ycmcMm8dJ7/uohvCpxMzKtWwfnnU/3Cy/z12Iv49s9PacKiG4WYwVyhUoBVQogfgXVoTrUfAvcDJwsh8oGT9e9IKbcCy4FtwEfAtboJCuBq4Dk0x97dwAq9/XkgTghRAPwWPaJJSlkD3Kvvdx1wj97mMQ4mt9veLbldeVcSO3VTdQVCCO7+yTRaO208sKJ7ht5ype1yC0mRIfxi9jje/v6gFsZml2wtVw68ruD4iQmccVgyT64qoLT20GAAR32voWgWS0pKKOmteJ4CgKjQIK47IZuv8qv4Kl/Px/P887TnTObkgrXsOe8SJby4gNtOn0xmfDg3v/HDwXQj69bB8uUUHzYbANOCEzVhcd06t61jMFFIP0opZ0opp0spp0kp79Hbq6WUC6SUE/T3Gqcx90kps6SUOVLKFU7t6/U5sqSU1+laFqSUbVLK86SU2VLK2VLKQqcxL+jt2VLKf7n28AfGZDRw+xmHJrerqGvDICAxQhVgcxXZiRYuPzaTNzaUsmHPQTm1XNd2qSy8rufq3CwMBtGVMqCoqonmDhvTlADjEu44cwoCwb0fbjtkW3VzB+1W+5AEmIsvvpiLL77YlUsMOC6el05aTCj3r9iB3S5h61ZEZSWPHb2Y7LdfcbtZYzQQGmzkkQtmUNnYzl3vb9Ualy6FE07oir5LjQ7VhEU3+hopHfEgyM05NLldeX0rSZEhSs3uYq4/MZuUqBD+8O5Wrb4JmgkpNjyY0GBVgM3VOLQwb31fSklNC5v1DLzT06K9u7AAYUx0KL9eMIGPt+5n1c7KbtvKVA4Yt2A2Gbn5lBy2ljew+vk34Pzz+fzux3n0uItofulVt5s1RgszxkZz/YnZvLOxjA9/POiaWuZBk7+6+w4C5+R2T+lPqhV1bcr/xQ2Em0384awpbKto4NXvtAy9Wg4Yda7dxa/mZ2EQmhZmc2kDIUEGshJUunVXcfmx48lM0Bx62zoPOvSWqRwwbuMnh49hSkokP7zzGR2vvcZ36YcTFmwk6oxT3G7WGE1ce0I2h6dF8ft3trBPL25cXtdKdFgQ4eZBBTmPCCXADBJHcrt/6cnt9jW0kaKenNzC6dOSOW5CPA9/spMDje2U17UpXyM3khwVws9nj+XNDaWs3LGfqWOilGbRhQSbDNzzk2ns6eHQ63BOT4tWidVcjcEguPX0STw4fREvh2Sxt6aFcbFhWiZvN5s1RhNBRgOPXDCDdquNpW/9iJSS8ro2j5n71VVqCNx0ykQMBnjw451aFl5VxNEtCCG46ydTaeu0cf+KHZQP0dFRMXSuzs3GIATF1S1IKdmwZ3BVwhWD49gJ8Zx5WApPriroyu5dWttKeLCRyFD3P6mORo7X69o9uTKfnfsayVBFHN1CVoKF358xmS93HeCVNXs8mjVdCTBDICUqlCuPy+SDH8ppt9qxyUNy6ilcRFaChSuPy+St70tpbLdiV+farSRHhbBgspZwbePeOi58bo0SYlzMHWdNxmgQ3KM79JbVaTlghlLf66abbuKmm25y1xIDjltPn0RtSydlda3UNLer37SbuGhuOsdPTOC+/21n94Emj51rJcAMkTmZcV2fX1mzR/1DuJFjs+O7Pr+2dq86125mfLz2hCqBTqudNYXV3l1QgJESpTn0frptPyt37B+WZnHhwoUsXLjQTSsMPKalRnHcBO06sq64VgnmbkIIwUPnTscoBJ026bGHICXADJEfSuq66hvY7FJd5N3IRnWuPcqCyUmEBBkwCggyGZjrJKwrXMMvjxlPVkI4d72/jZKaliGr2nfu3MnOnf0XPlV0Z3KKVg5DCebuJSkyhAWTkwDPnWslwAyRuZlxmIMMGITmnKcu8u7Dca6N6lx7hFnpMbx6xVx+e0oOr14xl1npMQMPUgyJYJOBexZNY29NCw1tVkpqWob0lHrVVVdx1VVXuXGFgcepU5OVYO4hLj06A7PJc+da9Kzx4+/k5ORIdz+hbNhTy5rCauZmxqmLvJtR51oRiFz47Bq+2V2NAMxBhkELjI6ih4FUjdpVxRz7Q11HPMdwz7UQYoOU8sih7Eu5vw+DWekx6p/AQ6hzrQhEpo+N5pvd1d1U7ep37j7UdcRzePJcKxOSQqFQeJiTlL+RQjFilAZGoVAoPIzD30iZNRSK4aMEGIVCofACw1G133HHHW5ajULhfygBRqFQKPyEk046ydtLUCh8BuUDo1AoFH7Cpk2b2LRpk7eXoVD4BAMKMEKIsUKIVUKI7UKIrUKI3+jtsUKIT4UQ+fp7jNOY24QQBUKInUKIU53aZwkhNuvbHhd6Dm0hhFkI8R+9/TshRIbTmEv1feQLIS516dErFAqFH3HDDTdwww03eHsZCoVPMBgNjBW4SUo5GZgLXCuEmALcCnwupZwAfK5/R9+2GJgKnAY8JYQw6nM9DSwBJuiv0/T2y4FaKWU28CjwgD5XLHAnMAeYDdzpLCgpFAqFQqEYnQwowEgpK6SU3+ufG4HtQCqwCHhR7/YicLb+eRHwupSyXUpZBBQAs4UQKUCklHK11LLnvdRjjGOuN4EFunbmVOBTKWWNlLIW+JSDQo9CoVAoFIpRypB8YHTTzkzgOyBJSlkBmpADJOrdUoESp2Gleluq/rlne7cxUkorUA/E9TOXQqFQKBSKUcygo5CEEBbgLeAGKWVDPyXge9sg+2kf7hjntS1BM00BtAshtvS1uD6IQhOa1Bg1JpDGeHJfaowHxwghfHZtwxgTD1R5YD9qjG+PyRlif5BSDvgCgoCPgd86te0EUvTPKcBO/fNtwG1O/T4G5ul9dji1/xz4p3Mf/bMJ7ccsnPvo2/4J/HyAta4fzDH1GPOMGqPGBNoYX1+fGqPG6GPUNVuNGdbvYDBRSAJ4HtgupXzEadP7gCMq6FLgPaf2xXpk0Xg0Z921UjMzNQoh5upzXtJjjGOuc4GVUjuij4FThBAxuvPuKXqbq/lAjVFjAnCMJ/elxqgxwx0zHHz5eNQYD/0OBqxGLYQ4FvgK2AzY9ebb0fxglgPjgL3AeVLKGn3M74FfokUw3SClXKG3HwksA0KBFcD1UkophAgBXkbzr6kBFkspC/Uxv9T3B3CflPJfA6x3vRxiRUuFQqFQeAd1zVbA8H4HAwow/oYQYomU8hlvr0OhUCgUA6Ou2QoY3u8g4AQYhUKhUCgUgY8qJeBGhBCn6dmIC4QQt/bYdrMQQgoh4r21vkBBCPGCEKLSOfpMCHGenjnarpsuFS6gj3M9QwixRgixSQixXggx25trDBT6yYJ+lxCiTD/fm4QQZ3h7rYGAul77H0qAcRN69uG/A6cDU4Cf61mKEUKMBU5G8x1SjJxlHJrgcAvwM+BLj68msFnGoef6QeBuKeUM4I/6d8XI6SsLOsCjUsoZ+ut/3ltiYKCu157DlQ+cSoBxH7OBAilloZSyA3gdLeMwaOUSltJLThvF0JFSfonm/O3ctl1KudNLSwpYejvXaL/jSP1zFFDu0UUFKLLvLOgK16Ou155jGS564FQCjPvoNYuwEOInQJmU8gfvLEuhcDk3AA8JIUqAh9FyQSlcSI8s6ADXCSF+1J9mVX24kaOu1x7ClQ+cSoBxH71lETYDv0dTsysUgcLVwI1SyrHAjWh5oxQuomcWdLSiuFnADKAC+Kv3VhcwqOu1H6IEGPdRCox1+p6GZkMdD/wghCjW274XQiR7fnkKhcu4FHhb//wGmjpe4QKEEEFowsurUsq3AaSU+6WUNimlHXgWdb5dgbpe+yFKgHEf64AJQojxQohgYDHwtpQyUUqZIaXMQPunOUJKuc+bC1UoRkg5MF//fCKQ78W1BAx9ZUEXQqQ4dfspmv+AYmSo67UfMuhijoqhIaW0CiGuQyt9YARekFJu9fKyAhIhxGtALhAvhCgF7kSzsT4BJAD/FUJsklKe6r1VBgZ9nOsrgceEECagjYOFVRUj4xjgYmCzEGKT3nY7WoTMDDSn0mLgKm8sLpBQ12v/RCWyUygUCoVC4RGcH4KA/Rz6wFkHDOqBUwkwCoVCoVAo/A7lA6NQKBQKhcLvUAKMQqFQKBQKv0MJMAqFQqFQKPwOJcAoFAqFQqHwO5QAo1AoFAqFwu9QAoxCoVAoFAq/QwkwCoVCoVAo/A4lwCgUCoVCofA7lACjUCgUCoXC71ACjEKhUCgUCr9DCTAKhUKhUCj8DiXAKBQKhUKh8DuUAKNQKBQKhcLvUAKMQqFQKBQKv8MvBRghhE0IscnpldFP3zwhxJEeXJ5CoVAoACGEFEK87PTdJIQ4IIT40JvrUgQGJm8vYJi0SilneHsRCoVCoeiXZmCaECJUStkKnAyUDWUCIYRJSml1y+oUfo1famB6QwgxSwjxhRBigxDiYyFEitPmi4QQ3wohtgghZnttkQqFQjH6WAGcqX/+OfCaY4MQYrZ+bd6ov+fo7ZcJId4QQnwAfOL5JSv8AX8VYEKdzEfvCCGCgCeAc6WUs4AXgPuc+odLKY8GrtG3KRQKhcIzvA4sFkKEANOB75y27QCOl1LOBP4I/Nlp2zzgUinliR5bqcKvCAgTkhBiGjAN+FQIAWAEKpz6vwYgpfxSCBEphIiWUtZ5brkKhUIxOpFS/qj7Kf4c+F+PzVHAi0KICYAEgpy2fSqlrPHMKhX+iL8KMD0RwFYp5bw+tssBvisUCoXCfbwPPAzkAnFO7fcCq6SUP9WFnDynbc2eWpzCP/FXE1JPdgIJQoh5AEKIICHEVKftF+jtxwL1Usp6L6xRoVAoRisvAPdIKTf3aI/ioFPvZR5dkcLvCQgBRkrZAZwLPCCE+AHYBBzt1KVWCPEt8A/gcs+vUKFQKEYvUspSKeVjvWx6EPiLEOIbNNO/QjFohJTKmqJQKBQKhcK/CAgNjEKhUCgUitGFEmAUCoVCoVD4HUqAUSgUCoVC4Xf4vAAjhBgrhFglhNguhNgqhPiN3h4rhPhUCJGvv8fo7XF6/yYhxJM95rpACPGjPs+D3jgehUKhUCgUI8fnBRjACtwkpZwMzAWuFUJMAW4FPpdSTgA+178DtAF/AG52nkQIEQc8BCyQUk4FkoQQCzx0DAqFQqFQKFyIzwswUsoKKeX3+udGYDuQCiwCXtS7vQicrfdpllJ+jSbIOJMJ7JJSHtC/fwac497VKxQKhUKhcAc+L8A4o2dqnIlWSyNJSlkBmpADJA4wvACYJITIEEKY0ASese5brUKhUCgUCnfhNwKMEMICvAXcIKVsGOp4KWUtcDXwH+AroBjNPKVQKBQKhcLP8AsBRq82/RbwqpTybb15vxAiRd+eAlQONI+U8gMp5Ry9ZtJOIN9da1YoFAqFQuE+fF6AEVp56eeB7VLKR5w2vQ9cqn++FHhvEHMl6u8xwDXAc65drUKhUCgUCk/g86UE9AKMXwGbAbvefDuaH8xyYBywFzjPUXpdCFEMRALBQB1wipRymxDiNeBwfY57pJSve+gwFAqFQqFQuBCfF2AUCoVCoVAoeuLzJiSFQqFQKBSKnigBRqFQKBQKhd+hBBiFQqFQKBR+hxJgFAqFQqFQ+B1KgFEoFAqFQuF3KAFGoVB4HSHEh0KIZd5eh0Kh8B+UAKNQKPwKIUSuEEIKIeK9vRaFQuE9lACjUCgUCoXC71ACjEKh8ChCiDAhxDIhRJMQYr8Q4vYe2y8SQqwTQjQKISqFEG8IIVL1bRnAKr3rAV0Ts0zfJoQQS4UQu4UQrUKIzUKIizx5bAqFwnMoAUahUHiah4GTgXOABcBM4Hin7cHAnWhlP84C4oHX9G0l+jiAqUAK8Bv9+5+Ay4FrgSnAX4B/CiHOdNeBKBQK76FKCSgUCo8hhLAA1cAvpZSvOrWVAu9KKS/rZcwkYDswVkpZKoTIRdPCJEgpq/Q+4UAVWt2zr5zG/g2YKKU8w42HpVAovIDJ2wtQKBSjiiw0DctqR4OUskkIsdnxXQhxBJoGZgYQCwh90zg0Qac3pgAhwEdCCOensiCg2EVrVygUPoQSYBQKhScR/W7UNCkfA58BFwOVaCakr9AEn75wmMMXolWnd6ZzWCtVKBQ+jRJgFAqFJylAEyjmAoXQJbRMA3YDk9AEltullEX69p/1mKNDfzc6tW0D2oF0KeVKt61eoVD4DEqAUSgUHkM3Fz0PPCCEOACUA3/koDCyF00QuU4I8XdgMnBvj2n2ABI4UwjxAdAqpWwUQjwMPCyEEMCXgAVNULJLKZ9x97EpFArPoqKQFAqFp7kZzQn3Hf19C5rAgZTyAHApcDaaVuVO4LfOg6WUZXr7fcB+4El90x+Au/T5twKfokUsFbnxWBQKhZdQUUgKhUKhUCj8DqWBUSgUCoVC4XcoAUahUCgUCoXfoQQYhUKhUCgUfocSYBQKhUKhUPgdSoBRKBQKhULhdygBRqFQKBQKhd+hBBiFQqFQKBR+hxJgFAqFQqFQ+B1KgFEoFAqFQuF3/D+J8LFAS63dFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# extra code – generates and saves Figure 15–11\n", + "\n", + "# The forecasts start on 2019-02-26, as it is the 57th day of 2019, and they end\n", + "# on 2019-03-11. That's 14 days in total.\n", + "Y_pred = pd.Series(X[0, -14:, 0],\n", + " index=pd.date_range(\"2019-02-26\", \"2019-03-11\"))\n", + "\n", + "fig, ax = plt.subplots(figsize=(8, 3.5))\n", + "(rail_valid * 1e6)[\"2019-02-01\":\"2019-03-11\"].plot(\n", + " label=\"True\", marker=\".\", ax=ax)\n", + "(Y_pred * 1e6).plot(\n", + " label=\"Predictions\", grid=True, marker=\"x\", color=\"r\", ax=ax)\n", + "ax.vlines(\"2019-02-25\", 0, 1e6, color=\"k\", linestyle=\"--\", label=\"Today\")\n", + "ax.set_ylim([200_000, 800_000])\n", + "plt.legend(loc=\"center left\")\n", + "save_fig(\"forecast_ahead_plot\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZIaRYdWXnU0R" + }, + "source": [ + "Now let's create an RNN that predicts all 14 next values at once:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cgXLJbGSnU0S" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "\n", + "def split_inputs_and_targets(mulvar_series, ahead=14, target_col=1):\n", + " return mulvar_series[:, :-ahead], mulvar_series[:, -ahead:, target_col]\n", + "\n", + "ahead_train_ds = tf.keras.utils.timeseries_dataset_from_array(\n", + " mulvar_train.to_numpy(),\n", + " targets=None,\n", + " sequence_length=seq_length + 14,\n", + " batch_size=32,\n", + " shuffle=True,\n", + " seed=42\n", + ").map(split_inputs_and_targets)\n", + "ahead_valid_ds = tf.keras.utils.timeseries_dataset_from_array(\n", + " mulvar_valid.to_numpy(),\n", + " targets=None,\n", + " sequence_length=seq_length + 14,\n", + " batch_size=32\n", + ").map(split_inputs_and_targets)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Iu6CMT3onU0S" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42)\n", + "\n", + "ahead_model = tf.keras.Sequential([\n", + " tf.keras.layers.SimpleRNN(32, input_shape=[None, 5]),\n", + " tf.keras.layers.Dense(14)\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "D_l-4Pk-nU0S", + "outputId": "1cea653e-8d43-48c8-9b78-558ab8a8d519" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/500\n", + "33/33 [==============================] - 1s 12ms/step - loss: 0.1250 - mae: 0.3791 - val_loss: 0.0287 - val_mae: 0.1935\n", + "Epoch 2/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0191 - mae: 0.1613 - val_loss: 0.0136 - val_mae: 0.1289\n", + "Epoch 3/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0131 - mae: 0.1303 - val_loss: 0.0102 - val_mae: 0.1113\n", + "Epoch 4/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0108 - mae: 0.1164 - val_loss: 0.0083 - val_mae: 0.1009\n", + "Epoch 5/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0093 - mae: 0.1068 - val_loss: 0.0071 - val_mae: 0.0931\n", + "Epoch 6/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0083 - mae: 0.0996 - val_loss: 0.0061 - val_mae: 0.0862\n", + "Epoch 7/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0076 - mae: 0.0941 - val_loss: 0.0055 - val_mae: 0.0811\n", + "Epoch 8/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0072 - mae: 0.0900 - val_loss: 0.0050 - val_mae: 0.0779\n", + "Epoch 9/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0068 - mae: 0.0869 - val_loss: 0.0046 - val_mae: 0.0751\n", + "Epoch 10/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0066 - mae: 0.0844 - val_loss: 0.0045 - val_mae: 0.0737\n", + "Epoch 11/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0063 - mae: 0.0822 - val_loss: 0.0041 - val_mae: 0.0709\n", + "Epoch 12/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0061 - mae: 0.0804 - val_loss: 0.0039 - val_mae: 0.0688\n", + "Epoch 13/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0060 - mae: 0.0796 - val_loss: 0.0039 - val_mae: 0.0690\n", + "Epoch 14/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0059 - mae: 0.0777 - val_loss: 0.0036 - val_mae: 0.0656\n", + "Epoch 15/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0058 - mae: 0.0766 - val_loss: 0.0035 - val_mae: 0.0649\n", + "Epoch 16/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0056 - mae: 0.0755 - val_loss: 0.0034 - val_mae: 0.0638\n", + "Epoch 17/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0055 - mae: 0.0744 - val_loss: 0.0033 - val_mae: 0.0633\n", + "Epoch 18/500\n", + "<<303 more lines>>\n", + "Epoch 170/500\n", + "33/33 [==============================] - 0s 7ms/step - loss: 0.0032 - mae: 0.0474 - val_loss: 0.0014 - val_mae: 0.0359\n", + "Epoch 171/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0477 - val_loss: 0.0014 - val_mae: 0.0359\n", + "Epoch 172/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0479 - val_loss: 0.0014 - val_mae: 0.0353\n", + "Epoch 173/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0480 - val_loss: 0.0014 - val_mae: 0.0359\n", + "Epoch 174/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0481 - val_loss: 0.0015 - val_mae: 0.0365\n", + "Epoch 175/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0476 - val_loss: 0.0014 - val_mae: 0.0358\n", + "Epoch 176/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0474 - val_loss: 0.0014 - val_mae: 0.0355\n", + "Epoch 177/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0480 - val_loss: 0.0014 - val_mae: 0.0362\n", + "Epoch 178/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0476 - val_loss: 0.0014 - val_mae: 0.0353\n", + "Epoch 179/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0481 - val_loss: 0.0014 - val_mae: 0.0357\n", + "Epoch 180/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0476 - val_loss: 0.0014 - val_mae: 0.0352\n", + "Epoch 181/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0475 - val_loss: 0.0014 - val_mae: 0.0358\n", + "Epoch 182/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0474 - val_loss: 0.0014 - val_mae: 0.0357\n", + "Epoch 183/500\n", + "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0477 - val_loss: 0.0014 - val_mae: 0.0358\n", + "Epoch 184/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0479 - val_loss: 0.0014 - val_mae: 0.0353\n", + "Epoch 185/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0473 - val_loss: 0.0015 - val_mae: 0.0368\n", + "Epoch 186/500\n", + "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0475 - val_loss: 0.0014 - val_mae: 0.0356\n", + "3/3 [==============================] - 0s 3ms/step - loss: 0.0014 - mae: 0.0350\n" + ] + }, + { + "data": { + "text/plain": [ + "35017.29667186737" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – compiles, fits, and evaluates the model, like earlier\n", + "fit_and_evaluate(ahead_model, ahead_train_ds, ahead_valid_ds,\n", + " learning_rate=0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Fqt7stqhnU0T" + }, + "outputs": [], + "source": [ + "X = mulvar_valid.to_numpy()[np.newaxis, :seq_length] # shape [1, 56, 5]\n", + "Y_pred = ahead_model.predict(X) # shape [1, 14]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2E5g0RMunU0T" + }, + "source": [ + "Now let's create an RNN that predicts the next 14 steps at each time step. That is, instead of just forecasting time steps 56 to 69 based on time steps 0 to 55, it will forecast time steps 1 to 14 at time step 0, then time steps 2 to 15 at time step 1, and so on, and finally it will forecast time steps 56 to 69 at the last time step. Notice that the model is causal: when it makes predictions at any time step, it can only see past time steps." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HoE0oBD-nU0T" + }, + "source": [ + "To prepare the datasets, we can use `to_windows()` twice, to get sequences of consecutive windows, like this:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ySv5dyDCnU0T", + "outputId": "3f06e54f-4a5e-4152-82ae-4502ee4cb226" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[,\n", + " ]" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_series = tf.data.Dataset.range(7)\n", + "dataset = to_windows(to_windows(my_series, 3), 4)\n", + "list(dataset)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AgpCZYipnU0U" + }, + "source": [ + "Then we can split these elements into the desired inputs and targets:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "eYi21UUnnU0U", + "outputId": "b5be8a19-49ce-4b61-9b5f-4b3478a99e8e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[(,\n", + " ),\n", + " (,\n", + " )]" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset = dataset.map(lambda S: (S[:, 0], S[:, 1:]))\n", + "list(dataset)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JLkFEsMEnU0U" + }, + "source": [ + "Let's wrap this idea into a utility function. It will also take care of shuffling (optional) and batching:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "fWDQYlw5nU0V" + }, + "outputs": [], + "source": [ + "def to_seq2seq_dataset(series, seq_length=56, ahead=14, target_col=1,\n", + " batch_size=32, shuffle=False, seed=None):\n", + " ds = to_windows(tf.data.Dataset.from_tensor_slices(series), ahead + 1)\n", + " ds = to_windows(ds, seq_length).map(lambda S: (S[:, 0], S[:, 1:, 1]))\n", + " if shuffle:\n", + " ds = ds.shuffle(8 * batch_size, seed=seed)\n", + " return ds.batch(batch_size)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DJqzWAZ2nU0V" + }, + "outputs": [], + "source": [ + "seq2seq_train = to_seq2seq_dataset(mulvar_train, shuffle=True, seed=42)\n", + "seq2seq_valid = to_seq2seq_dataset(mulvar_valid)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1RXtEgZInU0V" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "seq2seq_model = tf.keras.Sequential([\n", + " tf.keras.layers.SimpleRNN(32, return_sequences=True, input_shape=[None, 5]),\n", + " tf.keras.layers.Dense(14)\n", + " # equivalent: tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(14))\n", + " # also equivalent: tf.keras.layers.Conv1D(14, kernel_size=1)\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rREOgFm2nU0V", + "outputId": "230331e1-7584-4fdb-a7ea-6587096417e7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/500\n", + "33/33 [==============================] - 1s 17ms/step - loss: 0.0754 - mae: 0.2785 - val_loss: 0.0163 - val_mae: 0.1379\n", + "Epoch 2/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0097 - mae: 0.1050 - val_loss: 0.0071 - val_mae: 0.0853\n", + "Epoch 3/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0069 - mae: 0.0846 - val_loss: 0.0063 - val_mae: 0.0790\n", + "Epoch 4/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0060 - mae: 0.0773 - val_loss: 0.0056 - val_mae: 0.0729\n", + "Epoch 5/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0055 - mae: 0.0722 - val_loss: 0.0049 - val_mae: 0.0662\n", + "Epoch 6/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0052 - mae: 0.0690 - val_loss: 0.0051 - val_mae: 0.0683\n", + "Epoch 7/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0049 - mae: 0.0663 - val_loss: 0.0046 - val_mae: 0.0626\n", + "Epoch 8/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0047 - mae: 0.0640 - val_loss: 0.0043 - val_mae: 0.0589\n", + "Epoch 9/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0046 - mae: 0.0627 - val_loss: 0.0041 - val_mae: 0.0560\n", + "Epoch 10/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0045 - mae: 0.0616 - val_loss: 0.0043 - val_mae: 0.0589\n", + "Epoch 11/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0044 - mae: 0.0608 - val_loss: 0.0042 - val_mae: 0.0580\n", + "Epoch 12/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0043 - mae: 0.0594 - val_loss: 0.0040 - val_mae: 0.0554\n", + "Epoch 13/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0042 - mae: 0.0584 - val_loss: 0.0041 - val_mae: 0.0572\n", + "Epoch 14/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0042 - mae: 0.0577 - val_loss: 0.0042 - val_mae: 0.0580\n", + "Epoch 15/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0042 - mae: 0.0579 - val_loss: 0.0038 - val_mae: 0.0530\n", + "Epoch 16/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0041 - mae: 0.0573 - val_loss: 0.0039 - val_mae: 0.0534\n", + "Epoch 17/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0041 - mae: 0.0566 - val_loss: 0.0038 - val_mae: 0.0530\n", + "Epoch 18/500\n", + "<<219 more lines>>\n", + "Epoch 128/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0484 - val_loss: 0.0036 - val_mae: 0.0470\n", + "Epoch 129/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0489 - val_loss: 0.0036 - val_mae: 0.0472\n", + "Epoch 130/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0032 - mae: 0.0476 - val_loss: 0.0036 - val_mae: 0.0473\n", + "Epoch 131/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0032 - mae: 0.0483 - val_loss: 0.0036 - val_mae: 0.0479\n", + "Epoch 132/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0492 - val_loss: 0.0037 - val_mae: 0.0489\n", + "Epoch 133/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0499 - val_loss: 0.0036 - val_mae: 0.0480\n", + "Epoch 134/500\n", + "33/33 [==============================] - 0s 11ms/step - loss: 0.0033 - mae: 0.0486 - val_loss: 0.0035 - val_mae: 0.0469\n", + "Epoch 135/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0486 - val_loss: 0.0035 - val_mae: 0.0468\n", + "Epoch 136/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0491 - val_loss: 0.0035 - val_mae: 0.0467\n", + "Epoch 137/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0493 - val_loss: 0.0035 - val_mae: 0.0471\n", + "Epoch 138/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0486 - val_loss: 0.0036 - val_mae: 0.0476\n", + "Epoch 139/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0487 - val_loss: 0.0035 - val_mae: 0.0470\n", + "Epoch 140/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0492 - val_loss: 0.0035 - val_mae: 0.0467\n", + "Epoch 141/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0488 - val_loss: 0.0035 - val_mae: 0.0471\n", + "Epoch 142/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0493 - val_loss: 0.0035 - val_mae: 0.0468\n", + "Epoch 143/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0494 - val_loss: 0.0035 - val_mae: 0.0473\n", + "Epoch 144/500\n", + "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0486 - val_loss: 0.0035 - val_mae: 0.0469\n", + "3/3 [==============================] - 0s 13ms/step - loss: 0.0034 - mae: 0.0459\n" + ] + }, + { + "data": { + "text/plain": [ + "45928.88057231903" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fit_and_evaluate(seq2seq_model, seq2seq_train, seq2seq_valid,\n", + " learning_rate=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rNuivqbDnU0W" + }, + "outputs": [], + "source": [ + "X = mulvar_valid.to_numpy()[np.newaxis, :seq_length]\n", + "y_pred_14 = seq2seq_model.predict(X)[0, -1] # only the last time step's output" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aCg70G0tnU0W", + "outputId": "398b6d40-ab77-40af-cd63-24133dddd8a5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAE for +1: 25,519\n", + "MAE for +2: 26,274\n", + "MAE for +3: 27,054\n", + "MAE for +4: 29,324\n", + "MAE for +5: 28,992\n", + "MAE for +6: 31,739\n", + "MAE for +7: 32,847\n", + "MAE for +8: 33,282\n", + "MAE for +9: 33,072\n", + "MAE for +10: 29,752\n", + "MAE for +11: 37,468\n", + "MAE for +12: 35,125\n", + "MAE for +13: 34,614\n", + "MAE for +14: 34,322\n" + ] + } + ], + "source": [ + "Y_pred_valid = seq2seq_model.predict(seq2seq_valid)\n", + "for ahead in range(14):\n", + " preds = pd.Series(Y_pred_valid[:-1, -1, ahead],\n", + " index=mulvar_valid.index[56 + ahead : -14 + ahead])\n", + " mae = (preds - mulvar_valid[\"rail\"]).abs().mean() * 1e6\n", + " print(f\"MAE for +{ahead + 1}: {mae:,.0f}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CXrlzCuZnU0W" + }, + "source": [ + "# Deep RNNs with Layer Norm" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UIBmv57anU0X" + }, + "outputs": [], + "source": [ + "class LNSimpleRNNCell(tf.keras.layers.Layer):\n", + " def __init__(self, units, activation=\"tanh\", **kwargs):\n", + " super().__init__(**kwargs)\n", + " self.state_size = units\n", + " self.output_size = units\n", + " self.simple_rnn_cell = tf.keras.layers.SimpleRNNCell(units,\n", + " activation=None)\n", + " self.layer_norm = tf.keras.layers.LayerNormalization()\n", + " self.activation = tf.keras.activations.get(activation)\n", + "\n", + " def call(self, inputs, states):\n", + " outputs, new_states = self.simple_rnn_cell(inputs, states)\n", + " norm_outputs = self.activation(self.layer_norm(outputs))\n", + " return norm_outputs, [norm_outputs]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dzBHKL0wnU0X" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "custom_ln_model = tf.keras.Sequential([\n", + " tf.keras.layers.RNN(LNSimpleRNNCell(32), return_sequences=True,\n", + " input_shape=[None, 5]),\n", + " tf.keras.layers.Dense(14)\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HyaamCRVnU0X" + }, + "source": [ + "Just training for 5 epochs to show that it works (you can increase this if you want):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Dyy1jEpTnU0X", + "outputId": "56681174-ebef-4860-f5d0-ac8f28a3a44e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "33/33 [==============================] - 2s 25ms/step - loss: 0.0809 - mae: 0.2898 - val_loss: 0.0178 - val_mae: 0.1511\n", + "Epoch 2/5\n", + "33/33 [==============================] - 1s 18ms/step - loss: 0.0149 - mae: 0.1438 - val_loss: 0.0156 - val_mae: 0.1245\n", + "Epoch 3/5\n", + "33/33 [==============================] - 1s 18ms/step - loss: 0.0120 - mae: 0.1281 - val_loss: 0.0131 - val_mae: 0.1160\n", + "Epoch 4/5\n", + "33/33 [==============================] - 1s 17ms/step - loss: 0.0105 - mae: 0.1167 - val_loss: 0.0118 - val_mae: 0.1095\n", + "Epoch 5/5\n", + "33/33 [==============================] - 1s 17ms/step - loss: 0.0093 - mae: 0.1067 - val_loss: 0.0105 - val_mae: 0.1038\n", + "3/3 [==============================] - 0s 14ms/step - loss: 0.0105 - mae: 0.1038\n" + ] + }, + { + "data": { + "text/plain": [ + "103751.08569860458" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fit_and_evaluate(custom_ln_model, seq2seq_train, seq2seq_valid,\n", + " learning_rate=0.1, epochs=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0gDmHp2unU0Y" + }, + "source": [ + "# Extra Material – Creating a Custom RNN Class" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MsrMtpDqnU0Y" + }, + "source": [ + "The RNN class is not magical. In fact, it's not too hard to implement your own RNN class:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DSkoYuD-nU0Y" + }, + "outputs": [], + "source": [ + "class MyRNN(tf.keras.layers.Layer):\n", + " def __init__(self, cell, return_sequences=False, **kwargs):\n", + " super().__init__(**kwargs)\n", + " self.cell = cell\n", + " self.return_sequences = return_sequences\n", + "\n", + " def get_initial_state(self, inputs):\n", + " try:\n", + " return self.cell.get_initial_state(inputs)\n", + " except AttributeError:\n", + " # fallback to zeros if self.cell has no get_initial_state() method\n", + " batch_size = tf.shape(inputs)[0]\n", + " return [tf.zeros([batch_size, self.cell.state_size],\n", + " dtype=inputs.dtype)]\n", + "\n", + " @tf.function\n", + " def call(self, inputs):\n", + " states = self.get_initial_state(inputs)\n", + " shape = tf.shape(inputs)\n", + " batch_size = shape[0]\n", + " n_steps = shape[1]\n", + " sequences = tf.TensorArray(\n", + " inputs.dtype, size=(n_steps if self.return_sequences else 0))\n", + " outputs = tf.zeros(shape=[batch_size, self.cell.output_size],\n", + " dtype=inputs.dtype)\n", + " for step in tf.range(n_steps):\n", + " outputs, states = self.cell(inputs[:, step], states)\n", + " if self.return_sequences:\n", + " sequences = sequences.write(step, outputs)\n", + "\n", + " if self.return_sequences:\n", + " # stack the outputs into an array of shape\n", + " # [time steps, batch size, dims], then transpose it to shape\n", + " # [batch size, time steps, dims]\n", + " return tf.transpose(sequences.stack(), [1, 0, 2])\n", + " else:\n", + " return outputs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ffdxOuZAnU0Z" + }, + "source": [ + "Note that `@tf.function` requires the `outputs` variable to be created before the `for` loop, which is why we initialize its value to a zero tensor, even though we don't use that value at all. Once the function is converted to a graph, this unused value will be pruned from the graph, so it doesn't impact performance. Similarly, `@tf.function` requires the `sequences` variable to be created before the `if` statement where it is used, even if `self.return_sequences` is `False`, so we create a `TensorArray` of size 0 in this case." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NCcRc9sHnU0Z" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42)\n", + "\n", + "custom_model = tf.keras.Sequential([\n", + " MyRNN(LNSimpleRNNCell(32), return_sequences=True, input_shape=[None, 5]),\n", + " tf.keras.layers.Dense(14)\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8vQYs4e0nU0Z" + }, + "source": [ + "Just training for 5 epochs to show that it works (you can increase this if you want):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wUS8vegHnU0a", + "outputId": "6db8d5ba-e43c-4bee-dc7a-7b32491b5ca0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "33/33 [==============================] - 2s 26ms/step - loss: 0.0814 - mae: 0.2916 - val_loss: 0.0176 - val_mae: 0.1544\n", + "Epoch 2/5\n", + "33/33 [==============================] - 1s 20ms/step - loss: 0.0151 - mae: 0.1440 - val_loss: 0.0157 - val_mae: 0.1247\n", + "Epoch 3/5\n", + "33/33 [==============================] - 1s 19ms/step - loss: 0.0119 - mae: 0.1281 - val_loss: 0.0134 - val_mae: 0.1160\n", + "Epoch 4/5\n", + "33/33 [==============================] - 1s 18ms/step - loss: 0.0105 - mae: 0.1162 - val_loss: 0.0111 - val_mae: 0.1084\n", + "Epoch 5/5\n", + "33/33 [==============================] - 1s 18ms/step - loss: 0.0093 - mae: 0.1068 - val_loss: 0.0103 - val_mae: 0.1029\n", + "3/3 [==============================] - 0s 14ms/step - loss: 0.0103 - mae: 0.1029\n" + ] + }, + { + "data": { + "text/plain": [ + "102874.92722272873" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fit_and_evaluate(custom_model, seq2seq_train, seq2seq_valid,\n", + " learning_rate=0.1, epochs=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WznS37u5nU0b" + }, + "source": [ + "# LSTMs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true, + "id": "WBTlEBgsnU0b" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "lstm_model = tf.keras.models.Sequential([\n", + " tf.keras.layers.LSTM(32, return_sequences=True, input_shape=[None, 5]),\n", + " tf.keras.layers.Dense(14)\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A91eXPUdnU0c" + }, + "source": [ + "Just training for 5 epochs to show that it works (you can increase this if you want):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0hsGr-0nnU0c", + "outputId": "3733574d-d957-4108-dc5b-819c35d40e3e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "33/33 [==============================] - 2s 29ms/step - loss: 0.0535 - mae: 0.2517 - val_loss: 0.0187 - val_mae: 0.1716\n", + "Epoch 2/5\n", + "33/33 [==============================] - 1s 16ms/step - loss: 0.0176 - mae: 0.1598 - val_loss: 0.0176 - val_mae: 0.1473\n", + "Epoch 3/5\n", + "33/33 [==============================] - 1s 16ms/step - loss: 0.0160 - mae: 0.1528 - val_loss: 0.0168 - val_mae: 0.1433\n", + "Epoch 4/5\n", + "33/33 [==============================] - 1s 16ms/step - loss: 0.0152 - mae: 0.1485 - val_loss: 0.0161 - val_mae: 0.1388\n", + "Epoch 5/5\n", + "33/33 [==============================] - 1s 16ms/step - loss: 0.0145 - mae: 0.1443 - val_loss: 0.0154 - val_mae: 0.1352\n", + "3/3 [==============================] - 0s 14ms/step - loss: 0.0154 - mae: 0.1352\n" + ] + }, + { + "data": { + "text/plain": [ + "135186.25497817993" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - " day_type bus rail\n", - "date \n", - "2001-01-01 U 297192 126455\n", - "2001-01-02 W 780827 501952\n", - "2001-01-03 W 824923 536432\n", - "2001-01-04 W 870021 550011\n", - "2001-01-05 W 890426 557917" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's look at the first few months of 2019 (note that Pandas treats the range boundaries as inclusive):" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAADsCAYAAABqkpwSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC2I0lEQVR4nOydd5gcV5X2f7c694TumZFmlHOwZNmyJUuW5TSOmGiyE2DAmIWFJS6sDcuyS1pYk5ewNgZsg20MBoMxxtnjJMlKliwrx1FOkztVd1Xd749b1dOTu3u6a4y+eZ9Hj2aqq6rvVN1w7jnveY+QUjKKUYxiFKMYxShG8Y8EbaQbMIpRjGIUoxjFKEZRKEYNmFGMYhSjGMUoRvEPh1EDZhSjGMUoRjGKUfzDYdSAGcUoRjGKUYxiFP9wGDVgRjGKUYxiFKMYxT8cRg2YUYxiFKMYxShG8Q8H70g3oNSIRqNy1qxZI92MUYxiSMTjcSoqKka6GaMYRRajfXIUrzesW7fupJRybH+fnXIGTENDA2vXrh3pZoxiFEOiqamJxsbGkW7GKEaRxWifHMXrDUKI5oE+Gw0hjWIUoxjFKEYxin84jBowoxjFKEYxilGM4h8OowbMKEYxilGMYhSj+IfDqAEzilGMYhSjGMUo/uEwasCMYhSvc6xrbuOnz+5iXXPbSDdlFKMYxSheNzjlspBGMYpTCeua27jm9pWYliTg07j3I8tYPLVmpJs1ilMQ65rbeGR3mqrpbaN9bBT/EBj1wIxiFK9j/GblPgxLIoGMYbFqT8tIN2kUpyDWNbdx3R2r+OPODDfcuWrU2zeKfwiMGjCjGMXrFMc7Uzy99Vj2d00TLJtRN4ItGsWpilV7TpI2rbwN5dGw5iheDxgNIY1iFK9DSCn51wdfJWNJfnztWfzHw5uZEAmOuvZHURZMrg1nf/Zo2qCG8mhYcxSvF4x6YEYxihGAwzcYaAd7z8pmnt9xgi+/eT5vO2siH71oBluOdLH7RMzllo7i/wd0JDIAeAScPSU6qEHy5Jajo2HNUbwuMGrAjGIULmNdcxvX/2JgvsHOY11869GtXDJ3LO87dwoA7148Ca8meGDNgbK3bTQ08P8fVuxuYWI0xBVTfaxtbuN4Z2rAcw+3J7M/+7yDe2tKgdE+OYqBMGrAjGIULmPVnhZ0Q/ENUhmL36zch2lJANKGxad/t4HKgJf/efdChBAA1FcFuXxeAw+uO4humGVpl2NY3fb4dq7/xSiR002s2HWS/31m54g8c8uSrNzTwnkz62ic7MW0JH9Yd7DfczuSGZ7eehyASMhb9vDRuuY2rrP75HV3rGLdvtayfdcoXn9Y19yGp7Ju3ECfjxow/+B4eU8LPxmhiW8UxWHZjDqE/bMA/rzhMJd+r4lvPLKF63+xii1HOvn2u85kbFWgx3XXLp1MazzNk1uO9blnKbBqTwtpwwJANyxW7j5Zlu/5/xm53oSjHSl+s6qZq3/yItff+TLfe2IH192x0vWxvOVIJ+2JDOfPqmNchcbymXXcv3o/lm1U5+Lel5uJp02WTKtBSsrOfbnzhT3ZPpk2LT77wEZe2T/w81m7r5XvP7F9dD48BbCuuY1r71iJp6Jm4kDnnHIk3taUZNWekyybMWakm1J2rNh1khvufBkJBH27XldkunXNbby48wQXzB77umnT6wWLp9YQDfuIeE1uu/5cTnTp/PCpHdz54l4APJqgtsLf57oLZ49lYjTE71Yf4C1nTih5u5bNqMPrEWRMtXAd7hg4jDCKwuF4uNKGBQKkbR/UhH0IQAJpU/KVP2/itx9Z1m8fKAdW7lYclvNmjGHbK7u4/twpfPK+V3hh10kunjM2e14qY/KrF/dx4ewxnDU5ytrmNixLomlioFsXjYxp8fVHtvD3146iCWXoCyFoT6Z5x89WcOX8Bt50xngOtCWorwrQkczwxOZjrLUNl9uf38N9N5duPlzX3MaqPS0sm1HX454DHR9pvF7bVQh+v2a/mosG6V55GTBCiM8CH0GNsU3Ah4Aw8AAwDdgHvFdK2WaffytwE2ACn5JSPm4fXwzcBYSAR4FPSymlECIA3AMsBlqAa6SU++xrbgT+3W7KN6SUdw/W1s605AO/WsP9Jey8r1d894ntOHskPaPIdK+Hv9nJUjAsyU+e3cXvPnre66JdrycYlmRWVGPJtFoA9p6M870ntmNJQMp+36VHE1yzZDLff3IHzS1xptZVlLRNi6fWcOPyadz5wl7OmFjN79cc4PqlU1gwMVLS7/n/BWoROUlDdZD9LQnufXk/uu1NQMKFs8fw1bfOpyOR4YZfvkzGsBBCsP1YF5d//zluXD4NrwbLZowp6/h5afdJZoytYFwkyDbgyvnjqKvwc9/LzT0MmIdeOcTJmM7HLj6LrUc6kRJiaYPqoK9kbVnX3MbTW4/x7LbjbD3axUcvmsHl8+pZs6+NZTPqmDuuil+9uJefN+3miV6eyJpwdzsyZunmw3XNbdxwpzI8PZrgxuXTiAR97Dzexd9ePYolX1/ZWE7YLW1YeDXB/71vMZfPbxjpZhWEXcdj/PXVI8p2kbKvK9DGkAaMEGIi8ClgvpQyKYT4PXAtMB94Wkr5bSHELcAtwL8JIebbn58OTACeEkLMkVKawM+BjwKrUAbMVcDfUcZOm5RylhDiWuA7wDVCiFrgq8A5KONpnRDiYcdQGghGCTvv6xUrdp1k/f52PJrAtDMC3NqxDYX7Vzdj2O7njCl5csvR1/27cHPHIqUkmTYJeruH37IZdfi9GhnDGpQY+d5zJvPDp3bwwJoDfPGq00retjGVKmz1f+8/h3f89CU++8AG/vovFxD0eUr+XacyHPe3480SwPwJVXQkM1hS4vdqfObyOcyqrwLg3o8sy/a/ioCHT967nh88uQMor3c1Y1qs3tvKuxZNyh7zezXefc4k7nxhL8c6UzRUBzEtyS+e38MZEyMsn1nHoTZF5O1IZIoyYJzxtmhKlBljK+lIZli9p5X/emRz9pl99oo5fPqy2QAsnd49Hj512WzShsVPn92FBDQBH7t4JpfNa8gu3J4Saiat2tOCnlGcNcuU3PmC8pR6NYFpr61ONtbrYZ57ceeJbNjNsCQf/c1a3n7WRD58wXR0u52vZ89MS0znw3etIez38L33LOStP20/PNC5+YaQvEBICJFBeV4OA7cCjfbndwNNwL8BVwO/k1LqwF4hxC5gqRBiH1AtpVwJIIS4B3g7yoC5GvhP+14PAj8Rir34BuBJKWWrfc2TKKPn/sEaW8rO+3pEZyrDFx58lRljKvjG2xewak8L963ez+3P7eZtCydQERi5yOCOY108+upR2+ULloRnt5/g81fOxed5fVKuVuw6yY2/Xk3GlAS8Wkldz/0hbVoYlsSfYxMsnlrTYxEb6PvHRYJcelo9v197kM9eMafkzzSRVgTh8dVBbnvPQm781Wpue3w7X3nL/JJ+z6mORzcd6WG8/PMlM/nCG04b0FBePLWmx+9vP3si33tihworlXFxfPVgO4m0yfKZPefL65ZM4fbn9vCHtQf45KWzeXLLUfacjPOT689GCEF1SBktnalMwd/phNKy3qh+oAllIAyES06r584X92QN/svmNbB4ag0/vvYsPvbb9Xz0whkle14tMR2Jeo9+r8bPbljEBbPH8NqhzuzfIcTrZ8050JYA1DP0eTQum1fP45uP8qdXDuE8Ur/39eMxykUqY/JPv1nHsc4U9390GYum1GDGWo4OdP6QK52U8pAQ4rvAfiAJPCGlfEII0SClPGKfc0QIUW9fMhHlYXFw0D6WsX/ufdy55oB9L0MI0QHU5R7v55oB8dGLStd5X4/42l+3cKQjyYMfX86iKTUsnzWG82eN4dpfrOIbf9vCf7/zzBFpl2M5VwS9/ODas9h1PIZhSX7w5A6+98QObnlj/x4Dt+O165rbWLn7JJUBL5sOdfLwxkPZxUY3LP7+2pGytiNpGwkBT88JuvciNhCuWzqFp7au5emtx7lqwYAE/aKQ0A1CPg+aJrh4zlg+cN5UfvniXi6bV8/ymcXzyk6FmHwh2HigHVC6Kj6vxqWnKRd+vu/4vJlj8Hl2kTYtvEMIyw0HL+1qQQj63H/amArOn1XH/asP8PHGWfz8uT1MqQ1z1emqv1WH1NLRkSzcgMkliwvgivkNvO2sCZzo1Pnvx7ZhmoN7IWFgg/88u4/WlMgb/eSWY/x6xT6WTKvh4jljOW9mdzhv8dQa7rt5GV9+aBN7TsSZWhce4m7lx9Yjnfz5lcNcPGcMS6fXZZ9NRzLDp+9/haYdJ4DXl8fIgZSSf/vjq6xtbuOn1y9i0ZSh25ZPCKkG5SGZDrQDfxBCvG+wS/pr2yDHi70mt40fRYWm8I+bReuRAzQ1DWi0lQy72ky2tZqcVuthVo1nwGOlxCvHDR5cr/OWGT4692ykaU/3Z2+a5uP+1QcYkznO4gZ3vTAZS/I/q1Mc67S49dwggRPbOF0AHmic5OX/nttNOHaQM8f2bNfWFoPvrtUxpZrsP784wPwx5Wv7rjaT/16dwrZX8Hvg9FoPr7WYmJbqXPet3MtE4wjTI+UJm7Qk7Z2nodPU1FT4DSxJlQ+++qf1HNwZKGk/29Ws4xVmtl3nV0qeCAv+6e6XuWSyjzPHFN6vd7WZfHtNCsMCnwb/tiRYlrHxesGWFpO1zSkuneyhNqhxWq2Hrr0badpb2H1unO/lF5vSvHVGcdfng0fXJZlSpbFxzQoAYrFY9t0vrDR4aZfOp+98ko0HMnxgvp8XX3gegOZOZYSvXLuB9IHCxmug3UQTYErwarC0qoPK1hiVwBcX+7PzZz5/8+kCuvYezJ5nSYkANm3bRZO5v6B29ca+DpNvrU4xrVrjI7N0AtohuvYe6tOmD862+NIxiy/9ponr5wX6vZcbMC3JN1alCHkl75mUoFIkezybC2pMXrCfuwAC7c00NfWfLl9O9LdG7mgzeGhnhq2tFu+e7aOidTtNTduHvFc+Pe9yYK+U8gSAEOJPwHLgmBBivO19GQ8ct88/CEzOuX4SKuR00P659/Hcaw4KIbxABGi1jzf2uqapdwOllHcAdwAExs+WDZOm0tg4J48/rXisa27j208ooqomMiyZVoPX42HV7hZMKfF7TO6/+VwW2yTNUqAlpvOvP3yeeeOr+f6Hz8fv7Rk+WH6Bxb6fvcRdW+KYkUlZt2q5sW5fK//xl83sbLf46fWLePOZ43t8vux8k7f/9CXu2qbz6JXLGBcJIqXk768d5edNr2aNCVPCT141+PyVM7nh3Cll4V08+dAmTKkmNk3AJy6Zzacvn5P1EEypDfGdx7Zz27o0//e+M7koh8RYKuw6HoPnnqM6HKSxsbHg69c1t5F8aiVdGclt69IlDXn95dgGovHWHu1qq97PLX/cxMO7Mzyx3yzY9fzcw5sxrH2Aesd6dCqNjbNK0t7XG0xL8p3/fZGJUcHPPnrxsPrwjJYEv9j0LMsWzqPxnMlDX1AgkmmTPU8+wY3Lp9LYqEKETU1N2Xe/3LC4d/uTPLInQ3XQy5euuzT79xxoTfDVFc8yecZcGpcU1rZG4KDnNe5a0cwvP7i0xxhrLMHfVdn0ODUNE2lsPL3oexxsS/CFn61gbFWI33/i/D6SBr2xPrmRP284zH9dfy7jI6Giv3c4uOP53ezt3Mb/Xnc2b1nYN0uxEThjYQsfvmsNc8dV8ZF3nO96G9fsa+W/n1iFaUkEGapDXpJpi7SpNnUeIbjusnPyXjfzCaDvB5YJIcI2L+UyYCvwMHCjfc6NwF/snx8GrhVCBIQQ04HZwGo73NQlhFhm3+cDva5x7vVu4BmpmMePA1cKIWpsT9CV9rEBIYDOpJHHnzU8/PLFPVmiqiVh94k4Ww53ZEldadPi5t+s45cv7qU9kR62muS6fa1c94tVtCXSfP+9C/sYL6Dimv900Qy6dJOfNe3mBhfEyNY1t3HNHavYfKQTryYYFwn2OSfo8/CT6xeRyph86K7VfOXPr/GmH7/AP9+7npqwH79HwyNU+2eOreDrj2yh8bYmvvnoVn78dOk0blIZk6btxxGQ/b4LZqvJc/HUGj5xySzeunAif/r4cqbUhvnwXWv44VM7Sq4C2h1CKu76VXtasGR3yKuUUu5x3SDs67mvaYmls67QdIHft+9knIc2HMr+fqrz0/647iBbj3RyyxtPG7YBXmF3kLhenvlsXXMbadNi+az+Q4ObDnUQ01VfTaRNNh/uzH4WCRfPgQGIhFSI5/wBvns4qA756EoV/8xe2HmCt//0JeK6wV0fWjKk8QKKWCyl5MdP7yr6e4fCYGvIvpNxvv/kDi6f18Bbem0gc3HujDpuunAGrxxop7klXra29gfTkvznw5uzop0SmFZXwcLJkZxQi2TV3vzFCvPhwLwshHgQWA8YwCsob0cl8HshxE0oI+c99vmb7UylLfb5n7AzkAA+Tnca9d/tfwC/BH5jE35bUVlMSClbhRBfB9bY533NIfQOBE1AV5GDKl/sOt7FU1uOZ/UJfF6N299/DgA33LmKjGGh2VoeX39kC//9961ICySyKPKUSot72Y6HiyzRsj8caEtmNSVShsVX/vwa//bG0zh/Zh0bD3aUnIewak9L1pCTA6T/Asyqr+QjF0znx8/sYuuRLgD+6aIZfPGq09hwoL1Hu1bsPsnX/rqFXzyv4mM/aypNFsYPn9rJofYUX3nLPFIZa8DnUF8d5PcfO49rb1/JD5/aqdytJUyTTKTV5Br0Fqef4WQsOZkRg5EdC0UyYxLuZVktm1FHwKeRylhYEmbXV+Z1ryMdSW6482UE8OU3zeObj249pflpcd3gtie2s2hKdNBFJF84ZPz4ION9OFix+yReTWRT+Xtj1Z6WbAZr77Fd6fciRHEcGICYbhD2e/CUQUOmKugt2rBa19zGjb9ajSXB79HozNMQmlQT5vqlU7j35f187OIZJZc4yE3l9nk07vtIt3d/3b5WPvvARjQE33j7gqx690C44dwp/OzZXfx2VTNffrM75HzLUvyWzYfVRldKic+r8R9vVV4yZ90stDRFXsFLKeVXUenMudBR3pj+zv8m8M1+jq8FFvRzPIVtAPXz2a+AX+XTTlAGTLGdNx8k0yafuPcVqoJevvOuM9l+rKvHQtibWLb5cAdffug1NtikvmLIU6v2tJCxXWzWIEYCdC82aZsZv68lzo2/Wk0k5COmG0hZnBE1EBxVWcnQdVECPk/2XI9QOyWPJvoQG5fPHMNbF45n21Fl6JSCcLbxQDt3PL+ba86ZzE0XzBjy/OqgjzecPo4tR7qQKJ2dFbtPlsiAUQuSv8gNukNgfGnXSR5Ye4DfvtzMjcunlSTklkibhHs1zPm+x147wj0rm7lrxT4un9cwqIBZS0znfXe+TEcyw/03L2PqmDDffHQrNeHXR6p/OXD7c7s50aVz+/sXD7mI5IOAV8OribJ5YF7a3cLCyVEqB8haHCy1X9ME1UEfnUUaMHHdGPB7h4vqoK/oTazybqqfTauweecTl8zigbUH+NFTO/n+NWcV9f2DtSttqA2Eblhc+4tVzB1XRU3Yz4pdirbg8wgOtSf79YLnoqE6yBsWjOOBNQf43BVzCRU7EeUJy5Lc8qdXeXDdQT5z+WwunD22z0Y6nwzM/vD6zGsdBpQHpnwhpP/662Z2HO/iB9ecxeXzG/jEJbP6pEPmHjt9QoSvvGV+Nn2tmOJnjkIqqLS4fNj5n79yLr//p/N45T+u4P/et5j6qgCmJbGkqr/z/SeUGNpwQ1uLp9ZQFfRy1uTIkEaRY1w5mRmD/R3LZowZ1jPLhW6YfOHBjdRXBfnyW+blfd0Fs8cS9GlZo+upLcdKYhwnBshCKgSLp9bwqctmc9u7zuRAa5L/e273sNsFamEJ+fouLIun1vDlN8/na1efzordLfzqpYHZlc/vOMEbf/QCB1oT/OqDSzhjUoRKvxdNQHuivN7RkcLh9iR3vLCHty2ckFf2RB8cWA0vfE/9b0MIQdjvKYsB05nKsOlgO+fPHHou+dyVc/sd29Uhb9EemC7doDJYHgOmKugtmkaQW+aj0HmnvjrIjedN46ENh9h5rKuo7x+sXY63yqsJrpzfQG1FgI0H2rO0BcuSeYd3P7BsKp0pg7/khHfLAcuSfOmhTfx+7UE+deksPnP5nD5rJPRdN/PFKVdKQBOibB6Yh145yO/WHOCTl8wqiNy5eGoNS6bVsPtEnNvff07BL2nx1Bret2wqv35pH3e8f/GQ1/f2aFy1YBxjqwJZGXMhlPrmxbc1IezVeTghEt2wOHf60JZzvlonzrmXnVbPit0t3HPTucPyfPzkmV3sOBbj1x9cUpDoVm57E7rB7c/v4d0/X8Evb1zC5NriUyadEFKxHJhcLJ81hjefOZ6fN+3mXYsmDatdoEJIFYM07L3nTObprcf5n8e2s3zmGOZPqM5+JqXkjuf38O2/b0MCfo/ITrqaJoiEfEUveK9nrGtu4yt/fg3DknzxqrmF36B5JdzzNrAM8ATgxodh8lIAKgPeLA+llHh5TyuW7E47HgiDpX1XB315h1h6I5YyqCqXBybkY8fx4gyIxVNrCPs9zBlXxb+/eX7B887HLp7JPSub+cR96/nvd55ZsnDp4qk1fOSC6fz8uT387IZFXGmns69rbuOGX6wik0fqOaAM5H0vsHTqBZw2rop7VjZzzZLJJfEY9sbafa187ZEtvHqwg09eMovPXlH6xJpT0gNTahLvuuY2vvbIFm754yaWTqvlM5fPLvgek2sr8Hm0oju0o5A61IQzEBzNgn99w1z+8LHlrLjlUi6eMxYp6SGWVSgM00I3rLzF8wqxtGfWV5GxJIumRAtuF6j39h9/eY2fPruLdy2axCWn1Q99US847f3CVadxz01LOdqR4i3/+wJffmhT0V6rZGb4Hphc/Pub5+HRBP/11y3Dvldc7xtCyoUQgv9+5xlUh3x85oFXSNl/y4pdJ3nHz1bw37bxAoq0l9unTkUDxhFl23KkEyQc69Tzv9jMwIb74IHrwUyDtNT/+17InlIR8JbFA7Ni90kCXo1FU6NF32M47zP2OvXAgErAyGdD1h/2nIyTMS12HIvx3v9byYPrDgx9UZ6os9eAc3OMlMVTa7j35oG9ZD2w43H49Rvh6W8g7rmaz57WzpYjnWVJ9FDj4mVePdiBRxNcMndsWYykU9ADU1oSr2PhpmzhpZsvnIG3CPXTqqB3WKGtuG7g84h+s4/yRe/d1Kcum81KO7bqLTI7xCEYDrboFYtIyEfasEhlrILjtA7pLZVR7+3qftIKC8XymWP4xtsX8OnfbeDel/fz4LqDRaUwJ4aZhdQb4yMhPnXZbL799208s+1YVjStGCTT/YeQclFXGeC295zJh369hnf89CW8HsGmQ52MjwT52MUzuGvFvn55E5GQj/ZTzIDJFWUbip8GqB3wniZIx2Dzn6G9GWpnQKpTeWCEgGkXZk+vCHiJp0u/IXtk42HmNlQR8BbfCauDPnafiBV1bSxlMKayPMJvDgdGSlnwopk2LDKmpLLIwZmbIWhKyb/+4VUeeuUQN184g6qAl1V7W4tOonDmjYp+OGqD3q9lN6z8Cay7G5x8GjPNJYHtVAXP5J6VzZxTQrkP6MnblFJlFpVSUsTBqWfAAJ0po6jO2x9W7WnJSl5rAnYc7+KK0wtfIKqCikRrWrIo5n0ibRIqsS7K4qk1fO89Z/Iv92/g442Fxx9Vu9TkWg5CXtRO1WxPpgn5C9NW6P3eNh3u4KK5w9d0OdCWRAhVSbjYgnHDJfH2hw+fP50/rD3ArX/cxPXndhRVBVxKyVxjK5eceA4OvCMbxugP1UFFwN5qE60/dP40/u0qlTp8xfxx/YYJI2H/KeeBya3gPRQ/jeaVcPdbwbKfwZi5cN0DMOcNcHANPPIZOLkTqruN7YpAaTkwuTL+bYkM65rbivYKD9sDE8gznGuHPZh24aB90kFV0Isl1eaq0HnJedZhf3HzWS7x2evReO85k3liy1E++Os12fIqxSZRxHVDEbvz2UAfWA2vPgAntsO+F8Hjg9lXws4nlBHj8eGfdTHviVVyz8p9/Pub51FfPTj5txAUNC6GgVMyhGRaMuumHy6WzajDsYP8wyCTVtvu0liRk1FcN8pS4+j8WWpRj4aLqyibHfDlMGDseivFED+XzajLpheXcgCpgamGTbGaJsrL4UEroUvV79V437lTOdal88OndnLDnYVrAKX3ruJe3ze5YP/P4a43qwV3AOSm2HqECnE6WVADhQkjoeKzVl6vWDy1hvcvmwrA7QPx06SEnU/B7z/QbbwIDc68BuZepVa1yUvhut+p40/9V/bSCr+XeAk5MP15jIrCgdVc1XYvM1Kbi7q8K5WhKp8Q0oHVcNdb4Omvwa+ugke/CNv/rgy9fS/1IT5zYDXLDt3NIrGjKE98fJgbslzi8303L+Prb1/AC1+8lDedMU4Vg5TdWZXFtC2vNeDAajV+19ypDL8zr4HPvAbX/w7e+iN1zgWfhclLef95UzEsyWcf2FjSUJLD2wTy4m0Wi1PPA2OvCZ1Jo2grOhcToyEsCctn1vH5K+cW/SIc8mhXKkMkVLixkMgMzk0oFpFhGAlAdnIt1uU6GByxrGLatnhqDR8+fzq3P7+Hn16/qKRkuuEWjIv3k6pcCiRso11SXOq5sfcFghgIpOJi/PadcMZ7YP7V4AvB/pXZXfCg1bMH2DFHQl7aE+lS/bmvGzhV4PvUijqwGjb9QXlXDr8CVePA4wfLVP9Pv7Dn+dEpcN4n1KJ87sdg0mKbxFs6D0zGtHoUJizKsLcXyIvNDMs0H+l9S/FPOy/vy6WUtgdmiPnZsqDpv8G0eUXShNW3q3+5EBrMvAwqG+DVBzjTMrnX7+X43rPhrMaC/jRnPuuthVQIeod0/F6Nmy6YwWOvHcWSxWdVJvTBCfZZ7HhMjV8A4YGxc6DKjhqcdT08/mXoVNlHrfE0mp3Use7O1pIWeBwubzMfnLoGTCozZD58PnjkVVXt4BtvX8CMsfkJePUHZ7dRLA8mUSYPjEcTVAeLX1icHUspjMXeiNpqnR3J4to2Jkt6K23s1VEujRapaZJMm4VxevJ0oS+bUYcmKHqSjI1bhg8PHgzQfDD5XHjtj7D+bvsMAd4A3PhXFk9d2n9GWfMquPstis/hDfbIqImG/CUN775eEE+bfflpB1YrwqRlj/dzPw5XfA2ObBj8XV7wWVj/G3j8Vvjw41QEvNkw7XCx9Ugn//fcbuaNq+JNZ45neU5hwoLwwvfBTKMBPgxSu14oyIBJZkwsyeDzWew4PPRPsPsZtQiDMvqu+S0EI4rTseUvgFTk5wMvg94FqFpIPjJ49r9YuAFjP+tSz7WLp9Zw4ewxvLK/nV9/aGlRzz2mG1QMNc9KCfvtWsrCo55ZDqcKzQPTzoe9iiiuPKnqo1JXPS8Fb3MonLIGTKmIvA9vPMyCidXDMl5AcWCgeAOmXLt2UJVbiyVXOjuWIQdWEXDCWsOJs0PpjStH06TYdP1E2rDfZZ+6pH2x6Y/wx5vUuZoXrrlXhR36weKpNVxqp57/pojU8/a6s3nIvIqPeR+B994Dp70JMin466dUPB0JRgo2PwSTl/YlD7Y1q0XHCZMYSbUbtBfqSMiHaandd1UB6eyvd/Qb3t3xWLfxIjxQORa8fvUsBuNxBKrg0n9Xz3zzQ1QE5pckhNSRyPCx366jOujj7puWUl9V5Obu5TtghxJQl0AGL+31SylkdozZc2C/WUgHVsP6e2DbI5BJwlt+CPXzofnFXkbfJ1RWjZlWi/T7/qie9z1Xg5nGxMPR2nN6FN/LB05IvBzz2Yyxlaxvbi/aQEikzaENq80PQfNLcM5HIDKhf0N52oWw/VFoP8CyGXX4vEr4tNRlPpQo5jCf44HVTKwS4wb6+BTkwCgLphSp1HtPxnn1YAdvK0EGS7cHZjiLXnnszWjIR1uRIaREdsdSeuMqOowQEqi2hXyllyvXNEFVsHgCYyJtEsrnXW59BP78MbKGjmXA766DB94Pq34Gz3+3Z/wfmNNQhW5YnD05WkS7DFqkresy7QL1vy8ISz4C3pBy1YOKra/+Bdmtm5Sw9tfw8+Vq56z5yBaSf/kOlW3D8MOVr1f0uzNOdaj/+9sFD4Wz3wcNC+Cpr1LtNUibVpa3UgwsS/KZB17hcHuSn79v0fCMl79/Aea+GaZfjOGr5ob0lzgeXVjQbbpsI6GPDsy+l5TX6pXfQLJd8TXO+RBMORcu/HzPhXjyUuXdu/TL3V6+qcvh6p8C8L/GOzhYcUbBf2J2Q1aO+Szkp0s3stk5hcIpvzDwCSfg0X+FiYvhjd/p+8wcTL9I/b/vhWxIHODmC6eXlKsS140+GVMDIlfIUe+Co6/Biz+AX7+JcZVi4kCXnZIeGIvSlBP468bDCAFvLakBU2wIySRc109nKJCh3x+iYX/RISTHy1GO8FbI58Hv0Yr2DsX0PHYsRWI4GRjJtEnY5wEGuN4y4dlvqgE9Zg6071eaIR4vnPYW2PEEbH1YnesNwI2PZN99bYUf05J0pjIFh7iSaZMwNt/An1PLxVks9r0A9afD6jvURPnqH2D8mYrfcWgtTL8Yrv4JdB1V50amwKqfwh9uhHWNLA7MY5FooCN5QY9y9f/o6COLL6UKfTQsgAXvLHxsah54wzfhnqt529Yv8JS4krh+BX5v4SHLdc1tfO+J7azY3cLXrz6dxVOLDKfmGi/vuQue/ArawfWsl3MKJmZnPTC5z+zYZnjwQzleKy3L0xgQ/XmzbEOxleriSLxl9MA4G7LOZCar6VIIEmmDcYNlCj36ebX4X/0zNVcMhPr5EKpVYaSzrufiOUofq7LEXtFE2swvucMhapsFaCjZOIUNmOF5YKSUPLzxMEum1ZakPHpVDom3GCTSZt9BdWC1Sst03Kjv/zNMPW9go2aA49Gwj70ni6tMmsjuWPpp2zANKyEEkbBvWB6YcuykYHgZNYm0yYRoP5PFgdUqzXH3M3BoHSz6ALzxNjj6as9n+dz/wLPfQoV0dOVKt59xXaVa5Fri6YINmHjaJCxSWJ4gmtbrueUuFrOvVETAl38GB19Wx877JFzxddA0RUZ1zj39HfC3z8P6u5hBE/f6fezcfzpMvLKgtr2eEe9Nrtz3ArTugXfcDguvLe6mvjAIjYmtK7jXv4au5sUw/6KCbrGuuY1r71hJxpR4hGD++OrBL9jzHDN3/hLGtMKkc5Qn7egmWPNL2PlYt/Hi9UOoBk+mCw9mwYa8YyRUBr1gGvDSD6Hp28poziU5F+K1chCMAFBNvKg1IFEmDgzkykIUZ8DEB9uQbX5IcYIu+yrUnzb4jTRNEcj3Pg9SEvJ7CPk8tMZKS7CPp4fwGDl46Yc5xouAmZcqL2Q6Bo9+AUlswFj7KWnAAMNO19x6pItdx2N84+19ak8WBccDU6xhFU8bfZnxO59QnARQ///6jRCug2SL2gUKD8y+HCKTIdEGW/+imP3ennLlNWE/bcP0wIRzNWqcND7HsPrg34r3DoV8RZN44/mQ3orEcOrAJNJG3xDSgdWK/GrYA/n8z8AVdjpt753mjEabSKkrAuO2v8FF/wq+ULZYYls8DQXK3iTSBhWkkL4hBMY0DSrHqF2ytFQ/C9eq473h8ULNFEBDYOHHIHBwBVAaA2ZdcxvP7zjORXPqR6zKdTzdywOz7m61kM6/uvib7nsBpF3tHgOx76WCDRglJubM/UOIib32J3jww0xGwoMP9/1caCpDyvEChdSzLsZQ6NINFokdzFr/NDz6IpzcrgzdN30PWncPb+PjC4Hmo8aTpLWIzWJsoBDSQBuyfS8q0uz0i4Zs77AzPgfakO14Av78z8pbu/xT+d1s2oXK4GnbC7UzqK3w0xovrQGTGELVGzMDj92i5i+hAUKtF423dD/Lsadx7H+WHR7oFqecASNQZdCHW9Dx4Y2H8WqCN50xviTtCtrhkGLaJaXst0owB9fYP2jK7XzGu+HYFkictC80Yd8KNenoXd3uWSMJK34M7/oVeP1Ewz66UgaGaRWsMuwQUrOViY00PPGV7jQ+M6126x/4C/gHWBgH8dZEQsV7YPrsjEuISMhXmGx8DhLZEFIOXvltt/EiNAgOslvODelICc98Ax76GLz719RVqJ1dSxGTUTJtEhY6Mjd8NBCmXajq9jhG6mC75WkXKiEtU8fEQ3P1IoqoGNQHuR6Gnzyzm7s+vIQLZw9frLBQxHWDBodXEm9R4b3FH1KLabHo9cxaxi4p1B7Nv1L8iR3w8L/QTSrXYN6bbeP4Ufu4gAOrVAYLZA2YqIgXvFn0H17Lff5vEnjNvu6SL8HF/6Z+rqgrerMDKE2dUJQxiQT7iuBBJtKGukXvDdndb1XjU2gw8RzIJJSKst6pztF88P6H+qbG58DxiBa7IZuT3sLVhx+A5+YoD13nYeUh2/ciIFV7Dq/P7/lNv1j9v/d5qJ1BXaW/qDljMMQHCnkdWK28xjufhKMbldE1902wf0XfNWDyUg51yaMDfccpZ8CA2h0PhwMjpeSvGw9zwewxWY2HUkCVEyi8XbphYVqyJ4l304NKknzxB5XL3nnxB1bD3W/LCSv9qedxQwckbP0r/GghzHsrF58UPC/G0ZG8vGDXZjyXad66Fx78sBpEmic773FwNdx+EbzzdkUwc2CZyj392C3K2OrF5wDldj3cnir4mam2GSV9f7kYLgemRxr1a3+CDfcCQk2Q+bjPc70yHj88+RV4ehq1S24BKGo3FU+bRNER/jxySnKNqKF2y5OXwrvuhN+/nzvMN+ENnl5w2/rD3187kvUwmFLy8d+u40fXns1l84ovpVAMerj2N96vxt7iG4d308lLFZ/oTzfzE+PtLIksZIjAQB84leKnj6ngP956ev8equPb1OKsecEbwDIyaN5A905+1zP9G6m2ATPWkyjYgKk+9rLyKoHq71qJl6FghBo9WdRc6xCye6T5b/5zt6dbmspQmHCW2hgeWg9IlXl3/7XKe9BwBhxe1zdUPwwPTGbfKn7j+TqBYwYcsw/6KhTJ3jE8TUONx3wMmDGzlW7O3hdg8QeprfDTUuIQUrI/DkxvT/NF/waXfkn9PDX/VHwHp6YBE/QNywOzfn8bh9qTfP7KIqpnDuJNKLYeUrJ3DYzOI4pXMPEc5XbNJWwNtLDkHp96AWTi8OR/wurbOQu4z+/j5N6z4YzGgtoW1w2WenfCg/er1DyPD977GyXa5bQhk1AuzjuvgIXXqV1Ssk09q/jx7psZusq86SF+5mfrkeIqy8Z1g8k15au3UowBI6XsKUq48qfw+Jdgynlw4b+qHUmh7vPl/6I4Fy/9kAZL8s+eo/gO68CUgtqWTBuESSECeXhgYOiU4FzMvASAuKhEliALKWNaNG0/AaiwsdejURsOcNPda3n7WRO4+uyJbDncWXTdmUKgRNk8yhu27i6YtBQaSmCkTV0OwAmiRZcTSBkWy2YO8AyObVabGs0DNz0BqQ72PXMPMy79QPd7HchIDUYBGB9IFjwO9laezRloeBgG12UwBCNEOxPFcWB6e213PwPr71I/C015Ha/5Td/NouaBulnwxL/bF3ZrJmV1kIaRVWnseR4/Znc7LvpXaPyS8sLnbljzfZZCqLDXnudASmor/Ow8Vlxdq4EQT/eThfTaH3t6mn2Fc4FyMaQBI4SYCzyQc2gG8B/APfbxacA+4L1Syjb7mluBmwAT+JSU8nH7+GLgLiAEPAp8WkophRAB+36LgRbgGinlPvuaGwGnV3xDSumoag0IVY20+Eny4Q2HCXi1bMnyAdG8UsXvolOUfsP+VSoFUJq2iNdfewz6KrvIWKHIisUFvGqS/MsnVCd4x+39s80HWlh6Hz/8ChzdhMCy4+wvFmzANHS8yhdTX4bXTDUo3nE7zH9b9/c5+PgKePAm2PDb7mPTLoJzP6rSgZ1qvJsfggs+ozgVqEFfbIZUv2G3EqE6W2jSzEro54O0qbxpM5KbOGvL96BzK8x7G7zzF2o3NfvywhsjBLzpu3B0E96VP+LzXoG18c+weFJBhlAibVIpUmj+0hddw18JmpexIsXOEpQT+N9ndrHreIzbzk0xpf1lIguuZMbZF/PTZ3fxk2d28ucNh9GGUXemECTShhqbzSugZafKAikFbE9YBcls0dRCoBsmacPKqoBncWC18uBuuA8ClWqeGjMbgP1TE8zona7cXx+yPTDjfEkOFDin7QrM53fW5XzA87gqnzCckFF/CEaJiIPFeWDSNm9OSiUV8NgtMPY05Vlp2TnwptA5/shnYe2vyGom7X0+e35V0IcQFJVV2TVuGdFco2/WFd0lKPL1hPbGtAuVUvTJHdSVjQOTsz617oVXf69+LkZeoB8MacBIKbcDZwEIITzAIeAh4BbgaSnlt4UQt9i//5sQYj5wLXA6MAF4SggxR0ppAj8HPgqsQhkwVwF/Rxk7bVLKWUKIa4HvANcIIWqBrwLnoPxk64QQDzuG0kCoDhVnKAAYpsXfNh3hsnn1g0tdr78HHv4UA4qRGSll3fYwYIrzwHRXIfWqwbH7abVgjZlV8L16YNqFyg1qpLDQOBw9hwET7gfAjNgralABoKlB3h9CUZi2XO1osImfMxuVVsH0i9UADFQrb8T91yrOjC9ENOQjnjbJmBa+Avk5sTKpF4PqY6DI4oUYMMm0ySKxg3e++nU0aaqd27J/tl3Bw4DHC7Mug0Nr8QgJMpO/O9lGIm1SoaWzC2dJIQQEo4zNxFk3TANmXXMrP3lmJ587rZ33vPZpRQbc/wuQt/HZy2+iI5nhrhX7etSdKZcBoxumXb3YqxSLAxFFSC0FAlUAVIlkUR6YftOVe7jwBbztx1njpSA4ISRvktcKTaPWM6S8VSBFNxejlAhGqJTbi9rEJnSDJWIb3Pk1lQk4903wzjuy76IPeht4C6+DDffbISepPCSWBZpmq5776ChiQ9ZedzaPmJfxYe8TcN39fTVxijECHT2Yvc9TU3EJyYxZuEr4AJBS9iQddx5RIoNItVnrODCsDFUHhQrZXQbsllI2A1cDjjfkbuDt9s9XA7+TUupSyr3ALmCpEGI8UC2lXClVFbh7el3j3OtB4DKhgpBvAJ6UUrbaRsuTKKNnUFQFvUVn+9yzch8nY2kWTBiARGlZ8NKP4a+fJmu8CE2lkd74iBL8ch7r0U192lWMARO3WftnbP4feOxWmHEJnHNTwffpg8lL4ca/YnnDPGsupDlceMbVes1xlYv8yJzeQF/re/JSZcgsvVl17gOrFZfGNIpW43WIz+Uk8ULh7YqnTZZpWxFOWXuJIq+VArMuB6EhAUP4Ct7dOFlIA5Kth4tQDbVanPYiSYygZAg+88AGJtaE+NiYjcp4AeW9e/TzcOdlvL/6Fc717uCfPX9hsWdX2SrhQrfwWY2IKa7Eme8p3fPTPEhfmApSRdVDcq7pYcDsfb6nC79tb3Fts9OV6zyJgkVDYymDGk9KGQX9Za4NF8EIYRkvaq6d0LWJb3XdqowXzQvLPz2w8dIfHI/IZV+Bs25QisyP35oVfYyGfUV5YGK6Qaejd1wqo69mmspQ3fs8dRWO/EJxiQm9oRsWlrRV0BOt8Jt3QKJFKSaf+d6BRfYKRKHb02uB++2fG6SURwCklEeEEPX28YkoD4uDg/axjP1z7+PONQfsexlCiA6gLvd4P9cMiOpgcRod65rb+ObftgHw46d3ce6MXrVCYsdVtsfup2Hq+aqTmxm1GM+/uqc779hmFe975V44+wag+BCS59Aa7vV/i+B2e+JfcnPpBv7kpVjjziSyv539RewM1lmz0UWI4MQzlPjWUGTOodydp78d4rcpobQH3sdi71wWiSjtiYuztY3ygUN8LqeQHRQumJhMG6yy5gE2x7mUHIDJS2F6I/F9q/nPyq/y3QIniIStA0M+WUjFIFRDTTxeNPl5XXMbX/3LaxxsTfLHmxbi/9tn1AfCo7hXS2+GbX9jZtMn+J1XYEkwND8B7TygxGEKG45nZN7xR1Va++IPlvYLAlVUp5I0F2HAOAt4j6rPTtYMeZLFB4LHC4EItVrh7zOmG0S0lPK4lgOhKGGzi06j8PlsdnIDGrZSrpSw/yWYuqywmzgeESkVV2jVT5VX87KvEC0yqzKhm1SQwvSG8PTWaCoWDg9m+6PULlDzWWs8zaQS8AadTfd5+5+H156Ftn3wvgd7JnGUAHnP7kIIP/A24NahTu3nmBzkeLHX5Lbto6jQFGPHjqX9xBHaEwZNTU1DNLUnHtmdxrQt5bRhcf9Ta+ia6ae6YxvjjzzBmBMvo8k0u2d/jMMTrqK6djvR9tdojy6gc3cCdjvftxhRexZnRncSefjTvHIgQVf1bDpO6rTFC2+Xd8uf8ZOxUyIFe1f/nf3HSrfIzDEqmSG28tutu2gy9xd0bVtXHD8pmrUp7O3xDAbDYhj03NnMbbiU8Tv+zjz+zr1+P088EeDgpPl5t6szrd7j4ea9NDUdHOJsiLS/xpgTq+iIzKMjejqmJ4Sl+anuzHnHke48kN3tauf9wsvr6dqbv5G0t8NkvZxDWguRCE1k75ybe/Wd4WGWHqZWmjzTOangfnbgSIqgTHHgWBu7C7w2H5yRsAhm2jnW2lVw23a1mXx7dQpDKtJuxaP/gmzfz66ZH8Fj6er9+E+DMy7htK0/ouH4c3gEYKXZ+uTdHJuRKPnfA3Cgy2KR2MGc7T8nHp7Emm0tsK2wv20wLDU9VIkkO/Y009Q0YDZpv9jaovro7m2baTqxDb/ewtLVd5KonMHJsctpj57Rp+/FYrG83825IoAvcZyWRKKg93ngaJKQ0Unc0FhThn42+XALM6UBmRRPPfMs3gJKibyQmsmNqEXGEh42tlbQOZw2Bq5gzvhdTHjhuxza9Rrv7IyypmM+TU2F9cd1xwzGk0QnwOoSPrOG1BjmJdvo2vg3YDxNK9fSOnb4mz7z2Ba16d6TRgJ7ZnyAA80WNDcN+965KKSlbwTWSymdJK5jQojxtvdlPOCkkxyEHkrhk4DD9vFJ/RzPveagEMILRIBW+3hjr2uaejdMSnkHcAfA3Llz5emzZ/DYvh2cf+FFBfEmqqa38cedK5CA36dx3eVLWKzthLscXRNFUp2z8BpUftIlg9/w3LPgjkYW7/w+/NNzrM+089T+nVx00cXduil54HkrjnnsATwYCK+fGZd+oCfRbrjwboCjT1FfV0VjY2GpbJ6mh9GQTJ2zgKkXNJauTdo6OPZMVsjr9NAJZjXmf//9LQl45lnOWjCPxsW9Srrtf1lpdfgqINWm0tFP7gBg8qG/5jYCpess+lRWnnIixtdXPce02fNoPDt/5lBwTwusXIUPg866hSy6+mN5X5sfXoZDj6AbJhdffHFBVZ9v3/4S4S6d8Iy5TC7gWeeN1vvRYodImR4aC7z/5md3YcjtALxTe565bc/ARV9k9qVf7nvyrCq4+2WkkUJD0hEcV/D35Ytta57ivf5vEDANSCVpnBkuLSl1ez1RPU107DgaGwurOZTZcgzWrOWCc8/hjEkReOB9gEH1hx6kum5mv9c0NTXl/6y2j2dc0iLZSUFz2m2vvkCdzFBRW6b3snYP7LmHahKcvfTNBUlDfOElg7QRIjDxTDxv+AaLSvEuL74IfvtuJu55jPcjuAYfwZmFiXu2rj+I97UUvora0j6zjlmw7Uc01qsMpIkzTus7XxaB44+uyG66QTBz+jRmXtg47Pv2RiFxiOvoDh8BPAw4Ygc3An/JOX6tECIghJgOzAZW2+GmLiHEMpvf8oFe1zj3ejfwjM2TeRy4UghRI4SoQcl3Pj5YI/3pNmbqW4DC6w4tnlpDyO9h0ZRod+bCvhe6RdmEBp1D7+azqKiDa+9VKcO/eScXHfk1Z7ODWLqwdh2sOINfmjb1592/Lj1r3ybx+TsKi4dLKdHSdupdIXHifDD9wiyfI4OXA9WFuR6dzK0+aXw7n4JfvwFW/gSe/w6su0eJ72WdfRrMeSNc/p/dol1ORsG+F7K3qS6SA5NMm/jJoFkZTM8wibv9wSZXhoyuLPk7X5hpe1dYthBSlLDZSVfKwLTyqMSdA0eUbaY4xNe8v6Zr3DKVGdIfbG6XuOiLHPaM56wdP0Y2l4hn1Av+gyvwOiR2afboIyVBoIoqkSqOxKurvlkZ9Cp5gq1/hcZ/gwGMl4IRqqHC6sSS3eMtv3YZVJAcXKxxOLBTvKtF4TyYuJ7BJ3WYcXHp5lnNk02J15B4MQruJ/G0CiERKDHBPjIJamdQdVSNj1JlIrXVL8XEnnu9ZUiVt5GXASOECANXAH/KOfxt4AohxE77s28DSCk3A78HtgCPAZ+wM5AAPg7ciSL27kZlIAH8EqgTQuwCPofKaEJK2Qp8HVhj//uafWxABPQW3rD2ZhaJHQXzYKSUpDImF8zK4b6Md3Y9eZBU+8P4M1Va8LFNLN7zc+71fwt9z6ohL8uFqhKsSHNl6Qh1KpupKravoMt0wyIknUWvxAbM5KUw8zJkQFW83RMqTFcj3l+RyWQbPPzJ7irKQoOLvwDv+oXysAiPIhlf+Dm44LNw2X/YpGxbzzTWrVlTLIk3kTYJo0SxTM/wa2z1gZN+LroKnows3a6HVUYOTMCM48EsmAu2eGoNlwe382Dwm/gDAaquv0stDANh8lK49MusaryfQ1Yd1m/fC4c3DKv5/eFozTmYzjRaDk2TQBWVJIsj8dqLd7VIKE5Zw4L8pebzQaiGkKk0mgoZB3HdICzjpd/0OLAJxhHiBXHULEsi0wnFgSl122Zc3L0hk16sKRcUdHlcN6gUSbRgGZ7ZmLl49zaxzLu9ZGq8JyJnlXfTbSMvA0ZKmZBS1kkpO3KOtUgpL5NSzrb/b8357JtSyplSyrlSyr/nHF8rpVxgf/ZJ28uClDIlpXyPlHKWlHKplHJPzjW/so/PklL+Oq8/ysqwTNtaMMEykTaxpL1jcdC2T/2/5CM9QggFwaMWO4HEh4Es0PpOONY3lGdxqZmGhUY0URj/Ja4bVJJUv5RjMhozByEtXmFOwamHjm5GNgsp2a6Y8PETaqERHiVK5dQwufFhuPTLPd9x9vi/K9L2y7crnRrA59EI+z0FG8mJtEGlKKMBY3tgaogVPBlpaceAKUMaNfSon1MwkfHAan4uv05UtuM1UyoNMw9cuXQBH5H/TidhpTj72K0qy61EOFR5Br81r1C/XHtv6SfqQBUVJIrywDiZmJGXvgWxYypl2lPCisOhGgKGIgUXkonUlTIIWYnykXizHphEQR6YRMbMmc9KPAYmL4VZl5P2VHJD+kt0jV1U0OUJXWUIasESt+vAatj9FMLUudv7LSpPrCvJbePl3nTbKEMO28hDah5WWfMKdh92ZXUTcgb5K/eqncubbit+cprWMxxyckxh94mnDao9KVX/olQM9Fx4A7T6xlOfzm9RcJBIm1SJMg14gFANIh2jLli4+FPCKTLp90KqA377Tjj6Glxzryou2Z+x0l9q3+SlSvXyfX+EKcvgTx+1a48Up8brngcmpgo6FoKMY8CUL40aVP2cgtPi976AB0sF+qz8QzVVQR+LzzyDr+nXIvVOWPUzZciUyIiJ6wbt0klvbSzJPXvAX0lYJgsOB4IK1bzP+zTe9b+C+W8veQYIoRr86Q5A5v0+04aFblgEzFj5PDChKGAXmiygnyV0I2c+K4NxNWYOHhSJv1ApgZhuUiVSiFJ7uve9oMYT4MVgfNvaktxWbdTsZ1muDRGnqAHTsuhfWC/nFLw7dmLG2bTD41tVXZ+zblApZ8Vi8lKYfjGmP8oN6S9xtPqMgi5P6CYRT7p8rn2gLTSFCWYB/B6cWLbtGSrHZGRPRJND6YJ37DE7jW/CKz+AO6+EI68qCfC5Vw1srAwGXwiuvQ9qpsO974W//xvLfLuLMmCcXV55ODDdBkzBHphMmTkw9s44Sqzg56ZPWo7ETkEsMFRz7ZLJjDePIp3pztBLxlWJp00qRBLpDfWvij1cBKoIWomiQkg1LRv4L++v1C/bHy2p5wmAYBQhVX/O19sd1w28GPgsPRvqKTmcEFKBHJhYuT3KoSheM4mfTMHzWdYgKPVG0SkaClh4WENp6pTF7bRvyxcuj9aPjVPSgPFVqbqthXpgHJdrNoT0ym+VmNGZ7x1+o2pnIDSN9XJO4cSytEG10MtqycYrpzGVI6Qz+e/0EuncAV+GHYu9Y58QSBXsgak4vp57/d+ievX34eQ2FQaa+8bhtSdcC5d+RXkqXv4/vhP/Mg2dGwu6RTJtUFHOEJLtgamhi9YCRKkM08JnlXnHZL/PiIgV/D67xi6ikzAnI2cUHMpdPLWGA5FFZMjxrE4tjIMwEGK6QUSkEOXwQAIEKvFikE4lC750QvtatGyhv0zpCcZFVKQu+6YHsgZMNYmCaASqlEY5DRg1NiMU3v+zxOdSj83JS+E6Je+/IvoWVqZLQ/BWophlaG8vnJIGTNAmlhXKgcmS3oJeNeBffQDmXAUVY0rQqAhauhOQBasEJ3STSi1V1s6gR2ZQIXQ6T+TPg4npZnndhPYEOd6fLJgDU3Pi5Zw0Pk1liJQCLTtwho0XgxmxDQVdnkib1HjU32J4y2DA+CuRmpc6LV6QByaR6Q5t4StvCClC4SGkRNoggEHbmHMKDuUKIThz2ZVcp99K14w3QbcvZ9iI6wYRR1W2HLA3BsLJ9isAr3odT2+RCQhDIfs+8/eodaUMqoTt6SsXB8bjQ/oqiIjCCjr24PSVcT6rEbGC67ul9DRB0uV5ZjMuBm8Irz9Ma4kqUsd1kwqhl8+wt3HqGTBCI5DuRAgKDiH14MDsfFIRPs9+X2naFaxGWAYh9IIzMBIZVWSvLDwTG1atsrxTR7fnfU2i7C5XNeDrvYVXvN1TcXZ3doi3cFn9AZHjcpXCw0pbVTdfJDImNV41SZQlhCQEIlRLgy9R0GSULDdRHHpyYAqcwGNJnZBIFz0hvmPRRDYyh3+OfQTTV6lqmZUAcd2kupybC3tc+a04acMq6NKNzFFepynLik9AGAy5Hpg8DYWYblBVzjnDhghG7DIHBWRHpcs8nzn8tCJCqGZKbcrLsgYIARVjqaWDLt1AN4a/2UukDaq1FGLUA1MYJBpC76AyUHg9pB4cmA33QkW9qvpZCthuzVpPsuAQksNALycHRqtXWjCZ4wMUY+wHMTu1TwqP4oiUGvYEOcYTL9jlutM/n98JO43vmvtKN3lPXqqKuwEvNVzPSr0wl2sybRLxqtBOWUJIAOFaxnriBaVRqzICdsipXJOOPQbGeAr3wKQSagL3FJmF0dySQAIv7E/xoH4u5mt/glTnkNcNhbhuUCXKKItvv4sqkiQK1I9KplL4ycDMS8uTxupUpPYnCwghZajC9sCUSwcGIBgpeK6N53qUyxgSVx6YAknsum3AlGtsVowhYrUDFFXqoDfiaZNqUUbPpI1Tz4ARGqTaVT2kAj0d2dohZpsqwrXwmtIR8+wBMS6QLtgDE3cyV8pozVbUTSYhA4iWXXlf46R3S3/l8EjOA8HesdRqCTqSGawCxM/iukHSY09CTtXVUmGGKqYmg7V06YWJssV1g4hWZgMmVEutKCyEFNeN7hBSubKQPF4IVBflUdPjytjwFKmDsWpPS/bn+zIX4zGSZDb+oah75SLucJrKxoFRf28xBR0tx0ArW80htSA3ePM3YLpSRnl5Jg5CUSJaYRyYnrIQ5QghqfmswZcs2EjIhhDL1c8qxlJhtAHQUoIwUjJtRw1GPTCFQQoPJNupDvmKTqOu2P4nsAw4q0ThI8hmYDT49cI9MGmDoCwvISoSDrBPjsPfsWfok23E0yrtUJQz/i88REUMKQsjZcfTBlFPSgnUef0lblcEEESFmlQKMUiTGZMqjw5Cw9JK3C4H4VoidNFWQJgmmVExa6B8HBiAUJQ6T+E6MGnbA+MLFdfXls2ow+/V0ARsYiZbrcnseOxn3PfyflbvbeGnz+5iXXNbwffNZq6UbQyo+1aKZLbydb4Qzq69zOnK9d5E3gapCiE5HJgyZSEBBCNEiBc0NuP2ois9fiVoWWo4Bp8vUXhFdt02YEqdRu2gYizBtOr/pVDjjeuGmk/KGDWAwqtRv+7heGCqgt6iODCVAQ/ahvuUZkL9aUNflC9s9/lYX4oDBctbmwStMqTQ5aCmws9GOZ4Lu/IvJxB3dBPKNUEKAaEoVVJNxO3JNJFwfkJccd0koiXBV4bdp6ZBMEKlVJNKRzJDNJyfMZJIm3ZGWVV5vFYAoRqqZFdBHJhE2iSEXtpqtwO0rSaZ/4LnIJ0angGzeGoN935kGav2tLBsRh2h1z7EtDVf41///Ajb5FSEAL9X6y4hkicSuqnUqMvMgakiWZBcP4Cmd4GP8oVqfCHwBqnz5K94G0vlaq2U0QMTjFBFvCCBvbhuEC2nMeqvAM1HvTfB+gINeI8RV4LgZfPAjMGfagEkLQVkLw4EpXdV3jULTkkPjAapDqqDhXtgYnqGa7zPw/HNSnm1lLAnkTGeVMEhpGQ6Q8BKltWarfB72Md4qpKH7dpAQ8MhMJbNAwN2vRXbgClg0CfSRnljsKEaKqxuAyb/dtlx9nLuTMK1hI0OuvRM3oQ8h2clfeXdMRGMFpS14sBMqj4QDBe/GC+eWsMnLpnF4qk1TLvkQ0hPgC+NW6MqD0vIGFaPUFM+iOmOqmy5Fj21AFSIZEFqvLphErRsYcIyj88aLX9OUzxXLK6sHJgoYStOl14YiTeildGjLASEa5UHsoD+L6VUBgyUkQMzFmGlqSJZGg9M2iAkk+XzGNk4BQ0YDyQ7qA56C+bAjGnbyK3mz9Uvq+8orfCT7YGp8aYKMqwsS2JmUmiYZQ0hCSE47pukvqe9Oa9r4nqZjQSAUA1hQ1WwKGTQx3RbMK5ck2QoSqgIGfVk2lBk2XLuTEI1eGSGMDpt8fyemSLxppDlDB/ZbauWxWRhKGMxUFGivhauRcx7K+fFnyYo1ITt82osm1FX0G10PYVPpssfQqIwA0ZxTcqcrgwQqlE1h/IcA126Qa0npfS1vGXIwnMQjBCyYnQVEEZV/LTyz2c1FJZGncyYVMoycnMAKpR22litoyQGTDKVUQbMqAemUGigdxAJagWHkKbF1uPBTlUstfCTY8BohdXnSBkmYemQK8vbGVpCU9UPJ/PLREqky5/eTagGf0YZCoUMeiWyV86CcdFsHZhCPTAVsswemFC3mF2+7mClA6MjyhyzdjxqBRswNgeg2BBSv1j0AbzpDr40fTeagN/edG5B4SMAHHJlucamfd9KkSJWAAcmlspNVy6vAVOIQRpL2QZMoLp8IVRQultIpN6FlPmR7BNOSnxZn1dtwR5IpalS5ndZoQz3acFkSQo6mukyF4a1ccoZMFKoP2msV7H2C8lcWSsW2D+VQfjJGwTNZ4srFdt5y2vAxCpsAybPTCSlDllG9zlAqAZfuh0ovOKt2gGULwPDl1aeoULVPoNlzijrroeUfyp1ws5CKrfwFKEagmYnibRRmK6JXSm7pLoS0y6E6FSuSD2OJWFSTWHep7RhETAdL0eZxoCmYfkqCvbAOBIHQNlDNRVWF8mMmdf7jJVb+M+BTTCulPFsYdehoJ5ZmcdmqIZK2UV7IpO3YaWyo8q8ibU9MFMC8ZKI2YlyF4a1cQoaMIqAWOtNYUkKIr6tM2eREmGYtKT0wk9C2MSyREGGlRIYc/Q5ymvN+ipqaRNRaMnXA2MQLnecM1SDlmoHCuPAxHWTsBUvowETxaMrAyZfw0pKSSJtcybKOkk6BkxX/gZM2qRCpNBc8MB4pEq/L8QglVlPRwnbp2mw6P2Mb13Nrd57ad/xYkGXx3ONhDIafiJQTUWBJN6ulEE1ZTauAEI1hEw7lJqHIR/TDapFGUO7DnrUQ8o/jFpZ7g1ZuIaw2YlhybwNK5Wqn8QS3vJkR0HWgJnoi5UkhCTSZc6As3EKGjDqT6r1KAuwkHBNVzKDX+pK56Mcwk/BaipkHFmAYRV3akpA2a3ZmrCPZsZDy+68zo+nMiq9u8wTpNA7iQRE3gaMaUmSGZOAWcYQUqgGUu14tfwNGN2wsCQErER5vWnZekj5T0bJjEmlC9Lfzs64UDVSkSnTjq5+PhK42fM3Zv39hoJ4b67U9QEIVFJVIIm3K5WhSiSwNF95uSah7lBqPiH7LicLqZxhGuiuhyQSefNzYrq9ISvzfBYsMCTuFEY0fRXlC7uFVbmccd7YsLOQTEviczyTZV6zTs00aiBCAgjSmcowgfwEw6x0HI9mlrXIWDjTbVhVBYdOCU7kFP8ruwFT4WeX2cBZLVvzOt9Kx1WxuDIPeICJwXTeC55SLJX4zXj5dnp2Jd7xQSNvrlXS3nH5rTIXObM9MLUifwMmrtvkYhc8MGCXEyjAgNEycTJ48ZVa0+fENnV/AVg27y3PzUs8neOBKaMXUgSqiHj0gnRgHH2asolMOgjV4DVTBMhvfKp2JSAwsXxtgqzuVnUBWjDKo1waD4xlWZw8eZL29nZMM+e9jX0rXHEhd8oxtBzcS9fRoX0IvozJGW/+JDvFxxBb85ubi8JVDzJZC/FlM8zWYXyPJSVffOsStorfQ6YeBrmXx+MhGo0yZswYtCKqVudlwAghosCdwAJUFbQPA9uBB4BpwD7gvVLKNvv8W4GbABP4lJTycfv4YuAuIAQ8CnxaSimFEAHgHmAx0AJcI6XcZ19zI/DvdlO+IaW8e7C2OiGkamEbMHla34ZpoaVjEKR8u4NghJAdDsnXM+RY30DZOTCRkI+d5niINSmZ9aEWf73M6pCQY8Ck6MhT/CmuK0KqhlV2Ea+JQT1/w8qu9O0zEmUm8ToS7wkO5uuBcWohuZCFBFAt4nm/TwCPkUAXQfJTASoA0y5ECA0pLQzhxV8A762ncmt5PTDV4lhBSrwqVJMov6fDeZ/kVw8pliqdkTAockJI+XLUUqm08sCXoG0HDx5ECMG0adPw+XwIx4iMn4SOA2BNYfKYairz2MS2J9KItr1UeS20hsJqrxWEY5IUfnZkxnDaxEh3mwtExrQ4dOQo07RjMGbOgHOdlJJMJsOxY8c4ePAgU6ZMKfi78jV5fgQ8JqU8DVgIbAVuAZ6WUs4GnrZ/RwgxH7gWOB24CviZEMJRxvo58FFgtv3PLlbDTUCblHIW8APgO/a9aoGvAucCS4GvCiEGTxOwPTBVsjCV1Lhu5lRJLZ+yrN8orFJ2Tw9MeXfHNWE/e+U49UseRF4tG+csb5YDwAR//vLbPYuylVdGfVwglXfNrWTaQMPCa5WZxOj1g7+yoIKO8bRBqMz1toBuD0yBISSvkUDXymBcTV4Kc9+EToD/afifgkLHimDvwuYiUE2VSBVUC6krpcaACJVR7RYK9qgp3ZwyekYdOCEk8s/6lCXkbcTjcSZOnIjf7+9pCNgikR7MvEuQWBLl6RZlZnx4vEpGAzAKSH7pDcuSqr0AYmBRTCEEfr+fiRMnEo/Hi/quIZ+IEKIauAj4JYCUMi2lbAeuBhxvyN3A2+2frwZ+J6XUpZR7gV3AUiHEeKBaSrlSKvr1Pb2uce71IHCZUG/9DcCTUspW27vzJN1GT79wPDBhqzBDoTOV6U47DJZp0Acj+IzCDKtEjyrB5d21RMM+9sjx6pcheDCmJbN/S3lDSCocUu9L5K0Dk3DDGHVKQxQgo55wo+Kzg1BhBR2Tepog6bKHKZ3nFhUxOgogZfvMBJly1Y5qWICfNC8mCtsBxl2qrIy/kjDJgtKou1IGEZFEK7sHJgoog3SoUKplSWJ6hoBVRm6ag0A1EmFzYPLrZ1qJiaf9hkQ0FfTwYOVtJFhSKnmPcipkA2hePFL1sULqu/WGJSWasDPS8ggLFRM6yl6bxzkzgBPAr4UQrwgh7hRCVAANUsojAPb/9fb5E4EDOdcftI9NtH/ufbzHNVJKA+gA6ga514CQCNC8hGxPR77Wd0w3XFj0InjTnQW1K+7iohcN+9gvGxSPaIhMJNe4OfYEOcaTvwcmpruggWG3a2wBhexUaMsdPhPhGmpEPG9CnqU7pDu3PDCFqZH6rSQZT5nCWxVj0JAk24/nndoKDom3/BwYAlVUyESBadQZpWlSbk9H1gMztEctnjYIkMEjjfIbMJoGweq8Q1tpwyJouZC1ZRshXkzMPPua8mhYiGEs9HlB8yGkelbD8cCYEhW+h7J7jfLhwHiBRcC/SClfFkL8CDtcNAD6C5zJQY4Xe033FwrxUVRoirFjx5L2VNByYAewjA1bdjBF3zdIcxW2t5rZsMOaV7cT35Ma8ppCMfVIK9ONJF4M1r26hUj70OnKm/ammSqSWMLD8y+uLCshb3+nSRofHd6x6FtXsFU0DXhuW8rKGglrN20ntm/4Jdj7gzfTxQWA1nGQtvg8nn322SFjsxuOdxuj67fupvNwU8nbFUid4DzA03WYk51zaGoa+js2HO8mfW7ZfYBYxdi8risGZ6YE4XQrx/V4Xt8RazsOwI59hzicKU+bAJCSi4SPWi3O6p17afIezuuyCjNJ3PSW5XmNOXGCBUA408rfnmyi0p/fGNvQnGGKSGJqfl54obAU7EIw/VgrE2WSYyfb8v77dzenqCTO0fYE2wp4ZrFYrKBnHEweYxmKML55xx6axMEBz23NmTN27D/G4TL1fQfnEiAq4qwZol0AsbTMzv8bt+2h7fjw2haJROjq6upzXFgZKgGvsEimdLoYet5M6hZRJBnDQu/nnqWC3zB5w7s+zPg5Z/OD738PmS5urUlkJB57me6KJfJas1KpVFFjOx8D5iBwUEr5sv37gygD5pgQYryU8ogdHjqec/7knOsnAYft45P6OZ57zUEhhBeIAK328cZe1zT1bqCU8g7gDoC5c+dKf3Ulk2rDBA9qjBk/mcbGoYlP1rZj7F73dwCWXHgZRCYNcUUReHk77LuPKhKMm3I6jY2zhrxkfWYH4d0qvbXxkktK36YcHOlI8h8rniERncUETycNjY0Dnrv7RIwXnn8cgHPOb4TaGeVplGXCS4LptT7M47B0+YVUBAbvth0bDrF9w/MALFp2ETScXvp26TFYBdNq/SRbBRdffPGQhlXs1cNUvLIFgPlnLeH4kRCNgzzjYeHkTMSu1cTicOFFF+PRBm/bL16+DwyYs+Bs5iwsU5scrKujIZmkqq6BxsazhjzdtCRbn0nhq5xSnufVHIDN32GM6GD6gkWcPiG/EPLmZ3dRuTOFFoqU7z0CeNbB/j/i92l5f89vm9dQ1Z6iespsxhXQtqampsL+llQHvKy4YNrY8TQ2njHgqbuOd1H13AMAzFmwuPz9bNs46vQU0frB2wVwsC1BZdNKABYuuQAmLxnWV2/dupWqqn48OZYJcfAJC+nxUVU1tFex00ziyVh4AkH8/d2zVNDUpl0g8fkDVFUWpzljJtJkkhYSjarq/DyAwWCQs88+u+DvGtK/I6U8ChwQQsy1D10GbAEeBm60j90I/MX++WHgWiFEQAgxHUXWXW2HmbqEEMtsfssHel3j3OvdwDM2T+Zx4EohRI1N3r3SPjY4glFItdsFHfPzDHSlcsu8l4/EC1CrJfMOISXTBlFPClFm/gtANKRSVE/4pygOzCAuzoRu5oh4ldFNrXkgGCGSrUg99PtMpHM5MGVqm11ZNkIcw5Ik8hClcsTi1PXl1ltRBR2lzFNvIuOO9DcAoSh1WiJvDkwyo0JvZSs0aYt41dHJobZk3pfF3VBuhWwfzqqb5oHOZIYK6Q7XBOHJK5TqEIuB8oe2AIIRonlyYOK66U5GmdAAgVdYBYeQyk7itfk5GnJ4JF4nhFTukBf5ZyH9C3CvEOJV4CzgW8C3gSuEEDuBK+zfkVJuBn6PMnIeAz4hpXRm94+j0rF3AbuBv9vHfwnUCSF2AZ/DDlFJKVuBrwNr7H9fs48NjmAEku1UBb35FxnLLfNeLmPBJgc3BPT8s6PSJlVa2pWFJeT3EPBqHPVOVDVeuo4O0i6XUkihV0XqoRdjV8iVQkAoSpXMnyyedJXEW4Pf6ELDyovIq2Vsg6/cadQAoZq8OBMO4rriW8lyPbNKZcCMER0cai/MgIl6ylyNHbIGUlbdNA9kUnFF/Cy3oWCPgzpt6BIprvAMcxGMUC3ieW0We2j6lNWAURxNbwEkXmlZikvhkgEjzQxf+uLnqampoaamhi984QtYluK0TJs2je9+97s9LmtsbOSTn/xk9veH//wQF13+ZsLTl1BbW8vFF1/MsWPHytLkvHRgpJQbgHP6+eiyAc7/JvDNfo6vRWnJ9D6eAt4zwL1+Bfwqn3ZmEYpC2z6qQ768s5Ac4qf0V5aPLGUbMPV+PW8PTEI3qNLKXDAxB9Gwj2Zh86RbdkL1+H7Pc3afluZDK5e8tYNQDWFTTd757Npd200Fo1RYKhOrI5lhfGTwLJlEOofEG6gCOsvXtnAtAkmEGC3xNLMHOVVKiZaJg5/yexPArmB8rCADZiw6XeUyYALVSI+fBqswD0xMN6kSKQhEy9MuB3YfDpgJMqaFz5PH/KR39ri2rAhGqUkNnUbtWoFJB6EoVeSnAxN3BPbABYKxB69l5Z3ps+lQG3/d18Wy0yIsnjv0+cW3S2nS/OWhP/Hu697HypUrefXVV7n55psZP348n/vc54a8xdGjR/noh97PV2/5LNe/7UriwQZWrVpVtiafckq8QDaEVDXGl/ck2ZXKMFUky5dCDdnd0Fhfit0FZCFVkgL/2PK1Kwc1YT+7rRwtmOkXDdIuW+mz3AjVEOhqAfKT7Y+nDSZ4bLXbcqYehmoIZ2XUh36fibQdcgBXQkiQX0FH3bAIuVRvC7AL2sUKSItXkv1lK3MgBKKinsmJOOsL8MAk0o4s/uShTx4O7L/bKegYDeehRqw7KcFl1oEBZZCmhk6j7nJL+M+BvcHIywOjm2UvmPhff93MlsOdkEkipSTJMcL+weenrlSGrUe7kBK0VVs5bdzBvBTcHcyfUM1X35onB9D2wDQ01POVb97GzPoqTjvtNHbs2MH3v//9vAyYw4cPk8lkeMebr2DatMmIMXNYsKCPz6JkOOVqIQHKA5NspzrgoauAMu81nmR53cG2cVTnTRUkb10hUmXXgHEQCfnYp0dUNe5XHxiwNoxTyE660a6cys/5LHrKtV8aRc3B2xXFb9c1ycewSqRNajwuGQrZekhdtAxhwPTUp3EhhBSMEja78tfPScTQhMRTTi9kxRjGezsLCiHFdGdslpsDo/pxpUjkVQBQSomWdtEDE6qhWg79PmOpnBBSOTeKDoIRgjJFPDH0O03YISTLV1F+7oZN9pd9E2r7oDNlZKmIliRv0cyiYG/2liw6GzOnaeeddx6HDh2is3Noj/HChQu5sPFSzr3sat79oU/x85//nBMnTpSrxaeqByYC0mRMwMj7hXelDCJaqryuTXvQFkLiTaRNQtIFhVQbNWE/gaNrwczA/lVw99v6rcwd1w3qKLPB5yBUg0dvB/KrSJ1Im0Q0d2TUfRlVSydfA6bBoyshABeE7EDpc7QNacAYhIRjWLnjUfNbSTB0UhmToG/wXaieUBOnJ1TGvlZZz5j2fRwukANTIctcmBOym5cKUnlpwei5miZukGVDNVRYm+3FVg6YjRcbAQ8M0B1OGwROWQhZxnZlPSHt+zGTHWw2J7NgQgRtkAzBdc1tXP+LlRimxOfR+NG1Z7N46uBi9EVDCECgDcLP0TStj1ZSJtM993k8Hu598GH2vPQQTSvW8stf/pJbb72V5557joULF5a8yaemB8buuGO8ybw5MF1OmfeyKmpWAYKolr+8dUI3CcmkqxyYOcmNZOV2zLQqcNcLDs9EC7pjwIhkOwEvtOdRP0fVgSmzXD9AMJo1rPLJdEimDao9uiLKlltVM6wmufH+xJAhJFfJxZAVAYwQz8sgTSdUOMQfKqcHpp6I2c7JWJpUJj/F23h2bJY700fdv0ok86qHFHNLIdhBqIaQ2YVpyUE9RDFdebnxhsBT8qpWfWFvGANGJxnTGvTUeNqkSri0IdM8aI7i7RCZSIun1vCDd8zmc8uquPeDC8tnvDgQgrWvbMQwrKyhsmrVKiZMmEB1dTVjx47lyJEj2dNTqRTbtm3rcQsLWH7OmXz1ls+xZs0aJkyYwAMPPFCW5p6aBkyOemvasPKakLpSGZVGXc4di6ZBoJpqkb9hFU8bBGXSNQ9MNOznufTcbEkGPH7op8BdIq3IxW55YEAyKZjJi8TruIPLr0IaRdM70bDy9sBUabprXg5QNaSGCiHF0yZhkVIq1t4yyfX307bqPOvnpG0PjC9UxvdZMYZwphWQeYeRkildFf8rdxjV3rxU2ByYodCVG6pxiSwbsDPeBjPku1KGCqG6MWdAQfWQnJC4K/OZ8CJQ9YLyIfKeMS7MJ5ZUsXhqbfnbhuDI0WN85z9vYcvWbTz44IPcdtttfPaznwXg0ksv5d5776WpqYnNmzfz4Q9/uIcHZtWqVfz4u99h3YZN7D94hIcffpgDBw4wf/78srT2FA0hRQGo0eJAiK6UMaSbOisLXu4BH6ymijgx3VD5/UMIjOl62p1J0kY07GO1MQtzwVvw7nys3/AROCmRLng5ILvgTQqm8tqxx3STSjcq3jpGQiC/itTJjJ214oYxGoiA0GjwJlgxRDmBRFqRZC1vCI8L2g2FFnQ0UirTKxAu49isrEeTBtXEOdSWZObYPIzMEtfOGRC+CiSCSpEknkc9pJ7ZPu6Nz2qUQToh2r8RHNMNoh4XNhbZdkVVu2wtmNqKgcnPcd2kWqQQgXHlb1dOQcehUqmllAiXZPnVdwiuf+eb6TBNzl9+HkIIbrrppqwBc+utt7Jv3z6uvvpqKisr+fKXv8zhw91q2pFIhLWrV/HbO39Ke2eMyZMn85WvfIX3ve99ZWnuKWrAKMs7KhwDJsPYqsFTfbtSdpVUF8q8V5gJpFTelaEY5TITBw8ucmBUexI1p1Ft/gXG9x+3TKRNNUm6MUHahNQJgRR78wghJXSDsHSBA2MbyhMCet6pmhVCdyccqGkQqmGMJ07LEBWpk2mTMDqWr4IyB7YUnAKAIpaXro/pGDAVZexrtpjd2AK0YEQ6Dj7K/z41DemvpNLIjwPTpWdyRDnd4cCAep+DeWBiqYw7oV0H9joQYWgtmLhuUKW5NJ/Z2T5ehk6lNqXsrivkwuai6W8PIuMtbLKm8svbf95H9by6upr777+/x7F//ud/zv48b948fnXfg8w0d0P1BKhsKGt7T+kQUrU9iPMh8iaTOgGZKj87PhghZDkVqQdvl2lJvI5CqkscmIitxtvlsZ9DoqXf8+K6QdgtA8aeIBt8+RV0jOsGIRl3hcQLMD6QyosDo7J9kq550wjVUpNHGnU2hOSGiB30KOiYjwfG0tV48ZaTb+UYMFpXXlowacNSVZXBlTEg/ZUqjTqdBwcmpcIhpjcMHhf2qHm+T8XNcWFj4cAJIYmhtWDiaYMqypzE4SDrgRnagLEssnWFEC5sLzQvAmtYarxZ3VoXPEanpgFj74wrpZr48llcpO6SOzhQTdDMz4BxreJzDhwPTKcWtRvRvwGT0HVCuBtCGutN5Beq0dMELReMK9tQbvAl8tKBSWZMwi7ymQjXEqGLtkR60CrLybRBBTrCrXbZ7zOSJwdG2gZMWZ9bZT0As8KJvDww8dyMGhcMUhGooiJPEq9TFqWcGTU9kOuBGWROi+m2Ae+aByYKOByYIQwY3aACFzLKIOuB8WBiWoOTiy3bAyPRylrIt5i2DQQhnZBX+Q2uU9OACVQDgrAtPz+UoaAbZs5uqtxhhwh+wzFgBh9UPfU53MpCUh6YNuxJJn6y3/OslFM7xz1C6hgtNqQHRkqpyiBA+WPt9gQ51pvMm8QbxD1VZUK1VFmdZExJ1yALXyJtEiLlngETiCAReZcTkM77LGdfsz0w04J5GjBuSc/bEMEqqkR+JN6YTUh1zdPRiwMzcLvs+kxuaMAA+EJIzUdExIfcYCivrVshJLWwe0UeHhjHgHGD/wJZNV4vJoZZnAeGUQ/MMKFpEKwmaOZXp8aVQo4OghF8tvhZPnHZbg+MuxyYk5b9HAbwwLgtVQ6K05TMmOjGwETGtGkRslx6l/bEXefJz4BJpk2lz+GipyNkKwW3DsKDUUUmdbSgS4aVpiGCEerz9Khpaft9lvO5hesAwWR/LK8QUlzP2Vy4YJCKQBURLZUfiVc3qCbhjsQB5IzPoTgwhur/bnlghEAGI1TnUU4goyfwYrrTNqG8HD4xdD0ky5KqppVbBowdcvTn0bb+IKXs9sCUWyqCU9WAAQhGCWQcD0w+NTpcEn4KVuPJxBBYQw6qhNv6HEDENmCOm/akPIAHRnN2xW4MeI9XpZ/TXXdoILhWJRuyIaSaPGLsUkoSaYOA5SIHJlxLINMOMGgqtZOF5JoHBmyCcX4GjDDimGjgDZavPZoHwnWM83RytDOFMYRuSNbLAe54If2VVIo8SbwpJXGgueXpcEKpg3gipZTE9TRBywVuWg5EKKqykIbYLArdxflM0wAtTw+Mqg7thjGg2mYbV1r+tZpyISVo0r2sqVPXgAlF8aQ78WhiSPdhV8pwb9ELRhDSooJUHhyY3sX/yo+A10PY7+FoOqQ64EAeGDcNGOhR+XkwLZgsURDK3zZvALwhIiJOIm0OKpalGxaWlPhM90QJCdXgMVMESA9K5E2kTcJCR7gUpnTaVqMl8iJlezJxdBEsPwegsp5a0YlpSY51DZ56HndbVTZQnTeJtyuVIVJuUc5ceHzgr2Ksd+CK1Lph4TNTCKR77QJEMEKtZ2gODNnSCy4ZV5qnsCwk10JIw/PAqJCXe6TjU9eACUYQqXaqgt6hQ0huph3a989LXCntfggJIBry0ZY0lRx9on8PjM9w24CpIWQoA2awekgJW1ETcC2FNGtYDdGuELqajFwk8YLSW2kdRAsmoasQkpt9jFBN3hwYn5lA11wQ2KsYQ7XZBjBkGCmRdtuAqaSCJLE8Q0iuCDnmIlRDrTYw16THxsLNdgUj1IjkkJtYjxs8q1xoXrzCzCMLyQkhueSBERog8GEO6YXsD5aUaGLUAzN8BKOqoGPQN6ShoJQr7cmo7CEkW6PGkxyaxKu7T+IFReTtSKYVL6CfEJIiPbs4eQOEagjafI7Bdu2uT5QhVfEWBs92S9iZPoB779Kuh1QjYoOHkDK2p8+NQo4OQlGq5NAVjEEZMBmPC22rqCeUtg2Y9sSgp8Z0kwqRwvIE3ZHFD1QRlkkSeegNxVKGLeTopgETpUaLD/g+Yyl3Sc9ZBKNUi/igc61lSTyGeynxAGgePDJ/Eq9rISQhwOPDK4YW2esPKuTlnm7NqWvAhKKQ6lAemHyqpLq1m7INmHF+Pb80apc5MAA1FT7aEhmoGAOJ1r7t0s1uqXLXFuMa/DafYzDxs4TL2SFOHRgY3AOTTJtUuMmZgKwHpsEbH5TEm0zpBEi7aiQTqqHS6sqrurjfTJLxuOCBqazHl1KVcw+3pwY9NRtCcuuZBarQsMjo8SFPjaV0W6PJXQ9MZBCyrEMsBtxtVzBC1RAk3mTGdNebBqoeEnl4YGwOjHBDIduB5rXTqOWg8gv9QXmMRkNIw0cwCql8PTAZKkUCqfnKSxSErFeg3pfKL43aERhzywIHoiG/MhLCdf2GkOJuu8/BrkjdAQxuKMR7cGBcmCiDUQKGatdgRMEehGwX06hBlWBoHcTos5xF0eUQUsjsojOpDzlJBqwkpteFtlWMQaTjTAhLDg4RQuoO07jU/x1DySlfMAjMpEuaVrmwOWoDjU1XeYa5CEaosOJ0DuK1dZ3PBKB50bAwpcQapP9blvLACLdCSHbbPNLEkpJ8nDBNTU0IITh58iSWlKxcsQIxcREnWwbgT5ayqfmcJITYJ4TYJITYIIRYax+rFUI8KYTYaf9fk3P+rUKIXUKI7UKIN+QcX2zfZ5cQ4sfCrrsuhAgIIR6wj78shJiWc82N9nfsFELcmPdfFoyAkaLGP3S2T7Z6a6Cq/ERBp1K2b2gPTNzxwLi5sKDqIbUnMgOGkHqmkLpnwIhkGx5t8BBS3M5CkkJzrbKyzyYADsWBcd2bllPQcTASr0yPjAEjkIStxKAVjA3TIkhKqcqWGxVKzG5etT6kFkwirWqBCbeMUWfRz8MDIx2JA5c5MBVW18AhJLcrZGfbFcVHBn2Q5xZPm+6HtzRvd0XqQawES0o8QroSjslC86JJtTblI2a3fPlyjhw5Ql1dHaZEEbVdQiFP5RIp5VlSynPs328BnpZSzgaetn9HCDEfuBY4HbgK+JnoNh9/DnwUmG3/u8o+fhPQJqWcBfwA+I59r1rgq8C5wFLgq7mG0qBwUvv8ySFDSF0pg6iWRLgx4O2JqM6bHDqEpJtUipS7rn1sAyaZQYbrINmq9Kxz4Ih4mZ6AO/F/UAueNJkQNGgfpB6SkgRPIv0uGKN2u7x6OzBECCmTS8h2L40aoN6bGNyAcVJIfS4aMLYhHxmiHlLcNvykG22zxexmVyQ51DY4Byaum1RrKYRb3gTbUNLy8MBobmo0OQjVEDI7iaeNfrPxYnqm20hwmcQLIJIdA54yMh4Yj12RenAejLQcUTgXPTCebuMqkRo8Gw/A7/czbtw4hBDdnB2XMByz7mrgbvvnu4G35xz/nZRSl1LuBXYBS4UQ44FqKeVKqXzG9/S6xrnXg8BltnfmDcCTUspWKWUb8CTdRs/gyKqkDu3p6NINoh6X6mDYgzeqpfKqz1GtuZzeCtSE/ZiWRA/UgrQg1d6zXfZuyvK5yZnoDocM5YGpcjOFNBhFGEl8GIMaym4LnwHgC4E3NHRBx4wLQnG9kWf9nETaIOxWBe9KW403FOdQe3LQ0Fa2GruLHBiAgJUYNF1fSomWcTIE3fXAeKQ5oDxETDfdkzfIhW3AaOmOAd9n3A4HWsJbfgqBA5FfQcduA8YdD0xjYyMf/9yX+MLXvk/jwllcevFFfP/73+fMM8+koqKCiRMn8pGPfIT29vbsNT1CSFZOGrULyLfSlwSeEEJI4HYp5R1Ag5TyCICU8ogQot4+dyKwKufag/axjP1z7+PONQfsexlCiA6gLvd4P9dkIYT4KMqzw9ixY2lqaqKmdT8LAf34brr0GTzz7LNoA+zIdzenqJQx2pNeNjQ15fdEhoELNT++5AlOpGI0DfJ9u5t13kiC9hSutMvBkYNqQdmw9yTLgNXPPkqiYlL283XHDGaKJEnp4yWX2lV38iBnAJFMC3sPVQ/43LbsSPNmkiRMjbUutG3CoRPMAWq1OK/t2EOTONjvea8czGRJvCvXb0IPHiMWG/z9lwLLPGECiWOc6EoO+F0y2QEe2Lh1F23HytseB5H2fZyNUm99fuVaTtT1v8M8HLN4MykOx3T2l/lZBVInOA/wte0hlZnEX59sotrf/5yx72CKCpngWEeCrS70s6rOnSwGKknyxDPPUeHrv11pUxKyy6Ks37yLzoOF7dyL7ZPjjhznNFTK/i8efo5zx/f0zL66J80ku/83rVzn2oLsrAOVMsFjTzcR8vZ9bhuOG0RJktaCrHruuZJ8byQSoatrYG+ZN5MmhCroGIsnsNL9v0/LyMCxzWQ2/YX0tEasCYtL0r6BYJomv/3dH/noDe/g3j8+TDjgY+VzT/Otb32LadOmceDAAb7whS/wsY99jF/84hcAJBLKMI3FYnjxZw2YWCxGIBDI63tTqVRR/S5fA+Z8KeVh20h5UgixbZBz+3sTcpDjxV7TfUAZVHcAzJ07VzY2NsLBSngVTp9UDQdh8bILiIT6D3fcvXc1ka400XEzaGxs7PeckmJtDeMDkEl5Bv2+Px55herWDNGxU91plw1jyzF++dpa6mcvgt2wdMEMmLo8+3nLuoNUvpYkUD3GvXY1B+C1bzGzRuOQWUVj4wX9nvZc12aih5JU1k5wp22bTsLO25kSThMZM47GxjP7PW3fS3tp3voXAM676HII19LU1FT+Nm6dwHjDIt0O5y6/kJC/74J279MrAFi4ZDlMXlre9jg4Pg42QIQ40+bMp/GM8f2etnF/G+E1OnXjp3BOuZ9VJgWr4IxxITgE0+cv4oxJ/avZ/nL3y1R26tRMnkmDG/3s5CRYrwyYs5YsY2K0/6ysE106f336KQAWLW+EsXML+ppi++Tu547AdlWg85evGVy+/BwWT+2O9q/Rt1G9N4H0V9F4yaUF379oHKyCV1W7zlqyjPGRvs+ta+Nh0puSeMLRko3HrVu3UlXVy9P091vg6Cb1szQhk2CS9OP1+fANwHHxx1vg5DZ8SHyrfgQNCwrzrI07A9747bxP93g8TJ8+je999XPsssYTiUS5+Lwl2c8XLFiAEIKrr76a++67D03TCIcVP62yshLT789yYCorK/s+gwEQDAY5++yz8/+7bORlBkspD9v/HwceQvFRjtlhIez/j9unHwQm51w+CThsH5/Uz/Ee1wghvEAEaB3kXkMjpxIpDK7Rka2F5FrYIUIlCWK6MaibOqEbatc+AhwYgDZhD5ReRF6VqpxCcznGDlDvG1x+PqGbVGvuV7wd508OGhJMZEZG04dwDT5daZs8v/NEn49NS+I13U/Vz61gPOj7TCXwCROPG3WafEEIVFNLOzC4FowSJky4GEJS31M5REFHFdpynyz7aqvaa0ZEnIxpsWpPzwyUWMqgxqO7wzPMhR1CqmZgkb0sB8bN+cyGQMnvDwRN7yK7Z5cWpAbm8pQKixcpQ8Kp1fTMM89wxRVXMGnSJKqqqnjnO99JOp3m6NGjfa7tocTrAob0wAghKgBNStll/3wl8DXgYeBG4Nv2/3+xL3kYuE8I8X1gAoqsu1pKaQohuoQQy4CXgQ8A/5tzzY3ASuDdwDNSSimEeBz4Vg5x90rg1rz+MpvEW41ypw7Gg4npBmE3hZ+CESricSxpM+AD/b+GeNogJEeCxKsqUg9U0DGmK90ELTjFvUY5hRO1+KCkz5hN4nWNKGi3a5wvxZYhdWBSSI8f4fW70zagTVaid+0C4F/uf4X7b17WY2eczJgjovbsjM8I8UG1YNJx5Yb3upWunKPGO1gqdTKlE5S6e3OGvbhWMrgB05VyUVU8B3OnTYGNKoQkBCybUdezXbpKlHDdSHDWATFwOYF42mQSyfITsnM9IWYGjr1Gi6zDU1nPuEj/3Ju2Vx6l/pEPgmWAxw/vurPsXtKKSrXe+IXJ9p17ePOb38zNN9/M1772Nerq6li/fj3XXXcd6XTfediycpR4XUA+IaQG4CE749kL3CelfEwIsQb4vRDiJmA/8B4AKeVmIcTvgS2AAXxCSqe+Nh8H7gJCwN/tfwC/BH4jhNiF8rxca9+rVQjxdWCNfd7XpJR9ldX6g215V8qhK1J3JTMqbuzW4ApUE+o6pr47lRnQgEmkTcLSxdo5NhwPzAnL/t5Efx6YJFrIXaVPcAonGpiWxKP1jTAmdINKN71pdrvGehODypUn0iYTPO4Tsg/pIcbZRTANe2eca8AkdKO73pabWUjeANIXptaMcXIQA0ZPqowab8gtA6YeX6qFsN8zaCq1lS3+5xYhO4wUGhVi8IrUjuKtFJqrxTnnz5iq/o+avBj3cPbkaJ92VWsuJUrkwv6+wUT2HBKvFuo/jFkW2LpePiHJDOKCSTecCW/5PnQehhmNLoV4VWBGSJP169eRTqf5xrdvozqs+CyPPPLIgFdaLqdRD2nASCn3AAv7Od4CXDbANd8EvtnP8bXAgn6Op7ANoH4++xXwq6Ha2QceH/gqCJtDy7xn9DgeTPd27cEIAXM3oDxD4wcoGpvQDQIy6b4OjM0VakkKlfIb7+mBiesmVaTcXYy9AfBVoKXU7viFnSdonFvf57S4brqrQup4hjxJOmKDZ9NUa7rr3rS6seOIHo4BEk1ofXbGqmCoU+LA3X4mQjXUZhI8vOsk65rbehhWDjIJNX59rhkwYxAtu5gYDQ1aD0m4naosBJavkspMkthgHhhbyNHyVeJxQ0bAgT0OLp7s5XsbTfacjDGrvvvZdGtt1Q10h/LA68fyhqg2Bq49F08bVIsUmpvGldBAaHilScrsf8GXUqrKzg2nw5nXuCdZIQQWGl5MpkyfgWVZ/OAHP+AD11/DqlWr+OEPfzjgpW5nIZ26SrwAoShB24AZqPNKKUF3WbkyWI3fLkw4mBqvoSdUIS+XFz2vRyPs8/D8zuPogZo+Hpi4w81x2R2c9kc4fPQIAP/0m3Wsa27rc05KTxFw07Vve/pqtaHSgU2qNN11b9r4cRPwCovxAZ0LZ4/pYySoStQpJEKlXbuIhKeKCrOLjQc7uOHOVf2+TyOlxkkg7FJfq6yH+AkmREODemBExhH/c+99Sn/lkCGkmF3XTbrt6fCFwBNgSlgZw2v29XyXMccz6jYHBpDBqM2B6X98JrLSC+6OTVXQUanx9geZW1fITR0YAM2HF5M58xZwy399m9t/9r/Mnz+fO++8k+9+97sDXial1W/mTdma6eJ3uY9gFH9G7ZQGch8m0qYaWACBAVwhJW9XBG/GCW0NolGTdn+SBFjX3EYyY7KuuZ2tnX46WnqStZJ6iiBp193BnVRSLZVB2h9REAC3d8aaBwLVVKMKxlkDaDok0o4oobteDkfM7pyx9Bt6cIpMmt6wO8J/OWizKogI1cczRv/vs9uAcamvVdRDopXJUR+HBzBgMqZF0HS5+J/9XZUiSSKdBwfGbQNGCAhFiRBnTKWfNft6RvpjKYdnOAJE2VCEiB167g9x3aDC7dpRAMJj68D0zxlxROEkwrWx2dTUxE9+8hM0j5ewV81lX/z8Zzl86BDJZJKnn36a9773vUgpmTZtGqC0Y6SUjBkzBiyTxuXnIGPH1e9lxqltwISi+DKKtT2QB6YrlaPC6GIISTPTBEgPSi7uFqRy14BZtacl6wRstapIdx7v8bmVdIwEd9vlr6qjRlPPxKOJPuEQyFEqdVVGPUo1MSypSMT9IemUEnDZGHUEAGdXpdnX0ldOXWXTpLB8LlaithGOjCFq83N83r7hLeiu0+RKFhKoAqZIKox22hIZVuzqr5RGjqqyiwuyFqyighSxwTgwdkaNq/w0B6EaRKqNc6bWsraXB6ZLN2yeofvt0oJRoiIx8CZW1xUPzG3jSvPgwRqw6rNpZ/RIobm+ucDjxWt7fwr5aind9Rid2gZMMIJIdVDh9wxSoyPTXVnZRRIvqBTvgUJIacPCb41Adggqg8CJn7eLaiJWZ4/PpdshNxvVNWOZH1UuyrefNaFfzoSWdow+N9U+o1RYtkdtIDd12lDcnBHywEyvSHO8S++ze1cFQ3V3pPp7oaaungZfkqBP496PLOv3fWbLHLhl+FUqXtWKjUrq6kN3rekT2orlSs+7aJCKQBVVQ6RRd+kG1VoSbQRCNYRqINnOOdNq2N+a4Fhnd0XvZErHL0eAxAvKM6QlWLW7pd8wpZkaAW8a2AUdB65IbVl2CMkl0b8e0LwIaSAQpDL5ZxUJJ1/HpTaf4gZMFFIdBLweXt7bf+ftzPXAuMabiAJQJQYmlqkdu/uTJMDiqTVcf65KkV5y+hz86bYeYgWuLyoOQjWEzU4mREOk+yG+WZbENyIy6lFCpjJgBuLBOJ4O99NIlVEwKaj6UnNLT20TZViNQGgLIFRDpYyRylgsmDjA+8r2NZfaZ9dDqpHtQP+hysRIFP9DGTDVYnASbyxlUC1GIBwCtgHTxpJpymh2vDCGaeFxxuUIGFYtZohKKzYg1ypb/NLt+UzzZA2Y/vTALCnxYCkPjNvQfAjLwO8V6MbAHr8+cDww2qgHZvgIRTETbbQl0mw61Nlv51UD3mUPjE38jGrJQbQJcov/uTywgEtOUxO5CNeCkerm40D3ZDQSi3Gyjam1oT4LMShNk0q336XdrkBm8IrUibRJyHJflNAJITV4BzJgVGjLzZTbLEJRvJZOgPTAtZqyZFm3DBjlgWnwKINUE31DlTHdcL8aO0CgmkqRGkIHxsn2cZ9r4ozP+ROqCfk8WR5MPG2OiLieg0NJf3aO749rJUbIo5xbkbo/ozQrCuc2gRdAUwnKYS8FemCcENKoB2b4CEbxZGJoqE7SX+fNDnhwkQOjvqfBP3ChSUWudLn4Xw5m2ymQB9P2wpGTiSTSI+DlABUOMdPMqtXY39rXgOlRVTboEiEbIBjF55DFB9CCSaRNAjLhvqcjFAUEtTZ3qLkXDyaZNgkLHW0E+lh3QccYJ7r6r3rrMez37BZHxy7o+KllUaqDXs6bWdcntBUfoRASgUoqSJJID86BqRihbB/HgPF5NM6eEmVtc2u2TSMhrudgzNgGqkggsPrlWo3UfJa2NASqHlJzS6KPYapSkkcohORRBkzIY5E2LKzB5IJtSClzDJhRD8zwYS9iNZoaPP113pieyZmM3PXAjPX1X7kV7OrFI6GQamNiNETI52FPwk6tzdGC8Y4QudhZ8GZVGrTG0328VyO20wvV4NU7ADkgB8ZIp/BKYwRSNT0QjBDMdFBb4WdfLw9M3A4huUaSzUVOOYGBDBgtk0AXQddc0gSqweNnsq+LRVNrONmPZ0gJn6WwPAFwUVWZQBVhksQGkV5IJRP4yYyMByYYVZXNDZ1zptWy5XAnMd1Q4nqMnAdmQkMDHiGpJMX/Xruoj0FaLo/yYGViAFK2HerBQkrZx4AxpfrMtb6fC9sDE9AkEknaGNoLY0m6VXgLMLqGek6D4dQ2YGyV1A8vVh22v87blTKoEglFYvTkW9tymLAt/THe1IAhJMe1D7hnWOVA0wSzGyrZ3mlP0HY5AcuS+EcihRSyC970CrXY9Q6HxPUcb5qrBkwUYaUJofcbQpJSIjIjxBsC5blKtjK1LtyvB6ZC6CMUQlLvM0KcE7H+DRivEUfXXNSnEUKFkeInmV1fye4TsT4kS1VKI4F0+136K9GQmKnYgKdYKScc4qIH0kGqXf2/+1mWTKvBkvDK/raeiRIj4RnKqYfk9fRNqSnHhszn85FMDqwjBOD3q7nVgwkIKnopsjshJDGCIaSApgwSPTM0D8ZJ+1bX529aJJNJfL7iRPpObQPGJsueP1E9nIpA346QTaN2c2A54mee5IDaBD1CSCOxuKDCSK+22YPKDiElMyNHLs4SUgPqufQOI8V1ZYxamg+8/dcWKQvsfhYV/cuV64ZFWI4cn4lQLSRamVob7mv0pQ3CQh+ZPpZ9bgN7YHxmkrSbBgyoVOr4cWbXV5E2LA609iU+V4gRSIm3jXLL4Wz0A+kU+3N7c3FgNay+Xf38hw+wWNuFJpSgXddIJErkIqce0tajPTMq04ZFUJaeN1dfX8+hQ4dIJBIDehiCtgHjExZVQW9fA8YOIYkCjIGSQVNrplcowyWVjwcmV4U3D6NLSkkikeDQoUPU1/dVVc8HLrkcRgh2x50cVm7g3SdiLJ/VU1ynK2Uwz5NEuDng/RUgPNRoyUHkrU0qRBKpeRHegHtty8GchkoeXx+AINmK1PH0CLqDncKJ/iQQ7HcxriSJ5atEGwEZ9XG+JC/uOknj3Pqe9YbSOeHAkeKaxI8zdXwFf9l4GN0wCXg92baNZBYSwPhAakADxm8lMPwua9RU1kPsGLMb1LvacayLaWO6n09MNxiPy3MGZMdblrPRD8RI6CAB7HsBLHuXbmYIH17B/AlLWbuvlTkNle4nSuTC3jDOrDTYeqSn8Zco03xWXa2e/+HDh8lkBgj5mRnoOk6nppMSAZInem66OpIZTurHEMEEBAd+52WBlNBxAoIpWvQgXV6N1orBw6Vpw0KPtdJKEtGxLa+v8fl8NDQ0ZJ9XoTi1DRiHAyPiVPgr2H2ir5BXTM8QcbvImBAQrCaiDawDo4rsKX0O4baIkY05DVXECGFpfjTbA+NwcwxPCK/bsVl7wQsZndRWVLO/tef7jOum8sC4vcuzDeVApotV+9u54c5VPXRNekySIxVCOrmdaWPCSAkHWpPMqlft0PU0ATIj5BlSz2eCP8UrAxgwASuJ4XXZgKkYC0dfyz6jncdjXHl698fK05dCuEkUhxwDpn8PjJQSb7oLfLhvKEy7UFVLNlKK/zDtQs5pq+CBNQd44xnjR9YDY7+n02os/nKkpwemp6ZPaZ9ZdXX14Atz7Dh890Iem/J5PrVnCVv+6w14Pd3elm/8eT3/vuE9cNlX4ezPlbRteeHbb4La6fzJ+iAvpKbz2GcuGvT01Xtb2fHAV3hvxSv4b93rShP/vwghCb2DmXY8uze6UgaRkSjzHoxQxcA6MKrEwQik3eZATeCClC+a5cDE7Zompm/kFjySbUzpLxxiT0au74ztdlULu8xBr2y3hJ3pA4xgCKmNqXXKi5DLgzFspVvXsnxyEagC4aHBl+yXA5M2rJFRCa4YC/ETVAW8jI8E2XW857wR102qtJT7/czuO1nSaS/ohkVIjlC2z+SlcONfoWo81J8Ok5eyZFotyYzJy3taFM9QeFyvtwVk14FZ1SZ7TsZJ5fA5HE0fwxNyjwPpwJ43pobTpA2LPSd7bsiMrOL5CHitDqxWnKbD6/ni8S9QffKVAQX3HDjSH25yw05tA8beGZNsZ8aYCvb064GxU/zcdrkGI1TKODHd6DdGmkgbhEUKMRIhBxsToyHCfg+dWiSbhaR2nypM4zp8IcVtSbbZhNTeISSVheT6wmJPkDWa6l+9s90SPUQJRyBUE66FdBfToiqu3SMTyeFTjES7hAB/JWcZG6lv39jnYyWyp2O5rRJcWQ9WBlLtzG6oYsexnh4PZwy4vrDY3xcw4xhmX05Cp1MHKedcVzF5Kcx7G7TsBNPgnGlqgX5+x4lunuFIeJNtD8yUcBrTkuw81m0AOlWyzRFQosbjA38V43zqnW053Evx3CFkj8SmZ98LYPNZPJbBOXJzHy5YbyTTJpWMGjClg10hlVQ7M8dWcqi9byG0rpRTyMvtyaiasIxjWrJfXQe1GOsjasBommB2fSUnrMosidfJjpIjMUFCt5hdXQVHOpI90vsStjGqhVx27duG8lUzFFfptnef2YsDM7KaPtjEzpojL1AV8LI/xwMjR6hgKKB2eXonU1Nb+X7qP5D7X+7xcVYwzu3FxVbjJXaC2fWV7DreMxMp7rzPESLxVpDqtzBnLGV0KwS7Hd5yMHmpSqU+voWG6iBTasN0pgxqPCPgsXIQqAYE4/3Ky5dL5E3oygPjekaZg3ANEWL4vRpbeoW3smTtkZgzpl2YJfLi8bLKmsfO44PzcJyimG6uWae2AQNqICfbmWnHs3t7YbpSGcJW3P20w2AEjx3LXrGrbxXehG5QpY0QuTIHsxuqOJSu6EniFSMY2sqq8YaxJBxs694VxNJqZ+x6HZhANQgPZ9j88N7F2ZK5JF63n1tOdoj4w428IdLc0wOTtn92mygL2V2eAHwYpHc/3+NjFXpLuT+BOwZMXBkwumFxqK07JTamm1SMRGVl+/sqRZJ4P0VDYyMlI5CLSeeo/w+uBsh6YaJaamRSu0Gl9Nqcw5DPw9YcQ8ExkuUISFUAEKpBS7Vx2riqPh4Y0iMovTB5Kbz9ZwBklv4z6+Ucdh4fOPsNusfr69KAEUJ4hBCvCCEesX+vFUI8KYTYaf9fk3PurUKIXUKI7UKIN+QcXyyE2GR/9mNhs1OFEAEhxAP28ZeFENNyrrnR/o6dQogbC/4LQ1FIdTBzrG3A9IozJlI6QelyGjVw0ghiJlRZg0/ev75PiYN42qRSpEZEAyYXs+srOZKpQOZwYKpIIkZCzwGyBeOm1qkFtznHrZnQbSE7t9smBAQj1GoJwn4PGw909Pi4p6aPy5NRr+yQC/3be3BguvVpRsBQnnYhCA8SyODl5JglPT6O24uLCIyQByZ+PJuJlDt5J1M6QfSRM2Dov5xALOXICPhhhDIXiU5VOjoH1wJk6yJVjwTPMBfeINr+lby17iDbcjKREs6GbCTIxdBdfmF8NVuOdPagE4yY4rmDBe9WZVKSJxQX7NgQHpi0QSUpPEEXK7QXcO6nga05v98CPC2lnA08bf+OEGI+cC1wOnAV8DPRrcTzc+CjwGz731X28ZuANinlLOAHwHfse9UCXwXOBZYCX801lPJCMAopteAJAbt7ucEsp1icy4PrYNKfZb/3VzBOFXMcIX2OHMxpqKJVViH0TjDSKguJpKudtAfsAT/FNmD253gT4ilbVXmE6sBoqXYWTIyw8WB7j48cD4wUmvskRic7BEB4iI1bxsG2JBmbQ5GV6h+pXd7pb0cKLzekv8TBijN6fBxP6gRFBo/bHhi7IjWxE8yyS2rsyJm8u8XiXO5n3iCW8FApEv3Wzum0y6K4noWXCyFg0hLl+QOW2B6YkBWnXY4AgRdUW2LH4eirfKPjS/iOrMkaCs6GTBux+aw2Wz+qNZ7maE4Fb89IKZ470DSYch7sX8Gs+kp29ZMEk4uEnaGquTgu8jJghBCTgDcDd+Ycvhq42/75buDtOcd/J6XUpZR7gV3AUiHEeKBaSrlSqt5zT69rnHs9CFxme2feADwppWyVUrYBT9Jt9OSHUBSS7QR9HibXhHtkIpmWxDNCVm792HqqRBIPZr8F45TEe3LkOq+N2Q2VtGI/m0SLLaOexBMe2R3L2MoAYb+nB5E3rSfwYYycWFayjbMmR9l8uLMHN8fRp5G+CvdJjE52iC8Msy7HN3UZhiU53J5ESul+raHemLAITRrskhP6ZCLpSWUouG4sh+sAAfETREI+GqoDPd3nI+XaFwLLVzkwB8YWchyxcIiDyUugdTckWulIKJmIoBnnheZUH0+zK8ghpHqlwYL0pqyhEE8rVWVPaAQ3ZIlW5o9Xc1ZuGMkzkurdDqacB617WFijs+t4DGuQTCRnnnOT65SvB+aHwBeBXOp7g5TyCID9vyOlNxE4kHPeQfvYRPvn3sd7XCOlNIAOoG6Qe+WPYCQrcT1zbE8tGMflCri+m5rQ0ADAjCqTeeOr+pQ4SOgmoZESGMvBxGiIhMeOXSda7AGfwjOiIaQ2hBBMqQ330IIZsZ0xKE9fsp2Fk6KkDYvtR3Pd1CZhRpCQPXkpjD8rm70FqgxD2rQIypFVe6Z6AgDjRWsfMbt0Qk3mPrcXF82jjJj4cUApUuemUne79t1/n5a/kqqBODC2B3LEwrsOJtmhwINrWLW3FYHi7XTIUB9Psyvoh5DqhJHiukr99YwU6TlcC6l2Thun+lKuAeN1NhcjuYmduhyAc7XtJNImhzsGLo+QSLmv6j1k4rsQ4i3AcSnlOiFEYx737G+LKQc5Xuw1uW38KCo0xdixY2lqasp+NrslTn1XCy81NeHXdXYfM3jm2WfRhOBk0sqmHW7cvo+2E029b102jDtyhNOARdUx/nLUn22Tg5MtMQJSZ+/hkzTn/D0jARmoggxsWPk0ew7PxC8M9hw6wf4RaNeUI23MMJI8//TjhC3JlgOx7PuOnTwMwNY9hziWcLdt87oyVHUdIXlIRVn/8MxqWqaoSXPbzjRXiSQJQ2NNzjOLxWI9+mo5MSdTxdgTKzi8fQMAT67aQOc+L2GU0fDSmo1k/O6IT+WiuuMYi4AJoo11m3cyPdOc/WzHrn28Edh78AivudzXzhEVJJu3srmpiVBGZ/WR7nkDvRN88Or2fbSedLddZ5keKkixdsMmAid6qp2+ujvN6SJBZyrAq0U+r1L0Sc1McSEazS89SCB6LT5NUkWCBCEC7c00NR0c+iYlxoQZH2LOrjvYNvl61m+bw99e2oA46mf7bp0qkuw/3sbeEZjPJh1qYZa02PDCEzSENZ57dTdneA5hSUnATIAGTSvXulbduTeEZXCBFqDm4DPA+/jTUys4c2z/ZsOhgx14sNh96DgHXHqW+Sj3nA+8TQjxJpSofLUQ4rfAMSHEeCnlETs8dNw+/yAwOef6ScBh+/ikfo7nXnNQCOEFIkCrfbyx1zVNvRsopbwDuANg7ty5srEx5xLrRTjyGI0XXcTh0EEe37eJOWedy6SaMFuPdFL5wgoAFi69oJtB7wa2xmA7XLVgHA8cSjP+tMXMG9+9c/remr9BBqbPWcD05Y0D38cFrDnQAbvhrFkTaUhWwgmYcdpCZpw7Au168hnYCxdNNHghNZ17VjZz0UUXo2mCP6zZBRmYd/a5zJvrctvif4XXNvGuqy7h2+ueIhGqp7FxIQDPd22h6pBORU09uX2zqampx+9lRWALPP44b7/wTG5dsRZ/7UTOXjqdLc/dD8D5l1wxMiJj7TPglVuYHeqkraYh+8wAWmJ/hYNwxsLFBBc0utuu5qlUZlI0NjZyOLSfJ5s3MXvhuYyLBLnziVUAnHnOcph6nqvNymyvpzKWYMqM2TSeN63HZysTW6nen6J2/Jyi+1XJ+uTOBUzTjvGRd1zGojOP4P+NyZuXnsbEt142/HsXg9Qi+PYdzJ8+kYlHQ+jhGhobz+aJ42vxHzOYOms+Uy9qdL9dz7wEu+GCCRkWz5zC5sOdNDY20pXKsOvpX5DRgjReMkLPzMGBczktvh+A8LgZNF44o9/T/rz7CeiAmaedycylja40bcgQkpTyVinlJCnlNBQ59xkp5fuAhwEnK+hG4C/2zw8D19qZRdNRZN3VdpipSwixzOa3fKDXNc693m1/hwQeB64UQtTY5N0r7WP5IxgBaUG6i5ljlWvLCSPFdIPqkZK4tt288xRJn1f2t/f8fATd1L3RMF5F7RLtx7BSI6wOuern6uc/fIhF2i50w+K4HXrQ0iNDyAZssngHQkrOnBRl44H27EfJjEGV0Ec2lj12DgDi5A6m1VXQ3BInmTYICR2J5m7xy1xUjgME0/wdfTgwTtVl/0jwEyrqu0NIdibSruMxpRsygqnKWqiaSpEk1g8Hpks3VM2hkcz2cTB5KRxaD5bJoga1T55oh81HBMFqqJsFh19h3vjqbCp193w2AmG3A6vhpR+qn//0US6t2Edziyov4yixG96RpRAAMGU53uObmVqR6SEC2BtSdz+EPxwdmG8DVwghdgJX2L8jpdwM/B7YAjwGfEJK6Yy2j6OIwLuA3cDf7eO/BOqEELuAz2FnNEkpW4GvA2vsf1+zj+UPWyW1pxaMegldqUyO8JP7SrwADf4UtRV+Xtnfk9wmRlJgrBcmT5yIJQVtJ4+CPoKG1b4XwLJj/2aG01IbgG5pfJ/hDKCRIPHWKENZ72ThpCi7TsSyda4SaZNKbWTLQjBGGTCc3J4tw+Ckd5u+8MgopAJ4/VAxlometj4cGMs2YLTgCDy3irFZ7aPZ9d1FHWPpHLG4ERgDWrCaSlJ9BDnBFrJjBFOCczFpKaS74MQ2FXKDkW/XhLPhyAbmja9iz4kYqYw5shuyXvPZ2dZmALYd7VL6NCI1MgrBvTH1PEDyxsj+wbVgRoDcXpABI6VsklK+xf65RUp5mZRytv1/a85535RSzpT/r70zD4/qPA/9750Z7fuGkGAksWOMDYJY4DjExE6ctEnrJG1au03j3CQ3XZL7JE/TpzdNn9Zp3KRpb9rcmye3i2+z2G2WZm0cNxtesHFsI2xjGxuMAYGQ2ARoX2ak0Xz3j+87o0EIDNia8wne3/PoOWe+M+fonTNnznm/dzVmhTHmp1njTxljVrttH3VWFowxCWPMe4wxS40xbcaYjqx9vurGlxpjvnbRnzBoJ5AYoKYkn4qivEwm0lAiFV7pbfdjlsQgrfFKdmbN2I0xRHyIQHcsb6iknxKGe49PlZ4P4wefnRIciVC47EZgqhZM3sRIeLJlrrN+1sQrMAZ2HbH1YGzqeTJca1r5QptpdPJlWmpL6OwdZTiRopgEk2HP8sobmc/ZQbzpMAt5TSbsDbnjUSqL86krK2Bfz3Cm3xYQygNZCmwQ70xp1ENj4y5z0QMLTOCOd9WWgfDlalgLg0dYUzVO2sC+E8OYMK22LZtspXgAEapWvQmwgbyBpS8ddkYZ2KDsSIzrYy+zr2d4xtY3ABJMbnMYxHsFVOKttMtEPyLC4roSDvTYB92QK71tm4zlOI00iHpPDtLaVMn+nuFMymHSNbEDQs9CAmisKKSPclJDJ6fcNGH8sIKU4PIFMG8VtVdtIhoRDp8etY3/jFNgwsgoyDSatJlIQKag3dhEimIzFu53GYlA7TI49TLNNcWZ5nHFksSElUIdUN5Idfo0p0fGz2wYFzSazPV562qHZ/7drn/zPdDVzrJ5pezrGZ5qbwDhKFYF5ZRIgqcO9Z6VkpxKDBMlnXtr8kxUL7aZXN1PQWDlCFuuxlYArsbOj/ccGyQyHuKELN4Gd9xnFau8YqqWv56aknx2Hx20XbLDbHGQTX4JNKxh5fgLDCVSZ000AiIhTCCvAAXGPczG+gFYUjfVlTrTyLGgLPcm9GD2lhhgXZN9+D3rCqCdUbnVgxgYESGRV4WMns4qrhTSzCDeBivfDr0d5IlN8+7sHbUVNTMNE0M4ZxlXZR9VJfk01xRn4mBGxycpDLmzOAC1K8DFwIC9gRd7kKpPeSPl4z1Mpg19o+OZYZkISYE5o3rxOBzaxvL6MvafGJpqZhrJt+6vHHN0LEYpY7xwpJ/f/dcnz1BiQnWHTCcoaNfdHq7VNpuGawGhfniPbSlwfDArbi7EEgcbfh/Gh5FTL7Oq0VbkDfqnSdj3jICm66kbfJECxs/ZEymayn3Yw+WvwGS5kMAqMD1DSYYSEwwlJqgIo/Q82Nbt+aWQGODaeCUiZOJgRpLWtA+E/9BzpIuqKRjvI5oKWYEBO5MaH4bT+2iuKebw6RHXemGMVKQglAdLtgsJYM3CykxF3mRynEITchAv2DiYgS6aS62VY8+xQUpIIh4oMAWpQQpJnjG7yygwuY4DaNk0dQ1JBFo2sXReKSPjk+zvGaaEMdIhfZcHh+xEq5gkE6lpFbx9iTUJWHgdnHoZ+m0GS+hyFZRB7TIix59jxfwy9hwbJJaZkIUoW9NGu+x8nFUN5ew9PkT/6IRtjBhWheDpNL+eSHqca6WDfSfOjoMxxpAXKDA+9kKas2S5kIBMJlLHyRGGEykqogkkrIu3sAISg5QWxFhRX5bJRBoN+iBB+A89R6xsHuVmIPzy1pAxBXN0pw1I7R1lJJminFFSeSFW1ISMpW9NvJJjAwl6BhNTHZ/Dtqa5TKSGyW7yosJLx4cokhB6DU2nzBazmz+tmF0sNcoEeblXSANXZXE1LHgdxNsygbw7D/eHatpfWG/rhZYyhgE2LqrObJNkiEHsMxEUtOt42C59kKthLRy1gbwvHR8K36IMULUISuvh8JOsaixnfDLNriMDlEoivBYH02my5QI2Feyb0QITVlHMy1+BKSizsyj3YFnsmjoeODnMUCJFZSTEqP2sKsGtTZXsPNxHOm1cGwF/YmAAiqrmUcUwpYza/sFhRsfXLrf//+hOmmuK6R+d4NhAglIJb2ac7UICWBu3rsvnugfAl4yy2hUARE/vI15d7FyVydz3GppOeaDAnJmJFE2NkoyE1D8n3gbLf8VaEIxheb19kDzb1U8piZyWS8+muXE+AG9aVETakOlPY4yZehiHHWsSsGCdvfceesy+DtuFBHbyM3SU1upx+kcnyJ8MMfA/QMT1HHoy01Jgx6FeSkgQC6vFwXSKq6FuJW/I33dGVeqAUdcjD8hpfOTlr8CIe9h2bIWudppriolFhI6TIww5f3ZoF29Becbs2xqvYjCRouPUCGPOHQJ4o8BU1jQQkzQL5BQT0WIbFBoWkSg0rHEWmKl4jjJGSeeHdPPOK7IZBU4hvbqxgmhEeK6r34+eJmADKyUKJ/dm4mBKJBFOmnI2gQJD7xm1YPImR5mIhqTAgFVixnrh9AGqSvKpLc3ncO+oNe2Hdc9w19DnfrWF1y+p4dP37XYpwWlKjAcP42wKymDeKpgYtXWGwnDtTqdxLQBroocA2+IgTSS8XmABTdfDwGEW5fVREIuw91g/xZIk5osyCtB0PSsndvNid99ZAeSjE7aRYypSYMMjcsTlr8B0tdt4iSNPwT2/Tt7Rp2iqKXYWmAkbxBvWRVJYkYnNWddcCdg4GBsDkyQdK7IPaw+oqLEzvybpIeVDbYLGVjj2PM1V9qa4++igVfrCsiaIQH4xHHwUutopzIuycn4Zz3b1E/GhpwnYB0j1Iji1N9MTqYQEEvb3WdYAQFPsTAtMfnrMKsthEXexCV3bAVjq3EhlMkakKKR7hlNOIuND/MNvraUgL8LHvv0svaPjWfVpPHroBW4kX5Sq+TaQtzm5F4CyoFhcWHWQAlwcTOxIOyvnl1Hk3DE5b2R6Hg6WrKHYjNKcOsjv/L8zA8hHXXmBXNetufwVmKxOpEFGQZCJNJx06a2huZDKMwrM4tpSygpj7Ozqz1RhDM0dMgNSUgtYBWYyrDiTbBpbITVGc9r2+txzbDDcRnZd7dZNeXQn3PPr0NXOmnglT3f2ZZlWPVD8alfAqX00V1vFoCjHzddmpKAUCipsNV6nwBhjKEiPMRkLUYGpXW4nGU6BCdxIpZEQs0MCRWB8mPkVhXz+3dey68gAd/1491RNK59m7fE2u/RFqSoohdrlFPbsYkFlka12G7YCD1C/2rpeOh9nVWN5qNWez8WjyaUAXBd5iYnJMwPIR8YnKZYk6Rz/Xi9/BaZlE0ScSSuaBy2bWFxXwqFTo/SPTlBsRsK7SFwQL0AkIqyNV/JMZ5+NgZFEuHEm0ymuAaBe+hmTEM36AS6Qt/jk89SWFtBxasTNjEPqKjuDorx2YSVjE5N+ZZTVLYfTB2ipLiCPFPmk/JCrvPGMarxBLaRQFZhIxFaUdQpMEMhbFmaxuMCK5wJ237Z6Pre3xfnZi8cplxDLCJyLwAIzMWqVfB9obM20FCiRBGkfJmTRGMSvy8TBlIRY7flcrF61miOmlusiL9kA8sU1mW2BBSbXk+7LX4GJt8GNf2rX3/73EG9jSV0p45NpTvYNEDMT4buQXGXD1qYqXj4xxMmhpDXte2Q+fL4vL7O+r1/O8oHmnOrFUFCRCeSdTNuOt6H5jFs2QcSdo2gMWjaxJl4JkFXTx4Pvs3Y5pCdYGjvpVbFEyhupz4qBGXEF40zYSnx8gy2HP9bH0nn2+yshEW7cHEy19AB+7dpGBJuZNGyKeLprMBzZZmLUFWgfOpaxTIZO41oYPk5zXj+ljDHqw4QMoOn10LOba2oMpZnfpgf3DMf65ipKF6zi5tjztPIysciU220kqF2mCswssPZ37dJlgyxxmUhhlgTP/F8zaWcn2EyktIEnO05TQoKIRzOpx49PrQ+ZwjPrT4RBJAKNNpDXukMMpYwRKw7JAhNvg3f9s13f8AcQb2PpvFKK86NZKfEeKAouE6l+vItSscpC53nam+SM8gaqJ09lLDCj49ZyZcI+Z4ELpPspltWXEsFaho6OhRSbFtwTklNKys6ufkSgjFGGKAr/t5lN52OAe9A5y2ToOOtt9+4nKJMx9vYR/oQMXByMYeXEnowFZm/fzGX7Q6GrnYrjT1BoEnwz/7M8/MD9mU2j4ylKJPfB7VeGAlOx0NaacNp/UAumTILgypAUmDE3O+nYCkCrm7E/09lPWSSBeGQ+vG5pIyPGdiwek6IzzIeh0dgKJ16gpSqPYpJExYQXAwOw+jdsQKor3BWNCNcsqPDLhVS7DIATHc9lLDBfeuxo+Dfw8gWUpXoZGRsjmZp0zew8iM9ZsN5mbnVtp/P0aMaadu8zZ5fyzwmxAmvpG5+ywGxcXEN+LGJ7JFHsx28zoGWTzUCSqO1j1rIpbIlg/jWkibCKDkoZ82NCBvZai+TR99KjGQvM/7y/I/zfZsChbXbCDeRLilTHo/QMWjmDfm+RHD+zrgwFBuxMyikwlcX51JTkhxso1dUOT/6TXf/ef4OudiqL81lcV8L4ZNrOjsO+eWexvrmKWJkN5L3h6sWsb64KWSKsAjM5zjV53VlNOUNUYERg8WboeATSaQDmVxT6lRJfWA5ljQx3v2gbTAKDk/nh38DLGhAMdQxwanicUVcLKXQlvqAU5q+Gru082XE6c88YnCwI55yJWJmSU2az9c1VfONDG1ldIzTMq/PjtxkQ9Pu56c/tMrBohUl+CcnKpayJHqRUxhgVT5S+/GJoXIvpfDxzzxhIhXSdzURW80kR4fHJq/j37XayFlhgcl1478pSYAYOw+AxwLqRyoIHSxiz9uxW6qmJjGm1NW5vPiWS8CqAC6Cg3FYBnVfrwY8dMqbgxeP7slJIQ/YZL7rRWtZOvMDTnX38ZNcxikkyagr8iU2oXUZ8spuKmO07NB7xwKJWvgCABjnNyaEkI4kJa1ULu0YN2DiY7qfZ2FJBdZ5V+saiIT70ovl2ApQVT7K+uYp4SYrS8urz7BgS8TbY9Ak/lBdHUfN6bijupiaWZNNqTyZkAE0bmT+8h7qoDXdIxjxRrmBKGV2wHokWULNsA9/c3kkyNekyZ3NfeO/KUWAWBr5s+6OvKIqFO2uf1ko9MK22NlUCUGxyHxD1irhU6tCVhIDKZiiqpn54j80MgfDTNRffaJcdW3my4zSTaRubM4pHM6m6FZQMdnDnW5sB+OStrwv/Bu6K2dW7arzJsWEiYoj6cK3FN8DECOsLjvCFW5cA8Ee3tIZzzrraYbgHjj9/dlBsYtCf36bvNLaSN3aS/MkR6mtrw5Zmiibbc+gPmo4A8OX33xj+bzObeBu84Y8hNcb/WNbLqeFx7n/uGCNJ27spojEws0TDtVZh6Grn6c4+Ht57MvPQ23U6hECpQJudf411LSxYDwQKjKGIMY6N5a6i4QXhUqm9uUmKQGMrBT3PUhOz3+VL/SEXpCpvtJk+Bx/JxCaUSoIRPLByBNQuh/EhlkZPAHBVU0PIApFRYBpcP6TEqHWR5PlQSj2+wS672rnKPUuWxUM6Z9lBsKnkma+TQ37VgPGZhrVT677czyBzrVUefwIiMdYtnh+yQDOwaBNIlGsST7NsXilfe/wgycQoUTE59xq8ogIjIoUi0i4iz4nIiyLyV268WkS2iMg+t6zK2ufPRGS/iOwVkbdmja8XkV1u25dEbPlDESkQkf9w49tFpCVrnzvc/9gnIndc8ieNFdj0ue4dPNlxmrQxmSDe7UcnLvmwr4p4G9zwcZtRcHQnYNNHC5ggSppvPnvanwAumFJgPErto7EVevZQke4H4E9/7EHQ2+LN0Pk46xeU8I0PbeSaeTHqamr8mUnV2qaOHHnGLvNDLqMOUFSFiRVS7xSYibFAgfHACplJAtg+lb4clnu3ZZO9lwGQhprlU9uSg+FbIOcK86+xfZrALwWmpMZmCqbGrAU+7ArBM1FYAfE25MCDvP+GFl44Mshz+7vtNg/TqJPATcaYNcBa4G0ishH4JPCgMWYZ8KB7jYisAm4DrgbeBvyjiAQ5h/8EfBhY5v7e5sY/CPQZY5YCXwT+1h2rGrgT2AC0AXdmK0oXTbwNju7k+uZS8mORTOGn1mVNl3zIV82Sm+wPad8WAHYc6gs/UPBcTDg3zdCxcOXIprEVMZO0RV4CoDflQUbBohttanz3DtY3V7GozFBcGlJ690zU2VTqQGn2wlUpgpQ10Bzr5+RwgtSYVRQKij14IItMJQFkOj6H9NALOmVf/1GIFcGT/wjpSZhM2WtOFZgLI78Y6lbadZ8UGIBm2/nZO7myWXIzHHuOdy3Pp6Ioj9N9LqPWNwXGWIKcvTz3Z4BbgXvc+D3AO936rcC3jTFJY8xBYD/QJiINQLkx5gljjAHunbZPcKzvATc768xbgS3GmF5jTB+whSml5+JZ2AaT46zL6+IbH9rIm1oKSUcLWb9o3iUf8lVTXA0LXgf7fgHYlMiqPBtcmYx65Hboaodn7rXrD3/Wj4JUkAnkfX3kRQCSsZLwz1nLG6xSevAR+3p82A8lIaC03hYB7D1gX/uQHQVQviBTjTc15pELCaxpf+Cw7U4N4Voh423w1s/CO74Ihx+HbX8/VRfG54eeb1QstMtBjyZkYBs7gl/3jOksvQmA4q5t3HZdPDPpPpDjPIULioERkaiIPAv0YBWK7UC9MeYYgFsGWsACoCtr9243tsCtTx8/Yx9jTAoYAGrOc6xLI4iC79rO+uYqWuujRHzwGS97i50ND59kfXMVX3q3rdXx329e44/b4dA2O9MDu/ShIBXY2ImSeTRJDwD//IHN4Z+zokqrWLn6PiSH/VESwFoU6pzrIRKzWS0+UN5gq/EOJUk7S0foadQBQRzMgQft0ge51twG17wHtn4e9ju5fLifzQW62uHAw3b9obv8mZBBprEjyUG/5MqmYS0UVcOBh2htqszUuvrrLV05deFfUJSoMWYSWCsilcAPRWT1ed4+k9POnGf8UveZ+ociH8a6pqirq2Pr1q3nFG5D4TyGdv4Xu8dXs+rwfkrTMdrP8/5cUDpUzesw7Ln/y5yY/ybKB/YAMHz6+Hk/Sy4pHyhhTSRGJJ0iLVGe6y1h0BPZVhc2UzvSQypayFDnC2ztDFsiWBRdRNPhH/DYAz+hbaiX3rxh9k47X8PDw6F9vytSZTQAKSngsUceCUWG6Szun6Rh8hRdPf30jtm5zo7ndjNyYDRkyUDSKd4QySd6fBdpifHoY0+ELRIA0Yp38bqCR8n/z48SBV7Yf5hTA1sv+XhhXpO5pKnzeyxKpxAgPTnBoYfu5XBz+NcZQHn/HloBBo+Q/trbeW7NXQxWrAxbrLO4quxqKvf8jAdOvytTbXwglc+3HtjB0JLcTIouKs3FGNMvIluxbpwTItJgjDnm3EM97m3dQDxrt4XAUTe+cIbx7H26RSQGVAC9bnzztH22ziDX3cDdACtWrDCbN2+e/pYpTr2Ros5fMu/GG6H7y5A3n/O+Pxek3wgvfZ6rYt1ctXkz7EvBTlhz3Q0e1U7YDOvWwaFtRFs2sc4buQCehK07iBVXhf9dBjQJ3Ps9NsUjsGOChuZlNEyTbevWreHJG3sWjj9ErLjCn3NWtBe6fkBscpjK4jwYgutu2AxVLWFLZum8Djp/SaSw3J9zBrBiHnzlFgBWx6tg4+ZLPlSo12Qu6SqGe74Hk+NEovksvul9LPblnrbtaaxzJE3UTLKuegQ2bQ5ZqBmoOAI/+iM+sL6Uuw/b+kjjsWJuf/N1ObOCX0gWUp2zvCAiRcCbgZeA+4AgK+gO4Edu/T7gNpdZtAgbrNvu3ExDIrLRxbe8b9o+wbF+E3jIxcn8HLhFRKpc8O4tbuzSiW+wQagD3S5q3wOfcSQCS99izdPpyaky4T65HcDLglRAJg7GqwDG+AZbQr1jq4uB8ey7DAJ5fZKrzKYmV6dOMe7SqL2KAwiuex/uGWdg7D0E4IE7/XU7+ISPFYIDgkwzn9ovzMQSGwezamQHH99kyyB87rbX59SFfyEWmAbgHpdJFAG+Y4y5X0SeAL4jIh8EDgPvATDGvCgi3wF2AyngI84FBfCHwNeBIuCn7g/gK8C/ich+rOXlNnesXhG5C9jh3vcZY0zvq/nAxF17967ttvBTbYgBvNksezM890048nSWAuPRzdtngpoO48P25u3DzSiv0PqyX/4pmLQfMRPZBKnUPqRQB7hqvPXSy9iIiwb0ScEK4mB8U2AObct0tGcyZV/78BvwnXibn+cpUK4ObbPKi48yApQ3wLyr4cCDtCz/FQCuXXzpIaqXwisqMMaY54HWGcZPAzefY5/PAp+dYfwp4Kz4GWNMAqcAzbDtq8BXX0nOC6Z+NeQVQ/cOmxLpy6w9k079Cyips2OqwFwY/Z2AwOARW53UlxnV4s3wwKftum/fZWWzDeAd6/dH6Su3FpgG6cWMD5OORYjECkMWKougmndi0J9zBq6qd77t9uzzjF25cHxVrqaz9CbY/i+ZQqzepVFfdkTzoHGdq+ngUeGnoip7g9y3JavWhGcPPV85tI1MvPfkuD8ZUotunFr3TYE5+ox1V/Z3nl2SPixK6zESpV56KSFJMlLkVyGv3gOA2HRqX84Z+O0OUS5vltxs77kv/9xWuo/m5fTfX3kKDFg30vHnnQXGI3PwsrfAsWeh76Bf6a2+46vPuGGNrVoJfrlCwCp54pnSF4mSLq2ngV6KSTAeKQpbojPx8ZwF+BqfplzeNF1vCyr27A5lwn2FKjAbXCdo41fdhGVvscuX/svfMtI+4usMNBK1LkuAwe7zvzfXBM1EPVP6IuWNNET6KJEEqahH8Tng7TlTlNDIK7SFOyEUK7Nn3QJzxMLrptZ9ssDMvxZK58PwcShf+MrvV6bw0Wfc1T7lZtjyaVtx2RcZPQ0UlPJGFkSeITEZIxXzTIHx9JwpSqgsvRn2bwlFgbkyLTAltVC9xK77EgMD1uKy9M12XeNf5j6HttkMJLAWP59cDuCn26G8kXkuBmbSNwUG/DxnihImS1wuT3Ig53FhV6YCA1C92C59akwIU24kn8tIKxdGkB2iLocLp7yREjPKPOkj7VvckKIoZzPWhw1u7855cPuVqcB0tU/1qXngr/xSFAKX1uBRvzIdlIvH19gcnymzBbGapAfyVIFRFO/pfCy04PYrMwZmJtO+Lw+XY89OrQcXgy+yKRePj7E5PlNuFZg8mfQvc0tRlLMJgttDqEN0ZSowPhd+atlk09J8lE1RZhunwAAMTmoZAUXxnhCD269MBcbnbAKfZVOUWeaZvkLWufVHOscY6+zLaW8VRVEugZAszVemAgN+m/Z9lk1RZpEnDo/QbMqokSGG0wU82XFaFRhFUWbkygziVRTFSzYurqGHagCSkSI2Lq4JWSJFUXxFFRhFUbxhfXMVDXFbo+m9b1yl1hdFUc6JKjCKonhFZX0TAC0N80KWRFEUn1EFRlEUvzDGLgeOhCuHoiheowqMoij+0NUOz37Trj/4GS3kqCjKOXlFBUZE4iLysIjsEZEXReRjbrxaRLaIyD63rMra589EZL+I7BWRt2aNrxeRXW7bl0Rs+T4RKRCR/3Dj20WkJWufO9z/2Ccid7ymn15RFL84tA3MpF33sX+UoijecCEWmBTwCWPMVcBG4CMisgr4JPCgMWYZ8KB7jdt2G3A18DbgH0Uk6o71T8CHgWXu721u/INAnzFmKfBF4G/dsaqBO4ENQBtwZ7aipCjKZUZQ1VP7RymK8gq8ogJjjDlmjHnGrQ8Be4AFwK3APe5t9wDvdOu3At82xiSNMQeB/UCbiDQA5caYJ4wxBrh32j7Bsb4H3OysM28Fthhjeo0xfcAWppQeRVEuN7R/lKIoF8hFFbJzrp1WYDtQb4w5BlbJEZEgZWAB8GTWbt1ubMKtTx8P9ulyx0qJyABQkz0+wz6KolyOaCFHRVEugAtWYESkFPg+8HFjzKAE3SdneOsMY+Y845e6T7ZsH8a6pqirq2Pr1q3nkk1RvGF4eFivVcUr9JpU5hIXpMCISB5WefmGMeYHbviEiDQ460sD0OPGu4F41u4LgaNufOEM49n7dItIDKgAet345mn7bJ0unzHmbuBugBUrVpjNmzdPf4uieMfWrVvRa1XxCb0mlbnEhWQhCfAVYI8x5h+yNt0HBFlBdwA/yhq/zWUWLcIG67Y7d9OQiGx0x3zftH2CY/0m8JCLk/k5cIuIVLng3VvcmKIoiqIoVzAXYoG5Afg9YJeIPOvGPgV8HviOiHwQOAy8B8AY86KIfAfYjc1g+ogxQV4kfwh8HSgCfur+wCpI/yYi+7GWl9vcsXpF5C5gh3vfZ4wxvZf2URVFURRFuVwQY84KKZnTiMgQsPdVHqYCGHgNxHmt8VUu8Fc2X+UCqAVOhS3EDPh8znyVzVe54OJky+U1ebmcs1ziq1wwe7KtMMaUzbThorKQ5gh7jTGvezUHEJG7jTEffq0Eeq3wVS7wVzZf5QIQkade7bU6G3h+zryUzVe54OJky+U1ebmcs1ziq1wwe7KJyFPn2qatBGbmx2ELcA58lQv8lc1XuXzG53Pmq2y+ygX+yuarXOCvbL7KBSHIdjm6kLyc1SrKdPRaVXxDr0nFN853TV6OFpi7wxZAUS4QvVYV39BrUvGNc16Tl50FRlEURVGUy5/L0QKjKIqiKMplzpxTYETEiMi/Zb2OichJEbk/TLkUZSZE5F3uml0ZtizKlY3eO5XLjTmnwAAjwGoRKXKv3wIcuZgDuHYFipILbgcewxVnvFBEJDo74ihXMK/63qkoPjEXFRiwFXzf7tZvB74VbBCRNhF5XER2uuUKN/5+EfmuiPwY+EXuRVauNFwD1BuAD+IUGBHZLCKPisgPRWS3iPyziETctmER+YyIbAeuD09y5TLmUu6d20Rkbdb7fiki1+ZSaEWZibmqwHwb22+pELgW2J617SXgjcaYVuAvgc9lbbseuMMYc1POJFWuZN4J/MwY8zLQKyLr3Hgb8AngGmAJ8G43XgK8YIzZYIx5LNfCKlcEl3Lv/Ffg/QAishwoMMY8nzOJFeUczEkFxv14WrAziJ9M21wBfFdEXgC+CFydtW2L9lJScsjt2AcGbnm7W283xnS4HmHfAt7gxiexXd8VZVa4xHvnd4F3iEge8AFsPztFCZ25HAtyH/AFYDNQkzV+F/CwMeZdItICbM3aNpIr4ZQrGxGpAW7CxhwYIAoY7ENjeu2C4HUiq/GposwWF3XvNMaMisgW4FbgtwAtdKd4wVxWYL4KDBhjdonI5qzxCqYC096fY5kUJeA3gXuNMb8fDIjII1hrS5uILAI6gd9Gi4cpueVS7p3/ii0Vv02t2IovzEkXEoAxptsY839m2PR3wN+IyC+xs15FCYPbgR9OG/s+8DvAE8DngReAgzO8T1FmjUu5dxpjngYGga/lQERFuSC0Eq+i5BA34/0TY8w7QhZFUS4YEWnEupRWGmPSIYujKMActsAoiqIos4+IvA+brfTnqrwoPqEWGEVRFEVR5hxqgVEURVEUZc7hvQIjInEReVhE9ojIiyLyMTdeLSJbRGSfW1a58Rr3/mER+fK0Y/22iDzvjvN3YXweRVEURVFePd4rMEAK+IQx5ipgI/AREVkFfBJ40BizDHjQvQZIAH8B/En2QVxdjv8F3GyMuRqoF5Gbc/QZFEVRFEV5DfFegTHGHDPGPOPWh4A9wAJsUaV73NvuwZZtxxgz4sqwJ6YdajHwsjHmpHv9APAbsyu9oiiKoiizgfcKTDauOmQrNiK+3hhzDKySA8x7hd33AytFpMV1o34nEJ89aRVFURRFmS3mjALjOvt+H/i4MWbwYvc3xvQBfwj8B7ANOIR1TymKoiiKMseYEwqMayL2feAbxpgfuOETItLgtjcAPa90HGPMj12n3+uBvcC+2ZJZURRFUZTZw3sFRkQE+AqwxxjzD1mb7gPucOt3AD+6gGPNc8sq4I+w/T0URVEURZljeF/ITkTegHX57AKCKpCfwsbBfAdoAg4D7wmajInIIaAcyAf6gVuMMbtF5FvAGneMzxhjvp2jj6EoiqIoymuI9wqMoiiKoijKdLx3ISmKoiiKokxHFRhFURRFUeYcqsAoiqIoijLnUAVGURRFUZQ5hyowiqIoiqLMOVSBURTFO0TkfhH5ethyKIriL6rAKIoypxGRzSJiRKQ2bFkURckdqsAoiqIoijLnUAVGUZRQEZFiEfm6iAyLyAkR+dS07e8VkR0iMiQiPSLyXRFZ4La1AA+7t550lpivu20iIn8qIgdEZExEdonIe3P52RRFmT1UgVEUJWy+ALwF+A3gZqAVeGPW9nzgTmwbkHcAtcC33LYutx/A1UAD8DH3+q+BDwIfAVYBfwP8i4i8fbY+iKIouUNbCSiKEhoiUgqcBj5gjPlG1lg38J/GmPfPsM9KYA8QN8Z0i8hmrBWmzhhzyr2nBDiF7YO2LWvf/w0sN8b86ix+LEVRckAsbAEURbmiWYK1sDwRDBhjhkVkV/BaRNZhLTBrgWpA3KYmrKIzE6uAQuBnIpI9S8sDDr1GsiuKEiKqwCiKEiZy3o3WkvJz4AHg94AerAtpG1bxOReBe/zXsN3qs5m4JEkVRfEKVWAURQmT/ViFYiPQARmlZTVwAFiJVVg+ZYw56La/e9oxxt0ymjW2G0gCzcaYh2ZNekVRQkMVGEVRQsO5i74C/K2InASOAn/JlDJyGKuIfFRE/i9wFXDXtMN0AgZ4u4j8GBgzxgyJyBeAL4iIAI8CpVhFKW2MuXu2P5uiKLOLZiEpihI2f4INwv2hW76AVTgwxpwE7gDeibWq3An8cfbOxpgjbvyzwAngy27TXwCfdsd/EdiCzVg6OIufRVGUHKFZSIqiKIqizDnUAqMoiqIoypxDFRhFURRFUeYcqsAoiqIoijLnUAVGURRFUZQ5hyowiqIoiqLMOVSBURRFURRlzqEKjKIoiqIocw5VYBRFURRFmXOoAqMoiqIoypzj/wP4YgxoCVqVtAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "df[\"2019-03\":\"2019-05\"].plot(grid=True, marker=\".\", figsize=(8, 3.5))\n", - "save_fig(\"daily_ridership_plot\") # extra code – saves the figure for the book\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAFYCAYAAABNvsbFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXhdVfb3P+e6xj2NNE3qnrpQo8VpseIUH9wdhmHwYXAGd0qhQKHQFilV6pa6t0njnlx3Oe8fN0mTNnJvmvub4SXf5+nT5Ny9z105sveS71pLEEWRbnSjG93oRje60Y0/EyT/bQG60Y1udKMb3ehGN0JFtwLTjW50oxvd6EY3/nToVmC60Y1udKMb3ejGnw7dCkw3utGNbnSjG93406FbgelGN7rRjW50oxt/OnQrMN3oRje60Y1udONPB9l/W4D/BqKiosTs7Oz/thjd6MZJsNlsaLXa/7YY3ehG97PYjf8J5OXl1YqiGN/aZ39JBSYxMZFt27b9t8XoRjdOwurVq5k8efJ/W4xudKP7WezG/wQEQShq67PuEFI3utGNbnSjG93406FbgelGN7rRjW50oxt/OnQrMN3oRje60Y1udONPh24Fphvd6EY3utGNbvzp0K3AdKMb3ehGN7rRjT8duhWYbnSjG93oRje68adDtwLTjW78CZFXZODtVUfJKzL8t0XpRje60Y3/CroVmG5040+GvCIDl76/kX8vPcQVH276n1JiXtr6Elf/cjUev+e/LUo3TgHrj9ayON/9P/VsAdg99v+2CN34H0K3AtONbvzJ8Pryw3j9IgBur59NBXX/ZYmOo2dkT2LVsf9tMbpxClhzqIYrP9rM90c8XPlRxwry/5U30OP38Pf1f2dp4dKwfk83/jzoVmC60Y0/ET5ed4y1R2qRCIHfRSAr7r9b7l0URXbX7Abgkt6X8PqU15FL5P9VmbrReczbcrzwqacDBfm3vRVc8t4GXvn9UFDKzqlAKkgptZby67FfOxybb8zH6DSGTZZu/G+gW4HpRjf+R5BXZOCHI27yCutb/Xze5iKeWbKfswYmMf/mMdwyKQu5VOD3/VVhl6s9C/v7I99z1S9XsatmV9OxNaVr+P7w92GV6/9X/Lf5TaWGZmEaQWBMVuseNVEU+ddvh/CL4Bc7VnZOBX7RT7W9mr/1eZ5s8bZ2r40oijy05iFuXX4roiiGRZ5u/G/gL9kL6a+CvCIDmwrqGJMVS25G9H9bnG60g7wiA5d/uAm318/i/I1cMCyV6yf0ZEBKBNuLjXy8toBf9lYytW8Cb1w2DIVMwqiesYDA+2vyuXFiTwakRIZVLk3KQm4aNZl7x1zVYsx5vc5DRGRw3OCmYz8e/ZFSSykX5FyARAiPnbS+bD3Li5fzyKhHUEqVYfmO/2vkFRm44sNNeHx+FDIJ824c83/67laYHOyvsHDpiDTyjpaRb/QToWp9m1i0q5xjtTYABEAuk7Sp7Jwqtldt57ql1+EsuQGvNQel/AAfXZvLhF49ThorCAJX9XqEvOIKthcbw379fH4fUokUCCha4Xre/4rIKzIg1cUmtfV5l1xpQRDuFQRhnyAIewVB+FoQBJUgCDGCICwTBOFIw//RzcY/KgjCUUEQDgmCcEaz47mCIOxp+OxNQRCEhuNKQRC+aTi+WRCEzGZz5jR8xxFBEOYEI6/JJf7PkdO6Go0L4ctLw+/aDRXLDx/m7iUf/0/J9N/GpoI6PF4/EAgLLdxZxrlvrWPU88uZ/d5GftlbiUSAmyb2RCE7/treOrkXkWo5L/56MMxy+RDllWwvPwYEFupnNz2Ly+dCKVVySe9LaHhdAXhyzJPMO2deWBfzfGM+Cw4v+FMTO7cW1vOPn/by3M/7uXv+Dq77dAsurx+/CE6Pn6+3FP2fehEW7SxHFAPP1d3DVeiUEm789S7m7p8LBHgoT214im3l+3h68X6G9IhEAMZkxYRN2aq3ufl6gw1X9XQ8tgxEwY0042UeXvkyO0uM5BXWN3mszA4XX28p5qH5RSw4vJCr5n0ZtnXGL/p56I+HuG/FU7y96ijLDx9m+nfTWVe2rtXxh+oP8UvBL2GRpTX8tz15p4pNBbXMfn8jUm10altjTtkDIwhCKnAX0F8URYcgCN8ClwH9gRWiKL4oCMIjwCPAw4Ig9G/4fACQAiwXBKG3KIo+4F3gZmAT8AtwJvArcANgEEUxWxCEy4B/AZcKghAD/AMYQWDdzxMEYZEoiu3eMYNL5MqPNv2fWzdtodJWyXObn+OmQTcxOH5wxxOCwLL9lbgaNkSnx8/G/Nr/ib81r7CeW77YjaLH9yw7UMDc2Q/8T8jViNUlq5mYOrHJovq/wpisWGRSAY9PRCmT8P7VuVSbXbz3Rz41FjcQsHK3FxsZ2yuuaV6kWs4dU7J59ucDrDtSy4ScuDa+ofNyKWLWI9EexFF0KzUuHXa3l1JbAd8e+pYUXQrXD7z+pHlRqigAvH4vNo+NSGXXe4euGXANV/S7AplEhl/0I4ri//l9CxaN3tBhaVEIgsC2wnqWH6hiV6mpaUy0Rs6AlAi2Fhrw+UVEYEFeGQcqLNw6uReJESq2HKsPi0fV4/cgl8j5cWc5ydkL+PjQJqYppnHrlBze3GvjaE1AzgJjAcuKllFYnInJkcDn1+cy59NtZMZpu1SmvCIDG/JrMdk9fJdXitXlZUb/K1lpqsbj8+M1jKPWlc6st9cjEFj8Bfyo0j/GZ8/C45uAQnsYjyOTTQV1XSbb2iM1/LqnnOwEPSlRGkpqFOwodLCo9hBKTR2jc/uQoc8A4EDdAd7b9R6vT3kdQRBYUrCErw58xYzMGcgkXR/8sHls7KzeSe/o3hTXyLj8k9/xy4sQlg/ki+tHtVg3/lcgimILw6cRBpubB77bjc8vBha+NtBVV1EGqAVB8AAaoBx4FJjc8PnnwGrgYWAmMF8URRdwTBCEo8AoQRAKgQhRFDcCCILwBTCLgAIzE3iq4VwLgP80eGfOAJaJoljfMGcZAaXn644EbozX/i9sniaXidUlq5nTPygHUoeos7pYvKscoOnl3lNmavNh+b9CvuEYT/58AK9XicTWC4+pP2sO1/zX70HjddlVs4s7V97J38f8ndl9ZgP/d2G43IxoLh+Vzhcbi/hozggm5sQD0CtBx5UNIYW2XPRXjcng0/WFvPjbARb1moBE0nX3ODcjmn5J0RyxKLh/em9eW36Yv83N46M5I1h/+Xp0cl2bc/2in6t+uYoe+h68POnlLpOpORqVl6c2PIVEkPCPsf/4rz7jraHRG9poUAAIAsRpFU2/SwS4cWJPbp+S0/TMjciIpqjeznur87njqx0IDfO6OrT01IanOFB/gGdGfsSBCjPTx/UiIyIJ6uD68T2Zu/Fv7NijxD9RpE9MH57Jnc/1n+zilklZbDcuQUz+jkrLg53+/p93l7PyYDUZsVoS9EoOVpr5clNxU6Zd7zQT/5jSg1n9hrGj2NTwPo4jJ1HHA9/uauKAiYKPBFUqg9N689smFbajj6GQnlpYy+6xs7pkNQPjBrL5sMBDP65Fk/E+jp1z8LsTgbFNY132WEZp7iMtIg0IGEOl1lJMLhNRqiiu7n81V/W7CqnQtUp24/pVaavkluW38O9J/2br3nS8kjq0aXOxF93ENZ/AmQOTOWtgElFqOTtKjP8VasHWyq18vu9zXpz4IkqpkgsWXcCNg25kVvaspjHHam1c/9lWKk3OgO7SjgvylBUYURTLBEF4GSgGHMDvoij+LghCoiiKFQ1jKgRBSGiYkkrAw9KI0oZjnoafTzzeOKek4VxeQRBMQGzz463MaRfhjNcGC5PLRKQykj4xfdh+9fYuydwwOz3M+XQLtVY3z8wcgNnp4XCVlZ92lvPszwd44px+/5UF3mh3culPf8MmUSKT3IK39kxEEX7ZW864/nZGpw5tdV64FYhqezUP/PEAD418CK89nTPjHiVFOok1h2v4fntpwKUOyCQCX900uoF3Eh5EquUIwPhmllJuRjTzbhrT4hr8UfIHr+W9xtyz56JX6FHJpdw/ozf3fbuLxbvLmTk0qFcgaPRUTqe2Ipc7p+WQFKniwQW7uevrHbx9xfB2nyWJIOHCnAuJU7du+Z3qvf3bsr8Ro4rhhYkvEKeO+5/1vqw9XNOkvAjAhcNTefLcARytsXLlR5vweBuV08B1ys2Ibroeo7NiuWh4D+6Zv4PFuysQxa43vnITc0nRpbBweylSicALUx8kTqdk9erVDc9WHx74bhdL9lQwo38izyzKJz1Gy93Tcvit6ACxwnBq7KaOv6gVbCus5/avdrT5uUQAbcI63tizj/P7rmhxbRxeB0kZa1EXa3HbUpHLlLw67VlyM6L5IbWU+77dxZ1Ts0/pOpndZh5e+zAXZ9zD3N+TQepD9KmRSLxcPTaTUT2jue/bXbi8fkQgWnNcKb116K3cOvTWpt8TNAkcNhzm9e2vc+uQW0mPSO+0XI2Yf3A+mys28/Kkl0nVpTL3rLnopMk8uWs3fkcqzrIrkLp6cVrv+EBtn2aGrVL+f8+xqrJXUWGrwCf6MLvN9I/tT7w6YKx5fB5WHMnnkW+LEYD5N4/h43XH+NBmLG/rfMKpxlcbuC3fA5cCRuA7GrwkoihGNRtnEEUxWhCEt4GNoih+2XD8YwLhomLgBVEUT284PhF4SBTF8wRB2AecIYpiacNn+cAo4HpAKYrisw3H/w7YRVF8pRU5byYQnkKZmJX7n3c/IDs6vAveUYOP3wyriFQ7uCrpXARB4KjBx8F6H0lR9Xxvf4Pzo85nrH4sftGPR/SglHSejOjyibyyzUm+0c9dw5UMiQ/op6Io8tVBN8uKvJyXJeei3ooOztS1qHf6eS3PRYWvgPMytQzQp3Gw3ocILK7ehDLlO26OvYtBupymOaIo8keply/2u/GLIBPgoVFKekd3revV7DPzdtXbjJLP5OvtGXgbXweJE2Xsalw1p9Oo50cpBe4focIhP8om6yYuj70cudB16cJf7nexvszDu9NbejV22Xex3LSc2bGzSVOkUeAsYKl5KZdEX0KcPI4dth2kKzJ4fYsai8vPlHQ5A2KlXfZ8v5bnxOAUeXq8GoBlRR7mHXAzME5Cn2gp/WJC/65D9V5e2urCL4JcAg+NVIV8jqWmpagEFZMiJrXwLjr8DtQSdUjnaoTL7+J30+8M1Aykp7Jnp87RHKIo8vI2J/vq/AGi6wl/a+N60LeDa3jE4OW5zS4AFJ28Xs3hFb0cdBxkoGZgk5wP/OEgRSfh/hEqAKxWKzqdDr8o8o8NTiwuPwlaCYcNfh4YoWJgXOD739sVWHP+PUkTshzfH3azuCBQ9FAAzuopo1+slDe3u/D5QSaBe0cIaLW1pCtbbvgOv4Nnyp5hgHwCdXYJ4yKHMqKB72l0+Xlo9xIGJcCdGeeHLJfFZ+GY6xiZikx+KzHx6xENyWo1NQ6xSa7Ge3DU4GNPrY/VJR4UUoGnx6tRy1pX7I+5jvF57edcG3ctmcrMkOU6EX+Y/+CQ8xDXxl2LQqLA6RV5cYuTcpufK/spsLhE+sZISYpwoETN3P1e1pR5gQAB9sIcOef2Cv9+0Pz9PFTv5ogBcqIlpEdIcfvA7RN5s+pN6lxulJW38ugoLQkaCT8ddfP6TWfkiaI4orXzdsVucDpwTBTFGgBBEH4AxgFVgiAkN3hfkoHqhvGlQFqz+T0IhJxKG34+8XjzOaWCIMiASKC+4fjkE+asbk1IURQ/AD4A0KbkiDdeMK0zf2uHEEWRL/Z/Ac4snl9qQ55YgWC3sOOIF6kUam1mRL8KmUTLuNGncenEy8mKyuSChZfjdEt5dsxbndKINxfU8fQPeygw+Hnr8mGcNySlxeeTJ4s8tnAPX28pQR+XxD7f22iUXr4+/2MAHl/3OB6fh5cmvdQl16ERX245wIubluFz9uaTq2dzWu/4Fp+fvrcf9/7i4TdzbwbP6MfOEiNun581h2vZU3acnOkV4T+7fFw7Lo0+SXoK6+yn5JU5VH+I3tG9EQSBc8Vzuf+bXXjF49bJ+EG17POsR+Lsj9uajkTmwi9oeXqTk1HDS/HIfRwSMxmbFcfqmk/IiMjg4t4Xd/o6ASyq2ommupzJkye3OD7MNYyijUX079ef3MRcJjOZ6wnwTmweG098/wSTekzi2kk38MySA/x41MOvRb4us64ez78RGTomT34dCLxw4sI9fLW5mL21flTy9r/L4/ew4PAColXRnJl5JtUWJ0+8swFfg7LoE8EVlcHkydkhyTW5xasfQI29hqt+uYqr+l/F1f2vDul8ADuqd/D7r78za+QsJvaYGPL8E/HFxkL21e3jitHppEapT3pmJwd5nsnAf3YvJTNWy5PnDTjl+zrvwDze3/I+88+dz4DYAWwrrKdu6UYeP38gk4cHluHVq1c3PYvH5AU8s+QARrcfqSAwduRwcjOiEUWRZebN7N5eweTJZ4cshzWmnMUFOxAEUMok3HDmKHIzohk3Mjjv3FjnWNx+NzN/nIk2O4PJQy4DwOPz8/DBufjU6pPep2CwpnQNH674kCTbgxwpjuWcwcm8cskQ9pWbT5Kr8ezbCuuZ/f5GltfH8MrsIa2edzKTuY7rQpanOSxuCxW2CnpH92aSOAkREYkgwePzc+Pn2yi22Plozgim9k0EAu/ExYsv5qp+V3H3+Rez6YNNuH1+JBKBy08fGXYPjMVt4a6Vd3H70NuxmzL419It+Fvxm8h04xCR4vNK6TVgGLkZ0ZSpi04e2HxOF8hXDIwRBEFDIIQ0DdgG2IA5wIsN///UMH4R8JUgCK8SIPHmAFtEUfQJgmARBGEMsBm4Bnir2Zw5wEbgYmClKIqiIAhLgeebZTjNIMC9aRd+qfkU/+S2YfFY+GLfl9RWZ+MXz8VVeSECPnJS1Xgw40h+EXvhbXjdCazZeBoX7z7CoNQq9lcPwO8XuHJv6OTivCIDV3y0GZ9fRC4VSIk62foUBIFbp0VTarTw1ZYS5NHxSCUevt5SzCW5PZD4Yqk1uMgrMpCbEc0dK+5gTPIYrup/VSvfGKRchfU8t+1RpInF+AsfQas8+XE7a2AaKtmd3DR3G9d/9ROKhKW4qs4hRZvBTadlMXdDIZ6Gly0rXsebK482zVXJJMy7KfRN2uA0cPnPl3Nv7r1c3f9q8oqMLNlTgSAErBK5TMK942aTHHseFXVqvt+/mqW1L/Dm5PeZv05gcd4QBDGXbRxGseowA3N34k/1d/i9HcHs9KKRH7fc9tbupV9MPyKVkbw6+dVW52jlWuafMx+1TM38TfUIMjMIXtzemC4LM/i8GiJU+hbHUqPUTfwql8fPpoL2SeJLC5cSr44nllHcPm87Rru7aX5XhnNjVDFMSJ1AbmJuSPPKrGWk6lIZljCMZRcvI0nbZuZm0NhRbOCZJfuZ1jeBZ2cOPGVuUpxOSY9oTZfc00v7XEqKNoUBsQMA+HFnGSq5hBkDWv+7nZ7mz7fY4tlabPgbXv0k7O7z0ChC21Ia16oLh6VyxeiMpnM2hopey3sNI4OZltG6wdlIFv9p1k9EKaOajsulEtSmyxmcmdLqvA7hzMJx7E6OuPTIJALXjctEJZe2CGGdiBGZMdwxNYc3Vxxhcp/4k4zIrkBekYHHN9yLnWKWzf4VpVSJgEBeYT1PLd7HnjIzL1w4qEl5AYhTx3Fx74uZnDaZnOhovr55DI8v3EN+jZXEiK4pPyCKIlX2KqJV0SeVNLB5bJjcJvZV1PHKT3VNyosATO4Tz9R+iaw/WsvSvYH1AOH48xWrbV++U85xFEVxM4GQ0XZgT8M5PyCguEwXBOEIML3hd0RR3Ad8C+wHfgNub8hAArgV+Ag4CuQTIPACfAzENhB+7yOQ0UQDefcZYGvDv6cbCb3tyix4sLu9p/aHnwCTK0CStTsUeEvvwFl5HgqpBKkASrmcp84fwKNn9cdvHo1cvw+lTMI9p+dwWk4cm4/V4zIOw2Me2qliUJsK6gJsbcDvF1udb3abufq3q3BGfI8AeAxjcdadxqM/7GHwU78z77c+rNo0mCs+3MTmgipkEtkpcwrWHKnFUXIttvwH8Lq1bf5dU/omcMHQVJDZkMjrEPwqLh+VxriBlYwf9xu3TUth/s1j+fH28dwyKatpntvXucJZMomMJ8c+yYTUCRyqtHDDZ1tJi9bwybUjuW9GnyYFMkWXQm5GNI9Nm87M7PNIi4zjrcuHMWtwFqIowy+CywMTtH/nvtz7qLZXs6J4BS6fq1PXy+L0oG5Y/wtNhVz969V8vPfjDuf10PcgVh3LmKw4NEk/o8n8D37cJEeqOiXHiZAaZtFf3dK7NCYrFqVc0qSE5Ffb2uTaySVybsx+hpqCi7j0/Y1oFFIW3TmBswcloZB2Lg7v8XkYNW9UU3pvk6wSKX8f+3f6x/YHoMRS0tr0Flh4ZCHnLTyPg/WBVPRIZSRVtlMrDlhvc3P7vO0kRqh4dfbQLiFWR6rlmByn1mOq3FqO3WNHJpExJX0KEPBW/Ly7gun9k9C1YmRA4H6r5IH1rLnCKQgCZyffgdfSnzqrO2R5jPbAnKvHZp70DLh9blYWr+RA/YEOz5OgSUAhbRkKidEqOiUTwOoDJrzOVBAViKLI5mMdbisA3DU1m6FpUTy+cA/lRkerYx5b+xgLjywMWabGmkyHD0yi7Mgshv1zFWe8toYL31nPJe9vZE+ZGZlEoHdiS2NDEATuHHYnOdGBEP3w9Cg+vnZkgO/UReUXVhavZPqC6Xy05yMAnF4nd628i3Vl60hQJzJF9wJPf+dDLZeikDXuixLumJrD1WMyuGliFkq5BKkgoozdSL0s0C4iXt9+eKtLCAWiKP6DQDpzc7gIeGNaG/8c8Fwrx7cBA1s57gQuaeNcnwCfhCSvJ5Y6qxtNTNfwKdw+Nxcvvpgz0y9k0R99qbOq+PLGkUgE4QR3YzRzL3jmJBfklmN1zH5/PRKpHbkkImRrtGkxoW1rNkIRwV3D7kLly2HPrjI8Xj8yqYTbp2Sz/EAVuxvSOV1eP9d9toNp/eaAJoYfdh6luM7BxOweIW8y/VMiQJSDNxK5vH0r+7JR6Sze3QfnsQeaCI2Fzt3Ue4q558zBSCVSvjrwFaXSvShkE3B7RWSStquEtge9Qs+s7FmUGR1c/skGVHIpn18/irQYDVP6JJw0XqfQ8eTYJ5t+v3psJr/urcTdQNybu6mI/ikRuFRbeWzdYyy5YAkZERkhy2VxetE0xM4zIzN5csyTbVqerSE3I5rXp/+dnw5sZn2ZlleXHSY71cXgxF4hy9IcZocH/QnFzHIzopl34xg2FdSys8TEDzvK6Bmn5c5pOSfNX7SzjHu+2Y1fBInUztAhefSMH0f/lEh+3lNJ/+SIkGXyiT4u6X1J06LcGtaUruGulXfxzrR3GJc6rsVnoihi8ViIUEQwNX0qZdYyekUGrtMLm19gffl6VlyyImS5IFDb5cHvdlFtcbHwtvFEakLkSRVtgPyVkDMD0kY1HY7SKKi2ODslEwQKrt2x8g4iFZF8csYnTZyENYdrMNg9zBratscgNyOaeVcPY+vRakYOSGuxFsxIP5/5K7dRY3WRFhMaD8ZgCyhk0a1cI4VUwaJZi3D7O6eEKPVH2O5egcn1fshp/Bp9BTL9XvzWgSF5CGVSCW9cNpSz31jLjZ9v5exByYztFdfiehVbismKymrnLK2jsSaTSAKCO4E+6XpitUp2lxqbvBqiKLbreX0973WM9Ud4SpXFU0MzeGRrBXPG1jOqZ0zI8jTHtIxpzD1rLmpZwKNmcVsotZay8Vgpj89bTVG9nXMHJ/P8hYM4UmU9aQ88vp7Uscu5kmr3QURR7NAD85etxFtvc4f8sjXH4vzF1DvrmTNgDntKbWh8/fhqtQq33c0XN4xiePrxG9McrbkgR/WMJSJxE2LMYt4e/3PIisKQHoGXc2yvWO6f0afF/D01e1DKlPSO7s1FvS8CIOnGtBYP0PjsOK78KFBtVSoRGJERzaaCOhbvKUDf5ylc1Wfz3urJIVvKEVoXirgVTEo5nVvGtz+3+QPcKFcuFzXJDFDnrMMr1PPGpcO4dd52bpzYs1PudJPLxNIDR3lhcTUuj8D3t44L6VnIzYjmq4bMoGiNgi82FnLz3DyGZSo5M+VFymuVZIS+J2N2ekjQ1jaFMy7IuSDkc0zv04fpffqwK9fI7M/nceWv9/DypFc4o+f00AUC3F4P/h4vUuG/mEDppuNofJb9fpEHFuzilWWHqbW6SIhQMbhHJKUGB99uK2FHsbFpjlRdxOqKH9lTczbx+oCbu7YTG59KpuLBke2n7o5MGsmNg24kN+nkcNJdq+7C5rHxyRmfEKmM5I5hdzR9dn6v8xmZNDIkeRqRV2Tg8g824W0I57p9QYYWRRFKt8KGt+DAosCx9W/CtUualJhItZwj1ZZOyQUB79RDIx9CQGiRPfbjznKiNfKT+GnN4S4uRnfZBVxw6aUknv1Qi8+UCgeCzNgpb4ehwQMTpTnZ0m4kfna2yrJOJVDlseLwOkJWYI46VqJMWsGFsecwa1hqSOtMRqyWa8dn8vaqfPZXWJBLj/D5daMYlx3IMvvy7C9DkqURY7JikWuPgboAwTiFJ87pT25GNHlFhhOy2dpQtkQRSfV+JPnL8dUZuEiqZJn+cf65OIJFd0xAeopewqEJQ5t+jtfE89jgj7jkvY2I2JFLA2G4CJW81T1QFEUyfvuOoVdcjlfzAgqJAkEQiNX9H3hg/mwQ5HVUWMwMIarT59hYvpEiSxEDtOdx5UebcXkDBYVfuqhfk/ISCmIkA4gUIhmREXqxIasrEA47vV9iiwfD5/fxxPon0Cv0zD1rbtOideID1JryIIoiD3+/m4UF5+CzZyF0InWz0FiKMn4ZI3KmBDWvvfgywJ3D7gSgxFSBInY1HkkntATgw+0/8vnhl7G6HkEuxmB3+zqe1I6sl4zowdOL9zN3UxE7CmHx1h2dCouYnR488fO4c+UPLDhvwSlVsR2SFsU/z5zBk6vz+W6thqOFRztFejY4HEQ49eSa86BkSwuPQCMkEoGXLhpMpcnJ5xtbku5yEnRcMzaDb7aW4PX5kboG8PLY+YxI6o3FFOD1V1tCV2CCqWmklqmbFBOr28rTG5/mxdNeRCJImJExA5fP1ep5RiS1mvAQFDYV1DXVL2kM57Z7zff8AHmfQN0RsFRC8wJnPhccWdZCgTHaTy2ENCZ5TIvf1x2t5dc9FUzrl4Bcevx5E0UR3YIF1BcVETNnDvK0NKIuuYT4O24/6ZwfH3oBdY9iaq2hk56Ndg9SiXBSu4JjpmPcuvxWXpj4AsMShh3/oGQLFK6FzImtPovNkaMfzbF9GZ3iM42LuZLfN+Zw46yeZMSG3ixVo5A2hVc9PpFrPtnC9P6J9E2OQPSLTOwdH/K7mJsRzeCcOg46l/P+rEda9V60eMdLtsCxtaBPhrrDsG8hdxoKm+rCbVAI7Ev8lOqCW1mQl8GlIzuf1v3DkR+otldzy5Bbmo6tOVxDY1DZ7xfZdKye3Mzjnh7Hrl248guIuvACRLeb2nffRZBJib3hBiBgaNY526cI/DUVGMFLpblzdQvcPjdyiZwnxjyBWqbmndX5TTUeJALUdDLmmqjKQnRkoZGH7hUyOwIKTIS6pRtWKpHyxpQ3UMlUHS72JyoPgiBwwbBUvt02EQFQdBACag3Rsl5YDjzH2GnjOh4cAuw+M8qE3ygw9QNCXzSrq9NwlF2K6NPh49RrasilEpIiVQj4ker34/XEhnxOURSxuXzk+i7n/nHDu6QE/2Ujcth49Gp+2lnOiv31KOWykBUroWQnK2s3oqrzQPHPMGdxqxuHTCphbK9YNuQHFhwBuHJ0Os/MGoggCMwcmnrSAlvl3oNUc4Raa2iEW4BNFZu4fcXtfHLGJwyJ6o+gaN9Se3fXu2yp3EKZtYw0fRrn9TqvzbFun5sKWwXx6viQ38cxWbEdk5O9LjiwOOBhqdwVOCZIYOIDkDkBvr48oLyIfihcF/DOCAKRajkWpxefX+yUtfzurncZmTiySUHLKzJw7Sdb8PpFVh2sIe9AKX0t5WhHjUIQBGRVVbjLygLiCQKJjz4CgKeqCuuqVURfFsj4uTZxFLod9cjLtwKhbYIGu5sotfyk9cnlc5EZkUmqrllNo6PL4avLwO8FqRxmvQM5Z0DNwZOVmpItnGVYyCF7An7/6SFzkLweDX53ApHqjsN/nspKJBoN0ogIRJ8PT0kJY3roUcoleLx+pBIJ0/olsLGgjl/3ViKPXseHB8v54vzXQ153hkfMZs/eXMZf2zLUfZLxV7IFPjsHfI37kQR6TUEYcCGsfx1EP3GihDOSx7Db3pvnfzlAudHBab0TOrUW7qrZRb4xv4UC068hNNwWtcG44HssK1YQef55SJRKUl58Ee2Y0UBgPbzp95s63Lf+kgqM352Iy9W58NFVv1xFojaRt6YGEqT6JQcIUwKBCpmdzaaI1sg4VFuO1W1Fp2i7umlrMDsDVllzK6axR01mZGan5AEY2ysOjcpNdqKCf5zdCY+CwwNIidF2riZHW+gV1YuEuldQSDt3rYcm9eLbjQ4kQtdlwARaAUhQpn6N33AaY7Iu6nhSM9jdPnx+kXhZEgPjTqKBnYwgLdGcBB3ymDUoE37FcfiZ0BWrY+tQ4EFABK8Tvr4M+p4D6eNAoQ14DhpkGNcrjrflR5tc2RcM73Hc6yc5Qq5sLUgmAqPwi34+OfRvFLFqaiyhh8qStElc3f9qkrRJ5J91NvozziDxoUBIyWc0Io2KajH+/hH3c/+I+4NSDHfX7Oa6pdfx4YwPT/JYdITcjGhidQoSI1Q8PXNgS2t4/09grYb8FWCvA1UUx2tlC6DQQK8pMGdR4N5aa2Dzu7D+DZhwD1ENPBGzw0O0NrTaHR6fh3d3votkqIQRSSMQRZHXlh1u8hb5/H7qX32Vkm2ryVm7BqlOh/G22xg6ZcpJ5zJ8OQ/DvHnopk5FXruJ05Y8xDifH3HXH5Cb1qFnpMW57O6mvwsCrSdERPrG9OW96e81CO+ELR/AqufA3+CB8rnh+xtbnkyQQMZ4UEfDoV8YLvqJTovnx00CF467J6TrtaN+NVK1Hb2qfQXGazCQf/Y5xFxxOQkPPIC3qor8M88i6+l/Mu/G6ezIO8SY+W/R8/y7+TSlJ+8v2Un/8nL29LZ1ynAy2T1EqoMg5++a31J5mXgfTPt74Fd1DCx7gn4THuaf4+/i263FPPHHq3xUtJX31zzRKe/xP8f986RjjV7VmUNTmkjallWrUPbsiSIzk/i77iTh4YcRZIF9K+LMpraICILAAyMeIEoVxbd82+b3/iUVGAGos3XOUzK7z2z0iuMs722FgbZLN0zoyVmDkjttyWs0NmpjnuDXQjeX9G6Vr9wmzA2ZCc09MI+ufRSf38cbU9/olDyNUPf4klq5n9yMc0Kee9CwG0XcMhTyU6+n0RwyiYwEXQTVls5l+8iU9QiKGq4YlssFw0MnJ7eG3IxonjhnAP9ceicPTgu9toLZ6UGiKqZcWo7HP6X9qswlW+CzcwMLlFQB1yyCjNY32rG94nhzfTru2inIZYSsrK3XxPF+WjKvVNcy0OuH2OzARrz9i+ODpEq4dgm5GaOaXNljNW6GpUeB0wTLnoS8zwNjZUqYsxhJ2ig+P/MLxj2/npreod/HnpE9uavPzQgSCdILLkDVry8APquNwxMmkvjQg8Rcc03T+NYUF+P3P1D/+ef0ePs/KNKOl6bKjsrm+QnPkxUZOtESAinHo3ue4Mpvbg1njA9sKHIdzJ11/D5mNrwnaaMC/0QRrJWw4p+QmkukuicApk4oMHKpnJ3X7MTn9+H3izzz837WHa1lZPUhSnXxGCLjiL3uWjJuvwaJtiFk0ob1G3/nHUReeAHy2o3ww02Y8VGhkJHl8QQUr1AUGJunqXqtX/TzwB8PoJapeT5jFkLh2oC3atfXYCqB1BFQuSfggZFIYeL9Ad7Q0RWACKIfseoAhj0e5GopmlQvDgm4qvaHdK0ANhs/RxPbs1VPl9/txrFjJ9rRo5BFR5P48MNox48HQKLXk/KvF1EPHUpuRjSDxCTKFwBC4F3cV7WX27dvY7b2X4w5N3TD6aB9KfIoN4Hya22g5jDs/jbwpYIk8Gz1Pq4cMOYWWPcqVAS8fzVWN35nCl7zYLxeb5eVX2g0rC8blR7gyrlcVP7zaVQDBpD29n+QxZ/MuTIv/R18XiLOPptRyaOgZAupeqHNGOBfUoGRKOo4bNoO9At5bvNiZSaHh7kbizhncDJPnNv/lGRK0sXhOjqL4fGhu9OPe2COb3rDE4bjF0+9NkkyZ+JxdS7lvNB6EEXcSnTK509ZjhPh1q6jtM5PoGZiaFhY+BGaHvu5fsLFZMWH5u1qD+N6xeJ3JZESEfrCZHF6kekOsUtcgaSp7VdrA6vglwcDIQYI/P/lhTBgViBrRRUB5TuavCK5GdFcmzuVD9Zk8tE1I0JemCz6QSQ49Oiph+t+DmxOfj/89kjAKkYEnwv3pzfjGnAnuRfdwNBIgcPjxlM/cxixkWsQHSZEXwO9w+uEZX+H2XNJ1iUQo9ZRaw1dgfH6vVQ8+CCeykqyFv5w/APRT+yNN6CdGFAGPNXViA4HioxAVpinqgqJSoU0MhJldi9kSYnIewQKtzn27EHRsydRuqh2Q0ztwePzY3V5W3gVKPjjuPIiSCF7GmQ3bECN3pbWPGmCAOe/BVX7YMF1JJwe+DuNnUyllggS/MADC3bxw/Yyrh+TxkUvv0R9Ujqa+99keJDPhiD4UO59A/I+xWpJZ3GCgReTollZVE18ZmjGisHupke0pkm+AbEDUFuqET4/9/g1i80JKOlZk072PJZsgcL1x5XAS+ZiWvc00rIjOOsVvGc0Ujw0NIMQYKTin+xwtN4TuOb1N6ifO5fsFcuRJyQQfensps+kej2RM2c2/a7IzCTzq3kA5AJFZ4/nTT88OCOnU0pClW8bYnsObVMZzL0A5GqY+RbUF5z8bEnl0H8m7P4G3LaAUbNsIC7rAFSdoApAIHNvUPwgzs06t+lYE7WhYV+SKJVkfPbpSd7RJpRswfDui4gSFRHDesCxtWxZ+xxJOiF83aj/lBC8GJ2hs/kbUy91ch0SQcKXm4qwuLzcNvnU0lQB4nVa3IYxxCh6dDz4BBznwBy/nVf1vyrwcq995eQHuLXwQxshiWzdCLZ1sh17quQMZMUDmlLr2v3+EFHLeqxSZacaVA7Vz2LLnpyg4tuhIE6nRKIuYn1FDTOHXhvSXIvTg7t2KjemTzm5/k7JFihYHVBedn8DHntAGxBFkEggbSQcXAI75zVMEECmCmyOaaMY3TOGD9YcIVITOm9CL0njvKokUqPMx++VRAKDLg54YXxuEAQq/7Dh+vFFdMYF4IWkkVY0zl9h8Bk45UMpeuoTekwwokt2Q/FmeH0wBTmTGRtpRlUzCxgUklzv7XqPXTHreOmMp1scl+r1JNxzT9Pvte++i+nHn8hZ8weix0P+GWcSM2cOCffeg3rIENI/+AAA0e2m9LbbUQ0eTNrb/6HYXIxEkNBDH9r72OgNbfFseRorSktaelrguLelLSj1MHsufDiV4Wtu4g7pIMRiGaSd0facVlBiLuGtrV+yZXcfCquU3De9N3dOzcY75htElwvFiZtpyRbSixZAiablGrH3Bzj8KxgKcedcT8lzvzNqgJT7xut4SnULb4f4PhvtHvqkOCk0FZIZkcFNihTY9HLL8MeQywLKC5x8vdJGwZxF2FcsQDXxfCRZ40ifOx/fpnnk3/MWedq+xGgGnpA/1zGcTg3RyoDXTvR4MC1ajHrYMJRZPYmZMwfdhPHIE04uudARhp0xngeO5FNe8xSTTM+F7OWLMd9BUmQbWVn2evjyooDX87qfIbn1asAADLoE8j6FQ7+SO+hibpjQk/fX5PP6pUM6pVhtqdxyEvWh8V3Q1Vdi3PA7URdfjCIz8+TJfh8sfwo2vEVqXwGpwg/vB96RNTFR7X7vX1KBUfiS8NuC4BmcAKvHyvivx/PAiAeYnXMVH687xpQ+8QxICS1FrzXEaBUIMjMHaooYp227tkVrMDVbNCttlRw2HGaiX3ncihEk0HMyxPcGtz3gkvV7QSqDSQ+DIIPVzzccUzZtfAAxeqhxFeP1eZFJQ3tcTA4PUWplSwWjZAuGxy/C7/YTO/AlmLOY6m/Xohk9Bt2E8YiiiHnJz6j69kGZkxMgxZWWNlnQjbisx4v8a89RrC5vh3HqE6ESM/HZ3CeRngH8TieCXI4gDb2IX6RajjIqj1W1h4BrQ5obUEKlxChOiG+fGH5IGxMgL9rrWiqBPi/8cj/kfQaI4HVA/ipIG4VUYUTf73F+LbyfkZmhyuUhSbA38DWOQ0wdgSnxAfRpLqQDppN0pR7JxlcRjn6LFIjOksD5b8OwK5AWFhJ5RiHqM9Og7zTQxMKvD3O0aDV/JMbzdek/oGRoSMrsiKQRyGbLiB4y66TPmjeJHHLbbWhHj0GqD4R9Ex99FO34k712gkJBj3feQWjIxLnp95vITczl+YmheQ+NJyowje9bXF8YPBt6dkJpT+gL4+9Cs/oF7pUdQlyxGNJbJ1O3hZX5+/mlZD52063IJOmM7xmNIAjIk1rxzu9fDN/Noafog0/mQUpuQGkt3RogFgOc8TyKsbeTlrYGzcabMEmyeNMZ2roFYLC72Od8kdt/MvCTwYvMcCyQNSORB75LqoCepwEg+v0IksD9KX/0MZTZ2cTecD1uMYmif/9CnDWD+DsmII2KQjLuIvrOfozHonuhOPI8Zw96qz0xWsDitlDoWUqUOqBU+6xWKp97jpirrybh4nHIC9cib66EhmCQxaskpJhNyKwePL7QPWk9bHuYKSsItDBu/l0Fa+Cn28BSAVcvbF95AUgfCxGpsOc7GHQx6UlmdH3+TrHrKWBm+3NbwcKZJxfma4wMsGA+1b/+gm7aNGTRJyrKWwPrVkM4S6Zq4IMNugQyxnPbL/fxNU3JTCfhL6nASAU6VbNAKgTqKOQm5jJ/a3Gg2uaU0Pq3tIUYrQJ16pe8sWsp4zI/C2mu2ekJdG1VyPh057d8uvdTftMNJ7Fx0xP9gbBCWR64mmVf+Tyw8tmWJ/M6YOUzcPbLEN8Hp+NbFBlLKD+YRPqAM0OSK9+5EjHCCjQQAasPIP5wK8ajCrRJLvA6Ef94BcNX+QhqNboJ48HjofzBB4m/556AAnPkD/Jn3U7irVcQc/ffm86dFBGI01dbXCErMAWW/Wg19qa0Ufv2Haj69UWiVlP79jtYV68i87vvkKhCq2QrkQjoHecyVjUnpHkQuIeyiB0U+BQ01X+0VsPiu5uFHyTQewbE9gr8a+EWlsHQK2HXN4EwDSLsWwgjrqdvfDKummlNoZJQsK5mAYczqpl2QhjaXVBAxWuf4nvoQWLPHIUCoLwv5EtB9AECWCuAgBs9+ZV3ABC9Xuo++piY7JFMyl/GlsIS5KIQMndiTPIYRsiz8btcSJTHLdLPNhzjqUUBzoNCJuHrm8aQ24wc2NzdfyLUgwJGjfm3pTztPgt9/xlBy9OIJmOiMYS0+V2wVLB4ws0kZ5zW+RRtIaBQSwURvz90ronV2AvrwUDtUEEQMT77NOXxGpJffKGlgbFvISz8G4i+QLqt6AdzacDb16i8CNKGZwx0p52Ga388Bm81BqcJj8/fIh27PTjcPvr7DvJc6S5koh+ZxwunPRQwqsq3t1AKDN9+i3nRYtI//QRBLsdnMeO3BzxbivR0Ul76F7pJk49fLl08okQgQvTi8IdWR6bcWo5RmM/la/cj3ng+suhoei5YgEJa1WBMeALvYtIgcJrBUHD8usx4Bkb9LfA+tgJ5TSUf/vI5WyLvok9Mn5DkEos3k6p7mQirHT79LLDJyxRQewTHjq0YC9RE9VKglqlwHT1K0XXXEX/77URfdhmi3w9Cs/o/EgkMvBA2vQv2enrHpeIxjEPwdC6hwW+349y/H82IwPNd8+ZbxJbZkEgGkfrYo3jnXH1ceSnZAod/g8q9cGRpQGGd/Cisex18bsxlWoyHDaTNvRrNoV+osi5osxv1qedq/gnhkRgwKheHPE8j13B1/6vJjuzLB2sKGNUzhhHN8to7giiKx8M6JVtafBajVeCqPZ2JCZeFLFegUqociUTg1qG38snQ+0jct4gAiUsKMjVc+S08WgzX/hIILwjSAKHywg9h5jsBzwuSwIt5bA28PQreGMZNhz7mhao6Yn6cc5LMHaHOtwfk62HZP+Cr2fDuOARrOenTTMQPtIEgQTj6G32utBM3Qh5IGV33ClkvXE1USim8NwHhqwtIGGpCW/IOlGzBsW8fhVdcibtkDcrEHyk3hR4KXGt+EWXcGgCchw9TdMUVGOZ/A4B66BB006Y1KS+OffsCLz/gLiqi6qV/462pAcBbV4e3vmWJ8Th1HFZb6FlXFqcXefRm9ro3BTaLXfMD96D2cCBcJEgD96g9jkGDO51pf4epfwdDIXw0lcRjv3KL2UFSTehtF+T+BIY7ROTqaESvF3teHgDK7Gwyv5lPzJxmylrmxIDFLEhPDpU0wL5tGzVvvom1WocSKSpRxCPKEDMmhCSX3WPn6IwzqHn1eI+obYX1PLvkeNl5t9fPg9/tIq+onrwiA2+vOkpeEOFQw1dfkbhka1M7glBgsjfzwNjqYN3reHLO5JPKtXy+P0BkPlh/kEfXPkqNvSb4E2dNQgT8Ivgksvafg1YwpmcMBErYIZcKxPVKR5aSfHxDc1nhp9vhu2shKhNkSvxIAmvH7C/g0rmBn0+4t36nk8INPj6tLUemPYIhhOQIg93NRMle+rtd9PY0KAVyVWDzTxsVIOk2KGnSiEgkOh1+Z0BxSvvPf4i/83jxwchzzkGqa1avRSLFcCyeq7Z76Ce/NqRrlROdQ+ah2xi/eQe2desBUOrdCAv/1mBMiAEl3V7bUlERfbD0MXi1b4Cntu0zWNNyrZcnJ/PppDkcSgidduAoWM0KnYoCuSyQjbXra8R9P0PtYRQ6D/YqJW4LULgWaXQ0+slT0E2ZCoBt7VryT5+Oq6Dg+AkHXRLwuu//id5xibiqz0bwhN6/qdJWyacvz6HwwfvwuwP333XkMIqyYvQqOVKFHGXPAAGdki3w6dmBPfDI0oAMd2yFyY8E1q6pj8NpD+MXFXjr6jDE9qTMIla29d1/SQ+MgIjH78Xu9obUfMzpdeLwOli620SFycmLFw1uc6ynvBzDh68SN1yKJLkv9X8cpvrTRfS+sBKJxNeCowABBcZn602MJPRF0+z0NvFf5FX7GfbzYxCVDmc8D1V7W7o2M8cHankUrsXpz8DnTEc7ahTE5eDbvwJJv6kI0RmBTJP1b9DT46Knx4VfkIZs9Y2oG8PrjsegeDOWciUW6yCS31uA1FQYOFfGhAA/YPULCL88AAQyxJSNP+mTECQCsX1tgRPmfYY/6Rr8TgfmSCfyyF0UGmqYSHJI1ytbvI3YwkCPHFXv3qS88jL6qYEXXT9tGvppAQ+Ip6qKossuJ/amm4i/6058ZguGuXPRjh+HLj6e8gcfwlNVRdZPPzalAkbq7eS7VlFpSwupgJbF6aVv8RSel+2Ej6ZD2VboMQpm/icQ0w6WM9ScI9BrCnx5EcLCm7lNImA98iOU9AzpHkaKw7izzgmpkdS++x61779Pr19/QZGWhnrQCbyVRgWqHVm1Y8aQtXgRyl694Md9fHpsMd/YL2JBwnD0J41uG7evuJ3B5yTwtxkBL8nOEiPXfrqVBL2SHNt2BnKYLeIADlr6ctG7G2lMJlHIOu691OPNN6jFSl5VXshNIRs9MFFqOax5FtxW5NP/yccRCaikAaX4qPEoWyq2oJSF4BlIG4WgS+KgRcmm3o9zXYhhqCrfdpQJvzAm6hrumtabIRkNnaNLtgR4VQd/BUt5oBbN5EegfAeFK78ga+o1x+9jK/dWkMkQd1m4Q+rlytSe1DRUYg4GBrubPUI8SzVqRjo9xEjkLRQz65o1+J1OImbMIOLMM9CfMSMkvpulVEm8YAw541QiSDgoT2P33XfT27YKvv8c9v0QMPiah7Yu/jQw4fPzG0jEcpj0CFTsDIRyGz2nMlVT/SSJSsWxYadRrHyZufurQuqY7k2ZwPJVL6EQAqH+KucVOPPrSX/udqRfzKTXuXVNyqUsNpbkZ47zwyRaLaoBA1A0eGFdBQXIE7ORxObA3u+JyL0WtVxCiTH0RscWt4VtkQZyJ41oCr33eOstXvlmJxFFzQw8rwt+ffh4KrwghYR+AZ4XNK1dERMh4qqAcurVtO8g+EsqMDpJDO6aM0Puh7ShfAN3r7obacW99IzryWk5Lavmin4/+P0Iogf7R/dRN38n0dZqJFofqmoFMdlKRJ8PnxfK/lATn74A9TWBhSBaowCJnUOGfYhiWkgvqtnhQafycOVPF3FPwS5GqiLhmp8gskeL9DmfyYR1zRoizzsP0kZRe9fduPLz6fXzEnyRfSl845/oZ6hJuGc0jP4bJA7E/dnZHJPJiUZGQohWX3/nDqQEqty6TApcRhG/RIv0RCJe1mT46Q7Y2VBiW5DAaQ8GMjUaFwfRDzu/QjujH1nff0+03c1zvybi7h3KthdAbLmWv/36Lc7rLkDVrx+R57SeIi6LiyP5xRfQDAtUAlX170fvrVuavDPx992Ht7KiSXkB0Ggs1Lm+47BhckgKjK5mO18rnkdZ1vByj74Nzng2kC4KnSM7p+bCsGtgwxvcmJyAUhT5OEQl1Oz0oMcOqkhirr4KZU5O+6GojkipEFBeAMNBKVXHdFT1q6MmxFDgRb0vQugtoMnKZV+5iWs+3ky0Vs7Pg9ej3/QyAKIgw3Pum9yyOwfT4fWMkRxgi68fmwrazwCRRkWxYOc83t/1Ptuv3o5MEvwa0dicMNpVxto9c9nUZwwPxPchorYWWXwg22bCDhdTx3yMRhGBxW1hUf4iLu97ecc1aiKSMdgF9kn7Bi1PI3ZU7UYWuZ2LtRfQr74QMqIb+FVnB0IiCHD2v2HUTYEJaaMozrCTdSJh9oR7K8hk9H11NuK618GhCyk0b7R7KFLCA4nxfK4eQMzY+5rOL4oite+9D4KAfvp0BEEImayffnUm6+uq2OR6hHLrZ6TogvMu5FXsJCHqR86r+QlpVcP7mDMj4Kk2HDtZQW9NaV/1PPzxEjTWT9o5r+mzbI8Jh1GCShZaiLo+ZijLfdO5UfYrXPYVyj0WhOh8SBrWoeGgGTGiKbzjd7spuelmlDk5pF12ScCANJejynib1YYoILRWBznRObx79/KTjpsdnuOZsaZS+PaaQGiwMQGhDS9tI/xuN7GaNhOQgL+oAtNojYXaD8llT8BTPROLWY9NcLC92Ni0EHqqqym68krizhpMFL+i95SRfa4EudYPggTNOXPQZE2B76/HY/bgscrw7lkdsK5VkajkUrSx2/mhagn3e8YToQi+TL7Z6SFXWMOh6v3ofX64rkF5OQH18+ZR+5+3UQ8bjqJHKvF334XoCygYEp0O3eTJ6BrqGQCQOR5DXA4X612coz6HF0PY+ERRZGFEHTluNdMdTuIGeYm5/EUkzd28jRAEyJ0De78/ng6ZfXpLiz4lN1By/fcnAuTUwihuKVFQbQmNxW/32CmVFrFx/Fn0U7a/gAhSKZGD4yH/a/BNREgb1YLcqx44AAYG8hssK1fh2LmTnjlTWXvgScZfPb6t07aKxPqtvBejZbzDwUiXB3Rxx5WXU0G/c2HT21xltuAXpSGHHna7X+NFuZrHCuxoz4psUWzqVGE7XM3lR12sixlDjcUVUkr72T1msHPnUZ7ZtZNvd1WhV8r4cXwxEctebhojiF6Ui2/jPU0KEkUVAn48yCnSDQLa5q45DxzgjBVGRl74dsh/k6khIzBy47/IU6vYqlZR9enHmN//iMzvFyAoFFQ8/gTx99+H5qabWF24gndXvcCA2AEtesm0CnU0MUJppzpSn5t2PR8u6kNq6VeUlRWS/ftShB1zG5QXAkaDK3TrGwBdEvvlEqJ9hdRah3U8vgEGu5skp473SivoccV/Wmy8giDQ443XkUREhKy4NJ1Dl0ByTQGCty9i2zzQk7CmdCN6cTO2I3LUmR4EmQTSx4AuPvDvxHWwNaU9+/RApWWfK7BZ530RqKE09g7O/fE/DPQrueSR0NK799ceZpOqjCn5OjLjhhN1YTPvRBCGQyMkCgXJzzyNJDISklSIq55H2PcDScJk3I7OrTk+iwVBoWjBRzM7PYyQHIGfvgl49EUxkFGnT+rQo+w8fJiiK68i5e72KRV/SQVGdBlRZ7xHnS00Ql1BhQpn3VgA/EKgz8kQrQ+ZowDZ5g/QaMqQHd4FuYOQTLgXye9/P74hD57dsCEvRl64lqwZLoQNr8Bn5yBe9i1CVAqRDCVLnhNy87JUy16etr2NgIggVQYyVGJ7Ifp8GBd8j6pvH9RDhhBzzTXop01D0SOg1TZawgCCRNJUyRTAun49mmHDiM2cyLP7v2d9TmjNAO1uH9XacvQLI3BdOgnl+fcjae8Fayv80PzFzJoES+6BvM8wro5llELOL1XJnNwIvW0UmYsoTPqEjel3c2tWz5YfnphNULgevrwAvJ5ArPuslwJeDbkaag4F/jVkldi3bMG+ZQtJg8/A7dJgd/vRq4JfDHYp+vOVUo/O72ekV2jfMnE68RkMyJMDoTNXwTEQOB5nbo60UTDyRs7c/B7Xeh7mjNSRhLJEqV1ZTN+9gdJ9q+lzchucU0LqU/chfDKDeLeR2hBJ9etX/EHcvXexd/R1WJIHMG/YAWKXPQUpw6D6QGBjlsph9N9Q7l+EaA+QUgXRQ4Z5O+0VAnMeOoTnwy8ZesnVIXlfAIwON1cp1yDZ9z13D76cm89+FVllHZJ6I/LkZASplOwVyxE0AcNpUnUc2XN1ZM3QQUdZueoYIjnYxLMJBfUNniHxiadJEy0IhvyAwdC82FmIym0j6lYcZFFhPPIBa6izBl/w0mD3ECc6AvwXfcA7YtuwAdOSn0l+6h+tFjoLBbYKgexVLmSjLm/ZkqADnJV2BfGbl1C730dclrNj7llraGF8DYNtDcbXoV9RT0xgc0UyF7p9qBXBv42llmp0BiPujRF4jSak0Z3vIK0ddzwTr7YkB9+bnzLwgo9Zm1/fzqzWsap4FZ57n6SXkECvBd83HU+17OXvtkeh1gsIcNFH0P/8wIcdeWl79iTirLOQ9chsd9xfUoHRWWxE+L3UWBwhzRvQQ4pEZsbvjUAukzBx7Q8UPPYDvablI5W5SRkmwLQnYcK9Aa9C8pA2N2QBIGMU1tevo3ru6aT962Fu8eVRaBoesgLTx7kzoLxAgJTVECZwHc2n7qOP0E2ahHrIEKQ6HdI+HTPfPVXVlN56G9GXX0bimSOYue0TdhlDI8uaHB76HZ1JvOMjbK7eKIOxDjqyIgQhwO1BIG1CHddmpTLCviskuTIiMpAeu5Fe/Xu1rCHTvLqtIASY8eZymjL4fO6A8nQiGuLbiY88jN9mI+aQAXnUFpYclXD5wLOCluuAMIB/VgziHNcvcPVPLa6DZfVqPA1N9QBKb7sdn9lMzwXfAVD5zNOITheZX38VGL98Odrx45GoG8jEaaNxb36PEomMKrODlKjgvY4x5kFMyDTgvajjviShQtAnslmlpCZ6A9Xmy4Oe5xf9PFJ4P0NOG0C+KpU50t8ZvOMzyJ4Ol34Jlbtbvnd9z0X4/DxErxOpIHJs70b6T3IHMjhaQeTZZ6M4Yyo7jAfoaVeRoAm+3kdU3Q566L9kiV/D5OVL0I28HtJGkfDAA01j5KnHN1NlaioRE09Dnp6Ox+dBLm0njKaOJkK0dMoD8+Oxz5FHmYmOnYRKJQvwrBQ6mPVei3YQnYGjsJZzC13sTs0OqSih0eYGdRm/qTScqQlkvzgPHsK5dy9+lwtpB/2tOoLXLsNZIUViqsHvF4Puh2Rx+lidM5JLe21EGHktDLm8c9emhfE1JcD/2PI+w4DV/WK4ZclRPr/wu6BPl6QYRIIylfTLypq4LF0Bvz4HX9kG+imq+N5mxu31opAFrxqY3Ca2DJMzYkjL7Mt+jjykNBRBFSRgLAr6nIJcTvLT/wRjSbvj/pJZSFq1i9XV21BWbA9p3mbDt+h6vsKgBBXzbhxD74vPJea0XkiEZmmuiMdLcJ/ApD8JOacjnfVvJBIPwpJ7uMQ+l7ONj1F7dFlIcv3hyWFieirzIvQtLClVn95k/byExMcfC+l88sQEerz7DnF33gkpwyiQyxAta0M6h8nhQSdz0eucamIuuzCkue2iIdNFJoPlxdX47aGldssEFVP3lDL7ydvw2xrIwT4vrHi6obptQ7qoMiKwcEnlxy3UGc8HNsgBF0JjT1evM1BLAUAmI9FQgU6/hqVFP4ckl9nhQZTrEQTp8aJdDbCuXk3dJ582/R5z3bXE3Xq8aVr8XXeRcP99ALhLSii9+x7qPvzw+An0ySzQ66jOnsuh2oqQ5MJlQK72ox54apWmW4OjuB73hghclFFuCb5Yol/0c/6QuynskcNLkR/wT/lnGNNOh8vmBbJYTnzvGjyfwpQn2KGfSn/DStwfn9WgoJ4MQaGgzmvixt9vZEP5hpD+ph7GPBbqtRwp01GyUo/156/bHa/s2ZPUl17i+8KfuPC7cyn797/wWdowFjQxqP1WzPbQDC+Aw6Yd3LthFarffwpkBNrr4IpvAhZxe2tUEOjx4lMMGldHf6k0JE+awe6hJrKUZ2OjQRWopRV7/XVkfvdtU92eU0Hk6ePoObMKa79P+GDXpx1PaMCy4p+xRh9FrvXBmNtP6do0QRBAnwgI+BwSepX4SXSGVoHa5PAQKbWjSIxBkHddEc7EZ14lZYwRT9UzaHs/w5G6qpDmz8qexfNPrCTmvPNbHN/pTW9YJYVOe/g8Fl+7n/8lFRhBIiLHS2R1aGnBZ/U8i6t+Tef6Q8vIzYhG1b8/caf3CpRo6KQbVj39MjIevQCZyo9JKnBdSiyrDgWvlXt8fnZ6kjnbaqdn3ICmzCbH3n2IXi8ShaJTlrNu/HgkWi0+VQpPR8aRpwxtIT9mLKM0aQMHFPJAc7WuQtoouOgj/D7YvXcojoPGkKbvrznG3jQZRbOvC/R8MZXC5+cGLHZBejzt/Pw34YJ3A2nnU5+Aa3+GcbdDv/NgzK0NqegNr0/e57D/J+zbthFz+zWk7jqXS9IeDUkug7ucldojFCn1IAg4Dx3CXRKwPhIffZTs5ceVWt3EiU2ZUgCaYcOaCHqKtDTSP/6Y2JtvBhqI5fpExjidDKgciNEaklgcTH2Pr63R2I+FnoLdEfw2J0mlUu4szMBsC35Blklk3B/ZkwWmj5ki7EQUJERNuy+QJdIW0kbBpAeJv34ed3vvRqzaB++MhUV3nlQewO92I//0Bz5PeIDTepwW0t+UJwzk84pqbousJmW8Fe3ZwZVF6BXZixmmNMyff4ljZxteRXU0EkREp6n1z9vB6VFP0qcaFMv/BRW74ZLPAqGNroAukQK5DEFbHJoHxu7mXHM086pclNxxF87DhwFa8ChOCdp4ZIDaGYtaEnx9k/VVP5NecRhLqQo6yIIJCZkTQSrDVKSm988aLogOrV5UXu1KNrsMWAu6eNs2leB1ypi06xj3VZtxHgvNsIdAR+7GFHcI7EtHPQ1JLgMvbJFxGyxEUaRozg3tjvlLKjBOt5RLUxNZLgttY+0bPRCLJ5UIV8Mu4HHCngUQ3w+mPNGpmwQgDLwIa7kSTbWU1yrqOa3PRUHPtTi9RIoeHqs3MK7/pZA2Cm9tLUVXXkn1a6+FLEtzeKurOTx6LDft1nFdrStQxyZIVFnr0VmrcP8Rgauyk+TAtpAzA0ECvvJaot2r8PiC7/m0rGgZFcOWIDktO1DX4e0xgQZxF34I1/8WqEPQ/D625kVrjG9PfQIunw/Jg+Hba1AVfk7MnIlE61zU20PrH2XxVbFOXUe9XIPf5aLkxpuoev4FILCgh2JxaceMRqJS4Xe7Kb72Oowrt5Hl8TLcrKPOErwya3d7SDL2YuAGOXXfnZxlcKrQjhtHznV6YuK91ISw8bl8Lsq++oiin2PxewO1TSjZFNTcHtEaYkdfxoOu6wOKwPYvAqHDZkqMIJNh/PBj0gvtxKhC28C2+rJxSrQo03KJfOp7hPTRQc0bnjicO//2Edm/L0U3sY2aOOqALGqvGaenfcv0RGhrdjDpzH3EZRQFskDUUSHNbw+W9Vs4vDGOpfo91NmCv48Gu5s0iZMkbxTOAwfwVoVm+XcEvyyS8s1RnLMjgX4RwRuWFyY9z4WbfRgKNE2eoS5B2iiY8Tz6Hk5WThzOEW3bZThaQ42jnPRDXurWG7tOJoDCtVjLFYirIrmsyoqmOC+k6W/lvcmRKVOpff/9pmMWp5dIGvbJYVd1bl8UBJJffKHdMX9JDgxWKVZvNkfkmSFN219TwJcDx9PnvACRl7xPwVwG17x7kts/JKSPpiIvBmmKgnd01zEvvZ1OoyfA7PAQKTSEQhrKvUtjY0n590uo+oXerLI5ZNHRJDz0EJ6qVeQ6f8HicBKhCa5Im1ZI54KiDHSGfYiS0NIFO4RchaCOYtGNCfzoVHCX1UVyZHBy5caeztaDB5l8+CaQN5DLLv4kYCVA8C/aifHtb65CduQbEoBb47V8XlDMVaPfDdr7ZTdl85OYQBxGJEolqa+9iqI1Um4IEF0uBLkciS4SryoSraSGQkMNEFzmltXlY0BtFn3GrYBrupjB2wCHPoGfpJUUOfKAkUHN2Vu7l8did/PMRBuCvON0zBNxx9RsvthWjx8BaUMzyuY1jgSJhD47trOrfi9FIdaCMdhdbFuvJSpdxpCbQl+0q/R+9h77jXGHwF1cQtzNNx3/sMGTGYUVs8ODSh4cAdThdbDO8SlDVHLGOl2BEGmI6fTtwVdXR2adlAfqE3jBG1oI6YCmFlWEnhG//dp1npcGCFFJ2KoUpETWUR+CYmV2ejkyJYMR6rquyQRsjl5TUOh8bInWcKjob4wzfEB2dHDV3HsI53HWoHfRD5jatTJlTkTf40WUUTXUa6TsVOaE1ObY4baxec5wLpt63CtscniIatyXTsEDrx3V/jP6l/TAyKNFEpVP4LQFz0wHeGLjgyiTfwjUbHHbAtUEe552aspLA9IvikV5WjI7lVo2lu0Mep7Z6UGi28+YjB4c9Qdi44IgEDFjBoq0tFOSSVAoiL3+Oir7DyFPI8VwLHjCrNnhQYgX6HmxiKpP71OSo1XoErnTH4Wj+GZqLCHEkn167l23nvI/GiwrQRKo7XAqkKsCvUUQcJtkHHPJ2OzegM1jC04kv4jV5UVVb8K0S8BbV4dmxAhksZ0r690IqV5P2kcfEnHmGdj1SbyXkc8e04qg55scbvSCDYXOhyL71JThtmBYbkN+2IHR3TofpTWk6dO44ZwncaXHYlIkhuz5jNEqSBk6Hbcow9/IZVK05FwIMhmv5b3G2zuDT6UWRRGfq45tCTLKozu38b27612e3fwspvXrsPz+O6K3mSevIZwRJVhD6kht89iwGs3IV0TgNMhPKeOoNURdfDF9b85kmNRNnS14T63R7uZbnZXFUl+XKy8AQkQSOedX88tYI6/tuzOoOT6/j7V1n2KJMCKL6sLwUSP0Sfi9MKaqlgxLRvuk7RNgtruIkNmQJQRfXyoopI1CdtYjCHFezuyVyCJXYUjTHxr7KNc98mVTKw5oMKxpaVh3BidWOj8Rf0kFRiLxEadThdwP6fy0G3nly3KSVvwEm98HW02gZHsXQJmejF5hRZX4Ex/u/U/Q88wOL9FeKRdYrMTqe1D96msYvgueQ9MRfGYze9x13JKUgLFoY9Dz9hk281tiKXZNF/JfmkOfiKKqkhfWvYdxa/Ax2121O1jVP5nYftZTTh9tgZ4TQSKj+I8YJm6ScpnnvpO6s7YFq8uLTLeP5RYbti3Wph4vXQFBEHAePIh7n5Lb6+V4rcH3X9ldvZeF2avZXBqBq6y2y2RqDnedl7tKHZirx+D3B7fxJWgSmKkaTZTBT522V6c8CamDJnGl+zFe81xErajHtvXLQJ2KBpgWL+bx/Tk8Pe7pds7SEk6PH53Xwf29yjjjsitDlgngnuH38MP5P5D6yKNkfvtNiyKJzT0woWQixanjSDHcSKxVREwZ2elQd3uo1kSxS1aLx+9qaEzaMQx2D58cdHLFi7VYVq7sUnkAUGgR5VrSXFIS5MF1O7d6rBTbfiNxXx0OS/B1iYKGUo9P1DH594OMPdibjIiMjuc04Kj7C34ricJWGJxhFArEzNPwliqYdmwAUmdoxorfbsddWoroPr6fmp0eooSGENIpeGBsG9vfc/6SCozfCcXVj2NULglpXg/FUEq0aWijNbD+Dcg5o8sWAodRiWdfPc6qmcxMuy3oeWanhxSXgofrjURpU3Ds3In76NEukQmg5G+3MOP7fN4tM6Kp3hv0vDpnLWlHHdT97guJOxM0dElUSOrRCWUUVR0JetqK8q9YPMyEPtUFI27ousU8bRRM/yfJI02sHXEu27zBe50sTg8SVTlzhwjo7x7cIs22K2Dfuo2albVcUm+l3hgV9DypGMHEijgi1umwbQyOYxIqMh+/hOSB9ch9jqA3ZaPTSOEzTyHf4MIfQsHH5thZYmSH2Ju3fBfyL+/laGt3Ubn5uOJv35aHbM02euiDT1c1OTxENVidEm3nvGfxmngSNAlItFru/eM+ftr/XVPvrcaNIFqwYgyxFkyZVkPPM2pRT+9kSnA7cJeWUfztMT61iUjkxqD4TF6fH5PDTYLUTNwZ/VFmhVaQMljUH43msrUGeskuDmp8pDKSCbYX6L/NjctwamncbUEWH4/9rB5sSA6NA+PyV5G2RYl1b4iZhMEgMo3SdTGcd9iBxRx82QCA5z68mvzTp+PYe3x/MDu8RAi2QHEPZefeUQi0HmkPf0kFxmOTkVupwO2MwO4Ozlrwi372Gw7y4ugLSUs8Bk5jgPDZRbActFG9VkR0JKEUg+/tY3Z4iGjQdAVdLOmff0bC/fd3mVyxN91E4g1/A0caUXX7gp4X7Z/ANTUgOiVdXj8EAH0iUkk9D18Vx4G04Df8sRG3MPlwJj6PAOPv6trFPHMiumQX9enpFInfsLN6Z1DTzA4vntppLCspw6uKQJB07WsZdeEF9P7XLJwKAzXOQrxBkp5lYgyTbHoyLhGJPP/8jid0BrpEFuq0aJIXBE3k/e7wdzyatRXtUDtiJ93TY7JiUcolSAT40T+RI/5UrL/8g9nvrOXfvx3ku4mXc+hfz7IofxEeX5CKlcNNlHCM7YuTOLZyc6fkaoTNY8PiMtPjgXcof+IJPD4Py6u34UcgUgjNA7O9ajvVkd9SKZWC5tTCkm0h0iDybFkdCo+GuiDuo8nhQSsx8G2iAtvMISgyM8Mil8+rQWtzUmdzB21IlcojiL3cS8To8ChVQkQyUSlODiT8i/d3vd/xhAbk1J7OwFkVxM+ZFQaZEsk804RnWARl1tKg5/lFP/VJWsruvrAFZy+gzFsD7+cprGcdhdH/kgqMMsrDyHHX4jGNDDqMZPVY+bzoHvpFLUaz7T+BsEPykC6TKeac0WSfX4VaXsXmqj+CftlMDg+7kvZxZUQyPq800DPkFAtANYd+6hS0k0bzizYetyM/0JArSLli+jrIvC24LIyQoUukj8NGbOWtSDzBu2FFu5prftmC4Yi26xdzXSIeu4ReZUdxqNdw1BicJ8zi9KDHgblQhSsvhA7FQUKi1SJNzOC5uEjUyfODVhQMdgdaiR15QiTSqKgulwvAtKWQuGVaBGVV0Fym03qcxvQZj5GcaEGi7lyWSG5GNPNuHMP9M/ow/5aJxM96lmxJOUPrf+Ht1fm8tvwo9y1ewOPrHqfWEVz4zGT3oJDWszVLgjPx1PgTWrmWj8/8hOzb7id2zhzWlK7h3j/uZ1F0HNFYm3ouBYMqWz1jD5dgWRmFqOr6kK6iRyo5r9xJ/3g78diCqgVjsHuIUFTwRkQU+f7QQvmhIOHsbA6dDWtcN3HIcKjD8QfrD1IizMcltSHRh0fZQ5+ErqKenEPJ9IwMXkmSuoxIpCCJ7mIODIAgoO6ZzI/R+Thi38PtDc7IkQgSXrv0C06/9Tlk0cefLbOzIbmkC7PdWv3+sJ79fxSCRCROEXD11gfZqVQpVXJt1RRe/XYTjioRSrecVD/iVCBLSkOu9qOP3MXPVS9i8QRX+dbs9NDPpuS25SLHLpnd1Nuoq+Cz2qg9sIMlSflsUckD3a2DwDHvYj6JEiFcHBhd4CU+pzqP856/FZ/RGNS0Q9Z17DytB7p0EeTBV6QNCto4jAVaen6zBueBf3BuzwuCmmZxelHGLWdvrRb/njY7x3cafpuNuhWHuTnfSnz1aMqNzo4nAeurf+KVuCpqjkrxGoIvNBeSbChJs/oZVTgu6BoifWL6MKYqDtEO0lN4vnIzorl9Sja5GdFEDbsAUkdwl2QBStykmSv524oj3Ch7inhNcCXtjQ4PKf5I/jagnH4zgq8s3B4izz0X7bhxTE6bzILzFnCuoCdKCGQhBYtB0ePoXd0bhQ8E3amV528LTk00v2vURMqLg0qlNtrdxLpULF5qJOWOH1qSlbsS2jh6eyyoXePQyTvmtBSbi0mqX4Nrlwyf2Erftq6APgn7NjeXrbcwNDY4/p3Vbadc9zNbD0Xjrgvu/Q0VDmsc1+xx4aw6hypz8N/hqarGXVjY4pjZ4SFasCF0ZQ2wVvCXVGB8bgmbt36NJvPtoOsWKKVKBjldRMS6kCr8geqthaFVp20PXq+a+iMacutiOE3zPBpZcJur2eFlnFPO4D5ykp58skWzwa6A6YfvsV96E6MMc5hqt0P5jqDmuby19P5DRs3vBV0qTxP0iQCUJO7gYIo6KOKrX/SzU/yQzYPcqJIjj1dM7ipIpET2UyO7fCB+JEFvyBaXB9Ql/HqmH+/ts7pWJgLc1Oq5v5JWKiHNqaHCFFwl10ghh6sOg2mpAV9d1xeyA4i+8hoyp9cSJzUH7YEptZQif/wh6g/pkOu6aIEUBDj9KXTuaq6VLUPjdTGi8iinRccF3Q+p0W0OdKnl6Xe7MXz0Cal7KpGpY4iX2kLKQjLYPFT2iiNjal3YQkiVby1gZVEsUv0RaoO4jwa7h1jBSnS8i/jrL25JVu5COGqlRP4GCUdHBsVnmpE5g/57p+HZo0U8Be5Gu9AlkjKijneGX0C1ObhnvsZqId7sQLdDjccQeiXmYGA86CNujQ2ftT+VQSowh+oP8eXfL+boBS2NNbPTQ4zEjtDtgel6eB1SBm2vx2fPCDqEZHKZ+CUxk6hxZpQRvi5PRfS5ZFTlRTHcWIvHkRz0oml2etDKbOj6RrfsJN1F0E6YSOqrr6CNHo9fjICy4BSYqJpJjLa7EIXwEOHQBRSYmh4S3jx9CPKUlA6nCAgMMD7BBWXgV4QhRRJQpCQSlexDGruJT/Z+HNQcs8NL77JJPFtbj/eEdN6ugESroffyBUj7OZBp8ik1BFdYUOnvyfQYF9kPjUSREXyYLiSoYyiTKchLzWNvXXDP1jObnuGjS2KI6mVHpevC+9hzImSfzr2KhZwVvwXFf56kMKeeg/UHg5pusntQG46yY1EyrqL2e7iEAkEiwbRwIYXLf+JdlZ8oSWgcmB/yv2ZP4h5EQdK1hdmaQeoWuLbWQq4zhtogvNoGuxtBVcT8HCURc64Ii0wAqKPxewVkttqguExOj4+8jBz6zi5HGt+1ZPom6JNQRviw9VrJ/RuuCWqK4NcxwD+YvrPL0Yw/9bIdrSHugnEkzqhBoSzmWF3wTR3zx6Yj/fvdLY6ZHN5AHZhTSKEOBn9JBUYR4Sf3ypG4qs8NOoS0rXIbK1RfcVARESjB3cWpiIo+A8iZWYmzdzRFzo2UWIJbAM0OD48l1fCeyd12D5VTgDKrJxFnn40nopiFih5BeWBEUUTqMpAy2kjCtbO6XCagSYG5WRyKpXIafnfH91EQBNKOlpPwYzVuRxhSJAG/Mg7haDmJ3qPsCXJDtjgDNROqdkYgHgq+HkqwEAQBaWIv1mtUbEnbwlFDcM+WwWFBJbMjT0rs0t4rzeGpqcGxMpasUht1juCe35sG3URmvzNQRnpRdTVPYcCFqPx27pQtZNCq63lyw5OsLlkd1FSTw0NdpIsd2RKkkV2nKAgyGZnffsPOy4fzgb8OqcQWUhZSrcPABavqqdoT1/WF2RqQ9t4H9O1vJVvmDMoDY7S7cWrL+UAdBfKuV9oboR44gMzptRwdMY+Xt77e4fj5B77HE7cGQQJCJzPJOoQ+CbdFypl7nPRVjet4PI2F4az4FBoEVXhCW/KM3uyLlqHMeoe9tfuDmtMnpg/PXvclfS68tsVxs8NDBNaubSPTCrpEgREEIUoQhAWCIBwUBOGAIAhjBUGIEQRhmSAIRxr+j242/lFBEI4KgnBIEIQzmh3PFQRhT8NnbwoN6SuCICgFQfim4fhmQRAym82Z0/AdRwRBCKq5hCiVovAYUMgk1AWpwAxJGMIlK0agX6BEzJzU5amIQmQyMrUfvcJMufIDNlUEl7Zqcnq4plJk8idmLL//3qUyAYgeD85Dhymp/4LvIySINQcCRfzagd3tw5C8hO/02q7tJdIcqkiQqUgQjFy98yeOntlx5+daRy07EqvxTxKQJ4eWKhgsfJJoahaZGLS7NxenPhXUHKPDTkHyBmqLNFAeHq6J6bdlDDqgZU5NBhZrcOHJXc53+ZdXh3F7eGrAAEjUamSigusMWrAHV39iuL4fAw7b8LoENJFd/HxZKxEBiQDGLSp+KhzCtQOuDWqq0eFmslLF9dPiTrkI4YmQ6vVc1PsitsSfSZovtI7UufrLyHYpEFRdXBG7OSRS1kQnYFaXBxU6Ndg9TDBG8+XnTqoefSZ8cukSEIA4Qz+y9B0nXeyr28/IY0epP6Rtat3Q9TIlYatScsX6gwx0B9dra1vlNvb7DlGwLypsfCGPT0/GPinD8sfhcQTPlXIeOoynrKzFMbPDjU60/mlIvG8Av4mi2BcYAhwAHgFWiKKYA6xo+B1BEPoDlwEDgDOBdwRBaDQL3gVuBnIa/jW2Gr4BMIiimA28Bvyr4VwxwD+A0cAo4B/NFaW24PNK2LbyAMpeT1FkDo6jEaeOo1KWhT7JiaCLC2pOSFBoMRZF0qegDGn5A5zd8+ygplkcXi5120i9Zgia0e3nzHcG3vp6js2cyU3VE4mpnIgg+gO9g9qByeFB5bPS80cd5s0dM/87BUEAXSI7xHzy++7HN/3MDgnM+cZ8qtIWU9/LgTQmPAqMLCmV9Okm1qcMCrozr8Fhxaq2kH+lBev5M8Mil+X33/EdVTHZ66MqyF6A0a7hXLzLQ82S9u/3qUAaEUHmjX2JSXMGzYE5sGslPT77Dket4pRIvK0icyIIEkQRnCY5OjEJlSy4jd/k8BIjsYdt46t/+O/U/1KAWrRjDaEjdb3dg3+EnIQpwZdnCBV1n3xKzXIp6zVVQRmFRrubJJmD+MECUbMvDZtcaOMpWRvNlRucZGlHdDh8ds+7mLpf0/WNHJtDn0hEmoNV54yjBBV+seOMH7PLSWa5B98eoIt5jo3wOhSYt0Yytc5PnTk4j+v8g/PZfNNsKv/1rxPOZUaK/3/fAyMIQgRwGvAxgCiKblEUjcBM4POGYZ8Dsxp+ngnMF0XRJYriMeAoMEoQhGQgQhTFjWIgh/iLE+Y0nmsBMK3BO3MGsEwUxXpRFA3AMo4rPW1C9Ajo1liI8IzA4giOyHm4roCdGQLJI01hI8LVH9YScaAMkzkOlTQ4K9nksIPchn5EDooeXR+zlcXEkPr6a8Sddi4HPQMCB8var3xrcng4rWQQCVIPgjaqy2Vqgi6RSJ+NzZmJlF8wu0MC88CYoUTsuInBFdaw3UMhMhltrA11fCVLKv4dVAqu063m9qoBnO/w4JeEhzOU+uqrpN+YTZWilnJrcCGkCFsPRg2po+cL7XeEPWXoEpivt1Ih/yKo4X878BTfz05DHefpek5H2iiEnBk4BRVfXPY4h2+axU9HfwpqqtHu5tgeCzvey+9amRogjYpit9zGQp0WHMF76n6veZmNUVYETRgMr0YIAkMEDY+ZhOBIvDYPhyIqWT1Mj37qlPDJpY1HkIBK4qLC1LHmbrJ72Dm2D+lT68K3+aqikGoU1KXWsdB6LfnGjp+XeNkgxmRoyLonMzx1tQBl7niyZ1ZiyfFSZCkMao5eoWfTlYOJu/HGFsdFhzHwQ5g5MF1B/c4CaoBPBUEYAuQBdwOJoihWAIiiWCEIQqPJmwo0j4+UNhzzNPx84vHGOSUN5/IKgmACYpsfb2VOCwiCcDMB7w59EjX0usxMtPk8Ktwiq1ev7vCPnFf9Hba0TVAMu/PLqTd2PCdUDD1XTRVKJL6DvP5zEbn6/h3OcYgHOD8mkUe370UjXREe7VylYkftTgyRBZh9MTh2/MYBV9uyHaz3oVZ6SJ9czxpNBP4grm9nMMApZbK1DofxIbZuO4js6B5EXdvcFpNL5Mr9G6muiaY6t56yMMiVUFVHZo2CMbK9rE06yvJ1y0mSt1+3oajcyfmGKkoPRuHqURjU89gZ5NjgsRgHzrqNrFiZiFTS/kJosxXikgnk1xqoDZNMACnf7ifX6ufTKX5WrlqFpJ0FWhRFLk+5Hn/dOmR2P6s3bQeha5/5DHcMPXHyS1U0xzZ8RJG7iMjSjhWl0moH+9NETHo5pnBcr4kTeK94Ob0sKoR6A6tWrQpqM3PX1zFxgYeiMTUcSw5eLqvVGvyz2DOTPmelo6nJw+b2sXTFKpTStmU7Vu6gNsJEnU0gctkyCBPHCtHPpPEmFsaYKd55NRGGZ9sd/nbx12RGlOB3ylm7fkvXZyo2YKQQyai91exKz2Vv3l7KZGXtjt+Z72YUVoyOGA6E8V0cF6Hn24idGO1+Vq/uWOHVomV0n+vZXF8PzeSSOA0gh735ZdSawydvVygwMmA4cKcoipsFQXiDhnBRG2jtiRDbOd7ZOS0PiuIHwAcAg3omiAq/lX49YllfaGby5MntiNswPz+BmdfvpFQRzeAbJ0OPjt2RIaM0C2rLUCpXsl1I5P7J7bcUcHv9qJbv5fFtNjI2HiTnb8NbFBPqKrgKCsg3rEGdsoAqyyByfGUktnPNyvK2s7BqF9Msek6bdkab404ZtiX49xwAYOrc/5CcmUra+++1OfznQ5tYOUzFVSYjEUPGkDNoctfLdExC8bufcon/CNUDXuSy6R2H9V48OJd1qioyymVoJRImBPE8hgrngQMY54t8lFTHpd6R9Bs+hpSo9jt431PwAD9siWVm3wgGhkGmRtT8+hmRB46gqzydgTeMJUHffshmfGkO6377HWuklslTprU7tlPYWQGFX3Fa/lpurlCQ9s6vQYWRntqyggciqpCcez+E6XpNOPIYsnmXcLFoYcTYCehVHW/883a5SFLfSkxmFhkhyLV69eqg1sZG7Lb/yCHbZiQ2P/2HjSYtpm0v8gs71vBaiYD1BzdJzxiJvuSSoL8nVIjb4hhiVRCbMavDv+efX73MuE0V2NJjmTwlfJ4h34EM0r8sY6gniQue6rhe1Ee1L7Cq3M9sn4bJd04Om1zGhcn8s07KjbrJjJ0wEaWsfeNAdLtx7NqFIiuriffl9PjQ/h6okTZw5ATInBA2ebuCA1MKlIqi2Fg7ewEBhaaqISxEw//VzcY3b5PcAyhvON6jleMt5giCIAMigfp2ztUuRL9A5R49eytuwahYGtQfqRQTqIlPQpvoClts1F4jx7HRgKP0Cq7P6bhJpNnpIdonY1qciR4PX9WlmQ/NUfH4E0z64RCuY49RouoDdUfB2bY71uR00r/IhWqRHndRUVhkAkCfiNltRp/1OmtH5xB1Sfv9TtaV/8Ghfnnok1zhcw9rE0jKNZF/7uSg68BY3RbyMn3obk/GG6Z0ZU95OabNhQwyuonxSjqsBePzi2RUD2boVinmDeHjwADEz7mAxOFm4gVjhzwYu8fOwR8+I3npYeyEJ5OMqMCSkuytx1VVh9If3DLpc5gCHLEwPVuW1aspvPlZPDYpUYItaCJvvQjpE+vQ5Q4Ii1wAti1bsL+6jk+ESKIwd8iDMdjd6GVmki/uj2ZEGIzB5t91VM/5iytJFqZ3OHZW5Av0O+bGY+/iIpcnQBKdRPRFcr5JG4XT23HNFbdHoHeBiK3AGla56nd66LnXhN+dQJWp4/XrqZ/vpejqa7CuWtV0zNyiHtL/OAdGFMVKoEQQhMY2t9OA/cAioDEraA7QGEheBFzWkFnUkwBZd0tDuMkiCMKYBn7LNSfMaTzXxcDKBp7MUmCGIAjRDeTdGQ3HOpBZwLBPx0RrL1y25KD6IW2v3s6ewVqis+1h4084Kn0Yd4PaqcTt7tjiMzs86CV12PQi+tPGdnkPnUYkPPQgqQ8/RqImkcNkBw6W72xzvMKfxCyjhgidHEHVvpV/StAlovX70Yp6dvQZiP7009sdPjXxKs7bPAaPJXw9YdAloND7iI32UqX6KCj+hNvSmw9rZfRQhY+joJs6lT7znqEwQSBCu7vDarxWl5de5nj6n11F0kN3tzv21IVLYqdSQV3m1+ysbD99s8BUwG3S+eSdHYlbHab028iAAlPZK5a1Dz7ABwc+pc7RfiE/v19E4qpl47IkdrwfWpPYYCGLjUXs34t/R0chVZUFlUpdYa2gWPMam1TK8D3zgESlIiE+mS/Kq4gXTO3yYERRxOiw80485I9NRtmsh044II2MRKbzU22u6bAWjMEnwTVLR+z4MNWAaYAQkUyEug6x9z94Z+cHHY5P9kxgymmV9Lg9uOSOziLj7ilIJpmQag8GVfAyObUPe/5+MdoJx70sTW0E4E9TB+ZOYJ4gCLuBocDzwIvAdEEQjgDTG35HFMV9wLcElJzfgNtFUWxMH7kV+IgAsTcf+LXh+MdArCAIR4H7aAhRiaJYDzwDbG3493TDsXYhKpT0nV3BhOEz8dl6B1XM7ofCNzkSk48okZ1Sd832EHP2GPrOrkDQVfJbyXcd9kMyO72Y47ZxkyIZZ1lwxck6A82wYTiyk1FEb2a9r+FvX/9Gm60UTA4PmgQPaZemIU8MT7YPALok5MBk5zmI9n54ysrwVFW1Odzmgos2bKHugC58i7k6GrddSereA8i8NdQ5Oi4IZXF6EY5YqVja9X2QGiEIAuiT+SwyAlPSaipN7SswdTY7UnkdLpkQnt4rzWDdV4pyYRSZdQJGR/vGREZEBi9d8AEpkX68nexE3SEiUhAFCRnSOvZWH+M/O//TYV0mi8uLTjCyYZCAcXDwHaxDgXrQIPTPPMaKRCUSmTGodgJev5cRh+3oF0bisYWv7Jd68GCy/vU48ToPiYKx3QrndrcPhVjHSqmaYoO1y9ufnIjI0b0omu5lre9OdtXsanNckbmINaaXMSjDX78EXSK+Ig9jNvUjSze0w+E+W8M6Ema5pMlZ/KyVoEn/jFJjx96eW0bdxewrn0GedHyNMDm8fx4PDIAoijtFURwhiuJgURRniaJoEEWxThTFaaIo5jT8X99s/HOiKPYSRbGPKIq/Nju+TRTFgQ2f3dHgZUEURacoipeIopgtiuIoURQLms35pOF4tiiKnwYlryBDkEAsJsAXVDG7KZpbefHteuqPxYWN2CVEJCIIoNEeYGXNh5jd7SslZoeHdGscDy/1UPn2l2GRCcBTVUXtymXUyOfhdm4DBMhfAZ+f36oSs8/0B/9OtWPtZKO9oNHQTiBDYaHeYOPoGWdi+OrrNodvrFrGkqnJxPSxhU+BEQSctjhUS/ejP3gx52a03xPH4/Pj1a1hlVfEWR6eEuEAot9P5Qffc/MuB6dVDqO8A+vqaH0Rq1M3seNgNM6Cri+u1xzS5Ez0kR4mVmUi8bRfUVmv0DOwXEVyhQ2fIkzPl1SOoE+mv6+Gcz74nrW93mZowtB2p5gdHuJELw8kVzDl4hvbHXsqSIrOZnlZNQPtiqDaCcSpUog3DSEywoMkJryKaLkEvojQEyGtareEgMHuJtov8u06I32f3YzPHD7jCwBtPIPdZiIdF5Gqa9uzYvVYiSkrJHa9B48rjJ5jAH0yxnwtl+yoIFHecWjvkPghK3bGYysIT52oRjgq/Zy5TiSx4AIqOjByADyVldg2bcLvPD620QPjlyhAHt7r+JesxCtKpNTs1fHzxq/RZL4XVD8kwZOIra8edWqYrD7A61NRvUvPhFI950V+REQHFqbZ6SHTqWDgkHoSH7o/bHJZli7Fd99TzFS8wmiDhSaetM/daj8ohxtmrPdR+8WxsMkENDV0zFOupjTiXVJf/jcR57TtYt1av4gtOUYUsTJQhC/Gre0XT/R16ZToEjrs/GxxepFIXKwb46Pn4+GpAQOBcvTW9VvQ10sYIhU79MBIRT3nFCUQtUOFqyBM/awaoB6aS4+pPqKi3B1yYMqt5Rx96yUkO72IqvC9i0Sm0UNhxG9zIA2iM6/R7iFStCD6CF/9EODYZZdRsT2WKILjwBjsbizxWnqMNyBNTA+bXH6nk/qb/872kkg0mup2+V9Gu4cYLGiTnCTffTnSiDDeR8BtU+L6ScOQnRqSdW3XwhkQO4CcutnoykCUha86MAD6RFJGG/h40lkUGjr2vEZaBeKKpXhN4evcDeAot+Hap2WYS6Ta3P7z5fV7efrVWRRfe12LZrpmh4dIrPhVUWEz9hvx11RgEDAVahlXDB5jbochJJ/fxz73dkwjBTTZieETTBlF3SEdA2y12JyKDlMkzQ4vgrweZ4yIetjosImlnzGDjK++Ijk+nXWufoiNaatt9INSuoZwgd+MKjl8MXcAtHEgSOiFDJctBeXp01H17t3m8GnyR7h1pxqfEL4NBkAak0SE2ow0dgsv5j3W7liL04O6biTvVtWEvWpl9sqViGNUVOuKKTF1wOnwaegv6Mi6TiTi7PDG3QHQJbAkOZ8Nxvb5AMuKlnF/7l70Yy3hja9HpZGorOOO8bfzecRB/ij5o93hJocHlVDIwe9SOLYwPBwYAO3YsRxMU/JTcnFQHJgl+b+wPX0NJokQVsVKUCqJyMzhEbuNkT6hQw+MXH2Ml3tG4DtjQpc3oD0RkrhklFFenJg75DLtS8okZ2ZV+Hp/NUKXhFQpUpO+ivcO39vh8DR7LkPOryTy3PC+i9FXXE367ErEpBKOGUvbHevxe9BMnYzxlftbVJ42Oxo4MGHmv8BfVIEB6HWVitHn5uAxjukwhGT1WNnnfpOD6vDGRqWpveh7SQWG/vEctC/miOFIu+PNTg+/pRxkniUed3lF2OSSJyWhGT6MUjawS+vH2rch2+fqH1ptqeCym4nNtpJ8/YywyQQE+rpo45ktRuCuOZPqwjIcO3e2Pby8nF5rKnAYw2tdiZp4HLvq6VtdjaWDtgsWp5dIwUbF1kjqVx8Oq1wAh/SxzI0sodJe3O64Sks9ToUZryYibJ2Cm6PgOy8XrXXic7ev9J7V8yxumPgKSZE2pJqo8AkUmYbOVY0EP/MPfc3Gio3tDjc63EjlDpaN9yMd0nHJ+s4i4Z57qBkWiVfqpT6IDuxuj5SrVtipXxEDyvCFdAVBIP2dd0gaGEuy1NIuibfe5kYuryXPpcZjDK9HAUCWlEGP8Qa2jVzKa9veanPcovxFVGk+xA9hVfYA0CfhNMq4ep2HAUL7tVd9fhGlpyHMFmZOiRCZjEWpYml0HsX29nu5qWVqHj3zRcaec2OLXmlmp5cobEi6ukp2K/jLKjCCLhGpowaF3NthuqtWrmX6nos5/QMfTmOYCi4Bgi4eQYAYmYly6XfsrNnZ7niTw8PMKj1TF0vC0gepEX6HA8vq1RwpmI88Mo/a6KGBDyJbJytWSOfzYHxs+BcBCFTj9QasKuMXX1B09TWI/pNd/qIoslGzkcJzVKh7hZFYDAgRSdRuhnEHRc6Obz8d3uz04EpezDGnEq8tPD1OGmH8/gcy10r5qF5NnSEej6/t0MiOutX8IK+lcpvYwj0cLmiyYhij8iGa2u8Nk6BJoPfWctwGGTJtGBfIqDQkopf7d33NC+tG8cio9kpbBd7F3j4Fd2TbSR81NXxyAbOVqTxf4cfqbJ/kD5CuHkWGLAp1ogzClKXYCJ/fx6c6NTXK2nbD8ka7h/7WCF5b5ML5UlC0xVODLtDXJ6NmCGMT206ltrqtTNldTnVeRPj6IDVCHYPLrGLszgoS69v2GgMcM5RTKVtF3rZYvPaOw5mnAr/DAXvj+PeBOCx1HXNzHLt3Y9+6tcUxs8NDlKRbgQkrzIUy1i4rQpn9BBXW9su9yyQySmRZxPazIUsKXz8RFFrqjkQzcE8h2ooXuTin/bomZoeHsR4JmZdHtcv9OFX4zBZKb7mVJ3wX4Sy7jGoarGRz6+ROuVtg5ncyqr4+mR/T5dAlss9XiTbnafbm9iHtg/ehlewtu9fOMfmvHE5zI4sNvlFZZ2XKOqean4dM7rAfktnhRS542Xuuk4QbrwirWO6SYrxVfgY5DYh+GdXtWMkx0oFcmw/uLdawNY9rjqRLR5OQYeiQA7O3di/qd17HdEyDQhfGTSYywBdRyX0YfB2HOIx2D9F+C355VIfZg6cC48IfOfT8HqJcwXFgjHY33mw5cROjwiZTIyoffRx+quegwtIxiVewEjfYRvy994VdrsZ+SLcsKyBJ2XbD0AuzL6V3WQ9cZnn4jS+JhIh+kZRe3Zd9ykA4pi2YnR4yDDJUFfKwcvcAkMkw7PTRp8pCvVWK09N2htiG8g0sfPJqCv/xRIvjJoeH6O4QUnjhrIWEI26inLMwdaDVVtoqKYgtQDnUiiwhvPUBbDUadGV1GKwd3xqDw45ZbUXMjEWeGD5ujiw2hsxv5pM680JASpm/4eU2n1z+WhRFUmuyyYl0oAhzfQcA9In0cBrxWgZRG90D7dixrcbUtXItQwoe49L9VkRluFMkE5Cr/SRHlfNL7ePsrN7Z5lCL08PQiiHcbDKH3T2ccM899HzkXFbKbcjUhVQY285EEryx5Ka66PvsBKRd3Fm5VegSWKEGX48nKLdUtzns/d3v8/wNscT0s6LSh3GTaShmVzthAJ+OyeT1vNfbHW52eDAYqjjykRf3sfCR15U5OcRMzuHfcRIOOX/ocPzi0rdYkFiDRBv+e6jMyuKMjBzuNdRjsLvxtuHhM9o9FMWU8kn/GLSjw8fda4I2HnWcB0ucgv21bfcdMjk87BzYm4wpdeH3wABCVBLFuioOyB+iyNR2wU+ZGEXfiBSyL/F1eZfzEyFRKun77GRKBlmQag+1S/aPVcVSecNZRD7/jxbHzU4PkdjCn4rOX1iBSbh0Iv3OqqSX7GxMtvZj/Nsrd+GPXUCFJIwF0BqQfnEi+rOi8es28cPhxe2OrXWW8ZLWSV6+DZ+1fa7FqUCQyVAPGcIRIR9V3GqKPA0PpulkBcbh8aH3W0gcZib6ollhk6kJuiSyLDV4q2bit+qxbd6Cp6J1PtCAQ1sxrNGEf3HSJmCrVHDW4d34fFLE1rtbAAEOTIq9luLVMdgPB9dk8ZSgT+KFmCh0EVsob2dxqrSVY1Q4EdRRYWse1xy1vx+m57wIlOZsDO1w0h4a+RCTEs9BrvajjQzju9gQHu2vMVFiP8iSgiXtelaMdg/WOC8bJiuRJYQvRKkeOICESyeiUnnxeTq+L1J/NLd84aJuc3BVoU8FcX+7mZSLJ6Hy2VCJTurtrd9Hg92NWWGlvkaOt7bjZqenDLmamCGwZKyD1/ff3uawF7Y+TUVcQ9Xp/4Pwt1+VwKhNZgbsOY1YddvPssnhIUqw4lNGhV0mACE6jbkaP6r4Ze2mUveJ6cN9571I6tBxLY5b7S602MOelAB/YQUGbTwiIinKemqt7Rfs6Rs1ktsXZiJ8FxN2BQZtHDqfCXnkNpYUtJ/N4HTq+Ps+F3HfVuKrb59df6qwbdrM0RULkcctp9gqAYWu1RCSyeFhR8YqPoqM+L/hwOiTEEQfWWonhup6iufMwbJy5UnDjpmOsXRoPfoz6xAiwsuBQZeApVzFyC27iDbfxbCEYW0OrbLVsjNxO0avDILsQN5ZuI4cofTt3/l6Xy3JNUOpbKcWzH7nt3xbo6N29f+BUgUo+/UlNsNOVuVwvJ62WwSk+CPI2XwUj02KLJwxdoUWNLH0LDzCc5/uYOHEr9pV5EwODxfK3dxw+nCk7TQU7QqIqmieqawn0jC0w7EJ/nNISPagTAtz2LQBizw1fKfXEieY2szuNNg93FkjY/bXHkw/Bdfp+5ShjWesRcqk6NvaVESdHg+XrijHcFTzfxL+ECISke30kpGvRCtrm2D9R9nvbK+uoGxrm0O6FMbtdTy60klEybkdVuM1L/0d56FDLY75Gjuld3tgwgdnnZ+CLdFsqX0Yo3Rzu2MdLikViT2IH2AN+6Zsq5BiXWbAV3Atdw/4V/tj7XImxBvp+fD0FpUQw4GaN99kwrJKsmxvUmPzQERKqyEkk8NDdq2MMZ9rMP/ReqXeLoUuoIyYUt9iHd+R/uknRJxxcgPJfEMhdcnbsSb4w69Y6RJJGGyh+OYzOySIW1wu7FFybDMdaMaOD6tYol/EXWUkzimSJXe0204g0TWei466sOwJX3Zbc+inTiNxmJlYqYUqc9uL5vptC0n5eTVOoyz8m0xkGtFKG0X6JAor2y+2ZnS40bms+IQw1w8Bjtz5LtW7IpA6Oy5qZrC5SBtWR8SYjjvbnyoM878h9aEl/KzSkYCxzWffaHcTJbWQdnUO+ukd9yfqCpgLNUyeX0GipU+biuhF6Q+QZgKvqAZp+DPvhKhU+lxSwQ8DBnOkrrLtcX49WQYRqeX/Zru2FxmRlCno4Xe264F5Ne9Vjj1wN6afFrU4LjqMgR+6OTDhg1/U4K+Uc4ZnOE5rj3b7IW2v3MWB3hZieoexgmsDvC4l7io/WrcbQwd1Hpyecgo0IvLsDASFIqxypbzwPD3+/W+SItRUW5wQkdq6AmP3MM0QR0y6F3la+ApnNaGhmF0fXy9EZzbasWORxZ3cU2hI7DjOXjOFHiXhrYcBgFKHRK0hQW7BEvEJ/9ryUptDvW49N9UkMlYSXqsdQNWnN1nffMq+NAFfzN5249tqu56hI+ro+dwNYZcLAF0ifhG291zMgmPvtzns8Yr3+eDGNLSJblCFudJzVBrxCSZeGH8urxS/z2FD22nuFruLVQc07PnXqjbHdBViLzmLmnQfhT0+YUfVznbH7pc8ytwIbfg9x4A8rQdJUybxcXk18e16YNy8GudhbR8NivT/gzUCUKYmQLZAsbUAi9vS6hiT4/+xd97hUVVpA/+dqSmT3kkPgdA7oSNFsXdUrNj91NXddde6u7qr665l17aWXQv23kFRQIp0AqG3kF5I78lk+pzvjzsJCUkQlMxEvb/n4WFybpl37tw59z1vdVAxO5rQ8X3/WwSUe14DfoP+zYcHP+h1tzDNME4ZaiHpunFeEWvAg/ehObMRXdR2Sht7V5JHR41m62OXE75wYZdxrbVReaFaYPqOgElTGXReNTPTJ+G2xR6zmN3aimWUBu3D7aLPJ4KQWeNIP7cKW0QF7+U9f0y/u924nodcsbQc6Fv3EYAhOZnqQCc1+s+pbDvsUWB6diEF+NuInOmP/6hRfS5XezuBsxiEpWEE1v37aV2/oUe5Tj+wlfr9fdgHqRMOogjeeIDYWi0B2t4ftC1WJ7FF1RR/o8Nt7/uaGJhiWBEQQHbwgWOah1udhyjTafteSfBgr2vj0CdxXLTDnyAG9brfW+e+xxgRi1un7fMy5YQkoW89jF7nZF/TJqrMvffZcrY1UjTYRfEZff9AjrjyEiJjrYRYQ7E7e8+Qcks3Q4uCmbjIhDm/9+7xJwvTtGnEP/QQWr0kWjT0boExW6mxg63EqqTtegH/jGSaJltYa3iM7Krs7jJZG/lv7p2UBjYgvOH6BgiKpbXAn8uXJ5MWMLnX3ZosDkIxo/WWXMHx7DMa2Buxm+Ie4hzbmZs0lxvPfrBLvzspJTq7515TY2D6kEBllW5w1yC0rccsZjcx+Ar+/bqkIitC8Y33qVyKrzrQr5Ds+m8wO3oOzrU6XAQ3JnP/egv1H3d/YJ9sbHl5NH74MfnWrzC7K3Ga4qClEo7q7prXmM8zyWVsDPLeKgZggKaZGrOZutcWUfm3v3XbbVXJSl4/O4TYiU1eUWBc2jDcW6qILRzBGQm9p0eX2rJYGtSMHW2XYlB9RfmfH2LhVgNPNg85pnk4L/RLsvZE0LSl74vrAeiiogkbBqN0QQS6ei8EF1dpJ3VPOa1uU5+XKSckAWlt49Wlr3PtljOZkdC96nQ7Gmsjv/Or5fyLr+pbmQDpF0qUWZJZOZwoQ++ZfhqhIah1ApEDzegTU/pcLoCtLYU8Hh5OlKaR5fsryS7uuoJ3uNwIWyvP72wk4+UcnMdovnpSCYxiqK2JqObrGBE5ottmh9tBQpWGzG+bcTT3capyO6YYzFVGJhc0oHf3nt26of55VmwLo2mnFwKeAWthKcPXBPFY4UAamnq3otjr62j87PMuDXTb7C6CpHcaOcKvWIGRhiDKt4Tz5ZYl+MV9euzuqTY9DUPCCB5q7PNJ04WJwxtDOTXHwGXRb2My9KwINFsdRDh0jBxbT8JDv+lTmQDMGzehefJ//CXxXVzmDJoN0YBUlJhOWGyCS7a7iH6x5ZidoU8aen8whrBaswtj+oPobrxZqQVzFAfq93IotgqDyeWVFEljcjxJNwWwacCIY/ZDstq1lAwVxFw32CvZPm6zGYPGRBLN1LTasPfQ50dKyeCKiQwtBFtZ31v3ADQBAcTMjSI8ykF1S88m/lZ7K1uXvErU5sNYveByIzQRjRas8XHkyt6tPQ6XG6OjCUebBtcx9jtZ1H+8lNwvYolyNNDQ1rsSanW4sPlBzNhmDOlD+lwuW34+fuf+H8UVAQSJerIKG7jy1c1dlJjGNgdhooXAWBtJf7kGXVwf1tXqhFsfTuXHUZy5sZhI/+4u5qiAKMbqFxLqdCP6ugltO0FxDJjcyNLTRnGorvf07mBHNDGtEre77xc4AO62Nuw1egZamqhq6n3ueuDtq6l44AHs+Udkb2pvIwBqDExfIjQarC1+zG0NxN4w5ZgupD0N35M30klQRt+v3DWhMVjqDSS5mqk/hkzNFidav1JKgjQY0tL7XK6Q888jfc1qIgYoP/46rWcSOMqNJJwRnI2D8LHRaIP6PqARgKAYJrkE9ppTqQmJxNhD/ZlTIq7hT6sisLQG9n0xKJRqvH6OOnQh27h3ywJsrp4nApd5MP+qtRLsBasQQMJzz+I8LYmv9RWgbeTfy3O6rZJtTjdxbf4MPaua6Ntv9opcANIUw+rAWjY6b8MtuytWh1sPc2fYN6xdEIQjoG8bAAIQotSCsV06m28GFvD6nrd63K3J4sCkqyPr+xh2/eeNPhcrcMYpRE9o5UBkHn/Y1Lt1b2PZdnanfcF2o9ErGYHa8HAiz72AP0t/kqSihDqcbjYXHFGCG9vsBBoL+X1SOFUjEtEYjX0uF4AmLJbwwWaKQnSsL1vf4z5FEYnEn9qEX7p34nIIjERoNOTF7mN5Xe9xcgmWDCbPriL8vL6t8NxOwNixpP5+NOsS6mmWuVjsPRezGzd7ASWL7sd/7JEsy2arg1DaLTChfS7rr1aBAUi7JpYpk8JxmQcf04V0wPwpOaIFtyG0z2USoXGkn1NN/fAwtptfZ2/t3h73a7Y6KIndxtLycCyFvRf+OlloQ0LQx8ayuuYddEG7qZTt1Xi7NvxqsjiIiG4l9pJxaAK8Z4qdZrdir5tNU3kdTV9+iaO66zVprW9k0PZSzLVeWl2ZYmjcZee0nDIG+A3rVYFpsTowb3BStezYjdNOJlX+Qbwc6EBjrOKVdQXdVsl1bW1YAw5Tq9V4ZRXVTukH5Zz1pQ0/8xk43d2D6tNC0vj04q8YJR24DF74HkOVB1mavh6NsZK91Xk97tZkcRBEC1lTXThPn9LnYvkNHUrIKH8S3TpGhszqNU7O6TCycI0W/3fCkV6oIaILCyPuoQcJTE8gWihxEDqthslpR5TzhjYHgdpmRJ0OV753rHsABEYRPbqF3cPyuXvt3d0q3y4vWs5GywNYNVavuD4A0GixtEVz5zIrGS3n9b5fe1aPt+QCNCEJvGxyoQva2+MiB+CKUddw+tRr0PgfsTo2W5Tebk5dIGj73mL0q1ZgMEVjsdRg9K+l7hgKzOjaG/i/RXaa8/quRHgHAYplI0Jvplqup6S556Z7zRYHkyrTmLtKS8umYzfdOhm4WlpoeP99SvYtQ+tfTKnL82M6ygKzr+UbLk4IpsnopRgYgKBY/G21IOzU5edRfu99WPd2Vfy+a/6SJQuCCB3jpUA4UzQtJf5MLqtjQuBtBBt6thhYTJ+yPliHJtA716vx088Iea2ITYWHwZyOW3ZfJZc2VrM/ZCe5W8Kx5HmnDgxAyPQhJCY301g+jT1l3WO/9Fo9fhsPEVFkwd2HjQk78A8DfSCmr9by2NtNzIy4pcfdGtscxLid/D6kmsyz+z5rS0qJk1Cm1buYEHJFr65Hk2YAkf6xRAxpQ/Rl48tOVJoreSGgDXew0mjy6snJjE8+8uBtaLOTZPHnnrU2NC9/7RWZADBFIyUMr4rnyamvodd0fbj66fyYt9VKy8owpJ/3FAUnocQWm9HX9G6BLbC+yvq1MVjLj53KfzKpXJzPFysbMFTPYtGGwm6LHCklTTuyafj44y6tRpotDkKFGbeXFj6/agWmbruFLSvqMST/m9qW3n3JVe5gwjKtBGR4wbRoCKDmQBjj1+cQXvskZ6X13OOo2eok2a4h/fxqIm7oeWI9mbjbLFT+7WH+HXI9zppz+fJAKy5dQDcFxmAL4O4vXdQ+vrLPZerAFEOVrZagIQ+yqHkPltc+IHD69C67lFj3UBxhQxfe3f/dJwRGk3xqLatOmUdtS8/KsdXhQmcLoHSajahLZ3tFLKHXoQ00EeByEUEzAtDruq6ShTuQC4oGEFapw23+4Y7HJ4um0aMITzMT6K7nykUruq36ChoLKHjnBeQht3eyo4SA0ESCoyU7YjLIreq54GWzxUGYbMHWrMXt7ttyBgBISdGbLUTlKDEwbY6ev6P6NjvEaAif1Pexe+00Xnw1EV+WU+duZXCUP/uOeug2ttkJEy1Ej24m/rFHvSITAIFRlG8O5bplm/EX3eNuZibMJNIyGp3OjfBC24V2gkYlo7ncj12BLb1aaQe0RmJySq+4ZNpx1NvRtwniRX2Pi5xGWyPP/+dqKh56CDq1bmmyeNoIeCl78VetwLicBuKb7ERaFlLfSzCc0+2k1G8NdUNaMSQnekUutzsAP1vbMd1aDW0W6gKrqQ0LQhvW9ysGXVQk6Wu/p2jSqbgkbClqoMgRSkNF174voeYopkQ2Ezp7fJ/L1IEphii7GarnsLssjCu+LWdHRdcV/Ckt13PXFhtOvBA74ZFJCIj3r+e71jv48OCH3XZpsToJbxzGPfWNXnPVhJx3HkmP3MHbYUEMSthPTLCRd2+c3GWVbHVoGeDvR9qlgsApfe8SaWd/sxGnTSBS/ouIWNxlwgTYUrmFO+bmEzSnAY2XLAqEJBKW2sbSWQP5oOQhsgpruu3SaLHTJsooWBpDyeKP+1wkodEQe24yfkkO3ipfyH93/bfH/b4ufZsXE/NxedENGHnRpVw+7Qxmt5m5IMOfLYV1XeaxhjYHZaEF3JsWjt/oCV6TC79QgpLslA+KYm/NQZ7a9hQud9fYjj2paSTOaPCqq4agWA7om7FEPUtJU3drp9stidakMWZONX4jeq/ofbJJeuohciY50IQrGa5HL3L0Gj1xt92B/Oy/XSyAzVYHIaLVa6nov2oFJnrBqQydXstQ3SjqzT0HKrXaW9EYl7DfYez7JoAeYk6LwTQ3BEvgN7y17+0e96ky17LWVMq+fBOOqr6PgREaDfroaN4+sARjtNLioEKGY6s/6kdnbSAk2ULE/LP7XKYOgmIxSoiqH4HbNoBxJbvJ/eKbrrsUHMS+TeByeyu9OxpzlYF569cTYBvMANOAbru0WB3E2WvJXxpFc3aRd+QCCIrl/eAgNMF51Lc5GJXQdbV0uKWS8sAGzH5eCsL2kFzZSO7ncYwuSMPdnNllwgS4IP0C/jrudWL0dnTeUmBCE3E2lNBgaaPN2cA1b3zfzTLU1OYgQO9gxVkaTN5oTgiETh1EREQbqdrzmTyg5xoiATKJv7/rourb3jsKn2wib76J4FOVdPN5SeCW8N3+I9mIDW12/LRWEgsM2PJ6jinqEzQaAgcHYRtoZPH+Hbxz4F0Km44svv668a/khXtcWt6qtwLIgGhGr3Qwdv1M/DXdLT/NFgfBtOIWWjB6afEFEJLAOn9/aiMPYNRpeOeGSV0WOSaDiesn3MrwITOPktdJCGa0fdnmoxO/agUGUxQ2ARr3QQrransMVDIIE/NWT2fE+0E47d6JmCcwiiBXI1r/EnZXH+hxF4c9gN/t9yd+rRtndd8rMABNS74i42AWOlMuAFVEEu7qWpsgx7SE66KjvToJtLcTiNE0oDFWcnH+94zYcMS/3uZo48v0HTRfVo8h0TtWNEzROFp1RJSWE1h+To81RJqtTqoSllAaKdBG9HF/Jg+O8nIKb/8bH2yp4w+mSdidbvJrurpG9tXtYKe5nqqVTtxt3nMhDZw9k5ixTcQ5Irlu3GldJkwAf50/0V8uw1JpRG/y0io5JBFbaRsfvvsRydvPw2H372YZarQ4GONyc8eQaCLTh3tFLJcMxL/BQpjjVKYOmNrjPsFyFAOSJaHjvZOq3M6TZatYEhjAQH8zCWH+fLvvSKmFRrODC5p1nLlU0rTk2L3eTjYWfRiRjkZ274uhLfdBmpqPKAwDAhO4Y3Et1buDvFJmoR0REoe7Sk9qvcBs7d6+YFf1AQ43ZrNrbZTX3IAATauyuOIzLa9rZmBzugkN6OoatblsVH/xKc0rVnQZb7Y6CBNmNF5yd/2qFZi2gkbyV0ey1/Y/2rS53QKVABosDmoio4nLbEAb23uxoZOJuUJD0+Im/HLnc9PQ+3vcp9UKqTEw+PcD8RuS4RW5Gt5/n7N2W7h90EsADB6UgcFSDS4liEtKSVRrCL9/WUPlS91dJn2Gp51AfEYOgWnPoH3kzwx745WOzW3ONlp0hdSYNAiTl2JgdEZChxuw3TCeQpcBi8PSLTW4xepAL8JpmdNK4NS+7YPUjiYwEG1UNDotJOqV+IR9h7vGKUTrRnFNmUBb4+7zFhWdMWSMJjzDTHCAhSZ3GXWWrorChsMbCPz8I8zlRvyCvBSnEJqEPsDFltQRNBsD0Wo03SxDTRYH4Y5W7K0BSG9UUwbqNx6mdFk49uZ6ylvLeyx4Wd9qI2pgK8GTBntFJoDKhx/mlD+tJN+gR5irOWN4LOtza2mxKlk/9W12IjWtpN2QSNiVV3pNLoDqUiPxX1YzqL4Ch0PXRRE9L+Uq/DTBaA1e6JXWmaBY0s+pZtPIcP79/cpuzx/pCiDFZsSo773icl8gnQ7ASCLKAnV7SVe5VpWsYuszf6b8g64ego46MF5yw/2qFRj8wzA6YXj5cNzWBOxHBSoB7K/JpzTlEI5BNjQhfdswsQO/EDTSidFl7zUOpspymIMmM/bQMK9UcAVIfPl/JC16jfkTFCtGoy4KpBtalRWWxeFiaFMY8RktmGbN8opMQEc7gUtCB2A5fDnaiLguKdyR/pGcvXUm03bjZctQDOGyEZffHia/P7mLyRqUGJiJNWmc2+qd1vOgpMMnvfIK24eF86Z5K356TbdAS7vDj/RkG+l/zETo+r6pXQdGE053EDHaGr6qu4sVxV1Xd5/lfsbv7gonanQz/kFe+h5DEjGYXEy76wLqh3zN+JF7u1mGmtocZDdZKXi5AEd19xiZviB42hgSptfT5jjI6Z+ezrrD67rts8X6N/4ebET6ee+eD5w5k4E33M7vGpqgpZIzRsRid7lZdVCxEje22XkuyszbsXQpQe8NTGkJGMa4qPYPQ+9fx/qWf7Kvbh+gPHiLx8cTNtQOvRQP7ROClGdKffwK1tW8120RrZNhDI8NIPEc716r0IsvxnBtEq+58wkyNbDjKAUmIyyDmqfuIu6Jrg2HLeZWjNi9Np/9qhWYgGmzGHhqLfH6aKQzGK1GdFtd7a/NwaLfS71Z75US9ACBY4eTMqeG1rA2ntp9LwfquruRKmw7WdIiqM1u9IpMAFqTiUPN+fx7x0PER5nZ0eRREjyZSIr23UL40DZMc8/wmlz4hYLWyDiDxNUymsrdhdT+72VcnSq6js7fQd0B7/RBaselj4QVhYwtauOSgdcSoOtaF6fZ4mBoaRH5X0fjaDl2486Tze7AID63lZMRa2Jfedc+OaWtuewPsCO8GPzZTv7nQYzZU0G09XpOSTily7a/T/8712gvRKMFg8lLD+VQRVkfaWoiWKehydJ9QdFkceAXa2PbpTHoorxj4TMOGkxQghWDxY8HJj3AqMjufcdiGwdzw8t6GjZ6r8ZQ0KxZRPzfraAPgJxvGSdyiQoysszjRmpocxDZ6iB2vwtnnRfrwADR6akkDmuiNiCUJy6cgtldQ72lHiklN6+5gEOhpTiNIV511WCKpf5QIH9c4oe18sJu2T71bRaCRQvCSzElnRFBcbwtWkiNb2J7cWOXbWmhaVw77iZCIrq6J90Wj6KjWmC8gF8oaHScMtKJ3ljHacNiuq2uUvwn88DiUHSrgr3nG/X0aQqVdqqth2mwdY/N0baN5f7tFqzf995s62TTtmMH9pfeYE/VLoYM0LChxk/Z0KRMkE0WBx+k7OTfwdFI4cVbSwgwxaBvqyYp2kHZ/hXUPP00jjJFrq0V2bxwtpPAs+q9qsBoQqNxllqIbHVxRvxC4kxdf+zFzUUsTymkOQq0Id6boA7ffQ8XfqtjncXEiAGh7K9o7lIM7VDbCvYcDKBqae/lzfuKmNMiMaUJmmpGdLte+mYLKd9twtak81qaJqYY0OjI//1/eWB9JIdLJuJ2d60H1dxmZYGs4+rZ87xWWVYaQrDU64msP8zlQy7vMUg8tDWDmLFNBIzxTlwOKG7kj9b8nScDjVC2Bc3b53NjSg2rD9ZgdbhoMlu5L7eRgZ+W4zjsvbkLgMAodDYbaa1laGQgiy9YzIyEGTilkwnO4Vz5UQ2tVd4NXMcUjcOiJb7JgnQGd8v2WVX+Gbt32KnZ0PfNODvjqK7G/kYB322q5dSEORyqbqHZemSR1Wiuo+y5p7Ds3t3lONledE+tA9P3uJ1OildFsXTLRmKSNvbY3K7BbKd2cDjRE2xeKUEPIP3CKfougrNy93FR1HM9Bum5LZJh4+sY+OgCr8gEYN2zF927i1ly2gfMSZvIAbPH1NpugWlzcFahkbNf1tJyVHBXnxMUAy2VBERuYEnaN6Ru3YTf0KEAlLfUYQloQOilV11IIiSOgRc1803KZN7aVMDynINdttscGkSECf/T9d6rWozSWdwQFwEtVQwfEEKL1Ulp/ZGuwAmOuZxTZ8Fl9ULhxqMInZxGZFQrdZYGvilY0aVi6teb3yJ6yy7srVqvVkslOJ6wiZEYp02nyeKgoLZr0LOrrRF7ixZrXff2B32GMYSi5ZGML9hHfVsLGw9vxOo8Mn9JKXE4WwnPMOM3dJjXxGpduZKR//cu9c0et7bLzukBeVgcLr4/VIPb0oQpxsLAx6/BmOGd2L0OAqMo+T6Cu3d8xJaCekC5TkiYGbkQQ4gWTaiXFON2tHpiphgwzh+ELngnd5wtuyyig0U60XoXAV6WSxMQgNQY0LvdXNiwiLEcYmdJY8f2F9Y/ScuLr2DZvafrcVbPPqoFpu8Rej3oDVyoCWZq1IXsK2/u1txuV/1mNg1qwDTIeylsIigajV4SYnRS30uTSavcyaYAPzShUV6TK+zyBQzZuwdtaCjjk8NoJhCn1h+alZVUk8XBHJuO0Gkm/Ib0ffO4LphioLWKmbHn0Vh6GxbtkfLWI8KmcveyCEylOq9mGGCKRutoxR8ry6te4q7117KtqL5js9sRxtUN/gzRh3pPJiDqN7fjPncsf/dzYvAvAOjiRtJbJEPHNTDgtgu9KheAq82Bsbqagaa13LPuLgoaCzq2Pd3yBY//NgFTnM27KaWhSUSMdFM51Y+A1KfZXNi1gSmWBj4riGbfU594TSQRHE3izHoOp0SxtnQzt3x3S5e2I01WMzkJr/KePhjpRVegMSODqBsu5WGL537S6EgYdxoh/no+yS4jUFfMpYmx7IzQeM1a1UFgFJHDWyiadQqbC+qwOq2c8/k5vLb3NWpN4RinuAlM727J6nOC4hgS2IYxagXrK7tWJw50J3PGqCqiz8n0qkhak4mU+y6gLtnF47Wf86DpCSr2ft+x/bRRF3Hoi0cJu/SSrsfZPd+7GgPT9wghSF44iAmDtJySMgq7083Byq4BjYWtO6i0NuJ0h3pPsMBIkk6px5wRy6HWLM79/FyabEceMFJKWkxr2Z4bSsveCq+JJfR6EIJ7197LwZZVBBn1NOiiOhSYxjYbgQFmQqcnYkjyUkO0doJiobWKKUkZuG3xFL7wMi2rVgGKYjUop4SWKu80cuzAFEPdwUBu3/0Zjqax2KvPYlPBkSDPZquD6E01lH7dexXoviIsJIkVgf448l9jgja3SyBvvWu70gDQW26adkqzqP1yPSXfhvKW7SMeGHA7KSEpHZuXz1/O2U3R2LT+oPVicHFIIrKhlIHGALTuKLaVHKlrIqVEa2ukcaSV+uu6p8r3GQHhmAbY0Ae6SQ4cycunvcywiCOWliaLg3Ozoxn7tglHg3cyowAMiYlE3v039De8BwgYfiG65MmcOjSGVQerCcbMuGIXgdu9U/qhC6YoTHE2UsYmkFvdSqtVMDtxNg3WBl4qvJJqoxmdyXsu5nYsTUE0fphHXO5lJDlv6rLN3FKBE7xWGK6rYA2Y3G4KDTqadRJRvKFjU2ZcJucPuahLlqLbLTE62hWYn5kFRgihFULsEEJ85fk7XAixQgiR6/k/rNO+9wsh8oQQOUKI0zuNjxdC7PFse054SvwJIYxCiA8941uEECmdjlnoeY9cIcTCExY8MJrSthq0AUqGyK7Sxi6b4+UCHnrfSd1OL5rTPf2QIkUzxdWSMH0CrY4jZmub001i+RROzZaY9xR7TSxnQwM1Tz2NY38ODbYGxiaHUeoK73Ah5Tflc1Oii3XS3WuDuT7DFAOWBoZFG9H6F+H67B1a1ygrhsUFH/LkTSbCpvh5V6bAaJwWLQMs9bgsqWjME5k68Eg2Qa7lWz5MdyGSvGhNQKnnU3THf1l+qILLd3/FO/pHsRZu6theFLCGulVhNK7f71W5KFpHSFIbAyY3EOWyM7iqDKP2yCrduWsviVuKMLu8HKcQmkjNxhYiL/4Dk4y/ZW/pkcJwFocLk7uZ/9M0cNqZJz79/Gh0RiwWE6mV5djteqYMmEKA/ohybrXrCNcnEDOuEV3iIK+JJaUkK+97fn/oUxpSpkClEiNxxohYXG5JjFPDdTvs6D/Y6DWZOghUrNUTi77k6vJv2VJQzx8n/pGLBl3ExTviiP5cj9R697cIIP0jcLXZmRgdy6aCrvGO+6qfY8s3cbTsqezl6L6jclkVto0hfF1WwWSrm8VNaR3xX6U7N1D29JM4a44syFpsShE74GcZA/NboHO6zH3ASinlIGCl52+EEMOABcBw4AzgRSFEe5L7S8DNwCDPv/ZUlhuABillOvA08LjnXOHAQ8AkIBN4qLOidDxULTvMgZUO/rHtPiJNRnaWdg2WajDbMU2XhE5JPpHT/jQMAVTuCWfIt1mUV8WSteU8KuuOTE5NFgcRbjcZ51UR89sbvSaWdDioe/11HoxeyHUjrmNCchj5tmDcjUqwrMvhz1822Eh8Ige3uXtdij7FpKRSR4smTFHbuOMmPbF/+ysA9ZZGbDo7eCtzpUOmaGLGNhN6x8UA3Dg7jMiwThY+eyzaIS5i53kvRgFAHz+AoGFRaAGkGz1OwqqzOraPLptKis2JFF428afMwC9SQ3CiFanRskwTwdKCpYBSEXvFd68QfLAeu86Laa4AIYmYBliJ+c0NjI8PIq+6lcY2xarRZHEQSitttXrsdZYfONHJpbEwmGEbC2hqtVLaUspHOR91LByqW8yIUAehQ5xoQr1U+whljgg65/9IXbaPtrSZUL0fGoqYMSgSo05DuGghZlwzqa//x2sydVCvLFIda3Zw5fYVVOxSLLSJQYnogicQFGFDhHjPJd9OwIjBpJ5axaBJw6jUfMkH+44U+EuwDUQf4UAbGeN1ubSJQ9CljQFg56i/sN6a1lH08oXP7qX55UVdCl02W5Q2AhKN11y8J0WBEUIkAGcDr3YaPh940/P6TeCCTuMfSCltUspCIA/IFELEAcFSyk1S+RW+ddQx7ef6BJjrsc6cDqyQUtZLKRuAFRxReo4LbVg4KVobz037B2MSQ9hZ2lUDLnF9y5Z0G36p3nWJuAL9wKSk8zmcbjbld3I9WBw0hx4gx6j3XmE2QBcVxZA9uwm9SImNGJ8cRoUMR5irwOXEZfNnXnAD0ZdkogkM9JpcQEc9BVqqGOq3gLDWBzt6dEx2n8ZfljlwWrydYaBMOjMGuAkwaPm4/E88t/25js1uy0Dur29A5+UUyYBx44j7619x+ktujI3m/ZBgVloGUdNiw+WWmOySQXNqCbv4Aq/KRWImXPY21kYdy8yzWOUo5JHNjyClpM5ax59j1rNiYQDOQC+vkkMTCYh0EHb6OL5ufRBD5Ap2eAIamywO9IYadmyOYverL3tVrOAxIVTPjaDR6mRLxRYe2fwIpS1Ka49NFev4IHYPB7QRXk0L1hgMxNx/Hzfd8DzxIy5TBnO+ZV95Mw6Xm5qQQ1ycHMNO4X1XDWWKkh45tJWUs2rQlClWx5tW3MTi5A3ET2n0javGFAvSxcx4PfrgXawsPLKYCBPJZGbWEjDei73lPET95nZinnyNg0Y//tr6Llr/oo6CdrOv/wtt372JvlNl8/ZGjg5DMGi8E51yst7lGeAeoHMEbIyUsgLA83+77Twe6NxAp8wzFu95ffR4l2OklE6gCYg4xrmOm8gFZzJ4TCNj/GMYnRBKfo25S7qYw5lFUZ0Gl/Tuqi80MwrXeMW/qI/8jk+qb+tYXdWaW6kI2EvZzhBs5d1TrPsKIQRCCA41HGL+4vlo/YupIhIh3dBahbWlEk2Eg4hzp3dp8OUVPMoCrVWMiUsmYM9BDv/tYaSU2Csq0OU6cDu9GP8CEBiJpc5IxWPvc3a4E2ov4oYRN3RsbjM3U/RJKHXrujdx63OSJ+MXNxaTRk/90BvZLgezr7yJJouNutA88vR6r5mBuzBoHmXrI4nfV4G26TSWXrRUiVULTmbNxVnMMdtxG70cmxOiTNLu8jymBgwGZ3hHsbHGNgeh0sKe02wEXu3dyrLGuEhM4TaabS5OSz6N5RcvJzFIkdWPOO5fKtAv9m4FV4DwhQvxHzUKwtMgMgNylnbUNol0uzhju5vc77K9LhcpM0Bo0Qe60Jq0fNU8kNpWG2enno3R6XEv+0KBCYqlencQhof/jLHqXoLMF3VscjgqsYN3G0x2JjCCuAETSLW1YTLqOurBnJ5yOhPiMxGdFJVmq4NQYcblxd/nT46EE0KcA1RLKbOFELOO55AexuQxxn/sMV3fVIibUdxTREVFsWbNGgDC6isYDby75nVKnQOAVN75ei3DIrRIKUnbO4tz1hSSZ8inImDNMT7WyWWkW8/QwDqMLojVxTPGKPluzXfohZ6d1Q4uP5hOwr4DZK/dhL22+YdPeJIIWPEdNh24hrrYu2cHDr8IcML2NUs40LiHuZGJPLU3h7a2NV6TCcBgq2MqUPPdswwIvIAk22aqv9hH3oTxvCk+wnKDnXOCjGxf4125xukCsTY1Ee+spao2hZ2bK6k2KQGMbYEvs3EkTDVo2OORq7W1tePe7DPsdqL+9CcMEyJ5OqaCZUkTADdfrd9JSYyNBplD/fIwNiQsxpGc0rey9MDwWf5Y9YKSag27Nu/qGHesWk/aASuNIYJCL36Pwu1gpoRDtz/N6ZOnszx5Jit3FTDBWEF2lZN4l50FATY2tflR5UW5hjQ7CC5rpXjDBna4FMUlhxwAivPtTE/SEzhQ96Pvpx97L5pbqvm8+kPGDpjDuf7DSSj6ElPgfnRCS2arllEbtVSYv2XNMO9Zj9tJSbyIlJKP2aKZz8RdB3h9yVomxg3g7vcaKdOFUTOmhKaqNV6VKbipnGSjG0drIWf65bB0v5vVqxUFuaX6a/aui8U6aiv2cO8VJAQw7NtH0AcfYrh0FC/Urec3AYJ1B8tYuboG+5bVhNZZsJ19bsf+2VVOxmPG7NKzxUu/g5MRyj8NOE8IcRbgBwQLId4BqoQQcVLKCo97qD3svAzo3FEvASj3jCf0MN75mDIhhA4IAeo947OOOmZNT0JKKV8GXgbIyMiQszyl7ps/yifvq2g2pGRTH1EEpCLDk5k1Kx2zzcnTX+8maVYtxnlzyZg6q6dT9wnm7Jep+Lic669z83b1SJ64/S4MOkXbbdp5mMbdOgZdZUVz621etXaUvPUWmuAQPl/wOQAvNn4BB2F0WjQDSmK553Mbkf57SFvyL6/JBEDxJtgEUXVbuappNy9kjiH/vFEsPvtstG9/hFbjIHHwGBK92eIA4MAAgjOTMJ15Gc88voyDejtzJk4hJiAG/ebFBIzfRsa8c8gYqci1Zs0aZvWxjFJKqjZvwTQ4CHFwI6dnmIjf3YrFL5KxY1NxLE8iQuSSMHUaxkHeCwDtoG4CfrkbsDRCWWQ1ccERDAgcQMGbWTgrIDQ2idHe/h63xxJ3/mAMF9zCKaV6PtpWxvQZM6nefhi/XU1Y6sOZPnw4uijvxVC46z6h4aUShgUXMWvW1Wyt3Mr2qu3cMvoWVjZvwy+mjfjhk4n/kdfqx96LBddcja6qCM3Lg0kaPh4WfcbCIQ5GTJxB+OL/EXV1MINueRptkJddugDjMuCpjxmmc+NXupVV1gXMmjWLt//3PyaK/YydOgeih3pXpv3NkGEmggM8YPkHqyInkRtyBdeNms/GL6IwRBUx5szz0fh714JsiYyivqCQqFOvhA/f4bLIA3x1KJbY4RmsfPkzTqmOYMqT/+7Yv3prKaH7WjFFJfb5HNbOT3YhSSnvl1ImSClTUIJzV0kprwIWA+1h+QuBLz2vFwMLPJlFqSjBulkeN1OLEGKyJ77lmqOOaT/XfM97SGAZME8IEeYJ3p3nGTtudHFJ+IfbuTdiKovOeJW0yEB2ejKRqlvaaExYy94UgS7WuzEwuqgo/COtZA6KodXmZEtBXUcqdXFTCQdCq6j3D/a6qyZp0SISnnkaAIfLQXxqCgDVhwuJMBsYNbCJqGvme1UmAErasxokwuXgoppEJhjvA+CsnHGcv0apXup1TNHQWsWAUH8GxsLnlQ+ypnQNbXYX0Y0JXNrc6nVXjRCC2Af/guncq5HAhZsewD9mKfvKmzDb3AQF60g4S+Mb5QVwB6fizm1gcFMx7+W8x9cFX3Oo4RD3zyom5PQ6tD4oq05oIqEDnXwbVMjXzTdgcZk5WNlCk8VBoain4hsnlWu9W7xRExpN4um1bBs1G4Dsqmxe3/c6FqeFrc1v8ddADU6395WEqOtvYOq9T3Ja8mmQMFGpfp3zLeOTw/iXqZzHo7S+UV4AguMgehihUWU8f+cLrGzUIaUkPz2W8MFm79aJaqf2kOeFxM/hIEBXy77KatockgFBUQyaave68gLgP2I48f/+F4ahY9mVPJ7fab5DG1BISY1g8D+eIuKL97vs32x1EIzZq7/Pvoy0eQw4TQiRC5zm+Rsp5T7gI2A/8C1wu5SyPS/xVpRA4DwgH/jGM/4aECGEyAPuwpPRJKWsBx4Btnr+PewZO24Cps0hflozyYFaAvQBjEkMZWdpI1JKKloa8XcVUFvthzSE/sjL8OMwDhxI/OR6Jk8ZhFGn4a9bf8udq+4EoLDlIJWN9dRv0SHdXqz+2Yk6Sx0zP5xJuX4XbdJIfUUB0lmNZoCdoFPneV+glBmgUQyKQqun0TSelHdeoHXtWiLKDtFYEABB3jdZY4qhbn0lhZdcytxBg7GX3sSMAafRYnUyruoAOZ/EYa3wnguwM9IvFBGexgVuf0aET6Coro0DNcXsDaml1s/76aQdhKdRsSmUc8s2ckPa4/z7lH9zfvr5/Gv4+8S4XOgDfaDA6ANwl+0mdX8BZyWcBcJFdnEDjRY78UYn668JIXzGbO/K5B+GKczOwbomsosbuGbYNaxfsB5/nT9B9rE8+Lab2tXej68KmjWLoDlzlD80Whh0OuQuB5eTMU0OZm4Ge1GR1+XqYOAcNOVbmJIaRE5VC4cbLZhcnt+gL2JNUmeCRktldjCF30SSVn8Vzsbp1La2IvSNtHn52XM0zro6Bg4+jwXNzSS4rRwod3JG6hkkBCV02a/Z4iBUtKIL9J4SeFIVGCnlGinlOZ7XdVLKuVLKQZ7/6zvt96iUcqCUMkNK+U2n8W1SyhGebb/xWFmQUlqllJdIKdOllJlSyoJOxyzyjKdLKV8/YaE1WmWF0FrNJ4c+QReynZoWGxVNVhwOf67dkEja0kDv39iemgX+9nqmpUfSWjuOiwcp6biRIpPbD2kRhxxdgqi8Qeu69ZTfex/hxjAuy7iMKQmjqdFEYqsvIzssm9/5xeByeqc7dhcSM+HUh5XXcx+ElCkMOrSBVevf4dXpOdRe1YgI9IUCE41O04xx0CDmpIViax3InhIHLVYHW4ZsJn+kE12cF1P0PZTfey+FF1wI8RO4trKIcwcq5ZjWFu2iraSJxs9t3q/l40ETm0HKvBr2D0ulrkXXYWU0LXqJ5iJ/jCYv/xZLs6B4Ay15VvzufY0HNCOIDYwgu7iBJouDye42bsoYSUB03A+f6yRS1GbE1qxj0pYlXPnKJg6U29B5lHg/cwxJExsIme397BVXq5knP/ktz2Y/owxknAHWRijdzFWlLSSsbsRe6oPA9XYGzgGXndnlK/nX2udZv3wzZ36xidqCMNAZfvj4k01iJpzxOIGxNsLmTSI4bRKb8+vYVrkT944yir7zckJEJ1pWrSZ3+gx0hjHcXd/IdX5lbC0p4cA//kL9l1903ddiJ0SYEV58Vv6qK/ECuBobyfvYSOO6g3xV8BWVLiWFbVdpo9IHKSWEpDm1iBAv5+EHRpL/dRTVz/+PuUOjqaoYypAgZYXXYnURNczB4Hu9Pzk5Dh+mbetW3GYzvxv/O8ZEj8HiH4OupZxRjUH87g1B3Tsfel0uACZeDzo/aCpjWGIY19+cxLKJgehcoJPSq40cOzDFEJLcwoC/3M34QbEEBTbx1t73aWizYtKmEjmmGd2AFK+LFThzJiEXXqiY+FurSPWvQhhqKChJ5LJmQWCQn/czydqJGIhfqJNB/nXk1Vby5NYneXLrk7j3bsbWrMMv2MvfY9E6cLsJiLYRP70BvTWHcUnBigWmzYF/axstBTbcFu/WgdnXoKWtysDFe9cS0lTH5oI6Pj30Kc9kP4PDWog2yYb/MC/HcwCNH3/MOX9eTpwMVQYGzgGtAQ5+jX9QPRnPXk7g5Mlel6uD5Kmg8yPBdQh/t4PduwupHxSMJsr/h4/tKyZcT9CgICLG6hibZsIS/STLCtYSEqYlMNlH7jbAf8xoIm+9FW1iBjJhAkN0G9nbtJqSpZ/QtGt7l32t5ia0SK+1EQBVgUETGIh/YiA6Qxsvzn2RV05/AYNWw86yRnLqc9iYUkR9sh/ovN23IxLTABt+8SHMHaIoT0v2HqLSXElh21bWBDm8eqO0E7bgMtJXrezwYVeaK6kJjSRS1jK6TUv0dCfBZ5xQKZ6Th95fmZzyVjIsLhhL8S1cEH8ft3xnYtBuL/dBaifQUz2gtRpNm5nBKbXssS0ir6GQSXXhZFps3i/ZD4ScfTYR118HCRMAuG/b3QTFf0FxnY2YZCtJC0d7XaYO/EJwimim5OzHWnSYj3I+4qOcj/jzjQFEj2rxvgUmZQboDOj93QQn2jmjYRktps853Gghv7KJz8wBlL22FVdLi1fFGpicRHCKhefOnk9VYDhtdic5DTlsr95OSeDbvOiOwIX3YydMp8wk5snHmD9CaTTr0PlBygwa9n7MtKQBLKFeaUviKzzzRIB5Gx/c9Cgfyjgco4wYkn3gPmpHo4UhZyMPLmcGLbhtMRyuCmdsop2YmQN9JpYuPJyoO+9AHxvLtpRMboqy4+9opfL5x0n401+67Osye0p6qBYY7yH0euLPj8cUVEpA5V6MOi1DBwSzs6SRSnMV+oZGLE0+CP4MiCRmbDPBYxOIDfFjeHwQb5fezn93/Zdyx0aa9+ipz6r1vlydcLldzF8yny9MZqJpRKtvxDUkuKMLtE9IPxVqcxjq38S84q24//UosdXVWGr1vqnxYFIUmJqHf0/ezJlckDaL1rx7KK7yZ9SOHPK+ivVuX59OuO12ZORQ0PnxW2My6bpL0PoXsjzEjfCBUtVFtqAkQndUEZBbxOYrNrP1qq3c5FKCw71pogYUE//CJRAzApvFxLXGucxKmgJAVXUlifFmcu6agC7cu/fXkNRktHrJBROiGJ0Qwotr8hmqv4bX5r1BZm4i53xowNKp95a3MKalEX7u+Wj8/MhtyOWcz88hO3EUoq2OhQetpK6uQTqdXperCwPnQG0Opw5wgNNJmGxB+mKB05lh51GVpcV6y40MaLuG3JJo2nQW3wStd0K63bTt2MHQ+HN5sLaO080tbNwzgN1lXbuyS6tHgfFiUsKvXoGhNAuK1io+2jfP49+r/0hg5Ab2HG7CzzmcP34nMGb54DJ54jVcdUom+alDYjGXn8/pSRcSY76Mcwpt2KrajnWGPsFRXc3hu++hbds2tBotj057lNsSZ6MTbl6MreF9q+hSXtrrDJwLQEDpGgaJZqxFK7jj+ha0p9iVlZe3aVWqBwS6s4gYUs+ZAVVIRziLD2bxzvhmGsd4v9AYQMuaNeSMGo01twDiRjOtppjMAePRBe1Dt9ZI5ReHfvgkfYg+LYMBl9r4InIkGqHBUV1NyudfY6nT+8RiRWImzPwjFRt0THt3G1ePOhujTkOoaOUMp5kLJp+L0HlZEfUocnMMLTyX9ylzowR/+HgX720pIUQbS8L0evxGe9/N7LbbsR46hKuxkTC/MFJCUohKP5NQt5sL8+0Ylu4BrW/u+w4888SMurV8tfhe/D6x4LZ7uUXF0aTMJHSIhgGXDGLywAgMod/j/CiQ1s0+aHzZCWdNDcWXX4F1zS7OMqQxzbmd4e8+xkNPfNRR0BFAY/VuI0dQFRgoWkfp98GUrg0Hl42C2n0EBDbSZneRVViPYbKG2HO8H2SJ3p/GkjAO/e5tnDU1nDo0BkfzKMqrIhBtTaTNriPu5vO8LpbQaLDs3ImzVqmseUriKQyMGQXAAznNnP52G5bde7wuVwdRGRCcAHkrKTz7Kv68UHmoaPWhvpGnLg+AgCg7kUNaiGzdTVpSKXXu3cSFm4if4BtLhyE5mcjbbkMfP0CJgynfSURIBXrLAOZqWtFH+3Y1KiIHEaKpQ+doZWXRJs55Zw7aqgpcdo1vKgQDpJ9KzDgLsWcnYXObGZkQTCitNNQaaNnnva7wHbQ/KGwt2LZu5fHMMMYnh/GPrEfJSt2FNtGGbkCa18VylB2m8LzzaV23nkj/SP532v9ISpiEDEtFjDGTseiPvouvaid6KATFkaQ9SFFwLIZoJy0Bob6VSWfAb8rpBGmzGJmiwz9sLdvGuDEN9sHzpxP6mBgS//dfwq66iqzgqTwf5mBc3T5GWA52VFgG0NgalRdqDIwXSZlBYJyLgBgbCA3PT/orD0x6AIBi23peT7ZhTBrgE9H8E4OImJkAQjAiPpjoYB2fHVhPZeDnrPf380kMjC4ykvQVywk+o6OJOB9XlbPW34+5xlZKp8ZxMCD6GGfoY4SA9DlQ8D0j4gKx7n2EN9/RQrWPVlfpc0EoPzOJAYt1ACGR+9GHbOfCWjexfr5RFIypqUTdeQe6sDAlDsZlY2ftm2hilpIwupnWWT4MsgQIH4i1Qcc929+jvLSS8gjBozeY8I9zgMHLfbbaMQbhP3Ean1vXMvX9qQxP1BEqWllSGsneF9/yvjxaHRiDMYS6GLRuLRHTp/DbUwejMdRhc9az2hxC9mHvBhYD6ONiiX/6KQImdLL+lGZxr76F2UkJ1Cy/V7F8+xIhFDdS4Rp+O/d3pM6u4ctCexeLgk8Ydh6OumZm7fgGbVMm44fXU5ua7luZANMpp6ANCsIcE0pxtIYNV7fxUOI7zAks6tjHYFctMN4nMZPwf35CxOQYMMUikiaREhFIsJ8Ojb4e/wKJrdk3AWfGqACih9WgsxQghGD6YBO7XY/i1O7G/n0wbXm+jYFpZ1HZNzwdHsphk4a8+Gg217l++KC+ZOBcsDUxpSWbJ9a/hH+pDafDRxkGiZkw+08A1LvOpuiOh7kr9TrMBXcS8HUrJSsafSMXSkXetu07cBhTAbhapBLUMJJvAgN4am2lbyfziHRcNg0jqgqJrgtnz8I9XF+diEUb5NXmhEfjSjqVsbtruTfmQkL9jITRim5iK/+eNss318s/DGFt7CinsKukAdvhK7l1ox+pS/y7rJC9hcbfn+Azz0Qf1ymtvGgdd9U38eyqVgw5Qsns8jUD56CzNzFV7EUjJHXuQJ9cr6NlaiwJpfGpN0gvy2CM1c7j31f5XLGSUtL4xRdMO3SYRRVV/L6+ET1OHPlrAXC43Pi7PEHsagyMl0nMxDX6emRDGbLmEL9dcyfRyaswVE/msqWClgON3pepNAvqDiHrCrD8+0Lcues4a1g6bSXXkZk7l6Raicvhm6+v6vEnqPnP8x1/3znmQe6paWVhcBy11lYmp/g26Iy0WSC0pFl2o3c5MUx3Ycr0vim9gym/AWMIQSkuEp7/D37BsRjCN/LGTA37ggJ8Njk5KyspvuIKGpdtBFMsYaUHEH6HiPgwhMT8Mt9O5uGp+Mc4WHP2OPJC4mldt57E7/Noc/o2TsEZPAa5OoRz91TjdvkTKlq5wtlMvsj0zfXSGqAsG8eObym46CKmle7EoAkgeoAfcoaeyenea23QGeuhQ12L1aXMIBYdqXlazJX+SmaXr0mbjURwgU7pSt2iCWJymg9KLXRG70/oaZMZcJ6dYQ3FHPwoDkNtm88VKyEE9W+9ReuuRoYU6qjZFIrTqeWp3Gia2hy0WJ1KI0eNwauxhqoCA1gPHCD3zldorfBDHPqGSP9IEkMiMGmspJ1VRWumD1JKi9aBlLRVGyj6NpjWpR8xLT0SnW0oBn8D6WfVEDR3rvflAtytLTirqzr+PnPoCFL9o/jHBjPzvy5gXIqPo/n9QyFhAsHNWTxw1j1ExbfQiO9qKaD3g+HnY6hYTtDMKWw53IrWr4yaEQ7Ko6J8Njnp4+JI/N9/CV+4EBImkGw5wLjDMxgQZaE2MNy3k7neH01oIkOM1ZTWW3A2NmBstOI0+PB7BAzDxpFyZRTCby/jUw2EalspLwkgqanG+9erNAvq86E+D92Sa9EHGRiYFMm7N04mI0GSOCGZ8T5KDS677XbqFnWqK5qYCQsXk/rYrQx45T3lb18TGIGIG825BqWeyc2nT/DZ9eqMfvJ8QgJqGR5cSsTQVipNMb5XrICkl18m4dV3cI68GUutAcugM1hrSeXp7w7RZHEQTCsOfbBXLaSqAgMYBw0i/JprMKSlwsGlPDTlISZHXIyIWc7biYH8e2eb91fJKTNAZyQgys6AKU0EnnYR/gYt6YkNrE77jt1Gg8+CGWMffpi4Rx7pMrYrPJz9w9wk3b/Q9wF6oKRTl+9g9OFsmjcaWbqj0bdm2FGXgcOMY9OHTD+0EX9NNaOabLRg8unkZDrlFLSmQEiYiF9LEXfPCCZxUiNX3XmF7yfziDTSysqY8erDaE49HfuZfrhNoT4VSRgM+M++kLMD61lb/l/GDpGU7gjlt5ps718vzyIHQLitJN44kaDZsxmfHEZIbQsGH2bVhF99FTH339d1MDETZvwBkTTJN0L1RPpctE4zAIOSfRss28GgeVibAphevo+okS08cP2Zvv8tosQ/CiEI+81fSf/jRMJqtnB1ZjxvbSoiq7COUGHGaQz1qkyqAgMInY7oP/4R45TzoXQLmGtptjgIc1Til2vAbNZ4f5XsqT0hotIJGeqHNmMG2cUN5FY3MaLQjn5VENkFvumh066gOBuOKAR7DQa+iPfHOLUfrKwABs5FIPnNzk9pKfWn3tf+7aSpEJJI29L3MD7zGG+Yz+aM1wO4ICrE55NT89KlNOxSajok1itNMUcO9G7z0h6JSCfc2YBss9BcXU8IZty+7NHkwSIz+NtWM2dJfzJ0Lgqu1JN+913eF8SzyFGQYG1COhy4GhupXGuleqUPMqM8hC9ciMbfH7fNhmXnTgBczc1UPPgQbTt2+Eyubgycc+S1j+utdGAMwqIdQf0eIw6zltGDUnwtUQf1771HxV/+AmOvBHM1d6eVEOKv5x9LDxKCGenlRbWqwHTC5jcKa6MWmfMNK1r+wNBKyfhVBow26ZtVcmImnPo33M11NL36T/as346zLYn5xXHomnRsOWz2vkwemlesIHfGTGx5Sprw1YYBXFlgwbVvt89k6sKAMTiNoZjibYQONFNlivatGVajgZGXYNLvIO3jNxl65hRixjWSOGaY72Ty0Lx8BY2rd4LQ0LIhi9wvYrCVer8AWjci0olObuSR6VfT9NFHaLIdCF+lUHeiaXU28RsCGF+8gyhrK5eHRJGUPNL7grQX2Jv9J0ichFz3LHmnTKP66aeJm1hH9MU+ziQDap56iuJrr8NRXY2ruZmWVatwVlb6WqwjJGSCzhOzUV/oW1k6EXLJVYSktlG0IgoqdvlanA5ctXU0fvwJVV/uhcAoTAc+5O7Th9DkaeTYKrzr4lUVGA/S7ab47seoPRiNOPQtFw0+l/FThzLwnCr+75aLfLdKHnw60j+a8mffZ1x+NgadBleKHuOZkkkZsb6RCQgYN47whdegCQqC0iyi9y9m8hod1U8/5/sUSQCNFt2guQwfU0rcxCZuO3OSzy0djLoMrc6J0ZyNPkhH+OA29PG+t3TEPfw3Uj76CGKGo9PbCExwoY3wvc+dCCV9NFGWU19dj87uQuPrWh1A5K3/R/yDZ5F7eDNNlQWU7XNh81V35cRMOOUexVqbMY+I1FKC4prxC3XiN9j36beRt97KgCceRx8djSEhgcHr1xF85pm+FusIFTvBZVNef3Bl/5i7AE14PMGJFiKHtcCb5/UbuSLv+A2hl16Kq75BcYsf+pahwVaEgBBhZnOFy6uuelWB8SA0GhKeforYhXMhfxXXZ1zOWvch1kUbGD08w3eCafVoJ11J2pnVjLzzCt69cTJjogQRkTE+fSDrIiKIuftu9DExHc3u4iY2Ej2qpX+kSEJHtU2Awam+VxSIHgJxo7F9/y7lj72IrVmH9HHJfgBtcLCShpswEf8IBwPmGNFF+qBz99GEK5lj8w+swXVwH0nT6n1eVh1AFxXF1/ExXBwfzbvmFlq+raLZ15ZHnREufZvwM6YQWL6I5jI/HGUlvpUJ0IaGEjxvHgCWffswb97sY4mOovNc5bL3n7mrchemATbCM8z9Si4hBHEP/40Bjz8GY64EtxPztvcRQAhmGrzsqlcVmE4ETJyILvMicLRhzV9JSGET+oIg0Pqw8RjA2KsxBjkQu99nfHIYfltqaN3m9q1MHix792GxJYDWgF+4xC9K0z9SJEEpItdOo+8ncwBGXYarOIem1dsoWBqN8EV/ph5o/f57Cp7bjsshfFOqvydCk5EaHQF+NqoNgUgJBm83cuwBt83GhH3+PHvIwSRDG7vvH0r47FN9LZaS7Tb999iaDBxeH07LZ2/0m5W7lJLyP95N+b334Tb7zvXdjZQZoDWC0Cop6f1l7kqZATq//idXZ2KGwYBxjKtfSoDOTZCw0KrxblKCqsAchblCT11eBMH5q/l9TgAxG33TaK8LEQORydOp+d8bNH3xBdJmRUofK1UobrfDd95JzUcrkdd8SUvE1TjOWNQ/UiTBo7R4MqI+ub5/TOYj5uMf5STpTBtxkxp8Vxb/KLQhIWgjYynfFEb+W43941ppdRCWimGQGxrraTgUiF+Q7xU+odVif+ZlRjSkMd5h4zJcaOv2+loshbIsKrcrgc7BCZZ+tXJPfu9dYu6/H02gjyop94QnvZs5f1L+7y9zV3t8U3+T62jGXklAw0E+P1MpXnrBlOFe9QyoCsxRtK7fSH2OCbn/W6KnBZB2ne/iTDojJlxHa6EVy/pviZ1kIfaSsb4WCaHREP/sM8T/61+4w4dT9vxymnf1owC9LuZhR/+YzINiEOmzCQypIzTV0m+sHf5jxpD8z98TktJG0ID+43cXEQMZpKtC77IhJfiZfB+bI3Q6Bn2/hpZLJpPdFkDpsm24X+0f14uUGcRMsJJ2Vi06k65frdx1YWFdWpD0Gzzp3f1OSeivcnVmxMWgNTIo/00AkuLjvfr2qgJzFJG330b6/x5AWKvRVG5DH+PDvj6dGXIOKee6iJ1kBUujT/og9YT/yJFog4PRGI2kfPQhweec7WuRjtBfzbCjLlP+1xrhcLZvZelMyQZMA+xEDG3tP373iHSSZAVLpk4nYoi5XwTxghIDdvPhr/iwLZzW7cFIRz9RkBMz8b/rc4wX3te/V+4qvwz8w2DoOZC/SvlbTaP2LdqgIMTQM0CjozFX0FIsfS2Sgt4PMWYB7r1LKFwWQvPu/tEHCaBt+w7KH/gTfsOGKUG9/YX+ah4O8lj1XLZ+Y+kAcIaO5tAXMTTmm/qPwhcxEAN2MkSZ8nc/cblZdu7kX7uGMCq1jdormtD46/vH9YKfx8pd5ZfDmCuPvPZiI0eAfhDg0f9o25dH9Zok7HVmAhrzCSrN6h+TwbhrqHzuPax1BgjwbUn1zrjq62j++mv8MgYTeumlaIN9X2ysg8TM/vHddebwNpTYHHnE0tEPZNSNPBW/jMHItFBY+Jt+IVN7KvVoTb7ydz9xuVlzDuG/bBeXvflf9K17FeWlP1wvFRVvkzYLAiKhrVaJO0yc6LW3Vi0wPaAJDERq/EicWU/c8IL+s0qOGYY+KpywQa0ED/N9LEA7ptmzif/3v6j+179xlJf7Wpz+T391bQEpny4m8h9v9Z+HcfhAoP8pMKEXXkDEphUszV5DWUlE/7leKire5nA2WBuV11/e5tVnparA9IDf0KGk3nMa/hEOtAZ3/4kHKM0iKr2M2PHN8P3j/UOpQsnKCJwxg5RPP8GQkuJrcfo//dW11R8JisOl8ydO1GMTfqAz+FoiQOmJtL58A01ffknR6y/5WhwVFd/RqSeXt5MlVAWmF9wD51GzL4y2Wr/+s0ouWgfSU//F7eofSpUHrcmE//DhaPz8fC3KzwM1TuH40GhwhyoF7VpEoG8bch7F2KV56GdNI+T1F3wtioqK70iZoTwjfWBRVhWYXnAaU6nd448l7Iz+s0r24Y2iouIrWkxKl+A6pz9Xvrq53ygxcv1WZjXGMjJxgq9FUVHxHT60KKtBvL1gSIgn7euvMCQlgd73ReOAIzdK0To1aFDlV0OBO5ZwoJkAHE43mwvqfN/XCkj56EPqXn6F1u+/x3TKKb4WR0XFd/goWUK1wBwD48CBiP6ivLSjuh5UfmVEJCkdu5tlIHqdxrddxTshhKB+0SLMGzf6WhQVlV8lqgKjoqLSr0nNGA3AqGAzX5yn7xfWFwDrgQMETJ1C2BVX+FoUFZVfJT9ZgRFCJAohVgshDggh9gkhfusZDxdCrBBC5Hr+D+t0zP1CiDwhRI4Q4vRO4+OFEHs8254TQgjPuFEI8aFnfIsQIqXTMQs975ErhFj4Uz+PiopKP8PSBECUOZchy67qN9l30uHAum8/rsZGX4uiovKr5GRYYJzAH6SUQ4HJwO1CiGHAfcBKKeUgYKXnbzzbFgDDgTOAF4UQWs+5XgJuBgZ5/p3hGb8BaJBSpgNPA497zhUOPARMAjKBhzorSioqKr8AKnd7Xsj+U9IA8B81ivTly/AfPdrXoqio/Cr5yQqMlLJCSrnd87oFOADEA+cDb3p2exO4wPP6fOADKaVNSlkI5AGZQog4IFhKuUlKKYG3jjqm/VyfAHM91pnTgRVSynopZQOwgiNKj4qKyi+B1Bmg81ez71RUVLpwUrOQPK6dscAWIEZKWQGKkiOEaO+KGA9s7nRYmWfM4Xl99Hj7MaWeczmFEE1AROfxHo5RUVH5JaBm36moqPTASVNghBAm4FPgd1LKZk/4So+79jAmjzH+Y485Wr6bUdxTREVFsWbNmt7kU1HxGa2treq92SvjIb8N8tf4WpBfBeq9qNLfOSkKjBBCj6K8vCul/MwzXCWEiPNYX+KAas94GZDY6fAEoNwzntDDeOdjyoQQOiAEqPeMzzrqmDU9ySilfBl4GSAjI0POmjWrp91UVHzKmjVrUO9Nlf6Aei+q9HdORhaSAF4DDkgpn+q0aTHQnhW0EPiy0/gCT2ZRKkqwbpbH3dQihJjsOec1Rx3Tfq75wCpPnMwyYJ4QIswTvDvPM6aioqKioqLyC+ZkWGCmAVcDe4QQOz1jDwCPAR8JIW4ASoBLAKSU+4QQHwH7UTKYbpdSujzH3Qq8AfgD33j+gaIgvS2EyEOxvCzwnKteCPEIsNWz38NSyvqT8JlUVFRUVFRU+jE/WYGRUq6n51gUgLm9HPMo8GgP49uAET2MW/EoQD1sWwQsOl55VVRUVFRUVH7+CCl7jHn9RSOEaAFyfsIpQoCmkyTOyUSV68Toj3JFArW+FqIH+uO1AlWuE+VE5PLmvfhLuF7eoj/KBH0nV4aUMqinDb/WZo45Usof3UJWCPGylPLmkynQyUCV68Toj3IJIbb9lHuzr+iP1wpUuU6UE5HLm/fiL+F6eYv+KBP0nVxCiG29bVN7If04lvhagF5Q5Tox+qtc/ZH+eq1UuU4MVa4Toz/K1R9lAh/I9Wt1IfXLVa6KinpvqvQX1HtRpT9wrPvw12qBednXAqio9IJ6b6r0F9R7UaU/0Ot9+Ku0wKioqKioqKj8vPm1WmBUVFRUVFRUfsaoCoyKioqKiorKzw5VgVFRUVFRUVH52aEqMCoqKioqKio/O1QFRkVFRUVFReVnh6rAqKioqKioqPzsUBUYFRUVFRUVlZ8dqgKjoqKioqKi8rNDVWBUVFRUVFRUfnaoCoyKioqKiorKzw5VgVFRUVFRUVH52aEqMCoqKioqKio/O1QFRkVFRUVFReVnh87XAviC0NBQmZ6e7msxVFS6YTabCQwM9LUYKirqvajSL8jOzq6VUkb1tO1XqcDExMSwbds2X4uhotKNNWvWMGvWLF+LoaKi3osq/QIhRHFv21QXkoqKioqKisrPDlWBUVFRUVFRUfnZoSowKidOaRas+7fyv4qKioqKig/4VcbAqPwESrPg9TPB7QKdHyxcDImZvpZKRUVFReVXhmqBUTkxitaB2wlIcNmVv1VUVFRUVLyMqsConBgDxh55rTVAygzfyaKioqKi8qtFVWBUTgxjyJHXF7youo9UVFRUVHzCT1ZghBCJQojVQogDQoh9QojfesbDhRArhBC5nv/DOh1zvxAiTwiRI4Q4vdP4eCHEHs+254QQwjNuFEJ86BnfIoRI6XTMQs975AohFv7Uz6PyA9QeOvJaZ/SdHCoqKioqv2pOhgXGCfxBSjkUmAzcLoQYBtwHrJRSDgJWev7Gs20BMBw4A3hRCKH1nOsl4GZgkOffGZ7xG4AGKWU68DTwuOdc4cBDwCQgE3ios6Kk0gfU5YLw3DbVB3wri4qKiorKr5afrMBIKSuklNs9r1uAA0A8cD7wpme3N4ELPK/PBz6QUtqklIVAHpAphIgDgqWUm6SUEnjrqGPaz/UJMNdjnTkdWCGlrJdSNgArOKL0qPQFtbkQngYhiVBz0NfSqKioqKj8SjmpadQe185YYAsQI6WsAEXJEUJEe3aLBzZ3OqzMM+bwvD56vP2YUs+5nEKIJiCi83gPx6j0BbW5EDFIyURSLTAqKioqKj7ipCkwQggT8CnwOyllsyd8pcddexiTxxj/scccLd/NKO4poqKiWLNmTW/yqfSGdDGzNpcyvyGAJKH6IOtWrURqtD94qMrx0draqt6bKv0C9V5U6e+cFAVGCKFHUV7elVJ+5hmuEkLEeawvcUC1Z7wMSOx0eAJQ7hlP6GG88zFlQggdEALUe8ZnHXXMmp5klFK+DLwMkJGRIdUmZT+C+gL43knS2Dmg0UHpF5wyKgkiB/lasl8MagM9lf6Cei+q9HdORhaSAF4DDkgpn+q0aTHQnhW0EPiy0/gCT2ZRKkqwbpbH3dQihJjsOec1Rx3Tfq75wCpPnMwyYJ4QIswTvDvPM6bSF9TmKf9HDIKoIcpr1Y2koqKiouIDToYFZhpwNbBHCLHTM/YA8BjwkRDiBqAEuARASrlPCPERsB8lg+l2KaXLc9ytwBuAP/CN5x8oCtLbQog8FMvLAs+56oUQjwBbPfs9LKWsPwmfSaUn6nKV/yMHg95PeV19AIad5zuZVFRUVFR+lfxkBUZKuZ6eY1EA5vZyzKPAoz2MbwNG9DBuxaMA9bBtEbDoeOVV+QnUHgL/MAiMUP4OTYYa1QKjonIyyS5uYHNBHZPTIhifHPaD4yoqv1bUZo4qx09tnmJ9aSd6KFSrqdQqKieL7OIGLn95M3aXG42AWRlRDIoJwmJ38X5WCS63xKDT8O6Nk1UlRuVXj6rAqBw/tYdg0Lwjf0cPhbyV4HKAVu87uVRUfiFszK/F7nID4JaQVdjA+ty6jjEAh9PN5oI6VYFR+dWj9kJSOT4sjWCu7ppxFDUU3A6oy/eZWCoqvySsDiUcUCPAT6/hzeszyfn7Gbxz4yRA8dXrdRomp0X4UEoVlf6BaoFROT7qPBlInRWY6PZMpP1HXquoqPwobE4XX+woJz0qkAvHxTM5LbLDyjI9PZLkiAC0GsGT80er1hcVFVQFRuV4qfVkIEV0UmAiByt9kdSWAioqP5kPt5ZyuNHCW9dnMnNwVLftGTFBFNWZVeVFRcWD6kJSOT7qcpXideGpR8b0/hCWotaCUVH5iVjsLv6zKo/M1HBmDIrscZ+EsABK6y0oJbD6N9nFDbywOo/s4gZfi6LyC0a1wKgcH7WHFGXl6GDd6GGqBUZF5Sfy5qYialpsvHjlOHprw5IY7o/F4aLObCfSZPSyhMdPdnEDV7yyGYfLrWZMqfQpqgVG5fg4OoW6naghShCv0+Z9mVRUfgE0Wx389/t8ZmVEMTElvNf9EsMCAChrsHhLtB/F5oJahrsO8n+aLxnhOsjmgjpfi6TyC0W1wKj8MG4X1OfDoNO6b4seCtKlxMjEdqtBqKKi8gO8uq6QxjYHf5yXccz90u37uU37Ja25QOLZ3hHuRzDYcYBbDA+jwY0NA8WmkUC6r8VS+QWiWmBUfpjGYnDZe7fAgOpGUlH5EazOqealNXlMTgtnRHxIzztJCWv/RfKXF/EH3UdMWn8dlGZ5V9ATIKDwO7Qohfj0wsmgtp2+FknlF4qqwKj8MO0ZSD11nY4cBEKrBvKqqJwg2cUN3PjmNhwuyY6Sxp4DXvNXw8uzYNUjCOlGKyQatwOK1nld3uNBSklRdSNCgASQsNLaw8JHReUkoCowKj9MTynU7eiMEDFQtcCoqJwAda02/vT5HlxuJaPI6XIfiRUpzYKv/wD/OwXevgDa6mHmPSAEEnAKPaTM8Jnsx2J3WRPJ9jzMfrEQNxq30PD0NkdHgT4VlZOJqsD8QujTtMW6XPAPP9LE8WiihijF7FRUfmUs3V3Bcytzj/t3J6Xky52HOe3pteRVt6LTCLSiU3Xd0ix4/UzY+ipU7IRJt8Id22DOn2DIebjQ8QfjXyExs08/149l9fb9TNHsRzv2CsTFi9Dj4hzLF7yzudjXoqn8AlGDeH8BtDeAc7r7KG2xNrdn91E70UPhwBJwWJTaMCoqvwKW7DrMHe/vBOC5lbm8c2Mmk9N6ruGSXdzAd/ur2FpUz7biBkYnhvLk/FG0WJ1dO0y/9Q9wO5WDhBZMUYqVE2DwPHQHviSvxYDbLdFoek639hVSSmx7FqMVEu2oCyEyHTH8Aq7bv4wzVl/MgswkTEb1kaNy8lDvpl8A6w7VdDR7s/dFo7faXBg8r/ftUUMAqdSKiRt98t5XRaUf89HWso7XTrfkpjezufuMDAZFm9he0sik1HBMfjo+zS7jtfWFeLxFXDs1mb+cMxytRwHp+K1u/A8UrFYUFwCtoaurKG4MABkyn+oWG7Ehfn39EU+I3WVNTLGtpyUoiaDYkcrg9LsI2Pc559i/ZtH64dw5t/tCKLu4oasSp6JynKgKzC8Ad6fKnG4JdudJ9De3N3HsKf6lneihyv/VB1UF5udEaZYSDJoyo9+6JPozZY1tCKH44bUaDQlh/jz45b5jHqMREBXk16G8dJD1Ciz/Mwy/EDJvgZKN3b+XqCG4tEZGagopa2jrdwrM6u0H+I1mH85Rd0B7Mb64UTBoHrfmL2PO2nO5ZkoyoQEGQOn99M7mYv659CBuKdWidyrdyC5uQGuKiO1tu6rA/ALILmlgbmAR1yWU8UV9Ks+uhMggP66enPzTT97RxPEYmQThA0Gjhxo1E+mnkF3cwFf5doJSG/p+Es/9Dt5fANKtrPQXLlaVmBOgpK6Nwto2/jSqhRGO3YQNm0PGhBnc9+luPtymWGYEcOaIWM4dPYDff7QTh9PdvZN0aRZseBYOfgUZZ8NFryjVrpOndH9TrQ5H5DBGVBRR2tDGhGMUvfM2Ukose5egE250oy7qunHGHwjKPZ2znSu47o0IpqVHkl/dytpDNZjtRxZbNoebzQW1qgKjAijz4WX/24Q2MCy+t31UBeZnTnmjBUvBJt4y/h1tsYtpOj/CUx7nL1/sJaeihbhQv59mmq09pPzfKQZmW1E9Wwrrj5xXZ4CIdDWV+ieQXdzA5a9sxu50s7hwM+/f1Icr0bJt8Mn14HYAIF12RNE6VYE5Ab7dV8FEcYAbc/+JwA2liyB2MZdOHMSXu8o7lJUbZqQxPjmM6GC/7m6S0ix4/SzlexAamHJb91YdR6GLH8vwyvfJqjN74VMeP3sONzHVuo7WoARMR1thkybTEpPJLZVfMbPkVHaUNBIWoOf8sfGkRgTyr+U52JxuJJBVWM8N01346bU++Rwq/Yfvc6oZJXOwisZe91EVmJ85n+84zHmajWilEvgnnBbuHVzGPt0Q3tlSjACM+p9gmq31NHEMSwEgu6ieS/+3CbcEo07De+0PWlMUlGxWJmX1QXjCbMirxe48Ese0+mD1sb+vH+P+kRI2vwQrHsSsC8FPCjRI7FJDod9ohpyEz/FrYemeSm4P2oSwewJuXXYoWsf4GZm8e+PkbsrK+OSwrt+npRG+/mOHEgkCSrdAyvRjvq8uYSxB2xdhrcoFjl2515us3H6Q32j24Rpx2xH3USdWR1/NeVV38Kz+P7zmOps5M87h9tnKomiGfwEN+1axQzOCJ/bD/P9u5I45g8irblXjYvqC4k09uyj7GSF1O/jY8DCZoqXXfVQFBthSUMeqnGrmDYv9Wf1YpJR8ur2MF/3LwAGK0Vqi3f0hZ6ZPYkOeUkzqJwX21uVCWGrHyvDDbaUdwYg2p5tVB6sYr8mF4o1K9sSb58LCJf36h9EfqWzq2t9mY34tbvfg7pkmUsLOd5GL71RaOAgtYta9MPZqCB7Qs2JTmgW5K6B4AxRvQGacxcVFC4ix7+W/hmcokHGsaUnuXYEpzVIKqg2crX6vQEWThZ2ljaQluKHWMyhER8BtN2XlaHJXwOI7oaVSWRxI2T1gtzc8gbx+tXuBc37S5zhZSCmx7FmCXrjQj76ox30GJw7AvVtwpmYr8zTZtOV8A4eDoLWKIVV7QcIUnZGJZ7/JwuVmbnk7G41AjYs5mbgc8M09sG0RIEDn129dx263RF/wHRrhRql+1DO/egVmY14tV722BbeE19YVHjMVsr+xq6yJ4NpdDDHuh/HXQmgSGEzw/eNcvutayvXngtvFZjmUSak9+NSPh6NSqHMqFW1YI5SA4S92lvN/mq0EScV6gNMK+av65Y+iv1JYa+aT7YdZmFDFbOtKqmNn8Je9dl76Pp/bZ6crCsShZWA3K8qJZ8IXAqTbBav/ofwzxYC5Volr0Whh1AJF8dzx9pHU3MxbyMq4h4O7tpCrGcvDzqv5p/41/NkA9BCoXbIF3jhT6Ye19km4bulJ+26zi+rZXFjH5LTIn9UD6tu9lYAk2XoAkqdBW53S0NSvl1YAoHyHed9BxS449K2SubfgXeV7ORFLWvRQnEJPZEv/qbu053ATU6zraDXFYxowtsd9hth2IYVAINHiJrilELSJYG1RFDgAp5WJtV9w+aQ7O7K2HH2RVflrpHQrLPktVLcHmcsOq+Ex77veFkR9HPy/NrcGm6UVoQNJ7xrMr1qBsdhd3Pfpng6LgtMt+c17O3jjusze+5L0Iz7NLuMP+k9x+4ejmfd3MAYpGzLOQvvORdzjeA+3FmzSwLaCwZBygg3gXE4liDcgHEqz2KvJYFdZE1dPTiY2xI8gPx2Pf3OQe7YF84LWgMZlVx6e+atgxh9B+6u+vY4LKSV/+nwPmbo8/lr/N4TbAXlfcakfmNcYsW0Jwmito/037IoYzJd+F3OmZTF66cKBjg2D7+XU1ADY/ha0Vikndjth5ztd30xoICiG59fkE2ky8J/Lx/LM8iB2Vaxm2Na/w9SLwC+4s3Dw3YOK8gKKu2PZnxQl5gdiNX6I7KJ6LvG4Iv30eT+rVfY3eys5K7IaXWsFzP2L0uT0hUz44ja4YbmiPHamNAveOAdcno7tIy+F8/4Dek8W0Yk8BLR6agPSSW3Jxelyo9P6vhbpyh053K7Zi3vE//XoPgIgZQZCZwSXHaE1KMpbYqZybd48T7k2UsKu97kjsYZq3QgSZQVbGcbktKne/UC/FEqzIG+FEpt44CvFQnvqX3Gv+gcatx03As2xrH77FyM/Wgi4AYEwRStWHEs9fW3BeWtTMX/UHcIdlkZV667y3vbz/d3vI6wOFze/vY2Shjb0Wk81TK3A5ZZc8MIGnvnuEFmFdX1X3fYnYnO6KNm5ihmaXWim/+6I8gIQmggj5gPKF+wn7Ng2vIT9RMp5Swkbn1MehMWb4M3zWPbtYoKMOu4+I4PbZ6dzzZQU3rlxEhtsaVzv/gurBtxMxYibFF/+0j8cWVmp9Mpn2w+zMb+OuwceVpQXADQ4U2fzjeF0Cq1BSI/yItGwqGUSdzVezNXOP/OU8xKutD/AW5YZuCfdCuc9Bzp/pY6Izh+uXw7Xfq1MNEILWiN5AWNYl1vLDdPTmDIwkkXXT+E54y1oLbW41jzWVbjVjypxTRqtcrxGB2VZ8PaFYK77SZ/7zU3FHQuHdhfnz4GaFhtbi+q5Omy/ohAOPh1M0XDmk3B4G2x6oesBUsK6p44oL0ID0UOOKC8/gtbwEQwXRVQ0Wn545x/JtqJ6vsq3/+DcJ6WkeediDMJFYUwP3erbScxUHnZz/tT1odcx/mflXj3tYULL1/Oc7hn+qP+Qd3UPM7T8M7A2KfuXZsG6f3dpZtmnVch/rpRmwRtnw/dPKEVGh50Pt29hselS5lseIMedgNWtYWdbL9XV3W4av7gXpFsJTJASsyGyIxayiwXnJFNcZ6bs0HaGkY8m8yYOt8jK3vb9VS6RJfB/72SzLreWJ+aPYpTMoWH/KsKGzSF2+Ez+ungfz3yXy7MrcxH0Tz/s6oPV3OJ6H3tgJIaJN3XfYeBsWP90x8rmVNc6qp+fRfT8fyvbj2UCLNkCqx7pdHNKpMuOu3AdV067i2C/I6vvsUlhPHTucP7wsZM1+akYtBq+H68nLvtFCE6AU+7+SZ/T10Wu+vL96812/v71fsYnhzHKpEzQEoHQGdHNeYBRhqE89PzrvK59BD1O7FJHlhzGezdNwqibyuaCOoY0tPFeVikPf7Wfh86diFi4uPt3u3BJx9iTazQE+zm5anISAIFGHZddcAEfvL+MBVv+C2OvgphhsPZfisto3DUw+koo2aCcsy5fMUW/Mgtm/QlaDp+wKdnudJNVWMc4cYjJmgNsdg9lbOKkk3pt+4pl+yqREsa2bYTESRDocTePnA/7PlOUvowzFberwwJf/R4OfaMoLojjj3U5FgPGEFz6MbmlB0mMGP+TP9PRrM2p4ZrXFQXhq6LNx5z73tlczFn25TRpAvjbl7u4O2pM77+TxMye75PO4ynTwNKAWP+0MvcKF4Zld8Gyu5R2JtZGj4tUB+MWUuSXwXff78QkzTy5ajx333hNv5qnfcbWVxUFA5R7L24UuY1w32d7aJODud1xJ8sM9yLXPQ0Zz3c7vGrlf4ixl2NHi0ZKHOi4z7qQe2dlEP/ZhYAbqdEf24LzI3lnczHztWuRGh1i5CXA7b3u+6tUYMpb3azJqeGfF43k0pgKeH2BYh4v/i84HuGZi28AoGTXGiZrDpDlGsrmgkH96oexZ/1X3K3dj2vmP8EQ0H2H9pVN0TpImsr/Pl/ORY2vw2unKatp6VbcABe8pJjAqw/C3k+gfBeUbYHAKJh0G2QvApcDBzq2Mpznp6V0e6vKZmtHTIzd5eaBxgtYNKoOsfrvSkyMIeBH+UvbU4sdTjd6rYZnLhvDnKHR7Ctv9opSk13cwBWe1GZD54yrk3TuB7/cS7PFwROnhiE+/AzSZlEoE0mbcw0kZjIYyJx5OlescjFZc4Atcii/veISpg5UHprjk8OQUuJv0PHa+kJCA/T87tQeHhKeB0RuVQvL9q3lzjnpBHVSQucNj+V3A3/DWUVZ+H98I8bQeMhbrrg6znlGscAkTz5yrsjB8N4l8MUtgEYpdX+8pmQp+fa7ZdzV9iKXGNcBErvU8emuBKamX3IyLm2f8u3eSjLDzPjV7YNxDx/ZIASc87TiSvroGhg4B3K+gfp8mHU/pM46ogT+RJN7YMoE2AK2ku0wpgcF5ifGKLy+sbDj9bFiUKSUbFv1KVdpDiGB1zWP8vWOJMYn9xzIe9xknAWb/wsuO3a0vCAv4bZZAzEe/NLjvkCxDG97jRTgXq1i6LqJr1m8I/Gnv39/pmSLUjNoyDmQ1IvSv+tD2P0xIBTlRWugJHg8l7+yGYNOg9MtyXMm8Ll7BhdWfATNDyjuJQ9tFTmEbPg76xjL864LmMB+suQw9rYk89V7Zt7RD2WIKOF2193c7R7EyVShLXYXn2wtYrVhE2LgaUp26zH4RSgwQogzgGcBLfCqlPKxY+3vcINOIxgcEwTZjx9JZXS7YPkDsOoRHgkfjtGwAw2K9llsGgmk/2RZT8aKvq7FyuzyV2g2RhE88fred/Q8uAQwdf4wTnl+BN9Ev0hy8zZlu8sOn97Q/bgJ18O8v4MhEEZciPnQGq5fbSRt7Gyig7ubvienRWDQaXB4ajmsPlTLHcOv55nYHHTr/oXiLzWeUHZSY5udvy3ZdyS12OXmtve2d9lHpxE8fvEoLhoXj+jN9/4T+D6nGpvn/W3Hk9p8nLT3rrK73Og0grANjwACznuekp35pHW6Rgadlh1yMNtdg9EK2FPexMyMIz9qIQR/OmsojW0Onvkul1ark7BAQ4/314tr8gkwaLluWmo3me65cCofPzWHm2oXQ+0+pNAgJlzfPZ4DIGE8jFsI658C3IqV74eCAbPfgl3v4a4v5LzWStw6JWNOAEbhZOyuhykdO5LEtP6bzN1gtrOpoI6XBudAEcqDtjNBsUoV3bVPHGluetojMO1O5XW7EvgTiUwbjV1q0Vfu6r6xNAv3G+cq34nWiObaE8sIdLsl+8ubPfmMgBBdC+91Yk1ODfOtnyG0Sv6jXjqZot0P/EQFotPiq9h/DM9+YsWPIdx69gxPvIwdtAacCz7gs4/e4GLbF2iFxICTeeUvgPMcpTbVL43dH8HntyiLz43/Udxx0+/q+hvd8jJ8c7eivM74I5RnUxQ0josXO9BqBJ/eOoXGNgdf7DjM81kXc4FrI+7vn0Rz7tMASJeTyrduIELq8J//PPcEx7O5oI770iJIiQjg5re3UXQ4lsGaUrY60k96gPWXOw8z0r6TUEMdjLn8B/f/2cfACCG0wAvAmcAw4HIhxLAfOk5Kyb79e2D/lyiaqlaJFZj3KIy7mqDmPAzChU64MQoXQ6w9TBYnSLtF4V/Lcrjy1c1dfbY9+HZ7Y9uqT5mgycEy+ffH7UsfmRDC3NFp3NtwHrIjJsIAp9wP6aehTEEo4yEJivICkJjJS87zyXKlc/PMtB7PPT45jHdvnMxd8zL4+JYpPHDWEL45UM+79Rkd0RvSaYU1j4G1+ZhytnfrPfWp79l7uAmtRijplFoNt88eyPT0IxliTrfkDx/v4pQn1/Do1/t5b0sxz686/s7Ax8LmdLHyoBIQ264aLdldTr3Z/pPPvSGvtqN31XgOEF70NUz7rRK7dBST0yIw6jVdOxYfhUYjePzikUxMCePV9YXK/fVK1/urpK6NxbvKuSIzibDA7pP7gFB/0uJjO8KWXG44vHtl7x8i40zl9wIek34vQb22Vnj3UlhyB5RsgtZqXnCeR9G8RQhPvI7U6EgT5cS+NR35yQ2w6u/H9TvwNisOVOFyS6Y4tiitNXpqcKrr9HsU2k51Xk4eeqM/BZpkQhq7ZyId3rkcnFY0SHBaKc/++oTOveZQNVUtNn5/2mCSgjRoBMSHdm/Q6nZL/rt0MxO1h5BCgxstGp2B+DHH6Jl2IiRmwow/MGjCXE4ZHMUr6wpoixnXJY7mnwej+aBlNG6tARcanFJDcPU2pZt3Y8nJkeMosovqeWH1yZljjht7G3z31yPKCwBS+Z28MAl2vqeUsXjrAkV5yTgbrvyEbN1o/tpwBud+YUenFXxw82QGRpkYnxzGIxeM4JYL5vCuczZy+5tQXwDArk8eI82yh80Z9zJh5AjGJ4dx++x0xieHEWEy8sBZw2gmgGDa0Ot6V25/DFJK3txUzHWBm5B+oTD4jB885pdggckE8qSUBQBCiA+A84Fj5hmadE7m596nmH4vXgSNhV1NriPmI18/E6QLl9Ae29fXi8n24NbvaNi/isDBszigG8LTKw4xwnWQydoD7HCmc2iPYLzFBQXfw7bXPG6dY5vjD2Z9x5gdf6aOUGJO6SH25RjcPS+DuXsr+GfUE8z2yyFs2ByGTDzVI//6jpVNZx99q83JW5uKOH1YLGlRpl7P3bn2xfiUcEYlhPLCW/lcKj/HoBSpQZu/Evn0CGoT51FkDyJo5NnK+3v4enc5Ty7LoaiujdGJobx5fSbaw1s74pOGTBxCdnED24rrcTiVDIzrp6VwsLKFRRsK8egE+OnyePcnuHuklNzzyW72lbfw27npGHRa/PQanvg2hyte2cy7N04iwmT8UecGqDcrAZ1a4eZB/dvYA+IwTPttj/u2K4c/ZLXTaTVMT49ka1EDErA63by0Jo+XrhqPXqvhv2vz0QrBTb0ooQD1MZOxlr+BXjpxoOMvO0NJYT+xIUbMNhczB0cdef/ETMWilrsC9n+hxExFDoaMTpPO4e3w6Y2KG8WzpndLSIqNIW3qRZCYAEXrECkz+DzHTdSae5mz9xPl2I3/6Xf1hL7dW8ngEDemis0w+daed0qdoQRQ9/BbOpmU+WUw2bJO8Z10sj5udQzkfDzDgP7Q12D9Q9fssmPw5sZiooOM3DprIHG2Uh7YYOXZlbn886KRXfZbvKucM+rfwaB3IS56FdFY1GdptXfOTefilzbx3pYSbpyhWJW/3VvBa+u3c+3UeejHToOidbxWFs+2Pft5ruo19C9OgSFnw8QbT5pMX+0u5473dyAl6LW5vHvjJDJTT94D/GgObv0OuW0RA5uzMFhqYNA83AXfK9mhWj2amX+A/Yvhi073otDC1DvILrd0VPYG+OdFI7vN3wsmJvJI3q3Yc76n8cuHsEz+PUP3P0O2/2ROvezOHmUanxzG/tBIjK1O3rt2DONOovVlW3EDZRWVzAjYghhz9ZEu7MdAyJ95pogQYj5whpTyRs/fVwOTpJS/OWq/m4GbAYKjE8ZvfWAcgxvWsGfEn6mLnNjjucPrtjF0zz/Z6U6jZsYTBOi7uymCmw4yaudf0EgHEg21UdMAN5rmUiKsxR2r91qCQQgiZBOC7tmGkvYpXlCYeiUlyd3jAaxFWzit8DG0wo1davl20N8JTvhBY1MXXthpZWulCwHoNHDvRD/Sw7Q0l+1HV7MHZ9TILud894CNFcVOrhtu4JTEE0ud/TjHRkXR/o5ATSdaHtC9x2TtAaQEFxr+xdW8L0/D7NDg9NyKWgH3ZhqZKHIYveshhHTi1ujZNfoRmkOGkNfg4mC9iyHhWtLDFPPpZ7l2FucfWe2ek6Zn/uAfZ0b+5JCdrwocXDxIz7kDj5xjX62LZ7ZbiQkQXDLYQGmLu4sMx0OTTXLfujYGBGq4OeB7Lmt4if1D76I65hQAWltbMZl6VxSPRV6Diye2WnF4FDkJxAQIJsRo+abQyehoLb8d17vFLq/BxbJtu5nIAbLkUOpMGZS0SFxHfS+Dw7que3SOVkbtfghTaxGFqVchpBODrY4BFcuxG0IpTppPev7r4FYCkTcO+xvamK73rcstyV3/Pje5P0LrybsqTL2akuT5P+panGz21jp5apuNO8O38Lu2Z9k+9jGaQ4b2uG9w00FCG/fSGDqC5pC+cYnlZ33FDW2vsHnSy1j9YzrGjYe+YEr567znnM1hGcnv9Z/RFpTG7lEP4dQHHeOMUGl2c986Cxem6zk/3UBraytflupZWeLk0Wn+xJkUg73TLXl+bREf8weq404lN+O2PvmMnXk8y0K5WfLkTH8arJK/brIQF6jhgUl+6DzFHp1uyeNZVoa0buI53XMIJG6hZefoR2kO7fm7Ol42HHbw+l57xxwFEKCDSwYbiDMJ8hpOfC7oTE69kx3VLiL9NfjrILZ8Ode2voJWSNxS8C9xLe/L00i1K4HvW+VQTp84ivRQDUMOPktM1WoE4EZDUeqVPGo+l5UlnurswMWD9JwzsPt8aHdJajYs4nLXYhoJQo+TDRNexC+o9z5beVlLuLHtVTZOWYTdeGwFrqe5ujcez7Iwtnkl/9C9Qva4J2kJVvrvzZ49O1tKOaGnY34JFpiegh+6aWVSypeBlwFGpMXKwQ1r4JT7GDn7WFkysyg3Opi47THWOKqYddqCbnscXrIejduO8htyEVGzgTIZjZAuIoSiqLgl2PxjiQ/1g8rdnhtNsNQ1meRz72FkmBvx4ZXgtCKQpNlzSJs44kiGg5Sw52Psa/+NBuXppEES5SpjyqwTmzy22XLYWpmHRIkF+s9uJ6MSTGzKT8Elk9HVCu6Iiyc+1J/c6hZWFCumxfcPOTln5oQTsmoEpTZw5atudjkHo9Nq+OO8DEqyC5jYeBCtkGilm/vEm9xsXM6y4NNYVx/GDI1yfaYVm0ls3gHSY71x2xnn2g4zb2JWD3EZQakNLH9VWXG4JWTVCH5/4QQGHsNqdDTZxQ387/t8lhdUcXlmEv+4cESX2JpZwNgxtVz7ehbPbLchBBh0rhPKULvnk104pYW3TpfEf/MWRA9j2KUPMszzPmvWrGHWrFnHLXNnZgFjx3lirFLDabQ4eGjxPr4uVNJt99dLglJH9yqrcvw4NhfUcb/H2vPsd4d4dmUubgkuCW8d0vDujRNJjgjsevD06fDaaQwseOPIWPJ0/C57m4yAcIp2nsnHn7xP5Ii5XHfZZT2+f1ygC/vSzzEKOwJIm3w2aRk/7lqcTLKLG3h2xSbcQFrrNhz+4Yw79+ae44MA5Ur2LRUNDbDrFcYn6NGP9Lyfw4Ir6yY2uYbxTer9ANxakMz/zM8xPe9xuPrzYwZF/m3JPvTaYu6/bCbRQX6sWbOGf149hVOeWM36plBeOGccAG9uLOJ61+NoDAbir3iO+KBemwWfNPyS6ljw8mYKdUl8mVeOQe/krf+bTkJY1wSGkROsfPzMElxugQ6JRroYV/MJnLvsR9WlarE6+MsXe/liTzlD44IIrtnBBPaRxTAaw8fy5v5WAE/LlhObC9r5anc5//x2BwATxEHu1H3OTO2ejoeYG0GYwUlsQBDbK5V4OABTUzA3XjgR0gPhzc3gsqPRGpAjLmLzl4qru72a8eWnTuxVrix3DWL9YsJFC3apIyU2mCETZ/Uqb03xbiiEqWOHQXTviuG2onoeXbbJY7Fy8trCicwc3PX+k1KSU9XCa+sLOVBv5mHDWvLlABg1n1nH0az0l6DAlAGdgwcSgF4L3wD4WWshcQ6ccu8Pnjzu9N9Rnv06adv/CafP7/YjqK6sIL5dSUHPPQGPEDF0JonmPVxx8I4Oc3zr3H8iYoM7gtCEVs+ygAv4fqmDT2+dyqCFS6BwnRJln/UKvDQNZtwFzeVKHZayLZRrk4ilAp2ngFnYsDknfLFmD4nm1XUF2F1uNEIwNC6YHSUNOD1FORwuyVMrDnU77sdUxOzJ/XHQ/xzsX73bcV3qx9xGfNN2Li98i8s9CwQpweZKUUzAOUuV4kkAuz9U6pIMPl2pejpoXod5uPN7RZoMPPFtDvNf2sjjmVaCqjYfcZd56BxMPS4plK/3VPC7D3bidEs0Ai4cO0BRXoo3w4HFMPQcSJ7K1PRILhyXwIdbS5ESrA4393yyi4vHJ2Ay6mgw25k+KKrH67SrtJGPs8v42+gm4pf8RmkFUJcPZVtPmpn76DL2+yuaeWq5kiXidP3wd3j08dMHRfHS9/k4nG40GkF9q50znlnHPWdkMDI+pGtTz2EXKAGsAGiUTJwAZRL6/UYD+7mQl8f2nrNgiR3P1Y4/cZomixu0S6nbtZyYjDN/yuU4KWwuqMPhkuhwcorYQV7oXIb2qrx4B2P8KBw7tZgLswkd6QmazX4TbVs1z7pu5tHzhhNpMnLWs2buxsS/6h5HvDJbSffOOKvb/Wa2OflkWxlnjYwjOuiIlS7SZOTGGWk8uzKXW8oaGRhlYsXKb3lHuwk59Y9K4LIXmJwWQWZKOP/85iAAD5w1pJvyAhAT7EfaxNNxbP4YUCwQusPb4MOrYP5rR2L7joM1X79HxdYviHaEs2hECrMCixGNH4J0I7UGxPwl3JMVysfbyhS3rcPNxvwT66btdkseW3qQKzUruFn3Ncmaasy6MCrSriQs52N0nnlyxmkXMC56JFe+uvlIssTBav62ZB9/PnsiWk/Qc17AGC5a4iA0wMC/LhlKQa35BxNGXOU7cSPQItHgpmH/Kug0Vx6Nxl8p8upuazhmEO3aQzUdMXUOl+S617cyb3gMIxNCqGy0YrY72VHSSEGtGQEkiSomanJ40nkZAYX1jP+VKDBbgUFCiFTgMLAAuOLYh0ilpPfhbT/44BB6f3YN/SNn7r+b+vWvEH5KJ39j3kpGl79PliuD792jydaM4O4FCzw3y3AObo3sFL/huSE8N5pImcE9gSPY/NJGrn19K387bzg5rnAmD4lg/OgF8N4CpW+Fhy3Rl3J5yXk8MtFKWuuObg/k42V8chjv3tRVqcguqueKV7fg8FT2fPLiUYxJCiWnsoU739+Bw+XuNYD0eN6v849nyMRTOcj73a/Lsj8hN72g9L3QaPHLvAZm/OFIfFHSVKXK7Lp/QdbLyjFHxUl0fq/JaRH8/b9vMmvTX9DjxFbwMl9UvEzw4Gnk15h54tuDOF0SISDQoKXFdqTInwC2FjWQ2fgNLP6NpwniCxA/AYaey7XJYyjZcYix8gBZchjljpE88W1OR12Tx9YM476bFnb53G635K9L9jEqoIGrDv9dUV7gSCn5Por1mDowkhf0eR3dkU/0OzxaCR0Q6sf9n+3hb0v2096mqaNO0qDTlOKHLocS/5GqxH+8vamIHSWNCOCWd7J7XaVuLqhjuxzENucgwmjlooPvQsu9XntI9sbktAgEMFGTQ4hoo2a473sQxUeGckgmEFe+UxlwWGH90+wzjKQ+JLPD8vj0ZWNY8LKF6Sm3cmHFU0ptqI3PK0XjOqXhfrbjMC02JwunpigDpVkkFX8CpQHcOGMsb28u5olvc8hMCeP/7G/hDAhD10vcVl9x1shYsorqEcBTKw4xPjm8x/uo0G84r9of6HBdX5fWzLm5zyh92k65V2nFcax4HWszRW/exCnl3yqufj2Q13UX4bLBkt9y44SHKN2Vyzj3fja7h/J9Thg3zUg77m7a72wp5ryW97nH8BFSgkNqKZv7AhlTzubg1ou6zZPtv8XM1HC+2VPJog2FVDRaeWbBeA4ymKtf20KIv573b5pMYngP5TV6IGzYHOwFr3QsKn9oYawNVBQLS0s9x1IHM2KDOubEbWI4UUOnsz6vlm/2HqlLNyo+hEcvHEFssB8H378ftxR8JWby1HHOUz97BUZK6RRC/AZYhpJGvUhKue8HDlMm2eN8cIw67So2713E6HWPQebl4B8KNTnIj6+lUCTyR8OfuWjKEO4+auU9ZOKp3TXZTkWbEoHXr53I/Jc2ctNb2zwuCc/DYNzVStYOEjcavj8suGpKKleePwL4afUyjlYqxqeE895N3QNFkyMCuyk7J4Mer8uw8xFbXztSarw9+PHo4lf1+VC5DyV9t/deHskRgVwdV4Ku2IkQYJQO/Lc+z/UbDXT2OkoJKZGBTEuP5PUNRThdbiJ0bVxS9Sx8/zZHvJECGovhu4cYCrzX8csRCP9U6qWDUGsZAokDLY98qmX4Hbd1TGSf7zhMXNm3PBuwCI3V07zP7erTQE84/iDgHzpH5+Nev3Yit727vWMi6rDOzc7sUjSv/Xt5dZ1SV0RybEteezq+1eHmedcFXCLXw4Zn4Yx//ohPfhQ/oTZKUngAErgufB9ui5H0yef+dHl+IonhAax1pzKwbqdyE29/E1oredR+A2dMOKLwZaaGc+usgeSu/RKp1yBwK5lRn98MV30GEQORUvLWxiJGxocwNjEUcr+DDy4n1eWANz8haOFifjM7nYe/2o+2YDV3GvbB7MeOOzD4ZGG2uzrqTf3QffQf3RB2OgfjlrAjH6wjH2N+wZ8R712GUtbB0D1IXErY+ynuZQ+Q1FrVEZfolIJdSQsZf+oCpQq1y67EBjSVkfHNAt7XCtCCU+i5rPQBFi4SvLpwQpdaSz1RWt/Gkm++5n39p8p7CdAJyHAeBM7ucZ7s/FucmBJOfJg/f/96P2c/t47SegthAXo+vGVKj5ljvdHrorIXDCZFgbE21x1TgRlsP8AHhr+jEy4lpX/mEv4Tl8ZTKw4p/UsFnD4ilisnJYPDyozAtTTLeP43N5YhxzlP/ewVGAAp5VJg6fEfIU7owREfFsDzMb8hs+Y3yO+fQMz8I7x3GRa3jmvafs/DCycxd2jMD5+oB0bEh3DO6AF8kl3W4ZL4Ysdhxo+fA+ufQbrs2NxaGqMn8dezTyxg90TorYPuD3bWPVl0Lrx3rIdMygxl8nFalSJNx/gOo0eeCsUv4ZZKcPTp2mx2pb7Jd4P/zP3fluPyWJb+ep6SLnhBRBm6rBdJad6GLqcVhp4HucuOWBQWvAehyfDtfYh9n6M8kiXoDPj7CbAqFh0DLv7S9BBrn1jJ0DNvIczkx+Cv7uZiQy4yZoJiym6t7vOGaO2c7O9QCMGNM9JYsb8Kp1ui1Xay7BylcG4rqqe4vg2dRiClPKYVqF3Z+mhbCR9uhaKEc0ndtkhJMT8RK0z+GjjwJRhDlHooJZugXIkxUPq3nFh2U3ZxPSA5hW1oBs4+ITdEXxET7McBkcoCxxrFDbn+aarDxrGxYhh/HhHXZd/fnTqYB/ZPxNr4OQbhRGi0aFpr4MUpMOYKShwhjK5t47qRBsRrf1VcmnjUfKcFVv+DcaP+xHiRwxO6l6iWoZRFX8g4L3/mzvWmjuc+2lxQx8j4EL7dV8ndW0AXOIcL+Jb/b+/O46OuzsWPf55Zsq9A2EJY1Mi+poZF0VRxuy54VRSLSl1vta16rbvtxV+tba2KuNVqwSotgrUWK/fWCooUXBBEUFYB2RN2ErIns5zfH99vwiRMEiZkJsnkeb9eec3M+S5zZvLN5JlznnOO2NM6yIK7rWsrvjNs+9harX3vGgriTueF6st4zD27tlUicdhl0Gds3c+o7kPh77chGxcA4DbV/DX+tyzNH8S7zw8hd2A/Cg8fIG3whOOCAmMMT769mBflKUjohFSXgM9T98vbCbjlrH5UVnt5aqHV7V9U4WHf0cqQAhho4EtlA+KTrc+SqtLGh5K7d/6bGLEXkfVVwju38Z+n/YAdrmL6mHwqJIGrjiyFWWsg/0ti/F5iENI+uB66n9jEmFERwISqKrZTyItQjRp9Dn999xyuXf4HWD8fU3aQm6p/wdDBQ5sdvNS4Lrc3C74uoNru2/zz8p18k5/GNf1f4PCGxaxyDOKpm6cQ42r30/Y0rqGpxuvvM3UBzJtircvRyP4DBg6H/4Md6eOoHHsvA3ybSf3wMa468g25427jSP4WumR0J3PLClj0KQP2rMBa5tkBl78II6cE/+Y+5g5rltWaobKXv0A84H/9Mvw+DzicHO0xnjH5n5P03scYYCjgFyeOCx636t1E3du6nD7pvHFzLrfN/pJ+XRIY1Tst6H7PL95K50Rr4cjVu4uabAXK6ZPOqN5prNl1lMePXsIs3wIklFaY5S/Dvx469tgZW5uHA4C3yso1C+G9X7mjkKtdnxFbugcy2saoKKdD2J84ECqx1h0r2cufut5D706JDOxRd7SR2+ng7HP/gynzSmtndL4ibyw/yP8VzlV/ojfwdAyYb4HMHBhxA6x9C+PzWHlg2z5mxLaPeTvGSgqtNi6WfvMZo06J7Iy3obQmBgbtZ5+eweXDezJr7k4u8n5EDF5rCsWifFzz/6vOcduyb2LC2vO44/vZ7Ox08fGtEvU/o8bdZbVY+apBHLhOOYfR+7eQWDwbVlmNOtXb/8gm3qoTxPzt82/5r/xH6eSuwjX1/46tNN+cLzQitS1TJ5LndrLiU6zA0VvWeACzP+E0+mIvj+Jwgjjo9eWveSawd22dEzJHQa8zrFmGm2hZr69DBjDVMekhXyQXD+3Bvf/I5VqWQEkBXlw4HcK0y0++VSSnT3ptF86wXqlsO1jGq0u/49HdCcClxLgc7D5SUSe5rkPLyrWWP9iy8Lh5MOrYuwaAvpc/YudjnG99QMybQtaKx63M73ysuRMSOlOnu6h037HnCjY1f5DWIscPj3WfZGTlsv9wIateuYHxVcus0Wh+w95vFpPZJzpW1z3ztC48cGF/HluwgU+2HmJ8dt0RBqt3FbJ080EeungA407rwriAKWFlKwAAI+pJREFUSQgbIyJMHdeXR+aXcGjIlWScaCtMwRpY9D8BJ3LCOQ9Av7PxvX4ZDl+VlWN1dHdIr7Nk62f81vUH68EXf7CSy9tA8FnVeSC+fMG5bQnejMHMzM/ipjO7B52VeteRCtZwbATLqsWHORSTyV0iOMXgM8KB4XfS48pfWwfk3Mj2xbOtZS1SMil6+yek7l4MgAN/y8y42wzNbU0cc0pnvhg9gSkfVdXmxpw57iJ+5p0JK2cBBiNOFmypYkivdO6ZcDpu54CmWyWCfBYkAh+9dBd5B2bjFEMsXlIXPwgD34ekruwtKiPtg58y2LELJs2FboOPnasZTrRlqqWkJsZTauLwlTcewBx0dAWgauCVxI37kfX6Fk2zuoVrviie8wDkPRSwKnlo8ydF+Vf6lpMU6+Ly7oX47fwJMX7uzT5Aj9TQmuoaUjPj4fjsDKaO68sPRveuTZL0+drPar0R02MElB20Rmk1pCbBscfwgOOGWS0rtTMPO6w/oMlzjq3kfCJ/QPZMoXU+dOqVdeuczsFBN1FFDF7jwIOLz33h6wZsDdeN7k1mWjxPffAt9eeUemHxVtIT3Nwwpk/I571iZE9S4ly86JlodeF9+lzjBxzZBnOuhri0gNW3YyjPPJNHVsYxqfwhnvJM4hP/UFj1J1j7txOqR0W1j8xDn+HETrquyZ1rA86I3VObzSWHNzPUv5mLhgQP8mr+yTkF4twOHr1kIHtSc6jGjdc4qMbNp46AqTaycq05eLJyITWTtAsfxrjiWn7G3Qg6KzuDDa4BvOybyFfmdN5elc+erMvAFYcRJ9W4WO4byHOTR+J2hvCvMchnQWbu5bXvrcc46Vy+nbLpI1n/+j3sf/58zpcVHB0/DceApmebbUrgTOiRWHQ4Nd7NURIxFUWN7uctPQSA83s3HXtvBlwS8PcZa41UhIZXK29Ch2yBaa7MEedTvfAN3HjxiouRZ4cvmW/MKV2IcTV/9EjU6znCut27BlIzg+9TsBo6n3Z8suGpVn5RbbR/St6J5+CEqN/Ic7lp1c/JMetZJYO5f+T3W+S8bUWsy8k9E7K5/2/f8K91+7h4qJV/sXbPURZvOsD9F/YnMTb0j5mEGBeTc3sz65PtPDhyEgkrZ1offP0vPv53U3oQ/nylNaLr5oVs2rGLw+s+Yn3McP7wZilHyo6A3frwmv8SFnedQc9374CUTCuvoRFrdheRjrU2UM3CeOFMug7FSLPu2JS7fh8TErYwolda0H2Ddb+s6j2Jm2ZWnNi1mZVbp4WxLbRAhSrwPUhPcDN90WYufqeKX53xMtVbljL3QG+uvfIK+nU5+RynwMTY2NPOYd1hB9/76n4G7/gTAF7jYH/yEFoq1IhYriJWALPLJBJXdbTR/fxl1sKb7uSAltfGPmdPJIWgHg1gQuDNPIMp9vC8L2UwD3J6i67EGaglRo9EtW5DrH8oBWusqD6YvWsgWHdNQ39EzfgDakpOn3Tuv/VGlm87zP1R+nu8clQvXlm6jacXfsv5g7rhcjp4fvEWUuJc3Dg29NaXGjeM6cMfl21jkWcYE33zrMUjP3servwjDLG7L6pKrZaXkn0wdQGryrpw7fyteP1nATC8VzwPXNSfx95bT6XHTxVuDlw8i54LJ8GcSZAzFQZNbPD3/vW2Aq5yfoG3+0hcgy9rU/+8PVlnUrXtj8SJj2q/E/epZ+NwNNCdSpDRh6Fem2H4+4i0wPfgnP5dmfLH5dz9iReYgEPg0RAmvmxKYGLsKODTwxfj2/EyTrFaKgs3Lobc0KfCaG0JMU6KSSCxqvF17WpXDo+vN59LC15HGsCEYMX2I3VWBg53slQko+p2JyYBMgYeG11SX+kBKM63upqCieCHcbT/Hp0O4b4LTudHf/mK+avzGdwzlUUb9nPPhOwmh5I2JqtTAucN6MauLf+LoWYIsBf+dhOsnGkFp+vegSM74Lq5kHUGf563unZSRofABYO7M/mM3mR3Teb3S7by0cYDVMakwbk/t87z+YvWuRoYmZS04U0ypBgu/nXwYLgVJZ46jimLHuHWrAJm7u7JfaObNy9UNF+bjclMi+eKkZnM+HALYDVkLT/BCdSao/OQ86jeMfOE51tpq0SEckcybs+RRvdzVNo5MgnheT9Bc2BCciIrA6sI6jnCamUJtp5XTf5Lz5ERrFDHdeHg7gzrlcqMD7cwfdFmkmNd3DSu30mf96Yz+/Jx5en4HDHHVoz/3s1W0LL0KSv3xeGEhE74/IaVOwsRrDkmYgL+RnP6pPPSD0bRJSmWFxdvhcLtVgseWEPyty897rn91ZWcXziPbYkj2lzwApDVKZ6vzOncnf99diQMITdM/3ij2fjsDOIi9Jk+4IwJ7Lx0LitPuYOdl85t1kSkbUWVK5lYb0mj+8RUFVIuCeBs/peYpmgLTAi0W6eN6TEC1syxEnnr58EUrAbEStpVYSci3H9hf26YtYL8ogquzskkNeHkP7jGndqZxzJGcY/nMaZ0331sSGvKM7D4V4DfWsV9xzLePdCT/MIK7r/gdBA57m80zu3k9rP78et/buLbEcPp74y1hlXjt+ZSqefAJ6/RnSMsG/o7Gl7Du/VkJMUS63JQ5fVz/kCr606FJtKf6aHMt9KWVbuSia8qbXSfWE8RZc5UTmw+4ObRACZEHbnJtc1pLJF37xrokg2xja/Aq1pOgttZOx/Fgq/3cl1un5P+WxERvj+gK68uLeWfRb2J2ephTtdCcvqNB1dsbSK2J+tMnn1rM0MzU7nz+6cFHUoMMGV0H15e8h1PrkvltanvWXPC7FkBX79p5VINtJcJ8HlIWvkCq/2n0ft7rb8eUzAiQpekGPKLKjmta8vlbnQ0+pkeOm9MCvGV5eDzNrhIZry3mMq41LDWQ0N21X4FJvLWV7C64fwXFRbLtx/rE/e24ND/hBhr5qvAKeTrD7uct7c7eworuO/C/g0GLwCJsS5uOasfizcdYJ2jP5z9M5j0BvQcBfN/BAfthUzXvk1SRQGz3ZPoXX/l7TZi1c5C9h6tBOCZRd+yamfj83Io1VJ8sXZg0kgib5K/mOqYtLDWQwMY1X41lMhbsh9K9mr+S4QFzjXSkvkE47MziLG7RwxwRl/727I9/0ZFtxyeX7yV3H6dODu76cnybhzXl+Q4Fy99bK/Q546Da/9stei8NQUqCmHZM2yWflT2ndBoQNSaAgPE2sBOqUiIS7NuK4IHzZUeH6mmBF9seFu2NIBR7VuwRF57Bt7aLiYVEeGaUCunTzpzbx/DRYO74zfw7pqCOpPmvfH5Dg6WVHF/E60vNVLi3PxwXF/eX7ePzfvtRMTUXjDpdSsX5vfj4PBW5lefEbYRKS0hXAGjUk2RhDQATGXwuWCOVnhIlxJM/SHULUwDGNW+BZuRtyaBt7sm8EZazYzSLZ1TkNMnnT/ckMMdeafy5he7mPWJtcJ1caWHl5d8x/f7Z3BGCMHGTWf2I9bl4O55q491vfQbD7m3QUkBBrjL9S7nxG9v0dfRkiI9A6tSNVwJ1rVWWRK81a+opJwUqQjrEGrQJF7V3gVL5C1YA11Oh1hNbIw291/Qn52Hy3jinxvp3SmBdflHOVrh4WcX9A/pPNsPleH1GzbuLeG6V5cz93Y7AEjsCgiCwY2XU8pWA+eF5bW0BE1AVa0hJskOYIoPE2wxndKiAwC4ksLbKqgtMKp9q03kDciDKVit3UdRyuEQpl8zgmG90vjJm6t5+d/fMe7UzgzJDG20w/Jth2u7oap9fuavzrc29BsPrji8OPCJG+cpZ7f0S1Cq3YtNtgKTytIGcmCKrXWQ6iwjEAYawKj2rTaRd431uHivtZK0JvBGrTi3k5+eexoenx+Pz7BqZ2HII3AC80cEmP/VHjbtK4asXCqum8+z3km8M/Sldj91vlLhEJ9sdQ15SoPPxltlBzBxKRlBt7cUDWBU+xeYyFuTwKtDqKPat/tKqMnXbc6Q7cD8kd9PGUVSnIvrZ65gx6EyvjLZvOSdSM8h54Sh5kq1f8lJKVQbJ97yoqDbffZK1Ilp4Q1gNAdGtX+BM/IWrLG6lLoPbe1aqTCqaUE5mdXaA/NHTuuaxDWvfM6UmV8wqIc1+aGzkYURlerIUhNiOEoipqIo6HZ/mfWFIiHMAYy2wKj2rybfpWC19aMJvFGvpUfgZHdLZvbNoyksq2bRRisB8bbZX+rkcEoFkRrvptgkIpVFwXewV6KWBE3iVapxNYm8e9dYP5r/0iG09JDtob1SmTjy2JIUOjmcUsElxbkoJhFHAzPxOioLqSIG3OFcCUkDGBUNahJ5v30fSvdr/otqtqtzehGrk8Mp1SinQyhzJOKuDj6RXUx1ESWOZAjzLNaaA6OiQ88RVh4MaAuMaracPum8eZuuOK9UUyqdybi9O4Jui/MUUe4M70KOoAGMihY1ibyawKtOkk4Op1TTqpzJxHtLgm6LxErUoF1IKlrUJPImdIH961q1KkopFe08MSnE+0vrrkNns1aiDv+XgJMKYETkKRHZJCLfiMh8EUkL2PawiGwVkW9F5MKA8hwRWWtve17s1ddEJFZE3rLLvxCRvgHHTBWRLfbP1IDyfva+W+xjY07m9ah2zFNp3ZYdgDcuh90rWrc+SikVxXwxqbjwQXVZ3XK/IcWU4Itr4wEMsAgYYowZBmwGHgYQkUHAZGAwcBHwexFx2se8DNwOZNs/F9nltwCFxpjTgGeBJ+1zdQKmAaOBXGCaiNS8M08CzxpjsoFC+xyqI8pfSe3l7KuGHctatTpKKRXVarqI6g2lLqmoIp0STFsPYIwxC40xXvvhcqCXfX8iMM8YU2WM2Q5sBXJFpAeQYoz53FgLkcwGrgg45g37/t+A8+zWmQuBRcaYI8aYQqyg6SJ727n2vtjH1pxLdTR9x4MrFsQJzhjrsVJKqfCIT7NuK+uORCopOoxTDBLmlaihZZN4bwbesu9nYgU0NfbYZR77fv3ymmN2AxhjvCJyFOgcWF7vmM5AUUAAFXiu44jI7VgtP2RkZLBkyZIGX4jT6SQxMREJ8xCw9szj8VBeXt7a1agjZehjpBWtoyhtCMXflcN3S1q7SiErLS1t9NpUKlL0WlSNOVBsdduv/PRjyjodrC0/eGAPWcC+ogoKw3z9NBnAiMiHQPcgmx41xvzD3udRwAvMqTksyP6mkfLmHNPYuY7fYMyrwKsA/fv3N3l5eUH3Ky4uZv/+/WRmZhIfH69BTBB+v5/8/HxiY2Pp2rVra1cnQF5rV+CkLVmyhIauTaUiSa9F1ZiyynI4CKf3yyJ1ZF5t+erPFsEGOGXQSLLPymvo8BbRZABjjJnQ2HY7qfZS4DxjatOR9wBZAbv1Agrs8l5BygOP2SMiLiAVOGKX59U7ZglwCEgTEZfdChN4rmY7cOAAmZmZJCSEdwbB9szhcNCtWzd27tzZxgIYpZRSkRBjr0hdWXKYwAHTVSX2StSpXcJeh5MdhXQR8CBwuTEmsD/hPWCyPbKoH1ay7gpjzF6gRETG2DksNwL/CDimZoTR1cBiOyD6ALhARNLt5N0LgA/sbR/b+2IfW3OuZvN4PMTHx5/saaKe2+3G6/U2vaNSSqmoE2cHMNWlR+qU++wAJiE1/F9uTzYH5kUgFlhkd7UsN8b8yBizXkT+CmzA6lr6sTHGZx9zB/A6EA+8b/8AzAL+LCJbsVpeJgMYY46IyOPASnu/Xxpjat6xB4F5IvIrYLV9jpOm3UZN0/dIKaU6rsQUK4DxlhXVKfeXW+uHJad3C3sdTiqAsYc8N7TtCeCJIOVfAkOClFcCkxo412vAa0HKt2ENrVZKKaVUhKQmxlFs4vFX1F2xXSoK8RkhJjEt7HXQmXijRF5eHj/5yU9auxpKKaU6gJQ4N8UkHjeM2lFZSLEkgyP84YUGMEoppZQKSWq8m2KTiNSbyM5aiTolInXQAEYppZRSIYlxOSiRRFzVdRd0jPMUUe7SAEaFyOv1cvfdd5Oenk56ejr3338/fr8fgL59+/L000/X2b9+t9Pf//53hg0bRnx8PJ06deKcc85h//79EX0NSiml2ocKRzJuT90upHjvUapcaRF5fg1gwmTVzkJe+ngrq3YWNr1zC5kzZw5+v5/PP/+cV155hVdffZUZM2ac0LH79u1j8uTJTJ06lY0bN7J06VJuuOGG8FZYKaVUu1XpSiLOW7cFJtlfTHVs+NdBgpZdSiAq/b8F69lQUBzSMSWVHjbtK8FvwCEwoHsyyXHuEz5+UM8Upl02ONSq0qNHD55//nlEhAEDBrB582amT5/Ovffe2+SxBQUFeDwerr76avr06QPAkCHHDRZTSimlAPC4U4mvKD1WYOyVqGPTIvL82gITBsWVXvz2nMR+Yz2OhDFjxtSZn2Xs2LHk5+dTXNx0ADZ8+HAmTJjAkCFDuOqqq3j55Zc5ePBgk8cppZTqmHwxKcSZSvB5AKgsLyFOPJgILOQI2gLTpOa0hKzaWciUmcvxeP24XQ6emzySnD6RaVJriMPh4NhKDxaPx1N73+l0snDhQpYvX87ChQuZNWsWDz/8MP/+978ZPnx4pKurlFKqjfPH2YsIVB6FxC6UFB4gDnAkdI7I82sLTBjk9Elnzq1juPeC/sy5dUzEgpcvvviiTpCyfPlyevbsSUpKChkZGezdu7d2W2VlJZs2bapzvIgwduxYpk2bxsqVK+nZsydvvfUWSiml1HFi7QCmogiAsiKr1d6ZGJkARltgwiSnT3rEW10KCgq45557uPPOO1m7di1PPfUUP//5zwE499xzee2117j88svJyMjgiSeeqNMCs3z5cj788EMuvPBCunXrxurVq9m9ezeDBg2K6GtQSinVPjgSrP9xvvJCnEBF0QEAYlMzIvL8GsBEkSlTpuDz+Rg9ejQiwi233MJ///d/A/Dwww+zY8cOJk6cSFJSEo8++igFBccW705NTeXTTz/lhRdeoKioiKysLH7xi19w/fXXt9bLUUop1Ya5Eq0Aprz4MMlAdam1DlJcSvhXogYNYKLGkiVLau+/+OKLx21PSUlh7ty5dcruvPPO2vsDBw7k/fffr3+YUkopFVRMkhXAVJZYAYyv1F6JOi38K1GD5sAopZRSqhlik61cl6pSa74zf5nVApOSHpkuJA1glFJKKRWyhBQrgPGUHgGslahLTDxJCfEReX4NYJRSSikVspTkZKqMG3+FtZyAs6qQIkmpMx9ZOGkAo5RSSqmQpcS7KCYBU2F1IbmriiiL0ErUoAGMUkoppZohNd7NUZOIVFotMPERXIkaNIBRSimlVDPEu50Uk4ijylquJsF3lEp3WsSeXwMYpZRSSoVMRKhwJuH2WC0wSf4SPDFpEXt+DWCUUkop1SwVzmRivSXg85BEOb64yCzkCBrAKKWUUqqZql3JxPlK8NlzwJj4yC2howFMB7ZkyRJEhEOHDgV9rJRSSjXGG5NKgr+MssL9QORWogYNYDq0cePGsXfvXjp3jtwFp5RSKnr4YlNx4qfy4HYAXEkawKiTVF1d3eQ+MTExdO/ePWKTDimllIoycakAeA5uAyAmQgs5QgsFMCJyn4gYEekSUPawiGwVkW9F5MKA8hwRWWtve17s/54iEisib9nlX4hI34BjporIFvtnakB5P3vfLfaxMS3xetqjvLw87rjjDu677z4yMjI488wzmT59OsOGDSMxMZHMzExuvfVWioqKao/RLiOllFInQ+LTADBHrAAmPjUy6yBBCwQwIpIFnA/sCigbBEwGBgMXAb8XEae9+WXgdiDb/rnILr8FKDTGnAY8Czxpn6sTMA0YDeQC00SkJkvoSeBZY0w2UGifo23YvQKWPWPdRshf/vIXjDEsW7aM2bNn43A4mDFjBuvXr+fNN99kxYoV/PSnP41YfZRSSkU3V0IaAI5CK4BJjNBK1ACuFjjHs8ADwD8CyiYC84wxVcB2EdkK5IrIDiDFGPM5gIjMBq4A3rePecw+/m/Ai3brzIXAImPMEfuYRcBFIjIPOBf4gX3MG/bxL7fAazrm/Ydg39rQjqkqhv3rwPhBHNBtCMSGMDth96Fw8W9De06gX79+PPPMM7WPBw4cWHu/b9++/O53v2PixIm88cYbOBzae6iUUurkuJOsYdNxJTupNG5SUlIj9twn9V9MRC4H8o0xX9fblAnsDni8xy7LtO/XL69zjDHGCxwFOjdyrs5Akb1v/XO1rsqjVvAC1q09zXK45eTk1Hm8ePFizj//fHr16kVycjJXXnkl1dXV7Nu3LyL1UUopFd1i7QAmtWovR0gmNd4dsedusgVGRD4EugfZ9CjwCHBBsMOClJlGyptzTGPnOr5CIrdjdV2RkZHBkiVLgu6XmppKSUnJsYKzHm3olA1yFKwi4e1rwecBp5vyi5/H3zOn6QMDBdbhBPh8Ptxud23dd+3axSWXXMLUqVN58MEH6dSpE19//TU333wzR44cITk5mfLycgBKS0uJjY097nFTKisrG3wfVfOUlpbqe6raBL0W1YnYeqCYPMCJj6Mks/mTpRF77iYDGGPMhGDlIjIU6Ad8befh9gK+EpFcrNaQrIDdewEFdnmvIOUEHLNHRFxAKnDELs+rd8wS4BCQJiIuuxUm8FzBXserwKsA/fv3N3l5eUH327hxI8nJyQ2d5sT0z4OpC2DHMug7nsSs3JM73wlwOp3ExMTU1n3Tpk1UV1fz0ksv4XRa6Uc1H0ZJSUkkJyeTkJDQ6OOmxMXFMXLkyDC8mo5ryZIlNHRtKhVJei2qE9FlTyH+9YJDDGWOlIheM83uQjLGrDXGdDXG9DXG9MUKNEYZY/YB7wGT7ZFF/bCSdVcYY/YCJSIyxs5vuZFjuTPvATUjjK4GFhtjDPABcIGIpNvJuxcAH9jbPrb3xT42MA+ndWXlwvifWbetIDs7G7/fz4wZM9i+fTtz585lxowZrVIXpZRS0Sk1IZYS4gEod0Uu/wXCNA+MMWY98FdgA/Av4MfGGJ+9+Q5gJrAV+A4rgRdgFtDZTvi9F3jIPtcR4HFgpf3zy5qEXuBB4F77mM72ORQwbNgwnnvuOaZPn86gQYOYOXMmTz/9dGtXSymlVBRJiXdz1CQCUOWObADTEqOQALBbYQIfPwE8EWS/L4EhQcorgUkNnPs14LUg5duwhlZ3eMH6qu+66y7uuuuuOmXXXHNN7f28vDyshqzgj5VSSqnGJMe62E0icJDq2MitgwQ6E69SSimlmsnhEMocSQD44zSAUUoppVQ7UeG0AhjiO0X0eTWAUUoppVSzVbmsiVolUQMYpZRSSrUTiQ4PAF1MYUSfVwOYIDSRtWn6HimllGL3CsZWWJPXnbHhNxFd/08DmHrcbjcVFRWtXY02z+Px4HK12CA2pZRS7dGOZQjW0jkO47UmcI0QDWDq6dq1K/n5+ZSXl2srQwP8fj/79+8nNTWyY/6VUkq1MX3H45UYvMaBT9zQd3zEnlq/QteTkmIlIxUUFODxeFq5Nm1XYmIiXbp0ae1qKKWUakWr/Nn8tvoRzmADq3yDecCfTYgr/zWbBjBBpKSk1AYySimllApu+bbDrPJns9Jk4xTrcU6fyMwHo11ISimllGqWMad0JsblwCngdjkYc0rniD23tsAopZRSqlly+qQz59YxLN92mDGndI5Y6wtoAKOUUkqpk5DTJz2igUsN7UJSSimlVLujAYxSSiml2h3piHOdiEgJ8O1JnCIVONpC1WlJWq/QtMV6dQEOtXYlgmiL7xVovUIVSr0ieS1Gw/sVKW2xThC+evU3xiQH29BRc2C+NcZ8r7kHi8irxpjbW7JCLUHrFZq2WC8R+fJkrs1waYvvFWi9QhVKvSJ5LUbD+xUpbbFOEL56iciXDW3TLqTmWdDaFWiA1is0bbVebVFbfa+0XqHReoWmLdarLdYJWqFeHbULqU1+y1VKr03VVui1qNqCxq7DjtoC82prV0CpBui1qdoKvRZVW9DgddghW2CUUkop1b511BYYpZRSSrVjURfAiIgRkT8HPHaJyEER+d/WrJdSgUTkP+1rdUBr10V1LPoZqaJF1AUwQBkwRETi7cfnA/mhnEBEOurwchU51wGfAJNDOUhEnOGpjupATvozUqm2IBoDGID3gUvs+9cBc2s2iEiuiHwmIqvt2/52+Q9F5G0RWQAsjHyVVUchIknAmcAt2AGMiOSJyFIRmS8iG0TkDyLisLeVisgvReQLYGzr1VxFkeZ8Ri4TkREB+30qIsMiWWmlAkVrADMPmCwiccAw4IuAbZuAs40xI4H/AX4dsG0sMNUYc27Eaqo6oiuAfxljNgNHRGSUXZ4L/AwYCpwKXGmXJwLrjDGjjTGfRLqyKio15zNyJvBDABE5HYg1xnwTsRorVU9UBjD2H1VfrG8W/6y3ORV4W0TWAc8CgwO2LTLGHIlIJVVHdh3WPxDs2+vs+yuMMduMMT6sb8Rn2eU+4J3IVlFFs2Z+Rr4NXCoibuBm4PWIVFapBkRzrsd7wNNAHtA5oPxx4GNjzH+KSF9gScC2skhVTnVMItIZOBcrB8EATsBg/ROpP6dBzeNKO6hRqiWF9BlpjCkXkUXAROAaQCe5U60qmgOY14Cjxpi1IpIXUJ7KsYS1H0a4TkpdDcw2xvxXTYGI/BurtSVXRPoBO4Fr0YnEVHg15zNyJtaU8cu0tVq1tqjsQgIwxuwxxjwXZNPvgN+IyKdY336ViqTrgPn1yt4BfgB8DvwWWAdsD7KfUi2mOZ+RxphVQDHwpwhUUalG6Uy8SrUB9jfg+4wxl7ZyVZRqkIj0xOpSGmCM8bdydVQHF7UtMEoppVqOiNyINVrpUQ1eVFugLTBKKaWUane0BUYppZRS7U5UBDAikiUiH4vIRhFZLyJ32+WdRGSRiGyxb9Pt8s72/qUi8mK9c10rIt/Y5/lda7wepZRSSjUuKgIYwAv8zBgzEBgD/FhEBgEPAR8ZY7KBj+zHAJXAL4D7Ak9iz9HxFHCeMWYw0E1EzovQa1BKKaXUCYqKAMYYs9cY85V9vwTYCGRiTbj0hr3bG1hTuGOMKbOnZK+sd6pTgM3GmIP24w+Bq8Jbe6WUUkqFKioCmED2zJEjsbLluxlj9oIV5ABdmzh8KzBARPraK1JfAWSFr7ZKKaWUao6oCmDsVX7fAe4xxhSHerwxphC4A3gLWAbswOqeUkoppVQbEjUBjL3A2DvAHGPM3+3i/SLSw97eAzjQ1HmMMQvsVX/HAt8CW8JVZ6WUUko1T1QEMCIiwCxgozFmesCm94Cp9v2pwD9O4Fxd7dt04E6stT+UUkop1YZExUR2InIWVpfPWqBmhshHsPJg/gr0BnYBk2oWIBORHUAKEAMUARcYYzaIyFxguH2OXxpj5kXoZSillFLqBEVFAKOUUkqpjiUqupCUUkop1bFoAKOUUkqpdkcDGKWUUkq1OxrAKKWUUqrd0QBGKaWUUu2OBjBKqTZPRP5XRF5v7XoopdoODWCUUlFFRPJExIhIl9aui1IqfDSAUUoppVS7owGMUqpNEZEEEXldREpFZL+IPFJv+/UislJESkTkgIi8LSKZ9ra+wMf2rgftlpjX7W0iIg+IyHciUiEia0Xk+ki+NqVUy9EARinV1jwNnA9cBZwHjATODtgeA0zDWvLjUqALMNfetts+DmAw0AO42378K+AW4MfAIOA3wCsickm4XohSKnx0KQGlVJshIknAYeBmY8ycgLI9wLvGmB8GOWYAsBHIMsbsEZE8rFaYDGPMIXufROAQ1ppnywKOnQGcboz5jzC+LKVUGLhauwJKKRXgVKwWls9rCowxpSKytuaxiIzCaoEZAXQCxN7UGyvQCWYQEAf8S0QCv7W5gR0tVHelVARpAKOUakuk0Y1WS8oHwIfADcABrC6kZViBT0Nqussvw1qZPpCnWTVVSrUqDWCUUm3JVqyAYgywDWqDliHAd8AArIDlEWPMdnv7lfXOUW3fOgPKNgBVQB9jzOKw1V4pFTEawCil2gy7u2gW8KSIHAQKgP/hWDCyCysQ+YmIvAQMBB6vd5qdgAEuEZEFQIUxpkREngaeFhEBlgJJWIGS3xjzarhfm1KqZekoJKVUW3MfVhLufPt2HVbAgTHmIDAVuAKrVWUacG/gwcaYfLv8CWA/8KK96RfAY/b51wOLsEYsbQ/ja1FKhYmOQlJKKaVUu6MtMEoppZRqdzSAUUoppVS7owGMUkoppdodDWCUUkop1e5oAKOUUkqpdkcDGKWUUkq1OxrAKKWUUqrd0QBGKaWUUu2OBjBKKaWUanf+P3TTD72r/bHeAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "diff_7 = df[[\"bus\", \"rail\"]].diff(7)[\"2019-03\":\"2019-05\"]\n", - "\n", - "fig, axs = plt.subplots(2, 1, sharex=True, figsize=(8, 5))\n", - "df.plot(ax=axs[0], legend=False, marker=\".\") # original time series\n", - "df.shift(7).plot(ax=axs[0], grid=True, legend=False, linestyle=\":\") # lagged\n", - "diff_7.plot(ax=axs[1], grid=True, marker=\".\") # 7-day difference time series\n", - "axs[0].set_ylim([170_000, 900_000]) # extra code – beautifies the plot\n", - "save_fig(\"differencing_plot\") # extra code – saves the figure for the book\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['A', 'U', 'U']" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(df.loc[\"2019-05-25\":\"2019-05-27\"][\"day_type\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Mean absolute error (MAE), also called mean absolute deviation (MAD):" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "bus 43915.608696\n", - "rail 42143.271739\n", - "dtype: float64" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diff_7.abs().mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Mean absolute percentage error (MAPE):" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "bus 0.082938\n", - "rail 0.089948\n", - "dtype: float64" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "targets = df[[\"bus\", \"rail\"]][\"2019-03\":\"2019-05\"]\n", - "(diff_7 / targets).abs().mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's look at the yearly seasonality and the long-term trends:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAEQCAYAAACutU7EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADg6ElEQVR4nOydd3wbhfn/36dt2ZYt7xk7HtnbmZBA2BsKtKWsDgp0UNpSoINf+23pboECLZRNoWW0rLJHCMQkkDjD2YmTeO9tecjauvv9cTpZsmVbDnFW7/16QWxZ0g2d7j73jM8jSJKEioqKioqKisqJhOZYr4CKioqKioqKykRRBYyKioqKiorKCYcqYFRUVFRUVFROOFQBo6KioqKionLCoQoYFRUVFRUVlRMOVcCoqKioqKionHAcUwEjCMLTgiB0CIKwN8rnf1kQhP2CIOwTBOGFyV4/FRUVFRUVleMT4Vj6wAiCcBpgB/4pSdKccZ5bDLwEnClJkk0QhDRJkjqOxnqqqKioqKioHF8c0wiMJEnrgZ7QxwRBKBQE4X1BEMoFQdggCMKMwJ9uAh6WJMkWeK0qXlRUVFRUVP5HOR5rYB4HbpUkqQS4A/h74PFpwDRBED4TBKFMEITzj9kaqqioqKioqBxTdMd6BUIRBCEOOAV4WRAE5WFj4F8dUAysBnKADYIgzJEkqfcor6aKioqKiorKMea4EjDIEaFeSZIWRPhbE1AmSZIXqBUE4SCyoNl6FNdPRUVFRUVF5TjguEohSZLUjyxOvgQgyMwP/Pl14IzA4ynIKaWaY7GeKioqKioqKseWY91G/SKwCZguCEKTIAjfBK4FvikIwi5gH3BZ4OkfAN2CIOwH1gF3SpLUfSzWW0VFRUVFReXYckzbqFVUVFRUVFRUDofjKoWkoqKioqKiohINqoBRUVFRUVFROeE4Zl1IiYmJUlFR0bFa/KQyODhIbGzssV6NSeNk3j51205cTubtU7ftxORk3jY4OttXXl7eJUlSaqS/HTMBk56ezrZt247V4ieV0tJSVq9efaxXY9I4mbdP3bYTl5N5+9RtOzE5mbcNjs72CYJQP9rf1BSSioqKioqKygmHKmBUVFRUVFRUTjhUAaOioqKioqJywqEKGBUVFRUVFZUTDlXAqKioqKioqJxwjNuFJAjC08DFQIckSXMi/F0AHgQuBBzA1yVJ2n6kV1RFRUVFReVEob+/H4vFQkVFxbFelUkjISHhc22fXq8nLS0Ni8VyWK+Ppo36GeAh4J+j/P0C5KnQxcAy4JHAvyoqKkeR8nobm6q7WFGYQkme9VivjorK/yz9/f20t7czZcoUkpOTke/zTz4GBgaIj48/rNdKkoTT6aS5uRngsETMuAJGkqT1giDkj/GUy4B/SvJQpTJBEBIFQciUJKl1wmujoqJyWJTX2/jK45vw+iWMuipeuGm5KmJUVI4RHR0dZGdn4/f7T1rx8nkRBAGz2Ux2djYtLS2HJWCORA1MNtAY8ntT4DEVFZWjRFlNN16/PJjV6xcpq1EHtauoHCu8Xi8xMTHHejVOCGJiYvB6vYf12iPhxBtJXkYccS0Iws3AzQCpqamUlpYegcUff9jt9pN22+Dk3r4TddsMvb7gzxoBjL31lJY2hT3nRN22aDmZt0/dthOLhIQE7HY7fr+fgYGBY706k8aR2j6Xy3VYx8CREDBNQG7I7zlAS6QnSpL0OPA4wPTp06WT1WJZtY8+cTlRt62g28HvNq8D4K4LZ3LDyoIRzzlRty1aTubtU7ftxKKiooL4+PjPVSNyInCkts9kMrFw4cIJv+5IpJDeBL4qyCwH+tT6FxWVo8vG6q7gz1mJauhaRUVl4qxevZrvfe97x3o1oiaaNuoXgdVAiiAITcAvAT2AJEmPAu8it1BXIbdRf2OyVlZFRSUyG6u70WsFvH6JAZdv/BeoqKionOBE04V09Th/l4BbjtgaqaioTAhJkthY3c3ygmQ2VHYx6FYFjIqKysmP6sSronKCU91pp8vu5pxZ6QAMevzHeI1UVFROVHw+Hz/4wQ+wWq1YrVbuvPNORFEEID8/n3vvvTfs+cPTTq+99hrz5s0jJiaGpKQkTj/9dNrb2ydlXVUBo6JygvPvrbKLQUqsEb1WUFNIKioqh83zzz+PKIps2rSJxx57jMcff5wHHnggqte2tbXxla98ha997WtUVFSwfv16rr/++klb1yPRhaSionKMKK+38fSntQD86OWdGHUaNYWkonIccvdb+9jf0n9Ulzkry8IvL5k9oddkZmby17/+FUEQmDFjBocOHeIvf/kLP/rRj8Z9bUtLC16vly9+8Yvk5eUBMGfOiAlERww1AqOicgJTVtONGHBd8vpENIKgChgVFZXDZvny5WHuwStWrKC5uZn+/vHF1/z58zn77LOZM2cOV155JY888gidnZ2Ttq5qBEZF5QRmeUEyArJzpF6nwWo2MKAKGBWV446JRkKORzQaDXLfzhChLrparZY1a9ZQVlbGmjVreOqpp/jZz37GJ598wvz584/8+hzxd1RRUTlqlORZiTFoWTQlkedvXE5KvFGNwKioqBw2mzdvDhMpZWVlZGVlYbFYSE1NpbV1yObN5XJx4MCBsNcLgsCKFSv45S9/ydatW8nKyuI///nPpKyrGoFRUTmB8fhEHB4/q6enUZJnJdaoo8/hOdarpaKicoLS0tLCD3/4Q7773e+yZ88e7rnnHn7+858DcOaZZ/L0009z6aWXkpqayq9+9auwCExZWRlr167lvPPOIz09nR07dtDY2MisWbMmZV1VAaOicgJjC4iV5DgDAPFGHc02x7FcJRUVlROYa6+9Fr/fz7JlyxAEgW9+85vcdtttAPzsZz+jrq6Oyy67jLi4OG6//fawGpeEhAQ+++wz/va3v9Hb20tubi6/+MUvuO666yZlXVUBo6JyAtNldwOQHGsEINaoxa6mkFRUVA6D0IGKDz300Ii/WywWXnzxxeDvAwMDYd1JM2fO5L333pvUdQxFrYFRUTmB6bbLEZiUQAQm1qhj0K0a2amoqJz8qAJGReU4pLzexsPrqiivt435vO5BOQKTFDuUQhr0+BBFaayXqaioqJzwqCkkFZXjjI1VXVz/1BYkJAw6Dc/fuJySPGvE5yoRmOQ4JYWkQ5LA4fUTZ1S/3ioqKicvagRGRWUSiTaSEsrbu1vxSxKiJJvTldV0j/rcLrsHvVbAYpLFSmxAtKit1CoqKic76i2aisoksa2uhy8/tglg3EhKKFOSzcGfdVoNywuSR31ut91Ncqwx6JwZHxAydreP9M+z8ioqKirHOWoERkVlkvioogNRIqpISigpgXSQIMC0tDjKarpHjeD0DHqCLdQAsYaAgFEHOqqoqJzkqBEYFZVJItsaE/xZrxs7khJKb8Db5fzZGby3t419rf2jRnC6Bj3B+hdQU0gqKir/O6gRGBWVScJs0AKQn2yOOn0E0Of0IghQmBoHjB3B6ba7SYkdisCEppAmi8Op61EZG3WfqqhMHDUCo6IySTT2OAGIMeiiFi8gCxiLSc8ZM9J49JNqfKKEdpRamG67J9hCDUMRmMkSMOX1Nq55ogyvX5xQXY/K6JTX27jqsU34RQmjXt2nKirRokZgVFQmicaApb/ilhstvQ4viWY9JXlW/vGNJRh1GuZmJ1CSZw27U3d4fDi9/mEpJDnqM1kppA2Vnbh9IqIEbq/IAx8eUqMGn5Oymm58ooTExGqlVFSOB0pLSxEEga6uroi/TyZqBEZFZZJoCgiYnkEPoiih0QhRva7P6SUxRg/AquJUvn9WMfd8cJBv/XMbHx/swC/K/jD3f3kBQFgRb7xRfp19ktx4p6fHB3+WgA1VXWyt71GjBp+DeTkJwZ8nUiulonI8cMopp9Da2kpy8tE/btUIjIrKJKGkkPyiRK/TO86zh+h1erEEBAzAgtxEAD7Y347XL/vDeHwin1XJdzgpIQLGpNegEcDujn55EyHHKrd4z8ocEjJq1ODzYTXLn59RTcmpHGd4PONPtjcYDGRkZAStHI4mqoBRUZkEvH6R1j4nBSmxwMTSSH0OD4nmIVGys7GX4acGjSCQmySLCWWQI4AgCJM6D0mZfn3Nsjy0gYiSGjX4fNR3y5E6t09kdpblGK+Nyv8yq1ev5jvf+Q533HEHqampnHrqqfzlL39h3rx5xMbGkp2dzY033khvb2/wNUczZTQcVcCoHBNO9q6L1l4XojQUPekamICAcXpJiBnK7i4vSMao16AVwKAVsJr1TEuPC965h6aQQJ6HNFlFvEokaXlBEjetnArAg19ZqEYNPgd13YPBn9v6XMdwTVRU4LnnnkOSJDZs2MA///lPNBoNDzzwAPv27eOFF15gy5Yt3Hrrrcd6NQG1BkblGKB0XfhECdNJ2nWhFPAunJLIazua6YwyAiOKUqAGZkiUlORZef7G5ZTVdLO8IJn397by7KZ6mnvlFFVoBAaUidSTJGACEZiEGAOnFqfw6PoaLCb9OK86cSivtwX389E6JhsCERiAtn4X+YGoncpJxns/hbY9R3eZGXPhgj9O6CVTp07lvvvuC/4+c+bM4M/5+fn8+c9/5rLLLuPZZ589Yqt5uKgC5jA5Fie6kwWl6wLkWo6ymu6Tbh829igCRt4uZejieNg9PkQJEs3hoqAkzxrcR31OD09sqOXD/e2YDVpiAn4zCrGTGIGxDcoRmESznimBFFajzcEKTvwUUnm9jS8H2pmPprCu6x7EatZjc3hp71cjMCrHlpKSkrDfP/74Y/7whz9QUVFBX18ffr8fj8dDW1sb8fHxo7zL0SEqASMIwvnAg4AWeFKSpD8O+7sVeBooBFzADZIk7T3C63rcsLGqi+uf3oIkjT8tWGUkywuS0QiyQZtWI5yU9RONNgdajcD0jHh0GiHqGpg+hywQQot4h7M4PwmNAPtb+8lNihnx93jTZKaQPMQbdei1GrISY9AIQ2LtRKespht/QFh7j6KwbuhxsCQ/iTX729UU0snMBCMhx4rY2KEIYH19PRdddBE33XQTv/71r0lOTmb79u1cffXVURX4Tjbj1sAIgqAFHgYuAGYBVwuCMGvY0+4CdkqSNA/4KrLYOWl5aVsjfjG6acEqIynJs5IfGFi4qijlpBR/jT1OshJN6LUakuMMUQuY3oCASRxDwFhMeuZky623w9NHIM9DGi+F1NDfwC8++wXP7H0GURKjWjdl/RIC0SG9VkNmQsxJI2AWTUkM/qw5SsLa5fXT2udidlYCZoOWNjUCo3IcsW3bNjweD/fffz8rVqxg2rRptLS0HOvVChJNBGYpUCVJUg2AIAj/Bi4D9oc8ZxbwBwBJkg4IgpAvCEK6JEntR3qFjwdESb5LE1A7MA4Xt0/eh9Vdg+M888Sk0eYgJ3GoS6gryhRSX6BINmEMAQOwoiCZ3U19YS3UCrFG3ajDHDscHTy26zFeq3wNAJ/ko7y9nN+t+h0Ww/gdML0OT7B4GGBKkpmGk0TAhBoCFqfFTUhYf1bVxY4GGysKJybIFfGXn2Imw2JSU0gqxxXFxcWIosgDDzzAFVdcQVlZGQ888MCxXq0g0XQhZQONIb83BR4LZRdwBYAgCEuBPCDnSKzg8UhDwN9jWUGSmj46THodHkx6DfXdjhMqbB5t91RjjzOY3kmJN9IdbQTGKQud0DbqSCiiub3fPWJdhqeQvH4vB3sO8qbtTS567SJeq3yNL077Ih9+6UN+uvSnfNr8KV9680t8UPcBUkCcj4Yt4BKsIAsYZ1TbdrxTFxDTZ89MZ3/rQLBIejxe297EtU9u5r41h7j2ybIJddbVBQp4pySZSbeYTqjvgsrJz7x583jwwQf5y1/+wqxZs3jyySe59957j/VqBRHGO2EJgvAl4DxJkm4M/H49sFSSpFtDnmNBThstBPYAM4AbJUnaNey9bgZuBkhNTS156aWXjuCmHB08fonvrHXgl2B1jo6vzxkZwrfb7cTFxR2DtTs6fN7t84kSN65xsChNy/YOP9+eZ2R51vFRTz7WtlXZ/PxpqwufCHoN/HiJiSKrdsTzPH6Jmz90cEWxnksLDTyx282BHj/3rTaPu/x1DV6e3e/h/tUxWE2j31/s6/JxzzZZFBkC65IQ18NG+0b22HppdtopSnIxKA7S4+vBjx8BgZLYEmYJ59Hem8SMJC1FVi217lr+3f1vWrwtFBgLuDDhQqaZpkU0pvrJegf5Fg3fWWAC4M1qD69VennsHDNG7ZE3sqqy+TnQ4w+u61h83uPyvVov/zno4VcrTPxqk4s5KRq+UGgYdblVNj/bO3ysrffhCWThNMAVxXouLhxbgCp8UOflxQMeHjrTzPMH3BzqESMeJyfzOeVk3LaEhASKiorw+/1otWMftycyR2r7qqqq6Ovri/i3M844o1ySpMWR/hbNVaMJyA35PQcIS4JJktQPfANAkM96tYH/GPa8x4HHAaZPny6tXr06isUfX2yu6cYvlQFgTEhm9eqR+7W0tJQTcdui5fNuX0e/C9Z8xKXLplO55hD9MemsXj33yK3g52Csbdu3rgqfeBAJ8EvgTsxj9eqiEc97c2czsJPcKfmsXj2NjY4Ktm6s4/TTTx/XrXLfuirYf5ALzjodk370E8O+dVVohIOIkrwue/X1lHU+jtvvxmRIRPAaSLPmkhyTRGZcJtOt03FUO7DmrOKbz24DvGg1Xq5clMNVS+bz1dyv8sDm53mp+kke6niIeSnzuGPJHSxMWxi2XPf6NUyfmsXq1XMA6Ets5rXKnUyds5hp6Ue2I6G83sY9a8vw+ESMev+40c7Pe1x+aNtDormVuQsWIZRtZG+XSFWfJ+Jyy+tt3Lu2DJdPVi4C8mgFg17D1WcviToq+9Hre4k3NXPROavZ6z/I1g01nHba6SPGTpzM55STcdsqKiqIj49nYGDgmHfqTCZHavtMJhMLFy4c/4nDiCaFtBUoFgRhqiAIBuArwJuhTxAEITHwN4AbgfUBUXPSsS0QHp6REU/P4LGvwj4RsQUKVZPjjBSnx/H+3rYTwtBueUEyiv7QjTIdurzexh0vy4HHRz6pprzeRkqcAY9PZCCKzqA+pxejTjOmeFHWxaDToBUkjBlv8VH3/UyzTuOdy9/hu4X/wFH7ff546sP8+fQ/c1vJbVxYcCEp+hQ+qugIvodfhJe2NXHNE2X8Z2szj72TSvu+H+HruJzmgXa+/v7XeWTnI/hEX+D5UticJiDYSh3qZXKkKKvpxuMTkRhqt4+WwzFKrO92kJccKy8nEJgebbllNd24/bJ40QgwIzMejQD/vGHphFLK9T0O8pLNCIJAhsWIT5ToVs8rKipRMa6AkSTJB3wP+ACoAF6SJGmfIAjfFgTh24GnzQT2CYJwALlb6QeTtcLHmvJ6G4WpsRSmxqknmsNEMUPrGnCzu6mPnkEP1zwxsdqBY0FJnjVYmPuDs4oiXqjKarrx+uWrn98vX/xSAsWh0XjB9Dm84xbwKuvy3DeXsWLJZrSJn3HdzOt4+rynyYrLItYoB1YjdSLlBOpyQu/v3T6R37+7H49PBEmPs3sZM8W7KYxZxd93/Z1vfvBN2gbbGHB5kaTw+pzcEC+YI83yguSwSES0xfLl9TaueaKM+9YcnFBNSl33IPnJZpYXJKPXyafG0dr8lxcko1NGKWg1nDkjDVGCtHhTVMtSaOgeJC9ZblvNSJBfqxbyqqhER1SjBCRJeleSpGmSJBVKkvS7wGOPSpL0aODnTZIkFUuSNEOSpCskSTq+r0SHiShKlNfbWJyXRFKsQY3AHCZKBKa2ezDY0eX1H//t6JIk0TUo151II6YTyYRedJUONUXARNNK3ev0jDCxG21dtvb9h10Dr3PV9Kv48ZIfo9PIwkURMJG8YJIC4uOyBVkYdJrgVijTq5Xf39vdy87tF+Brv4r93RVc+eaVvFO9Bgg32UuONWA2aCelE6kkz8ryqUmA7BkU7ay4sppu3D5xQjYHbp+fll4necmxlORZefYbS9AIcNHcrIhCtSTPyvXL8wB49PoSzpyRBkBNlz3KrQOfX6Sxx0HXgFyInW6RBczRKOQ92Ud5qPxvoM5CmgBv7Wqhz+klJd5AUqyBXocXnz96D43jnaN1UlMiMKcWpaDXjn2nezzRM+jB4ZEv9NWdkS9UJXlWlhckkxCjD9ZOKLOKopmHNHyMQCQcXgc/+/Rn/H3n37m08FLuWnZXWG1N/BgCpiew7/945TxevGk5K4tTUIIcGmBlcQoXz8sEZNHgsS3kC2n3khOfwx+3/4yYnGfxaobSUIIgMCXJHJy8faTx+EXmZieQaNbz+3cqojo+FaNEGD3VN5wmmxNRIuhPtKIwhbnZCbT1j75d8YERCquKUihIkYtQqzvkTqZovkuv72zGL8GW2h6ufbKMzsDxMdleMGv3t/OlRzdOOEKlMjHGa5BRkfk8+0kVMFFSXm/jjlfk2oYnN9Qy6JEvDko0YTLZWtfDg2sPTeqJZlN1F1c9tumonNSUfbaqOIXnblyGRoBL5kW+0z2eaLTJFzOtRqCmc3T/GpfXz6xMS3B7UicSgXF4x3Th7XB0cO271/JuzbvcuvBWfnPqb9AI4V/jsVJIPXYPZoMWk15LSZ6VH549LVBLIxeg/vDsaXzj1KnB9IhOq+H86XN57oLnuCT3RrTmav6w+5v8+8C/g+8ZZ9Sxs9E2KcdMW7+LgtRYzpuVwbZ6W1THZ0melVyrLERuOSNyqm849YGBiko6B2B+biJ7mvqC7rzD6XN6iTfp0Gk1WGMNWM16arrslNfbuPbJ8VNYz3xWB8jlNl6fyMH2ATTC5KeQ7l0jF3+rRpyTh16vx+k8OewFJhun04lef3jz1FQBEyVlNd34ArUNPr8YPMlMdhqpvN7G1Y+Xcf/aykkVFm/sbMF3lNyFex0eDFoNMXotS/KTyLGa8Y5ykTjSfJ4ok2I6VjLFSk2nfdQ7h2abk2zrkMV/UqwBQSAqM7s+p3fUFJJX9HJ76e0025t59JxHuXnezSPECwwJmP/uaB6xnT3DjOiUQZE/Ond6MGJUkmflr1+ROwK+sCCbkjwreq2exYlXMlh9JwtTl/G7zb/jyT1PUl5vY0djL112D9c+WcbWui5cPheD3sHPfQcqSRLtfW4yLCZS42URGO3xqdxguLz+qJZV1xUwlEseamGen5PIoMc/arRtuKlfQWoc1Z2DcgrLK6ewRisCbu1zUtHWj1YjoBXkdOMphSmkxBknNYVUVtPNgbYBQDXinEzS0tJobm7G7XarkZhRkCQJh8NBc3MzaWlph/Uex4f5xgmA0oEiSfKXviTPylu7WukedAOT1ya3qborOPhwMuez5IWcuCfbRt3mkOs8lLRHbtLRsaNXpmD7RQnjYQzrawpEYE6blsKWuh667J7ghVXB4xNpH3CRlTgkYHRaDVZzdOME+pyjF/H+Zdtf2Nm5k3tOu4dTsk4Z9T0UQ7Z3dreytqI9bDttgx6SYsNTVKGDIhUunJfJyi0pfFrVhV+U0GoEeh1eJH8896y6j3u2/5oHtz9IuuEDDDkeBI0Hjb6PGz6xo7TwZMdl88VpX+QLRV8gJSZl3G0fTs+gB49fJCPBxLycRB5eV4XE+Bddn18MFthXtI5show0iLWhx0GcURe2bxYERgvsbOiN2CLeO0xsFqTEsu5gJz85f0bwXCFJsCxQxxPK05/WAgIPXb2Qmq7B4LpkJJgmLYW0pbabW1/YTqJZT6/Dy+nTUrn1rOLjPvJ5ImKxyK7WVVVVdHZ2HuO1mTxcLhcm08QK10PR6/Wkp6cH99dEOW4EzPE+3bkkz0pxejxOt5/7v7KAuMBd7mRHYELv8PRR5vMPh9RA90SiWY/L42dthTwFYjI+C5vDG7ZdOYlmPjow+VMn/vFZ7YTFYOhx2WhzYDXrmZeTCEBNp32EgGnvdyFJkJMYPmTRbNCypbaH8nrbqMv0+EQcHn/EOUhvVb/FcxXPcc2Mazh/6vljrvO+FtkQSklNhG5nj8OLNTY6k7Wrl07hlhe28+NXd3HN0jx6HR4EAaxmM39Y9Qey47L5qO4zNIKE6DcjejK5Yt5spiYnIggCnzV/xoPbH+RvO/7GgtQFFMUtw+8opChhGn1O/7jfdeVCnmExBUVWbdcgj3918Ziv6x70IAUGhe4fJmBGE7F13YPBdmaFqcmxxJt07Gzq5ctLcocvRp4LFfJZFabF8XJ5UzBlmBJnoMvuob0/XLiuP9TJMxvrOKUwmQvmZob9zajTUNHaP+ZxEonxzp9yWmszXr+EXisgAHNzEo7Lc+3JgsViob+/n0WLFh3rVZk0SktLD8u/5UhxXAgYpe3R6xeD052BCQmaoyGA7C4fy6YmUZJnDRbcTbaAqQoJXz949cJJ27b+wAyen5w/g5+9todHS6v5x2e1kzIqodcR3mmTmxRDl92D0+MnxjA5rpWvlDfy3p7W4O/aKMRgeb2Nq58owxc4Lqenx5ObZKYgVa6TqO4cZNmw91CiNKERmPJ6Gy29cpHotU+WjbpPlTlIoftGkiT+uf+f3LvtXhanL+aOxXeMu60ri1O5f21lxBSBbdDD1OTxHYGB4JylV8ubeWd3K6unpZEQo0erEQCB7y/6Pt9f9H3+8Wktd7+9n99cNpvrV+QHX3/DnBuo6avhvdr3eP3gGrZ3PCJvU7MRr205f/v4PJ6/ceWox5eSpk0PtBevKExmR2Mvs7PGvltTvpslU6yBSJk72Am2/lBHRBF7sG0Ai0kfJhw0GoH5OYnsauyNuJw+pzfYRg5yBAbgiQ01iBI8+bUl3PnyLn7/7n5quuycUihHoW54Zis+UWLzMEFbXm9je0MvflEa8zgZTnm9ja88vgmff/TIYmh7vyhKGHSa4HdeReVE5biogfnkYEdY2+Or25uiKoJTUL7A905iAapflGjvdwW9GqyBi0w03h6HiyhKvLunlZiAqVlelBeew6HfJZ/MlDRH6N37kWZ4BEa5CDRNgpcIyMfHnS/vxi+BLmB3//VT8se9OKzZ34Yn5Lhs6HGQazWTlRCDSa+hJkJtREtgfk5oDUxZTTdKic9Y+7QvMAdJKeLtcnbxq02/4t5t93JO3jk8cvYj6LXRecSkxBqYnWUZcTGTU0gjx19EYlvI98jrE6nrHgz73BQUEZcSN/J9bb1W6qtWUrf7W9grf4az+Wp89hkYUj5Bk/0Iaw7tG3X5bX3ysZgRaC+ekWHBL0pUdYzdqtwxIAuf06enAuFpJKd3qGtQEXdbartp7XNxqH1gxPljfm4CFa39EYvoex2esGhZQarcifTStkayEkzMz0ng8oVZNPe6+EtgTtJr25uCRcH+EOuATkcnr+5fhyZ2F9rYA3h9vqi+e0payOuXxvzOhnZm6XUaEmJ09I8y8FNF5UThuIjAKBdPkL9cAuD2hjtwjnWxKavpCt5dTFadSLfdjU+UyAwIGJ1WQ6JZP6kRmBe2NNDe7+bM6al8fLCTgUk84Qy4fMQZdZxSmML9wiFEaeIFftFGwXodHqyxQyf+HOuQGVrxOHb0hxNp+7SyUzFWRRIlTHpNsJV7LKZYhwSjXqdhwOUjJykGjUZgakpcxOJOZQCgcpyAfPHQagT8ojTmPu0NdGfFmQT+su0vvHjgRTyih2/M/gY/LPlhxILd0UizmEgPpF4UfKLEgNtHUmx0Ff/LC5LRawW8fgmtVjOqQ7ASqeka9l2QC9A34Ql8N/XaRPz983H1z8c3MAdT5mv8p/VW7J9eyFdnfZXpSdPDXt/W70IQCKbpZmTKx8aBtgHmZCeMut5KBOa04lTu+eAgFa39rCpORZIkPq3sCj7vwa/IEc3fv1sBRE65xZv0iBI8+FElj3xSHRSEouJKHLiRcXgdaPQ96GOaEY3NxE2p56yXf4fHq8ecrwUkBI2XtQMi5mIXiDqkwTnEJer4xWfP8nb12/gkH6bACFzJk4Yn5huUtXYhIOAUR3a0lNf18JXHywitfx+tbVxp50+NM/KbL8zlF6/vZcClRmBUTmyOuYARRYlPDsknFQE57Bqj1/LilgYkCTTC+AWlU5OHBoFNVp1Ia6AzICMhvLtksgRMeb2NX74p351+WiXfUU3mCaff6cVi0lGSZ+XKRdm8Ut7Ms98Y3RZ9uJD4rKqL65/aDBBMA0Z6rSRJ9Dq84W6ugWjFeF4i0YTKI1GcJl/4lJTKjAwLu5siDw4LJTkQUdAKAn/+4jy+/+LOYHtuQWose5tHvkezzUlKnDHsQl+SZ+XyhVm8Wt7Mc99cNuo6Kymkd5of58OmV7m44GK+Ne9b5Cfkj7uuw0mKNWAbJtIGPPKVLtoamJI8Kw9ds4hv/aucry7PY3NtDykRxI/yfj3DopFlNd1B8aIV4EuLc8lOjKG8vod1B+byxy9cym7767xe9TpvVr/JdTOv4weLfoBJF3Ck7XOREmcMegXlJ8di0msiFuaGogiY4vQ4MhNM7G+Rn7+nuY/9rf2cPTONtRUdQeGVlSgvTyOMFO3K9zu0+6kkz8qAy4ek62J9339Z80ojLYPyeDhTvvy6QSmN1VkraOsfYGNvE6BB8OuZPyWLHXV2RE0//qRN3Lt7A0atkS9P/zJnTTmLN7f38++dW8gv2sTTB//E0wfl94vTxDF4aJDLiy5Hq5GPrQ/2tQfFizKLabS2ca9fpNvu4eolUyjJs2KJ0dHvVCMwKic2x1zAfFbdRW3XIFcsyua17c0IwKIpiSTE6LE5vBE7JIbjD2lTu+uimZNSJ6IUFIbeWSfHGgJdSEeespruYKjZJ8ph78mMwPS7vEFjrhWFKbxc3kxKfORUQ5XNz5/WbMIXUgj58rbGEWmSSJ/DgNuHT5SCKTiQ77CNOs24KaTQPH7oMsrreiir7Rk1KpNqkbfjypIcrl46hU8OdvDQuiocHh9mw+hfAeWz9UsSewKCR0l3FabE8u7uVv760SFOLUoNLrelL7yFWmFmZgISzRSljT51t9fhRRe/iw+bXuX6Wdfz4yU/HnN/jIU11hCMBinYA/o3KUIaaDTOnZVOhsVEx4Abm8MTcf31Wg0JMXp6hn0XlLSFEs27clEOJXlWPtjXxscHOsmxZHHx7Lu4ZcEtPLzzYZ6reI6NLRu5pPAS0sxp1PSLZFiGupe0GoHp6fEcaBtfwFhMOkx6LbMyLcFC3r99VIlOI3DmDFnAtPS6KMkDs14+Bm5cWcB5czLCjqGzZ6bx+PqaEfVEO9srMOc/Rotb4owpq7gi4Qqcznge/qgZvzsZr5TBFStXUJJn5QsPf0Zbn5OHry2hJM/Kwl+v4YK5mfzkwilsa9vGgrQFJMfI7ztQ0M5zG9z8ecW3MZhbcPvdOLwO7v30Xu7edDdvVL3Bg2c+SJIpiTiTvN4aQb5pEMXRa/KaA0Z9yvFrMeknxT1ZReVocswFzN8+qsSs13LxvMygb0V2Ygw2hxeTXkN1p+wnMdYU391NvcFQ9+Fe5DdVd7G5todVxakRL4JtwQjMkIBJijVQ2zW6odnnQTlRCsgXCLdPnNScdb/ThyVGPhwUM6+6rkEKU0desA70+IO+LYqQcIb4bYyVJulzKIWqQxdRQRDIscaMG4GZmTmUXlKWsbainRuf3RY8iUeKynQEukBuXDWVGRkWbIMeRAn2tfSzJH9ki6uCUt8Ua9Dyn62NwFC0SKMRkIAH1lby99Kh1EKzzcnMzJFFpkrapmfQE7bt3c5ubv/4/6jva0Ljy8SUuZWpcbO4reS2MffFeFgjpDcnGoEB+bMpybNSXm8b06MmOdYwIoVUkmclKdZAWryctlA+l1mB/bO/pZ8FuYkkGBO4a9ldrM5ZzW/KfsOD2x+U30ALiZZ5lLfHUJJeAsh1MB9WtI95TugYcAfTTtZYPR8ftHPxX9ezt0X2P/n1W/sB2YsF5NSlRoA7z58ejPYoLJ2aTEqcgbR4E7dfkIFds5vn9jfy8I5HQIIfznyQa0uWAvDwuir8dtkkzitIQYE9O8tCffcgJXlWHB4fNoeX7MQYEowJnJV3VtjylK6mAZef06fMCT7uS/dhn2Ln7k1389X3vsqjZz/KoNuHTiPw/bOKObUohXs+OMD2hsj1f4pYUb7blhi9WsSrcsJzTIt41+xrY0udDafXz3ef305uojmYmgC4ZmkeXXb3uHcKu5v6mJ2VQFFaHNvqeia8Hptrurnmyc08MIZZXGufC71WCLt7TYo1TloKaUFuIgDLC5N55htLgElOIbm8WAIRmKmBboq6USYMz0jSBmfmKJ4xFa0DxAfuCG8/d/qoUTAlrTG8GDQ3yTyhgYBKeuuDvW3A2AZnSjeLMmhvXq5cPzFad4lCt12+kz99eir9Lh+CMFSca4uQWpAkieZeZzAlEYoiWjrtDjodnbQNtlHWWsblr3+JbR0baevV0ObdhSQaObT3C+xujH6mTiSsZgP9rvBRF/aAgBnuAzMeJXlWmnud2N2+UcccJMUaRqSQvH6RnkEPZ89MDzsecqwxxJt0wXbv8oDDrtE3k/eufI8t127hrS+8hWA7H4dQx9ff/zq3rbuNFnsLMzPlKfCdY4xl6AwImPJ6G2/sbEGSCIoXZb0MWk0wLdxkc5KZEDNCvCgUpMQhxezlrq3X8b2Pv8eftv6JGJ0FR/23mZ5cFHze0ITwcBGfYzVjc3ixu31DRd6JI6N0MCRg+oaJC0EQyNKt5IKUX9Hl6OHKN6/kpY5vYp72c97s+Q4PVfwIyfoWFT37GHSPPE8o51Bleni8STepEV0VlaPBMY3AvLVLzhsrxXOJsXq2N9hINOtJiTNy1ZJcnv6slm11tjCL71D8osTe5j6uLMnB4xN5d08roiiFTbEdj3vXHEQaJ/3R1uck3WIKe9/kWAM2h3fCy4sGRaycMzM9WEw52UW809Llk6fVrMdi0gUN0YZTZNWSFGuge9DD8oJkkmMNNPQ4+PlFM3lwbSVV7aNffJUxAtZhd/K5VjPbx+keC61bUYSEMmcIRo/8tA/I4lNZZlq8icwE07h1MF2DHlLijJw5I51397QRa9Cxt7mfkjwrF83L5NlN9WGphe5BD26fGHZx6vf083HDx7xa+S6xxXu5ab0diaGUp0WXjqPuu4jurMAjElpB+NyF6EmxBiRJvhAqtTwD3kAEZgIpJAj3ArKOUgCcHDcyGqm0joe2GoN8MVZSO0pdk9cv8fj6Gl64SY5kZZhz6W9bzQ/nfp3Y1I08secJNry+gRVp56MxFFDRNkCaJbKBVqfdzfycxLA0rIZA1EySC6mT44y09soCprHHQU6EtB+AzWXDHf8BTd7XmJ0wi58s/Qm58bl8esDFD3fsCotIKa7Gw4vMcwMTwJtsjmAkN1KaEUYXMFU2P/esLcPrFzDE3MyZyw6w4VA3hSnJzMrQ0DDQwEHne5jyfJz32oukxyZjMVi4ovgKLi64mIYeBwadhrRAZMpi0jPg9gVNClVUTkSOqYAxBTw/lDuWVcUp7G7q4/29bZw9K53itDgsJh3b6m1cWZIT8T1qOu0MevzMy0lEkiT+vbWRqk57ROfMSB0sT31aw9Y6W7AIbjQX2tY+V1j9C8gXCX+gG2EiYflo6HUMeYIIgkC8ST/pERglgiIIAvkpsdR1j54eU1JGOxt6g6Z3Z89MZ09zHx9WtPM7v8iupr4R+1vp/kkcdhHNscbQ7/KN6UQbKjha+1zkWM1hJ9/fXz434kW/o99NWrwpLOUwJSmG9ZWdYxqGddvdJMcZSA5ctO1uX9CfY+nUZKalx+Fw+4P+PEpEJztQ6LuxZSO3l96O3WsnLSYTn306ZxRPZ1XBVLQaLQatgURpPl/dsze4TI0gHBF7d+XCanN4ggJGicBEM+06lFlZFkx6DS6vOOJzU0iKNY6IXCp3/cMFjPKe/97SyKbqkA5C/9DNg3Khz0lM4IvzbuKSwkt4eOfDvFvzLrGFHv7fxnXczf9x1rTisPeVJImOfjkCo0REvD4RvU7D/108G5tDFt0PrD0UTCE12ZycWpSCy+dib9de9nfvp7K3kr1de6nqrQLA17+AJ65+jHijvC39rrrAvhzf1Vgp/G7scQYjR6NFYJQW+uHpnQM9ftw+OZrmdaaS5VvKQHMtVy+fy1VLpsjv39vNGY/8jWlF3WTHCTT0N3DXp3fx8qGXcXadSlZqIn7JhwZ9cDl2l4+ECR4PKirHC8dUwAy6fWRYjFy/Ip/lBclYzXoeXleN2yeyfGoSGo3AojzrmGkh5aI2PycBXSAEXF5vGyFgIpnliZLEb96WWyj1AX+QFYWRC0Hb+l1BB1YF5e6/e9BzxAWMcgemXMzjTZPXNSBJUqALaehElp8cy47GyBERnyjh8PhZOCWRHQ29PFJazZQkM/kpsZw/O4M3drbwree2sf6QbEMfWpuipF6GX0RDvWASYka2yEqSxO6mXubnJLCrqS8Yim+2OYPh8OGOpwodAy7SLUMFyeX1Nsrre/GJEtc8URa86x9Oz6CHgpQ49reGpB9CInSnFKbwn62NzM+R11cpms1KNPHfyv/y602/ZmriVH614lfkxc1g/t0fMn/hTK6aURB8P/lCvZezZ6Vz5vS04AX28xaiK2mi0GGjAx6JhBj9qKmS0dBrNRSkxLK/dYDOgcg29ylxckdeaDRyeNoilFmZFpxef9i6CCEdh6EuvAAZsRn85tTfcFbaDdz8+t/oTVnHDz69jht7vs+Niy4jziDXag16/Di9ftLijaNGRACyEmI40DaA3e2iW9jEbv8eVrx4CJ8of8dSYlKYnjSdiwouorc7l4fe99I7CEpdu3KDMZrYDkU5tht7HHQPutFqhGAkZDgmvRajTjMiAjMjSYsgeOXOTI0QdAKfm504tJzEZDI0p2Gr13DX0vksnJLAG1Vv8MD2B+iRdkAinPHy3/jhoh8Sb5TT0v0urypgVE5YjqmAqWy3Myc7kVvOkPPIkiQRb9Qy4PYHL6aL86yUHuzkvjUHWT09bcSJfXdTL2aDloLUODQCWEw6niurZ1p6fNhzy2q6h+5gAheh0PoVvyhRnB7P/taBEQWCkiTR2ufivNkjIzAwOW68vcNcWeWL9OREYAY9fkSJYBEvQH5KLG/vbsHjkwVfKMo18cI5mVS09NM96GFxvryvlRP6RxVD8z9CL/rKBXW4Xb5yl/rE+hquXzHSZK6lz0WX3cM3Tp3Krqa+YP1Cc6+TWZkWBlw+1h3s4DurC0dsX3u/m6KQYuTQ1ELoXf9wuu0eluQbWF6QjEk/dCevXGTn5ybwzMY6qjrtzMiwsK7qAIbkj7jjsydpclSxInMF962+j3hDPJIkodMII1qbm3vli/y1S6dwxozDG2gWCSVNFHpsDnikqE3sQimvt3EokBb80/sHWZA7MsqQFGtAlOTjVvleNPY4MWg1pEdI9czOkkXfi1sa0AjyROupKbHB91XqljISwtd3X5MfT/dZeAfmEZP1Ek8d/CPPHrqXhekLKRFLyBuQL8xKEW9oRKRxoJGNzRv5tOVTdrtrGUzxcN5rd2PK6sVLNtfPup6StBLmpMwJdgUBbKjs5CG20GRzBsVIr8NLnFEXlRi0mvWYDVoabQ56HV4yLKbgzVYkEmL0wWJ3hcJEefipwyNPOh90+zDoNBSnDx3X5fU2WvtcYU6+lxdfznn557H0nudZWuxHit/M3ZvuJi92FoLuC2EeXCoqJxrHTMBIQG3XIGfPSg8+tr2hl0GPnJr4yWu7yUkyB1t7H/q4iic21IzoMtlY3U1SrIGdgfC93e1jX0v/CCvu5QXJwTSRYva0qVr2n1H8H86amcbD66o50DYQ1knS6/Di8YnBu0GFIQFz5FuplVRLQqBoMt6on7QaGCVcHR6BMSNKcofG8E6kwUAthd3twxMoEv34QEdwMrGynxVCzbV6HR7iTboRJ3BlH76xs4X397WN+Jz3NPUCcEphMvFGHa29Q+H/FYXJZCaYePSTmogpqPZ+F6cWDl2Qlhcko9dp8PhEtKOkDP2iRE8g/TLanfz8QERuTeV27t3xOmV9H2NMk2jozuO6ubdyx4pvoNfI6yIIAolm/QgBo4weGK0m4nBRIoK2EAFj90qj1rCMhewkHO4eG0nAgPw5DgkYB9nWmIg1FkVpcWg1cqH4sqlWcpNiKT04JHoVgTpc/ARbsz2piM238P++aKbTt4v3695nq30rGz4rx5gh8Peqh3ngkJ3pSdPJjM1ke8d26vvrAXnIZIoph3ZbP7mm6WytKuDxa65jRWFqxO1XjBZD29J7nZ6ooi8gf/a5VjNNNid9gQ6ksUiI0Y+IwAx6weHxkxpvZHdzHwMuH7MyLWECqqymGzEgzEMNQF0eHfb+LFZmzuIbp36Lt2re4tebfktM7jN02lcBo5sCqqgczxwzAeMTZRO74rTwO2MF5a5d6aKI5JK5uaabyg47AvKMmSsX5YxajDs3OwGNBvwi3HGe3CXzyaFOBOAHZxWzsjiVrEQTD6+rZv2hzjABo5xMlRoYh9fBRw0f4XJr0cTU80lLJ5/1VdPv7mdp5lL03s8fku2PkEKqH6UraCJEqgNShJEl5IScnzJ6K7UiYEJ9W0RRCr6vMRCtEAQBnyjxswtmDE1DHjZGQJREmgaaeKf6M/RJu9AYOtEYurj9s0fI3heP1Wjl7Lyz2duQh97UwY6+N7Gm9tPal4zXL9Le7yInMYbTpqXy8LpqfvH6Xr4WMibA6fEz4PKFFXyW5Fn529UL+da/yrlx5dSI0RebQx4ImBy4GEeqbci2GojPWMsTNR+hF0x4e1bh6TkFjT8Ry/TpQfGiYDUbsA2GX5iax+lKOVyUbrnwFBJkpk081Tm8liSS4FPGCHTbPRQFAkmNNkfE+heQTeUC9kbsaOhlZqaFLrs72EGkWCMcareH7feSPCsri1PY2dDLP4JGi2dwy4Jb+O07v+Xd/jXoLV6y40rIT8ygoruC/d37mZ86n6tnXM2pWaeSZ8ljQ2UXX926hczUbPyDzUxJHt2fR/neN9uGBEyfY/SW8kgoE9cHXD6WRphOHUokAdPukHfWd1cXcvdb+6npGuSCORlhz1E+J/cwYV4fqGWbkiQPq7y08FL67Ab+tOPHPFrxG1YV/T1ojjcZHO+DelVOXI6ZgPH4JXQMuaTC6CfKB9ZWIjGyy+TdwHA+RdzI0RXZD0and6ON28PODjvp5nS6+g0oHaXewA8H2/qZmhLLD86eFnzPXGsML2xuYHF+UvDL1tYvn7jSLAberH6TB7c/SIejA4DYfHi7FWJ18SSaLHzc+DEAL735EhdMvYDZKbOxGq3kxudi1kc/y2h4jn0iRbyjnTA2VnVxXQS3XCWMrBTxglwDA0T0uRn0yQJmcX4S7+xpDfu8QqMVBSmxfOf57WEDGm0OD4lmeKPqDT6s/5CdnTvpc8t1TKZ0EH1m8KaSa8kmRidR3VvNJ02fgKTBNFXk/u1APOxx76Wu+w9ImgH8hmrqB/pA4+DNXc2s2T8UwVHm4gy/k18dmJMzmpGd4gET2uUEcjqxvr+eTa2b+G/lf8FaQaxnOVfm38LD+5sjurkqWM0j3XGbbU6sZj2xxiP7VYwxyLUUocuze6UJdyDB6N01oShRl+6QiE9Dj4N5OZHv7kNvVvyihDMQea1o7aehR8f7e9tGHX5ZkBLHjobesMf0Wj1nWM5gStL1/ObtCu6/6rwx28WVVvcttT3oNMKI6GooJr2W1HhjmGDvHcMTJxI5VjObqrtxDetSi0RCjD5406TQ7gi0wJsNQXPAtRXtYUXoJXlWXrhxGdc/tYVlBUPnr2AtUsgstdW5p/Hr9y9mn/AWv938W36+7OeTImIi1R6qIkblSHHMBIxXlBdemDbUHj3aibIkz0pt1yCPf3Vx2MGvFLIpF40rF+WQkxjDnz84yLfONvPw/jt5eP/QMmOL45Bceexs/hZQxMFhqaLyehstSg75iTKeDxR3tva50MbU8vudz3Kot4I5yXP4w8o/0NwjcMdr65F88XjFbB6+8RTSrHaeKn2KSl0lD2x/IPjeRq2Rs6acxWVFl7EsY9m4J4tepxezQRusP4nWt2FbXQ9XPV6GJEkjThj/3dkc0S03UgpJaaWOFPVRgghLpyaN+nmV5Fnx+kU0wlCaxCf6qHS9g8P8ET//rJ/c+FzOzD2TBWkLKEws5Pbnm/B4zNx/1YLge0mSxL93r+dXH72E6ElC655Ofv4+mvXvcNUH5xI3zc0/64F6iJ8OoicJ/+B0Xt5nZ07OpcHC3tAiXgCjTkuiWU+nPXL6rzvweHJIzcjOjp3cX34/2zu2A5ATl8NpCbfzwZY01rvsZFiMXLc8jxWFKRFP0olm/Yj92dwb2bn3SJAUawimkCRJCtTAHF6x+XiO2KEF7SAXh/Y6vMHapuGERur0Og0XzM3kP9uaqGjtx+3zj+nqbImR06mRWoC77T50Gu2IGqvhKCNBmnudTEkyj9tKnGONCUsh2RweZmaMPRV7+OuV9HhWFALmQNtA2GOdDhFBgLruwWCU2S9KI/ZNSX4SpxanhA28bFS6wUI+i3iTDq/tFFbNMPLKoVfocfbwp9P+FBzjcKQoq+kaUXuoChiVI8WxEzB+KLbGjLgDjnSiXDI1iZ2NvSPu5uxuHyadhu+dWRS8aEiBb/fc1Dm8MucV2h3t8qTX3fvZ0VKL3rKTze5fsL7xHhoGmlg5O5X2wXbSzGlBMzIAt8/LGxWb2NHfwks1H2HO30uvJ43fr/w9FxVchEbQ8PCBKvyDM+TtEeS7ylvOKGK1ZTW/Wv0r2gbbaBpootvVzda2rbxb+y7v1r5LujmdJSnnonXN4KLpS1lREB4KBrkLKfQkbDHpsHt843rOvLe3bahAddgJQxsoTB5ui65EYEJTSIIgd0psiNBq7AikkBJi9BSmxo16QtJrNWQmxNBsc1LdW81tH/+UwbgD+OzF0Pdlfn3N9SwOccItSPJSF3AsDV2PhtZ03B0XAiAKkOL9ApUt6Zwyv5myg1r+dMk5tNv7uL90M9qYWnQJ23incxMf//seCmIXoTGWBE3sQkmNMwZdeiVJYkvbFg44D3C6dHrQVTYlzkB1bzUPbn+QdY3rSIlJ4c7Fd3JG7hnkxOewZn8775SVs6e5j2+ems/3ziwesRyFpFgDO4aZ5zXbnBSkRvY4+ryERnycXj9ecWIuvBNdFgwJv8YxOpAg8s1KhsVERWt/cFzBaNGsIbda74g2ZsWFdzxfpjijLnhToPi0jEV2Ygx7QmZf9Tkm1r0TmkobT7BGcsltd0hkWkysLE7lkU+qx0znleRZ+XB/e8AGwMj2ehuxBi37W/uD3y355k9gXuzVnDWtiD9t+RPf/ei7PHHOE0c0EhNao3Mk7AFUVEI5hhGY8PqXsShOi8MnStR3D1IUknLa29LP3JyEsIuGkosfcML0pOnBCbdvf5ZLnuhicZqL/zb/nls+vpnYQnijE954Bcw6M0nGDGKmaBFFAW1MPf9td0M7mKQsJNv5/GbVjzilIDO4rOGzXoZ/OTNiM8iIlcXJefnnceeSO1nXuI5nd7/CW/XPIQgSr7drmbdvMTfNv5bTck4Lnjx6HV4SQk7O8SY9kgR2jy8sUjKc0DTQcE+bjoAHRUFqLH/+4vzgyUxpz7aEvLa83kZN12DEMP5giIAZjiiJrG9az86OnbQMtuBNP8Q6Zzdr3+jDoInD2XQNvoF5aAXYXNsTJmBS4o1si2BmVxCox1EuaPNzE/i0qphU12p8tmYuKl6NUadl14E81h3s4OkbFuI1HGJ903reqHwX89RNvFLbw9fjriMrNgtBkA3NrPFemgZrWVtv4x/7/sHuzt0AfPjWh2RrT8OQ3MTf95XycdMaYnQx3LrwVq6beV1YKlDD0IXy+c0NXDgva1RBl2g20OvwBLvcFOfeVcWRi0c/L9bYoXECyr8TmYM0EYbmIcnLaRzDA0Zh+M3KzMx4DrQNMODyYTXr+ebKqRGjWaFmb8MFTFWHHUmSxvT3UchKiOGga4CcxPFTuzlWMx/sa0MUJQQhkEKKsohXfv2QaIkmhTTcZK7DIZKXHBtVOm9x4LHyehvJcUbWHepEGvY91mk1xBlla4YfzrwWk9bErzb9ilcOvcJVM66KervGwi9KvFreHPz98esXq9EXlSPKMU0hFUcwm4uEUidT2W4PChi/KLG/pZ+rluSGPVcJZXcNSw0cbBtg6dQkVk6ZxnOffo9T5zexuaaPX1+yGI1ugLr+OlrsLRg07fQ4BunsWsC85BIyTbN5s3wACbjhHzt5/kZTWKrkwrmZvL+3jefHmDKsYNQaOS/vPP72ZiyD7eeijalDZ66jWreP76/7PlPip/Dblb9lYdpC+pweEkLamhVhMuAaW8A4PH50GoFYo47kWD2LpiQCcoRhR2BOil6rCVvXgWANzND7ytEo+efhkRyHV8Js0IbdXUmSxIf1H/Lo7keptFWi0+jIMGdg0sXjtU/jllOWYnCu4O59jaPeWafGGbE5PPj8YliXkiJKr146hSsW5eD0+Hl4XTVb63tIizdi1Mmib062hff3tbEwNxWTPoPTck7D13UeL9U8yr8PPce/Dz1HrD4Wi8FCl7MLr0He7ttKId2czi+W/4Laylo+833GOtuTGNNgc1s81868lpvm3oTVNPLzPdQRblE/Vojcatbj9UsMevzEGXXYHF4cHv+kpZCsZgOtvfIgw6CAmaQIDMjfPSWFNJaJ3WjMzLSwobKLyg47N60qGDWalRA0ewtPqVbZ/OxqHEQicu3McDITTRxsH4guAmONweuX6BhwE2vU4helCRbxDu2HSKMmQkkIMbNTImbtDpEl0+T3GC+dNyc7AYNWQ3mDDZfHP+r32GLSBaOvVxRfwXu17/Hg9gc5K+8sUmJSRnv7qPnLhwc52D4Q9ItSRpSoqBwpjmkb9ViTeUMpSotDEKCyw84FgcdquwZxev3MyQ5PK8UZdRh1mmARJsjh3pY+F9MzLPIgOTGGvQdmofP5uWrW+RHz3zc+u5W1+zqAyCZmCsumJvH27lZyIpyohxfTltfbeGJ9Nfta+hGEWHz22QjOOfz18rvp1+zkL9v+wtff/zo3zb0Jm6uQouQhXxBFXMhiY/QT7t7mPmZlWbh+eR53vrKbH/1nJ9etyCclTh57EG/S0WRzhnnd9Lt8mPSaML+X5QXJaDVyF5FeGy427N7w6Muuzl38eeuf2d25m6kJU/nDqj9wfv756DQ6/rLmIA/tr+IbN10QGB3RyNdPzeeiuSMjFSnxRiRJvtiGdg0pdSrfOq2QKclmqjvl/H5jjzMo0GBo1lHngHvIr8OuI9l1LU9f/1N2du6k0laJ3WMnxZzCzlo/26r9PPu1s5ifOh+D1kBpayl3nn4nP3r1EzYcHGTj/7t41H2t7KdIHjGRCG1tjjPqgl0tR7oDKbg8s4EeR3gEZrJSSBCYzh74rLbX92LUaajqsEd91z0j04IvkP6clTn6zc1odvsVPf5g+3409RZ6jXy8K07AY5GTqNTMOILH2WiuxJGwmPTEGrSIElS0Doy5XqHbZ42VZ1oNeBh1nMpwTHotc7ItlNfZgvtz+HwmkM8pSqpKEAT+3/L/x5VvXsk9W+/hT6f9Kepti0R5vY2/r6sG5HMSoM5eUjniHFMjO6VWYzxiDFpyrDFUhhSmKYPg5mSHF9IJgkBKnDGsOPNguyxCZmTEy4PkjDr6nF7m5SSMWrxXlBbH2oqOofclctQgL6RbJ7TTpbzexlWPbUIMFNP+38Wzufutfbh9cmHrry+dzYMfVeITJTbX9HJq0WJevuRl/rDlDzy2+zFIFHBTwJN7LubSwkvDIjCjIUnyXKiL5mWRl2xGAP67s4X39rXxrdNkg7dzZ2Xw6vamsPD7cBdekO/ybjmjiAc/quTPX5oXdsId9PkQrGu5/I2H6HB00O/pJyUmhV+f8msuLbw0LIeeY5X9ZNr6XBxsH8Cg03DXBTMjGnmlxikDD93hAiaQ+kqJl/+elTB0wc8JKUxMCxTqtve7ggKmPTBGoNhaTLE1/I7+8cFq1m87wIzEBRi0Q9uvETQ4HPGkmMevBYgmpK9gDbY2e8hNMgdN7Eabw/N5scYa6HN68YtD0TfZPn9ywvjKdPbyehtr9o/eRTQq0tD54Mev7ibbao74utEETGpM5BqvSJTX21h3UP5+P/JJNadNizyFXkH5jJpszmDEbyIppPJ6Gw6vf0QqJxLDt68hUPidnxx9NKskz8qTG2qRgAvmZDAnO2HE8WmJCW8MmJowlRvn3sgjux4h35LPt+Z/C41wePN+y2q6g2JSOc8fLdM8tW37f4eojk5BEM4XBOGgIAhVgiD8NMLfEwRBeEsQhF2CIOwTBOEb0bzv3W/uizj5ORLFafFUtg9FQ/Y292HQaUZ4lIBceBkagTnQJofRZ2TGo9EIzAjc3U0fI4V1zqwMTHp5sqxBK3DNsikRTzpKWLR+2Nygjw+04xOl4LTi9/a2BqvxBaDP5ePm0wuxObzc/+Ehrn2yjIOtXn638nc8d+Fz+HrOQqvR8OD2BznnlXN4tuo3oB0cs5W6yeak3+VjTraFrXVD+9XjE9lQ2YnZoOXMgNtrU4inRb/LG1bAq6D4VYQWwHY7u2mMe5yBmPdJjUnlgqkX8JMlP+Gdy9/h8uLLRxQABk/8vQ4OtA1QlBo3qgupkioaPmm4y+4mzqgLFnzHGLTB8H1o+kURkB0hrx8+RiAUxa010mTj7kHPiBbq0VDE3ngnS2twPpH8GTZNcgQmySzXTa2v7OThwN3w7S/tivo7N1GS4+Tp7Buru0Z0EUVD6NT5sV43moBxy00+3LBy6riiqaymG/8wc76xUI6zV8qb2ForjzaZSASmrKY7WC013j5RioOV7VNmkkUbgQFZLCsCYt2BjogXc4tJP0JU3DT3Ji4tvJS/7/o7d3xyB3bP4U1FXxJw5hYg+H0fXpg8GWyq7uKLj27k3g8Ocu2TZZN2rKscH4wbgREEQQs8DJwDNAFbBUF4U5KkkAZlbgH2S5J0iSAIqcBBQRCelyRpTI/98WoGQilOi+PTqq5gfcS+ln5mZsRHtPJOjjMG/T8ANlR2YdRpaLE5yUyICV4oY42j32FHe2edmWBCrxWoG9YeG5pi0Wo0rChMZkNlV9jdYVmN7AQ83KRveuIcnB1n8+VF07lokZ7XKl/jn/v+RWz+Dg72pHEm6URCCdXOyUrAJ0oYdRpcAdHU7/QyNzuBvOShmUNK+q3f6Qsr4FXo9h3EkPoBL1buZqPNyKGeQ+zu3I1H76SIm3j83O+Puv8UlAhJk83JwbZ+Ti0cPbeufC5d9vDDpnPATcowMZGZEEPvMFdTRcAoNvQgD3IcrUg2NW4o5VQwTAh3293MHTb76vOiXPCU1ubmXifmEDF2pFHSRRsqu4KpBN8EvnMTJTk2MA8pcOUcyxMnEisKUzDpq8ZNx40mYA7ZRJJjDfz8oplho0AisbwgGeM45nyhVATmYW2o7AqKj4l8btGYASoM3z6l9X60jq5IOAIt2zD6edYSow+r4QLZT+e3p/6WadZp3LftPj5r/oyLCi7iupnXUZBYQLQotYpnzkjjikXZ3PLCDvqPQgrpkdLqUWt+VE4+okkhLQWqJEmqARAE4d/AZUCogJGAeEE+a8QBPcC4R+tETm5FaXF4fCKNNif5yWb2Nvdx8fysiM9NjjWwv0WOupTX21hb0S6Hbp/azP9dPDs4PfmFzY1cMj971AN8vGI5kO8ucpPM1A0zfLO7/QjIhnHzcxLoc3jRCHDTqgLOnZ0RfF+dRk4jhdvtK/OCDORZpnBbyW2UpJzGdz78AY9V3UaN92wunHohK3NWhrm97mvpR6sRmJ4Rj0mv5fmblvPg2kOsr+yipmuQs2alhwyWG4rADLjkXPugdxCT1oSExCO7HuGJ3U9gTJH4uA107ToKEws5O+9s3iydQtG0JWPuF4WMBBMaAfY199He72Z6xuhRr5R4RcCMjMCkDht+l5Ugt9yGpl+sZj16rRD0fnF4fAy4fRFn8UBIBCaCF0y33RN04T1SDA1YDAgYm5PsxJhxL7aHi5Kyygu58E1mK2tyYB7SW7taSI83cv2K0T1xIhHtTYNJr8GgHTnwsLLXz+KpyVHtz4mk/mAogiIxVDMzkRTSRJaXOEzA1HUNkmAUJmR2eMaMNJ78tGZMwWQZZUCsIAh8bfbXWJy+mBcOvMCb1W/yRtUbXFv0QwzO5VF9psoolEvmZ3FK4KZlsma5KbT3u9hcOzT4V23bPvmJ5huRDTSG/N4ELBv2nIeAN4EWIB64SpIkcfgbCYJwM3AzgCUthzsWGRio3UVp7fgrMdAr31H896NN+CWJfpeP3o4WSktHhmIdPR46B7ysW7eOt2u8QUXu8Yq8sH4fPv/Q3eiLa7cyUPj5LlTxuNhb76S0tBQAu93OugM15MRrWJCq5a0aG9vrbUy3alhhbmegtj24zV+Zrue5Cg+XFWiD+6JxQN51TbWHKHXWyOvul3DU3srMoo/Z0LCB9+veJ0mbxHkJ57E0bik6Qcf6PS4yYyVe+OhZ7KIdURJZnhFPWXUqHlFLW+shXigtxWxxs3Z/M/5BkR5fDw1SPU1SFctf6ECDBpPGhEN0sDR2GaXbL+T8/FiuLNbL+XAv/HvQTn93G6Wl0YVnE40C7+xsAMDdUUtpaWPE50mShEELOyqqKJWGnlPf7iA7ThPcvwC9PXKUpax8F7SG+OXoYXdlPaUxbWxplU+YFYeqKGXkMu0e+TjYuH0fcT2Hgp/dhx+vY8Dto7+zmdLSzhGvO1xESUIAdu6vpNRbz8EmJwlGIWy7jiR1ffJ3ZtPugwAsTpU4vyD679xEaWuVL4ZVHXa+Mt3AHE0zA7XNE17WbAEGapvGfJ1JK3Kgup7S0jYAel0iHQ4Jq882of0ZzbIAjL1+dBq5e1Lh1Q8/ZWbyxMoIo1meJ3B+2rnvIDmuWsoOOdAi8uR/P6LIGr1Hyx2LDBzo8TMjSRvxM+9p99DvlM+To4m+cziH5ZnLebT1Wf5x6M94e0v460eX8+PFcWOuS1XgfN1QVcF2m/zd2l0hH/fDsdvtR+Q7cN82F16fiMUge17dsmDyjvVoOVLbdrxyrLcvmm9fpCN7ePXtecBO4EygEPhQEIQNkiT1h71Ikh4HHgeYPn26dOPlZ0W9oovdPn5d9gGfdJrYG4iurG0U+eb580fcDVRpa3intoJFy1biT+/h1cptcjREr+Ga02bz67f3Be9Mrj57yecOMX4ysI//bG3k9NNPRxAE1q1bR6PDy/mzMzh7Vjpv1WzDJ0F1P8RPDV/f5V4///nVB1gzc1m9eiYgz3jiszJOXbyAU4vkuxdJktB9/B6nZ97Gj84tZEPTBp7c8yQvdr3Iu4PvsihtEQ0mL7q0fdzfHi4sDEVGdN4kPtK08XGHhDZbDp/tV2qU4wyk6Wdy1byrcPqcdDm7ODX7VM7PP58VlR9htqZw5hnzAXD7/Hjef585xQWsXj26aVsohQc2BmtyvnTuqWQmjF7zkb71Y2ISraxevTD42GDpB8wqyGb16jmAHFXbtWYTAM/s93HOqUP+ElP2f4bGoCN+6jSe/LAMgPfrRb523sjjRBQl9J+8R0JGLqtXz6C83sbba7dy7vKZQDlL5s5g9dIpUW1jtFjWryEhLYvVq+fQve59rAlxxE+dPSlh7iabg19tWkd5txadxs8N88xceM4ZR3w5CvqqLh7dtRmdRuDCUxdw2rTJ8bcBSCkvJdZqYfXqRQC8s7sV2M5Xzl7CgtzEI7681cDCRTaeK6vnvztkb5MHd3p5/saSSfnsjOveIzkzl/ipGTS+vxEQuHe7Z0JW/KvH+fshTTVv1RxgySmrgq7mkfi0qov+cjNuzZsYUz/Gp+9jv+8nuKWUUaNJ0oEOKNvKqmUlLJxiJbb0fZIycli9etaI55aWlrJ69XhrOzZv7mpmT9dOBOQuybR4AxO5vkwWR2LbjmeO9fZFI2CagFCzlRzkSEso3wD+KMk2tlWCINQCM4AtR2QtkX1cAHY1DblhjjYZV0kNdA26g2HXLy7O4StLpsg1JhnxR7RKfWpKLA6Pn84BuXum0ynR6/AyPzeRg20DwdBzpPU16bXMz0lkS0jos3fYIEeQw7rKPCS9Rs+ZU87kjNwz+KzlM9bUrWFD4xZ8ca2k6ebzoxV3McUyBa2g5bFNm3m36hMEfTe+7jO4fNbp1HS4aBvo5d4vLiErNovVf9zOuauKuXnejBHblhof3tGlhLUnOgdma50Ni0k35swZkOtgQmtg3D4//S4fqXFDKaTQ6cjD8/vp8SaqO+2U1XQHZ175xcjHiUYT6FgbcFNeb+PqJ8rw+kTerN0BTI5nSlKgTmRDZSd2t59djX0T69SZ4LJArvFZXpCEWX/kp6aHotQe+USJm/+1bVLn3gwfeLi1rgeDFmZnRW/vP1FK8qyU1XQHzSsns8YiIUZPr8PL2v3twceO9PKUzsN+p3dUAVNeb+OrT20O1DWdi+RNxpj5Ku93/wrXrm9g+NgS8XPudcrfYaXuK7Rlezze29NKVaedUyaQflx3QI6USoH/9QwenY4nlWNLNAJmK1AsCMJUoBn4CnDNsOc0AGcBGwRBSAemAzVHckWHV+2P1SqpzK/pGnBT0yVX0f/w7GnBgs9oalsmgtIdUNftIM1ioqZPvnDOy0nA5RXDZr5EWt8lU5N4Yn0NDo8Ps0FHn2OkgIGR85AEQWBl9kpifLN58d1NeP0+6rR6Uk9dxqxkefuunZPGu2WpeALL/+Ks5bzta2FvdSOL0xfj8op4/ZpRzfFS4oxhRbHBuUmH4UI6I8Mybn1CSpwx2DYKQwW9KSE1MGMVRKZZjGys7gq4JAv4JWnMXHhqvCxgymq68QQKnpV/u0eZk/R5SDTLF6bnN8sptUhT1o8UMXp5lpbHJ3LG9DSQIqfujhQtvc6hOpFJLqBMiNGHdRquP9RBgkFgd1PfpBZtTqQY9/OgCLS8ZPm7E01r+ERRvsP9Li9Zo3hLvb+3dagoG1iedh4OIZuDxocx5T6Nu+HmiJ/zUB2fPrAsXVRt1OsPdfKd5+VZYw/rq6IWwRmBTkONABpBwOMX8fjEMG8rlZOPcT9dSZJ8wPeAD4AK4CVJkvYJgvBtQRC+HXjab4BTBEHYA3wE/ESSpK4juaKKYdh4bc0w5BfSPeihumMQk15D5jh3/p+HqYqACRTy1vb6Mek1TEuPDxbv/ejc6aOu79KpSfhEiZ0NvcDoUY7RBjqW1XQH6nq0wWiDQqTl51jNDHr89Dq8IXOQImvZ1ECEQqEvQnRoPBQB4/GL47Y1yhGYoeV1BZYdGoEZa5+mW0z0u3zMzrKQY42hICV2zJNgWryRjgF38DMM5e639h/xNkyrWY7AVLT2IxDZYOxIIQgCcYHW89EKmY8kKwpTMAa+o5NdQBkagfm0qouaLgedTmnSW2ej+T4fCZTt63P50GkEvlCkP+LLi8ZbSrEk0ApyCv6HZ0/jrtVX4Gy6Do2xDVPOP1mUN9LKQhEwikiymPRRGdm9v7ct+LPLK3L/h4ei+jzjAjdgPzirmBtWTg2sw5hNsConAVFVoEmS9C7w7rDHHg35uQU498iuWjgTqeJXIjDddjkCU5ASN+5wt89DVqIJnUYI+jXU9InMyUoItniPF/EpybOiEeTZQKcUpdDr9KDVCCPCuvHGyGHY5QXJaDQCfjFytGH48nNDTLliDMq068iCJDXeSPegJziX5XAEjDPQ0rmrsXfcdElqnOweq7TLD5nYhXchjbZP0wLPa+hx0NTr5DunF46571Pjjexs7KN7UF5OUaKGql45AjMZLcdWs4FPDnXiFyW+u7qAWKN+0gy3yuttwY6nn762mzsWGcati/g8TLSz5/MQKmDe3jWU0T4arbNHOoIbiYQYPa19LnY09DInO4HLirxHfJmhKaRIuLx+PjnUyYqCJFYWp4Z9ptMti+ns9eKyPsfztb9lUd59GLVD39E+pxeLSRc0CrXE6MOsLUYjYdiN1KdVXWyr7xlXvHXZ3cQbdfzg7Gm8u6cVkG9g046CcFc5dpxQ8bWJGIYJAnTaPVR32idt2q+CTqshLd7IRxUdPLepjpo+kYyE6L84FpOe/GQz/93RTHm9TR7kGKMfkW4ZLQJTkmdlYW4iqXGGqO7SFG+WRpuDvgiDHENJjTfiF6XghfBwBIxyNxaaWhiNVGWcQGB5SjRmeBv1aCiRhvUBkTDcqXnE8uKM9Ay6+ehAB1OSzFw1XR+M9E1GFMHj8+MXJeKNWr5/1rSojufDJXQ/e30iB3r8Yzz7yBDtd/TzkhAjm7CJohRsd5+MNMuxQhmMubupd1KKkiE8hRSJh9dV0evwct7sjBGf6fxcK/6BRfx82c/5pOkTbll7Cw7vUOp3+KDN0Vq2h+PxSxi0AquKhvyiojFD7LYPGU9ah/ktqZy8nFACJlp0Wg1JZgMtvU6abM4RJmVHmvJ6G239slX+z9/Yh1+CD/a1RR3KLq+3Ud/jpKHHwbVPlFHXNRjRY0Ip4o3EgMvH/Nzo7gwVV9GXtjayPWAxP1pNy3C3WqU+ZyIupKumpUYtCoJmdgOesOUON7IbDUXAfHxAbrGanZUw1tNJjTciSrJB2erpqRRbdZOWIiivt/FeIETu9Irsa+kf5xWfj+UFyWEpnRlJ0bfgHu8kxMguwwNuHxJyiuPySUizHCssMXra+l24vCILQ+Z9HdFlBG5aIgmL8nobD62rAuCP7x8YcS4rSImlZ9DDeVMu5/crf8+29m3c9OFNOH2yv1SvwxN2kxMfwfU3EpUddqZlxPPDc6ah18o3cFrN0DmjvN7Gw+uqRqxPl91NcuDcoQiZHjWFdNJzUgoYkA/i8nobkgSFkxyBCZ3crCCKUtQW6vLr5Tfw+EWae50RBcVoERhJkmi0OaKaqguyTwdA6aFO/vz+AYBRi3iHCxilQ2q0iE0kJlI3MNzMrtPuxmLSBefPjIeSQtpS24PFpBt3zlBqYEyCX5Q4PdD2O1lRhLKa7uBcGEmK/vg4XIbv94l4iBzvBKMHTi/13Q6mJMdyaZHhpBAvEB7hXDRlcrZJSRuv3d8+QhBsrO4a4WgbijJCpaZrkEsKL+Ge0+9hT+ce7t50N5Ik0ev0htXwKXOXpOEnymFUtcvjRkryrPzzhqXoNAJnzkiTh+HW9XD142Xct2bkmIBQ40klAtOjRmBOek5aAZMSZ6Q2UFQbaV7SkUS501V25kRD2Upng/xaAY0gRGxTtph02D0+xGFDMHsGPTg8fnKt0VmNh6UWAqZZdcNmOSmkxoULij6nF5OWUecZjUa0omD4PKRILrxjkWjWY9Bq8IkSc7ITxu16Ut5bKwjE6Cf3Aj88InI0Uh1HK6VztAm126/rHgyOyDhZULYvJc4wacM+9wRGj3xa1TVCEChjRkY7lylp+dpO+bxxTt45fG/h93in5h2eq3iOvkAaXMFi0uMXpbARB8Oxu3209LkoDsyoW1GYwpkz0tjZ2IskSTy7qR6PXwxrYVfoHhyKwCjnTlXAnPyctAImOaRrRblbmCyUO93bz5vO7y+fy5XFEwtlK6+fnWXBqNfg8vpHTSFJEtg94VEYZShgbpSzUpQ5MKF87/ntEVNeI1JITi+x+skriFZSRcEIzIA7KGqiQRCE4FTqaDxBOgIt4n5J4oZnt1Jlm7w6kaPVwfK/QKiAqe92kD+BQYcnAsr2JcQY2B7oTjzSKAIgUm1aQeCcecGcjIjHam6SGa1GCN4kAtw490bOmnIW9227j27tOhJihm4Ixqu3AagORIaL0oZuOM+ZlU5bv4utdTY2VsuNrcNFlV+U6Bn0BM8deq2GhBi9WgPzP8BJK2CUgzkzwTShGSKHi3Kne82yKVxcOPFQdkmelR+dMw2Hx09LnytikexobY+NNrl4Lto7tZI8Ky/ctJwVBUnBx7yjTOSNNeowG7RBAdPv9GKeRAETZ9Rh1GmCAqbL7plQBAaG6mCUu8ixqAwZZnc0Cl1P1ojI0Ub5ftR02rG7fSddBEY5/ms67Vz7ZNmkCOvlBclBm/XhURblHPOFhZFnxem1GqYkmYM+WwAaQcPvVv6O5ZnLEZNeY4vrjzQNNAGhHU+jF/JWBgRMcYiAOWtmOgJwwzNb6bJ7SDTryUgwhYmqXoc8QDR0dllSrIFuVcCc9JzEAka+6E12B9KRZGVxSrB1OiFCkawiIjYPExrKYMZoIzAgX0jvOG9GVMW1KXFDbrxyBCbqxUwYQRBIjR9y451oBAYIFv9FI7NOLQovMD6ZCl1PZhQBozhzn2wRGMV/RYmOTIawLsmzMi8ngcxhggCiM6wsSImlpjM89Ryrj+VPK/+Kq/UKerzVXPHmFfznwH+INcqXmrEGOlZ2DGAICCOF2q5BBEFOL2kEWFmUQs+gh/k5QzcnilAJjbpbzfpg56TKyctJLGBkATDo9k+qsdWRxKjTctbMNEDOT4eud3m9jb99LHcF/PTV3WF/a7Q5sJr1Y84ziUS0KQ3FrRYmP4UEsoPsjgYbG6u6sLt9E4rAlNfbgnOXfjxsP0XiZC50PZlRBMzupl6Aky4Cc+HczKMirAtS49BqhBHf/f5ABCZ+jGL9qSmx1HUPjqjJ63f68PYu5TtFj7AgdQG/3fxbHjn4YwR9T1gKyelzsrZ+LVvsW+hz91HdYWdqSmxYfd3wBglJknD7RKpDhJMSrUqOC43AGCd1nMBo3VAqR5fJz60cIxTvkWjM044npgcK2EoPdLCpuiu43mU13fjEgNW9X6Kspiu4PY09jglFX0KJxpQrNc5Idacc3u0ccOPRSZTX2ybNfK26044owdf/sVVe/gQETGhHV7SmZqH74FhOrlWJHrNBi1YjUNVhR6sRyLGaaTjWK3UEGW4KOFC7a1KWkxxrCBvJoBB06B6lOxFk8ePyirT2u4JjWmDo3JuXmMM3VzzGK5Wv8Oct9xI7dS/v1ndT7Yllb9deNrVuCrZdv/jSi+ApxJqcyC8++5CsuCwKEwqZnp0fNoplaTG8X13Fc3s7mdMrL/NQqxdB7x+WQtKzp7l33O0vr7dN2HixvN7G1Y+X4fXLY2JOlGvLychJK2CUlMfRmMtyJPGJUsR5MkqnktsrIkHQ5Reg2eZkZubkDbFLjTdSVttNeV0PNocXG0yaKAytw/EEhjEq3jPRcLRm1agcWwRBCJq9TbHGnJQzb46GsE6OM+L0+oNz2BSUGpixBIzSHFHbORgmYEJHoQiCwJemfYmZCUv40qu38UHbU3zQBjlxOVxccDHn5p/Lgd0HaEvs5J871+LRDrCxpZZORycSEgICC5aUYPBPocO3g3srajHnwevN8n8KcUVwY+lTLExbwIK0BXQKffQbm3hmbxMl6SXMTJ6JThN+uSuvt3HtE2W4/SJGXfRCpKymO3hu8pxA15aTkZNWwFwwJ5PnNtXj9Z9YF7JTi1L4e2nViAuwckf2WVUXL2yu51+b6vH4RJYXJNNkc3LOrPRJWyevX6TX4eWOV4buAidLFA4XagD3rDnIoijt24+mnb3KsUURMCdb+uhooqTau+0ezEmhAkYWIXFjpJCU+sKaLjsri4ecc5VJ1KGNCMXJuTgbvskNZ8TwwzOWYDEM3XC5DrqI152No3YW3zlnGreeVYzD66C2r5ZPmj7hzeo3abGXsyh9EdfPuYrn13vQY+Wpr64E4IGPt/PS3k9ZeYqP3Z27WNe4DgBdCtxXvgYAs87MwvSFLE5fzNSEqWSYM9hQJeLyTVyIyINi5YnkgiCcMNeWk5GTVsCU5Fl5/qYT70I21gVYuSPTCHDvmkPct+aQPG3YL5JzmCmk8Sivt/HqdrmToLbLgVYQkMaZ8Px5ULb/gbWH+LSyCwnwT3Am0dGYVaNy7FEKTE+2At6jSdB3ye4OS0P3O33EBtJ0o5EWb8Sk0/D6jmZmZyWEdAWFT6IGub7PqNOi92eFiReAKpufP324G4CH1lVxSlEKJXlWZqfMZnbKbL4z/zs4fU7Menn9Kiv38dK2RpKMgRlw7kws3lX8YdU5ANhcNl7f2cjdr9fy+q0LafPsZ1v7Nra1bePB5geH1kljxpC6BK/tVLRSQtTns5I8K6lxRtoH3Og1AtPSJ9dnTGV0TloBAyfuhWy89Va82STk6AgMDWg80oS6xwrAVUtz8fS0cvXZSyZt35bkWfnh2dPYWtejpoJURkW5w1cjMIdPckgEJpQBl3fMDiSA7Q29uP0i2xvC6wz7RulgssREHidwoMePL2CoGWmAqiAIQfECsr+Tw+OntnuQwtQ4uu3u4ABfAKvJypQED9AIooXzp57P+VPPB6DX1UvzYDNt9jZ+XfoCruT1GJI2UqC5hkVTLhhvdwFyIbHN6WVFQTKbarr5wb93qtYIx4iTL3H8P8DygpRgzl9pADjcIt7xlyWndLQCGPUarlyUc1g+NxNFNX1TGY8ENQLzuVFaj7sDNYMKAy7fmB1IEKhXC5x/PCFGeL0ODzF6LaZhztajDXSckaRFE4j0RHOzMjfQQn3/h4cor7fRPegJ60AC2QcGRg50TDQlMjt5Nm2tRdRXXMFZ8X8hQSimlme5c/2d9Lp6x1w2yDU+Hp/IjMx4BEGeuzbcyVjl6KAKmBOQkjwrL94UflFXHGUnY1nHSkiopm8qY+Hxyd4oDs/4U45VIqN07gw3fet3eYOzkkYjbARKSC1Ir8MbeRTKKBGYIquWhbmJpMUbozrHKB417+xu5dony2i2OcI8YGBIwEQysyuvt/GLN/YC8MEOL6dZ7sLdcR5r69dy4WsX8tSep3D5Rj+ftgXOtV12d0QBp3L0UAXMCYqcZikO/v6NZ7ZO2h2AKiRUjjfK6218VCFPHP/xK+P7/ahExqTXEm/UBX2eFAZcvnEHtiqO3jMz4zHqNMwKdEL2Or0RncQtJn3QX2Y4drePeTmJUZ1jFJ8npVOzZ9Ab1kINYB0lAgNy5EiJXMspeA2e7jO4ffZjLEpfxAPbH+ALb3yB9U3rIy6/rU8WMMunDgk4rebkLOY93v1uVAFzArO7qQ+lxi7SxFgVlZMV+SIU8PsZZQyGSnQkx4203R+IIgIDsoi5+9I5ODx+bntpJ+X1NvpGicDEm3QMOCNbIrT0OslKNEW1vssLktEFTnw6rdzEkBKaQqovI37LX1miq6QnghuvIjSUmUqXzs/EoNXQ1GHhobMe4slzn8SoNXLLR7dwxyd3jIjGdPTLYu+0aam8cOMyDFoNZ89Mn9QbvGMhJLbW9fClRzdGnP59vHBSF/Ge7KieJyr/q0Q69gdqm471ap2QJMcZR9TA9EdRA6OgFWQx8P7eNkoPdpAaZ2R21sg5ZKOlkJw+iX6Xj6zE6Ge5PfCVBXzvhR2cPyeDN3a2DKWQqtbCc19EAP6l0/NURxowI+z1yhiCFYXJ3H7udEryrMzJtlAeiOwsy1zGK5e8wj/2/YOHdjxEn7uPv575V2J08vopKaQ0i5HcJDPzchIimgEeKcrrbVz12Cb8ooROK/DlxblcsShn0iPia/a1DUWqjlO/GzUCcwKjFrqq/K+iHvtHjuFuvJIkRdWFpFBW2xP82eMTsTk84RGYxi2w4T5meA9ELOLtccpXyWgFDMDF87IoTotjQ2VXcBsAWHs3cnJJQoePTNu2Ea9V5qxdNC8zeNwsyU9iZ2MvD66VC4P1Wj0lCV9iddL32Ny6mVs/vpWavhoA2vtdJMUaMOrkIuUZmfFUtPUHHcCPNJ9WduITpUDXqcTzmxuOSkQkLV6OiA2f/n08oUZgTnBO1FZxFZXPi3rsHxlS4o1hF0O3T8Trl6KOwCwvSMao1+AKmE+6feJQDUzjFnjmYvB7uFpj4HXxZ7i854Z1KHW7ZCuI7ChTSArnzErn76XVQKCb6rMHoW138O9+dLw/WETesLEnSr1Pakjhb6JZj0+UePCjSh75pJr/u3g2d7+1D48vG1PSl9jKq1z2+mVMTZiKr38xKfHLg6+dkWHhOVcDzb1OcqxHvhs00kDioxERUew6pqbGcs8X5x+X3zU1AqOioqLyP0xKrIEehyfo96R0+URTAwND0bAL5mQgSXKUIEGJwNRtAL8bkNCKPpZrKkakkXpcE4/AAJw7OyP4c3bPJvjw/wK/CXiNVq7x3MWa/rwR0YqOASUFNCSYnB65o02UwO0VeWhdJW6fLMg8tkVck/UoP1v6M5JMSTTyMh2Jv+CpPU8hSiIzM+X5dQdaBya0/tGSaJajS2fPTAsaC+q0kx8RUQZmxhl1x6V4AVXAqKioqPxPkxxnRJLAFih47Q/OQYo+QF+SZ+WhaxZRlCa70u5s6JVFQ9qs4HP8Gh1l4kzKqsMLrrudElqNEExZRMu87ASsAaEk7H4p7G+iz8t2cRowssGhIxCBSQsZEnv69LRgR5EEtPQOFe7qtBrOnjada2ZewzPnP4Oh/TaSdTN4YPsD/HDdD8lJlqNJB9r6J7T+0dJskwde/vKS2fzyEnl/3nne9EkXFaEDfI9XVAGjoqKi8j+MYgLXFSjkjWYSdSS0GoErFmYD8OH+dq59soyG2kPBv9/i+T7bpWnc/vKusIhIt0siw2Iac2xBJHY09gbF1nvVAcEhaEGjRS+5CJSooNWERyuUC3JKSApJ8dZamJs4Yjm/unR2UCx4/SI9tnQuTLuLny79Keub1nPT2utJzfmUspZt+EX/mOv8aVVXsM4mWpp7nWgEyEgwcen8LIBgtGwyqQlEYLrtnkmr7/m8qAJGRUVF5X+YlKAbrxyBUSZRR1sDE4oEaIQhjxZtxRvBv9WLqYCcYnpnT0vw8W6nGHULdShlNd3BC6sging1Jjjj/0HJ19GIPh7/stx9dO3yKeGmnwMurGb9iAnmJXlWfn7xLIwB53Hl79aQguQuuxtJgsyEGK6deS2PnP0IWkGLK/5tdvl/zw0f3ECXs2vEur5S3siZ967juic3c//aygkV4TbbnGRYTOi1GhLNBtItRg62T066SqHP6aXL7iY13ojHL0Ysvj4eiErACIJwviAIBwVBqBIE4acR/n6nIAg7A//tFQTBLwhC0pFfXRUVFRWVI0nKsAiMMok62i6kUEJHj2Tp+sjq2w65csFrinYw6Fv1+vZm7v3gIOX1Nnpc0oTrX2jcwhfs/2aprgqtAHnaDryJBXDa7ZC1CIAzcjWkW4wjzOw6+t2jpqsUc74fnTudR6+T30cxrgv9Od0ii74VWSv472X/5eqMZ3C3Xs6+7v1c9dZVbG3bGnzN+oOd3PHybmq6HMHHQtNam2u6x/R4aep1kh0y6256hoWDbZMrYGoC6aNlU+XLeKf9+EwjjSuxBUHQAg8D5wBNwFZBEN6UJGm/8hxJku4B7gk8/xLgNkmSeiK9n4qKiorK8YMyCFGJwCh324cTgVEKestqurmy6xGEfRJMPQ0ay7j73Bw+8E1nwOnl0fU1PLSuiic/rcHjnYCAqVoLH/8OWraTjcALBiOvlTzC8po+TOlz5OfEypEeBruYl5PI7ua+sLfoGHCTZjEyGkp3myhK6LUC7SE1IO39ioAJCKDGLVC3gTOMM3m8dxmnFC9jr++v3PDBDSxOX0yJWELngZHFtvpAEe57e1r5zvPbATBoBb4UweOl2eZkSf7Q79PT43i2phufX0SnnZwkilLAu6wgmbd3t9JldwfrmyaL8nobZTXdLC9Ijrq+J5ojdClQJUlSDYAgCP8GLgP2j/L8q4EXo1q6ioqKisoxJSFGj1YjjIjARNuFNJySPCslmkpY/7T8wMYHASiK81K0sIiH11UFn+vxiYhE2YFUuRaevzLkAQmN6OWLSTWwuxGSLpUfjg0IBkcX87KL+HB/O/0ub7Cmp3PATUHK+ANANYHC4vaQOXPtARfejASTLF6evQR8HpZqDSwSfspbW6dhNHyH689t4+PWl9nm2Eas9mWMabPw9S4HXwp+EX53+Vx5RMvz5UP7wi/xwuYGXt3eFPQ28vlF2vpdIyIwHp9IfY+DwtTJERU1nXZ0GoFFUxKBoejcZFFeb+OaJ8rw+ESMek3U3k7RyLdsoDHk96bAYyMQBMEMnA+8GsX7qqioqKgAHFoD634vXxSPMhqNEGZmN+DyoREg1qAd55VjULseJNnfBX+gfsIpp0iWFyRj0A4NgYQoPWBC6mmCaPWQMg1ELyRNlR8zp8j/DnYxL1CUuzcQhZEkic4BN6ljRGCCNG7h29rXie/cHnyord+FXiuQZDbILeI+NyAi+D0s11TItT9ePYnes3n/ive5IeUGpsTOQJ+0CXPhfSxb+j4aQwf6QH2NEkFRypeV2iElvdQ+4MYvSmQnDvnLzMiQ27YnM41U3WlnSrKZjECkqWuSO5E+3N821LY+gbE40URgIpWGj1aSfAnw2WjpI0EQbgZuBkhNTaW0tDSadTzhsNvtJ+22wcm9feq2nbicqNtn6TvAwh0/BSTEDfeza/5v6E8It7+f7G0z4uVgfQulpT1UVLuJ0cEnn3xy2O+X3OljLiAhIApaNJJIw4Gd1HpKAbhzsZ4Ht7txeOVLSXPlPkrbKsZ8z/wuJ/mAhAYJAQ1+Kgpvxn2wjgXAzoZ+egdK0fhdnAbU7NlMf2YOAK9/sh1PowG7R5KLUtubKC1tH3VZlr4DzN/5c66VvHgGX2T7Gx76E2aw65Abix52vvUY+bWvkxS4FEqCQJk4E5BHKxh76/lsQxPFUjGdfXPYWrWaCxdsZnP/p5inbuDJbfsx95xHVaOXDLPAzCQNpU1+pJDXl5Y2cbBH7mrqbjhEqVN2Avb4JQTgg7I9mLsPTviziYY99Q7SzRpq1z7NLboddO+oodQ7d8TzjsRxua/Lx792DgkkDUPbPx7RCJgmIDfk9xygZZTnfoUx0keSJD0OPA4wffp0afXq1VEs/sSjtLSUk3Xb4OTePnXbTlxO2O1btwnlnlAr+VmUNAirVoc95YhvW6B2g/xVkLuUpL2f0j7gJn7qfCzt9VgHej7f8qol2AfCouvRLrweXriKvPQE8gLvuRoQk6r5w3sHAMifMZdVxaljv6e0CRpAOONnCMlF8Mo3mDl9Gkh+2AULzvgCJE6Rn1tmpiAjgYJzz+DPOz9m0JjI6tWLqGwfgI/Xs2LhbFYHWpIjsqEcJDlypMMX/Ezu27OBRfo9LNj9KzR+NyCARod2+oX0NCygUCPw5xDX2tLSUqz6DDSHvPztivuxuXs4558/otb0Pn/u3kVbfAI5WVlcunQ1A59oqWwx8vTXlgZfb9vRBFt2ccHpy8NqUKbuKMVtimf16pIJfSzldT1squlmRWHKqCkan1+k88P3+U6xjcU7f8ZCHfi7X8dQ+DbkLg177uc9LsvrbfxlzSb8oizc/BJ86/RCbjx/xvgvJjoBsxUoFgRhKtCMLFKuGf4kQRASgNOB66JffRUVFZX/ceJDLqRagywqJpPGLfDsxXJqR2vgwHnPsafZjSjBtU+WMScrYcIeMCPoDtS5rL4LLJkQYw2mkBSK04cuyDf9c9v4dQ+99WDJgdN/DKIIhlvl0QF6M2j0YAmpbDCnwKDczpybaObTqk7K6224vHJEI9TELiL5q2QvfUnCL2nwZZ/Cvnobe5v7WaXdCTq3nJsQNBCXBs4epiTH0uf0jtiGbruHpFiDnKqLSWaB8XtU27dQmHWApq5KOsTN/N/Gj0EPUnY8L9aewgHHQualzKOhR07jZQ+rEUqzGNlc2035sDEJY1Feb+Oqx8vwiRImfdWo+/uDfW14/RKzbB8DEloAySsL3mEC5vNSVtM9wtNmIoXJ4z5TkiQf8D3gA6ACeEmSpH2CIHxbEIRvhzz1cmCNJEmDUS9dRUVF5X8exfxMgOv/e8QvEiPY9aJcuyH5we/Btv9jFJ8yr0+krc91WB1IYXRVgiEO4gN2/xEETEWI9f5wt9yI9DYMRVg0GkifA217wFYL1jzQhNTsxCbDoCxattT10Of0cc0TZWyplZcxroDJXQomeWr1f/xn0GqZx8bqLiQIpookkAVnxjxo30eKWT9iqjfIwyODwyaBwtRYWlsL+PKUX+Cou5W/rnibNy57gzNTvoNvsJAdHTv545Y/cs271/B003VY8p5jbeO7tNpbkSSJ8nob2+ps2Bxern0iej+ZD/a14QuIhdHqTMrrbfzwPzsB2NQsR6BEwIduUoS1YjCoDIy0mvW09jmjfn1UR6kkSe8C7w577NFhvz8DPBP1klVUVFRUoH1f4AcJEnPHfOoRwatcIATQGrDOOhP9IS8ev4hGI6DVCIfdgRSk6xAkFw1NBIxJBEf4BXN5QTImvQaPV4xu2nFvA+SvHPo9Yy7s+jdY88E6Nfy5salgb6esphtRGrpo72qUi3lD5yBFxNkbFFxWYYC2PhdZCXIUpJ1kNAL05pxJ4nk/g+btcOg9ppgGedfuRpKkYHEyQPegO8z1tygtDo9P5MP9cg3O7KwEEswpfMmcR3b7Tr606i5ips1iT9cefv/x29hM27nr07vkzdLHEifkoEtLQHCn43NN4bPq/KiiMPtbhkYdaAQh4v4uq+nG55f3V4wkHycdhjz+j2/z+GEI6/Fao4sCXVSrp6fyvTOL+fXb+2kN8d0ZD3UatYqKisqxpG2vbIEv+aGvGRJyJnd5HYFi2ewSOP8PzMhdyrNJXVz35BYunJvJtjoblpgIl4ZhdTNj0l0FU4YmNhNjhe7qsKconjEvrt3K1WcvGfsi7PdCf/NQBAZkAbP1CWjfC3krwp9vToH2/UFjPZdXRBBkb5sYvXb8DquuSgBEfSyzxHr2DriCqY7bZ9qgBhIv/CVkLQgKwkKpAZc3AYfHT6xxaP912z1MmTLURaS0Pr+/t42sBJM8+LJxC6euv54VOhHefgPt198iI+8c/tCjZ0X6ddxyfgz7u/dT2fgZ+9r30GWpw6+Voz3/aHqCT97MJ8+Sx8rslVxWeBlaTfj2vbS1gU+rulg9LYXtDb3MzLRE3N/LC5KVzBmztA0AeA2JfNI7dYQwG4/yehtfeXwTflHCoIvcGt3QI5v7XbVEdkvOTjRxYALdVeooARUVFZVjhSTJERjlYt/fPLnLs3dC6075Z1NCUIisKExh4ZREGnocYZ4pQRTPk49/C89eOna7t8cBfY2QXDz0WIQUEsgi5uJCw/gRhL4muS07VMBkzgv8IEWIwCSDo4uSKYk8f+NyTilMRpTktuQ0i3H8C3GXPMPJP/1iCjWt9PR0s7u5l3ijjsuTG0EfK6ewIDiwMsdbBwwZAip028MjMIqA6Rn0MDPTIj9Y8wlIfrSChOCX600kSaKl10mONZY5KXP4sjmf/7fxOV6o3M7Wpkbyq67inOQ7uG7WNWTEZrC/ez+/3PhLrn7nanZ27ARkEfG958v5yat7ACir6WHRFCuVHXbECPOUSvKspMUbKU6NZYlJPhbjxD7cPhG7e2LjBNbub8frlxCl0VOEjTZZwExJkgVeZkIMrb2uqGcvqQJGRUVF5VjRWw+eAZh2nvz7ZAuY6o/lf5MK5NqREJZMTWJPUx92t29kDYzieSKJ4HfLv4MsZDbcFy5oegKRlpSiocdirODqk4tvD4deORpAYt7QY6kz5cgVDHnAKMSmgs8FHjsleVZ+d7ncAryltmf8+heAroOgNaCbc5n8e/s+9jT1MSc7AaGxDHKXgDawj+JSwZxCukven12DQ3Uwbr/EoMcfHJgJYI01BGtiggImaSoCsp71a+R6k3UHO3B5RVloNG6B/34bRB8goZO8rBIbWJiymtsX387DZz3Me1e8x59P+zPdzm6uf+96rnrj61z93NO8V70BbcJWdPF78Gk6MOkFegY9VHbYR2z2gMtLW7+bq2fq0Ll7QWvA7JPTbl3DhNl49AUMEWHIeXg4SgQmN0lOz2UmmHB6/fQ5vSOeGwlVwKioqKgcK9r2yv9OOUUueu2bZAFTtVZOr8y8RBYF/qG76iX5VnyihCRFmESdv0ruuAH53/xV8kX1mYvgo9/I/759m/xYIP0SFoExJQISuMNt/cckVBz11suPhUZg9KahmiH3sItxiJkdwNSUWOYHTO36nN7xC1+7KiGpECFbblOO6dpDRdsAizO0gYjZsJRV2kwS7PJ2h0ZgBjxyJCElNlw0KaMMjMpASa0saDyCnifz76dcLObbz8kGers3f4j4jwuHhCGAVk+ZODOsaFgQBC6YegFvXv4mPyr5EVW91RhznsGc9xQxWa8Sk/M8MYX3skvzIwwpH1FaFS5ggWD6ZpEx4MGSuwyDtw8N4oTceEVR4tPKLhICqcjvnVkUMcrW0OPAatYHa66Ubqvm3ugKedUaGBUVFZVjRfs+QID0WWDJgv7xzbsOG1GUIzCFZ8oFtqJPTvUEohcleUnB+ocREZjcpYHW5HZIKpR//+TP4A9crP0e2PY07HwR5n1Zfiy5cOj1MYGLl9M29PNYKOLI7wOdEeZcLkdbQlulG7dAb8Ak/s3vyZ1ISm1ObEDAOLqD27d4SiK7Gns51G7n2ifLxm7b7jwI6bMhPoNejZWY7r14fKdyqqlWjkLlLgt/ftosYnY8h4AYJir6AwImNAJTXm/jULssuB5aV8UpRSmUdMp+OEa87PVkINZ0M8d/gBXafVwobEEjKhEJAZAQvvAI1a/GMWdwZFQkVh/L12Z9naffyabPswdBMiCIiZwzx0JRzgCV9o1s8H3Iw9Uf80xDDFqNlnxLPksyluCwTQeg0B8QN1NPR6jbgIVBOifgxltW201Dj4N7vzSf376zPzhbaTiNPY5g+gggMyBgWntdzM5KGHc5qoBRUVFRmUyGF7+G/t6+R07nGGLli3P/aB6hR4BdL4CjS64XUWpGbLXBC3xCjJ7p6fEcaBsY2YU00CaLl/gsOb0y0DY0KiAUn1vuyrHkyNukECpgoqF2fbg4at0DCdlDaRsIpLECtRL+YT4lioAZ7Aw+3RRSuKvUZEQUMD432OpgzhUAtMRMY9qAfEGfbfuQgAFM+GvSZqLxDpItdNMdIir63YqAGYrAhHZG+fyB9eg+MPRefU2cFSdxg+H3mPDIolLQICDIreJ+D5iTSI4jbFmhrK1op9Hm5QdnXYIh0OE1tK3XcfOLb7GpYy35OTGkWfR0e2t5Zu8z+CQflqmFbO2W0KXmMyD1M1enwyrYJxSBeaS0GqNOQ3aiiTNnpPFRRUfE4ZONPQ5mZweESuMWig6uY5FgoLVvdlTLUQWMioqKymRRv1GOJABojXD+H+H9n8gXSZ1RThvFpcqiJiEbKse20z9sGrfAWz+Qf9744FABbE8thARK8pNjOdA2QHv/sBB+01b539N/DG//EA6+B7UbZJ+XaRfAzhfk2hhEudYlpTj89RMVMEoKCOSLtiSG17+ALAC1RvmCPtwAcFgKCeDMGek8tb6agq56Tm3bx+mNr1Bzfw9++wD6zCz0WVkgioi2doQGC9ruQxib/oUtpphl9i38zfR34io+AyR48SvwtTeHBFOgkPdOw6t0tZkAuf5HSSGF+sAsL0jGqNPg9YW0j1ccgLh0sLdjsDcxw9WFKHiVeAtCydcgIVeOfr38NehrIjm2gJ4IdSnldT384o29ZFiM3HpmUURjuCJrEWt2adjcRqBD6EfMyDJwwdP3MmD8kB94+iAOqH8dcrMwOV9kbUsb5kMzyLfkU5JeMmohdOnBDjZUyvv9G89s5dYzinjN6WVrnY0VhUN1MH5RornXyQVzM4NF4rE+D88bdLzcmAMr8iO+fyiqgFFRUVFRmEircDTseSVkqKFHHkjocwOSXGTqc8lpjmcvhTlXgr0dfB7QGcZ82wlTtyFQAIocreg8IF/8Qwp5y+ttfHRA9ib50/sHmZ9rHbprb9oqu93Ovxo+vR82Pyq/x9m/gpW3wYJrZIO8bU9DXwPEp8v7UtmHMYnyv87e6NbXViunjAQNFJ8rR3WyFoQ/J3epLCKGfV6S34+zshn77njcB19A1K/Fbx8goX+A13psCI5BJK2WmBkz0OXmYow142tpxbllI0heNAYdUr8Of1kFvWu2khhvYmBGDOemlOE3CWgNEoLfEx7x8copkkuE9fgObYbGAshdGjGFpLSPB/1RcuKhuxLmfgl2Pk+Cpw13zjVoJA2C4EfQGWH+NfKyfB5AgN5GkmJnUNsVnpopr7dx9ROb8fhF9FqBXU19EaNM3oDXS2iH0LycAtoalvL/ZmczreEuzNMuJGb2FXz67nd5LM7CDvt/2LFJfv05eefwi+W/iPjR/WXNoaHl+ES8fgmdVuC+NQf52YUzg+vT1u/C65fkFFLdO+BzIyChF3xYOzcDXxr3MFEFjIqKigqEWOx7QaODhdfJF+zPI2RC/Ti0Bph5WbBlFkETEDeSLG5cvfLPA61yPceRJFizIZvXMfU02P2SHIEJEGrrHkxtKBe/xq1y1EZvgukXwuZH5PUPRB7IXSr/Z6uH6o+gaZssypQoxUQjMAffk03rzMlQUyq/blgExj8wgMdmwt2eh/PDd3BV3IuvsxN/dzeS1wtCHMb0HjQ5yejT0tEUFREXbyFmwQLiTj8NrcUCDZth5/PQUi+7+ippGtEHd+3CsbuC+h/fStvWxOBy9bE+LFO9WM7Ix6h4o7TsAOSuGG2I7X6/R8Js0GI2hF9qS/JCxGFXpfz5552Kb/erZAtdbPYWoROnUWJqxfjVl4eOQZ0B4jOhr5GkWOOIYuSymm68flkwi6I0aprs/NkZPLFB/uyVKFDz7k/4pfA4V1d+gkbyw753YMYVTOsb4EDXKbwknorJ5ODqM7p5vf5pytvLmaqZyvZt2ym2FrMiawVVrQK7m/vQauRiKr1OQ5rFhChKbKu3hdUeNXQHOpCsZjANjW4Q0VLmn8klURwmqoBRUVFRAaheF4iOEF6UGpoqmChKV1GMFa55SX6fjQ8CApzyfXj/p0MpkLxT4MDbch3MkRYwSs3GvC/Dkhvl9UiaGiZgFNO3sNQGyIKuZQeUfF3+XWlZlkR46Wvh+ydznixgFFGmRClMifLfh0VgJEmC4Z4f3dVync2Sb8oX632vyY8nTkF0ueh7/Q16/vUvPNVDXTkaiwXT7FnEFhWhS07CNGsWsbt/jHbaArjisci7RCkUFkNbdiVZvGiN0L4P8+KlNP34Jyx+8zvgBI9Ty8DAFLr399F9888xFP2DuJWr8NVV4NmdgjndTfwsN+ZAOqvfI4VFXyISKOAlbSaeuCyybV18VNHO9UIf7qxlGIcfewk50NdIcoYBm8OLKEpoNPLnG2pEN5a7cUl+EquKU9heb+OfNyylRFOJ780vcY3Wi6B8HKIfOvYDYGUAJD1eVwIp/qX8+6JzeWD7AxxoP8Cu/XvwSYFUliedxCnZXDZrCYODiZySN42qtjYkvIAGjzjI2kMHmZdbEvSAybXGIMVOl2t8gHdTb6R0YFhb/CioAkZFReV/i9HSRK4ILb7DUwUTQRShIRBzd/VD5nz5sf5WWHwDLP663H2krIsx4AkyGV4wdRsAAS7401A0xDpVLpaVJBCEkakN5c69fR/4nJCzeGhbAtUZI/bP9Auh7NGwuhTR6cTX1YVeF4vgtOGuqWVgzQc4tm/HtWcvqW4XjaecgnnBAgS9HqlmPdraGLRdSej0mWidZkSXh95/vE3/5r/i7+3FNGcOaXfcjmHqVAwFBRjy8hA0w2o9an4pp75CU1mh1G4IES8aeb5SMM3mDkaQDhln82jij1lmrWCLNJMzzrmEb82zMrBmDf3vvEvPP/+JPjMTncFAT4WB+roMCnK3o89uJ7mhEfeUcQpSOwICJmUaUkIu2b2NfLK/mV8IbQg5V498fmIuNG8nuciAX5Toc3qxBmpsSvKspMYZSYw18PvL545pEHh9Tjtza94mfcBEc92nZIneoPhBEBC0Big4A3HDX0j2ye3ViiianmTlkbMf4cn/fsQftzoRDS3oYivRxtQhmap5rV5uAf8gUIIUFzJc+rkWeP5fAjEaK3HFbi579/+RrIvlosR4LhgcRBOfTHuz7Hys1YxtOKgKGBUVlf8dgu25XtCZhqIHXifsfVW2p89eDDueky9uGu3hD7HrOgTOHjldU7tejnYYzLIYUIpcldQLBIQBsuvskaZ2gxwdCW1hTioAr0OuuwkMXQxLbSjseVn+N+BVQsHpsj9LpOLZkLoUr3kWtpc2YHvp+4h9fQi6BHTvvoe3578AGIuLiTvzDNra2nAfOIh97UchC7XClv8L/JwIgKApJ+7UpSTdfCsxixeP7abbuEUeZyCJ4amsUMzKdmrkgurz/yjXKFWvI1ScLS+4gb9pZ7DTNw29TsPPCpLRJVuxXn011quvRhJFWTw9eTY1VV4OfGIi/oEHAbgFcBtjaKpaRdzppxG7ahX6tLTw9eg8IPvbGOPQJ00hu2EHxv4adEYRMmaN3LaEHKh4iySzfPnuHnQHBYzL66fD7uYrS6eM7W7cuIWzt9zImTov/PcN1ud/nywCNTHoOJR5GXMv/DbkLkUTm8KCeBHakKM1Ie97oMePTxTAlY3HJbe4awX47llZnL/QQIu9BZvLRkV7Ox8daKGjT+Bn58/F7u/hjT378Hn8fHXhLKoOvM6/EuL5R6IFrfQvDPmpfPHNpxE0YxsfqgJGRUXlf4e6DeHtuUr04MNfgr0NTrsTlt4oG709dwUsvPbw00cNG+V/F31NFjDdlaCTfS5ImTby+SaLHIWZSCt1NEXHXic0bYGlN4c/rqSCemqHpkZHev+yv8s/v3az/LxRimchUEDboaXntSYG1vwDJIn4s88m9pRTcL/+R7wuI0nfvo34885Dn54OwKHSUhatXo2/v1/eT/+5Dr9Hi99nwpe1Gv++dSCJxOV40V0wH5YsGX+/1G0IL56OFEVr2Aw6M5z6fSg6S/57+iyo3xQmzkpyR4lMBQhGfkwJxKe1cdvp32frbSuwDPZxy+9e4mJ3I7G7djGwZg0A5mXLSPnWzZhXrJBFWOcBSJVDFPqkPFKEfuZpauT3TJs5ctsScsHvIUMrR0W67R6KApqopnMQSZIHRo7J1qfQ+N1oBPCLHlIGDyEI8F//Sl7iXO48/6uQG9jOmCSyJTndkxkYaKkwI0kLDKXgNIIcpVldnM/sZCuzkwPRp+lweUEvlz70GZrBOdyyPI831n1CrFdkZdJ8ftDxFD2pM9jYtpny9IW86IlhYNBIduLY26EKGBUVlf8d8lcRTH9o9fLvdZ/ClkCdxJqfy5GKorPkFIuj5/CXVb8JYtPkLhqQizV1gSnIqdMjv8aSHX0KqXEL/ONCuSBYaxy9Vqdxi3xBnnpa+OOKF8zmR+RIU6TX7v5PZCEQEjmSPB7633+fvnfewVm+HdFuRxMfT9LXvkbStdegzw6Yz7n+JadovvrViJujtVig7n0wSGgNPhCcMCsVPGLkaM9Y5K+SC7FF39DnHErlWjmyNP0COONnQ4+PIs4iRqaGY7QQI1YBYENPcn4+69LmMO30y7jsvOm4Dx7Evm4dthf/TcMN38RYXIxp1kyM9Q0YCrQYy95Cb5EHeZ6u2YUoaNEkF41cTsCNOE2UPW56Qrxgqjplg7xxBUxgoKeIHHFp6nUzD+hZ9SvunD7MNdecRNyAnF5t7XORG2I8NzVBFm+nFCZz8bwsbA7PqJOn52YnkJdk5m8fVVLXaQ+a+d311Ot8oK0n6ZRbubhtH3PcVv7R9GWqm6BJr0EwPBM74s0CqAJGRUXlf4esRQQFzLm/lS9Qb/9o6O+hF+nMedC66/CX1VAmT0k2WSAuIyBgjHIaxxy5uBJDLDSXj163EcqhD4ZqOMaq1dn9b4LdR6HY5ZZp9r8Jh9aMFECSBHWfyT8L2hECwtfTQ+9//kPPCy/g7+xCn5uL5cILMS9ZTPyZZ6KJHXbdiUmErqqxt0lnDF/e/Gvk/yba2p67FFbeDuv/BJc9HP66xi2yj4vkh8oPR+7r0LTeRDAlYPDJF+Uuu5u0eCN+STaxEwQB04wZmGbMIOmb3/z/7Z13eBzlubfvd3e1Rb27yLIl9wK4gTHGBtNChxBCQg2QcHJIQpKTcsiXnpMeDunkJCGE0EJJwHQw1cLCTe64d1kNq1i9rnZ3vj+eGW2xunZlS7z3dena1e7szLwzu+8885TfQ8OKFTSufIPm996loT4RtlXDinuJy04lPSeBJTk7qPPkklR+jLjc3PD8HrNbeVrnMSAxTMzuYFUzNiWtE3qkchcc2w52N37gltZvcY//BaoT87nrY914t+Iz8NRKL6qKCIn/FvPrd+mcsdx89sTIT4axpaSe8vo2fAGDv68p7nr9BuPNru2QkEmgWQwzAynDtjnjk3papzZgNBrNqUu0dVmaKpD7ToLVL5ZXJPIiPW4u7H5RKmcsHZP+7ueeV0QPZeZV8n7mNAkh2Z2QOUNKRrtbR8VWubD2lLcRinkhA4Jehsj9OPC2VFJhwFM3ha+zdL354W6ScQEKfgXVe+CMGyFretc62/ftp/bxx2h86WUMr5eEZctI//ltJJx77omJtKH00JE6jNbjIuh29n+Gn/PBnPupF4oB446QpC8OSd4N+AafpB2JOxlHZzCsYzU/zIyoQrI5naTdeCNpN94IT3wS/+636Wh00NHgoroyjcqtKbAVwEvVvy/DnppK/OLFJCxeTMKSc4jLmoACEts/BKaF9V46VNVMbno87jg7PbLhrxLKvPRnxL36deKUn4W2A7zecg5Tj9ad6D2JzyCuQ85bRUO4AdPcKb+htIQI47gbQhWIFWC3KeaxjzvtKzEA9cIXYcxsxtiDfa3iHDYC3tamntapDRiNRnNqYumy+LxyZ377y0O/0FhdjQEqzUaKbbXgToMlX4b8kIvmuLnyeGyHvN4TR9fBPy6X5w63JIO+9g35f9PfpY9P5jRJErbFSdiiO/qTtxGKPUTu/7z/lkfreNnjYPl3YPX/EpTbj1hnWDgtIjxTsgHe+6U83/0ixm0v0Hyghdof3EnruvUot5uUT1xH+m234ZoSIuXbG5YBY1Y9dUvFNpi4GJZ9o3/r7I20PHmsKw5/vWvcDCws1ReuZGz+Dpx0cry5g3WHpAQnTC23tEgSqq3vWWM5difEZwWIH+vn3eu/xqXvfJHOOgdvsxD7zCtY3FxKy7p1NK1cKZuZNo2MsekkN5SR7J5FbUj364NVzUzN6iV8dOBt0b2ZegmcfgP+177FPfbnSVatFPmmU9Odbkx8Bqq9ngyP7QQPjKU0nBYf0XqiGyLL9H9w1Rzmbn0G+7GQ76fPS4KvkTnjk6hr6eSPNy/gzJ+2dd9ICW3AaDSaU5XiQlN51BB9lmjcKVsGTHJOl8YFFVth4tlwXsRFc6xlwHzQuwGz9XGCRkKHXCCsclzrDj9zerBMu5sE3tatW2kpqKatIANfm8KRYBDXeAjj9e8SaG0lub6Oyo0bcc+YQdJll2FzOqXKxuYQ1/uH22RFoTo27/wouAFl675iaMIiqC+GTz8RfmwPvg1IZ+qG/TZqbvsqnVWNOMaOJfub3yD1k5/Enpra8zHpDk+aHJ/ONqnGiqStThR4F3SfIzNgEseIQRlpwIyfL495S+GiH0TH+wJdnp4U1crOigZe3CbJ2L9cuZczclNZaDsAD18qRqrDAzc8Irko82+D9DzIW0ZeYBoNW5PJyahhTWABt912E+MnpWEYBt4jR2hZs5a6Z56motBN9Y63+ML4FloD8/CfPwEjKZkjNS0sn5HV/f6VFsFTn5bv5OF3oXovzTlLWVq2CoBttlnc3J1ujBnunJbs48P69rC3ujww8X17YE4o05+YCptN1V7L+5k5Dfa/wbzZabzywYcsmJja6zq1AaPRaE5N8oLqnGCc2AtnMNSXAAqmXSIy/+2N0nl4znUnLpuYJc0L+8qDaaoMPjcCQcMoNCRllUgDZM0g0N5OoLWVztJSqv/0J1pWF4LNhmv8GOISK+iMm0z72m0olwtbfDzOujrqNm/B6OzEcf+vSbn2GjrXv0l72Rjsyak4bWvwzG0hSSkcLgVKYQT8pqPDBpOXw/Jvn3ixzpoG9Ue7eX0GbbVxVG5Ooe24E/eMDLK//SOSLr4YFdf33Xa3WOGjw6tg5pUnvm8dZ8vAGCpKyXcm0oBpLAcMOOPT0TNeoMuAyY33sauisUuuv0vVuP25EA9bB2x9TPZj8d3S+RpYCLSkZ0FdDV9Zns9k0xuilMI1eTKuyZNJu+Vmmn54BfVFFSzZvxbn7gL2//v3qGkzuC0whnn5l+Bvnog9MSIP5vB7ITo3YlinzP84lK2iw57An67IYWZ3icrx6QBMS+xgY4QHptnbzxCSGdpcmLeMhReYx3zNH+W3cvoNUm2Vt0yM/V0rmJ7uoKGts8dmlRbagNFoNKcmE86CuHizMqcM1vxepOrzh5APU3cUksfLRXLzI6J8i2Em93bDuLm9GzDeFhGrm365hLl2vwDeZvGMLPgMxpwb8Lan4d1bTOeBeNpr42hbcx/e0v/qWoUtOVm8GjfehL3ifXjyU3DXfUHhOKCgoIDzzz+fljVrOf7QQxz/20M4EhXu8UkE4sfRsreGhiN7OWYbhyd/DL6mDjqr63Cn+UjK9eGcciH+9UdhbTGO7CwcmVlgBAiUG7RvaqHlrv/AV3sc1+Qp2NPTaFn1Ft7SLOyJTsbfewfJd/5X77orfVFaBOv/LM+fvRNuf+XEc2jK8XeF7qJBWp6c81AsL1xq70mnA8Y0YLIc7bzxoaRtKEIUcddHlMc3VUolmNWOAaC0iIR68UpMXvv/YNqcE46TstlIPi2LZNcWnsz4JcVH4CeT2ih/t5Br97xP3P3vsf+3P8Rz+unEn3UWjqwslMeN48NSHLVxOJMC2D2mYW0alS5/CzPfvBXGdaeXIx6YSZ52Xqro3gOT3psHpjvtpYAf3jJ7Ke15WUr8cxd1VUfNSBbD5VBVc09rBbQBo9FoTlXqjogxcM4XobYY1vwWju0082EGKe9fXyIXrmxTn2LrE/LY013/uDNg/0oo+CVMufDEbe59TRr5LfmyJMXufomAP0DDQTf1azbR8eG7GF7rLjIVmzNA/IJskq+7HntyCvakRBKXL8eeYiaa9tIzSClF4tJzSVx6LoGWFmy/yYdF18Gsa+DhS2mvs9NwNIk2WxKeGQtJ8gRo3bKZ6u3VsP3/ejkoSTjzy4jLmUDrls34qqqJnzWRtOx6Un7yCvbJC/t1aHslsplkd+HAiq1icJh3/FEhbZIYmKF5N5ZBE20DxlRSbmuqBXKw2+C88Q7uuXoRC8fGiUDelIukn9TeV6F8E5z+yfB8oOJCguHIHo5TaRHsew0CPr5R9f/4fNIPyfrSl/j9+PP519qDPHa2m8mle2ldv57jDz8Mfn/Ih7NQDhtJ5y8m7ZjCfuR9aHTgcPuxqx7yrkwDZoKrjYa2Tlo6fCS4xHRo8oLLYcPj7CFpuLQIXronqL1khYKL3+9+nAnSRXxyvHh6DlX3mP4CaANGo9Gcqlh35OPng1laCYGhyfvXl0hpc7apbX50jQiDJfaQNxDnAQx471fw/u8iqniKxLCJz8LIXUxHSSXNe1Oo2+/E12rHPT2JtNuuwT1zJk5XM453voTD7UfFrYKrv9b9/nvMi3cf+jO2zuMShsicBkffB6Vwp/lwpzfChcvDkmB91dX4GxqwJUpyp6+qCl9NDcpuR5VvwLntF8R9c0WXaJoRCKA2/BneeB/GTe7nge2DvGUSTvO1Sz5Od4mzFduiFz6ySMuDjkYxCC3DqL5E9iG0iisauMWASVQi+oYBGR5p0cBbPwJvkwgkZs0QwxcDdr8Mi4rCE6vtrt51b4oLxYOBNI6c3bGdTcW1PFVUgt8exx3bDf551+0s/Np/YXi9+FtaMDb/C99L38WXcxkt3pk0vPACje9YuUaigmd3B3Dtfh/n2004MjPxHjlMx4ED2BI8uJpTyGlax7KqKVRsGce0c8Rj2dxpkN5T+MjSKQrrNRWQ0vxDBRJihfBxJsjvMJNGPHF2DlVrD4xGozmViazMsCjfIpN59my5c1v1M7qtmOkvfp/kP6ROBFeSGV4ohvHzev5Mi9nMxYgwnEqL4NGr8TV7qT+SSP0lF9JZUQV48Ewby7jP3UbCtXcGwy6FvwZPD9VAofS3a/NxU08lY6ocn14ueo6sLBxZQQMtbmyI6u4RG+wPiCaMacAom03+tzuDTRiHSu4iqSJ7+mZIm3zi2A+8Lbk4Uy+JzvYsrLypuuIQA+aohCXtg8zl6QkzhJRmb8MekNDRzHS7VHSt+Z0ss/LbMO8muqq/Isu4e1E57iJvmey734uhHKzzz8LYW4XfLFHu9AU7iSunE8exrbDm28Sl+6HzLZLu+ApZX/saLWvXYHg74fhBfAe20NHsxlvZROPKlQQaGoibMAHXtGn462ppPOrBcXAd32Edvjuf4Og5i8m65x5a2v2kxneTkA1i3If2mhozWyr/DpktIy75Ofjbw8dpentsbceZnDVBGzAazUeGaGumDAelRfDIVeJNcLjCcyMqtklvInucvDb5AhF5u/XZwY2vsVw0VqyLWtJ4ubAl9OB9AZh2Kax7gC4hONM4COx9l5rNTo7vS4OAIn66jYwf/w+J5y8nbkz2ievJWybj60tR1tKbaetDAbgmxIBJGtv3Ra8nEs197fJwmTRXSRXPUPJeIsldJAbKwbfCQjrJDXuh0MyH2PoYzI1icm1oKXWOmedkhRGjjRlCuvvsLMbHz2Dx5AyajmwP5lmBGUoxev8u9CWkl7sIrvwNvHQPe2Z9mS1bppNTK14fS8q/qwv14fdgxX/I9x66wjX23EUkf+xj3a7eMAyMzk6pdLNe++l4Gqd8imtXn8b3xjUz8Y1nOXrLrfxUKVo9SZTsnkfqtdeSeMEF2DweePHLYqgoG12/ndxFIqKHIa/7208slzdDSLTWMCVrJltLezfktQGj0YwGTI8Avo7wJoWx2la0DKXQ3kS+EM9EwC+lwfNuDi6bv0zKP3uS4e+L+pDch9Ii6Q8Ekgcz96buxzL5PFHHzZoNl/0cY8JZNK18g8qfvYyvOpGUvFYyTvfi+sqjfV90+mNk2OxyJ9+dB+boWukVNOVC8cA4E8XIsNY/mHNhGW8tVeGvN1cGjZtokrMAtj8pDStTcwFIrd8pF1aQ8x4tYTmQHBgInnsQAyb//OisPxRnIqDI9XTypQukBUDBEYKqy1Yp+2DVhUMxy/rjkuUcvb7zGNOyE/n4/PEsnpwpYatDBfD4x+kynrorpe8GpRQqxHgBUK5Ekho2k542iQ8WX8GF3/w8ja+v5C9PFTA1rpPUfXsp/7oYIyrOgc3WgTMpE2dKAM+ChSRe9TnisjNEVLE3I96VLFpJLTVMyUrk5Q8qTlwmhH4ZMEqpy4DfA3bgIcMwftnNMsuB3wFxQI1hGDH4hmg0mm4pLpT8AhhajkhfWIaSv1MmoaEaSnnLZGI1/IABE5fI68cPSgJvaE6EVa1RtVd0WwZKaPXJrhXBkta+LpopEyFpDB2dWVR+7i5a1q7FNWsWOVckEc8uuPXF/h2D/hoZnvQTDJjkhr3wyHfkOL3/WxhzGmRMGbqHxJMmF4zmSAOmKjpl65FY1V4VW7oMmPrU04Ll8tEUlgMJFcZnBEupfR3SLDMWHhibTfJgOhrDX7fCKOfdG2waCUP73ZihxmRDqp18AYMbF+XyuaUhOUub/0GX8dJbKX1flBZBSxW2lkqedO7lbx9mY4ufQer1n+DxbS4+sXAS118zm9YNG2jdupXAxqcIVB7F2+SgucxJw6Fd8O+v4xg/DmfWOTiTDZIuu5KEcQs44durlBjVLTVMmZzQJZbdE30aMEopO/An4BKgDNiolHrJMIzdIcukAv8HXGYYRolSKgamu0aj6ZGckB4mNkd0LwKhHHwraCj52mHVz+GC7wx+Ms5dJBe18k2AAR2maviOZ+XRFjJFWZ15q3b3bcBYXiJPBrQdl+NhJW8m5/QvWdIk4Mqm5rX9HP/ZtdjcbsZ873uk3fhp1MMXg3th9A1FT9oJSbyp9TuDYQBfhxh4Uy8e+ra6LhiRIaRKKWOPNmNPE4OpfDPMvhaAxpSZEJ8l4YOrfxf94xmqBdNQhmgKxcCAAXClBAULLSp3y/ZCm0YOeTvJYHPQ1lDT9dL/vrGPebkhTScbKwAV9LwMxniBsMooBz6yjm8EbsEfMGjtFBVeZbORcM45JJxzDjz6OhzZAcqGYXPiveDPNB9soH3XbjrLymjcdpD6wt9g/+1jJC5dimfBfBKWLME5wUyqTsgwQ0h9NKSkfx6YRcBBwzAOAyilngauBXaHLHMzsMIwjBIAwzCqTliLRqOJHU0hrtbl/y924aOknJB/DBElK1k/NE9Me53I65dugG1PSB5I4a/lvZe+InkMuYvkIuBMDArF9URpETxyRTAsARJWy1smeS8OZ79COr6aGupXPE/d30vwNXSQct11ZH/j6zgyM8VbUHMA5t0yuDH3Rnz6CQZMY9K0kP8MuUh216l4MCRmhXtg/D5JXrbCU9HE4RIjpnxL10tx3kZoqYQl98Tme5uWF6xos7xwaTHwLoGE/9ojPDBVu4Nl+9FCKfCk0doQPG+hybu01oqX6/RPBkXiBnts85ZJxZDhx6/ieL1pCtOO1pGfmYBBNyJ2tUckxDV5OSpvGa7cRbiWBt8OeL00v/ceja++RvPq1TS88AIAnnnzSL7mapJJxdFS09WQ0p6YMZYe6I8BkwOUhvxfBkTe/kwH4pRSBUAS8HvDMB7rx7o1Gk002PqEVIy010dXRyMy38Vmlj5OXCyGCwwtZBXwiy7HzCvlTnnj38SQ6Uo6DFm3UjIZm2JXPVJcGG68gHiLyjfJnavVfbibkI5hGLRuKKLumadpevsd6Owkflo2OWftJf5nP5UwAUDTMQlxZU4j6njSglVG1n5Znqjpl8OBN83jE6UE24Ts8ByYlmrAiE0ODIjHbce/IRAAm43EZnOsvVWDDQV7nOTAHF0XngcVC9zJYR4YFegUQ7c75eGh4kkjx9WOOy7YX6greXfvK1LhdM6Xhl6anrsIZl1DYO+r3NLxHTb5J7PhofXc98kzgIg2Ak3HoKEUzr5bDNJusDmdJF9yCcmXXGK2SCim6Z23aXzpJSp//BMqbYqECVBf8gtu2F/HHxLScrpdEf0zYLr7lURGphyICvJFgAdYp5RabxjG/rAVKfV54PMAWVlZFBQU9GPzI4/m5uZROzYY3eMbiWPLrFrDacWFfDj2QsYde5fDOzdS0pR3wnIDHVtyw17mbv8+tkAnAVsc2+f+hMyadUxQcWxLv5Z5pRtRhp+AsrO9NoHGQRw3V3s15wQ62Vfdid/mZHbAh9F0zHxXnbDu6f5Uso6tZ82qVSfkf1jjS25IIHzKlpJV1VaH0VZH4B9Xsn3uTyR0ARAI4PpgB84dO3Dt3o29ro5AfDxt551H27KljPFvIf7ANta+9SJel7jnU+s+YB6wrbyN+ih/X6bWtjKmqZo1IevNrpHGkx+4zuQ03sQG+Fffz/bG1OA4BsmMZj/ptWWsM7eX2HSIM4GdxdXUtBT09tFBMbYpnpkdjZT+/Xaqs88lvkY8aoWHmvAfje72khv2Mm/Hc9iMAP5Hr6YqayljsbF6ywEM2+GobgvgtGYvro4aNpvHUtXsB8PP7hqoivL3ZL7XDvVlfHOBk721fmam22k6sp2CI3DG9odwe8ZRtK8e9g99u5NaPeQHvGz35wPg7QywolC+k6UH91DQcACAzOr1nAZsqbYPbD6YNg2+/nUc5eWMfeMhvHsqsK14ms/6/fyhFzu9PwZMGZAb8v8EIDI1uAxJ3G0BWpRSq4G5QJgBYxjGg8CDADNmzDCWL1/ej82PPAoKChitY4PRPb4RN7bSIlj9GwDG1awFh4fJY1KY3M0YBjy21ZshIBVCdsPPgvQWaGmHrOks+PgXwVMO6x7A/unHWNBTh+We9tny6vjGwHqYsfhSyYvYq1AYgA2mLMe+/NssCPWSuPfCyrdYfuZsSAoPcXSNr3kObP0WTP2Y3Pm2HRctjgNvoELGElh0Ds2rV1Pzhz/QceAgtsREEs5ZTNLFF5N06aXY3G5Z8Z5EOPBXlpyeH/QSFB2A7TDvohsgeVz/x94fjHVQ/irLz1vW5fGq3H0/JE/gjOzgbG4nIOdk2fKhbc9XAGsLWX7++WIU7vfCZjht8UWQG4M8mO2VsA9yy18mt/It6hImQ/oUll0cAy9F4WZAkrXtgU7GUQ2puZx/4UXR3xZA7VNQUtX1O9vzdAEAsy+4gdlWDle0qMiDhjLuui5iLPvfgIIPYO5NLL/gguhsa+NBKH6SbHsL5f4UHHbF4tOnUlC2l/PPOZMzJqTKcm8XgM3BgivuMEUgB8HEY/DuT9hy6x7u/HsR/OObPaby9seA2QhMU0rlA+XAjUjOSygvAg8opRyAEwkx/XZwe6/RaPrNkQiJdlcitNb0/pn+Yg9xDdvjxODY8njwIp5/nmikxGf2f52lRfCPyyV84HDB4i/I62l50vfI4Q4m1naXdBiayJvUQ45G5Q55XPIlqbywtnvkPdqqDeoPJ9Ja+AreiochEMCZl0fOb35N0iWXdN+oMMk0ULo8Q0hYwJkkGizRpkvMrl4SGoHkxgOQf1ZQ0bYfycf9JiFbKmUstdpmszllT8d3qDRYGQkG+L0kNh+BWVfEZltWsravXbZXeySoBxMLIkJICS1HJWk5WvlKocSnS6f0UEqL4OlbAAN2PQdn3hmdvCKzFPwP107k+hUNXL9gQlf/o7AQUtkmqZAbrPECXVowC7ICPHz3+Zz9QH2PtdR9GjCGYfiUUvcAbyBl1A8bhrFLKXW3+f5fDMPYo5RaCXyAmLsPGYaxc/Aj0Gg0/SLVco6aYlGJY6D1+NDXaxjSmNDuEpG58+6FsWdIDsEZnzK3beYR1B/t/5262cMFkItwaZFUGiVPECOmL60Us2sv6/8s+izdLXPMnHrGnC6baW6mcc1h6tbPp+PgUZTLScLSOSRd/XE8c+aQuHw5ytHLVGh5WEITpWv2Q+bU6Aq9WVg5TG11YsC01eFpPya5I/3VkxkIVq5LS7VpwJiGWkKMcmDyz5NzHvCBzUacvzV2+S/W8TpcIHli9Uel0s3Kg4o2rmRZvynUl9ByVHSLoq36C2LoRuoFFRcGy7b9vujJKZgGzMIsg/zMBOpaO6lrFe9sRt122LVWJBAqtoqm0pC2Zd4QtdSwcNIE/M3Hj/W0aL90YAzDeA14LeK1v0T8/7/A/w50XzUazRCwykOXfk0qed6778SS2MGw/v8k6XXxlySxtr1OEkuNAGROl2VSTOPJquzoD5b2CsikbrOLIWQ3p6K+tFJqzbyFA2+IqFs31U+B0u00lI2n5Ts/wVtSgvfwYYyODlwzZzLm+98j5eqrsScn93+fE7KlFDXSA5N3bv/XMRC6PDBmJVJoTygYvGhdT1hids2VcrFtrpJqmjh39LYRSu4i+MyL8PStkggN4nmLFdbxSsiCV/5Luos/ek1sxB7dKZJg7W0BVyIJLcUwPUbhKk8adLZCZ3vwXOUto6tNQTQ1dSwxvtbjzBk/kW2l9UzKjOcs2348T/5cvL82hxhP1vd3sFjfx6IHYeEdvS5qG9qWNBrNsFJaJCXGpaaK7J6XIPdsuPiHwW6ufTQC7Nc23vyePN/0d0ifIq7hmn3ymqWE60oU0bWukEA/qNpDV13Ax34qol+W3Ht/KC4MPjcrlAyfj9ZNm/CsKuDD73+fA79Yx7H3oX33bhzZWaTddBN5//4X+c+vIP2WWwZmvIAYVwnZpq4G0NEMjWWxqUCCYENH6+66y4CZF5vtdbUTMCuRmitjU0IdSt5SOPcrQW/Bm98LfqdjRVutKW1vBKvboo3Z0JH2Bjj4Nu6O4yKmFwu6PHUhv/f0KYAhXa+jaaCFGTAplNW1UVzTwrK4PSirPYJ1Ltf+fmjnsrFcHrc9CY9eQ5KThJ4W1a0ENJqRQmjfILsLrv8bHNsBl/wkuEx8xtBzYA6+E/SU+DtlUq7YKoJcqPB4furE/ntgOpqlN8v8W0RSvLnSbKY4gJyEvGUYARveJhve1nhaV5bR8J0L8FfXkAw0JieROLaNtOuvwvMffwg2UxwqSWODHhirxNnyREUbqx+SZYgefAevIwlnzYHYhD2sUJHlubP6IMWaUJlVs0dPTHt4DUC8cNCYDR05ugZeNMuItz4Oc2+MgeBhiKGbPF6el2+Wx2Vfj+72Qrqkn5YjRtraQ8fBPsvKkQ4y1NBV9V7ziRiayS7VowWoDRjNR4PulFmHo+Fh1PsGdchzfwe8+1N53pUHgxgwna3gbQVnD11i+yLFVMS0FDynXiTaLLueFwGw0AS91Fyo3t/9eiI5vEr2+4wb5TO7X5TJNz2/Xx/vrKyi7rm11L+cg7/N1ImJe4fE888j5aqr2dbexrJF+agHz4Mly6Obn5I8Pmio7Vspj76O6K0/lNCO1KVFcHQtcRixC3t40kSoLNQDM1TtkP6QvwwcbgI+L7ZYGRShxCJ/KBKzoSNH1wZ7fEW7v5OF9T0J9biWbZTfbbTPn8MpYzM9MABN7T6Op02ANmDCIgnNBXxDNw6nXATv/Qorr6+xw+yX0N1uDX4rGs0QGM7OyUfXwSNXBsXRABye2DY8hKDHxPpRD3V71l2QFeOuMQ2H578g8vi5i8JcvYM2YCzRtLPvhjnXSRXOqp9D7SHpzhxK6iQ48HZYd+Ee2fe6iO1NXCzVQavvk9d7CCEZgQBtmzfT9O4qWjasp2OP3Jklnp5DcsIunP/1Os4pU7AniuR4oKAAVRmewBs1ksaKEVdaBIVmqt9LXw6qBEcTdyqgxIDZvxIwJOgWqx5XNpvZTsA0YJoqITEG1VWR5C6C21+m+N3HmHzhZ4bnhiLa+UORWB6YdOlTZRgGKlbGWXchpLKNkuju7DHqMrTttR4nPcFJTqqH8vo2cu1mmHPx3ZITF405feLZovjtSYWrf0fT989u6WlRbcBohp9QqffhMCTWPRBuvEBsGx5a7F8Z4jEZ4vZKi2DNHyAuQXIHqvbC7udPXHdXO/rj4Z6ZgVCzT0o/L/mxJNoahlzQmo+dmPeRkgu+NlN6PqvndQb8sOdlMXgqtkYYMOEemM7KKuqeeIKGF1/EV1WFcjrxzJtH5pfvIeXqq3GWvwori2BaLsRH9Es5+LYYYNGoxAolabys83BBeNl6rAwKT6pcmFLzADFhYnYhBLOdQLWE+TpbYqfCG0nuIkomtTJ5OIyX4cAyYJLGgiuFZnsqSTc+GJt5JtRTByJNUL5Z2gfEgviMrt/VnPHJlNe3kWMZMEnjo2scpucDRp/r0waMZvgJlXr3d8TWkGitlbwLZTP1o82ArT2GDQ8tbJY+ghqaWzU098XmgCkXyt/+lSfG87s8MEPIg6neJ3kuVumnUtL5uPlYuDYMBEupG0p6N2A2PiQJu5U7JRRy63Ngd2H4OmgpXE3znucJtLXhb2qk+b3V4PeTeP75JN97L0kXLMeWEHJHWW+VWVaHtU1Ibtgrpd9GAB6/LrqGsaX34rDCZ0M8p31hdaSOzwQUxZM+Tf7Fn4vd78TuEk2R9f8n/3t7vOnV9IYVQvpwG7TXUTH9RmbE6pyF5KUA4pHtaIxNE06QucUMM84Zn8KbuytR1rajrYeUNCaYvN4L2oAZCQxnuGU4CC31MwzRD4gG+9+QJnFWy/rSIlj5bZmMP/5naCqX54W/hvP+O/bHssHMmUidJAm3g91eaO6LYcj/y77RfTzf0lAYSiVS9T5puGdRWiThE4B1f5JybWt7XVowJZCzsOd1bv6H+UQS87wFj9K4w0n94RQ6n/kjNo8bW2oayhlH2g2fJP2OO3BO7KFfTUKIAWNVRAGp9TtCko+j7GGztGD2rwRssOxrMP2y2H2HrI7UHVshayZH828iP1bbKi2Si4Xhh1U/k9fW/A6mXTI65pvhxKpC2vc6AA0pUW7iGIrTFH60PDAfPCOPkTcZ0SI+Qzy/gDtOCpiN1uMQB1vq3CyIYgs2ksZB0+vhid7doA2YU53SIvjHFVKiNhzhluFg3DxAiZu6uRLW/0n0QIYyriOF8KQpsLbm93DZL+H1e02vhR0yJsO8G0Uz4f3fxi4B08Iw4NAqea4Y2th60nbozmVreSRaBuCBObpW9nXaJSJWV3ck3A1dXBg0DAIRFQZWmKq3SqTGCqjaR2e7k8ajLhpLPLQfLwSS8GR1kHV6C0m33Yntwnv7t7+WTkSE3k1zQp75LAbeEUuN9+j7MPViuOgH0Vt3d1iKuI0VMO1jsd1WcSEntLeLVeLpaMfhlu9e7SGIz6A1fkJst+dJk1BjaZHMeyDVT6kTo3/uQkJITe0SRh2j6qg1EllX0sKCKVHcVtJYKUboaOx1Ma0Dc6oTpqwYI+2C4aauGAjAgtslPLHnZXj06qFpB2wI0VX0d0gooctrQfC4xbkhYxpU7hr8tvpDzX5Rbk3IgoZyiU8Ployp9FvbwZ0qFSX9zQEpLZJjv/o+edz1ghgrIZ6NrvJTZT/RMHCnyF/9iVowhs9Hx+HD1P7m2xS/k8bBFzKp2poE6VPJ/o9PM/XjDeRdXE/KlAC2acv7t78QYsCEG2mGzQx5zb81+oa+ZcAAjO/F0xQtPGkiltdSHfuKIOv8WpcDq/os1iHW0YhSwTDSxHNio9QciicdWuvMm4yIDu7RJj5d8qM627hgZjbuOBtjVR3VpAe7YEeL7tp3dIP2wJzqhE6WVj+akY5VPdNWC4bpWRiKyz/gh/KthIWlunQsupmMx8yWUFMssbwvc2+CtX+QCo/BxonLNsljf7QdbDazWqCfHpjD74VL+x98U55nhhgwvZSfGoZBR+d42t7eSsfmH9Nx5AiBxiYCra10VlRgdIgR6cxIIOurXyT58stx5uXJh0uvGFxo1JMOqBMMmIQW0wt00Q97z8cZDDUHgs/X/h6mXRxb74QnXe5AQXRyDvZYSTp0Qs/vcMsMjEbcKfL7m3gOeGO8rXgzV6rrOhHD3Kyu/LpaFk7K4Z93LSb7iTqSs/NJmTRE9d1IrPlbGzAxYrjyUvwhoY5rHxgdk4plwMy8SvqT+Nrlrm+wP7r3fyv5LQvvkCqKnc/Cjn9J7smCz0jvldDjNmaOaJq0NwZj1oPhSCGUFXX/HTi8Sqpr8paKAdNQNjADJvT7NVBth/jM/ntgwiTcFTg8dLY76Nj1Ie3PF9K+ezf+hkYcmZkojxtv8R/wHjmCcrtwZGXh+/AYvqoGoAFb/PM4p07HnplBnCeXxAUzcFX8G09qG650G1y1EHLzgpsbbNWC3SETd0QIKb61RMYebeMFJHRkMRyia1aFic0h39eD62O3LYh9efFHCbODOO7k2BswnlQxrm2m92zuzXDmHbE5l6ESDSk5LJyURoeqw5UdpRzGULQHJoYcfk+qHDDE9RrLvJQjq4PPk3Nis43hpuaAfEGnXAC3vwyPf2LwE2jJhqCg2/Zn4LJfSBdWIyBf/kjjBaRbKois/cSzBzeGrU/Ai1+S53anhC3GzpW7V3cqHHpXchcsUbj6EphwZv/WvfdV6SirlHy/smcNTNshPgNaejdgDJ+PxpVv0P7883SWZeHrjCfQ0obvxffwt2bDC18BwJmXhz09nbZdOwm0tOKcNInECy+Azk581dXEzZxEYv5B4rPaiEtxou74a/B4F/4a3mlGZMbt0b3ox2eeYMAktJQEu1VHm7xlZqfszuEJr1gGzJg5setJpIk+pUVBpebX7iX59B8By2O3PU+6JHuXbZT/L/1pWGVeVAk1YAD8PpzeBimhjjZWJ/SmD3tdTBswg2HbP0+MN8bKgDn8nnlHXRN9bYtY05OXqmZ/UE8kdxFMOifYZ2ag7HyWrgREv1d6A1mhpMiEUwuro3HVrsEbMJsfCT73e2HTwycuc+BNOOtz8ryhrP/r3v0iXaEwv1fydebf0v/PJwSrBSIxvF6a3nmH6j8+gPfwYZTdIC49Fce4HJy27bidHbinTcd92y9xzZzZJRLXI4W/hndekv0NRPwW8paJEWZEubEcmMJrISEkw5DOvzOXR28boZiia8NWDWhdhJQ99j2CNNGjuDBYOeP3klq/M7bbszpSl22S3L5YGS8QNGAs4byWKhSB6JdQg/SPciZpD0xMUHbrSWzvxlqOQ+UOOPOzcoEcSGXJycZKDvV5wRHipTIM8cCccUNw2TFzJGfE5xXJ6oGgrMRDM8F01rWivNtbv5OUXEm0G2wir98nY1A2c7LqodQv4JfyVFfywAwYT8gkZLNLGHEg2g4h/ZD8zS107NlNx+EjJL/+Ovvv/RaBxkacU6aQ8x/nk9T4FOqq30j47f5pkhB4xmQ4s5/eorxlkpvl90q4I/R45y6SYx3ngWv+GOUOypnh56+hFIe/HbJnRm8bkQxnmKW5Uh4rtsKj18T+Tl4THbo8dTL/1Kee1vdnhkJ8uhR5FL8PM6+M7bYidWcaTe9Icgw8MCBemOaPigEznFop1kEdPw8uvy922ys2w0dzrhMDZiR5YIoLzVLliATd5iroaAhvhDfmNPkR1uyDsQOUgK8vERfmoruC537M7N6/C0pB9uzBGzDFq6G9Hi78ATSWwtYnTWG+AF3en9BKjh3PDaxjM8hnA35R3vV7B2TAGJ4MOisbqPv5z6l/9jkCrZIM6or3kPSxS0lamE9iYB1qz9Oyu298VwzA9gZZwc4VcNZd/fte5y6Cq34r4bTzvxX+GcMQo3vh7dH/jSRkhScqV+2Rx+zZ0d3OycLS9jB/PzG/k9dEh4iE98ZDrbHdnmVUdDT2P0Q96G1ZvZfM61CT6TWPhQcGTC2Yj4IBU1oE/7hcJnyHO7Y5KYYRVAj0pMXWWNrxrFzIbHFyIRuKONlwExo+sNmDd+ZWAm+oJL2Vk1K5q28DJtRQzVkoXV9nXyvCbhb9uVNOyIQDb0kOzcSzMQwDf309ePuRdbfjOfGqnPMlyU+Ye3N4BUdkJUfKhIEZMHXFUjo94SzY8qh4sFqOnyjjH0KgtZW6f/2LxpdfwXtoP4H2bLA/SfIVV5By9VW4pkxhzb59zJnsgkevCuq6gBl6ezH4mhEYWFh0xhXyGJmr0VorZZcpg2xp0BsJWXKR93eKB6hqt7yeFUMPzHAy7WOw9oHhu5PXRI/Q+edQQWy3ZRkVEDsFXgu7Q/L7ugwY07iIRQ4MiGFk5fb0wOgwYIoLw0tBY5mTUndEJk5lG1hYYKCUFkkyJ4YkDJudQEcMuYvky95WK92HrfPRZcCEeGAypppS5juk7XxPWGEpv1eWv/LX4jXoRwjPCAToLCmhfc8e2je8Q/t76/E2pmA8fxt4MvA3tWJ4vWQ7HBw980wSzl5E3MSJOHNycE6dGswFKX4fdvxbkoOtC3ZfBlPKBKlW6i/1R6VJYN4yMWB8HfD4x7s1zANeL3WPP87xh/6Ov64Oz9y5pFywEGflGyR951/EnbY0uPCBA6LWGWq8WGHQ/oTeesKTJvHqSDG7LiXiWBgwIQmFSWOhag/trgzcntTob+tkMNx38pqRiZXz4vBAdgxVf7u2FxSzo7ECAxsqIQZVfyC/64+EB2bs3ODzWFcIWPohk86Vxln96cI7GA4XEJacarONLAOm5Xgw2Ss0k7zmAMTFh1vtdodUj1T24SYvLpSSa5BjsvsFeT7p3BMW7Tx2jNrHH6fxlVfxNzVhtLcHxeTsCleSwpPhlXSm8dnYZy7FkZXFkc2bcR8tofr3fwhbX1xODq5JY3A3vo8rReFqLMS5dD0qb3HfxyJlghi9Hc3g6iMp1jCg7ijkn28aAN3r5ATa2yUZ93e/p7O0lISlS8n84heIX7BAKqAeXwFJ3ehUWhd4ZRfP2PxbRaumP6G3nlBKjJRIA8b632o3EE1C1XhNA6YlYRKjql5nOO/kNSMTK4SUmA0VW4YhuTwjzAPT4UrDbetmnokGiWOD830PjA4DJlTL47q/xPYklm+RMNW0j8lk31YXm8zv1EnmEzOXIjkn9gZM8fvS8yYaeURVZn5JykQo3xQ09Mo2ijepfFOENstpcOCN3tdpduYFxAPW0SxaKynB8vL2vXup/cc/aHj1NTAMki68gLicCSi3C2duLq6ZM3G567E9eZ0kx9qdcMd3u/ZlR14eZy5fTqClhc6KCrylZXQcOEDHvn20b11L8zEPGPGyC6/fhS01DVtCPM4Jubhnz8Izfz4JS5Zgc4dcSrsaHpb1nWTaelzCLmmTJEQWkhBoTDyXlsJC6lesoPm91RitrbimTSX3oYdIXBpixFn9kDY9LIm1occ54Jcxn/+tE0vMh5KkmjrxRDVe6/9YhZBADJiAH6r2YE+aJl46rWei+ahQf9R8LJEmqbFuNROfAY1m5KGpAq8zI3Y3Df3IrRkdBoxVdw/BDrqxomKL9ItJz5f/G0pjY8BY41h0F5x+AxT9LdhQbyj0lOy849/w3F2ImFkU8oisBNkFn4FVP4Xaw5LAW26qykb+2MaeBtuegKbKoAZAJPXF8piQLSHDql0YM6+mdUMRLevX0bp+A21bt6Li40m/5WbSbvsMzgk9aOd8+gl48gY4s/tkVVtCAq5p03C560iKa4IrPg3Gpwg8+DE6GuPoaIqnI/cGAiQSaG6mo/gIxx95FP72EMrjIWHxYuzJyRDnwJ3tJqHRjrO+FNWXAVMnE1JnIA1/awqBhffj3V5Ie72L5s9+j87ycuzp6aRcfTVJF19MwjmLUY6In7FlOOx4Fva8En6caw5IueV53+x9PwZK6kQJQYXSUCqhpdA4fbToMmCOiyhhoJOUhj3DM4lrNKcKx3bSk5c2JsRnSNdygMYP6XDFsGw7tH1HD4wMA6avCqPjB8UlbvglmS9W5WR+H1Rsk5JTS6CsoQzGze3tU/0jcow1+wEFl/xYylB3rhh6Em9pkSRw+n1yFx460e96wVzIAF8brPo5XPCdwf8YKneKJ2DmFWLAlG2Eg28H34/8sVnaLO/8jxzf7ra752XxSlz6c4y/X0prlZOqgg9oL74d7Hbcs2eT9fWvk/bpT2FPSel9/6ZebCZHu3pe5lABPHGdPLe74No/YnOAZ8mleM79arf5KG2bNtH45pu0Fm3EaG8n0NFBw/HjwBjiNn6fhIvWkLB4Mc78fOLGjKF9335aN27EFh9P0oUXwIHNVK1Jo+np/wlbt/J4iJ8/j+xvfoOkiy5COXspN7cSWrub1I4fGHilV39IyZXqsrb6YJiqvkRCS7EIsYZ2pD4sbRvUcE3iGs2pQn542XbMBRb9HVLiX7IBGspweoid13NUeGCOFMJj15hiWA6Yf1tQ8dS62B8/KB4RvzdYThkLdjwrF3d3StAtHo1E3rCO024RzKreK2GEOI8sE58B3iZJ6HT0ctHtjb2vBrswR070tgjP1eFVULJ+8HezlbvEKMmaCc5EMWCq9gKq+2ZxPrP6Z9uTYqxFbre+lPbdOzhet4S2J+/FVzUOw69wxFcx9mufI/mWL2FP7KdSLUhOUeKY3pPEdvwrmPDq98IHz8rzS38u5yZylU4nCUuWkLAkXFrbe+QIzd9fSktHDo0vvUz908+Ef9Cs1qq67z7z8LjIuOtO3KfPwxYfT9yEHJwTJ6LsdvrF5PNh1c+I7F6tAp3i4Znzif6tZyB0hclKQwyY0tiEj0ASxG0OMWAaKwBFAIVNNyHUfJTopU9Z1CktMr2dPnj4MiBAcue+2Hk9R4UBU/jrkItIZ7jiqXWxP37I7NhL7AyY0iJ46R55vua3MOVC2f5A9T26Y8e/T+w4Xb0/vKGeFaZqrYXkvl1r3ZIYEpqJnOjbaqUyKGWCJIGG7kt/v5iWF2niEjkPZ35WEkVzFsgXv/U4nH23JJxF/tiObTefhN9FB1paaC4spPHxB2janI0tvpzEOeNwpBTjTOokJa8D22w7DMR4segry90e4uWwx4n2S/rkbo2X3nDm55M+N4H0pHaMX/2R9pZkOktL6PzwQ5yTJxO/cCH+xiaa330X34anSMvaR9w37x34eCysXJbaI3DjP7uOs6ftmHgpeynHHjRWpVF9SdDD01ACE/uR5DwYlBIPX9VuU6n4NorrDSZf+BntfdF8tBgugcXiwpAKRnlUEDuvpzMB4uLJSWrq0ZI5tQ2YhnI4urZnxVO/V3oFHT8Ek5fLRebg24NTdO2Oo+ugZK1cbIsLQ4wMnzR3S5kwdA/MoQLY9lTwf2UTA6DglzD1ouDrlsu89fjgDRjLc6NscOMT4V+4qt0w7VIRHTuyWqzsgXS/Li2CR64yP+cQT48VFppwlqzT7oTpl0kPpEjylmHFcn2dLpr3BGj65xdoWbsWw+vF7lFkzA2Q8YP7sScnitU/VLdp0lj57vRESzU44sHXCgtuF+9QqIJwfyktgtZqaKlEPfkJPLe/hOf0K8LetxcXkn7BMiAOOgZmIHVLzpnw4QfyaBLfWi5PMmJhwJj7bOXftDfIXyxKqC0SsqRdAwYsvpuSPdVM1saLRhMb8pZJKN3v7WpYGfD7Yuf1LC2CzjbGJqoemwCeugZMaRG88jWx+G54REIaYYqnyIU4a6aEdTKmSMJgwCchpTFDVOTc9hS8cDddSa0XfNd8I6R9wJHVQzNgSovgiU/IXbHNIdU5KbniofB7ISvUAxPRSGswWBnrRiC82V9ztVysx8wWo+ayX8Jr3xxYDsyOZ4Ods32moWkZMC6zSszfCU/d1K270atyaK4+naadVbRW2yHwMHHjx5N2040kzUzDs/VbKJuC52+Wz0fDbZo0VoTweqJiK8y6UhJftz8lIbzJ3RhffRF65xJ5t1JaBI9caRp+Lgm/TDxn4NuIJGOy/C6aPuyq0vK0mQZM5tShrz+S+Awpj7dKp2NZgWSRkCnHNX2yKPDueS9229JoPupEhquA4ncfi53Xs7iwz0X6ZcAopS4Dfg/YgYcMw/hlxPvLgReBI+ZLKwzD+PEAdjUc627e3yEX9qRxcNXvwhVPC++X/BBLVyNjarAmvmp3/w2Yg29LYm5oSWlnG7z1fXMBI+jpAVj8BZH2txRWD74z6GFy6N1gU0jDgKzpUL4VPtwmr4WqinYZMEPoh1RXLJN9Z7s0PZz7aXm92pJhNzv5zr9N5OWbq/q/bkuGHugyMDua5dHXTneZ8oH2dhpefIm6Z56mY7fsgys1QOZ/fomkSy7GNWsWSilY8Z9gI/zzy74x9B9N4lgpg+8ur6ipEhrLYfx8MShe/bqMob8doUPJWybf44DvRI9RcaGMCeSxuXLAIapuSZ8ij7WHugyY+NZyqeBy95HgPBiUEmPFMpKt0GpqFMbS80blIefM2CQKazSacCLCVSWTWmPn9TT7Shk09dBsrh8GjFLKDvwJuAQoAzYqpV4yDGN3xKKFhmFcNaQdtiguDN7NG0bwjjX04DVXQsEvoNSUGs6YKhd5Ze9/HkzxGnjiesJKhwHe+J54JKyLjrLB8f0yUV72i+DnU3Ilh2KwISubefitpNYZV0ri7JbH5fXQXIUuA2YIlUiWAZM+WbbhbQVnPFSap9LqIxPnluPcDwsYkHNUukEqhDqagmq7/7xBjumUC+H933WFfAJjF1H74N+ofeQR/LW1uGbPIvu//5ukMcdxbvop3PnJ8AZhlvfCatgYLXdlV8v2YycaDZYROX5+iJiSAU/fMvCEtdxFEoLa9He46enwz2ZGlFUbAVHhHSoZpgFz/JAY55gGTCzyXyxSJwYNly4Ruxh5YEqLgr3Cdr8Ii/4jNtvRaDQnB9PjU3nf4oqeFumPhN4i4KBhGIcNw/ACTwPXRmsfuygtkoTd0qKQsuReuj1PuRAwYPMjprLrOLmLTs4R70J/WtDvMQ0WDDGYtj8p7vyyDRLju+J+EWJTNrn4TwqvLpFSaiPY1GogYwTxFLlSYPl35KK48A65SB9eJUq1oXfKkY20BkNdsVwcZ14l4YWXvyr7UrVbvFehSb55SyWHoq2+7/V+uE1aLCy8UzRrLELDJbe/RGDZt6hN+yqHPvtdqn/zG9ynzWHio4+S/9xzZHzuszhnzJfPnaDoehSyZsGF341utrulM2B1/g2lfIuc97FnmL2vbOFjGihWo7W0CFXagOl9iU8PeuOi4bVIniAhqdpgjk98a3kw2T0WhKrx1pfITUGsZMaLC4PKygHf4M6JRqM5tcldRHmT0WOlRX9CSDlAaKlNGXB2N8udo5TaDlQA3zQMo/+tfo+uE8PBCMikd+Zn5fWz7oIzPtX9BWv8fLnAN5ZJ1YNScjFuLAfDT+efr6Ux827U2GnYXG5sHjfK7SZuwgTc06fLOkIFtowA7H8r6M43kMqcJffA62ZFSNGDMOvq4P5YWjD1pX3fNVt9fHxeMbRu+TfsfwNOux7O/++Qcc2TFgVZ07te8tXVYbS14XCloPpjwJRskCTj0KaCmdPMpMpJweqaHf8SbZW0PPG+hLrh85bKQShZBzMu7317u54Xb9LMKyX/qPA34Pdi2Jz44mfjXb+Btg8+oO7xV/FVV+NZsICc3/2W+IULw9djleLWh1SvdLaLAXH2f4Y3bIwGlsEW2urAomKrVIG5Ek1XpmtoScOJ2fLYXCUeMIvSjfKdv+1F+Ot5gCHVTkPFZhNpgeOH5f/WWuJ8TbH3wLTViRfuw+0SbivbGJv4eHfnRPcL0mg+UvTHgOkuuBwZk9oCTDIMo1kpdQXwAnDCTKmU+jzweYCsrCwKCgoAOP2DH5Nh3n0avna8m/+JN3EKmxOukkmphz4gcxJnk9W+juamRva/+BdS63eSb/hRQEeDn6oVT3f7uc68PNrPXEja0XW4SjPoTEghyVWNK6UGd4aduIQAhs3O9toEUus/IN88CAGflyNvP0p5cin22lqcNDGvzcbBlS9Q69wPPh+B1DRa4hwUrFoFSqHa23FUVDDm6Fvk1PlxuMHmaqN65f2MaWvmg+pMmh/6O7b6emxtrWQ2JJJV56ZhXzENT1+CqqzD1tICgM0Zj+3Nt2n79cXYGhsJpKfjnTkT75TJ+DMzMeLjSdn7PjlbnsIIiAPBEe/HM/Y+Ds/9PDP8sHt3JZ79jzPZHJPhaydQc4Bj4/I5UBA8zja/l6XYaXz1fzi89yiNKcFQR3Nzc9e5S67fw+k7H6I1YQpbiz4An480/024t2/FX9KE+ufXuz7XMXMGLbfcTOeMGRQ3NUHI9mSbHZwHHNlSwNFaueCn1O9mvt/LjsYkjkcsP1TivPWcCxzY8j7lVSnBsa1axZLiDdSmL2CvNc7Tf0Rq/U7qU0+TxnoD7E2T0FzGWcDODe9SczjY32P+7rcxEiZzuGgt81AoDALPfZ7tByvDjvlgOC2Qgqf0AzYWFDCu4g1mAIcOHqTUO7B97y9ZVc3MAWr/7zLSGqSvVeAfV7J97k+GPJbuiDwnod/L0YYe28hkNI8NTv74+mPAlAGhgewJiJelC8MwGkOev6aU+j+lVKZhGDURyz0IPAgwY8YMY/ny5SIxX7jDLJUOoDBwddbjOus2li9f3vuedb4LNetIbClhwY4fSfXM0ach0EnCWMX0F/+CkXkagbZ2jPY2Am3ttG3dSt0zzxD37HP4HQp/mgeanBw/nAiG2Go2tw1HRhZpu1bhzkmjoS4Ff3uA5go3nbWryep8t2sXDjIWeI10Xut6LRMgLg5bfDyBBklu7QSKCbrTlWMfdb7xOHmKUDFmL1BOOqgOEtKKcS+/GOdpZ2Nzu2h//n466gzc02fiSE+n49Ah2t55h4Q3wnsIVZNMJPY3XmBf23jsrMAX76EsLRNXcgcOdwC7O0Bq/gyW5OURN2mSJM6WFsH7BqmNe+TYhoRuCgoKWJYdwL/6r9hL3sYIBLCXlTK76VXq316Pv6YGlZVJyvILiV+4AGdeHs68POLG9aP8e+sY8tNs5FvnvlCaZ55++eeCpeTRIhCA9Q6mjU1k2vLlUFrE4XefZXLKFOisZ2z+LMZ2fQeX97ye/tBcDZu+ymkTM+Fsc12d7bD6MJzzRRa4W0xBO7Abfhakt8CyIW7T+zZseJDl+W5Y/TcAppQ8xZQLbomNV2TTUdgN6Q3BppxRG0u3hK+zoKCg7zljhKLHNjIZzWODkz++/hgwG4FpSql8oBy4Ebg5dAGl1Fig0jAMQym1CEkY6DvWYRjw7zvl+YU/gModsPM5+b/obzDrmt4nWiPkid8r4ZKLfghvfQ91+a+wzzg/fPnSIjz5VaT9+fv44ibieOYK1Lg5sOQrGA9fQ0dtgLY6Nx1jrsHvd+GrraXx/a3UN0rliStvAmm3XIxzcj5x48YTKN2O/9WfouwGjgQH6vKf0hlIZf/6DeRlZRFoacGRnYVr+gzsLYfxv/gdfOkL8Fcfw19bgy0uQFyiHcc1P8Ax5zzsKckE3vsjgTV/xZXkw+a0wYVTYdkd5jBfkBDZ3Q90DSnQ0kLHwYN4y8rw19fjKl+Bu+EdbA6F4TfoaHTQWhOPN24mjpZdOD7+M9oPFtO6ZjXN+45BwDyI656Bnz+D58yFZN3zZRzFL9N60I2/3YbdDbZnHsGX+gHe0jKyCt9l/4dVpsGXHfJFeIXE884n7dZbSTh3CWowXUpTJ4bnwJRuEN2SaBsvEFTjba4Ug+3hy8g3/MFauo0PwZyPR+diH58u+U2h+TYfbhdtoQmLJMRkd0ZXEjxjquR27XstXMMoVlL7zZGhuF5y2DQajWaI9GnAGIbhU0rdA7yBlFE/bBjGLqXU3eb7fwE+CXxBKeUD2oAbDcPosfSpi8Jfm9UeCt77Fcy7qcsTg7+z74l21lVQ9FdZ1pooHWZvTEvO3MLS2/B3ohxu4m75NzQUw9wbIHcR6rMv4S4uxB2hK2IEAngPH8bm8RCXE6GnU7gBpplxd2WHtOOw7A5aU1PJjrRKn3sSprjgmytgze9FqA5DPpfVADPMnJcl18KBv4M/cOLkH58Bx3aErdaWkIBn7lw8c83E5z/9EVLnw6yrUEYAz7s/xXPlbeBtgd0H4NY7gmMrXkPgr1fha7fh63TTPvU/qV3xDiV3WMuEHMONq4BV2FNSsKfZyZjTRFy8n4DPhmEo3BkK9z3/xD4zwmgcKKmTgg0fAwGpypp19dDW2RtWO4FDq8AMP3YRiOLF3maXhNZQA6bMTObONQ2YaEuCW6XUbXUAGChULA2K0Gozmx3m3wpzb9LKuBqNJib0SwfGMIzXICRGQpfhYj1/AHgg8nN9ssFahelBwQgq/fVnos1dJK0EQif9FjNqFZmYeWR1uN7GnpfEULK0VnqQY1Y2G66pPVRu5C0LNpHsbn/3vyHJoO5k2LVCVGjjPCeUFYd9rrfeFvHpUoVkGN3rXjRWiKbLJT+Bc78iy21+VDwa3uYTSoVV6XrsbrC7fLhUGwkLE0j7wps0vvIKKBsedhG39X/xL/0fAlOuwjF2LPbERLY+/0eytn8PucOOi+6FKnUi7H4BAn7pidReH0yAjQVJ46Q6yy1hNwMz6au7fk1DJTE7XFuntEgSqK3xRVsS3Cql3v4UuFMpHnsZ+Rd9LnYGxXD2ZdFoNB95TpoSr8PXDC3NcgEMmN6GuTcHxer6OwFGTvrxGbKuSAPGaooIcnGyRO8s8bbBkLtILtzb/gm3Phe+H4ffgyc/Fb78gbeCnTt7m+h7upDFZ4gmSWdr94Jqh6Qrr5SYI0ZO/vmw71Wp2Bo/P3z5UGlo82Jtc7lIvf56eb/mdPjgf7GNyYYQI87viJcnp38SFn0+uheq1Ini+dj7GrzwBXlt3QNi/MWk4+kYKF0viso2B8UTP0n+aeeENwuNFla4Ckx9o/el7D9m3VzHmee3A+beyFHP5eTH2qgYrr4sGo3mI89JM2Dc7dWQMgM+8WCw35A18Q1lAlRKJOIbIwyY4velg61hSNNCv1c6MFtu9sGStxS2PRGuoQKw5bETlw0NSQxmom83c6UPvgOzrznx/UPvitKqJeEPImK27QkJI8y5Lnz5vgyp1ImAEg9FCAktZo7KefeGlXtHBctLdPCt4cnbSBonXq19r0PeUo5OvIn8M5dHfzsgxlKlqS6w91Up02+ri10317KNQa/j5kdIPj2fIScjazQazSnCSTNglOGXpD+bPfr6Hknjwz0w9SWwfyUs/bp4MDb8VZRzM6YOveljer481h0J7zHTFSqwAYGhhyRKi8QTAfDcXZD0SvgF7+h6SdacuCQ8vGSqsALda9X0Zkg5nKJ1050BY3eG65lEC0vErdEqdItBKCcUy/CsPQRn3illYLEicQy0VInHcc/L5ovh7RWiSnGhWdlkgL+T1PqdfX9Go9FoRggnt5ljIBCbiTt5nKjIWrz7M5nEx82TfIN1D0gTv0iPxGBIMw2Y2iNdL9n8HZKIOvMqyFkQLig32LEWF4oHB05McC4tgseukVBB8XvhIYnkcdLyoKE0RBJ/IOPLCxsbmAZMxjTpOh1tUiYASnpUOZNgyZele3WswhJJIaXdUy+G3d2o8kaLxDFyDttqpV0DRL89QigRIcL61NOivw2NRqM5SZxEAyaGJZZJ4ySB1jDkYv6BKWi34j/gthck/6WtVi6QQyUxG+ISRM/GJOP4JslTOfs/wz0gQ8G6GPna5K66p4aAkUZhaVHQm/HWD2D8goEZA2l5cixDiG8tgakx8og4XJLr01oDMy6F5d+KzXYsrH5IruRgiC5WdKnxVooqctJYySGKVcJrRIiwUSvVajSaUcQghDqiQ4crPTZxfxADprNVLhL7VwZf93thx9PBzskfPN2/nkm9oZRc5OuCXoqs6jVSMjvp3KGtOxTrYjTmNLnYTjgr+F7eMglRQffdji3BHCuXZCCk5UnYwytqwHQ042mvkt5EsaC0SIxLkDDLUM9PXzSZbTY6GuGxa0lu2Bu7bVnhquZKOLZTmoNGo6t2b+Quiv02NBqN5iRw0gwYrzMtdpOq1cm46UOINwXQrBwUEdCX1wL+6DSBS88PhlkOryazZj3kni35PdEkdxEs/gK01wWTQa3XE7KkoirSKLQ8N4MNVVh5M1YeTPU+eRxK9VZvFBeK5wwGZ3ANlGM76eqW4ffGNk/EMmDqiiXnZowO6Wg0Gs1gOWkGTEyx8hoaK4KVLMu+IRf3uTcN7YLeHWl5clE6uh7+eT02ww8H3oyN92DyBfJ4uCD4WksNNB+TEvTuSrJvf2nwnZy7kpSL5bF6jzzGyoCxxAhjmRsSSn749mKaJ2IZMIffEw2i0GoxjUaj0QyIk5vEGyuSTQOm6RhU7oTkCXDh94LvR13xNF8SaPe/HpKL4o9NgnJKjpSBH14lnbIBykzl2pyF3X9mKNocaREGTNUe/DYn9r66bw+W4RZDG848EVei5EtZxudY7YHRaDSawTI6DRjLA9NUISGCyAtFtMW2rIt8giRpGhBbyfbJF4jOjK9Dkl7LN4kHYfy86G/LkyY5N1aIrGQ9PkcC9vLNsVV0Hc6cjdDtDbDL9IBJzJZ8KWcipObFdlsajUYzihmdIaQ4j1x464qhZn/scw2sMIuZr3Fs7EWxS1AGmLxcqpFe+6aEqco2Qfbs7tV5h0pXknKxbKt8M06vKb4W6wTb0YgVRsqeLc0kNRqNRjMoRu8MmjRO7qYNf+xd9Sm54gHZ/zrEZ7B/+pdi60Gw2iJseSxoSEzoIXwUDSwDZu0fkJaABMXXNAPDKqXW+S8ajUYzJEZnCAnEgKnaLc/HnB7bbdnjIDFLcm4mLMKIdvVRJBVb6Kqm8rXLY86ZsduewwXHD8LxQ6BsBAywDUeC7WjGlXiy90Cj0WhGNKPXA2Ml8sbFB0M8saK0KNg64NA7sdUSAbNSx2X+Y5Ycd/0fZUqLYNcL5nYM+NjPKM6/JbYhstFKaZG0ewDY8KAOwWk0Gs0QGL0GTJKpBZM9K/p6LJGEapcE/LHvOZO7CG5/GeZcH3ztpa/E5oJYXChhOBAtHV8bJZM+qY2XwVBcKErJEGzsqdFoNJpBMXoNGMsDY7UTiCWWR2Q4tEQschfB2Dl0ncJY5aQMVQhPEyTie6KPpUaj0Qye0ZsD09EsjxVbJdE1liEPyyMy3D1nrAui2awvJhfE7nRZYl1qPFoZbo0bjUajGcWMXgOmrc58YgS9E7HuOTNcWiKh2xyOC+Jw67KMZvSx1Gg0mqgweg2YGZfD+j/H1jtxKqAviBqNRqP5CDJ6DRjtrtdoNBqNZtQyeg0Y0N4JjUaj0WhGKaO3Ckmj0Wg0Gs2oRRswGo1Go9FoRhzagNFoNBqNRjPi0AaMRqPRaDSaEYc2YDQajUaj0Yw4tAGj0Wg0Go1mxKEMqwnhcG9YqSZg3zBuMgVoGKZtZQI1w7QtGN6xwfCObzSPDfT3Mpro72V0GM1jA/2biybDMb5JhmFkdffGydSB2WcYxpnDtTGl1IOGYXx+mLa1abSOzdzesI1vNI/N3J7+XkZve/p7GZ1tjdqxmdvTv7nobW9YxxfJRymE9PLJ3oEYosc2chnN49NjG5mM5rHB6B7faB7bCXxkDBjDMEbtidVjG7mM5vHpsY1MRvPYYHSPbzSPrTtOpgHz4EncdqwZzWOD0T0+PbaRy2genx7byGQ0jw1O8vhOWhKvRqPRaDQazWD5yISQNBqNRqPRjB6iZsAopXKVUquUUnuUUruUUl81X09XSr2llDpgPqaFfObbSqmDSql9SqlLQ17/mVKqVCnVHK39GwpRHttKpdR2cz1/UUrZT8aYQony+ArM17aZf9knY0wh+xOVsSmlkkLGtE0pVaOU+t1JGpa1n9E8b59WSn1grue+kzGeSAY6PqVUhrl8s1LqgYh1jeg5pY+xnVJzSpTHNqLnk57GdirOJ+Z+RfPcxX5OMQwjKn/AOGCB+TwJ2A/MBu4D/p/5+v8DfmU+nw1sB1xAPnAIsJvvLTbX1xyt/TuFxpZsPirgOeDGUTa+AuDMkz2mWIwtYr2bgfNGw9iADKAEyDKXexS4aASeuwRgKXA38EDEukb6nNLb2E6pOSXKYxvp80mPY4tY70mfT6I5vuGaU6LmgTEM40PDMLaYz5uAPUAOcK2589YgPm4+vxZ42jCMDsMwjgAHgUXm59cbhvFhtPZtqER5bI3mMg7ACZz0JKRoju9UIxZjU0pNA7KBwpgPoBeiOLbJwH7DMKrN5d4Grh+WQfTCQMdnGEaLYRjvA+3drGtEzyl9jO2UmlOiObZTjViM7VSZTyCq4xuWOSUmOTBKqTxgPrABGGNNHOaj5QLMAUpDPlZmvnZKE42xKaXeAKqAJuDZ2O91/4nSufuH6Rb9vlJKxX6v+0cUv5c3Ac8Y5q3FqcAQx3YQmKmUylNKOZDJKXd49rx/9HN8I5JojO1UnVOidN5G8nzSH065+QSGPL5hmVOibsAopRIRN+Z/hdwZdLtoN6+dUicwkmiNzTCMSxFXnQu4MKo7OQSiNL5bDMM4HVhm/t0W3b0cHFH+Xt4IPBWtfRsqQx2bYRh1wBeAZ5C7wGLAF+39HCwDGN+II1pjOxXnlCiNbaTPJ/3hlJpPYOjjG645JaoGjFIqDhn0Pw3DWGG+XKmUGme+Pw65SwC5+wu1yCYAFdHcn2gS7bEZhtEOvIS45k460RqfYRjl5mMT8CSnQGgpmudOKTUXcBiGsTnmO94PonjeXjYM42zDMM5BepQdGI7974sBjm9EEe2xnUpzSrTGNgrmk77WdUrNJxDVcxfzOSWaVUgK+DuwxzCM34S89RJwu/n8duDFkNdvVEq5lFL5wDSgKFr7E02iNTalVGLIl8ABXAHsHY4x9EYUx+dQSmWa64wDrgJ2DscYeiIG38ubOEXulqI5NmVWd5jVBV8EHor9CHpnEOMbMURrbKfinBLFsY2G+aQvTpn5BKI7vmGZU4zoZS8vRVztHwDbzL8rkGzkdxDr6x0gPeQz30UqIfYBl4e8fh9ytxgwH38Urf08mWMDxgAbzfXsAv6IWN8nbWxRHl8Ckk1vje/3dFPBMxLHFvLeYWDmyT5n0R4bMonuNv9OemXcEMZXDNQCzebcMdt8fTTMKSeM7VScU6I4ttEyn3T7nTTfO2Xmk2iPj2GYU7QSr0aj0Wg0mhGHVuLVaDQajUYz4tAGjEaj0Wg0mhGHNmA0Go1Go9GMOLQBo9FoNBqNZsShDRiNRqPRaDQjDm3AaDSaYUEp9YpS6pGTvR8ajWZ0oA0YjUZzyqGUWq6UMiwhM41Go4lEGzAajUaj0WhGHNqA0Wg0UUcpFa+UekQp1ayUqlRKfSfi/VuVUhuVUk1KqSql1L+VUjnme3nAKnPRatMT84j5nlJK3auUOqSUalNK7VBK3TqcY9NoNKcG2oDRaDSx4H7gEuB64CJgPnBeyPtO4IfAXKTHTSbBnjCl5ucA5iBdlr9q/v9T4HPAlxC5+V8Af1VKXRmrgWg0mlMT3UpAo9FEFaVUInAc+KxhGP8Mea0MeMEwjDu6+cxMYA+QaxhGmVJqOeKFyTIMo8ZcJgGoAT5mGEZhyGd/B0w3DOOKGA5Lo9GcYjhO9g5oNJpRxxTEw7LOesEwjGal1A7rf6XUAsQDMw9IB5T51kTE0OmO2YAbWKmUCr3zikMaymk0mo8Q2oDRaDTRRvX6pnhS3gDeBm4DqpAQUiFi+PSEFfK+GiiJeK9zUHuq0WhGLNqA0Wg00eYgYlAsBg5Dl9FyGnAImIkYLN8xDOOI+f4nItbhNR/tIa/tBjqASYZhvBuzvddoNCMCbcBoNJqoYoaL/g78SilVDVQAPyBojJQghsg9Sqk/AbOAn0Ss5ihgAFcqpV4G2gzDaFJK3Q/cr5RSwGogETGUAoZhPBjrsWk0mlMHXYWk0WhiwTeRJNznzcediMGBYRjVwO3AxxGvyg+Br4d+2DCMcvP1nwGVwAPmW98HfmSufxfwFlKxdCSGY9FoNKcgugpJo9FoNBrNiEN7YDQajUaj0Yw4tAGj0Wg0Go1mxKENGI1Go9FoNCMObcBoNBqNRqMZcWgDRqPRaDQazYhDGzAajUaj0WhGHNqA0Wg0Go1GM+LQBoxGo9FoNJoRhzZgNBqNRqPRjDj+PzoM+45VQ/GnAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "period = slice(\"2001\", \"2019\")\n", - "df_monthly = df.iloc[:,[1,2]].resample('M').mean() # compute the mean for each month\n", - "rolling_average_12_months = df_monthly[period].rolling(window=12).mean()\n", - "\n", - "fig, ax = plt.subplots(figsize=(8, 4))\n", - "df_monthly[period].plot(ax=ax, marker=\".\")\n", - "rolling_average_12_months.plot(ax=ax, grid=True, legend=False)\n", - "save_fig(\"long_term_ridership_plot\") # extra code – saves the figure for the book\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAADICAYAAAD2r9syAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACmBUlEQVR4nOydd3xcV5n+v+dOVdeoV0vuvcqxZdKcQgg1dFKABAjsD5YtwLILIZQFwu5CYGGXsoQQkkASCKGFQCDFceIkVmzLseNuy7Jk9TqSZkaadu/5/XHuvTOjZrk7YZ7Pxx+PZubO3Hvn3nOe877P+7xCSkkaaaSRRhpppJHGqwna+d6BNNJII4000kgjjZNFmsCkkUYaaaSRRhqvOqQJTBpppJFGGmmk8apDmsCkkUYaaaSRRhqvOqQJTBpppJFGGmmk8apDmsCkkUYaaaSRRhqvOjjP9w6cD+Tn58t58+ad7904YwiFQmRlZZ3v3ThjSB/PhY308VzYSB/PhY308ZwcGhsb+6WUxZO99jdJYEpLS9mxY8f53o0zhs2bN7Nx48bzvRtnDOnjubCRPp4LG+njubCRPp6TgxCidarX0imkNNJII4000kjjVYc0gUkjjTTSSCONNF51SBOYNNJII4000kjjVYc0gUkjjdcwGlv9/OCZJhpb/Sf1WhpppJHGhY6/SRFvGmn8LaCx1c+NP2kgEjfwOjUe+Gg9dTW+lNdiuoHbqfHArYnX0kgjjTReDTgjBEYIcQ/wFqBXSrnMfK4A+BVQC7QA75VS+s3XPg98BNCBf5RS/tV8vg64F8gA/gz8k5RSCiE8wP1AHTAAvE9K2WJuczNwu7krX5dS3ncmjimNNF7taGgeIBo3AIjqBg3NAzZJaWgeIGK+FounvpZGGmmcPkZGRujt7SUWi6U8n5eXx4EDB87TXp15nM7xuFwuSkpKyM3NPaXtz1QE5l7g+yiSYeFzwNNSyv8UQnzO/PvfhBBLgOuBpUAF8JQQYoGUUgd+BHwMaEARmGuBx1Fkxy+lnCeEuB74L+B9Jkn6MrAWkECjEOJRiyilkcbfMurnFOJ0CGK6xKkJ6ucUprxmweXUUv5OI400Tg8jIyP09PRQWVlJRkYGQgj7tUAgQE5OznncuzOLUz0eKSVjY2N0dHQAnBKJOSMaGCnlc8DguKevA6xoyH3A25Oe/6WUMiKlPAY0AeuEEOVArpRyq5RSosjQ2yf5rEeAq4S6It4APCmlHDRJy5Mo0pNGGn/zqKvxceslswH45JXzUyIsi8vVgJPrdabTR2mkcYbR29tLZWUlmZmZKeQljQSEEGRmZlJZWUlvb+8pfcbZFPGWSim7AMz/S8znK4G2pPe1m89Vmo/HP5+yjZQyDgwDhdN8VhpppAGU5WUAUJzjSXm+ezgMQDhusGZW/rnerTTSeE0jFouRkZFxvnfjVYGMjIwJabaZ4nyIeCejo3Ka5091m9QvFeJjqPQUxcXFbN68+YQ7+mpBMBhMH88FjPN5PPuPqYFh175DlI82J54f0AGIxg3+8vRmMpwzXyWmf58LG+njOf/Iy8sjGAxO+pqu6wQCgXO8R2cPZ+J4wuHwKf3GZ5PA9AghyqWUXWZ6yIoRtQPVSe+rAjrN56smeT55m3YhhBPIQ6Ws2oGN47bZPNnOSCnvAu4CWLhwoUxbOV+4SB/PmcMe/QgcOkxJ5Sw2blxoPz/Q2A7bdwOwaNU6ZhfNvJdJ+ve5sJE+nvOPAwcOTKkLSWtgJsLr9bJ69eqT3u5sppAeBW42H98M/CHp+euFEB4hxGxgPrDNTDMFhBD1pr7lg+O2sT7r3cAmUyfzV+AaIYRPCOEDrjGfSyONNMCuNAqE4ynPd4+E7cf9wcg53ac00kjjwsTGjRv55Cc/eb53Y8Y4U2XUD6EiIUVCiHZUZdB/Ag8LIT4CHAfeAyCl3CeEeBjYD8SBvzcrkAA+TqKM+nHzH8BPgZ8LIZpQkZfrzc8aFEJ8Ddhuvu+rUsrxYuI00vibRSSubq3xBKZreMx+PJAmMGmkkcarEGeEwEgpb5jipaumeP8dwB2TPL8DWDbJ82FMAjTJa/cA98x4Z9NI428IiQhMqkiuezhMUbab/mCUvmD0fOxaGmmkkcZpId1KII00XsOIxBSBCUZSIzCdQ2GWVOQB0B9IR2DSSCMNhXg8zj/90z/h8/nw+Xx89rOfxTDUOFJbW8udd96Z8v43velNKWmn3/72t6xYsYKMjAwKCgq4/PLL6enpOSv7miYwaaTxGsZUKaTukTDVvgx8mS4GQorApHsjpZHGhYdzfV8+8MADGIbB1q1b+fGPf8xdd93Fd7/73Rlt293dzfXXX8/NN9/MgQMHeO655/jABz5w1vY13QspjTRew5gshRSO6QyGopTneSnK9tAfiNLY6uf6u7YS0yVeV7o3UhppnGn8+x/3sb9zBF3XcTgcM9omEI5xsDuAIUETsKgshxyva8bfuaQily+/delJ7Wd5eTn/8z//gxCCRYsWcfjwYb7zne/w6U9/+oTbdnZ2EovFePe7301NTQ0Ay5ZNUIWcMaQjMGmk8RqGRWCSU0g9ZgVSWV6GIjDBCA3NA8R0ZaEUNXsjpZFGGucXI+E4hulsZkj199lGfX19invwhg0b6OjoYGRk5ITbrly5kquvvpply5bxrne9ix/96Ef09fWdtX1NR2DSSOM1DCuFlDzwdZkuvOV5Xgqz3ezrHKF+TiFCgJRM6JuURhppnD6sSMjJ+KY0tvq56e4GYnEDl1Pje9evPq+RUU3TUA4mCSS76DocDp544gkaGhp44okn+OlPf8rnP/95nn32WVauXHnm9+eMf2IaaaRxwcAS8Ubjhk1mrDYCZXYKKcKaWflkuFRY+wP1Nen0URppXACoq/HxwK31fPqahecsrfvSSy+lkJSGhgYqKirIzc2luLiYrq4u+7VwOMzhw4dTthdCsGHDBr785S+zfft2Kioq+NWvfnVW9jUdgUkjjdcwrBQSQDAcx5PtsCMwZbleinM8BCJx2v1jjEYVwdEnbcaRxplAY8sgW5sH2DC3KE0S05gR6mp85/Ra6ezs5J//+Z/5xCc+wZ49e/jWt77F7bffDsCVV17JPffcw9ve9jaKi4u54447iMcT0d2Ghgaeeuop3vCGN1BaWsrLL79MW1sbS5YsOSv7miYwaaTxGoYVdQFViVSY7aFreIxcr5Msj5PCLDcAW03NiyagZSB0Xvb1tY7GVj/vu6uBuCHxuprSQuk0LkjcdNNN6LrO+vXrEULwkY98hE996lMAfP7zn6elpYXrrruO7OxsvvCFL9DWluinnJeXxwsvvMD//u//MjQ0RHV1NV/84hd5//vff1b2NU1g0kjjNYxI3CDL7SAU1e1S6q7hMOVml+qibNWluuGoIjBrawpo6U8TmLOBhuYB4qYiM2YKpdMEJo0LCckNFb///e9PeD03N5eHHnoo5bkPfOADtqZn8eLFPP744xO2O1tIa2DSSONVglPxg4jGDYpyFEmxSqmP9gaJ6gaNrX77tRePDpCX4WJtrY82/xgx3ZjyM9M4NdTPKUQziztcDi0tlE4jjdNEmsCkkcarAFY1wrefOMRNdzfMmMRE4oadJgpE4jS2+mnuD3GsP8RNdzfQbfZE6h4Js6A0m9qiLHRD0uEfm+5j0zgF1NX4WFyuVqo/uGlNOvqSRhqniTSBSSONVwEamgeIxA0MeXI+LZGYbqeJAuE4LzQlPBlicYND3QH773klOcwuygLgWFoHc5agQjDWeU4jjTROHWkCk0YarwLUzynEYZpLObWZpx8icYPC7EQKaU5xNqCmUZdT45L5xWR7lBRufkk2tYVqYm1N62DOCF5s6ud/Nx2xI2aWoeD41g5ppJHGySMt4k3jgkRjq5+G5gHq5xSmQ+2o9MM711Ty8I52Pr5xzozOSVw3iBuS4myVQgqG48wrUQTmfRdV85611dTV+CjKdhOMxJlfmk1Rtpsst4OWgdGzejx/C1Bpv5cA+IFZdRQMpwlMGmmcKaQJTBoXHJr8Ot98soGYbuBJ9+Wx4XEqo7lsz9S9UJKJn6W3yPI48bo0ApG4rW35+yvmUV2QCYDXNLCLxAyEENQWZXEsHYE5bWw92o9lqWNVHQVsAhObesM00khjRkgTmDQuOBwc1ImaVTDpctMErK7R/eb/49HY6ueGuxLE7//eXweAx6mR7XERCMdo94/h0ATleV57m8M9SgfzyYd28sCt9dQWZbGvY/gcHNFrG8sq8+zHLqdGXU2+fV2nIzBppHH6SGtg0jivmKw0eFGBA6uVmMuZLje10B+MAjBg/j8eDc0DRHUDiSJ+LzUPAuBxOcj1OgmE43QMjVGW68Xp0OxtLFhk0evUaB0cZduxdEPH00GVT0W4yvO8PHBrPfNKEv1vRtIRmDTSOG2kCUwa5w0Nzf2898dbJ5QGz/M5KMxy49BEOn2UhMGQRWAmj8Ck+Iw4NZZV5gIqApNjEph2/yiVvoyUbdxODYdQ2/gy3Ty6uxMp4QM/3XZSnjNppMI/qn6vDLeDuhqfrX+Bc9NVOI00XutIE5g0zhv+uLsL3ZAYMrH6txCMxtENydKK3PO4h+cHW4708d2nDk8gDxZxGQhNHoGpq/FRW5iFQyjiN79Urfg9TgfZXieBcIwO/xhVSQRmfLM4/2gU3XKL1Wderp3GRFiRspExFW2xKpAgrYFJ47WDLVu2IISgv78fUG6+yX+fTaQ1MGmcN8wpViW7VkmvlSqK6JKw2UV5eCxmi0xPhNdCo7zGVj8fvGcbUsL/PXvUjkDFdQP/qJr0pkohAehSokvJ8so82+PF49TI8bjoGgrTPRKmKj8jZZvxzeKcDo1o3MChiXT67jRgRcyGx2JIKVPSRmkNTBqvFaxfv56uri4KC8/9WHHWIzBCiBYhxB4hxC4hxA7zuQIhxJNCiCPm/76k939eCNEkhDgkhHhD0vN15uc0CSH+RwhliiGE8AghfmU+/5IQovZsH1MaZwaluUpIevmC4pRUUSCaaIc8NDqzlWpjq5/33tXAnU8cPimn2gsNDc0DWJ3sk6NSg2Y6IsvtoC8YSWl3nwxrYhyNxu1Gjh6XRrbXSevgKIZMaDMmQ12Nj++9bxUAH7tsZuXaaUwOK4UU0yVjMT0lhZSOwKTxakA0OvViyYLb7aasrAxzSj6nOFcppCuklKuklGvNvz8HPC2lnA88bf6NEGIJcD2wFLgW+KEQwlp+/wj4GDDf/Het+fxHAL+Uch7w38B/nYPjSeMMwBrQl1XmpUyUwSQCMzw2s4G+oXkgkfo4CafaCw2rq/Ptx86kfjnWan5+aQ7RuJGSjrAgpUxJV0TiKorldigNjHV+kjUwk+Hi+UUA+DLdp3cwf+NIjpQNj8UIRuKsEYf5l8w/UTb8ynncszTSmBwbN27k4x//OP/yL/9CcXExF198Md/5zndYsWIFWVlZVFZWcuuttzI0NGRvMz6FdC5xvjQw1wH3mY/vA96e9PwvpZQRKeUxoAlYJ4QoB3KllFulWnreP24b67MeAa4S54MKpnHSsCbh8RUZgVMgMPVzCu3KJceruFFemVneDPC5axfZxM6aDBeaupbJ0kjhmGF3Ox6N6kkRGAc53oR3TNUJCEyOx4lDEzOOfqUxOfyjUdaIw3zC8QcixxrwdjfyS/fX+ITxALf1/xu0bTvfu3jm0LYNtnz7tXVMFwrO8bn9xS9+gZSSLVu2cP/996NpGt/97nfZt28fDz74INu2beMf/uEfzsm+nAjnQgMjgSeEEBL4sZTyLqBUStkFIKXsEkKUmO+tBBqStm03n4uZj8c/b23TZn5WXAgxDBQC554OnmHsaBnk+aZ+Lp1f/JoM5VvpjpFxJCWQ9OdMCUxdjY9Mt4NQVOcD62e9as9X90jYfhxN6gjdbwp4F5SZBCYUoXZcP51kIhiMxImYOiKlgVG3uhBQnjcFgWnbBi1bELWXkpfhYmjsxOHjNKaGb3AX33J/FQ0D+ehvKXAV4RaKVDqIQ8sWqF53nvfyDKBtG9z7ZtCj4PTCzX98bRzXmcbjn4PuPWTocXDMcOqNjEDPXpAGCA1Kl4HnJAobypbDG//zpHZz9uzZfPvb37b/Xrx4sf24traWb37zm1x33XXcd999aNr5rQM6FwTmYillp0lSnhRCHJzmvZNFTuQ0z0+3TeoHC/ExVAqK4uJiNm/ePO1On280+XW+sS2MIeH7m47wuYu8zPNNLmYNBoMX/PFMhgNNalI+1tGTsv8DgTDWz9q45wBFgSYO++Ps7tVZXeKc9DzEDUkoqiaH/cfa2Ly5b8J7zhcm+32a/DoHB3UWFThSjueFDkVCnAI2vXyEhbINgJda1PNj3c0AbG7YSeBY6u3bGUwQnq3bdjJsRrJ279xB56A6N/luwYvPPzdhH3OHD7Jy9xfRjBiG5mKN/AKHW3Q2b56YigsGg9z9u6cn3f9XI87W/TOn72mcQv0m0oiRG+lCSkUiDamxczCLkbPwved6PJjV+giz9SgCkPEIxzbdz/GaM9eK4tU4vuXl5REIBFKe88SiaHocJMT1mYm4xagfTRrq3EoDY9SPdE6tYRsPIxYlMm4/poOu66xYsSJl35999lm+853vcOjQIUZGRtB1nWg0SlNTE+Xl5RiGusaDwSAej4fR0dGUv2eCcDh8Sr/xWScwUspO8/9eIcTvgHVAjxCi3Iy+lAO95tvbgeqkzauATvP5qkmeT96mXQjhBPKAwUn24y7gLoCFCxfKjRs3npkDPEvY90wThjwEQNyAP7S7+cqaZZNGFjZv3syFfjyT4c/9u6G1HVdmLhs3vs5+/jdHnkATMSRQXDGLnNklfOvJrcR0yZPHDR762ERvmN6RMDzxNACF4RY2OkJQe+nprQTNiMTpfs7436ex1c+dTzUQiRt4nDoPfDRxPPueaYI9h9gwr4iOoTF7ux1/PYTj8FHeefXruHPHJsprF7Bx/ayU72ls9cPzLwIwb/FShkajrNnzG97oGKW6ajU/2wdzy/JTzrWNLY1gxACJQ8a5PLOZJ3I2sHHj+glvvft3T/PNHVHT8Vd/1Xv1nK37554tvwDAMEkLgC4ETiS/Ni7nxrf93akLH6e5Ns/5eNCWCfc8ANJACI05V36QOWcwAvNqHN8OHDhATk5O6pNv+w4AgUBg4mtToW0b3Pc20KMIhxvHe+456bHoZJRsDoeD/Px8e/9aW1t5z3vew0c/+lHuuOMOCgsL2blzJzfccANut5ucnBw7CpOdnU1OTg6ZmZkpf88EXq+X1atXn9RxwVnWwAghsoQQOdZj4BpgL/AocLP5tpuBP5iPHwWuNyuLZqPEutvMdFNACFFv6ls+OG4b67PeDWySU5VovIqQrOkA2NMxwk0/efVW10yGqTQwwajEl+kmx+NkeCxGQ/MAcV39pFHd4MWjE7ODljfKu4o7uDN0O/Lpr6kb/1Tzxq0N8LM3waY7TutzGlv9PHY0mvK7NTQPEIkrx9xw3OBHm5tsN+Lu4TB5GS7W1hRwrD9EyDxHA6EIBVluiszO0v2TmNklV7aEInFy+1/mIffXyW34JvVbbmGNODy1gLf20sQsC7TkrJkyfWe1epDAkvhBopu/9bepfTiBNqEo1s2ols2D+pUYwo2ORhwXAXcpRQzbIuuTRssLZ+TaPGOoXge5ZkY/uzSdPjqTqF4HNz8KV35B/X+Oz+2OHTuIRqP893//Nxs2bGDBggV0dnaeeMNzhLMdgSkFfmeuMpzAg1LKvwghtgMPCyE+AhwH3gMgpdwnhHgY2A/Egb+XUurmZ30cuBfIAB43/wH8FPi5EKIJFXm5/iwf0znB6up8HA5BaY6HzqEwEjV5v5b6AlkamPETZSAq8WW5icR1hsdivG1VJZom7Cqag10j/OCZppRO1Zao9b25e/GMxBT50yMz1xmMX9Hu/bUZkUDl9k9Br9DY6ufGnzQQjRs81tJgRyrq5xTi0IQtuH3qQC+bDvbidmosr8yjLNfLsspcpIQDXSOsrS2gPxilMMuN26mR63VO6sab7O4aiupU92/DiY4ANCNGvXaAnSP1NLb6J15D1esgsxhG+0HqZHgzGOqdnMCoVg8xVovD/NL9dVzH4hj3/hTtlr8h7UPbNkUijBg4MyZMLmOROPViD+2FF/PF9ptxrL4RV9uLbNUX8/fZz7Cycysj4XEeRzON+O168LSvzTMKPQaBLsjwQaAThtshr+rE26UxM1SvO2+/7/z58zEMg+9+97u8853vpKGhge9+97vnZV8mw1mNwEgpm6WUK81/S6WUd5jPD0gpr5JSzjf/H0za5g4p5Vwp5UIp5eNJz++QUi4zX/ukFWWRUoallO+RUs6TUq6TUjafzWM6V+gJhInrkjevqMBl9q1xaq/e6prJkBDxpuaDgzFJQaab/Aw3Q2Mx6mp8rJ9dgC/TxfySbP60p3tC+4GBUIQNYi9r+h8FTBGUlDBrknTJeFgixKe/mljRWitKBDjcalI5yWqA5EhLcml3XY2Pa5eW4XII3lOnBnrLjfj44ChleV6WVqhGgHvNpooDwQiF2SoYXJTtoX8SN95kMXQoEqc1pw7dvMWlcNBgLOal5sHJfXLGhiDUAxf/I7izuLnrDmaN7p30uOb5HGS4HLw55yhO4gjAiEfp2PXEjM7LawItWyaSiCSMtL1CiRhiqPxicjxODjoX87D3vXTkLCdYuJIy4We0vy2xwdHN8NNr4OmvnziqklsBgIHA0Fzq2jyfGGwGIw6r36/+PpZ6Luz7Zse96UqlVxlWrFjB9773Pb7zne+wZMkS7r77bu68887zvVs20q0ELlC09Csh1KXzi7jj7csA+PQ1C14z0RdIpJDGYjrRpHB6MCrxZbnIy3DZ0Zm4LllQmsOGuYrAjW8/4OjYzs/d/4kz4icuHOx0rAAkNPzwxANmyxY1CUFiMnJnq78L56rVNcA9b0glOSdA/ewC+/H4ppRSQLUvk+vXzUppXBmOGZTneSnN9ZCX4eSRxnYaW/0MhqIUZqn0UWG2e9IITLK762gkzvHMpfxKvwKAvWXX8bJcMIFM2ejZp/7PLIJ4hOJIK3fLf0dvfUk9n0TeQjHJaEynM7/O3ncdja36khOek3OCc1F2Wnspdv2A5phAIvQjzwAQqb6MvEx1HQcicbI9LiKlKtdvtDcmNtjzaxTtNiYlRMk4MqTulb1GLTdGb6PRmH+mjurU0H9Y/b/0HZBRAMeSROJt2+C+t6j75rF/SiVobdtg83+d+d8pXdJ9yti8eTPf//73U577x3/8Rzo6OhgbG+Ppp5/mve99L1JKamtrAbj00kuRUlJUpPyjNm7cmPL32USawFygOD4YAqCmIIt6c9IuzHptGYtN5UwaiEFBljuFwPQEwpTkennjsjLbW+MiZ5NNCnJ7XsKBUusLKTkQKcKQAnngUbjvrdMPZimTkVP9PdKh/tZjKnzbvFmVMgLEx+CZb5xwgKwxy5wLvRObUvaOhCnJ9ZgppQLyM13c96F1jIRjlOZ62Xl8iEA4zt7OEW66u4HekUQEpjDLM6kPzEg4hssh7HLySNxgVFP7UFqQh8eVaNo4IZLXY0ZbRvvt43QRJ9r0rJkueaM9+Yi+AwDMra6wZTM/Md7G7NVXTHs+zgms1M5URPNEk9tMJ7+qi9AdilB2L3z/hBB/VtOjDBg5FDNgX8eBcIxcrxNRvoKYdODsejlpiyTFmxXxmwJd7a0AjOFhe3ze+Tdt7FPFBhQthNmXwpEn4TnzHO5/FOLJZNskaLsfVFHPzd9Q/58psmFHU09TA5fGqwLpXkgXKFoHRnFqgop8L6MxJQN6rRmLBSNxCrLcDIaijITjFGZ7kFLaIl4QjJh9ZHpHIpTkeNjgbOKXnq8rsuL4A5q2AVjHPtcKLhVqDRvDCQgkJkOPn0AnULoUu/L+ytvV+7bfrf4eOg7RUTtsb6P5GTjeMK2wrnNoDIBMl5gQOesZibB6Vj4Ar5tbxNbmQfIz3UgJ5XnelJYC0biBIbEFvIXZbl46NrmIN8frwqEJQpE4XpeDPE35ypSKYR64tZ6G5oGEdihZc9H9CmQWwoI3QsOPIB7GQMNfsp6MpqdUigBAj5Lj3wvUcJn3iP3dVy2vZvH5ig4mH0dKamecBurIU/DAuwANnJ6Jv13bNkV29Sg4Jnn98BPQtQvmbGT3aAErdXVuX9x7lJr1SbqipqfIHdiFFOD7603U+f6DPWMLCUbiZHudZGdncVwWU9b6Z2h7l/qOEdPmKqsYrn9wWs1DqUOlFeeIrsnJ6LlG/2HIrQJPNuRVw2gfPPN1eM4D+ValnMC+xxwu9beelILb/F9Q+7rTrxzc/4eJ0dS/FV3W3yDSBOYCRevgKFW+DJwOjRxNKGfU15CxmGFIgpE4y4vyFIExIy2BSBxdqgiMRJG2QCTOWEynNNcDux/AjTmZGjF7gDoUL0MAQ5Ub+VjrlcR1g3c5tuAlqqIE41e0yZNeMlxmlc6IpbSXMHAkMdjO2gDHt6rHJxggLQIT0VOL4qSU9IyE7V5Qi8uVMdWzh5WbQFmel/mlObidGpG4gTAH/4KshAbGPxojrhs4HYkg6shYXK3whSAU1RECckREzRvBntSmjbb5WFxN5nlVyvRq1nq4+Y/E730rmyLLKM1fSUXseGLnHW72OlSqqHiwkbC3hLGxUUrlOYoCjBe6Hn9JRYekVMdx7X+SmCxF6u+7+yHzgTH5b9eyxYwWyImvb7sb/vwZ9ZlbvsPAnM8AEJEuFtHCM80D1GlH4OgzsOOnAGgCpB5jjbGP56NzCITjZHucFA7uxid6cYQMFSX4wO+gfYf6nvAwVNZNewp8upIMFothHvrgElaf77Ry3yEoXqAea+aUIg0Vqew/BEvfBWVL1T21/W54wzfUtbbjZ4nPOPoUNG+anDjOFK0NsOeRxN+OC0AflMZZRTqFdIGidSDErEKzW7MQyhn1AorANLb67dLfU0EwqkhIRb6axK1Sar8pTvVlqhRS3JC0mnqgkhyvPUAakBJq9wRUWD3/ko/yqQ/dxC4W8OPa/0bMvlwNpjnliS9v2wb3XJsIM+//Q+K1YXMlHOiC4kXqcd9h6HwZvPlw9b8nBukThPrb/YrAjG88PDKm+hSV5KiIyqJy5ZWw6WCCwNTV+Hjwo/XUFGQizLu00CYw6n+rwaMFKwKT6XYQMp14czS1D4TGGfsds3Q/5mQ+2KxcPgGq1xEuWESWGGNoNKqIAaj/P/gHXpbzyXRruNsbGC65iC5ZiCN4DkorrQhJso6i8V6QeuI4xgbU7wSqLLxwXmJ7PSlqlSTMntX6iPqs2kuxT3ayrmXb3fD4Z80NFblZFdsFwHPGcuaLdq7OPKL2afM3INiDIRzEpQYON535dfSMRNANSY7XRU5PAwKZqJTb91uIBmD2ZeoYhpPEvZPAHe5nTKprYHXmeU4fGQb0H4Eik8AsenPierFw6M/qXF72r+rv2BiUrVDnuuZiWPJ29bw8sf5nSlham2A3djruLd9LR19e40gTmAsQUkpaB0apKUg4LuZnuhiaoa3+2UZjq5/r79rKt/566JQ7P1v6l4p8FfGwKpGspoWWBgbgcI9yhSzJ9UBQTfIx6SR+4yP2AJUVMgf9gtlsmFvE0oo8tsXnwdv+Rz3/yi8TX777IXPSM1farS+oEtD8GqV9kRJGuqD2EhAO6DuoUgflK1WEYsMn1ee88yfTDpCdQyrFMD4C0xMIm8ejyFtlfga5Xic7WtR5LM9V56SuxsffXzHP9sAptFNI6v8fPnM05dyPhOPkZjjJcjsVgYkbZGMSmGBP6s5ZEw6o8yB1tSq2nsmfTY3oVRqkfjNVFI9AwWz6xyRr80YQgU5CZevplAU4zzaBadsGT30F4mHAUP+3bAFTjwMoUjJrA4SHYPHbVNrrd3+X0EFYWo3MgoQw+943M/vYLxT5gET12dpb1W/b9LSKvFj6J/N7CgqKAXjCWItL6Cwc2GTuG4Bgu+8t/J/jBsTNjzJUtNoWrGd7nbjnXEYUV8Iu3GFq21aZVTwDTdOeCm+kPyHcHTg6g5N3FjHSAbFQ4nqqXgc3PwazN2ITCYuU5JSqVFPnTujeo665+k/AqpvMDzv1ir+U1KElzHKeX83ga8CO7JzgdM5TmsBcgBgajREIx6kpTCIwGS6GL5AITEPzADH99Do/WwN6pUVgrAiMGVXwJROYXpPA5Hiho5GwuwCPiDM4mlhR50fMyEl+DQArq/PY0z6MkVcDNZfA9p8lhIX9Ce0GmgMiQbUizKtWEZjIiBqUfbVQMFsNtj37oWKV2ma2uTLPml5ln0ghqZSZhd4Rtd+lZgRGCMGi8lzihiTD5SA3I5HZfcOyMpyaGpC7h9XnWRVI929tSSGQgXCMHI+LLI+DUDROJK4nCMyYP1VMadkrZZcmJuekccRRNIcK0c9IcDR1Qu0/zEBY8m6xWZ0+by5dshB3qGvac3FasFbXrS8kPWmmiDpfVhExb54iJXnV6rWCOWqFf+QJRU4OPa60Gt48GBuG8lV29ZmwiOzRZxJalLh53vb+Nuk7zYnxHf+HNOL0yXx2GAvVc1bVGoDTy7MZV/HHnOuhep19HYNqlKnVrOejfIlj2XXq3B/fqiKEczaqN/VPQ2BiY3j1II1yoZKsn4DsnHUcMIlgMsGrXqeM15xetQBIjlRWroGORugwU2aVdTD3SvV49mUJYnnfW2DT19HvfSsv791z4kXSrIuRgERgaCZxSb7PZ4ozVMHkcrkYGxs7rc/4W8HY2Bgul+vEb5wEaQJzAaJ1UKVMVsjD9s2Un+m+YDQw9XMK0axFzil2frZKfm0CY0aXBkPqf+UDoy7qpp4gAGViEAJddC+6mZh0EDv0FKBErqXxbkKuQiUkBFZW5ROIxGnuD6moSaADNn1NDYwtz8OSd6iBdfblMNRKd9ZCDobziAweV9EXUJNK8SIl2DViUGFaXeeZ3S6sdNMU6BhKDGBjMd1+3GM2bLQ0MABLTB1MeZ43xV6+qTeIYa5QPvPwbhpb/fb1Mb6UfGRMRWAyPU5GI6oKKYuknjTJaaSOHer435DU6O2xf7IHbk/xPBxCYvhblQao2Gzo1n+YyrGDvGVERbRmvfA5AFzRYUUEzwZatighNgBCpR2cmSoFqLlgwbUQDanJMGD+dsFebBV0PAKvPKwer3q/Im+DR6F0ReI7HC4l1JaG+o4+s2WbtYq3JmIAzYE+cIxWWUK3s5yQ9GAcehyQKvJz86Ps0OfbmqX8jEQkIMeryGmzdwn3VXxBfWZHI2T4OHhgDxFHFr0t+6Y+F2YkrV0W0W4UEe87hUn6TKFtGzz5ZfX4idtTJ/2pHGQr68DfoohlTgXklqvGht58FcWpXpfQIkkDGY8S69pzwkjv7jHlXP60vpobo7cRya5KlHefzPHc91bYNAMvnhOgpKSEjo4ORkdH05GYKSClZHR0lI6ODkpKSk68wSRIi3gvQLQOhFgjDrP22W8o8ajTy8rKO3k4VHHijc8B6mp8LCnPZW/nCP989fxT8qaxyqZLcj04NDFRA5PlYiSciMBkuBxk9e0CwL3gKnbuepwFxzerbUajzBK9hLKqsfozr6rOB2B32xDzrIkHaUYhBKx4r5q09v4GpM6du93Mlk7+ztHFkSMHmA9qQitaAAcfU5uXr1L/W2mGE2gVOofGcJqOu6FInCyzI3QihZTQCiw2dTDJpAZIiW7FTCfmNywt4+4txxCklkSrMl0XAqEiMDGDTDmmoizBHvXPckjt2KmiTkPHsEWvekIU7Siaq8718DGVpljzQRhqJdJ9kFWGH+FQK25hxMjHbPw20gHFC6c9J1NiOhfamksSj51euPorSre09fuKxR3+q0oXBboT5e+zL4d9vzMjKRKiQRV9Wf4uaPiBmtxciQgnl30WOwQ1+1LoekURoNEBopmlNJa+m1Dxaq7c9jG6D22j2N9Cm6zhysXlHD9YwuK+AyoN+a67welhMLSZRWWKlCZHYLLNayDH66Iznqn2s+lJZO8Bav50A22yiJ4DL9M2mVsy2CnUPplPiyyjpK/p/A3iLVuSqtNiE0XRkznIVq5R/x/dBIvfmng+sxBGzWvd/L0lEEcZMMaM6V3IDx45zErgEf0ytst5dLtmUTMdgWl9EVq3qt/a2sfpRNwnidxc9dt3dnYSi6VGzsPhMF6vd7LNXpU4neNxuVyUlpba5+tkkSYwFxAaW/00NA/w8nE/9doBRFI54LLYHn4yVjzhveerhNKywXc7J3YiTt635AGnsWWQhmMD1M8pslNIOV4XuV5nQgMzGsUh1EBvDfxtg2PUFmYiOraC5qJw3hoeMFawfvhhePqrjBZcyiyth1huYqKbU5xNtsfJ7vYh3rXmSnj+v5M0ChIe+TBccRvsUSvziC7pEEU4hcHAkZcUgckpT0zI3nyVUgIV5cnwTRuBCcd0BkJR5pVk09QbtDtlg0oh5XidZLoTt59ViTQyFkux+q+fU4jbqRGLGzZZqavxsbg8h6HRGN+/cQ11NT7iukEoqjM/eoCiwW20R6oIxleTKUehYI1JYNTkhx5XqZfVH1CEwek1S4eTQv0FswEo9TdCbBSK5kPRfGLdB2mVK8xkigYOFw2RJbyVl9T5OBUC07pVRcakMXkVSmYBIGHhm+CST6nXjj2HTbysdNhweyJ6tuAa9Tnbf6r0T0eeUPqYZGG2EQcEuubCEepX58eVpUrJjz0HoT4ixxt5MjCbTw5eDAfgKXcZ7S9voUx0clxexAcqe5h/yCRNkQB07YbqdQyGonYEJiWF5FWPczOcisRXz4OmJxFIXMSJ4KSGLv4w1WRtRmD6yadZlvO6oRexW1yfCyQTTat/lpQnFLTbKF+F/bslV1slExizokkAD+pXsFMuwOuaPtK7xqfu7V6Zj8uh4S1fBEd+qUTG2rhEw7Et6npDqGvfut6Sj8fygzoN5ObmTjoxb968+ZQaF16oOJ/HkyYwFwgsYaylLRkUizGkwCEkCI2B4nUEm+PEdINX2oZ4310NGFLidmr8yxo3G0/ny0+h67KlVWkbHE15ftuxAd53VwNI8Lg028CtsdXP++5qIG5IvK4mPvS6WkARldwMV0oEJsctEO3bKW56ljXCyU65wNa/ULYMjzeLMU8x6MCW7zDL8QMEYTotggE4NEFNYQZP7OvmulV11N38R3jmP1Q6yFphmfoBCXzT9RPujL8bgMVxM32QTGAyfNC+PXF+LL3MFLDSRwtKTQITSZQiJZdQW7Be39+ljOus81ZX45vo3wJcMq+I+7a2sqJKtRwIRuKsEYd5197/QDNivA4nt41+FY8MKzfh4y8mhLx9BxQpqVqbCPWP//2zihnDy4IRs2S8cD4ULcBx9EV8Yo56bsMnCM55E8/eY650rejHyWLf71J8ZiasfJtUqpBr/yNBImdflkS8nGrlPNymevE4POr3ql6nJqM9Dyty1L5DOQ7nVasIzJgfShYzEtXwHX8R3NkE8xfwdFcu1wG0vogn2M4eIzGRHZCzuEY0omHQJku4ObwbIdQ9K6VEtGxBr7wI/2iMpr4gja3+cQQmEYHpGQnDsndC470Y8SgxHOwx5vBex7NsmJVlb5Nyfwa6AfD4Kjg2VI4zFlSpwexTC8GfFNq2KTdqKRMTf/Filb571/SCdhveXPPeOa7IooXMwoT+KKSatRoI1mtKeP3zj6yfNtJb7VLeOD3Sx+feuIhSdyfsH1XXw/i+THt+bT4YF2mpugjcORAZhrqb0xVMrwKkNTAXCBqa+23yArBTLqBJmimjmg2Ey9RqZXgsxpMHeogb0tZAHBzUJ/vImcG2+p65c6WUEr8pKD4+jsA8c7APKZlgWd/QPGBHbWJxg4PdKu2Q17eDD8vfUTy0G1BVSOudh+Het+B59hs84P4Ga8Rh9VzbS7b+ZF5G0Az4S4QeRRPgKppt70djq5+D3UG6RyIqf27Mhys+nyos1Bxguqy4RZxKofw18gZ2KUt0lxfCI+oD/S2p5+cEBMYS8M4rUamh0aQITM9I2C6htrDz+JDyDWGiMNqqRkoewFdU5RONGxwyz+PIWJx67QAOI4KGgYs4S8OmVX2BSTisCEyH+by1Aq5eB5d+JnXAFoJeVwVVsRb1d5EiMBmjHbxea0TPrYZrvo6rtp4eWaCKgodPkcDkVSYeT+bdceRJRaCSCGqKxuIGU98y3Ka8RnLLExGJ1ucT20hDTVZF85U/SUcjVK5hOG8JdO9B79jFH7sLuMP8iYde+gUAe+Rs2yd3v1GLR5jXvlFCR34dUekiLjXChoOD3pX8ulGlFhuODnDT3Q0pJD+RQnIqHZh5HJsrP8pN0ds4klWHJiRrsk29R9s2uDfJWbjzZXQ0ikoqaJFl6j3P3DEzvcbpClSbnjQ1QkkTfzIRngnatiWI7pNfTOxLZiGMmi3xzOv0aX0NS7VWvuS8n0WxA5N8WAIRv6qC68WnjD+tqqj+wxOPOzkikxw5CnQr8gIJLVUaFzTSEZhzjSmiHVYKwYImINMcKOncTf5yNYQOjcaoyle5e0sDsahgYhpnxrDzvsy4e/NoVGeFvp9LHHs52lsPXGS/Nqc4sapK1mdU+zLs5x0OjaIcD9eI7WQ+8N+8H0F89JfQtoS2wTBv1fchiajjE3He6djC+zq2gIyqapK2bfQWrkMP/gInOlJoIA0yShM9YRqaB2zxayRm5s+vGBdtANj1EOhR4jjZpK/mw86/qJV56TIaW/1Et/yVejTEePOzvColBoaJpngtW4iMzQccLChVouJQNDkCE2FdUp8kmDxVNB2syMuejmGWVeYxEo7RYCxGORBLYjjZGa1Wd3hWkYpIWATm0OOKyIX6VXRmCgy6K6mJNauVck65mviBS7U9iLnvByHwODViOAm5CsgeGUforPOSUaj8WaaK8DmTolFrPpj6nuioOs8XfWTidskaC28+DLWpFFJuEiGqvVRFZJJTZME+2PZjNRlX1jGsj4B8GEc8xD5jFr3kMyIzyWlT/Yz2GrXccnEtTb1BDjXX2B8dyKhi8+hsvhS7jfXiAA3GYi4fnsX9W1XUwCKjB7tH7G2yvckEJmYfx//pOjvlIKXObogAz38H1n3M9OtJcqztPYCfXPKyvPgyDYgDjffB7l9NbwBnLVT0uDoPp2IWl5lIYeNwK63Kc3dCTtnMP6NlC7bWKFk3k1mgUkhSQkhdp88bS7na0cgtjr/ArzbDzX+ccp/14U76ZS4xnOw6PgR1JoE58pQyFoxHElGjkSRycsODic/s3qP+z58FbdvPbWruQscpROnPBdIE5lxiGqvy/EyVL3/nmkrW1hTgH41S8UIAsmfB0HFmjarKhKHRKBluRVgWlefw9bcvJ3Bsd+p3nMyFZpl3SWPG3ZtDR1/kIfcdOIVOOPQY8vgqxKz1QMLbJC/DyT23rLOjBsmRmn++ah79wRjr3bsRgMOccjt2PcHB7tVc5ZAIlyXiU5eoQ5qDuLmKNirfwj8e+SQ/dH+PMUcu2fFBsssSBKZ+TiEeszmiBOK6wQ+eaaJ+znzqLk06Lyah+cL2XJ4fq0B35+CIBhhyFvG+H29lJcX8wuXEq+mI5NVaXpVarR3dBA/doPQ1wmHn0C8XTuq0zzO7SOlyRiMqAiOlpDcQThHwAlOmiqbCrIJM8jJcvNI+xA3rZjESjrFTLiDuzsUVHeaW6L/iJ0fd4Z4cyCpRKaS2bUr0ioT7r5t2IhvJrIYQiuQIYa9qNSFpzr2IOagScK9LY8RdSnZyBMbqn2SlhpL1BpB6jQ4dV69VrIYDf1Si49mXqdd23KOItVX5NRXyzYhYoBMq1yaenyxF1r0nUfZbWcfIUCcqGG0ghYrKNclK1sgjDGdUMxLO5p+ums8T+3u488gscKnmlUuzhqmfU8j/OhaxM6YaZR57sQX/aAy3Q0M3FBm9bEEx//tMEx6nZneWD0V0hsdiNLYMsmqWj72dauU/NtIPDpSj7IHHYN1HE8eiOcDhok/mk+1xMdfTg4yTKAOfbvGx59dJC5VTFKhamjxXFnzw91CyWEVgTiZ9NRmhBBWBiYchNsrxtuPMAooZBplwNJ52n0e66JU+ynK97G4fguw68ORCW0NC+6ZHlLbJiuQOt6kqNgvdr6j/625REa/htqRWCKeIC3TiPym0bYN736Lu5VMlv2cJ6RTSuURSeeB4x0krzPzxy+dy4/pZ/P3F5TjiY7D8PaA5Ke9V7x0ajdkOr4VZntSJ7lQamVVdpKoxvHmAVJUdJ9jOaN6CA11FSIgROrzZfs3yKAmE4yyrTESV/rKvm7lmdMbtdBCMxOh1Kndci6g8H12EBK50vIwhVYTpR9mf5Ld6kkOqOehV+TL5s7GecOUGsuODjOJFy0kMpBYh+MTGuWS4NL779BG+/cQkxntm+uSluIpERDPVPjWFc4gbkkZjAR+I3UZD7f9LvXGtvPrhvyYmBqmrm1zqaEaMqzOO2PoHKwLjH40R0yWlORNV+5OliqaCEIIVVXm80j5sn28PUVXODByXpQkPGE+OmmSCvXD4LyRWwNO7no5lq8FbSh3attEYKMCys/nPTe32efS6HPidxakamH2/TyIvYKcddj840U136LiaUOZeoUL3m+5Qr+24F578ktr86X+f/rq0JqSRLpVCSsb4FJmla9KcEA2RFWq1z8mXXfezRhzGWbYEgI6MBbidGnkZLuaXZFMl+sweWwZ3BL9InXaEB26t54Z11WhC/b4OTfCVty3l09cs5IFb61lbW0COx0m2R10Lja1+/ri7E0PCTXe/xGO7O1VUsyqPJcZROzWKHlUTrjPDLBd/I1KP0mPkke110l24PtUMbzrRqR2VEhPfO9PUUtcu9X8spMS4AVNTlV06/XbJmKq8OtOMSI4O0NN5HEMKnjFWoaMhJRja9G0BHKFuemQ+ly0oomckQvdIREUNO3YmvUuAr0ZFWNd+OPWYQBEYXy3Mu1r9fbqNIK2J37qeX62NJff/QZE/qZ+6U/JZQprAnEvUXmrqLki1KidBYKp8ZmmnFe4vmAslSylseoQ14jBDYzHa/Oq9/cFxDf1aLHt4OfMLLdSvSkxX3qBIwsHHTti9ucu3FsvUy8BBW26immAgGGWNOMz/0/5A3371/Y/v6WJvxwgXzysix+Ok3T9GMBJn1KUGLb+nkg/pXyRcvpbrtU2s0ZrYJNUq2u3xsFMuIORbogYkc9CrKlApqd+jOiCHhVeJbJNQV+PjX69dxNVLStUgKFU66btPHZ7gKWG1aRgzCYwrXw34AtjrWIR742dTVx1WRCA3SSBol2sL4rhoy60jy6w0GjVFur2BiR4wp4oVVXkc6g4QjumMjMUoFwndTIEYIUeYBMadkyilttIRQjvhpJftNKMUPfvhvrdx+MmfACpQ9z3tuxx7WaVYvE4Hg45ipYGxPC8s7VDyEONwA8IkfEkkfrhNRVBspYn52v7fJyqMrBX4VLCEuXpE+YtMh2jI/Jo4/PydlHY/k9hFqbRE0uyJNShzKM72IIRgbkk29ZrSYgjAKdU+1dX4qLTuW/ME+UejKWTU61IRGatCTzeZYFQ3+Os+Jcx947JyGozFSCsqIIRyD17+LqjZAP5mZKCHXplPjsdJtLyOPcYcZE7FiVfFVpRkVn3qe0/G+6RrN/ZvFOhKiMJPhsDA5JqrTDNlOjpArTfEIDnslAv5rXE5QsDW100vEnaP9dItC7h8gTrOll3PmCJ9RTcpXqyueSt9tOgtitR1JUWvu/coa4GSpSrKdLqEo3nzBTvxnxTs33cS8nuekSYw5xLV62Dhm9Xj+k+k3JDHB0cpzvHY6SFLic/oIPTuwznay4PuO3B3bbfJTn9wnLFd8oU1WRmgtdLacW9ixdVv2qtHAgkn1hPcbMczlxI1UztP6HUcdC2yX/N07+Ah99f5tPNhyv/wPg5uf4p/eOhlAH61vY2CLDft/lEC4TiFTjXBuoizNTYXb3cjd7juUVEY1x5AUB5VjQTdoU6Ye5V9zixX4j80qzkzXw5h3Ds58brldbNxOdTAK4Hnj/SnRGJ0Q9rGeqNelc/3FCgCM7ck264ISoEVgYkG1afOuQJu+ZNKfbiz+YTjS7ws59OxdzOfcPyB7D51DnosF95xKaRTwYqqfOKG5GuP7Wd/1wiVot9+rVCMkJUSgSlVpLhrtyJdV9x+wknPZ/iVDACJ1KPM7X8aiUAI9ZttcOwHEpMzsRAcfVr9IMdfVKv0q26H5e9VH/jOu0yibE6CFokfMkP1czYihQMJGJozUfI8A7JFXlUi4jO+c/h4dO9NPLbSIqa4Oy5cDMpslnb+BoD1/j9xaUaz+livi8MZq4gJD3GppUQFLA2TQzBBw9TY6qcvGMU/GuOmuxvwZbrxOJOGXgGZbgeXLShip1zAi5fcp/pSGXHlY1OxRpWAd+9FBHvoI48cr5PK/Az2GrOR8ciJQ/pjJmHPKp6kgWX4xH2IIgHlbGttezoEZjLYBGaQIjFMv8xjw9xClq9XC5QebZrv0ON4IwP04mPD3EIcGhzb8ReklSYUAmovVmaUW+5UAv2i+ao1SOeuxPENNisC43CqHloHHj09ElOyxHxwYU38244NnFwfO6u3VemyCyp9BGkCc+7hmFx2dHxwlFlJvY8sIRtDrXa+3kUcX+822v1jXCUauT78K4zWlxLbJOdrN/x96oXW2mA2MPyqcly1QvhHnlCvL3ij2eaeVPJz4E/w7LdSbuSwvxOvKTAu1fwcH0g4zpb1PY+bOE4hEXoM//5NdvWR6p4saPePEQjH8WmKiOVEesggTPzoZjRhIADNiBNz5+EdbqKIYTyRAdrctfb3NPUp19fV2lEMhFIwxKN07Hpiwrmtq/Hxy49t4OK5apAcX+kzktRjKq6rc62PBVK2n4DsUhXWf1lVqvD6f1fne+k7IBqgedRLRk8j8/58I592Psx1r/w/aNvGtmPqO/sCkYmfeZKw4hUPvnScn29tpSI5AkOAbDEuhRQLqQlq5fVw2WdOOBAFZl1FGDdSONCFk9+O1aFrbnQ0NKebylXXALBaHOHiIVPb8tAN6pwMHlXC20s/A2s/pF5zZarvzDZTPGs/DKVLYbQf8mfRqM/jU9H/hwB+EbuC/sEB5bh7+edOPHDmJ2lkTkRgZl+aUo3WU3aFndb4Sv5/UCCCCDPyI9BZL/bbm4bL6viY+BLfib+H5zb81N4nK2VppY2Sr5mG5gF7cRCLG/hHozzw0Xoum1+MIWF7i59lFXnUmM1b92iLVNNQC3/9ghJhIxFSVxoYr5OKvAzaZDHa2AAvH0nqGD4ZLAIz1Jr6fO2l2FfSdJNs915AKtdjUNVeFoE5GRHvVEgiMHqwj36Zy5WLSpg3RzXj1JOFt+MR6kUg6cPHsb4ghoRf99cSli6laXK4FYkuXqS6fWcVqWht+SoVpYkEEqS2bLka63r3KZJ2gmj0tLCuw7IVF8zE//SBHt7744bJ0+lTwW9eM66MC+IYkpEmMOcYI4Pqpvd3HE55vm1wbByBMW3f52y0UxOG0NjrWs6Cka3c7fk2n3L8GvHzt5E7bPqWWKsJSO17A7D3kUQ4Xn2a2ciwQYVLF70ZbjQbHlqVIEefgV/dqMo0k8PL/hYAZME8lmmttA8kqixajRKEUN2i48JJ1oKNQKJiamFZDh3+MQLhGPkiIeytFT00DmWZFldqxdLnrWUuHSzU1OC8M5yoLnnd3CK8Lo0GYzFRVBlrDCdb9SVMhroaH5++ZiEOswdC8irZapK5Rhym+vjvAVi0/7usEYdpHQjZpCYFmqYGqJF2RWbKlC39T9pVZOZ12j4u1vbiIYZTSDRDiZR//KxazX/qV7tOuZO3hSNmjyiJiiLVaAkCUyhGyBkfgQFFhpe+fWZfUL2Om6K38WDWB3jv2Of5pXEVH4x/gZ1lN6DdkqgIWSP3omGeIz0Kz35TkQNrAC8yNSf9h1RVUUCVvBINJkrR82Zx/9ZWfq9fzMvGPDawh5zmP6t93fhvJx44k0W+yZ3Hpzgubv6jrcMYyVtkpzUajXk0GIuVeFw4iOGktzBRZTevJJvNo7P5oX4drpr6lI+dSsNUP6cQjys1OlNX4+P7N60mx+OkLxDBkJJD3QF8mS7a/aPQvdvWfUk9yrYDzabAWJm1ZXucDI/FOC5VyuQr9/95+utpbAiAcN+xiRowT476rg/8furzbGlFFr5J/W8RGM2V6P59OkhKIRHspZ88sj1OXHnmbznSPfW2JrkJuIpoODYIUtlQvD9ZuzZrfcLRuf8Ixr1v5fnjIUCq1NGBP6rXpG46DCddz6ea+rHG8PzqC2bitzrej29DMi1M0hvqPXraYxaoiGRyBKix1c/3Nx05pc9+TRAYIcS1QohDQogmIcTnzvf+TIXGVj/tHWrA7jy23/7BonGDzuExqpMJTNC8+OddrQbbrBIOafP4y0gN12nPq+odIUGPkT9krh66dgFCeWYkd+mFhDYhRZPgAhmHonlqQp57pVrpWaHXA49ZG6fcyK7hFgDE8neRQQSjN0HGeqMq3NijlfP1wv/EX6gcGt9dV8UDt9azZpaPQCRO13CYnKQ+PbNFF24UkWivUtUxWk09s0UXyzX1fbVLEhOJteJdtO5qbtZv57/19/Ah43Zmr75iyvNfV+PjX65RlTSff+Nie6IZMk356rUDiZW3oVOvHSCmy5SeRimwJs15rwch+OPuDu5oiNIhC9mg7SNPhGxjT1242KovSXjh6KfWBDMZ9XOK7NQYwCznIOSUIzUnBWJkoogX1O8bHZ3k0yaic2iMnXIBX+i/hp1Snbft8Xn8yvX2lAH5cMZK4rgUaQFlUiZ1+OX7FenNKlQTVN8h87o0nU57DygBL6DnVbPjuLofHtYvZ77WgUcPQtmymZ0M26xMzCwiMJkOAyWG3ikX8AnHV4hvvI2bIrcRKUtUNc0rSTRtLM+bmY5pquhMrtfF65coYtnY6rfTS+3+MbtaRwoHYcPBfx2p4KihjstHgByvk2P9IZvAlBvd6npq28as1kcmRA0G+9XCyRsf4e/u3pSYLPS4mT42oND0C5pM1Nu5S5Hg4oVKVBzoUinJ7JKJTrenAm+eIlGjA2ihPgakEipbZNQx2jv1tqZny6inxE7lAexiYap2LSPP3EBixKO8cvgYAGOPfAIafqheeuQjquw/uQeWFZU6WR8dS8cYHp7Z+0+EM9BoMnmOmYldA0CgWxl+ZkUH+Mjdz54WiWls9XPjTxIRoAdfOs4NP2ngzicOc+NPZhgRSsKrnsAIIRzAD4A3AkuAG4QQky/DzzMamgfIM/vGzKKHhqNKs9A5NKYqmMdHYDx5ykyteh3Mv4Yq2cOBrmFcqFy/pc4fyjcH+c6XValr1Vo1OSTD36w6NV91O1z0MfXc1V9WN5m1QgalwjcjLHZlAKSElzNDx9HRVOM6IKP/FfvCyxpTq2unU+OJkRpeaOrH7dD46nXLqKvxUWX6wYxGdXIIKbIFzBbdrBZNxD0+js69BarXUTZ3JW6hc3PBfmIZRaxclCiTBjUxfOMdy/m3j36QzKv+lc/e+sETVvC8v74GhyZsMS0kIjANxmJ0TU3EuuY0fVWguS80+YdZ/iUFtQD8ZW83INhqLOV12j7e5VbpvYhw8z9V32b26ivsJpgzHTymQ12Nj/s/vI5Mt9KNzNIGFKnKLLRTSHFHhtKaWIR4bEiVT89gEBzvsjyV71Bb1nK+kHuHimgk97dJXr0WLVQi2x4zHTP3Kug9aF9rd78So8M/xo3rqgl6K8zOwmA89dWZDdhZJYoUubPUfXCKCJpaqGdGa+lY9nHTBTqhV5qfRGBKZ0hgYOroTKUvwzLWJxa3UqyjUL2Og2/4BQ9kfYCborchJdSiJuovun5B8dArbFxYbBOYWkc/V2W3wD3XMvvYzycIcvv7ExGMMr07QZ5H+7HzW4GupErGr6amT45vVUS4fbsZeexUxm9nQv8C6hrN8MFwG1p8lH6pIjBkFWMgcI+dmMBEM0uoq/Hx4EfrWVCaTYZLY2lFkr/WgmvBmYGOiqwdN1QKLyNwLHEO9KjyLPrgoyoyPfcKNf7aKfiTaPRoyQDCQ6d0SlJgia1P5vsngS9TyQRKcz2Ta/vGQ0pcI20MSGXIWab3nNbCq6F5gEjcsCNAj+/tIhZXC+bJFnWNrX4c2YVTrkhe9QQGWAc0SSmbpZRR4JegnMAvNNTPURNLWLrIEWNcXKlOv+WRkmz2RqhP5WotVKwiXw5RGO9nrqZuWCFgx9o7VQhcSjVwV6xWud5Alx02Jh5R/WYWXKtWna//d+XF0HtQVYCYvUcAk8CYOU8r5ZRZmJLDzR1rp08roTFcTlB6ma8f4aafNNDYMkheVA2UBbEeekZGeepAD2tq8m1xclVStUaWEYTccmJZ5czROlnjaEKrrkuIPE1iVT6yG1f58inP68mUH+d4Xayuzuf5IwnBqyUI3ikX8MvFP4Arv8BDC7/Py6jzcrRvki7Lbdvg2Gb1+Lk7oW0bTtPjo8FYQoEI4jMGoXItXqIcpZq6Gh/LK/Moz/PObPCYATbMLeITG1UJeLHRw6CrFLKKKNICZDNG3GkaC460k2jaOLOw+CXzi/GaqQ+3Q3Dj+lk8cGs983ypBCbD5WA3C9S19bp/VCt0S3tgrV6LF6gITM8+pYVZ9CZTk/M8hubiv14YAuC3L3fwtpJeu4x+Kl3TBHTsAENXaalTHOANQxKMxinKdmNIONClUqPJnj1WBMblEBzpDkz6OSeDjQtLUtJLi8pyaPeP0dgyyNt+H+N2M/pVrx1Qfi+AE538npdYW1uAyPARFFl8eIlg0ejLSKnsDeS43zhfjNqT0GxHf4I8B5OIQaDbrGQ0NWFx8zOOPqPSCANH1bl1ZydFYM4QgQElru1TRQX95Kq2Cw4nQ+SSETHv18miEIFuVW6dqcbLuhofX3nbUoIRPTVVa5Zw75z7cW6K3kaBCKp0tY0kse2s9VDzOkXUAPb9xhwPTyB2Toa1aDgTERjbcPQkvn8SDIbUbxsMx1kzKz/1xcnO7ZgfrxFiq7EUgFpH32ktvBaYzuQATofGG5eVJyRYmpggfn/fj7fiyPJVjv8cC68FAlMJtCX93W4+d2Eg6aKoK/eQIaLslcryflWWurEsAjOrcFwEJtkgqkJ1cb3csZtFWhvheSoXPTpmrpKtqoCK1cpgCqDP1Ma071DVDHMuV3+7M5WQ8ZVfqb+LkghMfo0K6xt6oh19JJhiDlYYaWfAXUHDMT+tspSrtUaWGgd57kg/ZVLdtA4Zp4QhmvtCXDIvQcSqkkhahqE6BBsFc1khjjFXdNCdk0RUkolV6dJpTvLJ4ZL5RbzSMWynjobNCIwQcNSzBC79DIfci/FlusnPdHGsf5IITMuWRFrOLPEdCEaZU5TFFauSIkXdqkwzc0yRzpguWVKee2rkZYoQ8rLKPAQGxUY/jxwVBLR8ijVVRq27zIiB1TtoPLGYBsmpj4c+toE73rF80v32uhyMxUyyO5XPR9ECGBtUviYli1VFA8DRTQy5SjDMoSgWN3hRX0wU9wl1TSlIHtBPcYAPRuNImSApezrUxFOS5NnTMqDut5guuemnL522JmB8emltbQGRuMFf9/cQTdJeNRiLweHBMKMHjrnq9yvL9TLoKqck3kVLNMeejmMGHPSutLfP1EfYY6gU0b/WZyR+x1ASgRnpTBhbglm9cynsvM98g0l+paE8f4LdZ7YHk5VmBDMCo6IFQ5qPnFjf1NGhQDeDwkduZuJ38jg0BPD43u5UsWr1OvbMvpWdcgGvuJYjnJ7EPbH2Q6nXbPlKFcmOJaK1wOTtLiaDHYE5AwQm+Xc5jUaTgyGljQxFdbsiEoC2bRg/exPy6a+lVnOa+pcXTQJz2+syT2vhdbg3QfpvXD+Ld66pxGEuWN++qmKC+D1urWSmwGvBiXeyw5MT3iTEx4CPARQXF7N58+azvFuQO7SfVbtvR0gDQ3Oxf/FnWA7sMuayVjvM/hf+RG9pkBcORXEKOLCzgUPmj3lRbwujmVXsM/dT06O8DgcfcTwOwP6s17FEPok8+hwhdyV7nvg5y4GdPZKof4h64NDzf6CrIkztsQepQeOFNkm8W31eJbXMj6smeduODTPaq54v74uy0Iix9YnfsqJ1F1kAeoQXn/wdUY9ix6v0LnY4a6nueIKFog0HBr9wfYPftruoEn3EhQunjFEl+uiRBXhHjrN5szI5k1LidUBYB2fYT5d/jIFoFss09frt29ysWhoE87jrPYV4IwMc8DvoOUO/WVZAR0r4u59s4vWzXOwbUJNvnltwtLWdzZv7aG4L4zAMfG7BziPtbN6cGtrMHc5ipXAgpEQKB7sGMtnd2s+qEieLR3epcmMkUo+r1MvQUTZv3kzX4CgF2ui011/u8EHyh/YylL9MRdfM51buvh3NiGFobnav/Jr92mNHo5QwjFvotMcLOTo8QCEj+MkgGHew3fyu3OVfSXzu0VE4OrPzuVRA4Fg7m5VkgGAwmLL/g30RRkL6uGOqg6TvKBiIsAKgdx9dZVfTdLCPSwEiIwxn1ACYui6Q2VW8v+021msH2MFirpF5J7xfc4ezWKm5EEYcKRzsHsxiZIbXi3U8A2OKMGTGVeTl2VdaAGja00j/ETV5PHY0YV0QjRk89NR2AnPdnC6sczzYq1JYz+1R3y0AhwY7jQX8rvbLePr38LO+BXzyeAStbTNabIyWeAGFnQfY21dKLRCUXo4YFTzwisFbQpsBWDfm57hcyIjMxGh/2T6fpd3PYS53aNnTQEtwNnWZ1eSEWohrLl44EmBl2yGUzaWGFA76ZAElw0ov1joQpuUM3ZfLRiVFMbVY6Jd57H15O10ZGnlaPjmxAZo33c9sPaoiTPEwxzbdz/GaUVa07qPbyCPk77OP67GjUXsSGP87Pb9PTdzPh+ewbf1XKBnZp+6J7EUp12zRoJNlUqfx8fupbWkkz5GJUx+lrfQajs7g/lnZfhgfIMMBnn1mk01Axt8/M8Wa7LnkBg7TUnUdLSdx/yZj/9EIa8Rh6rUDvPCHVgpnqcVB1sGHqdNjCAF6PErjn+4ltGiU4t4XWIqas8bwIDp2Ttj3qY5n/DgmpeS+LWMsKtAYDEtePtzGfbFuWxfY3d2T8jnhHst9XU6Yzy28FghMO5DsM14FdI5/k5TyLuAugIULF8qNGzee3b069Dg0/JedhnFIneWZKgy621Ah/zmFbpZs3Miv2huZVRTgynmZCdvpl0Jk1S4heT97d85jfugQYeFhzVv/jl2v/IK5soVj2dksj7cCgjXLl0LtJfDyp1mYr7Nw40bYfxvklnHJopLE6mKgGv73bkCwbulc5ZMAcFTC4R+yYUExbOuG0uXQs4fXLa5UJlhjftgchOKFvK1mDNmkgrAe4mwsGiKjpZ9g8Wrye7dRKfrZoy1mxcpVrJudCA3W7HqOQz0BMgmTO3sRTb0eGPwrAC8bcykYc/OP1nEfroHOARYvXMDi1YlzcTrIPDYALzXwUpfO7n7JVYtKyPb0U5jrIbcwl40b1/DA8R0UGqMsrcjj+aY+Jl4vG2HNGvv3qspbQaDhaa5as4A5sz4I9z0CehThcEE8TIU2zOWXX07oyb+wdO4sNm5cPMmeYea6v6SiOsntJrY02j4nDhlnTUEILlX7lDPbT1vLzwHo0YqprJFkHthFj8jFm1+StO9n5vxt3rw55XxsHtnHzr72Sc5REobmwB5VGly+6vWU178R9tWCv4XsqsXgh3evreL6i2ZRV+Pjkw8WctfehfzqY/XU1RZM/bk2Nqb8HmtOourDOp5D3QF49jkuX7WQTcf30T6mIYTOW16/0U4P5sz289ixBmK6ahNww9UXnZFUoIWKngDf3fkcB/0GK6vyuGZpGXOKsvj4AzsxFr+VXT0bOTR0nCuvUGL1X3fupPNYJZdFdnOp7zhH/JU8YdTxd47HeP8lc1m1cC4YBsbmEENk0SaLKROjid/q+V1wEKKOTLI8Qj2/MwYZPpxjfi6visMLTbD0nYiyZVB7KWWdL8PjzwJQu2wdtRdtPDMHP/wIDCjdWL/M4+rLLyUv08XzLxVQGWtlcMnbMZp/oYoXJMQWvJGNGzYi90fYIQtYPLeGjRsVqc+Z7efR5gaipnVD8u9015EGQC1I8upvYs64PnQ2hubAvv+krsSAPQdgzU1wvIFq0UX1TOaPfWZkF4ONG9aqTtxMvH9mjP0uCEDtrGpqT3H+evHAT/lXz9fMliy/x3nFY1C9jkeGBqnrehCQGAhay67m3Rs3wgu7YT+0yRI6RSlzs/QJxz7p8bRtg3u/qCL5ZvuBn7eX0Du6j+vr59IfivLork7GcquBI8wqyERkZbFxY+K+HXq5A3btQg8NTZjPLbwWUkjbgflCiNlCCDdwPfDoed2jo5uRD12PDA+lWn2bXYG7KaRLFjDcqVI0bf5RrshqUeFRyxFzbFCZTiXBn6/CeAFnEXTtosm9iIqxQ+QP7oJd5sX3wHt45NHfE8qdqyo+jj6jPA1GulK1AaMD2JqIX7wr8bzV8bf5WWX8NN+01TZ1MZHeowBE82qh9lKEqdY30OjMUtqPaNUGAKpEH1Hd4L/vuZ+OR79uf0eVLwMncZz6KHjzKZut0gmDRg4Lnd0JkWjbtkR/kj995oxZcW9vSYT9Y3GDlv5R8jJcZLqdtmNuKBIny+NkTnEWPSMRQpH4xA9KqmTZ36lW7Usq8lLTKB98lCguCuLdhKI6Ud2gIGuaFfvRZyZvN5Hs4iy0lBByXY2P/7gyH4B/fNdVlJRVkk2IAgJIdw5nGxluB+G4Pv2bcquU9gWg1EwJlajrOehVlSYWeQFYVa1M+uaVnMT+T1FZNFNYzRVnFWbi1ARDozEKszw2eQEz5fPRyf1ezgQq8xMp1hvWz+Lvr5jHlYtVmqZrOEwwHCfHm+jfU5Dp5mi8EPQIuZ0vsE0u5S9GPU5hsOrlL6l7JjKChsGwzKZdliQ0bkBPVxuj0sPhWAn7Dh1kZ3O3SiWtuF6lKv7yOXUd1n88cW6Ty9TPpAYmM7HIGSSHLI+63sdcPgoZ4omhSnpkPkNGFkJAV/Me9eahNorkEAuiCb+euhofP71Fpb3fuaYq5Xc62he0m+dOKdAHJYjP8Kl+XLFRlYJf/m4lZP7r7YnxaKrqoGCvWoTAmUkjBU0htplmOxXUDT2BE135dBkJd+vZq68giErBvSLnJqo5/S2MajkEyOSYXow0RffjS6EnnIN9vzfTjcqFuGPXE3z5UdXP767nminP9RKMxPlFw3EWluawoDSHnuHUVN22lkHe62mgTAxOeTyvegIjpYwDnwT+ChwAHpZS7juf+9Sx73kMKZQI0WIwNzxkE5LCkgqOyxL0fuUJ0twXYv7IS0p4Z01cANmpBEZkqpuwMNaBce9b0d0+XDLG0n3fxMqaGfEozdv/wrZeDf34S/DwB82tx4k3W7ZgZ9+Sn8+rUhPkkSfV33OvUv+budCxniPq03y1ajD7gJqgX3JdRK/MB8BVtphRl49qrY814jA/175Kxc5vwc/eBI99ioWxA+RaJdTePOarzfBpAR50f4M12pHEPlol3Seykj8J1M8ptPOuLqeG1+0gP9NFptvBaFRNxKGorghMkRLBTqqDScJ+U/C5qNyccK3JdNZ6Bh3FFOu9DJrOydMSmFjS9yTn2qvXQflq8/H6CZP0HJe6yZcuWmJPBFWiXzW0O8vwOh3EdDm5X44FyzcHIGbm3s2y1lhUnZdsTyIgXGZW+HSPjNMfzAATBtcZImCS1LwMl115lFyBZOFkROMni4PdATsn/pVH99HY6sfjdFCU7aFreIxAJGZ3tAZ1LR2KqN9bSJ3n9cW4ZFSJUw8+phYtx1S0JCiyGc2qImcs0fJhqK+DfplLj/RRLAfZf2A/IJWh26wNyp3Wk5vwRYFUo8DsM2BiZ8G8bsOObDRXhk0cwy4fDiGpywtSJob4mX4te4xaNnTcB/9Th4gGWKU18ZZdH08hEZfOL2ZucVZKy5VgJE7PSISrTVLYPE6gn3LtCKF0MP2HzEXDJaq1C6iecVa/rvveMrH/nB5Ti1Cr27tFYKYoc59yHyzEo+aiE+WIfIoIxBOKCwnKh6ltG3UVXnLFGGPSzSrHMepKTWrgb6XHqX7j40Yx+FtobBnkmz+5n9Gnv8m37r6fkfb9GPe+BSNZP5M8dznc/Gag1p4LY7pBxKw86g9GWDe7gLI8Dz2B1Hs9eORF/lP8L2XZ4jUt4kVK+Wcp5QIp5Vwp5R3ne3+ejy2yzdV0M0u3L5BhX4CZ+cUMuivJDLXx860tjEZ12objdjklmjlAjYvAhCNRpMR2na3UlYeGS1eTnoESPQ7KbC4Rr+DQIxAZUWZT48WbtZcqi+jxzztcisT0mKubsmVqkDJXbcax5wAoEqYYq6aejuzl5ER70QfVe7JKZiPzZjFL6+dixz4cKHddjBhyxz38Q/tnqNcUxzwWcqnqBjAdeJN8bazOtSchPJ0J6mp8vHet8g352S3KW8YiMJYYNRSJk+V2MKdYCTr/79npTZz2d41QXZBBbtLq2ILfWUyZ7KU/pPLPq1vvmXwAM3RlqGWtRMe7KY+aVQ1Dk7iuDrcrLw1vrl295hExhPfsR2C8LnOiiU9DYNq2waAponn4A2rg3/MIAHOP/JQ14jCZVhsNEh4rXcNTePBMgcZWP9fftZU7/3oSTqMmrHYSuV6nXSI9vmv42UZD84BdhJdsNFaR76VzOEwgHE8heoXZbruUGmBUeux+TYDZEFIR/4grF0/xHNxEufsv6tyUaiP0k0eP9FEm/Kzzmfe1rybR9DISgJ+/PXHNpkRgzrCIFwg4fCkkLeZRKcR5oUY0ITkoq9mkr8Iz2gmDTarbkVBjx/hFzsqqfHa3D9syCouwLK3IoyLPS3PSwsTyKEm5dspXmcdZpojDgOV5ZS4ID/xBkYvxC0SrFUyhchImPGyLkCcrcx+/DxOcci1BcGahcrm2KsVOEtlxPwFnAf3OMhwY0Hgv3Pc2xvYqz6/f6JeqHl+HVUqfoVY6Ub/xcVmCiI3SueNR7nd8lU87HuZn2tfJbnsa4hE001+nY9cTCU8o4PDiT/L9IwW2xu0iZxM3RH/Nm31qHCvK8VCW62VoNEbYHH8HQ1Gqh3fYlXdT4TVBYC40zFt7FR/Sb+c78ffwpdgtAPzPb56ms6tD2bBn+DB8s8nXBxj489dYIw4zV1NpPgGw+C3qg7JSB4fdOZcTTqrOCBmehD8dGoGKi+3yQGE5owoHrHn/xKqQqapFIJFGyipRIVRfjYrAtG3Dd/BXSAlrX0ysdkaLV7CQVka71c3tLqwlq2Q2dXkhVi9ZaA7Iwj4+F3F7kN03iArNJpXe2r420+3jaaLebCtQmO1haDRKfoabTI/TThVZKSRLtf+nV7qmnRAPdI6wuGzyaMewq5gq0cfo0Rd5yP115u75zuQW5c9/R6146z8BebNUybGFeEQRF2+eKn0PjfNi6H5FVRm1bYPMRNWX8GRztuF1qcHKGnwmxfgqoQN/UISNhGlgVkoERqVSuodPLgLT0DxATJcT2kXMBFYKKdvjosxstjlZBOZsYqqeSmW5XrqHVRPUnHERmGKGbN+c/3N/l0GZjbTSjQ6XbVAXdeVhmOaLGS98i2/dfT+EeumT+fRIH4VihAUOlaa474Cke8yaHsZNztmliYqYM5pCUkRlxKGaVVrQvep5V8tmACoWrCEu3NaySL1HCuQk1UErqvLoC0TsSJ6VMppbnMWc4uwUAmN5lKRcO27ThiBgpuAzChPH7nDD4uuSqoMcie+3XHiLzIrEyIjdbFfAlJVyLx7tZ6l+kP+n/YFl+sHE9Rsw00e1lyotnOXVNQUmi+JE4jpL5VG689fQXPYmdcGYEf/o4acBeNxYx7DIVemg1gYYOk6rUUx1QYZNlC8Z/C1u4jiEND3JhF1FqKOpqsHBo5DhI5pZSufuJ4jqEqdD8NmlIzzo+joVjXdy5+iXWCMO88NnmuyFY4/5O21vGaRFllqL+ilZTJrAnAXU1fj47Ec/yJ45H2GTocL+JUYfA32djJBFdoaHLPP+/AftNzzg/gav13bwuFGP4fDYK6bxEZgl667mQ0bCdfZY1dsI41YXj9ND1htu5xWxUHW0dbgTkYuVN06uDZhKM5CvqkLs8ur8GhWBObYFpI4Yt9pxV63BI+LUDmxRTR6zSiB/Ft5QB1dWmERq5Q12ZCmOgxapVnHzZlVNICpWdc20+3iasPrOtA6MMjwWIy/TRabLwVg0EYHJ9jjZeXwImNg/KRkvNvXT3B8iP3Ni9AUg4CqhUATwtD6LCxVpIx5JHcBat8ImM3j43J1QdREc3aRWv6CIjTQSRnFmeTagSEvbNlVGf9/bElb9gOY9+ymkjJkQmNpL1bVoXZOLr7P/tkwDkyMwJTkepXM4SQJTP6fQNgt0Ok7OLNCKwOR4nXa38OQS6nOBqVx7K/Iz6BqyNDCpBOYiTS0crMVBgQjSsuIz6g3XftNO88TdeUizS/j1jk38TPs6rlAX/TKPHtT3DBx6gah08NVnh/jn3VUYjklK7x1OtbBxehIatTMBMwIzKPJTIjCqDxRkdb5ARLqYPX8ZocqLieLCwIEuXDykX0nLmx+aME6sqM4HYHebSuE09wXRhNI5zSnOorkvaEdn1ialBO1rJ25dfzJhcjfv9arD+82PwtpbEhYPaz+S+H4rYmIadRIeTu07NUUpdL3rKL9yf43POB/mAdfXeU/3d9S9bRGY2Zep/00dzGREpbHVzw2TRCGH+rqo1voIFK4gOvdqpBXfcLgZcapzv7xAJ8sIIvsOwr1vAj1KOBpnSXkubSaB8XU+qxzGAc3pJlh9JXtlLQD369cq/czAUSiczx8dr+cysZvPOx9gpTzESn0PmhFFIO2FbFw36DVLuq0Fy2O7O+3WGT1B+ZoW8V6QqKvx8c9XL2BQ5BOVDqodA1S6Rxk0ssn2OHHrIaRU7QDcxMgRYRZcdQva7MsSF3+ykZ35mZ+9NeE6W7DwEm6K3sa+qhvh5kc55l1K3JDslAv47bIfnnrkworAxMbUzeOrUUZomSoMqEuRos8oXLgegLVyH/2OUqV3yJ+lWsnveVj1CXrHj+CarwHQs+HLrF+hhJyLas0CsrNEVKZCjel63DoQYmg0Zop4HYSiOlJKQlGdTLeD+jmFOM0ZcbIJsbHVzy33bgfgdy93TBqhCXrMEGy8IJEmRKoySCsKs/k/7FfQo+DNUf//8Z/UewaUnTdL36n+70oiMAceS92296D9Uld4clJ1JuGxUkixaVJI46Npa2+x//7V4h/wiliY0qHZ5dAozvacdASmrsZnO1p/+a1LTkqnEgzH0YTqDK2bCfsTipPPAibT2JTleQlE4nQPh1NTSFkeGozFGA6v7RHTYCymxaeE9Hiz7UaOcU8+a7L99rjjIk6GEaSfPLql+i5XxzY6ZRE6Gtvi8/jt8h9NHEfatsHooCLhp+EKOwEmgcmL9bGKw/bTwiQwntgITbKC2uJccuZt4MbIbXw7/m5uiN3O7fGP4K6tn/CRS8pzcWqCV9qHADjaF2JWQSYep4PZRVkEwnH6TW1aJCkF+i/XLFTn33TvTSFxZcuUqLeyTr05Zur5rMUGJEzsklNIVt8pgFU3TjrW1fpfwCV0NS+IOCWHHjTPcYN6g0Vg+g/zzKFe3v2jF/nWXw/x3h+/yOd+oxzRn9zfTXSSKGS4VY1TsbJVFC66lBeNJYS0HA6+4RcMx9U1dVm+Hyx7P7OC9ibxF67IbKEQRQIloEuISw3t5kfJrVpCsVuR/8ococ7bYDNNeimP95cggI86/sTPXd+gujCxoIrjYJtcjMupcbHpFdYTiNDY6uexPV0sFMfRpaAz4k06salIE5iziLoaH9cuq6CbQt49D/LkCIPkkO11UnDRu4mjGKZAYgiNuVXlMP/1amOHW6ULJvlMa3ArzHazUy5ge9E7lfW46Qzq1ARbwnNOnRCY5bp07lQ3j6Gr1f+RJ9Bx8P3424m//w/2Z/sqFjBCFk5hMOQ2Q8pWZ+yBJtWQEtTKBaipKOUNc81qi0mO8VwgP9NFjtfJ/q4R4oYkP8NFpsfJWFQnEjfQDUmWx0ldjY9vvls1avzQxbUTJsSG5gHbCls35KQRmlGTwPiGXlHptHmvBwS0PAc/eyM89ikltBRaYqA0m0Oy9zfqNzi6Sf1ddZE6t8kExoqkm9sezKlXJBO466W+M9KAbTrMKIUEE0mq+XeTZwmZbgfCEn+YKM/z0nUKIl5rIsp0n5xLRCAcs6Nuv9yu8vP3vdhy1s/fTGBpggKRuG3wBuDLcrFTLuCva+9iS/XHuCl6GzvlArowFz9DbTaBkd58KuvehBRCaemcLjSgT+bRaxKY3EgX7ajIr1PT1Gp6/DhyBkwDJ4WZFpkXO8jtA5+ziVGGx82gVKnQQ7KaOcVZGFI5Z/8gfh074irKkTdJBNTrcrCgNIdX2tXke7QvaOvarP8tXcwT+7vtxYpFyidNY+eUq8ndEtUGzK7cydEoaxFalERg4lGVSko61vEYdKnItF38YUV+OncjEfzwFZ1optLjPLy9zc6t6Ab8cnsb19+1lUca21kjDvMJxx+4yNmUWHR1NKJLgVaxmqHRKDvlfDL0IO95dIxg73GGZBaFq64lhislPefAYHHkFS72HsNA2GIAlzCI+tTx+XSl+SkYbSY8GoCRDn5/3MsCrcPWKHk1naqRXfbnDqz+e654/Vt54NZ6rlikxsie4TBbDvchJSwUbbTKMjR35pRCvjSBOctYUJZDu1FEfrQbGRrAL3PI9jhZdNHVHH3TQ4RcBUqAJg146PpE2sjpVeV606AoW+Xnh6PqMj7UHbDtmJt6J9rfz7g6wy75M2+eUVOQdujPHM6/lJ84b8CVtNoRmsYxt0o3hTJMwbhFYCBBYHLN14bbEv1BzhOBEUJQU5hpD2z5Zgopqhu2M6+10n3H6koq8rwcnaTksn5Ood3h2j1FyiLqVb/p64JPEiATUb0+0S7BiKsyTVBh5bqb1UAZHiKlSqyjUaUCvLmqMiKZwPQ3QVYpXKEG2adDs/Gj7vlhw3vaTSNPhBkTmClg6Y3GoyxP6T6ScaJrWErJYEitqMf3cjoRAmaJckPzgB2BmYqUnmtUJJVXJ6dXfJmqou2QczF/zL2BjpzlCKAn4lZdooeOQ3iIMG7c3gyoXkdbyRVEcDJ05X8B4M4rpUcmiHk8R0VFP3nlFJVWtZeetKvzjGA2o9UAh0ykqDOc2ATrKNVU5GWwcWGJPcU6NDWpZk9BWCvzvWxvGeSl5gGO9gUZGYvR2Oq3KwzveeEYO1oGeWp/L1ctLsHj1Dg+kHTtjCfelu4n0KVcyqMBdT76DibEtcFecGbQ2COJaRl09/bapCbuyIS2lyYV4o7EFQnb7LwYw0zxGJqLvf1x+mUu33riKDtCRYQ69iUcxJO2j+mSWaG9/NL9dZWGcn+DOrOq09O7myZZic/nY+fxIY4Z5TiEpEzvwhHooIci5q6+klv029lZdJ3dTDSGk7HKDTRnrSYu3Oho6ObiO9hzDEc8RKYcxUAwl3b27NkFQIsso8FYTMwsZBGaps5ZwRxweKjM1NViXDtC7vb/YYPrKN0jYXIz1PsXacc5LGZhREfTEZjzhfxMF50UIYfbYXSQQZlj57AXrX8DWWtvSrxZj6pVOUIx9ROEZwuz1eA1YhGYngC1hZksrciluT9kD8IAW4/2857/e3Giun0yLH1H6gA172r7pT1yNppgwvb+PJUSKtZ71D5bnZqFQ1VBgWphkFmoKmbCw+p5VwbnCzUFWXafozxTxAvQF1D5WEuTIYTgysUlPH+kf8IkXVfj4+rFpXicGg98dHJfkLjHR0Q68RJlu3udEi1b1VVJan0MXVWAVa9LaEZApeTi0UQ4unyl0sQ8cwe0vKCiN4veBJepQbZ+TiF+VKg2rGWedtPIEyGhgZkmhTQNRs103XiU5XpTNDBWx+bpruGxmG5HYNr8J0lgTIFsspDWfQaabp4JWKJiIEXg6nJo5GW48I9G6Q1EKMv1kuWCwdEo5FerxcKYnxFyyDIneMeiN+EVcdq7VOSgrGIWg+SgC/V6j0NpZrInIZXA2RPXm8QojoYuEilqTQiimlqs5WV60TSVprhyUQlel8ZVi0vIy3ShaWLCRza2+tl8uI9I3OB9dzUQ06V9HT13WKV5/rqvh+t/0kD3SJiFpTlUF2ROf+1Y3c4DPUp3BlBzsRq/rfYroT4i3kLed1cD/XoGW/Y0ceCISgP3F9WrtNMkTUeFX1XqHb/0W9wXvwYB3Dr2D/QOj9IjfUhgyMjAM7AfrWMbVy4s5ob1s3A7VeuEjeJlfuz6Dm6hRLaaEbXbnuQP7mG3MZeCLA/1cwo5hqlDdPRQJPvxO4twOjQGClbxqdDNHLz2QVpW/DM3RW/DUbMef+Eqbsu5g/s87+eL+ocBGO1vwRNRBL/du4BiMczel5TD+3HK2c0CbjFuJ+bOh9xq6N4DS96udEOdu+wmlWLT1/iZ42tk9DQyNBojkzA1opcVa16HjI5N6WGRJjBnGXkZLjpkEVqwG8fYAH5yUgeGJW9LzbEimNSfZRJYEZjtXXEaW/0c6g6wqCyXuSXZRONGygr0kcZ2DIndBTR5VTlhVVu9Dm7+Y2KAMquhJPDWoQeYF9k/YQLJyskHYNbwduUFYJbIInV48L0JIpZbmSAwGfmJSMR5wKzCTLuKyyqjhgSBSf6drlxUwlhM5/bf750wcRpSUlM4dY8Qr8tBv1SEot9bmzoBvPk7kzc/rF6nOuJ68qBslTKxssLRTpP0PXunKm+NBhOpRxSpKitX0a7Pv33dWfErST0+SwNzahGYYCQ+6WRZlpdBIBy3K8MamgeIxFQn2+gUgmor+gLQ7j9xCXZjq5/HjkZpbPUTCMfI8TqnFNKeT5Tmeu1bJVnEC1CY5WYgFKUvEKE4x0O2W+APxRJ9zcaGGCaLTNMYrnSJct12Nqm2JFXVtbidToIulXY6ElVVP+N9OVJwNjRr1euQH/wD39Xfw8NLfpBoHjt8kKUoz6xbog/YY8kblpYRjhm0+8fIy5hc65UcTbNgaUP+si/RoTuuq/f8+Llmcr1O2ganuXasCEywOyGunX+N+r/btIAI9jKIMmMMyAyyZYjmY8ouorfEdD2fZGz3BFrokfnMLi/mSUMZ8UVwUiKG6JX5rBGHeb22E6eMcY/8d/7Zt4VvFD3Bo9e5+NdlI/zUfSdFYgQpldWPBDWmHPgj3pgfP9nkZbioq/GxZJnqr/e5dS4K4v2EvKU0tvo51h+izT/G2x+N8fvs69kpF1CQ5aY0x8umUC3/EXwjXaWXAxAdOI4nrIhgW8HrAKjp2wzAp6+/lk9fs5B/ufUWXJd/GvzNaj4omGNGkV9RhSHxCKC0oOX+HWxrGeTakiEEkooFa5kOr4VWAhc0fJluXpCFCGkAhhmBSbrZrMnMaiEAsOshRV5OEJ7dZ7q/7h0wuOknDYTjBu+uq7Kb0R3pDVJrhkmtcCOklmdavhkxXeJ1aYkBu3pdYnDa8m0gtQR6d3wBDc0D9uCuGTEMCZqQxONRAjsfIU851iSIWPU6FZnxH1Mdbc9T+siCJeSFyQlMclrD61SvPdLYzmOvdKZMbD0jYbtqZTJUjB6kTCjx5NsDD0LbTannt3RJ4vdPnhBq6uGiD8ML31MaJKuiIWKl+CzTQwGurJTvzCkog25YXHv2+5paKaSxUyQwo9H4pHqV8iQzu7nFauC1pqLxnWstWAQmx+M8YQTG8tyIxg0ea2mgPM/L7CJ179TV+C4I4mLB7dQoyvbQF4ikVuigKpEGg4rArKrOI9ct1HmorlbOzpmF+GWWfT27ShYyKjKZP7YHBFRUzaIo+wh+UUge3ewbUwSmN7nZ3zlCpHwt34/186+WBw2QP7TX9gNxSN0eS9aYv8++zhFWVE0+lljRtFjcUKleIdDNNhBvXFbO9pZBIjHDvq7iunrcNjiKlHKCLgtIisB0J8qsay9RUdXuV2Dl+yDUh5ZTAv0wQhZ52iiVeYoQhrJqFbnc+Qvw+iDst+/9rFAbXVo5eztHOGyoKPYicZwSMcQBZvPm3KOIsIowukWc5bu+CkJjkcPDohXvRQolwDXQ6DAKqZJ98OL/wME/AXCL8wkcHduheh0XLZ5N/6FcfIHD5MphohllNDQPYJiELxo37IamBZluSvO89v21aM5sIv0u5HAHQlcL6UNZa7mYn3Gxto9+mUtOXgF/v8K8hyJLEufvz5+F9X+nxrGC2UknVvBMeCG7hoe4aU4fjJBw7Z4C6QjMWUZ+porAWJgQgYHU1cxJhGeTV6BW59qFZTk2gbF0MLoh2dU2hNOhbsbvXb/aHpwt3wyYelWrQrsZGCJR5eAaF1pvyl1PJMmjpjHrssmN8vKqEhGY80xgkrt/W60EAPqCFoFJpDVebhuyc83hmMF3nzxsR2J6RiLTEpjykPJzEUL1MZqw8ppuNbv8vQk3YitcNO/16tzakEo/lZxuND1W7OqlswiL3J26BkZPOdcWbDfe4TDPN/Xzrb8eJNt8380bJgqqIUFgllXm0TkUntYdeLzvh380NiG6cSGhwjwf48ePgiw3fcEIg6EIxTlesl0mgcmfBbEQcrAZv5Flp5DQHPTmLMEldMakm9nlpRRkuRk11Oue6BCQ8OQ4lwia0bbkNNlQ/jJiQo0tUkukluYWZ9nWBVNFYMZ3VH8oqQ3Ejetn8cCt9XYKxvLeWVmVRyAST1n0pcDpUaXdgUQE5u5XIoR8C6EnEYFx5qpITdyVw8oiQY1bSTm84R41Bvqb4U+fSumu7Yt00O+qoH5OISFXPj0ynxWOForECBevXs7GN7yTmG2SqpnVQuZCZsxvjlEawunhXt2MCh34oz2GONDt8Wd+SQ7NshxX2wsAyFz1vS6zGtChCXyZLhyaIC/DRWmSqeO62UV0ygK0kXa0sX4MKdhlzCUovXhETOlfkueSnldIySxEzaxQ505AgjsHQzh4Pqiiastd7WpRll87+W9gIk1gzjLyM9x0JhGYZA3MlJhheLZ+TqFdempFSReV5ZDrVRebRWB2tfnpD0a59RJlaJXc1yfZN8P6e9L9uflRjq/4FDdFb2Ne3ZUTQuvz6q5K8ajJu+SjkxOxvCql7xluO+8EprYwEbXIz3BPG4Gpn1OYqEwAtjT1c9PdDWxvGaQvGEnRKIzHiG+Z7cxsJA3AM0I0iH3jP/M1RVKq18HNjymrdwvJ6ca2bXD4L+rxwx88c2WuU8DrnoET7zQ4UQRma/MAt9yzjeGxONG4VBUNromEB8A/qgjMiuo8dENO6yOTfK27nBq6IafWfVwAKDfN/SakkLLdtPSHMCR2CsnWwAAi0MVwUgQGwChX6YN+8mnqC7HO1cSCyF4k8CP396jTDtMbOPcRmKDpxZO8ryN5i/hG0X/xnfh72LTuJ/ZYIoSgbpZZPTUFgYHUys3xJep1NT6+8Y7lKcSmfo4ar6dPI5VBsIfujlYi0sXXN3XR0OtEb31JeTqN9hNwqu+IOHPIkiFFdjILyRs+wARvtngUjm7Cpw8wlFFtE69wwRLelHUIDYOKqhqGCldzU+w2ZZIa/7BV8Gz22purHm/4BOLmRyn0kngdMBDoJMafeSXZtMhyMsYUCXPkq55R995yEQK4blUFbqcDn6kvSh7j1tb66JRFeEY7cYX76SeP5TWlHEVFfI9TnjqXjBd+L3270kC+9GMVuXrHj3DKGJdrqpKrcmSXkhh07Jj6NyBNYM468jJddMrED2lVIZ0J1NX4ePCj9SwpUD+jyyHsyXdeSTZNvYrxP7GvB5dD8PHL55LrdfJS82DKZ1grXUNCUXZqn55nDvXy/U1HaDTm81TRTeyUC/i3axdNWP2O96ix01DjiViesvBnoElVSZxHlOV6cTs13E4Nr0ubSGCSJlVrQLl0foKMxuIGmw72ohsyZXUyHmP5i+xBZ9O6u09ON5BSspoUvaleB6//6uT6mbPUQ2oqWGQicsoaGH3SKiQrqrX92CBxuyrIINPtsH+j8RgMqVXzyqp8YHoh79KKhCfF929YQzimp6Z3LzBo5mg9fmL1Zbrt81Oc7SHHJfCHokjrXgOGyCYrSSgdKFRl+pqM862772fR2G6EOd25iPOW3ObzGoFJHiOb/Dq/6Cjlh/p1/MPzrhQNmpVGah8cPa1y92RiU12giOL0Qt5SCHQz3NtmalOOcJnYjUMfU015pYG7fz9rxGEGdK+KOAd7IbuMofxlGJoyILVpjBDgU+mUsaxqe59qllyEa8ysAs1WUY2XjQX8UL+Oh/QrafVtUJGKD/5BLXbcOfD6r0H1Oo5lryYmEuaRf3K9ge9Wfssef7wuB/6MGvuQMotU5ejr5hUxryQbfyiGPxS1e7dZ92Nlfgb5mW76tGKyxrrxRPrpkgWsm11ATZX6jEsXVabOEeMzC7WXKH8xPap6uy14I1FXHtc4dvDOjJ04e/fASAfc9zZy3KTmx5OQJjBnGTkeJzHhJuRSeWXVZfXMrfLqany8bZ4LgSqhe/9PX6Kx1U+u18X+rhGeO9THo7s7qczPoKkvyLrZBWxrSe3uOTwa443LytAEfPbXu+2B4MWmfj70s+18+4nD3HR3A1uO9FGS46Ewe/LJekZN7qzqJGmc9wiMpgmKs924NMHO40OJFNIkERhImBMmG9vNNtNQ06WQhBAcdi3hh/p1GJUXndxOTleyOlW68Sz1kJoKVgrJcjE+WYxG4ymTq/25LgcFWW72mKXumhniL8nx2Gm+8fCHojg0YZOT9mlW0ckmeUKo++dCTSE1tvp5Yp+qePk307DMQnJz0JJcDzluocSj3oT+aUhm2VV2AG3DKlJVLgb5mfZ1BoxsotJpm+GFKuoJhOOn/JueKiw35GSdz8FB3dZlxPXUNLf1e73SPnzSva+mQrWpjZu2DD+nHALdlDuG6COfeu1Aon2LaQBX1vMsD7i/gRYbNQlMN2SXsNOYz/WR27gz9h6+pN/KWO4cyK1AmnqaeF6CVFC6LOk7y+xIsGZWyGkL36gawOaWK/1N2XKb6Q4VruZzWV9X48Mtf+Lf5a0MFa5JOQzdN8d+nFuasL5YWpHLvs4RBkNRu1TfGuPcTo3GVj9+Vyk5sX5yor10yULKRl4hv0stloqPTtKwMnlBm9wbra0BOnfSXnI5b9C2cYf+vUSASo+S6xFpH5jzBU0T5Ge6CWnqN5jr6MPtPLOnvclvpDSA+83Odp460ENMl3zwZ9voGg7TOjDKTXc3UJmfwbH+EL3m6ioYiROK6nZF07YWvz0QPH1Q+RZYGoH9XQG7Df0pI2lVeL4JTGOrn67hMKGozk13N9iGVpNpYCzU1fj47BuUwPArb1tK/ribeypY0Z1pO1FPhhNpoiaLcp3FHlKTweUQaOLUXGsNQ6oy6ilIfa7XyWhMp6Ygk8+YIf6awqypIzCjUXyZLiryM9DE9KvozqEEudl5XE18FyqBaWgewJCTT+KFSVHT4mwPOeafg3qmEsujhKTZSdfzam+XMrMTKuIyNzvCTdHbeH6WMsPLX3AJAL3TVSIl4VQ7gI9HyNbAJCJhiwoceFwT+0OBIqwwfauPk0Wu10V+povj0xGY7FII9pAb6yeSUUKDsZi4MJvmak6Un41yO843hpTf02Az5JRxYFBnW3weP9Sv44H4lbxc+GYYbiPW+pL6bKuDNUwgMFYk2LoXZq0wnXmPv6QqoMpXJDbN9fDMaC1c+hmMyovwj8YoyEqNMGaUqbFsRGZSXJiILi+tyKN7JMzRvqB9fbUOKN1KS3+Im+5uYMBZjIZBYayLLlmAr/elROTX0KeP/Jql3cnvbXNUky0ieIWKohpoqs1BRKZ9YM4nXuc+SlFEuSb+0PntM65JWFTgSBGhCZiydNB6+quP7aex1W+vQgdDUft6ssS81b6ER4vToTEYipw+gckuTfjCZOSf3medJpIHu1jcYG+nWun3BSK4HAKPc3KdxTVLVRWCy6HZYXYrDTcVrGhOYfZJEhg4tZLVc9iaQQhBhstxSj4wVuVS9iRksbHVb08incNj1M8ppK7GR3GOZ0oCY4W8XQ6N8ryMCavoHS2D9kTbYRIYAexsHQIuXAIzVZNHgIKsRETU0sAADI7FbEPJIZmdojOqXHUN0qnaD2hON845l7FTLuAe8U6aPEuoMSOLPTOoRLKqub51Ch3Ax8NOISX9DvN8jinL2i+ZX4x3CnJzOphVkEnbdGX4OWVgxGCwmSFHATvlAj4Q+wKRyz4Pb/o2OL3oqIKGA9KMbIz5IbuUDGdqZVPBko0AaHseZlhmkp2f1AOvaH7CK8rfCoyLdJcuVRHaPQ+rSExZgsAkd3geCcfQDZlyrQAUzVqELiEinZQMJ8wxrQjmQFIK6aVjg2giMZf0kNjPflGIa+5lM4/81l46ochjXqEHQ6poqI4gUHEx3PwogShT+sBcmHfrawzrtf1Ycion8URJ8RmCdYM3NA/YN/BvdrZPWjq4sFStyB57pYunDvTwuWtV48R1swt48kAP0biB0yxRtRg3wOULinlifw+Ly6eM5s0Mmga5Faq79XmOwCSXWLqcGhfPLeIHzxwlGIlPWdUAUO3LwOUQHO0L4hAq+lA0RVrNghXNGT+AvFbgdTlOqQrJWnFPJuJtaB5ILNJMR1yLwPQHIxiGRNMEja1++9ofSAp5VxdkpExCzxzs4UP37kCgrOKvW6lSLLPzNHabvXKSV/4XEqyVt3WcyZN4oTnB5HideF0OckwC4w9FVcq2dz/DZKVouqheh3bLH+3yfTFaC2xnX+cIpbleO6I4Ex1MQ/MAUVPAbS1+TrUEPTCJBsY6/sk+c7rzcjqo9mVyoGtk6jdYpdRGnC49j6JsN9uD89lcUscblpZB6RIe/d0v+XlXNeUiKWWfXcrefp0cr5PawiwOdI9QvmgD/DUDZ6ibVjk7dSzpfDkR1fjFuyZGVB0uqFgNR55UfydFYErM37B3JELMUJ9ROC4CvFxrQQBF2gji52+3P39Jkj7MGrPGj5earwq61HuCnlLErPWpliDTzXHj7UOq11EJGK/8EEOPoTld5L3xSyecJ9ME5hygNWcNsdBDOImj48R5FjQJ42/w8YTGejw+6rDtmLq5LltQTEVeBh/9+Q4+dPFs6mp89nurfBk8c0ilk047AgNqUL0ACMz4wW/NrHzVZVVO40KKikbVFGZxtDdIboaL4hyP3U5gKuiGIrBH+4IUZBWc4SM5//C6HKfkAxMyNRaTpeusfL81YFrXcnG2h7ghGRqLcaw/xPt+vBVDStsrZXmluq4yXQ5eah+ksdVPXY2P3+zsAJJToiMU53iYlavTPDxx5X+hYapJ3Fohl+SoiSbHpa7FgVAUnGaKk8GJ5zjJi6ioIxF9XFSWQ2nOzAlM/ZxCNE2gG3JKf56ZwqpCOplCh7Ph2eN0CFoHRtnRMsja2knuV7PDN0BbPI/LFhbz173dPHe4TxGY6nU85NbZ5xgiy9hlv7dx0M2uPp33rK3i5g21vOV/n+f3e/q4uWottGzhuCylJpnATNZ3avykXlkHx7eqyHZRwj/HqhrqCYQ5bPbJGwilRtSqRhqRZrpL6lGE+fn5mW4q8zPoGBqjwCxVHz9ePrnrmE1gxjJMc79kf6sTYfx7x5HqmXxOOoV0DjDoW8U/uv+dX2V/kK8X/ec5CetPVTpYP6cQhymYcTk18m2FuYcrF5fg1ITtF9MzEibX6+StKyuI6RKHEAyNRqf8zhnD0sGcZwIDqedJCEGmWVEz2YSajLnFWTT3h+gZCU9bQg2qiuJQdwAJfMAUWb/W4HFpRMalkJ7a38P3njo87fFOF4GZyhG32Jxc+wIRnj/SR9yQtsP0YCiKL8tNY6uf5470K33TT1RaI9k+wOVUQsiK/AwqsxPD4IWaQpoOFoGJxg0aW/12CsnduR0OKbfdr7t+Rv7AROt6C8mpzdJcL7kZTjxObcpUXTLqanysNyf599fXnBaZCEZiODRhuzufDzS2+vnzni50Kbnp7inu15xS+2FrNJfibA+Ly3N57JVOGs0iicHRKHOKswnIhN/UnS8OAfDork4icYPZRZn84JkmOvOVuLaQYcpGkppCzqTvVJVZGJBZaPaTUrCiaFuPDvCVPyovqv/6y6GU42nKXGVbPIQNBwe9K+3XKvLV9sPhxH2TPF7m5ObaTTbj2eWTnsuTxkmmvtME5hwgL9PFi5G5/Nz1brpyVp54g7OIuhofN65XOdm73r8WlybI8TrJdDtxaILSXC9dQ2rV1TUcpjwvg1mmKl+Xkg/es+30J2BhXnbDnaf3OWcBGeZEeqJOxnOKs2kdCNExNHZCAe/BQd3WHp0poeGFhoxxKaSn9vdw6/07+O5TR6bVRYSmSBlYmKyyrdiMNPQFIilNDl1OjXBMpyDTnSJ6jeoGDc39drf2TLdKuQYicSrzvSkEJvcCLqOeCpYjd5t/jJvubqA9oON2aOT3brPTD050sroapvyMZHF5Wa4XIQQluZ4Zl1JbAm7B9JHIEyEYVm0lJnXAPUdIbj8Q06e4X5MiMJ1xZXy3q22I4bE4N5qkxx+KMr8kmxESBKbbyAeUEPs3O9tpGxyjNxDh7kYVAVunHaTot+9J6CRnIsjXzHsn2J3SP89aWL183G+blerjjufpYC3vNy0ePhC7jaeDtYAicS8fHwLgB5smF2cXZLnxmwSm1jU0xdk8u0gTmHOA/Aw3gUicodEouRfACu/yBUp8leV10j0uglCR77XFjT0jYUrzvAwklaye9gTctg32/Fo9fvxfzrrJ2snCirycKIQ9tzibmC5p7gudkMAsKnDgnUKA+VqB1+VIqUL6/jOqA+6JqkNGzRTSZM0cp4JNYIJhXI7EEPa961djSPBlue18vYXqgky6hsPMK8lmNKozqyCTzqExKvIyqMhOTJYXspHdVGhoHrBpQyxucGjQoCDLzV73cnB47NJo55zLpvwMj9Nhu9+WmoL00hzvjES8kChJbz/JBprjEYzo5/03qJ9TaF9XmpgiJebOVH3KgF6ZT38gYhPmmG6w9Wg//tEoswoyGdOy7c36pNrGKrawtskwVDdnh5CI8T3wThSV6DvEZP3zrCiaVYwgmDj+1M8pZJ9jET82rmOvY1GK5MCuejMmv39nj+2jVvQgJXy87V/Py1ieJjDnAJbddc9I+ILIsVutBo72BekeiaRU0FTkZ9A5rAhM13CY8lwvG+YW4TlTE3CKydoktvrnGRkzTCHNKU54K52oAmmez8EDH72wmgOeaXhdmu0Z0tIfsr1bYPprJhSd6Lx6IiRHYCy3aUh4iBRmue30U/2cAqSEIz3qfR++WJmFNTQPEI4ZVORnkOcWtg/Nkd4pKzYvWFhaIev+XFTgwJflZpdcADc/yrOVH+XDxhdx1Kyf9nOsNJK1oCnN9U7f0NGEbkh6zFTTTBpoTodg5Py3c7AMQjPdDi5bUGTfrxNKxb25SKFRK7pYVpmXQnqWVeZhSBWlcGXmAyBdmQTJYHmR6jn3zjVVNslukEtUuwSzdPikvJtmT55mEkJQludlq0k+3rO2asL4M1WadiYd2SuHG83vmaJFyjnAWSMwQoivCCE6hBC7zH9vSnrt80KIJiHEISHEG5KerxNC7DFf+x9hxhGFEB4hxK/M518SQtQmbXOzEOKI+e/ms3U8pwOLwBgnEIeeK1T5MnA7NI72BekZTm1EWJGfQfdwmGjcoD8YoTTPa9/QZ2QCrr1U3WTnyGTtZGFNpFknSCHNLUqsqizx5HSYkcnfqxheZ6KM+gu/34sQgtcvUTqBb757RcpxJ08Eo5GTj8BkuR1kuBw2gbEmvOePqK64PjMdUlfj4+tvX44EfvxsM1W+DN6wVO3TM6bHUUW+l6NDBqNm+uuMpEjPMcZPQvN8DgqyXGZDx3U8WfR+jnimb4oH2AaVFoEpzvHQN4MITH8wgm5IPE7thA00T4SpOpOfa9TV+FhVnW87O287NsC7f/Qid5ql4ge3P6WcYqXBA+7/4PKMYzx463qcmuDaZWW2GV5Blpvs7Gyiwk00oxgQXF7lsrWJajzN5xWxkK/k/we/zP7gyXs3TZNmKs3xMjwWoyjbzTfesXzKSq7xY9NMOrKL2ktOvUXKGcLZvlL+W0p5Z/ITQoglwPXAUqACeEoIsUBKqQM/Aj4GNAB/Bq4FHgc+AvillPOEENcD/wW8TwhRAHwZWIuKVjcKIR6VUl5QI5BldgYXRpWD06ExuyiLIz3BCX18KvK8xHTJ/i7Vkt3qR3PGlP6TlM9dSLAm0hNFBPIyXRRlq3LeE0Vg/hbgdasU0l/3dfNCUz8CeO6wIhRWKTQo8nKD2QHa69K4YZ3SY53MpCWEsL1gmvqC1M8pZHvLIM83qZVmQdL9Nq8km7nFWRztC7GoLIfCbA9F2R67qq4iP4OnBnXb+TN2mmXA5wvJ9+fmY4CEY/0hW7x8oogigKndpycQZjl5lOZ6CUTi5vZT/z5Wv6nVs/JpaB5keCw2rQ3BdAiG4zYBPd9YUJrDr3e0YRiSP+zqtM1ho3ED//5NIBOtF0oHt1P2umuYU5xFOGbYBnu+LDeF2W7Cfg/OeIw14jClWQkdZF2Nj09eMZ8P3budX3aX8frFK3l/9dqT39kpqn+sxoxrawpwOk4uXnGiMT9jzgZuit5GvXaAy658O/XnYSw/Hymk64BfSikjUspjQBOwTghRDuRKKbdKKSVwP/D2pG3uMx8/AlxlRmfeADwppRw0ScuTKNJzQSE/6WbOuQBWFwBzS7LY3jKo+viMSyEB7DRXoSeqsDklnEOTtZNFIoV04t+p2LQ8HQyegcqsVzm8TgeRmMEfdythtkQJFR2aSEknjfcMaTJTOycSTY9HcY6HzuEwLf0h5pVks7Qil35Tq+VLchttbPXTOqCiAs8e7qOx1c/i8hz8o2plXZGfMa3T66sRTX6dhmOD+Edj3HR3Ax3+sROe38ZWP42maPOTD+6ksdVv9/f67xNUknWZmrmLzEqk09HBBE5Als4lFpblEIrqtibQgiGhUSzFSNIXWdGHWQVZHB8M2V3RCzLdrNGOkE2QjNFOHnB/g/mxQymft35OAS6HQEqmbNNyKrD8kQA2Hew945HFvAwXL6P6Mmmz6s/oZ88UZ5vAfFII8YoQ4h4hhEXlKoG2pPe0m89Vmo/HP5+yjZQyDgwDhdN81gUFK4UEF0YEBpQI1dIMJJMUq+OtZa1+IoHqaw2JFNL0K9bGVj+Hzcn3X8f1pvlbhNelMRbTkWa4xSIDc4qy2NORIDD1sxOeGk5NoyjHg8shTrq9RnG2h1fah4gbknnF2SwpTzbeSqzgk8WIlhnewlJlxuh2ahRmuad1en01Irl3UCxu0DsSmdTpOBnKNDCxTUPzACNjiuTd8/yxaSvJrAjMWpvAnLoOJhiOXzCLvAXmdXK4J0C7f4wqXwavX6xSkN/en8+N0dvYVHErN0VvI2Ou6gxfU5jJ8cFR5cEDFGS7WRHboxxmAZeIUxLYl/I9mW4na2vUuSs+FafuKZD8m+pTCHFPB06HZkfaTrpFypnah9PZWAjxFFA2yUtfQKWDvoZajH0N+DbwYZi0zk5O8zynuM34ff0YKj1FcXExmzdvnuxtZwWhWGKXWo4cZPNw0xn9/GAweNLHE+1P1Pa3H9nL5t4DQGJftx5WLdab9zbSe/jcljSeyvGcKfj71Sq+q62FzZs7pnzfY0ejKZPEQ09tJzB38pv4fB7P2cBkx9PfHSEUjnPweC/VOYL1ZU4WFTjY2hXmheNBNj3zDJoQdAQSXjHX1miMDPTg1uTJX7+BiK25GW4/hAip38KlwUsvbLHLcD1DOk4BcalIlWeoFfn/27v34Ljq64Dj37Pa1VuyJVkORrZlyzYQTErASVBoSQQkkAJpXk1LSlLahkmb0mlTptNSOg2dpEwnDJO0CUkaahLShCSQB3lAG/NUwA0CWw42D7+EZNmyjW1JK+tlabXaX/+4v7tarXa1q/W+rnQ+Mxqt7t17957d1W/P/p5jznF1pYZf/epXjI6OQs9uNguM9PQ5TTAetrYiRIkIYTst+1ToDBOjk/M+x4mep+1vOGVExEBoKvl7/MV9Ifw+GD70CgDtO16m7NS+BV1zV3CafYPTDI5O0XnwKFsfOcXGOifpKtT/z7gtCx/79W5e6J7i8iY/y8LOHC8GeHFqI0ND57HfROjs2I5PhMmBKSamIjzd6ZSnr3R2sD+8mssJAGHC+DlWtoHDcfE0lTgJz7Mv91A71heN/Wwkek3b2/tSH7gA5Tjvkb0v7aCvNP9D388qgTHGvCed+4nIfwGP2j/7gDUxu1cDx+z21Qm2xx7TJyJ+YBkwaLe3xR3TnuRa7wPuAzj//PNNW1tborvlRCRi8D39P0QMtG65hHduyG4VdXt7OwuNZ8XR03xjz3YArr/yt6PTThtjqHxuGwMT05T6fVz/3ra8z8mQSTzZsn30NdqP9PDWzRfQ9vY1Se9Xsz7Io4c6orPEfuw9b0/6zb2Q8eRConh2Tu7n8cNdHBmDP7l8PXdc92YAance4akf7aH5orezobGarc91A07hvnFDC70D4ywfHljw87Nn+iBPHz4AwB+8790cDZ7hvj3P0lhTzpVXXhm9XxtwyaXBWVPNv3L0NPe/sp3y8gpq1l8MPbsX1etDezv/cdF53Pq93/Dn797AtldPsPZNNbS1XZr0kDbmPk/r9p7gyW87Sy+UBpK/x398/Dc01Q1xw3vbuH37NsobzqWtbXPKy+zsDfL86/2EwhG+vuN1puwXgoNDEe7ZFYrWhhXy/+fcnU/xUrCEiekpPvw7b2HVsgp+0vVrIsZ5Ttafu5I3Jga4yn3P7T/Jd/fu4FSkmvLAMNdefSWDNRu46ZEwl5fspeK8Njafc+6ceAZr+/jRwd3sPjXNviGTlZrANua+ptm27KVneWN8hFXnXZx4xuIcy+UopNip+T4EvGJv/xy40Y4sWg9sAl40xhwHRkSk1fZv+WPgZzHHuCOMfh942vaT2QZcIyJ1tonqGrutqPh8Eq1qK/QQQZc7DFgEemMWvBORaD+YVcvKCzqhVCG4qyJXpqhyT6eX/lJSHvBhjNOv5a1rlke3u9P6f+kJpx/F9q5+WhqrWFlTRl9wnPFQeEEjkFzuUOpVy8qpLvOzobEKf4kQjpg5TR3xoyxGJpymkd5BZ4X2ruDCl0AodtduPge/T4gYZ7LAdJ7j+OfJnS/qnRsa5n2Pv3H6THTyu9V1lWk1Ibmdue95/ABffrormry4imXCx/POqaG731kT7rL1ThLwwbc24RP4zicvIxDTjALQ3OCUq68dG452Jq+vKmWXOY97wx9A1ibu93f89MSshRKzFXsuRz929gY5eMKZduDjBZphPJd9YO62Q6L3AFcCfwtgjHkVeBh4DfglcKsdgQTwaWArTsfe13FGIAHcDzSISBdwG3C7PdcgTvPUDvvzObut6LgjkYphiCDA3uMjCM4Ikfjp7d2RR0ut/wukPwoJFv/Q6IUoD8x8QF6ydnn0tpssPLbnODdt7eDXXf28a1Mjq+sq6AueYSw0HU0aF6LRdnZ05zTa3XeaSMRwcmQy5YrIuw4PzZr4bd/g4ktg/CU+1jZU0nNqLOUoomTcD+eNK6vnfY87M3Y7ZYX7uqbS0T3AVHimObHEJ9EPI18RdaZ2+0ttaKyKJs1b1tURMU6s8SOumpZX4BNn9md3NFXsAorrGqpIZL7VxotV7GKrhUo4c/Zpaoz5xDz77gLuSrB9J3BRgu0TwEeTnOubwDczv9L8cN/kxdKJt6N7INpZKH7oaJOtgcnJCKQi5846fPQsJ+RaaspsAvOm2rJoR3CAHYecRMJAtM/KqmXlDI5V8tKRIVbWlKXsMJ2I+2EyHgrPGm0BqYdCxy8SeUH92fc3KEYtK6ro7h9lPDSd1jDqRBqqSqMdUhOJRAwnhidYZcuM1XUVvHgo9XfI1pYGSnxOjVl5wMdnb9hMcNxZSTw4HspZk8dCuR15q8v80UVB3fLxaPDMnASm1O/j3OVOEud2bI0dWbSuoYqTCT7nc7Wqdi65/0ehqUjBkq7i+DRdAtyWmIMnRmYvl14grS0NlPt9TE3PffO5H0Crltj8Jp29QR749SEAPvfoa7x5Va0nCpJi4A4/v2TN7OertaWBMr+PyZhv21964gDXvWUVx4bOUB7wRavdF8IdMr2rd4ibtnbw2Rs2U+qfu3J1IvEfFiM9uxf8+F6wfkUVvzrgLHa50GHqrvqq0nmnCegfm2Rq2kTLijX1lYxMhPni4/t59/krk/7/bGmu46oLVvLcwX6+e8tlRft/5rerzO/pO81NWzt48JbWmQRmyElgVtdVzDqmuaFyVgITO0KnuaGSk0keKxeraueS+3/0/Sd3zNsHMJd0KYE86OwNsueIM5T0Tx/YURRDbrc01yWd3t5dhfTgydGiuNZ8iV3ELX7RMzW/Y3aujMa4WYndWZyv2LRiptlmOsLoZJhwxNA7MJ5RDcy+N0Zm9RkIjocW1CdpKTT/rV9RHV3EL5PnGGwCM08NjLsGkltbG7LrYd37TFfKprwSn9BUV1HUr0Hf0Jk5fVOabMLSZ2tgYqfJAGcuGIA6222gttxPic95DdwFRReLLc113LChtGCvoSYweRA7F0WxdE6D5IW4u0LwM/tOpiyEFhMvtkMXg87eIPc+7UwN8NDOIwk70X7mPefNmizushZnxMJkOJJRH5hEr9VSSEoWYv2KmZqtTCeHa6ievwnJnQPGrbU9ZWtrIiZ1WTcwFpo1a3IxSvQ+qyz1U1cZiNbAxM863Nwws4wAOH2upiMwFppetJ3GC0WbkPIgvs292D8YRybDTgdfvDu1eia82A5dDDq6BwhHnCYit+Yq/rmLf26XVwb4/KPOcOpMOrbra5Va7IKjmSYw9VVOn5RIxODzzR2RuKPH6e9ycmQCWMYNb1nFA/93CEPqLwGDYyE2NlYn3V8Mkr3PmuoqOHhihOmImZPArLXrIO05ejraPyu2PF2MncYLRROYPPBaYXv5hhV8NdDlmYQrm7zWDl0M3G+pqd4vsc/txNRMIZ7JMOr486m5VtaUUVlawnhoOuPnuL6qjOmIYXhiataabuDUvH3L9hm79Xu7nKa7dfV89G2reXhnH1+58dJ5X5/gWIj69cVdAwOJ32dNyyvYfrAfgOUVs2MITzvJ/FN7T7D94Ck+e8PmJdFpvBA0gckTLxW2Xku4VGFl8n4pD5REF2RMtfK3yoyIsH5FFa8eG854+gZ3CPDAWGhOAhPbZyy2pvbP372Bh3f20Ts4lvS8kYghOB6aNcTYS5qWVzIWcpLw2rgamCNBp9+M24zm9s9a7J3GC0FLDpWQlxIuVXiZvF9W11VwamQy5aSBKnPuQrK9A+MZzZTq9uMYHAuxoRF2HBrkxZ4BWltW0NrSEP2gjq1529DoLK75i93HuOWKloTnHTozRcTMdHT1mqaYkUfxnXgT1UjOWS1cZYV24lVKFcTqOqevQLFM7rjYdPYGecH2UbnjkZcz6ozvJjADoyE6e4P8wTee555tB7hpawcAv7V6OefUls0Z+fV7F5/L7r7T3PXYawkfd3DMGQbfkMXFC/OpafnMFBPxfWB0lu780ZJDKVUQJXZyJHcki8qu2NGP4SSdq1NxE4zBsRD73xieM/OqT2BDgpl619kRUFuf6+E7Hb08eEtr9JpaWxqiTU+FWsX4bDUtr4zejk9gQGuw80UTGKVU3nX2Bnlsj7NW6xcfP8Db19VrgZ9l6Xauns9ME9JkdI00mGky+ulvjrKyZu6El10nR4GZkTc/3tXHD3ceITxtKAv4+OurNs46v9fM14Sk8kcTGKVU3nV0DzDt1g5Els5Q/XzKRmf8Mn8J1WV+BsZCrLHDg8+pLeOrN21hS3MdIxPhhAvUuksFTEcMAb8PMUQn1ZsKR3jJTuzp1QSmrjJARaCEcCQSnYVa5Z/2gVFK5V3sBGGlS2yofj5lY3I/dzbe122tSlmgZNbK3jXliZtQPnP1JgDufP9mLmleHt0X8Puio4+8msCICPXVpQRKfOw6PFToy1myNIFRSuWddnT0DjeB6TrlJDDDZ5wVxqcjhrHQdMIaGIAb37EWgKHxKY4NzfRzuvsjv0V5qVOzU+b3Zu1FZ2+Q40NnGLez6y6V2cqLjTYhKaUKQjs6ekNDVSnHT09wYthJQoYnwhhjGJ1wlhxJlsA01pSxcWU1Hd0DDI2HqCn3MzIRpjxQwuBYyLO1L8CCVj9XuaM1MEoppZKqryrl1Ogkh/rHKfX7mI4YxkPTDE84NTG1CZqQXK0t9bzQM8DuvtP8ka2R6ekfY3AsRJ2HExhdN604aAKjlFIqqfrqUk6NTBKajnDRubUADE9MMZKiBgacD/qJKWdq/fPPqaGhqpSe/jEGRr07Cy9oE2ix0CYkpZRSScUmGlua69h1eIjhM2FGbA1Mok68rtgROnc88jLrGqro7h8jOB7iQpsMeZU2gRae1sAopZRKqr6qLHr7krXOB3a6NTD73hiJ3p4KR/D7hO5TYwx4vA+MKg6awCillErKrYFprCljtZ3A7fT4FCOTbg3M/E1I5YGZviIXr1lO/+gkoXBEExh11s4qgRGRj4rIqyISEZG3xe37RxHpEpH9InJtzPYtIvKy3fdlEWc+cREpE5GH7PYXRGRdzDE3i8hB+3NzzPb19r4H7bH6H6GUUlnkJhoV/hKODI4D8TUwyZuQ4vuKXLFpxZzzKpWps62BeQX4MPBs7EYRuRC4EdgMvA/4moi4jaFfBz4FbLI/77PbPwkEjTEbgS8BX7DnqgfuBC4D3gHcKSJuw+MXgC8ZYzYBQXsOpZRSWXJs6AwAh4Pj3PbwbsCZCyadJiSYPZne+hXV0e1e7sSrisNZJTDGmL3GmP0Jdn0A+IExZtIY0wN0Ae8QkVVArTHmeWOMAf4b+GDMMd+2t38EXG1rZ64FnjDGDBpjgsATwPvsvqvsfbHHuudSSimVBQdPzvRjCU87I4qGJ8KMTIQJlAhl/vQ/RpobKrFreHp6GLUqDrnqA9MEHIn5u89ua7K347fPOsYYEwZOAw3znKsBGLL3jT+XUkqpLPjtjY2z+rGU+322BsZZRkDcjCQN5YESzl3m9KPRGhh1tlIOoxaRJ4FzEuz6J2PMz5IdlmCbmWd7JsfMd665FyTyKZymKxobG2lvb092V88ZHR3VeIqYxlPcNJ7U/u7SUvYNTnNBfQlf2z3J/p4jTEUMfhNZ8GOVRpwZfR995nk2r0g9k4e+PsWtkPGkfPcYY96TwXn7gDUxf68GjtntqxNsjz2mT0T8wDJg0G5vizumHegHlouI39bCxJ4rURz3AfcBnH/++aatrS3ZXT2nvb0djad4aTzFTeNJLfZsPzz0LJXLKwmFI6z0TdLWdkXa5+nsDXL48ecB+MruKR68ZUvKuVT09SluhYwnV01IPwdutCOL1uN01n3RGHMcGBGRVtuH5Y+Bn8Uc444w+n3gadtPZhtwjYjU2c671wDb7L5n7H2xxyarEVJKKZUFtRV+O5FdmJqy5COQEunoHsApumfWEFIqU2c7jPpDItIHvBN4TES2ARhjXgUeBl4DfgncaoyZtod9GtiK07H3deB/7fb7gQYR6QJuA2635xoEPg/ssD+fs9sA/gG4zR7TYM+hlFIqR2rLA9Fh1KlGIMXTNYRUNp3VUgLGmEeAR5Lsuwu4K8H2ncBFCbZPAB9Ncq5vAt9MsL0bZ2i1UkqpPFhWEeDAyRGmp828c8Ak4s4L09E9QGtLg07Fr86KroWklFIqbbUVAYbPhIlEzIJrYEDXEFLZowmMUkqptNWW+xm2CznWZpDAKJUt+u5TSimVttqKALYf7oKbkJTKJl3MUSmlVNpqY5KWTJqQlMoWTWCUUkqlrbZiJoGp1gRGFZAmMEoppdJWWzGTtGgTkiokTWCUUkqlTZuQVLHQBEYppVTalsU0IekoJFVImsAopZRK2+waGG1CUoWjCYxSSqm01ZT7EZm5rVShaAKjlFIqbT6fUF3mp8QnVARKCn05agnT9FkppdSC1JYHKPEJ4lbFKFUAWgOjlFJqQfwlgjGGzt5goS9FLWGawCillEpbZ2+QI4PjnD4T5qatHZrEqILRBEYppVTaOroHomshTYUjdHQPFPaC1JKlCYxSSqm0tbY0UBbwUSIQ8PtobWko9CWpJUo78SqllErbluY6HryllY7uAVpbGtjSXFfoS1JLlCYwSimlFmRLc50mLqrgtAlJKaWUUp6jCYxSSimlPEcTGKWUUkp5jhh3PNwSIiIjwP48PNQy4HQeHmcF0J+Hx9F4MqPxZEbjyYzGkxmNJzO5jqfZGNOYaMdS7cS73xjztlw/iIjcZ4z5VB4eZ6fGk9HjaDyZPY7Gk9njaDyZPY7Gk9njLKp4EtEmpNz6RaEvIMs0nuKm8RQ3jae4aTweowlMDhljFtUbSOMpbhpPcdN4ipvG4z1LNYG5r9AXkGUaT3HTeIqbxlPcNJ7iVrB4lmQnXqWUUkp521KtgVFKKaWUhy2KBEZE1ojIMyKyV0ReFZG/sdvrReQJETlof9fFHPOPItIlIvtF5NqY7XeJyBERGS1ELPYashnPL0Vktz3Pf4pIicfjabfbXrI/K70aj4jUxMTxkoj0i8i/ezUeu/0PRWSPPc/d+Y4lk3hEpMHef1RE7o07l+fKgxTxeK48SBGP58qDZPF4tTxI8frktjwwxnj+B1gFXGpv1wAHgAuBu4Hb7fbbgS/Y2xcCu4EyYD3wOlBi97Xa840uknhq7W8Bfgzc6PF42oG3LZb3W9x5O4F3eTUeoAE4DDTa+30buNoD8VQBvwP8BXBv3Lm8WB7MF48Xy4P54vFieZA0nrjzeqU8SBhPPsqDRVEDY4w5bozZZW+PAHuBJuADOE8a9vcH7e0PAD8wxkwaY3qALuAd9vgOY8zxPF7+HFmOZ9jexw+UAnnv9JTNeIpBLuIRkU3ASuC5nAcQJ4vxtAAHjDGn7P2eBD6SlyBiLDQeY8yYMWY7MJHgXJ4rD1LE47nyYL54ikEu4vFSeTBPPDkvDxZFAhNLRNYBlwAvAG9yCx/7261ebAKOxBzWZ7cVnWzEIyLbgJPACPCj3F91cll6fb5lq1j/WUQk91edXBbfbx8DHjL2q0qhnGU8XcAFIrJORPw4Bdya/Fx5YmnG4xnZiMeD5UEqXisP0uGl8iCZnJcHiyqBEZFqnGrRz8R800h41wTbim44VrbiMcZci1MtWAZcldWLXIAsxXOTMeYtwBX25xPZvcr0Zfn9diPw/WxdWybONh5jTBD4NPAQzjfHQ0A429eZrgXE4wnZiseD5cF8vFgepMNL5UFC+SgPFk0CIyIBnCf7QWPMT+zmEyKyyu5fhfOtA5xvjLGZ4GrgWL6uNR3ZjscYMwH8HKcaMO+yFY8x5qj9PQJ8jwI1LWXz9RGRiwG/MaYz5xeeRBZfn18YYy4zxrwTZ72xg/m4/ngLjKfoZTsej5UHSXm0PEh1Lq+VB0nlujxYFAmMrTa8H9hrjPlizK6fAzfb2zcDP4vZfqOIlInIemAT8GK+rjeVbMUjItUxbzg/cB2wLx8xxMpiPH4RWWHPGQBuAF7JRwyxcvB++xgF/LaVzXjEjgKxIxT+Etia+whmyyCeopateDxcHiQ7j1fLg1S8Vh7Md67clgemgL23s/WD0wPaAHuAl+zPdTi9oJ/CyfqeAupjjvknnNET+4Hfjdl+N843zIj9/S9ejQd4E7DDnudV4Cs4mb1X46nC6ZnvxvMfJBjN45V4YvZ1AxcU4n8n2/HgFLyv2Z+8j3A5i3gOAYPAqP2/v9Bu92p5MCcej5cHieLxcnmQ8P1m93mxPEj2/5PT8kBn4lVKKaWU5yyKJiSllFJKLS2awCillFLKczSBUUoppZTnaAKjlFJKKc/RBEYppZRSnqMJjFKq6InIoyLyQKGvQylVPDSBUUotKiLSJiLGneRMKbU4aQKjlFJKKc/RBEYpVVREpFJEHhCRURE5ISJ3xO3/uIjsEJERETkpIj8UkSa7bx3wjL3rKVsT84DdJyLy9yLyuoicEZGXReTj+YxNKZU9msAopYrNPcB7gY8AVwOXAO+K2V8K3AlcjLP+zQpm1o45Yo8D2Iyz6vLf2L//FfgkcCvOVPT/BnxDRK7PVSBKqdzRpQSUUkVDRKqBAeDPjDEPxmzrA35qjPmTBMdcAOwF1hhj+kSkDacWptEY02/vUwX0A9cYY56LOfbfgfOMMdflMCylVA74C30BSikVYwNODcvz7gZjzKiIvOz+LSKX4tTAvBWoB8TuWouT6CRyIVAO/FJEYr+1BXAWolNKeYwmMEqpYiLz7nRqUrYBTwKfAE7iNCE9h5P4JOM2l78fOBy3byqjK1VKFZQmMEqpYtKFk1C0At0QTVouAl4HLsBJWO4wxvTY/R+OO0fI/i6J2fYaMAk0G2OeztnVK6XyRhMYpVTRsM1F9wNfEJFTwDHgs8wkI4dxEpG/EpGvAm8GPh93ml7AANeLyC+AM8aYERG5B7hHRAR4FqjGSZQixpj7ch2bUiq7dBSSUqrY/B1OJ9xH7O9XcBIOjDGngJuBD+LUqtwJ3BZ7sDHmqN1+F3ACuNfu+mfgX+z5XwWewBmx1JPDWJRSOaKjkJRSSinlOVoDo5RSSinP0QRGKaWUUp6jCYxSSimlPEcTGKWUUkp5jiYwSimllPIcTWCUUkop5TmawCillFLKczSBUUoppZTnaAKjlFJKKc/5fwSpFrjg842YAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "df_monthly.diff(12)[period].plot(grid=True, marker=\".\", figsize=(8, 3))\n", - "save_fig(\"yearly_diff_plot\") # extra code – saves the figure for the book\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If running on Colab or Kaggle, install the statsmodels library:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "if \"google.colab\" in sys.modules:\n", - " %pip install -q -U statsmodels" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "from statsmodels.tsa.arima.model import ARIMA\n", - "\n", - "origin, today = \"2019-01-01\", \"2019-05-31\"\n", - "rail_series = df.loc[origin:today][\"rail\"].asfreq(\"D\")\n", - "model = ARIMA(rail_series,\n", - " order=(1, 0, 0),\n", - " seasonal_order=(0, 1, 1, 7))\n", - "model = model.fit()\n", - "y_pred = model.forecast() # returns 427,758.6" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "427758.62631318445" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_pred[0] # ARIMA forecast" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "379044" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"rail\"].loc[\"2019-06-01\"] # target value" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "426932" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"rail\"].loc[\"2019-05-25\"] # naive forecast (value from one week earlier)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "origin, start_date, end_date = \"2019-01-01\", \"2019-03-01\", \"2019-05-31\"\n", - "time_period = pd.date_range(start_date, end_date)\n", - "rail_series = df.loc[origin:end_date][\"rail\"].asfreq(\"D\")\n", - "y_preds = []\n", - "for today in time_period.shift(-1):\n", - " model = ARIMA(rail_series[origin:today], # train on data up to \"today\"\n", - " order=(1, 0, 0),\n", - " seasonal_order=(0, 1, 1, 7))\n", - " model = model.fit() # note that we retrain the model every day!\n", - " y_pred = model.forecast()[0]\n", - " y_preds.append(y_pred)\n", - "\n", - "y_preds = pd.Series(y_preds, index=time_period)\n", - "mae = (y_preds - rail_series[time_period]).abs().mean() # returns 32,040.7" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "32040.72008847262" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mae" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAADgCAYAAADrL6QAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACqV0lEQVR4nOydd5gb1dX/P3fU6xb3umvjhhsYY2zTbDD1Teg4EHoPJKQBecH8SCAhEEgCSUiBECCEBEIPLRgwYNNs44Ibbrj3ul1dmrm/P2ZG2ySt5NXIid/9Ps8+uzuaGV2NZu73nnO+5xwhpaQLXehCF7rQhS4cmlAO9gC60IUudKELXeiCdegi+i50oQtd6EIXDmF0EX0XutCFLnShC4cwuoi+C13oQhe60IVDGF1E34UudKELXejCIYwuou9CF7rQhS504RCG/WAPoNgoLy+XQ4YMOdjD6MIhjHA4jM/nO9jD6MIhgK57qQvFwuLFi/dLKXtkeu2QI/pevXqxaNGigz2MLhzCmDNnDlOnTj3Yw+jCIYCue6kLxYIQYku217pc913oQhe60IUuHMLoIvoudKELXehCFw5hdBF9F7rQhS50oQuHMLqIvgtd6EIXutCFQxhdRN+FLnTh/zTmb9zPL99Zw+ItdQd7KF34D8biLXX8cfb6/8r75JBT3XehC/9nMW8ezJkDU6fC5MkHezT/8ZBS8ocP1/PwrK+QwJOfbuK56ycxvqriYA+tC/9hWLCphsueWEBK03DaFZ697r/rPuki+i504VDAvHk6wadS4HLBBx90kX0GLN5Sx/yNNfT0u3hx8TYWbm62zhIpjfkba/6rJvAuWAspJe+t2sOMV5eTUDUAkv+F90kX0XehC4cC3n4bEgn970RCt+y7iL4VFm+p45K/zCee0ifsoNvOjVMG8/TczcSSGhIY2Td4cAd5EGAufiYN7vZfRV5WYvGWOl5ZvJ3FW+tYu7uJfuVuIIkAHHaFSYO7HewhFoQuou9CF/4LsWBTDZ9vquXYw7rrk3Pb6mpTphycgf2HQkrJk59sTJO8AK46rppbTh3OqSN78+/lO3nqs80s3lzHScN7HtzBlhDm4iepajhsSjp08X+Z/BdsquHix+ejSf3/G6cM5rbThvONP89jS02Ex684+r/umnQRfRe68F+GxVvquOjx+UgJv1XW8ZtvHMHZe/eC0wnHHQezZ8OyZXDssQd7qP8R2FYb4c5/reCTdfsRQid5p11hyjCd0MdXVTC+qoJdDTH+Nm8zN0wZTNDtOLiDNrB4Sx1zN+xvXtAVGS8u2ppe/MRTGlc+tYAhPf3YP5/PMVuW82D1Edxw+6VMO7wnX2yt/z9B/o9/vDFN8jYBAbcDu01h6vCe/Ob9rxjay39wB3gA6CL6LhSGLsFXh7DaGpq/sQZpTESqJvne80sZ9fK/cYw4kn/d8Seukt+l7Ac/gAkT4Oij2x2/aHMtn2+qPeQn7MWba/nTnA18un4/dkXws3NGMbJPMOtn/85JQ5j55W7+Pm8L3znp4PfLWLyljosfn0dSlfzBvr44QsFPP9Wf32nT+Jd7AC8v3o4AhABFCMZXlWOfP58/PTcDm5YiOfd5LtU0vj1wFEkjRu1y/PeJ0fJFQzTJ5xtrUIwFYUs3/Yk164jNfZFNbygc8Y0zD+5AC0QX0f834D+FXD/7THcJS9kl+MoC0xWaSOnqXCtU3ObEY1qmV4wsp/qX6/nDgIv4zYcbeG7cdXy8bg2u6dPhiy+gQn9/KSUPzlzDYx9vRHBoT9iLt9Rx8V/mk1QlioDfXXwUZ4zuA8DR1ZWtdzaer9FTpzJ1eA+e/HQTVx9Xjdd5cKfHVxZvJ6nqK7qk2kkBWCgEd90FjzyClBJ59z0smnYDx1xwOTedNIQVOxqY3D/AUQs/IPHmL3GqSf04NcV3lR38of+x6bSy/0YxWk60mF//UFtGKKHyqwvHsqcx3rwgfOABjphxJ0cg0eY+B44X4bzz/nPm5g7QRfT/6Zg3D6ZNg3j84JPrM8+Aqup/dwm+MmLmil2tXKEPvrOaP3zzKHquXFK0CWHcgHIAJh/WjVtPG874lfNAanw+cDQAe5x+/vrdB7jxx1fDWWfB//wP8RNO5Cd7grywaBsAEoglNT5au/fQmbBbYP7GmjRJCmDDvnDmHf/yF7jxRtA0cLu549nXOGNtiuc+38p1Jwwu3YDbYEtNmDeX70z/b1NE4QKwefPgrbdg5054/XWoq0OiXw80lftmPYrc8gFi+SmcuG4dLFkC+/fjHDgQzW5HpFLYpMZJZx9P8OjDufDRuUj+O8VoWTFvHpx0EiSTaE4XS79xL9PPOoULxw/QX5cSfvUrmDFDv26ALZWC88+H4cNh40b93nE6C5ubi7xAWLylDpu/W+9sr3cR/X865szRSV7T9N8Hk1xrapr/FkK/SbuQxpc7GnjRIFLFmBUWbqrj5u/+iX/8807sqSS4XCgfdm6xFkvpi60pw3roJP3ox2gOB6uqDkcR+tz068YKTvnGlQx59gnkZ5+Bw8m6i+7jgrNO4d8rdhE3VOYvLNzGmWP6cHifQ0ttPqZfGdDe/ZqeYHv0gFdegXfeaT4oFmPEoo+YNPgs/vLJRi6fXIXLbiv52BsiSa55eiE2RfDzc0dz12tfcuWx1YUtyMx0SzMT48QTWTPtbKruvROHmiJps1N34830/eQD+NOf9H0UBR56CH7wA5TPP4fnn4e//hV+9CPGf/wxQ3r6SWqSh6YfcegsDl95RZ9XAWJRzlg3n7NO+47+fyIBN90ETz0FJ58M8+ahxhOkFAXnDdcjXnsNksnmffOdm+fN08+XSByQ8TZvw37+vXwXlT4nmoTFW2qZv7EWm6+iX7Zjuoj+Px1TpyKFgkBDahriyCMPzjhUVY/vTZ0KsRjMn6+vYv+vwyCOL4eO4+IVgjKPg/vOG83W2iiTBneju9/J0uvfwJGMI4BUPM6uf82kXyeIPprQid7jNEjoo49QJkzgyZumMn9jDSP7BnlszgZe/TTBbQgUJM5kgj/u+5g+02/lkolVzN9YQ4XXyW/f/4pz/vAZp4/qxVXHDTpkJvC9TfrkfcnEgZx/VH/9c5kTbCym7xQM6hP500/rk66qwgsv8P0XruGbL9fy3eeW8K0ph1l2TRZvqeOtDQkCg+rS77Hy5Xf49MlXqOgxnPvuuZojB5Rz12tfUuEt8FmbM6eZhGw2dk2ewnR1NEMvvo9JW1ewoGoMJ51/Lt/p2x1WrNANCSF00lMUnXgmT4bLL9c9itOmMexbv2GXt6w416OtRZtMwr//DZ98olvLxx3X+ffIB2vWACCFQEjJVQv+he3O2/Qx/fjHsGmT/vuee+Dzz1nx99f4WVMPHv7pTVRPnAhXXqlfL6czf8PHNN6kLNgz+u/lO7n5uSUYEh0UAWUeh/6/yH5cF9H/h2Nx3xGI3kMZtncTrlSSLb95DOXoE9jTGOOLrfWtREVrXn2XupmzqDjzVEacf3pxB/LRR7BnD+t+/AvmDDySq645A8eNN+qEbyu91fMfgXnz0KaehEjEGWazc9K3f8edt1xNnzJP8z6qim3jUgQYblPJp30P56JOvG00qRO922GDcBgWLYLbbkurxwGOO6w7D21fRXzu8zjUFAqSPu++CWedxfjrrmP86tUwdSo9zx/D9c8s4s3lu3hv1Z5DpjLcW8t30q/cw8/PHY0Qxgz48svNJC8E/PCH+gR++eX6ZOvzwW23Meamy/BM+RHvrdrDx+v2WaJjWLy5Nq0heH3jPL415TAGrPyCc390BcM1jStsdracOwb34NNx2hUaY8nC3mDqVJ2AVJWU3cH3d5fjGqLwZdUolvU/HIddYcbgbuCeqluViURmsjr6aL1Gw2mncc8DN/DeESfBOKVzXsWWCy4hoKwM6uvTL8uHH0acfjpceilUVsLy5dbEwDduhHfeQbvwQp6JVbKqvB/3u7fDY4/BH/+o7+N0wplnphc/rupRfPG7T1iyrY7q44/X9znvPLj11vzHN3WqPmemUgUtENbvDXH7K8sZt2M1k7au4POqMUy58hyOG9KdS5+Yr4twsqCL6P/DMX9jDec07WfW0ElsrujLD2c9x7U3/ZIPhkwE9EVc33I3R25fzcOP3cJQNUXi6d+z5oU3ikv2L7xA0uPlrI1BYtt2sva4K/n167+Cxx/XraL/g9jxr5n0SeiWukNNcffyV+kebHEtpIRbbqH/sgU8M+FsejTs58yv5pL4clWn3jdmEL3HYdMnzVQKTjyx1T5Ou0Lw5BO5bMt9TNyygoUDRvG9sgZOePIh3XISAtxu6n/5NwReJEUQfP2HoD6S4NN1+7n2+EHNJL9ype6GBn2SdTrhdOP5MK1XgD598F10Ec/s+jEfDR7P/OojmL9xaNGvye8+WNdCaCf5y3ureONvd+BSU/oOaoq6mbPg/NMJuu00xVKFvcHkydRPOg6xdBlXn3cX7uOO5d1vjmNzTaR1RkjVZN11nCtefNxx8MADdP/e9/jm+/+Az17pnFbo/feRsZi++JUSMWwYdTY3wXmfYEMiAe3jT7C9+27zMW43fPhhp8m+VUbM/feD3c5j532XXy5v4genDMV+yjAoC8LDD+vPr6q2sriH9QrgddpYurWe847tpZ+00EXI5Mlw2mn6Aur553Mfa3g+No2awHc/3ssP57/OVXNfRkhJ3O5gy7ljGFE1lGevm8TE39bvzHaaLqL/D0dPGad/4z6e7VHF3yefz1W7v+ChDx/jxP6jaHT7kYDfaefyD/+BU9UrNzlTSRY8/SqVp06hZ8Dd+UEkk8RffIl3B00g5tDP9/LwE7l57MdUz5ihu9p69Wp1yP+FghsvBQ7jewgkEk0odP/oA/je9+C3v9XJ5KGH4JFH4Ic/ZNT3f8z8DftZ/52LOevZ3/Lh5d/g5CljDuh9owld7Odx2ODjj3VrI4Orc9Lg7vy+ahRL++kWnPe6SeBNwK9/rU9i0SgnLnwPx4Dziae0AxN8/Qfi3ZW7SWmSr4/tq29YuhROPVUni+eeg82bs0/O06ez+/1PmPD47xm/YzXxeS+y5dwxQPHS7d5YtpOP1+3XdRwSKlMR3pvzMJX7t6IhEEhSNjsVZ54K6HnchRL94i11NOyJ0dPfnWUDRvLPU4bSze+im9/V/nlsudDJhlAIMLqgdVKIWztvEZWAiiBhd3DtqIuJJVWeXTg/rR/4x48f4/odn+v6ASl16/+ddzpF9Iu31PHNv8wnmdIY0LCXD//6NK8c83V+ubwJgMc+2sAJQ3sw/oIL9PfN4OWwKYIj+pezZFs9BIx7oqmp8MF4vfrvYcOy7zNvHtpJJyHiCaqAmYbD3hRUurUUI9Z+AZzO+KoK1FDN7myn6iL6YsCiFAtNkyx862OmA8OnTeZvV5xAxYX/QE6cyI8/eoo7zvgeFakoz896jIrVn6MKBUVqKEg+dvbigV/N4ewj+tK7zK3fwAdAuFJKXn/o75xbX8eyC0/DZVdIqhoagpuPu5Y3Vn8H5aqr4MQT0U6cwmc9h/LYnA1EP/6USVtX8KvBR/Cje64+5Mj+46/28epuyQ+QfDj4aP5ywkX8xrWF3n/4g65e7tULXn0VvvEN+PWvGa8ojK+qIPHS3xFHHkH4ez9g+5w36V/hLfi9Tde9x2nTQyrjxunx5jYYX1XBs9dNar3gOv983S1pCDx7/v1JPjplN8+H/VSef/Yh8T29tXwXAyu9jN66Eu7/B/z977oL+IMPYEjHhN2nug8SndTcUk1Ppnkjx3ywcHMtt724jGOqK7nltKHMeuVdbnvyPjwb18M//8nGxhSDvn0V8WOPT3vkAm47jdHCXPfzN9YwLhEj4nCBlCzcXMcxgzqxiJs6FYRAkxLhdCIOVIj70ktUznyD1w8/kbU9qpk/cAza+GMY06+MKxTBhM3LmT9wDF80VBLpPYGbXS5EPIGQGuLNN+GOO8Dj6fh9MmD+xhoSRkbMjfNeQBMKb51xGSKqk2c6bfCk3F6OIweW85ePNxJT7Ljt9gMj+rCRBdLYmHWXHf+aSd94PB3223v8SfS88VrE9ddDNIqQMm++6SL6zsJYdZFMgrPziuqWeHnxdmyrdDfvuZefDlUVUDUecdttTH/wQY52J+m7eS2ufXvgoYdYVz2K2D9fYOwbz/JIwwKu7nsGzy/UVeCPfbSh4Fjjgk013PvWKq549p9EPX5u/+0P+Z/9MeZvrKG6m5dHPgjw6ogTufCdd5DvvAMIBpT14kGp0bdxHxJIzH2ef48fwPibpxflmvwnYG2tym8+WMRN+74EYPddP+O2kyfRu6oCAi7dkgfd0r7pJv23AefokdT/8DbO+vUD3H7no/SffnbBVc/SRK8m4fPP4Tvfybpvy7g9oN+b5iQ2fjw8/ji9XnmF7wPqon/BsdWly+oo9gL5pZeIvfoaJ60PM9mbQMx4t1lk9re/5UXygC6AtdlBLSyGCuifacoUPZxit8MTT8A3vwmLFlH773f5/Z5y+o84ksevGE/5ay8z/qffwiElzJwJ06bpfoPNqyj7xS9g8WIYP56A205TgTH6SYO7YUvGqHcHipMON3ky+4eOJLZ7H93feBnPgXxf69ejXnMtK/uN4Lav/RDV7tA7wX19pF52d1w/5m+s4Yf9y/hsfQ2//0Tw0YX3MmnrCjykuPmTfyIuukhXyjsKr1xoXoP+DXuZvuJ96i69ih9cNY2FT+hWfqvrlMPLMW5AOSlN8uXORo72+ztH9A0NWXd5v9fhXG54DON2Jx9fdBMXXjodBg/W00L/+lc9fTKf+1NKmfMHGA4sbfHTCPwAqARmAeuM3xUtjpkBrAfWAqe32D4eWGG89gggjO0u4AVj++dAdYtjrjTeYx1wZUfjHTZsmLQS8zfsl3e//qX84+x18vGPNsg3zr1earpzSSaFIrf/6MdFeZ/6SEIe9bP35FtTL5Sa3y+lpjW/OHu2lEJIabyvfPTR1gf/7ndSgvzg1vtk9e1vyarb35KD73hL/uHDdXm//6LNtXLQHW/Jobf+Sza4fHL/+Re12ycUS8oXzrpOqsY4VJD7q4bI0LDD09ckhZCbb/l/B3gVcmDuXCnvv1//XUI89/kWedgdb8ljf/G+jJ19rpT9+7f+bu6/X0pF0b8Xm03/vy2iUVnbr1ruCHSTDx1/qbzoqofkos21eY9h5opdsur2t+SmV2fq7/Paawf+ge6/X2rGeFWhZB5vgfh8437521lrW3+md9+V8vvfl/Kpp6T87DMpf/97KV0u/Rp5PJ3/Hp97rvl5AKnabM3/Z/secmDtN66WEuTeV14vbBz3399qHBKktNulJoTUQKoImezRU8pAQErQnxOXq/Xnr6+Xsnt3KadOlVLT5I1/XyRPeWhOYeOQUm7tUy3fH3l8QfdWzvNNOV2u7l4ldzdECz84GpWR0WNlvccvz77tH/L1JdvlHz5cl3Ns9/17lawy5q/q29+Sc753t349Tz9dyvvuO6B7Zuidb8t3TzhHqg6HlFu3Sin1ua6jsbTEnsaorLr9Lfn4RxukHDBAyiuvLHgc8qij9M/y8ssZX47EU/LEX34otwV6yDXdqzLPETfeqPPAJ59IKaUEFsksvNihRS+lXAscCSCEsAE7gH8BdwAfSCkfEELcYfx/uxBiJHAxMAroC7wvhBgmpVSBR4EbgPnA28AZwEzgWqBOSjlECHEx8CBwkRCiErgbOBrde7FYCPGGlLK5t2QJ8dbynXy3RWoDwD079rZQVMO8AaO5sAjv9cgH66iNJJiS2IMYPVq3SkzMm6f/L6UeC65rczluvhlee40pj/2CqiseYXOwJ3ZbYav6+Rtr0CScsPkLgvEwbx19Cl9vs4/PZUc57VTiM59Jx9Zm33Y/F47vj2aoam1IwrM/RsbjCJfrwC9IS7S0mtzu3MKgIlqNH6zew4xXVwBQ1xjFNvtD+Mb01t/N1Km5VcwAbjfLz7ucKX+4lx98+izx+S8V5PUwxXhlC+bqG0444cA/1NSpCKcTYjE0mw2lk7URFm+u5cGf/JVTv5rPpw4XfQc66fP5x7rCORuKUXzpww/Tf6aEgu266/QCT7m+hxyIjNL1E00DBtOjkAPN9xFCvw9mzKDx3+8QWDDPmCck8Z69sQd9MH++7n5NpVp//rIyPRvg5pvhrbcIuAcWLsYD3IkYSsBftHCMLCsjEI/QFEvRq8CyC9u+dj4DvlzOn0+9jt/dfi7V3X0dHnP6qN48M6+5s+D66VcwJbpTt2bfe6/jZ78NNE0ydfWnnPLZmyhnnw0D9KI47bxeHaBnwE3/Cg9LttVBIFB0172UkjteXc7W2ggVTkHjMcdkDn/+6le6buHqq3UdSg4oOV9tj2nABinlFuAc4G/G9r8B5xp/nwM8L6WMSyk3oVvpxwgh+gBBKeU8Y/XxTJtjzHO9DEwTulz2dGCWlLLWIPdZ6IuDkuPzjTXc9tKyVvmL359SzTd3fsHqnoOYPXg8NqkxYefqTr/Xuj1N/G3uZi4+egD+r1bD6NGtdzDJxFQPt53EFAX++ldsiuDl93/Nt+e9wO8GRgu6mScN0suEnrX6E+rdfvpeeFbG/QaddSpXX/YLfnPiZVx92S8YdNYpMHkyyocfIu67jxWnX8DIJZ9QN2acXoJz3rwCrkQWPPWUHioxRTpz5mTezywactddei5wJ9/7vZXNWpfR21Zjb2psVm6bMF3j996bcxIa4gEN/QF0qCkmb12R9zhM173387kwZowefz5QTJ6sK3+B2Wde2unF0Oyn3+D55+7gxgWv8P3PnqPspedoSGhIYzEkFQWuugr+8AfdtQ36784WXxo+HICUEEinE3HllXl9D9lgM8oGJ/bVdLBnG0yerLuVTzhBX3z85Cf8+czridmdpIRC3O5k5o136eEdtxstWw72DTfoQq3//V+CDlGw6x7AGY+hejsm1HwhysoIxMOE44UtOr58+M8M+HAmGvCt2c8Q+/jTvI4zNSY/mDaUqkovv3t/HbU9DYFlyxz0PBH/5FP+9NoDCE3TCbIT88G4gRUs2VrfeaLP4Lp/6rPNvL50J7edNhxfNMTIEQMyz91+v+6+X78errqKfpC1Ml6hRH8x8E/j715Syl0Axm+zt2M/YFuLY7Yb2/oZf7fd3uoYKWUKaAC65ThXVjhra4tDJqCf5xe/4KOnX+eyJz+n0ufEZVewCT196ZwN83Ht2Ibj5/fyxs8f59/Dj2PAL39W0M3XFlJKbn1xGTZF8LVeCuzf357o8yGTqiq4+Wa6r1vFbR//g1O+d2lB12V0/zJcyTinb1hA6pxzOWpor4z7ja+q4Ef3XI337h+3XnVOngx33snIt1/i5XOup2LdauR99+mWfme+n7o6eOMN3WIyvRqRSPv9pIQZM/TJQNMKnhQyYXAPvWuVAKZsXqKT1imntN9x8mT9vXOQS7/zzkQqNt0T5HLS77z8m2REEyp2NYVzwfzitKM1PkO9u3NduWrDCco+mIld0xciKaHw0mlXcPXU7xCzOUgJhZhiZ81ZF+u6gnff1YVVRx/d+Rh9VRUAzxz1dXa98mZzjLWD7yEbbN30+zhVW6DzUNP0RejJJ8PkycSSKi/Y+3PpN+9rtxjmgw/YfM01mZ9hhwMefBDWrOHiB29h+KYvSRlNZfKFOxZB9RQu9swGpaKCYCJCKBIv6LjIzFn68eiL2jrj/3wwvqqCH5w6jH9cNxGbIri7sSfSXCAW6KlRZ8/BJjW9rkwy2an54MgB5exqiBH3+NIZCQXBPKaNRT93w37uf3s1Z4zqzbePG6jPbWVl2c8zdSpMnw4vv0zvHNyYtxhPCOEEzkaPv+fcNcM2mWP7gR7Tcmw3oIcEGA+oU6aw7De/oXHUqA6Gmh3BlSs54vvfR6gqx9idfP2GX3DK1HHsCjlZU6syokKhx4xfEunfn+2H9eFcpZG/X3MrIx78Hn3PPY8lf3mcRI+CnH4AfLI9yfIdetnKv/zpdY4Hlqoq9ZluysmTm8viZsDAffsYBChIZDLBxqeeYms8v4c0lJBcs+h1PPEI23uU82UHD8UoAU2btjNnU/vX+nhVNAQ2JFo8zsI/PkE4z3G0gpSMvPdeutfU8NVtt+GsqaH7p5/if/BBlvbqxaJ+I1hTozGyQnDGs4/S/6OP0BRFX8FrGkvdbho68XDX7dItmSl9JdP3LKHx8MNZsmzZAZ/PN+UMJsz+N3N/dj9qju+xLVZtSDB6zwZEOMzKbt3Y18kFDFJyvGIjtW8vczpxrseXx7mwbh8AqlDA4WD0mUcwSxvCpegV2eYPHMPgOsHX58wBRaHqoosY9PTTLPjrX4kMGnTA791r8WIOB16afA5aQjCkk9ekcc9uRgIbly5lf//yvI9TolFOBDbs3Mm2OXOYuSnJ/lCC06cdwZ7UWE6ptNG0aVn6OQmdc47+TGYYb3D7dsYJwWHzPuDZhZ8wf7yb1JGj2+2XEarK1FSCkCY79Z22hC/USD9gyWfzSO4qz/u4cKWxaBKCpM3OvsOqDmhMN4yy8atFVUw7+gzOnf8Wb9/+U7wFPDdqoJyT0QlEs9tZFgzSeIDXRtbri9kt4Th99+9mUYHnOTEUQgG2rVzJBuPYxbuT/Hl5ggonnNOnkc9mzuR4YN3evezIcf4qn4/qDgfcgbjN/EF3r7/X4v+1QB/j7z7AWtksxJvRYr93gcnGPmtabP8m8OeW+xh/24H96CSf3sd47c/AN3ONczzoYqhOioq2/+iutKBMRcitt93Veoc5c3QxxWOPpTfVRxLy4u8/KSNOt1RHj5by3nsLFozc8sKStADlZ9Ou199jz54D+xBz5+pCIJBxp6ugsex9d7ZMCUW/Bp0US730+xdl1OaQEmTcZpcv/f7FAzvRM8/o1+PnP5eLNtfK33/wlfzX+8tlfb8qWReokMfe+JQc/KPX5YujT5ES5LMnTJfnXfYr+dLok3Vh1cWXH/BnkFLK5xdskVW3vyVff/5VXQRzzz2dOt+yGfdJCXLjlxsKOu7X766Rfxv3P/q1eOutTo3BRGOgXL5x3DkHfPxHa/fKkT94UUZ9ASlPOqmVUHLR5lo57P+9nb6vZ63a3Xzg/v1Ser1SXnFFp8a/6scPSAny6O/8XQ6/6+1OC9A2LfxSSpBf3PNQYQfu26d/L7//vawPJ+TYe96VVzz5edbdZ8+enf1cLYSdKSFk3V0F3G+NjVKCfPuq2/I/pgPUPPInKUH++43C5oIvfvmolCDnnnW5XP3KO50aw71vrpR3nH6zlCBP/N4zBX3Pq3c1yJjNLmuOmthp8WcsmZJD73xbLp92jpRVVYUdHI83CzWvu05KqT8jg2f8W1bd/pYc9v+M+3fDBn2fv/419/nmzpXS7ZZHgSaz8GIhrvtv0uy2B3gDXRGP8fv1FtsvFkK4hBCDgKHAAqm795uEEJOM+PsVbY4xz3Uh8KGUUhoLgNOEEBVCiArgNGNbTmhFiPmtxpcW2SlItoTU1jv8+tfQvTtccUV6U5nHwXe+czZ/OuYClC+/RP7kJ2gnFxYbHmSIVBQBI2q2kOzWHXr27OCoLDBqVUvgZ99/pCAXpvLRHBTTzdVJt/egs07h1nP/F4AnJ56vuy4LxaZNurv3+ONZ/M1vcdGf5/Hr977iB7O2cv6Zd2BLJnj2+Tt5+6/fZfqX7/Psmdfw9Lnf5ot+h3Pb127hD8deRI/n/67XNT9AmDXm+y37Qn9M28bnC4TdsHTCewuLA1cuX8ylS41mLNOnFyVUFfMFcIUOINYIRBIp/t9rK/jOhtm4w03wwAOtXObjqyp47vpJXDm5GqdN8NicDel8Zrp1g+uv1wvZbN16wOPfsFX3JEQdrnQ+dGfg7qkLV2VboWtHiEb13x4Pf5qznsZYkjvOHHFgg5g6Nd1PQhU2aiccm/+xhmtY+IoXo3d2069Jsqawa6I26WMZeO//63S1zgqfgyaXHo5wR0IFfc+RaAKXmqLh2BM7HSpy2W2M7BtkR+oA8ujDLTopGq77+RtrUDXdWZ0yKlSm4/e5XPegf5YPP2QPZK2MlxfRCyG8wKnAqy02PwCcKoRYZ7z2AICUciXwIrAKeAf4jtQV9wA3AU+gC/Q2oCvuAZ4Eugkh1gO3oCv4kVLWAvcCC42fnxnbcuL3k77B4r4H+HAZ6Fa3Fw3488QL2FzRh0nPPwZbtugvrl6t5y/efHO74g3HD+3OYX3K9biD1F3VO/41s935s6G3USf9uuMHcyY1OMYeWPW0NEaORAHm+3JKG9qhdrz+IEghDki13BLjqyo464eX6cMZXWAXLtAbXZx0kl6O8u9/54m5W0gZD4Ui4NTzp1B/2wyq6nczfP9WkoqN8dd9g19ccARuu36LP3zcJdROOh6+/W29dvYBIGKI4Hp/sVDv8T5hwgGdx4Szmy6ii+0vjJT6Lv0cRRpEWQTtAUAiUIY3nL14RzYs3lLHlU8tYNe+Jq5d9IauGTjmmHb7ja+q4KfnjOLX3ziSRVvq+OmbK5tfvOUW/ffDDx/o8Olt169HwuEsSt64p7JCr1JXnz3POSMMvUitZuOvczdz/rj+B94ZsIVQ8skJ57B39FF5H5ps1MlH8ReP6F3d9edWbVGXPh9oBhG6ywOdHsOkwd2JuPXPVJ6KFfQ9x+v1cdiCnR8HwLiB5WxNCNTGJhZvKWDxk4HoJw3ulu54mb5/8yV6gMmT2QFZK+PlRfRSyoiUspuUsqHFthop5TQp5VDjd22L1+6TUh4mpRwupZzZYvsiKeVo47WbDasdKWVMSjldSjlESnmMlHJji2OeMrYPkVL+NZ/x7vaWd3pF3+PjD1jRdxixn99P6F9v6gKj6dP1mPjDD+upHd/+dsZj48efoMeBgKTNzryB+ZN1NKHHga87vgr/+rXthXiFwqiYFtpXQ7IAMU/t4KEIoP7EkztX19rA0WOqUIVCRTxLX/BsmDdPV8xv2QKpFF8uWsN7q3ajCNKiyFNH9maAVwGh3852ASPWfqGrdg1LUnHYuWv6DGR5OXzta3D33QVbwtGEikDSfdEiXcDWyWY+7h460Sf2d7h2bYU1I4wJvwiLMBPJQBBvpAlNayeByQqzpOjCzXWcvfYTXLt2wI9+lPOYs4/oy7emDObZz7fywMzV/HH2ehbLAFxyiZ42VXNgz205KZKKjUuPH1KUJjQet245Kg31hR1oWPSvf6VP/LeclqPEaT4whJIN7kBB1fFidTqBKEUiNQCH4YFSC/RySMO74K0s7/QYxldVcNxRupbjrhP6FvQ9xxv0a2ILdE50aqLc66TB7sGWSnLVY5/kT/YZiH58VQUjegfoX+Fpvn8LIfoOUKjq/r8CwWRhK7220Pbspe+6FWyZNJUfnDKM0VPG6y7fhQvhrLP0lIYzztB7WmfAkHNOY2t5bzZU9m9W2eYJM3XKt3un7n4b00mL3iB6XyzCrvpY3oelDCsz9PVzi1K1LOB10ujytc/57whz5uh5xoBUVT587EWqu/l4+upjuOW04c0PxdSpCLeecihakJ9pSf78nNG8vVfy4fRvwfbtesZCgSl3kYTK2LptuGpqOu22B/AY7uFkbX1Bx62tHqUrUqdOLcoiDEANlhGMhQkn8k+dmr+xhmRKV7JcP/8VaquG6J2+OsD/nj6CI/qX8dhHG3novbVc+sR8Vl72Ld0a/sMfDmj8WjhM1O7imuOL02rXaVdo9PixNdYXdqBh0c/e0sSZo3vTr/zAyrWm4fUi7XbKYqGCcunj9TqB2ItEagCUl+u/C/VyNIVIKjbcviL03QD6D9SzyPqKwlIOUwbR24u0+KlpihN26t+vq5Awgqm4dzhapdfZbQpDeraoe9BF9LlxSn9Ppx72rc+9giIlgfPPad543nm61TFrlu5CzpGHOb6qgvry7oQrexRc5z1ixIHda4wOZ5216I2bJJCIsK0uQxpaFqQMK9PevThNTlx2mz5x5ij5mBFTp4KiIIG4YmfxoLE8ddUEThzWg++cNKR1Ol+OlMOLJgzg/KP6sXjZRgw3ErJAt3c0qXLSliX6P0Ugel/P7gBoBaZwqaGI/uCecUbRytXKsnKC8XBBZDJpcDcURXDC5iUcvm8zjTf/oFW532ywKYITh+mLZE3qNcbn2Hvqi+iHH4af/rRw3UEkQszhwussXsvkkDuAI0ct8kz4avNeQNcKvPPl7sJcupkgBLK8gmA8VFAufbzRJPriWfTmXCIaCw9nRJweRB73Rj5wdisHIF7gAjlpaAWcRSL6yYd1SxN9mZbI37g0Lfo+fVql10USqt6oykQX0WeHJgRlqfwt10yI/OsN9voqOOrcaa1fGDmy+e8O8jCTXj9lycKK1IDuHnbaFWyrjBhmJ1IEgbRF749H2F4A0WuGC9XRo3jdzELeAPZCLaTJk2kcfwy1/gouu/jnfOfOK6jqliXumCNvWgjBz88dzcaRRyMRaEBM2FgzPP+4ZzShctqXH5EoL4dt2zrcvyO4u+uue1lfqCvUEP8UUWhFRUXBVuP4qgquZCf3zXqUZEU3qr93fd7HTh3eE7sRlExXbfza1/SJ76c/LbzAUSRC1OHC6yxe+46I148jdGBEH7O7mkVVnYSorKAsVtgiLNFgkFpZES16g3AKXawr4RAxZyc9Gy3gMZ6bRF19Qcephm7BWX6Amok2OH5od0LG53rk6wW0MjYt+jZEH02oeqMqE11Enx2aUHJ2BOoIMpFgwMJPWD3ueMp8bUq2nnyyLr7LVpGuBZK+AK5ogfFodKvR67TBl1/CwIEZu5IVBOP4YDLKttpo3odJw8p09ujeufdvgagviLNAa2DxljqW742xJdiTZQNGYjMVKwcAr9NO3/85mTXdq9ha3pvLv3kfH1Qclvfx/ZfO5/AdX+Gory9KpT18PlKKUrjgy7QI/MWbxJXKClxqklBDAQriefOY8avvMLBul06Iixfnfej4qgoemn4EAJdPrtInyVpDq3AAVc9ENErU4cLtKN6UFvYFcBdI9CPL9IVG3F4cUSCAqKigIh6iqYCKdKYYz1lWHFLTT+Yk7nBhKzA7wxYJE3cVx20P4OtmagXqCzpObdQJ1lVWHIve77ITc+sZAKMCBcxL5vPbt6/OVZqunUrP/SYaGnQtmJF50RkcckSvCgVxIJWKDGx+cxaBWBjb17/W/sU8y5sCJH1+3AdA9JGEitdhEH1n4/OQJvr+tmRBrntRp0+67p7FI/qYP1jwxDl/Yw3uZIyIw42myU5bSF8b05ddZT1ocvn4smpUQRPxkfPeQ0BRUg4BEIKw24/SVNg1UULFJ3oz1S9aSKrfnDnYUnpxJzSt4Otxzrh+DO3pZ8V2Y6EzdWpzxcMCRYYiGiHhcCPEgS8E2yLuC+IuMBOh2qtPqYcP6V0UUSAA5eVUJMIFifHMeLS7SNariajXj6NAordHImlCLAYCPhchpwetwAWyZvBCsWL0QgiEea5CUuxaEr2U6f8jiVRrj1RDQ1GseTgEiV4TSsETZ0vsf+FfJBQ7h19xQeYd8iyrqfn8eGMHYNEnVHw2qafwdTY+D2mi76ck2F6Xv0WvGCk0ziISfTxQhqfAiXPS4G54kzGiDndRLKTxVRUkg2V0S0ULnoi3de8PGPXai6R2j3gD2Av0cihhYyFbRKI3U/3ihdR2nzoVaegnDvR6/M+YPizYXMveppj+TA0fDkOHFiwytEWjJIpoNQLE/QG8kcKMhoRBJkePKEwRnhMVFQXrJzRjMegqQkpbS8R9QVwFLtYd0TDJIhJ90OMg5PQgC/Xchor/3NhMj2shRN/SdQ/Q2IimSWJJrX2MvovoM0NTFGzhA7foe3z8AWuHHUm3Pp0jOC0QwJ2M67H8AhBNqgyp36UfVwyiN8Q4vUmwrTZ/i97WUE/C5mhXJ6AzSAXL8Eea9FVsnhhfVUGFTKJ5vUWzkNRgGcFoqOBz7QjqArId555bNLV7zOfHWaCFpESKb9GbBWISNQWk+k2ezPIh42jylx/w9fja2D5ICe9+aaQA9+unZ7MU2oQmFiVZZKJPBspwx6MFPcPJJv27KWpsvKKCYDREYwFiPNUgE19FcYjCRMIfwFPg4scRi5IsYs39gNtOyOlFNBb23EjTki5mEaHyAyD6lhY9QENDc6Oqtq77LqLPDCkU7JHCLWmAzYtWUr1nM7FTO98gTx7ISg/dfTNsn1GYpxhEb7eD10sPGWdvUzzd4rQjOOrraPL4W7dg7STUsnK9HkG4sO/HlYhhL2K7zVQgiCcaSsfG8oVipE5tP//8oqndE/7C3cN2K4jeEF2qBWYAxBU79T36HPD1GNYrwJCefv69Ype+IRjM2NGrI9jjMVLFJvqgMckWUCAmGdLvEXcRvxsqKvBFQzQV4LqnKUTM7sTrLVJraAMpfwBvtLA5zRWPkCoi0TtsChG3D6WpsPtEWKBtcZgph4USvRDQy2gU1tiYzrbqIvo8oSkKrgJXnCa2/P0lAKqv/EanxyEMoo8XKBiJJlQG7dmkC/5GdK66XxplZVQYmQj5uu+dTY00eYsb38No/VloLr0rHkUrYrvNVFk5NqkV3HXKFtUncc1dPEJJBoIFW0h2YxzFnLBchpJZK/B+dcWiJDr53fzPmD4s2GS478vKDkhMa4/HSLmL530C3fMDFET0qVCYlFDwFClnHIDycmyaSqqABZAMh4k43Lrep4hIBcvwxyLEU/kZDKDfI6q3eEQPEPX6sBf4/KY9YUUci7vSuEcKGUsopHsVTBJvbEyX1/Z0xejzg1QUXNH8XdQt4Xv/HXb26E+P8Z0XwQlD7RrbX1/QcdGkSvXOjXqcsliEEgwSTOoEn2+KnSvUQMRX3PieSfTJQuLAUuJORJFFDCFI8+EpcMFhEr1aRKJXg2X4oiGzaVOHSKqa7k6GohK9SC/CCqvS545HSHk7N46vjemDZrrvD9CidyZiaEUm+gO5T9RwmKjDhd9VvDS/9AK5APGZiISJOt0onchSyQQZDBo96fMnek8iitbJe6Qt4l4/jgIXyLZImJjTnVeth3wRLPeTUAqsdx8O68+u6fVtaCCS1PUXXTH6PCEVBc8BqN3fXbCB0V8tYcvEqUUZh91w6cQKdIVGEir9dmwojtveRDCIP66T1LY8LXpPqIGov7jxPZsh+Irs3Zf/QYkENk1DFjGuJsrNibO+oOMcMf3aFZPoCZYRiIeJp/ILI0STKr5k8YnerHqmFEiynlgEtZMW/bBefg7r4dPd98GgbtEXoOMAnehlsYneuE8KaWyjhSPE7C68FhC9rSH/cSjhcFFz19MoKyMYDxPKVxgoJZ54FK2INfdBT192hwtM84tGSLiKe03KvQ7CTk86yyEvhMO6RW8SfQuLvst1nyekouBQk3r6U55YvKWOL+64H3cqwQdxb+erWQEOQ6RRaPUmGQrTbfc23YooQlcyAIJBnJEQTpvC9jwFed5wEzF/cV33DrOJSyEpXEZcnCK67oXZH7sA4VlK1XDGo6Qczk7XuG+FinL8iSgNTfktwGIJFW8ipjcbKqKXA7ebuMNZENFrmsSbiKJ1csEhhOBrhvs+5PbpJF+IK1RKXIk4WpHdw4pBsKkCFutaOELc7sRXxAp9JtF7Qo1596uwRSMkirkgNSDKy3GnEoSa8jOmUtEYdqkhfMW16NUDSF92RCMkiqj+Byj3OAk7PSTqClgg53TdG/dNKqUvCLqIPjOk6ZYpwJWy6c33+dGcp5HArbOfZtOb73d6HI6KcgCSBcY8T1w2R/9SZs8uTlEWgGAQ0dhIvwpP3jF6f7iReFl559+7Bcwqe4kCXPdmQ4xiduGymTnjBYwjmlTxJuNFFRUB2IxJPJTn4ieaVPElovo4iuiCBIh4AjgKSE2NpfSxaEXwtvzPWN19/2WTYckXEqdPJHTNRTEXPoAwn+ECugtKo3CPr5gWveFtKaRyoT0aLTqpAdiMaxLdl98iOWoQoCiyRa8Gg3jjkYIEtY5YlGSRvT4VXgdhp7sg/UTadW+WJ84kxjPv/y6izwyT6GUBF37y1hXp3usONcXkrSs6PQ6XUY+5EKKXUnLU5mX6P5pWtBakZtyzf4Unv6I5ySS+eIRUoLiue4+Rk1+IJW22lhRFbM5hehYKWXBEEyreZAy1yERvN6p8RfIci77giHXaXZ7x3P4grlD+z000lsSXjIG/81qO4b0CDO7h4/MaI/ZbyMRpen18Rf5uDIFiQf3XIxFidie+IpbiNS36YCz/ojnFzl03YTc60MXz7LgYrTWIvpg196HZ7V2A58cZK676H/QOdmGnB62QVD/TdW+z6b8bGtItsNNEX8Tyt3AIEr1p5RTiSul33plIoRf+UFwu+p3XcQeujuAxyzQWELuJpzQ2lRu5lXmU2c0bhpJ5QKU3v1x6I3adMmPZRYK3eyUaArUAoo8aXbhsRe2rbRB9AeOIJFQ8FhC90/AuxPbmOXEmVHyJWFGzEEwk/IXFPWPGdyOLMIkLIfj6mD4sqdcnvDVrt+d9rFkcRhT5mjgDutCqkKZDIqZb9F5X8V33wQIsemc8ilpkDwc0F1ZK5nlNzC56xeoBb8LMapIF6Gxc8agFRO8g5PQiCyF603UP6bnZbE+eVt13EX0HMIg+UsgqfPJkNg0czv6KXigfFqcQisdY+coCiD6SUNkbMCq//fCHRSvKYgqcBpR7qIskCXVUM9sQH6lmjmiREPQ5aXT7ChI3mT2ki9mFy9NDX3CkCrhHdKKPI4scB3aZ4Yw8Fx2mRS+LHPMEvUCMN5L/hBU3FtNKkbwt1d19eitj4NcvLchbKxMzJllbkS16n8tOo9uHWpv/glCJRkk4XDhsRZxag0GkEIbrPj+LXif64i8GzUVyvq2VE0bvhGKVnTWhFCh2VjWJOxEruo6jwrDoRSFF2kzXPaTn5rTr3tFl0ecHg+hjBYrgUkJhb9/qohVC8XtdBZdpjCRSeBNGDP3224s2FoJB0DSqjAV+Ryl26fS3IhN9wO2gwe1HFET0+gPkKOJEEfS6CLm8aAVM4GmCLbLV6Olh9qTP00JKaniTUWSRY54AaiCILxpC0/JTvCeMRZjS2cZLBnY1RAkZqmh3NJx3X4OYQSbF1HGALoxqcPsLys5QYjFSzuIWqUFR0IJByuIhGvO06N3x4ueuQ3PnODXPZzhhpAQWm+jtRsW/yL78xhFN6iJWrcgLZFN1bytEPGq67iEdVo20FeMdDKIXQpQLIV4WQqwRQqwWQkwWQlQKIWYJIdYZvyta7D9DCLFeCLFWCHF6i+3jhRArjNceEUYHCiGESwjxgrH9cyFEdYtjrjTeY50Q4soOB2uspBMFEr0rGiZZxEnc57QRcnoQBRB9LKnqMU8obuqUMREPtOuTREdd7OJm+ltl8VrUgt7tqcHtx9ZQn/cxSeP6OYpYUtTvsuuWYwF5yVHDoi9qa1jA27OwinS6GC9W3PvDgFqut0MNJfIjk6Rh0duKRPSTBncnZFj05clI3n0N4kZXMnuRid7ntNPk8iEK0AvYLCjcA3qqXzAWztuidydiRb9Xodmil3k+O2YXPUeROsaZcBqiwFieXrlIIoU3Wfxr4nbYiLm92AvJ6W/pujcs+mhCRRHgshuUfJAs+t8B70gpRwBHAKuBO4APpJRDgQ+M/xFCjAQuBkYBZwB/EkKYAatHgRuAocaPWWv2WqBOSjkE+A3woHGuSuBuYCJwDHB3ywVFJgjDok8W2NnIFS+OetiE3aYQcXlRCqhjHjFSpzSbDVxFtArSjW30SaKjOH3SENoolcWN0dsUQdhTWBOXZKPZV7t4qX4Bt77gEAUsOMyJotjq4XRP+jxFm1HjHlGKLW4CRHkZwViIxkh+qamm/sRWpEl8fFUFfQb0BOBb43rkXfLY7L1uL/Lix+u00ejypRs85QN7PIpa5FK8AFRUUBbLz6KX8TgOTbWE6IXh5cv32TF7wLvKiyvsdZmiwDyJ3hTTYoUnzOfHGY3kV/tBSl08at6rZow+qeJx2Jq7L5aa6IUQQeBE4El9nDIhpawHzgH+Zuz2N+Bc4+9zgOellHEp5SZgPXCMEKIPEJRSzpN6GbBn2hxjnutlYJph7Z8OzJJS1kop64BZNC8OMsNmEn1hZTS98Qhqkd06UbcPe4FE70sY5V6LWGPeJPryZASv09Zhil1q/34AbEXsRW8i4gvgKqBGtdqkT+KeIrbbDLgdNLp9BXkWokldjFdsoicYRBMi74lTDyFEi5qFYEJUVGCXGqHa/L6flNnzvIjfTY+++j03wFZA73WjhrkjWGSiNz1QBSxMHYk4qgUWvVJZmXeMPm6EMqzw+jTfr/ldk2aiL25NDncPQ1Cbp+c2HEvhTcSKns8PIP1+bGoK4vGOd45GdbLP4LpvV/4WSmrRDwb2AX8VQiwRQjwhhPABvaSUuwCM3z2N/fsB21ocv93Y1s/4u+32VsdIKVNAA9Atx7myQhhErxUggtM0iScRRRYhTaglYh4fjgJEGmYcuJieBSBN9KKpKa8UO9VYJTsqK4s7DvRWtYX0pDeJ3l1E15/TrhBy+wvKGdctgji2Yk+eiu75yTfEEzNc9zYLLPpCe9JrZliliNZaud9NyOUtKL0u0Wh0jAsW23Vvo9Htw1HAwtQZjxW1XLMJpaKc8jxb1cbMkIoVRK8oRF1ebHk+O2YPeE+Ru+j5DE9YKk/PbaypCQVZNOFoK5jPYj61W9q2yk277lPtq+K5XEXz7OaT7GkHjgK+K6X8XAjxOww3fRZkMkVlju0HekzzGwpxA3pIgO49ehJxuKjdupU5eeagx6MJTldT1CbieR+TDxSnm261O/M+56LdKUYkokRtduYWcRy+DRuYAHw5dy4e3zGs2RbJOaaKNWvwOz18tX4ttrr1RRsHQKPTjSfcyJzZs/PyWqhbtwKwZNUK1m9aXbRxhD0+bPvW5/3dLN+c5NxkjB2NDYRCoaLeJyPcPrT9+/I656oNCS5PRtlZX8vmIo4BQGtsYCjw5dz5NCQ6JvvGdfq9sWL9V6yLFV6fPuM59ydocnpoXLuWr/L8fLG1axkJfLV5IzVz8q+I2RGSmqTR5cfR2JDf/SolU5NxIpqW9/2R7700LBYjGA/x1aZtzJmzN+e+sbWbOQPY3dRY1PvUxEiXF61mf17njm3V7bRFXy7D8VXxagvUR5K6BbphY17jWL+hhqOAXQ31bC3yNTFNufmzZhEzW89mgXvXLiYBq7duZc+cOVTX1VHd1MS27bvQEqQ/y7DVq+nu9RaNB/K58tuB7VLKz43/X0Yn+j1CiD5Syl2GW35vi/0HtDi+P7DT2N4/w/aWx2wXQtiBMqDW2D61zTFz2g5QSvk48DjAsOHDZTiSoNKmMCrPHPR9W/RhdKuuZkIx8tYNzAmW49u9gal5nnP/4u14kzHc3bvnfUxeqK4GYPTAgYyrHMAri7czZcqU5nhQG+z83aM0uPwce8x4jhhQXrxxAC/3eBmHmmLqMcfkFUP84rFnidscnHbqSbjsxctNfin4R3zRcN7XedX7a3GnEgwcMZxtfn9Rv5+t/iD+RIxJeZxzUdNyXGqK6lGjqC7mPQLs3K9bJNUV3Tghj3PPf3kWAMeedgrBnsURbq4VG2hy+hjs9tA3z8+39J3PADj6uGOpGjm4KOMAvYDVEs8z2NUUUydO7LjrWUwX0noKeH7nzJmT375vv03i3ffwV3Rn6tTxOXfdFP8IgIEjhnN0ke8RgG2BMgLJeF7364I/6c/vKadOyzrfHAhiSZWQ00OF3c6ReYxDJBYCUHX4CPoX+ZrsePsLACaNHg1jx+beeYVejO3wo4/m8KlTYfFiACrdbjSvi6lTj9P3e+wxKCIPdOi6l1LuBrYJIYYbm6YBq4A3AFMFfyXwuvH3G8DFhpJ+ELroboHh3m8SQkwy4u9XtDnGPNeFwIdGHP9d4DQhRIUhwjvN2JYVAgi5vIim/F3mMSMmaSuyWyfl9xfUYMcsb1r0+GuL5gn9Kzw0xVM05KiwpdTX0+j2tXYlFQnp3Pw803OE0W7TWcy8ZPT2sO5YRK8pnc/+xv1kt8D1F/cH8y5Uo7Z1/RURZtwzlWfaoTBclcXUT1T4nIRcHlIFVJRUw3ooyltkZbcQgpjZwTEfQZ5RoU8UuSgLABUVOFNJonkUZkkY1SSLmZLaEnGfH1eeIUkRDhFxeopK8qCr0/V5Pr8Qgtl0xlFEUa8JpxG6yiuV2tCTtHLdA6KhwbKGNpCfRQ/wXeBZIYQT2Ahcjb5IeFEIcS2wFZgOIKVcKYR4EX0xkAK+I6U0exreBDwNeICZxg/oQr+/CyHWo1vyFxvnqhVC3AssNPb7mZSyw1ko5vaiFBAbN2NaShEvLIDqD+CJGWrMPG70qKHsLrqiukVN5f4V+iS0rTZKudeZcXdbXR31ngADi1mv24Bs2Tmuf/+c+wKISISY0130iSJl9hpvaIBuHVujKYPohQVK5lQgiHvbto53BGSTdUTvM0sU5ylwEqEQEYcLr9NRtDFUeJ00uXxoBWTNSIPo3UVMwTSRMBs71ddDB25ZorrIVfitIXoA8lgAJUyRZJHFiSaSvgCeXbvy2lcJh4m6PBQ3f0dfhEXcPpQ8e5qYaX7OIi8GAVxmTn9tPR3ODibRt6yMh75o9vRv4Qg/GEQvpVwKHJ3hpWlZ9r8PuC/D9kVAu/6rUsoYxkIhw2tPAU/lM04TMbefQAGlPM2iDsXO9ZT+gN5sIxLJy00dMcqbFp3oHQ694UdjIwMqdaHQ9roIY/pnvpHsjQ00uLs1V2kqIsyUPVlbm1GA0RYiEiFe5NaSAKrZsKe+Pi+iN0VFVqQsqcEyyqKrkVJ2uKCR5sRmAdE7jeI9+XpblEiIiNNLMWmtwutgt9OLbNyT9zEyEiZus+P1Fj+tLWH2e8jjmiSbQjgAuwWFatLFq/LwLDRnQxTXcEmfP1hG2aZ1ee2rWPT8gi52tucrCmwqfoaICZeR0x/ZnwfRt51HDIveFmrE1dai79OnaGM89CrjAQmvD0ckf5e5mYpXTPUw0Mplng/MXuOWKEPTjW0Miz6H8t7ZWE+9O1Dcet0GFINU43k2cbFFI8QtyEuWJtHnSWpak3VEL8v0/PVoUu14Xwtd94XmSNsNa62YKPc6aXJ5sRVQaEpEIsQcbmxKcb0+AKmyFhZ9B4gZ+fzFLsULNPekz2McZkqb2wJSA9ACQQLRMGoeFRTt0TAJC9INAeJeP448C9WoRltdlwXhDF/3ciDPaqxZXPeOUBMeh3Wu+0OS6JNeH64CKhWZ8Zti53qaX2K+KSDRhFEZz4q0GKMwQ5nHgddp4+0Vu7PWEnc2NdDk8Rc9Lg7g6K4Tfb496W0WtJaE5l7j+ZY3lW1dbsVEeTmBeITGcMeKcdF2oigm7HYiTk/ePelt4RCxIndIq/Q5Cbm82ArwyBGNEHcUueysATVYrv+RD9GndRwW3CMm0Td2PA5Tx+EutyZGL8vKCMTDhOMd5/Rb0QPeRNIXwJWnQWeGvOwWxOj9BtHH82mk1nYeMYk+HGoufwsHLUb/X4WUL6ALrdpA0zT2799PfX09qtpsPdknjWb1zJmo3QOsXl28FK6e55zA6ikz0WIxlDzOe0Y/lW3/ehlRVgZFHAcAjz4KNhuJFSt55IyeSKB+5yaWNe7EaW9B6FLC668x1u1jzZo1xR0DMGBQUL/WZeXsyuMzJn//S6SiFPV7ARh18ihWz5yJLC9H5HHuqWeMYvWxM6FXL8qgqOOR117M2ulnkty2gbrdmR9Jt9tN//79UUIWEj0Q9gaw55k37ohGik70ZR4HTS4fjqghlLR3PEUp0ShxpwXV6ACtAM9Pui+DFYtBg+h94SZiSRV3jrCa2c3PV2mN616Ul2OXGuHaRoL9chfVcsYiRHoUzwXdEil/AHc0T4MubJ1Hzm82+snHoGvrujfI3BkONYvxVFXfr4voc0Pz+/HE2q/0tm/fjhCC6upqHA5HOh4a2rYTv8NGasQI7K7MArUDQeO+WoJbNpIcNCivsMDW/SEGkoR+/YoanwH0Zj9SsrdvNaJRTwMSQK+gm57BFpNkIgGRCLvKe9JnyMDijgFoiibxqwmSPXvjHNixGC+eSJJyuPAdPrzDfQtBTV2Ibhs01IEDsfXs2eH+u7bsoo/TBsOG0aRpBIqoo4jt2oN7xzYigw/Dm0HIJaWkpqaG7du3o0SsJfqoL4Arz7inMxom7C0umdgUQcqsXtbU1CxCywElGiVhEdGLAmLjcYNgnVZY9MY4yoxWtbmInqYQGgKXFeOguXNcdF8NdET08SiqBS2VATR/AG+eWU3SQo1NRbmPuM2e9gznRBaL3htrQfRm2KrLdZ8bMhDAlUpCsrVrKRwO069fP5xOZ2vRk2HdK0XM0wYQNv18Ms8ULlRN/20rfmwcmw1UFZ/LjjBkcEIIfG2V9ca1kIoFYwAURaAKJe+0NkXTkErxb1Pzu5apjuPiAGjGd2PBWIQxFi3LNRFC0K1bN2KxGDaLiT7uD+LKs3KhKxomYcEkLs0JLs84vS0eI2lFfXnA6XUTdbjzIvpkk1mhz4LvxiDXYDyPxjaRMFGnO933o9iwdTMqKO7vOA3TbSHRy7IgvkQ0PWflgmKkPlpB9GUeB2GnFy2fnvThMDidukAa0s9xIB61rBc9HKJEjyG4yJTXqGS6+TUNme21TkAYbsf8ycTYz4oHtAXRl3nsCCEY1N3XnugNspFWLDbQLTZVsYGaH9ELKS25HorNhiT/RZjQrFuEpe+THGI8c2Fqt5joE/5g3j3pXbEoSQt6nqdFrHlqBeyxKCmLiF4vg+vPW3UP4LZCTOtwkPL60hZ9LijhMDGLPBwADkNlnsijoYwnHi16a2cTwrhP4nm4zJVImKTNrpNskaE3MPPkXwK35WLDZkMLBPAnIs0WfRfR5wdh5EjHa+rzO0BV0YRS3EYy6GQCIPNYcQKWWo3YbOnzuxw2pJStxR8mTIveZk1URyd6Ja9VOIAiNbDAu6CYC47/AIteMYk+j8WPPWqdZQJ66pQ3z7inOx5BtWActvLCLHp7PIbqtobYPE47DS5ffmltZj6/RSI4taw8L6IX0Qgxi1LaAFzddYs+2RHRaxqehAW9OwyYdU/CeQh7bRam+QHE3T5EPj3pw+F2i3TNH8Af7yL6gmEqK8N59vhG09AsdMnmS2rp/axy3adSIGU6DSljeozVFr0wXPd5XBOpSRQp0x0JizoOM4SQr2fBSqJ3GIuqPBYdjliElKOF66/I0MrKCEZDHadOSYknHkX1Ft96tRsWY74WvTMRQ7VI2e1z2mhw+dDyKFSjGjF6j0WxcVlebrSqze26t0fCJCwkNbeROZPqwMuRaAqjIC3zPtmNQjXhfR3P8/aYtUSf8Hix5VOkLRxut0hP+QME4uHm9Louos8PdiNNLrY/zzKrmoYUFpCJTUFDdMqiF0Lk/LnqqqvyHUz6Pey5iN4cax5q5wOBEKApNkQe10RTrQtlKKIwz4KQenin2F4fKMzz44pFSFpRYtWALC/HH48Q6qgnfTSKTWpoFvT3NguQ5GvRW9UxDsDjtNHg9iHzKAusGXFgj0UWvaioyCtGb49ak5Jqwm2ozDta/MTq9O/PipbKAA6j+FYsjxCCPRK29LlJeX355fS3dd2jE70/EW32sFpA9Iek6t6MIeWV14hO9FZY9IoQ+nnzJZMMceBdLUpNvvXWW1x//fWttnnaTHDJZBJHJmvP/Hya1qFFL2kWEhYbQgg0xYaSjHW4r6aq2MASUZFNESSFDUc+Cw4pUTSJVJSil+LVB2Nc6w70AlJKvIkYSY8Pq6ZxpbwCBUnTvhrK/DlKvhrxSOkrPqmZNfeTtXXk47dwJeNoFhG9z2Wn0e1H1m/qcF8tEkVDZMycKAaUygqC67Z36Lp3xCIkLei7bsJnNjDqIJwRrW8gCJa0VAZwGaLAeB6FapzxKEmLvD4Aqs+Pc9/ujnfM4LpP+PwEdu9C63LdFwaXEeNL5FmoRmiqNcpu0z1sEniH42hv0ffu3Tv9U24ob83/Y7EY5eXl/POf/+Tkk0/G4/Hw5z//maeffhp/m5tpzrx5iAkT2L9nT5ro586dy5QpU/B6vfTr14+bbrqJxvp6VKEgLKgyZkKz2RBaHq57C0MZNsOiz8uzIKVu0VukYkZR0ITo8JpICd6EdSpmAMVUVHcQ9zQVxtICa83TPX9LTUqJOxnruLPcAcLrtNHo8iHyCCPIcISYw4liQagJwN6tm+G6z030zliUlIXWq83vI6nYEB14XExDy5JKn4C7WzmQnyjQ6msi/QHcGVK62yGD6z7h8Ruu+y7VfUFwm2KRPDtgiQNI4Vq8pY4/zl6ftbocGBa9yI9MpJTNE32BxDZjxgy+/e1vs2rVKs4999zMO9ma9QI2IVi3eiXnnfU/nH322SxbtoxXX32VpUuXcs1tt6EqNizkeaRi02PvHSyANCPdUFgwceohhDy/Gw1sFqn/TeQTzpCALxmzlOjtlbo1Hdu7P+d+ccOaExZYa8HKMlJCIZ7HBB5PqniTcQuJ3k6jy4fSUN/xgj0WJe6wTu0uKsopj4U6dN274lE0r3Wue4Qg7PahNOZe/CSMvHK7RV30vEYIIZ/Ko654FNWiewSAYABPPEpK7eAeyeC6j3l97VX3TicUUWB6SLruvcZKT63vOMb30zdXsvKr3Tr5fJJfTL8plmTN7iY0CYqAEb0DBNyZnYxaOKzH0z9ujvGN7Bvk7rNGtdpPSnTyg4IJ5bvf/S4XXnhh7p3auO6f/vPvOef8C7n11lvTuzz66KOMGzeOX//v7XiscFEbkC1d1TnSXcy0RGGB6t4MIeTjWdCkRLHSoscg+g6IxHTdS8O1bQWcxuSZ6CBHOlHbgAdQLJjEK3wuQi5vXgv1SGMYN6BYNIn7nDYa3H49zbOpKaeVJSIREk5rSvECUFGBNxkj1BTNuZs7EUOzQCTZEhGPv8OGMul2uRaUnQXwGyEEtYPeDKomdfW/FamgBpRAAF8iSkMkQbdADoLO4LqPevx0T0RRWhJ9kTupHpJE7zPcj1oBjTHyaqVmoDGWwgxva1L/PxvRS4Q+SXQAk0yAgon+6KMzNRZsA/OcqopNEaxasYztmzfy+qsvN4/VGOf67Ts54mgLTfo8sxGkQcJWWPTQxrOQ45qbrntLsiHMsdg69i7oFn0UaVG6EoDH6GCX7EB8ZlprZi5zMVHh08vgijw0NjFjHIoFokDQxXiNbuPc9fU5J2AlFiNpUc19IF0lUM2RTaRpEk8iirTSegUiXj+OUO688VSTSfTWWPRmiV/ZQUW6iNH+u8nC58ZRHsQuNeprmzom+jbjiLh9+BNRpDm9dBF9fvD73UTtLsijUtHdZ41CXRwjWlaJf8igvM6/eEsdlz4xn2RKw2FX+N3F4xhflblUZ9OqtbiTcRxHjM15Tk3qOeOaoqAUaE372tw4iqKkSdtE0iQRVUUIgdQ0vnn5Vdx1x49a7SfXrsXfq58VGW3NyFd8lnbdW0OwskU4IzfRG94WC+MZUrGhJDsS44E3EbMshx7A08uwkjoQOKUMb5kVQqsKr5Napwd/B65hgFijHhdVLLomPpedRpdhgdXVQVVV1n0VCyv0AWmilznS2mLJFJ5kHGFRSpuJuDeAq4PGQ2a7XFeFNRa9sNkIOb2IDoletZ7ojVS/pn21UNUj+44ZXPdhl74o88aj4HN3EX2+cNgUGlweRB41uzVN6vHXAshkfFUFz143ifkba5g0uFtWkgd9Au/IJQumsju3ZZkvevToQSQSobGxkaBhcS398kv9RYPwR405grVrVjNkyJDW4w2FqHX6Cl5sFASzGE9HFqxFpYnT52+54MiRl65Jid2iwj0tx6LE4zl70mtS6ha9RSpmAF8vvXZ5R+lkqUaztXPxJ/Fyr4PNLh+BPBbq8UYLO8YBHodRGQ86VJlbWaEPSJfBFfXZiT5U34QXibDIw2Ei4Q9QvnNLzn1MwabbItc9QNjjQ+nAsxBJqFQkYmCRKBDAbQjAw/vrs++USum9RNoswpoMj5Et1ASVFZYQ/SEpxgOIuLx5VSo60Fzt8VUVfOekITlJHkAqCkrecWBZlDjwxIkT8fl8zJgxg/Xr1/PKK6/wp8ceM95IX3Tc8N0fsvSLRdx4440sWbKE9evX89abb/Ktn/0MVRTuVSgEzaWBO7BgjbEqVrnMbfmFEJotegsfF5tNz0vPEeWR6Ba9ldaaq6IcDQEdCJzUBsMtm0ezpoLHYLcR9fiw5bFQjxvjsFl0TfT0uhau+xywxWNoJbDoRY7vJlZrrdLdRNIfxNNBi1jNKAnsMesiWICYx6cTZA5EQxGcWgphoUXvriwHIJxLQJql1XXIaQgnTbV9F9Hnj5jHl1elIpNsrHQP56Uwl2ArktVYWVnJs88+y6xZsxgzZgyPP/449957r/FG+jhGjR7Dc6+9w+bNm5kyZQpHHHEEM+68k96VlZar7oWRRpKtiUsaFqrugQKIXtdPWDYOAJsdRVNRc9wnUkp8yRg2K5qmmFAUQnkoqrUm6yx6gITXjz2PnvTpRjIWWfReozIe0GG9e2c8hmpRPj+QJnpHjp70UQtDKi2hBYP4OyqVbMy/VhUQAoh7fDg7aMKUXgxaeE28Zk/62hzPTZYOeo0OQ09hasoOluteCLEZaAJUICWlPFoIUQm8AFQDm4FvSCnrjP1nANca+39PSvmusX088DTgAd4Gvi+llEIIF/AMMB6oAS6SUm42jrkSuMsYys+llH/LZ8xxjw9HHkSvWVl2tuV58xB8KVLLWe71wgsvbBV7r66ubheLN3HOOedwzjnntNp22ejR6RvIpghGjh3HO++807xDPA4rVrBNUVAsZPrmrn4deDqstujN6n8dLDg0sxSvha577DYUjJTCbKEKw9xXLJ7EQ94A9g6UzDQ2Ebc58HitsWBT/gCujR0/v0lj8rSK6F12hSZPfq57RzJOysKKdCbRO5sasoZ4Eg1mKMNai14LluFPRJCpVNpD1w6hMGGHG5/Tughx0hfA2cGitJnorbsmXsOij+eqtxDO3JCq3mk90RdiopwkpTxSSmlKvO8APpBSDgU+MP5HCDESuBgYBZwB/EkIYc5cjwI3AEONnzOM7dcCdVLKIcBvgAeNc1UCdwMTgWOAu4UQHTeoBpJeH848ehXLlMVWo5Kf1WhlXfc0jA52AHZFtK+MZ7ymCZulrnubTUEVSsed4zTVsrKz0CKEkJfr3lqL3lz8aDkEeWYow25hzBMg6vXj6MBKkqEQYaenOfe3yNACAdx5PL8pw6J3WeTlEEIgA0GkEDmJXkqJMxm3rBQvkI7R+6MhYsnMnp+EQTROi5TuzWPRiSiWw4JVwiFLu+iBviDs6D5JWpzPD83ZJ8lcKd1ZLPoGu3GNGhv1ObiDNM4DQWdmrnMA07r+G3Bui+3PSynjUspNwHrgGCFEHyAopZwndTP0mTbHmOd6GZgm9OXq6cAsKWWt4S2YRfPiICeSXn9eE4U5yVvlujeJO18ysdRqbEH0NoPoW3kEDOJNKYqlrnubwOgc1xHRa5Z0FTTR7FnoWCsgsPAeoXnRkTOcYXxXVqUrmYj5Ou5JLwyiTzfiKDJksAxnKqF7mXLAbCRjFdEDuF0OYp7crWrjKQ13Mg5WFqrxeFCdToI5iuYkDAGc0+LFoCgrByCco7CSEg5b2kUPQA0E8HRQkS7ZaG2aHwCGl009AIu+1iT6hobmVrcHiegl8J4QYrEQ4gZjWy8p5S4A43dPY3s/YFuLY7cb2/oZf7fd3uoYKWUKaAC65ThXh1D9/rxKEmqWE71hqXXgpi5NHLg10Utka/GXQTJ6jN5Ciz7fVrUWNRsyodj00rMdhRDSi0ELxXhKHgJF06J3WJC73hKJQBBPB/FxJRQi5PTgtsiiV0yi6qAWhmZMnlYqu30uOxFfIKdFH46ncKcSCAvLrAIkg7k72KlGFoLVFr1iCOxi+7JnZ9ii1hO9DATxx8I5uy2mzGtioUVvEr3WkOO5ySLGq1VaWPQWlL+F/NPrjpNS7hRC9ARmCSHW5Ng3E0PIHNsP9JjmN9QXHzeAnlo2Z84cYhI8sShz5sxJ71dWVkZTU+svIhWL4QPiiQTJptyT24HAzF+PhkLIHNwZjUvKNI2kppGwYBwAbilRkkkiTU0kE/plbGhqwmGY746wXmVMFQrhcMgysk9qEqdQsCWT7b6PVlBVNEXk3qcTSCQkqlBQYzEiOd4jGdc7uUUTCVJNTaiqWvwxJRM4gHg01ryqbwPT2l+xaSN1Le7rYkPYHfQNN7Z6dtqiz/59RBxuFsz9NN0NsZioNT7r3HfeJTGgf9b9arbrtsPCFctIbsud7nWgUONRGhxu5IYNfJnlmuwNq1yQjFMXi+S8bm0RCoUK2n+My01ZLMScuQvYXt5+kbVn3QYAVm1cz2qRu1RuZ7C/oY6JwPK581gvMntdyhsbiTpcBX2+QpFSVXzJGP9+7wN87sx0tv2rdQCs3rKJhEVjEakUU4BEbU3Wz9vj888ZBSxctYpwrLmp17ZoEk0Iti5fzr6KCiYAK7dvZ18Rx5oX0Uspdxq/9woh/oUeL98jhOgjpdxluOX3GrtvBwa0OLw/sNPY3j/D9pbHbBdC2IEyoNbYPrXNMXMyjO9x4HGA4cOHy6lTp/LpU//Ck4oz5bjjEEaO9OrVqwm0ETKFDPGKN+DH4Sl+PEmmdEJ1ORw4coioIjKGIiU2txuXVWIrlwuSSQKBAFo0yf5oGI/Hi8cUyxgxJE2xEQwErOnUBqRUjbBiQ9GS7b6Plggb6Ya59ukMZCyJqtiwC4E71zgiusvW4/NBIEBTU1PRx6QZFr0jx+c1F15HHHccTJ5c1PdviXm9nyawOMzUqVOz7rNTU9nr8nLKySdZMoYPP/8KgJGDhlB+/KSs+816+k0Ajjv1VMsKCfVaM5eov5zBNlvWa7J6y35sUqPngIEMy3Hd2mLOnDk5r3NbhHr1oqwmhG/kWKYMa1+Y5cM3PwXguGkn4awemPd5C8WKen0hNqh7Tw7PMv6vUgmi/kBBn69QLH1jNgBHDB9J/0GZuy2GP1gOwMQpJ2AbO8aysSQdTtyJRPbPu0VfiE446SQY1KI42/wPibt9VFdUUD1sGACjjj0WinjdOvRFCiF8QoiA+TdwGvAl8AZwpbHblcDrxt9vABcLIVxCiEHoorsFhnu/SQgxyYi/X9HmGPNcFwIfGnH8d4HThBAVhgjvNGNbhxCGmybaUQtDU9ltUVEWYTNjrx247jUNBWmpe7it6x7atKpVVV10ZFU7VgNmV7+O6swLi133NmF0F1Q71goAlubRK/lkAJh6CournsmyMrzJGKlY9vi4PRohamHbT6dRxjrcQRc9zFxuC0VwHqfeqjZXjD5muIdtFqn/06ioIBjL3pNeGpoFq133ru5mqeTs18QZi5Cy8B4BsJmFanKEEKSRZ2+z0nUPJDpK6c7iuo8lVRJe30F33fcC/mVM/HbgOSnlO0KIhcCLQohrga3AdAAp5UohxIvAKiAFfEdKac7oN9GcXjfT+AF4Evi7EGI9uiV/sXGuWiHEvcBCY7+fSSlzl+wyoBhxzMi+Wry9cpQkNKuvWRSjV/Ks627mjFtZTx0zLi5lZqJPpfRe8VYq8TC6+uXRrc3q+vI2RZBQFOgozU+1nujzyuk3FxwWE70obybZsoGZrSRHJEyim3Xk6u2mN9eJ7M+duy6jMeJ2Jy4LvxufmUu/a2PWfWJmWpvPYmLrVklZbFn2nvRZyKTY8PQw+onkMKRcsSgpCzstAjiN0rOxXPdJia5JyufDFY8SS6q4M4lUs6juIwmVuC9wcIleSrkROCLD9hpgWpZj7gPuy7B9ETA6w/YYxkIhw2tPAU91NM62sBs3QKSmg3rZqoYmBIpFE4VJ9B2p7uUBVugrCDabbhVKid2w2FNtLPoDqbV/INBsHTeUEUWqFJgNihCowobQciu70Urw3Rg96XMRvSiRRa9U6pN4ZM/+rETvjIZJWNgNzGd00Yt10EVPiUaIO91Y2EoGj9Om5zrnEOPFjSpwDotLz+pEH6IxmiX+HgqTtNlx5OgKWQx4jeZHMke9BXc8imYx0buMBWEsR0U6Ecqsdi82NJ8ffyJKfSRJ77IMRB8O6xlELbxPmiaJJlVS/oBO8hYR/SFbGc+s2BXL4VoCQFP1FC6LoKTdw/kVh7HUom/Zk9606Nuk11ldFc9EqzrzWSCKVPs/G0z1f4c96Uvx3ZBHT/oSEb3dtKb3ZXebu2IR3d1oEQK99TEkO+hgp0SjJKwsOwv4nHZqnT7dIktmJth4g6nstva7cVRWEIhHaIokMr6uRMKW564D+INevXFYjnQydyKGZrEV7TZCPIkcngURCeuL6CL2d88EGQjgS0Soy/LdEA6D19tqTosZ3sSUz2+pRX/IEr3TqCKV6GCiEJreMc4qKIrQFxIduu5LZNEb7yWEXgykbYze6tQ6E7IDV7UsQQ94RYAmDKLP1Uq4BDF60Psi5NQtSKOugMUTlhkfj2eLe8bj2NUUKQst+jKjuU4yj0YySYuJzeuyUWOWKc1CbEnDPey02KIXlZUoyKyxcSUaIW5xShvo/QiaXF5ElushUyk8qbjli1Jvd/1eTdXVZ91HiUb0xY/F85owetLXR7J5W9p3roskjCJlwWAz0TscRX/GD1midxu9ipMdNOcQmmq94EtROqx1n8tq3LdvH9/+9reprq7G5XLRq1cvpk2bxqxZs9rtu3fvXtxuNwMHDkRr+542G9Vnn43weFAUhQlDenPChCP51a9+pRfOSaVQFYWd27cihGDRokXpQ4UQCCH49NNPW51SVVX69u2LEIKXX36Ztnj44Yex2Wz8v//3/9qNxThBq81Tp05FGKEU5/ij8A0bghCC+g4m/AOBEALNZtNzOHN8P6KTRL958+Z21zMTtA46HQpNEnN7LJ+wXD0Mkq3JQvRG+l/KZ2FJ0YCXuM2B1sHza4/HrO0YB3gddmpNos9yHyZDZj6/tcTWUU96eyRMwsoyvC0Q9vixZ2k8ZJadtToubhJ9rkI19kiYuMta7QSArSyIPx6lPpdF32bhEzWJ3t8iRl9WVvRn/BAm+nIAUh1MFFhs0YuWVmPOcWS36C+44AIWLFjAk08+yVdffcVbb73FmWeeSU1Ne9fq008/zVlnnYXb7ebdd9skKBjk+pPbb2fXrl28/fFCrv/297jzzjt5/PHHdYte2LLeYwMGDODJJ59stW3mzJnYs9W6Bp588knuuOMOnn76adSW18CWXWV+9dVXs2XbdnbOnMnGBQvZtWsXZQfoykoksjx0BmQ+JYpLZdHbbDk7HQopSVisYgbw9DR60mcjejMN00LXvRCCsNsHHfQat8ejqBZ7OHwuGw1mq9osyvuUQfRWx+hNoteyEX0sSrIEpAYQ8fixZ+kcFzU8qVZ2WgSwG3oSmeM+sUcjJVn82IO6RV+XzaIPh7Na9ATLmmP0RXbbwyFM9L70Si/3RKFo1rqHhRD6QqKjVLIsqvv6+no++eQTHnjgAaZNm0ZVVRUTJkzgtttu4+KLL253nqeeeoorrriCyy+/vB0pm+cO+Hz07t2bqqpqpl96JWPHjuW9994DVSWVo0XtVVddxUsvvUSoRfvfJ598kquvvjrj/vPmzWP//v3cc889eDweZs6c2fxijmwEr9dLzx496dO9O7179aZ3797pdL9XX32VMWPG4HK5GDBgAPfdd1+7Rj/33HMP11xzDeXl5Vx66aUAzJ07lylTpuD1eunXrx833XQTjY2N6RCCTCZ56KGHGDp0KC6Xi/79+zNjxgxAt+jv+P3vGT5yJB6Ph9GjR/O///u/xFoWvdi2jXPOOYfKykq8Xi8jRozg+eefB2CQkTM7YcIEhBDpPNsVK1Ywbdo0gsEggUCAY84/l08+n5+1URFSkiwB0XsNoteypZMZFr1m8SQe9fhQOmhV64zHUC2exD1OW4etatVQBADhtfj7Merdk6UnvSMWIWVlvf0WiHn9WTvHxY2a74rFKW34fHr8PUcFRUcsUpLnxllRbhB9FuMio+ve6J5aFoRIBGpquoi+EJguHdlBCc0DFnzNmwe/+IX+uwPosdfcrvts7mG/34/f7+eNN95oRSyZ8Mknn1BTU8MZZ5zBZZddxptvvsm+ffuadzDPbdYOEPDZJx+zevVqHAbhpUT2znVjx47l8MMP54UXXgD0MMHbb7+dleifeOIJLr74YhwOB5dddhlPPPFE8+ftoOSrNFvUtrgeixcvZvr06Zx//vmsWLGCBx54gF/84hf84Q9/aHXsww8/zIgRI1i0aBH3338/K1as4LTTTuPss89m2bJlvPrqqyxdupRrrrkmvfi58yc/4d5772XGjBmsXLmSl156iQEDBuhdwqSG1+vlqaeeYvXq1Tz00EM8//zz3Hdfc2LJt7/9bSKRCLNnz2blypX89re/pdyYlBcsWADAO++8w65du3j11VcBuOSSS+jTpw8LFixgyZIl3Pnd7+N12LP2pBdSI2lxiVWAQGUZScWWXWVuEL30WzuJx73ZLUYTzkQMzeJr4nPaaXTlJnpp5vNbTfSGRa9kUbuXIqXNRNwfxJWlVLJJ9FY2kgFAUYi6vChN2T23zli0JIsfe1kQXzJGQyGu+6RRXtuoB8D27ZYQvXX9Aw8yHG4XMbuzw1rZ9l8+iH39+sKaUTQ0wPLlzalhY8fm/HI8kSg2TW3+ko88En7729Y7ycxEb7fbefrpp7n++ut5/PHHGTduHMcddxzTp09n4sSJrfZ94oknuOiii3A4HAwaNIiJEyfyzDPPcOutt+o7GKT2/+6/n3t+9SsSiQTJZBK32833broJMIg+x0e/5ppreOqpp7j22mt55plnOOGEE6iurm63XygU4sUXX2T2bL1y1RVXXMH999/P7t27dQvdTDtMpdrVOX788cd5+umn9esrBJddfjmPPfYYDz/8MFOmTOGnP/0pAMOGDWPdunU8+OCDfPe7300fP2XKFP73f/83/f8VV1zBRRdd1HwdgEcffZRx48bxk5/cSzAS4Td//CO//e1vdfIHhgwZwuTJk40eBJK7brgBZdw4ALp168add97Jr3/9a+69914AtmzZwgUXXMARR+iZqINaVL7q0aNH+rjevXunt2/ZsoXbbruNESNGANBPceCq209Ka65z0BJCSlIlIHqnw0aN259VaGW67oXFrVCTvgDOHDX3k6qGKxm3tgc8ukXfketeC0eNnS0mFIPos7URdiWiJVkMAiT9AbyRzAViSkb0QNTjx9aUvVCNKxYl1aPS8nEQCGCTGqG6LJwTDkOP1jVdzBi9zeSPbdvAqI5XTByyFj1AxOVF6cAiEMjChQ8NDc1xW03LmWKSL0QOMd4FF1zAzp07efPNNznzzDOZO3cukyZN4v7770/v09jYyMsvv8zll1+e3tbOfW+c+5YbbmDp0qW8/NZ7HHPsCdx9990cO2ECgJ5uluN6XHLJJSxZsoS1a9emCT8Tnn/+efr378/RR+tdjQcPHsyECRP429/0JoU2xWxV2951f9FFF/HZx5+y9NlnWfDhh/zsZz8D9BLGxx13XKt9jz/+eHbs2EFjiwWd+Z4mFi9ezD/+8Y+0d8Tv96fPs3nbNlZt2kQ8HmfatPZlIfRe9Bovf/ABxx9/PL1796ZPnz788Ic/ZOvWren9vv/97/Pzn/+cyZMnc9ddd7F48eKs19DELbfcwnXXXcfJJ5/Mfffdx1ebN6FImW601BJSSgQStUTWWsjjz96T3qzFb1WpZgMpfwCXaSlnQCSh4knGkRZb0bpFn7snvYyWluidGUIaKVXDnYghS3SPpAIBvNHMBGu2hnWUgOhjXh+OHAtCVyKKarWnBdLPQ9bWvTlU93bToregRS0cwhY9QNTtRQllX+lJKeGWW4hW9MB/WFX+J543D6ZNg0QCnE549tmctcdD6zZR1lAD48dnXFRIKfU0PyGyxsfdbjennnoqp556Kj/5yU+47rrruOeee7jttttwOp0899xzRCKRdkSoqiqfffaZvt3wFnQrK2PIkCEEevbnoT8/w7lTj2biqFGc1KcPKZE7j76srIzzzz+fG2+8kV27dnHeeedl3O+JJ55g7dq1rYR6mqaxb98+br/99nQOuy2D676srIzBVYMIaCkS1YNxGsVTpJRZFyEtt/vaPEyapnHdddfxwx/+sN1xiivIvg92ttuePlbC4qVLuOSOO7j77rv5zW9+g91u58MPP+S2225L73fttddy+umn8/bbb/P+++9z7LHHMmPGDO65556s577nnnu49NJLmTlzJu+++y4//elPeeyOO7jo8NHgcrQbh5DS8rxkE1FvIKuiWmtsQkFPJ7ISsiyINxbK+r1HDaIPWTyJe102og4Xmt2Oki2cEYkYO1tMKH4/mmLDHWpod10iSRVfIkaDxdoJE2qwDJfZStjVumRRymyXW25tp0XQW5I7s3gWkqqGJxEjUorFj/E8ZM30yqG6txvicaArRl8o4h4f9hwWgdQ0/QIU2hp28mT44AO49179dwcNRqSSO4VLpnvR5z+OkSNHkkql0nH7J598kptvvpmlS5e2+vna177WXpRniL3siiBYXs5N3/4OP7zzTqSUqIrS4TCuvfZa5syZw6WXXoo7g+J55cqVfP7557z33nutxvL555+zefNmPv7443RVOpmlzrxZKbBlD4KRI0e2S+/79NNP6d+/f84mM0cddRQrV65kyJAh7X48gQAjBw3C5XLxwQcftDtWk5IFS76gX8+e/PjHP2bChAkMGTKELVvad0rr378/N9xwAy+++CI/+9nP9EwGwGlUKVMzWOpDhw7le9/7Hv/+97+56puX8MRrr2XULUgjhCAtTGlriagvkFVolTI8WHaL66mLYBB/PEJjlnKv4YTRGtbisrNepw2EIBkoy+q6F6ZFb3EGAEIQ9QUIxMJ8tqF11k0kruJNxhBWK/9NBA1CyuDRVA1XuqsERJ/yB/Bk8SxEEvo1kaVYIKeJPofrPosYz2lkDwBdFn2hSHh8OHI0GdBSqm6ZHEjFs8mT8+8g1jJnPMN7aVJik1pzqlcL1NTUMH36dK655hrGjh1LIBBg0aJF/PKXv0wrtpcvX86iRYt48sknGT26dYXhyy+/nGuvvZbf/e53OhkKkV5wmHHgG268iV//6pe89P77jL70BmwdhDJOOukk9u3bl5Vcn3jiCcaNG8cpp5zS7rVp06bxxBNP8OjEY1EVBUeWOvPSyFIQLRZht956KxMmTOCee+7hkksuYeHChTz00EOtQhiZcPvttzNp0iRuvPFGvvWtbxEIBFizZg1vvvkm9/7qd3j9Ab539dXMmDEDl8vFiSeeSE1NDYsXL+aqa69nyMAqduzdy7PPPsvkyZN5/fXX+ec//9nqPb7//e9z5plnMmzYMBobG3nnnXcYOXIkAD179sTj8fDuu+9SXV2N2+3G6XRy2223MX36dKqrq9mzZw9zFy5g0rBh6Xa0LaEZrntZokk87g/SfdvejK8l6xtx0iKuaBGUsjL88Qg7wnHKPI52r0djSTypOIrF1prP6O6YCARxZbHolViUhMOF0+IUzMVb6uhm91IWC3Ht0wt57vpJjK/SSSIUidNbTSJK5PUxCSlRU4ezZ89WL2mGRe+qsPYeAVADATxbtmT0/EQTKsFkzPJ8fiBtrauNGSx6KTO77g0xnrvLoj9wJLx+XNHsFn26o1yhFn2hMMk9i0WvSXRrLcMk4ff7mTRpEr/73e+YMmUKo0aN4s477+SSSy5Jq9+feOIJhg4dytixY9sd//Wvfx1N01oTk2HRm0Rf2a07l19wAff85S8kJTlj9Ca6d++Oy9W+wngikeAf//gHF154Ycbjpk+fzssvv0yoqTFn+VlTdd+y2dBRRx3FSy+9xCuvvMLo0aO54447uOOOO7j55ptzjnXs2LF8/PHHbN68mSlTpnDEEUcwY8YMevXqpYcQhML9t97K7bffzr333svhhx/OBRdcwPbt29EkfH3Kidx6zbX84Ac/YOzYscyePTutGzChaRrf/e53GTlyJKeeeiq9evVK6xHsdjuPPPIITzzxBH379uWcc87BZrNRV1fHlVdeyfDhwznvvPOYfMxEHv7BDzJa9KbrnhJZ9MlAEF8ks2WiNjaRVGw4fdbGox2V5dilRkOWfhWxJv3Ztlm8+PE49XtQFQosXpwx00aJxUhleB6Kjfkba2hw+yiLhUiqGvM3Nlv1McNlbLM4pGJCMfQCmfoRaIZF76m0nuhlIIg/ESGcaD+XRGIJvMm45fn8QNqil41N7VNkYzF93s3guheiuRol0GXRFwrV58e9fVPW1033sMhgSRcVxkJCqmo7hTno1pqiaRkXHC6Xi/vvvz+n1frII49kfc3n8xEx44fA5g8/bDGs5g52j//iF8h9+1hhszGourrdjZo1tzvD661S+trgmmuu4ZprriGR0gjt2Q+p1qkoc+bMAaB+2y6gvbfl/PPP5/zzz896/s2bN2fcfvTRR/POO++0214XSehaAU2mFw4t0RRL4pCS+370Ix58/M/6NqMf/U1GpgLA73//+6xjArjuuuu47rrrWm177rnnWv0vIxHEqlU0ZPBySFVDYH1c3IQaLMOXxR2qNTYScbjxOK2dPkx3ZtOeWhjer93rMcNqtJrofU47R+1YTXDrJj07Ztq0diE7WzxGqgQ15icN7kaT209ZLIRNEUwa3C39WsxQe9ssrrdvwlZRrr/vvhraOehDIVSh4PVbL4ITZUEC8TANsSR+V+t7MmZU6Csl0bvjUT5dv58ThrZQ2OfoXOd12BAtyb3Loi8MaiCAJxbJ+npa3WxxsxKTrDIpzMEg+gJj9AeMlj3pRYtWtalUunhMKWrdd9hQphStYTFLFNuyVsZLL8JK8N2kawtkGItmhDIUi1PaTAQSEVypJBgLr1ZjaWwi5PTqsWsL4TZqYYSzNNdJGD3g7RaTiduhMGnbCr1tMugi3BbXRdMkjhIU7gEYX1XByJFVBONhTh7RM+22h+ays44SEb3D7ImQoXOcCIeION3Y7RYbUeghHm8yTmNT+zojZppfKRY/yxv0Z9SXiHLd3xaxeEuL65KlVW40qeoLZp+vWajdRfQFwu/Hm4hktUbTFr3VN6NBoJlir2C67q3tvZ6G2ZOe1hY98ThIiTcRs7wfPejFehSp6Z/bTNdqiRKVnbV10HRI00r43eRo9JMOZZQgXYl58zhyll7UR555ZjtXtQzpk7gnU8/tIsIsehWtqc/4ukn0TosXP0IIlg4+Es30/DmdYFQ3BD3O6k7F0awW4hmo7N+Lbskwe5tat1dONJpEXxqvj9ki1vfKi+3uERGOEHWWpkKfzShMFc6w4DAXP6UIZ3y+Xy99609E24VV0kSfwXVvij0JGn6RLqIvEIEA3mScSCRzv3HTwlastug76ElvKqpLbtEbhK5EwhAKIVIpBtftwJYjU6FYEOEwFRGD4L/6qtm1ZaIUPeAx2ggrCiKL+t8smCOs1nEAKAoSUJNJwvHW4zHvHXspXPdz5jR7WtpYrwA0NRF2enBbbNF7u+tu6WzNddL15Uvg5fhq8BgWn3yO/s8777Ry20fiuvpfK1HpWSoq8EdCrNnZ2Kr7ZMogNVe59XFxgEojLFrx3r/1cEYLsrdFwsRK0EUPdC0HQDRDt8WUmc9vcYYIwFEjBwC6Ra+I1mGV7K77VPOC2ST4LqIvDKJMXyGFs1gEpJXdVrvuzXKv2axGWVqr0fRkCIFNEdiNzASBLvhScmQqFA1NTXqxItBFKm2teqOugNWd2mwKqCKH616TKEjrdRxAOKG3CZYplU37w63J3iT6MuvTldYMP4qkot+zSaGwZvhRrV5XQk2EnB7LLXrFIKxElhakSUOM5yqBW9bnsrGpSq9gyGGHtXotFE/hTsatL5ZjorERm5riyPVfsLmmeVGeMp4hVwlIDaB81TIkhki0zYLQFgmXpF0ugMsg+kwhhKTh9SmFl2P8YT3Q3B66yThHDSxvFVbJ5rqPJNS02PM/wqIXQtiEEEuEEG8Z/1cKIWYJIdYZvyta7DtDCLFeCLFWCHF6i+3jhRArjNceEYa8WwjhEkK8YGz/XAhR3eKYK433WCeEuLKQD2em/0QyqEKhhTvUYte90oFF3+y6L5FFL2WrFLuUQWISkEKURvAVCCBNEheiXZU1oWmWtg82YVr0iqZl7EmfKc3PKoTjKVShYNM0pJStiN68dxwlIPoPKg7jmgvvBuCFsafxQUVrYhPhMBGnx/IYvTnhZWtVqxlWkrMERO912qnxGBNwG7FpJKHiTiVKQ/Tz5sFf/gLAX1/5GbtmNotrVYPUSkX04uSTkMZyXXO0DmfYo+GSdFoEcBlagUwLQtW8R6xuH2xACfgZ4pZsq4u2fqEj1z38ZxA98H1gdYv/7wA+kFIOBT4w/kcIMRK4GBgFnAH8SQhhzgiPAjcAQ42fM4zt1wJ1UsohwG+AB41zVQJ3AxOBY4C7Wy4oOoJZVjBaW5/e1ipen6EoixVQbAoaIqfgyyZLYzW2jQPbFIEtEQMhCFf2ZGNlv9IoVP1+9nbvq//dq1e7B0BY3FXQhJleB2T+fszmOiXwtvhcdqQATyqGNxnD10JBLFMqaBrOEhD9pMHdWDjkKPZ7y3BKtbULErCFQyWx6M2JT8tSYjrdMa4EOdJep4193sxEH4qn8CTjKKUoszpnTvo+dahJ1Nlz0i+ZC59SeH0AVlePZv6A0dS5A1xy8c9Z3HdE+jVHrHQ19z2GliOZiegbSxvOIBCgl5JkV0OMvS3FgblU9ybRm6LfpUuLPqy8ZlIhRH/ga8ATLTafA/zN+PtvwLkttj8vpYxLKTcB64FjhBB9gKCUcp7U2faZNseY53oZmGZY+6cDs6SUtVLKOmAWzYuDDuE0ijXEDaJ3OBxEoy1WWpqmu55KEAfWlOyCr7Qo8CAIvuxC4A3r9ZUbK3sQd3ryyqMvBuLegO68z/R+sjQWvRACLQ8RXCn0E75kDFcqiSuVZHDtDnzJ5okilUpiD4VwVZTABVlVwZ8uOYot5X2YqNW3dkEC9nC4JDF6k+hFlsZUWqk6xqET/R6XQaB7WxcSiiRSuFNx61vUgm41G5UWNcXGR31GpV+SWcjEKizdVsei/iMpi4dZ1n1wK/GZKxYh6SnNOFxGGqaaoSKdmc/vKtHih0CAblJPGf5yR4sFajaL3lTdz5sHCxfqZH/KKXl1RS0E+c5evwX+F2hZ8aWXlHIXgPHbLI3UD9jWYr/txrZ+xt9tt7c6RkqZAhqAbjnOlRecRp5nsk6/4D179mTHjh1EIoYSX1XRRO4mLsVA2mrsoDhMSQRfbUjNk4jhUFNQUaHHo0uguDeh2BRSih2SyXavlcqiB5orEmbKiiiRKBBI6xQEtNItaJrG/toayl57rSSue4Cpw3uwtaIPlbu3tXvNEQ0TdlivusdmI+7yYMuUlQHIiLFoLxXRO41Juo1FH47rrnubxaV4geby234/68dM5A1vix4dYSOVuEREP2lwdzZ0H4BNagxp3NXK8+OKl6iRDKQXhDJTEyZDb2QrUSYCgQDBZAxFwPLtGYg+gxjP67DpnhrT25xJANtJdFjxQgjxdWCvlHKxEGJqHufMxBQyx/YDPablGG9ADwnQo0ePdNGV5I4tVAObVq0mbGyz2Ww0NTXp5F7XgCOZILlkSa7P02lIwL6vBupqUTN0WYrFUuxvqCGZTKLu2GHpWJREAmddHYkvv0RzOpENjdTGosQVhaYkpDSI7S4N2YeTktqGWmz1tSTb1BAX+2tRBKhtCupYMo5wnFCoPn1NWiIWSVDbVEcilUIzKp/laq7TGSjJJI7aWgT6PZPUNLTduwEIrfiKoS+9xKeXXoq6bl3R3zsTdnXrjX/VHD567z2kcV2EqjIlESfq8vDZJx9bPoYj3R7socb0M90SIcOy/vSLL0ht2GDpOJrq4mxN6t6fbQsXsqnFeL7YlmRKMs6epkaWFDhBh0KhjJ+tI4wZNYrK7dvZH4rz2rsfUu5SiO7Tr8ecBQtKI+wFhNEM7AfBXTRtWsYcoz7ZuFiEkOSAPluhsEWjnACEdu5q936NO/XCW5988QVqCRZAY5JJHPv20ccnmL1sI0fa9YZZA1esYDDw0aJFSEdzOeemSJzafbv4IhjkCIcDkUwi7XaWBYM0FvPaSSlz/gC/QLekNwO7gQjwD2At0MfYpw+w1vh7BjCjxfHvApONfda02P5N4M8t9zH+tgP70Uk+vY/x2p+Bb+Ya77Bhw6SJhpVrpQT50R0PykxYfMw0ubnnwIyvFROapsnP+4+SW8cek/H1Pz38opQg5WuvWT4WuXix/l6vvy6lqsrG7r3ke0MnSU3T5DV/XSD/53cfWz8GAw+9u0a+M3SS1EaPbrU9nlTl8l6HyU3HTCnJOL5/59P6NXn55fZjvO33+muffJLeNnv2bMvGkvz5z6UE+e6t97faPuvib+vjSKUse++2+OUld+rvuWZN88baWilBPnD6t0oyhtqBg+Wbw4+XkXj7z/3P841rEolYPo47X10ux/3sPSl795byuutavfbEJxtlXLHL6K0/Kvi8B3wv3XWX1BRFDr/lZTl7zR4ppZRvnnaJjDlcB3a+A8QT766QEmT4rrtbbU8odvnphddlPqjY0DSpCiH/Nu0yuWhzbauXZl54Y2mfm298Q8rhw+UtLyyVR/98ltQ0Td8+Y4aUDke73Yfc+W/54MzV+j9z50p5//367wMAsEhm4cUO/ZFSyhlSyv5Symp0kd2HUsrLgDcAUwV/JfC68fcbwMWGkn4QuuhugdTd+01CiElG/P2KNseY57rQeA9pLABOE0JUGCK804xtecEsuGE2WGgLeyRC3G39Kk8IQdTjw5YlbS0dWyuFCM5UdjY2wvz5BPbv4a3hxxGKpwgnUtYrqVugIZpkd6AbqW3bW22PJFJ4k/HSdJwCRLkRg37uufaxsSwuN6tgN8r77ou37oughMPE7c6SWWoAkQHV+h8trWXjXk2VSGilBYIE42HqIu09OyXrGIculIwkUtCjR3vVfSSGU0uVJJ8/jfHjEZrGyL2bWLXLqP4WjZQspc3EYVU92R7sSWTZivQ2GY/j0FIl67S4eGs9IacXtb6BS5+Y36oinRIp8XMTCEBTE2P7l7GvKc6eRqOGS4bOdUlVI6nK5hDY5MkwY0b+zdIKQGcCjw8Apwoh1gGnGv8jpVwJvAisAt4BviOlNIPTN6EL+tYDG4CZxvYngW5CiPXALRgKfillLXAvsND4+ZmxLS+YqnsydRNCjzWWShka8/hwZnDbA9B0kIj+xRdRnS4+GDKRhmjSSPUoTfuDxVvqeG7BVvb4u+FoqOeLNc0hi3BCxVOqjlNAdZ3x3v/6V7vCH+k+46XqCDZkCCnFhmfd2lab7ZEw0RJP4qlBg/U/1q9v3mjEy5Pe0kziMqg3LKkNtyd6WyxK3Om2vNYCgMdhI5bUkD17thPjJczmOqWI0Zs4Sq9tcHzTVlbu1IneHomULKXNxPDeAdZ3G4CyZk16W6ze0JqUaOEzf2MNTU4vgXiEZKp1RTolGiFWgtLEaRhEP6a/zj3Lt9fr2zN1rjOa8HhKYFwVRPRSyjlSyq8bf9dIKadJKYcav2tb7HeflPIwKeVwKeXMFtsXSSlHG6/dbFjtSCljUsrpUsohUspjpJQbWxzzlLF9iJTyrwV9OqeTuN2RucQq4IxGSFjc4tJEwuvHmaXinAgZ4ysl0dfXw8svs//4qYRcXuojScIJFZ+rNCvf+RtrUDXJrkB3AFYtbM7cDMdTeEtI9MO3rMa4EdsJYZRIaS16HA5q+lRRsXVjq816AZLSTuLufr0JOz3IlkRvWPRaiZ4bvVVtlPpIe8GmEouQdJWm7Kz5XKQqu7ez6M3CPSUrmAMwYAB0787E2s2sNojeEYuSLCWpAb2Dbrb2Goh/y8Z0bY6okeZWKqKfNLgbIbcXfyKC3aa0EgXaI2ESpVwg+/0QCjGydwCbIlhhKu/D4Yw59EBJjKtDujIeQNTlzVrpzR0Lo5Zowkr6A7himYleyZJ6YQncbj095913YccOmr5+LkDaovc4SmPRTxrcDadNYXdAfygnOJrTHsPxFJ5kDKUU1wPYc9RkpKn7bFPH3BYtsUUPhAYPYeCeLbqr2IAjGiFe4km8R9DNlvLeqOtbuO6NRbNaou/GVlFOIB7mhYVbWzcJAeyxGKkSEb05GSe7dctO9KVSmYPuxRg/nmE71rGpRq+i6IhHUEvkoWwehiAyeBjORAy2bgWau+iV6vkdX1VBz4CbEXs38Ys+oVbpoPZYtLREHwiAlLiTcYb1CjQr7zO47s3nuxTh0kOe6GNuL/a2ddQNuONR1BLFkVSfD1cinjGVLG01lujBIBiEjz8Glwv59bMAnejDiVTJLPrxVRU8e/0kQpV6VuZwtTkHNhKJ41JT2AKlIdfGI49mSd9hyL5927UftZtx4BISvTp8BFV1O9m2uznk5IiV3i3b3e9iS3kftAyue61E92qDw4M/EeGt5bvaxV8d8RipEi1+zMk4Xt4NGhr0JlAGUuGDYNEDHHUU3baux5lMsGZ3E85YrHQpbS2gjNQL5chVqwBIGAWO7KVKaZs3j/LN66iq381Zt17RKvTmjEZKFp4FmheBs2cztl8ZK3Y06ELy/ybX/X8j4h5/upZ7W3jj0ZJNWKrfuOkzhBHsB4PoAU4/nWAv3aKujySJxNWS3HQmxldV0G/0EP2f7c2CvGi641RproffbWdNz0HIeKKdEMYejaDa7dAiJcZquMaMwi419i/5snlbLEKixNZaj4CLLeW9sW/Z0txNMF2UpTTfzS6cBBJRhKa2ir/qrWGjJWkNC80WfbRc79jG/v3p11Qzf73UJDt+PEoqxfB9m1m2rR5vIlqykEpLBMeNBSC0VBfkxetLW6GPOXMQUvfJKcnWrZWd8SipUi2Q582DRx7R/54+nZPq1lMbTrCjPprZdZ80XfddRN9pJLw+nJH2RK8mU3hS8ZKRqwy0EMG1gT0aQbXZ0xWvLIepQB03jjKPTmA1oTgJVcNXIjGeiarqXjS6fKgtiD5hdpwqVe91t4MdwZ4oNfubVfboqaeOeJRkiS3pyvFHABBd3pLoo6RKVGnMRHe/i60VfVAScTDrO5gL1RJZa30H9gL0qoEOe3P8NZpU8aTiaCW26MMm0bcQ5GkH0aIHOKZ2Ews31+JJxpAHwaKvGl5FjSdIaKl+v6YaS9cxDtBDbXZ93kopNuSUKemX9MI9JXpu5sxpLrqVSHDEhqUArNjekNF13xyj7yL6TiPl8+OKRdptjxhlcYW/NDejCGYnekc0QsLtKYl6mHnzmtOlfvlL3IsW4LIr7GzQy62WMr0OYETvALv93Yhu3JLelmgwm5WU5rsJuO3sCPbQ/9nWXAkuntLwJErnHk6PZ9wYNARidbNAsaSVxgzoFn0f/R/TfW9W7wuUxlobUK2/f081xrPXTkzHXyMJFXcygSwRuZohrVDAiP+2iNOnK/SVmuirq6GigmMbtrJwc50hYC1hip+BYb38rO82ALFGv1+ThkfOWV4ii37yZHj8cQD+OPFCdo0cl37JHY+ileq5mToVjKJaAN2+dhoOm2D5jobcrvsS6KIOeaJXfX480fYiuJhRFleUoPMVNLfMzUT0zmiYRKmstQylFsu9DnY16JNVqdLrTAzrFWB3oBvJrc0WfdKoe1AqiyDgtrPTJHpDUARGZ6lkrOQCJ7xe9lb2wrfhq/QmT6KElomBCq+TbRW99X/MxWEohCYE9hLpJ8wwky3cRN+KZiKNJAyPXIkmcXMybsxA9FrkILnuhYCjjuLwnevYH4rjTcSgVN9LC3Tzu9jRu5rAZv0e0YzFoLtUrnuAyy5Dc3soj4XSSvdESsObjKGVSl9jlic+9VS9AVV1FSN6B5st+naue93674rRFwEhlxdvPMKiza3T782OdrZgaW5Gm5HT37bUq5QSVzxasgIkTJ2qK+9ttrTCvMzjYGe9TvSlEuOZOKyHnz3B7th370xvS5mNKEpk0QfdDnYGjVYNLYg+ktTz+Q+GwKlmwGF039acYudJRNFKbK3ZFEGiT39Sdnsz0Tc1EXG49UYcpYDxfAbiEb7c0UKwmVD1HvAl+m7M56LBX65vaOG6TxfuKbVFDzB+PL22rMOhJvGWMFOlLcKDD8PXVA/79qEaz6+7ooREb7fD+KM4ctdXOrGiL9Q9iVjJCm8BOtk/+qj+9/PPM6Z/Gcu31+tF0bJY9F2u+05i8ZY6VjZJfIkolz3xeSvFbqLWqCZVIqK3m721n/l7K1VoPKXhTURJlagASXrVee+9aYV5ucfJrnrddW95o5I2cDtsxHr2xlezLx3fMjtOKSWL0dvZ469EEwo7VzQXqtEt+jjyIAicwocNpf++bajJFMlEsqSVAluioszL/m590kQvGxsJOT24S3WfGM9NIBFh5c7mLIRIQsWTjJekRS00W10NLp9OKi0s+jTRH4QFoS7ISzJm93rsUsN2kIheHD4SAG3lqrRg01NRotawBpRJkxi9dyOrtuhCyUhCX/yU6h5J47DD4Jhj4J//ZGy/MkKROCIezxqj77LoO4n5G2vwR0P4kjHGbF7RqmJSvF6fNBwliiP12K1bis5XXm5VfS2aUPEmSuhegnalFsu8DpriOsm27IFeKtgHDECRGuzZA4AWKm2Rmo37QqRsdnb7K1kwe0l6QWi67g8G0cvDD8edSrD3y7XEGkpYUKkNegRc7KjsmyZ6tSlE2OkpnZbDWIgPcaltLHrdda+UqBqdKVKNJLVWZXATKQ17wmgnfDAsekOQN3mHntpWsi5tbRAYNwaA+i+WI5tCxG12PL4SX4+JE3GmEiS+WIKUkkhjBLvUSqbDaoVLLoElSxgf24M3aaRitnl+0xZ9CRbNhzTRT6vbwPkrPwTg7y/8mGl1zYU/Uoay21miOFLPDXqJSNGm+lo0qeIrZRwpA0zlPZRejAfgG6x3wIpt1gV5pe6r/aVRWWxHsCe9G/amF4SRRMooxVt6S807djQA9QuXpRelB4Pou/udbCrrrRO9lGgNjYSdntKlYRoW/VlrPkHMb/aEmRa94i+RRW9MxuGEqhO94bqPGqJAfaeDQPSHHQZlZRy/WxfC7ddKv1AH6D92OBGHi9CSFSjhEFGHG1sJW14DMHEiAIM3fMnOhhhxY4FcqnukFb7xDVAUBs96k3LNIPoMrnunTcFegvbkhzTRj1j7BXap5/86tBQj1n6Rfi1piOJclaVxL0WmnoyG0WO3RfW1SELFm4geFLesifJWRF/6iaLbCL2m+u6VxkKsxGVnjz2sO4qAncEe9G3cl07h0mP0ccRBINjKCXqKXWzFlyTqTKV76S2THgEXX/l76kViamvRjBh9yVz3RubB2MUf8cgTt9HwwUcARKJxXGoSe4kWYYoi8DhsROKtG9uETFEgHByiF4Kmw8cwaqOew/7XZfvaVRAsBYb1CbKhsj9y7RpEOEysxH0ZABgwgGSPXkacvj69QD4oXo4+feCkk7A9/0+GePUFz6Zo612iiVTJFsyHNNEzdSrCyE2XQmlV2lQzVnulEoxokyaxtM9wEj16tqq+Fk3oFj0Hw71koNx7cC36/kbRnNp1RjPrEneMG19VwTlH9mNXWQ/6h2sYP0Bf/MVMq/EgWPS9q/qyz1eObe3adF0BpUQZIi3Rw+9iY9BQ3q9fD6EQIaendFqOBQsA3RPmUFPUvj0LaG4kYy+hteZz2YgkVejZM030kXgKdyqOZnekc7lLjfUDhhOM69ejye5qFaIsFQJuB7t6VxPYtA5bNHJwiF4IlEkTGbdzLSt2NJAwsnfsB+G5AeCb34T16+mzTL+Hfz13e6tFWDSplmy+PbSJfvJkmDWLlM3O7JHHtap6Js0UkMqKbEcXFX6XnYUDRqHU17O455D09mhSt+gPhtVo4mC77vsPHUjCZie6SdcxKKXuGAd8bUwftgd66JW1DK1AxIjRHwyBk00RbO9djX/TOpIG0dsPkkW/ucLIpd+wAdHURNjpLR3Rn3QSKAoSSNrsfDFY93QkGvXwTilbw3qcLSx6w3UfiqfwJONoJWiVmw1lx09M/510e1o1dSklQoOHULl/N766/cRLXGTKhG3yJAbV7WTDmq2kDGOuZBX62uL881HtDi5a+g4ATUrrRVgkUbpKpIc20QOccAL7Rh5JZc0eakLN9alNoveVyKLftD/Muu4DcSQT3PXQa+mVXSSexJeIlSyfPxPKvM0V+Q6GGM9mU6gt75Eug6tEI6hm+l+JMG5geXMu/RZdK6DH6OMlK8XbFjUDD6PX9o1pPUmpMkRaorvfxbYyvTodGzYgwiHCTnfpFoSTJ8M55yBcLn54/a/5sOIwoLmRjLOE343PadcFVD176vUw4nEiCRVXKoF2MNz2BgaffmL67zsuPLpVU5eS4vDDAei/eW3J+zKkccwxANgWLUzX43AehAUyABUVNJ10Kkfu0uthRJ3uVoswvS14F9EXDdrRRzNq70ZWb21eTYlQiIjDhd1Zmhrmq3Y2sra7Ljqr3r05vbJLNIVQkNgO1s1Ic4xeEeCyH5xbItKjN669uwG9JHBJO06hF/2gSv9+zFx687uxHySijw0Zhi8WxrZBr0pXspKiLdAj4CLucBHtqQvylLCuuneX0vNzyikQj1M+/DBWGsVQUoZgs5RCK01K1u5uYotikNi+fYTjKdypxMGJz5sYOjQt1Dx8SJ+DNgxTee+JR0peTTKNCROQQjBk0yr27dZrp5SsQl8GlF97RfrvoYN7t1qERRJqyTxj/yeIvnzKcbhTCXbNXZTeJkIhos7S3YwnDOvBhm4DADi8Zmt6ZWeWiyxZp6cMMF33XqcdUYoyvBkg+/alsn4fteEE9mik5PXlAfqMGaaPxbDo1UbdajwYBAugjNQtJMcXiw/aOLr79ZKe9X0Gwrp12CMRXXVfynoLo/UMhGOju9hcE6Exlix5I5nFW+pYvzfEltoIv/rCKL61bx9hw+tzUHLoTSiKrr4HWLs2974Wou/4MaSETinJEvdlSCMYJD5kOEfuWsuWLXp4xV1+8OZWzjpLL1AGiK++avVSJKmWrPDU/wmi951wLADq/M/T22yRMNESksn4qgpOHFfN1vLeXBpoSq/sTKJ3HKw4Es1ivIMRnzfhrB5In6Ya1u5qxBGPoR6EmOfIwwfQ6PTStE6vSJcKmek5B8ei9x2hW0iBFUsAcB2Ee6Tc48CuCPb17A8rdGV32FFioh81CoCRtXofgtU7G0mZtRZKRLDzN9agGZWj97qN72HfPsJxFXcqjjiYFv28ebBypf73pZe2KshVShzWv5Kthp5DPYhZRI5jJ3HErnXU7NEXZAfjuUlj2bJ0a/Ifv/Qge9+dnX4pmkiVJIce/o8QPYMG0eQvI7BiaXqTLRwi7irtKvxrY/uwtnsVvq+aV91mXeiDZTUClHv0WPjBJPryIdV4UnHWrt2K+2DUl0dfjO0M9iBkEL1ZyrOUosCW6D1iMI0uH9136h4GZylLihpQFEE3v5Md3fqkG9qEXSUsmAPQrRv06UO/7XoI48udjcgSW/STBndLh7VqvEZK7t69aR2HcjAt+jlzmtsIt2nTWkq4HTZ29qkGOCjtck3YJk+iMtrIsL16Fo9yEL2lLXuL2NUU+956L/1S5D8pRi+EcAshFgghlgkhVgohfmpsrxRCzBJCrDN+V7Q4ZoYQYr0QYq0Q4vQW28cLIVYYrz0iDD+xEMIlhHjB2P65EKK6xTFXGu+xTghx5QF9SiGoOXwsh21aRdioAOeIRoiXmEwmDq7kq+4DcW5crxfNAVKmYOQgrjoD/7+9ew+OszoPP/59tJJWMpIlWZZtWbYuDr7LGNvY2CElCo6BhPwGmoYWeolJaMmkdCZtEjoJnZQMLmlS0qbttM2vDCEhGSCXAr+QTAI/F6xCwFwMAd+EL9iWkfFdsi1Z15We/nHOymtZtmVh7Xm1ej4zmt09776vzsqv93nP5X1OXjYiYe6hTyrwSXP2btzhFpIJ8EUxc1Ihh4onQaMbo+9Lc+KegSpLL2Fn6TQAEpJFfkGYYFJWGGdP0ZT+123pHqMHqK0lf1sDkwrjbpw+zQvJLKkq4dE/W86KD5RyON8H+sOHaevqJS/RTVbAFmz/qmkp61eE0lrj7ijSgHcRJRPnfLDxLfc6Av82GovRE8vh+Yr5/Zs6Ijbrvgu4RlUXApcD14vIcuArwLOqOhN41r9GROYBtwDzgeuB/xCR5Kf5LnAHMNP/XO/LbwdaVPVS4DvAt/yxJgD3AFcCy4B7Ui8oLkTvFUuZeWQv23ftB9yKcT1pDvSTCvNomTGLrN4E+PGaZF73WMBAn5UljMuJcbyjO0iyDQCZ7uYvHHl7F+O6u4Ksqx3LErqnTafgoFtgR9Ocineg/NwYTVOqAWjPzScv0IVYWUGcbYWT+1+3p7vrHmDBAti6lQXlBWx57wTant6ue3DB/vu3LaVkahmJrBiJgwdp70qQ39uNjAvYdT/I+hXBzPEz73dsDjaEQG0tibx8Zh/ZSyIrvXfvnMH/28iaNdx/17/zZHx6/6ZI3Uevjm/akON/FLgReNiXPwzc5J/fCPxYVbtUdTewE1gmIuXAeFVdr6oK/HDAPslj/Rew0rf2rwPWqmqzqrYAazl1cXBBiq/+IDHt42C9O/nine3pW0gmReFidx9w30Y33ilt4fKYJ73e2EJ7dy/7jnXyRw++HCbYV1QAkHfogE87Gya4xmfUML79BG1HjyFpTtwzmGNVbpJVe24eOWlIlTmYiQVxtuSV9b/uzMtPf11qa6Gzkw/KcXYcaiXRmv5AD657+t6bFnB0XBHbNr7Dye4E4xLdYSfjwRnrV4RSXuAuRitff5G+a1aGCfbZ2XRddjkAnbn5bjnfkPy/TemqD7P9YBstJ7tRVTqiNhlPRGIi8iZwCBd4XwEmq+p+AP/o1/mkAng3ZfcmX1bhnw8sP20fVU0Ax4HScxzrgk2ouwqAhJ+Ql9fZTiLNy34CVF+1iIRkcfRVl463P697wECfmsShJ9EXJLMW5W4ST3nrkTArTnkT57mux+2vbU17hr7BdM+cDZDWO0QGKiuMs7s3Fy1xnWmJEOOvfub9ohP76FNoa/EL3ASYBPfhWWX0TJjI/p1NNOxvJS/RFfb2ugiJH9xPH5CF0tfVxb4nfx2mHh9yFzztuXnBeikHusJPwH69sYXOnj5U0zcvakiXE6raC1wuIsXAkyJSe463D3b5pOcoH+4+p36hyB24IQHKysqoP8tklHnFZeT/dgP19fUs6WqnVfWs7x0piY4+9pRMpeuFl9hSX0/bfnfv+ItvvUVPylro6RQ/1ktOFiT6ICYQP9ZIfX3T+Xe8yJYVlzC57Sj5PV0c6eykIcCkotwsN3fitWfq6Wp2s3bXb9xIV8r6421tbWk7bw4Uu/Hg9ty8tJ+rSccO9JDoU46XTaK4pYXO3Hja65LV0cHVQHzDC1DxKXdLG/D8hg30BeianVdaQOmhY7z57jHi3Z1see8Ih4fxN0nnuZQOG4unUZ2dS05vgp5YNk9kT2BBgM+XyCrgo7iUwLf+50v89dI8Li0JN9kYoLtXyRZ4/IW3aG9ydzo17dlFvb57nj3fvwvqN1DVYyJSj+s+Pygi5aq633fLJ78Jm4DpKbtNA97z5dMGKU/dp0lEsoEioNmX1w3Yp36Qej0APAAwe/ZsrTvLZJSG+YuYtWUjUz70O2R1dzJuyhQ+GGDiyrqpNczb18j8ujqOfPdxAK667rpg3X91wKLFLby86yjLZ5QGy6zVW13NlBNHGdfTyaTqauaGmFQ0YwZ88QvktrRxiV8QacVHPwoTJ/a/pb6+nrOdYxdbS0EjXV/LpqSzjfnxeJCu2da33uPRt39LzuQpsH0bc08epq7uc2mvBzNmMK+7naL8HPJ6ulARrl61KkzX7JzZZO//DQDxnm5eOpbD4pqFF/x/J53nUjoU1izkM/v7WLL7LV6vWchdn1sd5Pvk4YMx4F4u6e7gsqYGulbdRF3dpefdb6Qt3P4SB3uVRVcsgufWcdn8OdRdMf38O75PQ5l1X+Zb8ohIPvBR4G3gKSA5C3418HP//CngFj+TvgY36e5V373fKiLL/fj7pwfskzzWp4Dn/Dj+M8C1IlLiJ+Fd68uGpW/pUqYfO8CODVuJaV+w7vLuOfMoO/Qu2t5O1smT9IkE7/pbUlXCnR+5NFz6TCBWOZ3Kdteij40P1F0+dSq9WTF6du1BOtKfc3+guXvfJruvlyktB2BlmDHPiQVxFu9rIH/9iwB8/dE1YcZea2uRzZuprRhPfqKLnnjA8ddJk7iktQXRPuK9PbRn5YQZ8oqYJVUl3PX1zzDunq9x19c/E+z75MqcdhSY3NbMjx77m9OWKA9pafUENu07Tku76zmMzGQ8oBxYJyIbgddwY/S/BL4JrBKRHcAq/xpV3QL8FNgKPA3c6bv+AT4PPIiboPcOkBzA+R5QKiI7gS/iZ/CrajOwxv/e14B7fdmwFF/txukPPeUWGQix7CdA4ZKFZKmy98XXibW30xXyCytKKiqY1ryfLJQjfelJTXyG7Gw6J02htPkAPSfa3EVYwAVLpm98FUXcf9Tu7iD3SJcVxlm+d1P/vdqx3kSYe7Vra2HbNhaW5ZPf00Ui4L8LZWXET7YxqdetPdoTzwu2mEzURKHRMGfbGyCCAHnae9oS5SEtrS6hp1dZ/467KIzMGL2qbgQWDVJ+FFh5ln3uA+4bpHwDcMb4vqp2Ajef5VgPAQ+dr55DMeWaq+hDyH3erWmdFSjQV33YLbzw7m82kNNxkq68cdhUHth3yQQqujsB+PGWo3yssSXIl0VWVSUV7x2meVwRPXn5xANehI27diWd9/0d9CbIysklK0A3b1lBnJcrF9CXk0tfTze9sRyyQ3Q3L1gAvb0s7TrE0UQ37bE4DYHOEcrcXQjfX1kO/wi/f/VsKgMGNjNAXR2Slwfd3W6p8ogMj1xRNQGA/9nuljnOz0nPrPtwGVICiBWNZ++UKmZscjPvs4uKgtRj6pIF9MSy6XjjLXI628Ot9BQxDbHx/bdUtMZyeXnX0SBf4nkzapi2/Tne6ZlGIp5PPO01OOWNirncd+t9LG/cxBszFnLX1DksSXMdxudns7lyPo9+4yH61tXz3sJl3B3iNi4/875413ZO9nTRQjZ/9ODLPPKny9N/nkxyNxnN63EzuisrrDUfKcncAvX1LsgHvu0wqWhcDrMnF7JhjztvItOizzRH5i1k8XNuakAsUNpZyc3l8NRq8na8jSJpT9wTVZULZvY/D7mutlRVMuXEES7p7giSijfVy7uO8mbFXN6YOpeYEOTiR0SYWJDLW9Pm8du6cuaWB0ruNGsWZGfTt2kz4xJddOTE+28HTXugLzt9SePg99GbM61YEZkAn2ppTQnbDrr8KVEao88ofVcs7X+eWxymRQ/QPXceNft3k93RHua+5AiatXhO//M/v+HCZzBfNFVVZPcmqGo5wIms3KD34S6fUUpudhYxgZzsrGAXP2WFcQ63dbm0nenOipeUmwuzZ/OBQ3sYl+iiMzse7m/iW/T9gd7uozdDtLR6Qv/zKKXAzSjJCXkAuQGXLyxcfDnTThxiUltzkLzukTTt1N2Xl9ZMPscbR1hlpavD0b0c7ssOly0QN7HpkT9dzhevnR2mi9qbWBDnSGtXWtN2Dqq2luJ3tlFbksPk8gnh/iYDW/QW6M0QnRbobfW6kTH9I1fSHXMjFnklxcHqMeFKN7/x0uamoCs9RUphofuBsAtR+EBf2N1Be248XLZALwqzmCPRogc3Tr97NwXHm6maNjHc36SoCHJyIJnkyrruzRBNLc5nYoFL8rTtQGtafueYC/Txcfk0lbopX4c3vBmsHlJ76uaDvpBBLWp8zvsoBHqAjpy8oF3mUTGxIM7Rti66En3khQ70ALt3hw2uIq5Vby16c4Feb2yh+aS7j/6zD7+Wlt7CMRfo337iGSoPu5SDc+78DG8/Mez8O+9PTQ2JuLsPuKknFpl8zMElu+9DBvrx46G4GIDK6WVBu8yjoqwwTp9PPp2uccVBLVhw6nno4FpWBgcPuufWojdDFGJtkTEX6Ft+vZZkuvyc3oR/HUAsRtuMWQA0tPYFHQeOlByfKGfr1rD18K36WTOmjPkgD65FnxR0jL6m5lSADx1ckxPyIPxFhxk1QkywHXOBvuRjq+iJ5ZCQLHpi2ZR8bFWwuhyY7pYgPZmbH3wcOBLWr4e1/sLr5pvDrWcNp7rvbVgFcC36pKBd91lZMH++ex460JedWrrXAr0ZqhATbMdcoJ/zyeto/MlTvHb7X9H4k6eY88nrgtWlYIlbm37JvgaWHtg25seBqa/vT7MaKt1rPwv0p0lOHoL0zRQ+q+Q4fZQCfei6mFEl3RNsx1zCHHDBnoABPmlaqVtU5yO7NvCRfZvJumMFVEUvwUPa1NVBPO6CfOi0lRboT5Paoo9MoF+/3v2ESopiXfdmlBhzLfpIOXYMgCxVsnoCt2CjIJm2cs0a9xgyq1VVlXtMBpMxriCeTTzbfV0EHaMH130P8PTTwVb0A0616GOxU3NLjIkgC/QhffzjriUQi4VvwUbFihXw1a+GT1154oR7/NWvwgaTiBCR/lZ9XuhAf9TPZVENO8STDPT5tvqkiTYL9CFFqQVrTrdvn3sMHUwiJDnzPnjX/Q03ROMCOdl1b932JuLG5Bh9pER04YUx7/rr4f77ozFfICKSLfrggT4qK5MlW/Q2Ec9EnAV6YwYTlWASJT5hzs5DbVRPDDxJMQoXyNaiN6OEdd0bczZRmS8QAa83trBu2yEA7nz0DUvuBC6DYk6OBXoTeecN9CIyXUTWiUiDiGwRkS/48gkislZEdvjHkpR9vioiO0Vkm4hcl1K+REQ2+W3/KuJmsIhIXER+4stfEZHqlH1W+9+xQ0RWX9RPb4wZkpd3HaVPXZM+0WvJnQA3Aa+oCJqbx/xkTRNtQ2nRJ4AvqepcYDlwp4jMA74CPKuqM4Fn/Wv8tluA+cD1wH+ISHJQ77vAHcBM/3O9L78daFHVS4HvAN/yx5oA3ANcCSwD7km9oDDGpEeItJ2Rt369uwOgsdHuzDCRdt5Ar6r7VfUN/7wVaAAqgBuBh/3bHgZu8s9vBH6sql2quhvYCSwTkXJgvKquV1UFfjhgn+Sx/gtY6Vv71wFrVbVZVVuAtZy6ODDGpEmItJ2RV19/6rY6uzPDRNgFTcbzXeqLgFeAyaq6H9zFgIgk00RVAC+n7Nbky3r884HlyX3e9cdKiMhxoDS1fJB9jDFptKSqxAJ8qihlcjTmHIYc6EWkAHgc+EtVPSFnTxAx2AY9R/lw90mt2x24IQHKysqotytrM4La2trsHDMAjL//forffJNjl1/Oia6uC27V27lk0mFIgV5EcnBB/hFVfcIXHxSRct+aLwcO+fImYHrK7tOA93z5tEHKU/dpEpFsoAho9uV1A/apH1g/VX0AeABg9uzZWmdX1mYE1dfXY+eYAd53K97OJZMOQ5l1L8D3gAZV/aeUTU8ByVnwq4Gfp5Tf4mfS1+Am3b3qu/lbRWS5P+anB+yTPNangOf8OP4zwLUiUuIn4V3ry4wxxhgzBENp0V8F/AmwSUTe9GV3A98EfioitwN7gZsBVHWLiPwU2IqbsX+nqvb6/T4P/ADIB37tf8BdSPxIRHbiWvK3+GM1i8ga4DX/vntVtXl4H9UYY4wZe84b6FX1Nww+Vg6w8iz73AfcN0j5BqB2kPJO/IXCINseAh46Xz2NMcYYcyZRPWNu26gmIq3AtmHuXgQcv4jVeT+iUherx5kmAkdCV4Lo/E2iUg+ITl2GWo+RPpei8veA6NQlU+sxW1ULB9uQibnut6nqFcPZUUQeUNU7LnaFhiMqdbF6nElENgz3HLvI9YjE3yQq9YDo1GWo9Rjpcykqfw+ITl0ytR4isuFs2yzX/el+EboCKaJSF6tHdEXlbxKVekB06mL1OFNU6jLm6pGJXfeRaG2ZzGXnmLlY7FwyF8u5zqVMbNE/ELoCJuPZOWYuFjuXzMVy1nMp41r0xhhjjDklE1v0xhhjjPFGXaAXERWRH6W8zhaRwyLyy5D1MplFRH7Xn2tzQtfFjD72PWWiZNQFeuAkUCsi+f71KmDfhRzA59M35lxuBX6Dz9I4VCISG5nqmFHmfX9PGXOxjMZADy517g3++a3AY8kNIrJMRF4Skd/6x9m+/DYR+ZmI/AL4/+mvshkt/EqNVwG34wO9iNSJyPMi8qSIbBWR/ysiWX5bm4jcKyKvACvC1dxEzHC+p14QkctT3veiiFyWzkqbzDNaA/2PcQvn5AGXAa+kbHsbuFpVFwF/C3wjZdsKYLWqXpO2mprR6CbgaVXdDjSLyGJfvgz4ErAA+ADwSV9+CbBZVa/0KaONgeF9Tz0I3AYgIrOAuKpuTFuNTUYalYHen/jVuKvkXw3YXAT8TEQ2A98B5qdsW2uL4pghuBX3JY1/vNU/f1VVd/lFmh4DPuTLe3HLOBvTb5jfUz8DPuGXBv8sbhEwY96X0TxW/RTwbdx69aUp5WuAdar6uyJSzenr159MV+XM6CQipcA1uPFVBWKA4r6oB96LmnzdmbJCozGpLuh7SlXbRWQtcCPw+4Al0zHv22gO9A8Bx1V1k4jUpZQXcWrSy21prpMZ/T4F/FBVP5csEJH/wbXel4lIDdAI/AGW7MSc33C+px7EpUd9wXogzcUwKrvuAVS1SVX/ZZBN/wD8vYi8iGuNGXMhbgWeHFD2OPCHwHrgm8BmYPcg7zPmNMP5nlLV14ETwPfTUEUzBlhmPGOGwLfGvqyqnwhcFZPhRGQqrit/jqr2Ba6OyQCjtkVvjDGZRkQ+jZud/zcW5M3FYi16Y4wxJoNZi94YY4zJYJEP9CIyXUTWiUiDiGwRkS/48gkislZEdvjHEl9e6t/fJiL/NuBYfyAiG/1x/iHE5zHGGGPSKfKBHkgAX1LVucBy4E4RmQd8BXhWVWcCz/rXAJ3A14Avpx7E3x99P7BSVecDk0VkZZo+gzHGGBNE5AO9qu5X1Tf881agAajAJZR42L/tYVzaUlT1pE9D2jngUDOA7ap62L/+b+D3Rrb2xhhjTFiRD/SpfAapRbhZqZNVdT+4iwFg0nl23wnMEZFqv3rdTcD0kautMcYYE96oCfR+RbHHgb9U1RMXur+qtgCfB34CvADswQ0LGGOMMRlrVAR6v8DD48AjqvqELz4oIuV+ezlw6HzHUdVf+BXGVgDbgB0jVWdjjDEmCiIf6EVEgO8BDar6TymbngJW++ergZ8P4ViT/GMJ8Oe4nNLGGGNMxop8whwR+RCuq30TkMwUdTdunP6nQCWwF7g5uQCEiOwBxgO5wDHgWlXdKiKPAQv9Me5V1eRSpMYYY0xGinygN8YYY8zwRb7r3hhjjDHDZ4HeGGOMyWAW6I0xxpgMZoHeGGOMyWAW6I0xxpgMZoHeGDMkIvJLEflB6HoYYy6MBXpjzEUnInUioiIyMXRdjBnrLNAbY4wxGcwCvTHmDCIyTkR+ICJtInJQRO4esP2PReQ1EWkVkUMi8jMRqfDbqoF1/q2Hfcv+B36biMhfi8g7ItIhIptE5I/T+dmMGWss0BtjBvNtYBXwe8BK3PLQV6dszwXuwaWU/gQwEXjMb3vX7wcwHygHvuBf/x1wO3AnMA/4e+A/ReSGkfogxox1lgLXGHMavyT0UeCzqvpISlkT8P9U9bZB9pkDNADTVbVJROpwrfoyVT3i33MJcAS39sQLKfv+MzBLVT8+gh/LmDErO3QFjDGR8wFci319skBV20RkU/K1iCzGtegvByYA4jdV4i4IBjMPyAOeFpHUFkYOsOci1d0YM4AFemPMQHLOja5l/gzw38CfAIdwXfcv4C4QziY5VPh/cCtOpuoZVk2NMedlgd4YM9BOXOBdDuyC/uBeC7wDzMEF9rtVdbff/skBx+j2j7GUsq1AF1Clqs+NWO2NMaexQG+MOY3vpv8e8C0ROQy8B/wtp4L2XlzA/gsR+XdgLrBmwGEaAQVuEJFfAB2q2ioi3wa+LSICPA8U4C4o+lT1gZH+bMaMRTbr3hgzmC/jJtM96R834wIzqnoYWA3chGul3wN8MXVnVd3ny+8DDgL/5jd9Dfi6P/4WYC1uhv7uEfwsxoxpNuveGGOMyWDWojfGGGMymAV6Y4wxJoNZoDfGGGMymAV6Y4wxJoNZoDfGGGMymAV6Y4wxJoNZoDfGGGMymAV6Y4wxJoNZoDfGGGMy2P8CZULMhM1p3BkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# extra code – displays the SARIMA forecasts\n", - "fig, ax = plt.subplots(figsize=(8, 3))\n", - "rail_series.loc[time_period].plot(label=\"True\", ax=ax, marker=\".\", grid=True)\n", - "ax.plot(y_preds, color=\"r\", marker=\".\", label=\"SARIMA Forecasts\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAFACAYAAAABGrWZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/aUlEQVR4nO3dfZxcdX33//dnJyzZJMQNYFZyI1CJEWI1QEoulOpSij/A9gLUtnD1R1Gxqb9LuKzW/uSy/XnXq5Z6c7WKN5QWflIuhUsrClUsYmRLrYDcRSDEhYhAQmgCgSXZ7Cabnflcf5wzyczszOyZnTN7bub1fDzmsTtnzjnz/Z5z5nzmM9/v+R5zdwEAAAAA8qEn6QIAAAAAAOJDkgcAAAAAOUKSBwAAAAA5QpIHAAAAADlCkgcAAAAAOUKSBwAAAAA5QpIH5JyZDZqZm9mRba7nmHA9a+IqGwAgWWb2pJl9qIX5Y4kp3cTM3mlmozGsh22PyEjykGtmdqKZFc3s32ewbNcmNWY2ZGZfrJm8RdJRkjbMfokAoDuY2VfD2ONmtt/MnjCzz5rZ/DbX+3Eze6TOS78m6cvtrLvJe74tjMFfm+HyXZvUNEi+f6IgDu9MoEjIGJI85N0fKgherzWz45MuzEyZWW+daXPMzGarDO5edPf/cPfJ2XpPAOhSP1TwZf5XJP25pP8q6bMzXZmZHdLoNXd/zt3HZrruabxH0qclnWdmizr0HrOi3jasF5s7yd0nwjjss/m+yCaSPOSWmfVJ+i+S/l7SP0m6pOK1uq104bR3hE9/Gf69N5w+FM7TY2b/n5ltMbN9ZvawmZ1bs54lZvY1M9tpZmNmtsHMTq94/Y/MbLOZTYR//7BOOd5nZjeZ2R5Jnyr/Cht2+/iFpH2S5pvZy8zsajPbYWa7zexfm7U+mtkRZnaDmW01s3Ez22hm76p4/auS3izpfRW/Jh9Tb5uZ2ZvM7B4z22tm283sbyqDXtgi+GUz+5SZPR+W8bNmxrkHABrbF36Z3+LuX5f0NUnnSZKZ/d9mdm94vt9hZt80s6XlBStav84xs5+a2YSkP5L0MUmrKs7r7wznr2oxMrMPmtlDZrbHzJ4xs38ws/5WK2BmyySdriA5vVvS79e8PqWVrjLOmNkxku4IX3ounP7VcL5Dzexvw7iz18zuNrPTatb/GjO7xcxeMrNRM7vLzH41fK1pHK8ox4Vm9iMzG5f0Rxa0sn7XzD5sZlslbQ3nX2pmN5rZi+Hje2a2osm2eZWZ3Wxm/xFu5wfM7LcqXh+SdLSkz5T3V5Nt9raw/PvC+vyZ2cEfgMP9++dm9ndmtiuM/X867Q5E5vFFC3n2DklPuftDkq6X9AfW5NfMOk4J/56l4BfVt4XP3y/pTyV9WNKvSvq2pJvMbLUkWdCl5l8lHSPp/HCeT5ZXambnS/qipL+V9FpJn5f0ZTP77Zr3/5ikW8PlvxROO1ZB4vo7kl6vINH7nqSlkn5L0omS7pT0IzM7qkG95kp6IJx/Vfj+f2dmZ1TU7y5J/39Y76MUdNWsEn6p+L6kB8P3vUTShZL+qmbW35c0KekNki6V9MeSfq9B2QAAU41LKsevXgXx4fUKzuNHSrqhzjJ/raAV8DWSbpb0OUnDOnhe/98N3quk4Dy9SkG8OUXSlTMo87sk/cDddyqIwe9pcfktkt4e/r9KQZnfHz7/tII48m4F8edhSf9SjntmtkTSjyW5pDMlnaQgjhbC5ZvG8Qp/paA30AmSvhNOe7Ok1yn4bnCGmc1TkIzuDV87VdKzkn4YvlbPAgXx80wF+/Fb4fu/Jnz9bQoSyE/q4P6awsxOlvRNSTeF9bhc0n9XEGsrfSDcRicpOC4+bWanNigb8sLdefDI5UNBovWh8H+T9KSkt4fPj1Fw8l9Ts4xLesc08zwj6aM104Yk/a/w/z+UtFvSkQ3K9e+Srq2Z9lVJP64px5U183xc0n5JAxXTfkPSqKS+mnk3SPp/w/8Hw/XVLU84z42S/qGmPl+smadqe0j6S0mbJfVUzPNOBYnnvIr13FWzntsr34sHDx48eBx8hPHguxXPT5H0vKT/3WD+14Tn5mXh8/I5/+01831c0iN1ln+yHCsbrP+s8LzeU7P+ZjHFJD1REU8XSNoj6eSKeaasp06cqTfPfEkTkv6gYlpB0i8k/Y/w+V9KekpSb4PyTRfHy+X4kzr75jlJh1ZMe7ekxyVZTXl2Svrd8Pk7JY1Os9/vlvTnzfZL7fZQ0ML7ozr7eWvNem6omefxyvfikc8HLXnIJTM7TtIbJX1dkjw4q31Nrf+SWLvehZKWKEjUKv1YwS99UvCr4kPu/nyD1Rw/zfJl99VZdqu7b694frKkeQq6soyWHwpaCF/VoA6FsDvHQxZ0Jx1V8KvhKxuUt5HjFSRwpZp69Eo6rmLaQzXLbZO0uMX3AoBuclZ4Pt+roGfFnZIukyQzOyns6veUme3WwVhRew6vF0OmZWa/YWa3h936ditoJeqV9IoWVnOGpEWS/lmS3H1UQUtYWzE49CoFrZoH4qi7FxVsp8o4/GN3n6hdOGIcL6u3DR9x930Vz09W0Mtmd0UMfklB/RvF4flm9mkzezTs3jkqaY1mFofr1WNpWM8y4nAXmpN0AYAOeY+CX9KeruyaLklmtlxBd5QD08LprXTlrHfRc3lalMFQmi1ftqfOPLXTeiRtl/Trdebd1eC9PyTpTxR0V3lYQUvgp9T6Cd9Uvx6qmb6/zmv8wAQAjd0paZ2C8+c2d98vHbgc4DYFA7NcJGmHgu6a/6YgEatUL4Y0ZWZHK7gE4O8lfVRBa9RJCrqDtjLIyHsk9UvaUxODd5vZn3gw0MuUOKyDXVKbFjP8m6Y4vEHSBXXmfaHBe39WQQvphxS0qo1J+ke1to0l4jCaYAcjd8xsjqSLFfRLX13xeL2CX7PepaC7hVTdz311zarKvwCW+/DL3Xcp+AXstJp5T5P0aPj/A5JeZ42HfN40zfKteEDSgKSSu2+ueexosMxpkv7Z3a939w0Kuri8umaeCVXUu4FHJZ1q1YOonBYu+4tWKwIAOGAsPI8/VU7wQq9RkNR9xN3vdPefK/oPdFHO62sUJBofcPe73P0xBa1ekZnZ4QoGiblYU2PwPgXXy0szjMMKLhOYUEUcNbOCgmvhKuPwaVZn9MuIcbwVDyjovfJ8nTjcKMk7TdI/uvu3PBg3YKumtvpFjcP16rHV3Xe3Vg3kDUke8uitCoLg37v7I5UPBdeevVtBoLlb0ofNbJWZvUFTh6feoeBi9//LzAbM7GXh9M9I+lA46tarzeyTClrSPhe+/vVw2e+Y2a+b2bFm9p/t4Oian5F0kQWjZ64ws8sUDE7y6RnU9YcKumrcbGZnh+91qpl9wszqte5J0mMKLhY/LbzI+4sKuppUelLSKeEIY0da/dEwv6wg+H/ZzI43s7dKukLBtXydGo4bALrZ0wri16Vm9ivhefcvIi77pKSjw+6eR5rZoXXmeVzBd8M/DuPJhQoGYWnFRQquS/9anRh8kw522dysYHCVj4ex9C0KBoqp9JSCVqe3mtnLzWyBu++R9BVJV1gwgujx4fMBHbzf35cVXAf4DTP7NTM7LozZq8PXp4vjrfiagh41N5vZm8Pt9iYz+5w1HmHzMUnnh/viVyX9LwWDolV6UtKvWzByZ6MfjT8n6c0WjL79ajP7fQU9dWbyfQI5Q5KHPLpE0h0ejOhV65sKhiX+TQXJniTdK+nvVBNcPLgf3H9TEJC2KRidTJK+oCBAfFrSIwpG0Hx72CqmMAC9WcGF3f8saaOkTyjsOuHu31FwbcUHFPwK935J/9Xd/7nViobXGp4j6UcKutcMS/qGpJVhmev5H5J+qmBkrzsVdD2pvVHtZxX8iviogl9bp1wn4O7PSDpbwbUPGyRdq6BLz0darQcAYHru/pyCFrLzFJyfPybpgxEX/5aCEZvXKzivX1hn/Q8piEkfDNf/HgVdCltxiaRvh9fJ1fqmgsTl1WEL5QUK7gX4MwVxsip+hHHmYwoGUtmu4EdJKRgV8xsKRoHeoHC0S3d/tmK5NylolbxDwSjQlykY6VmaJo63IvxR800KBpr5pqSfS7pOwTV5LzZY7IMKfgz+NwWx+O7w/0oflbRcQc+Y51SHuz+gYLTtt4f1uCJ8fLHe/OguFnxHBAAAAADkAS15AAAAAJAjsSR5Znatme0ws0cavG5m9gUz2xwO235SxWtnmdlw+NrlcZQHAIA0ID4CAJIQV0veVxUMBdvI2ZJWhI91Ci6QLY+G9KXw9RMkXWhmtfcoAQAgq74q4iMAYJbFkuS5+51qfC8QSTpXwVCx7u53S+o3s6MknSJps7s/Ed6w8sZwXgAAMo/4CABIwmxdk7dUwTC5ZVvDaY2mAwDQDYiPAIDYzZml97E607zJ9KkrMFunoCuL+vr6Tl6+fHnLhRjZ5xrZN3X1/Yea+g+tV5R0K5VK6unJ9tg5Wa9D1ssvUYe0yHodOlX+xx577Hl3f3nsK06PVMRHiRiZNlkvv0Qd0iDr5ZeoQzPNYuRsJXlbFdzro2yZgnt49TaYPoW7Xy3paklas2aN33fffS0XYv2m7brshgc1NnHw1i3zegu68sITdcbxAy2vL2lDQ0MaHBxMuhhtyXodsl5+iTqkRdbr0Knym9lTsa80XVIRHyViZNpkvfwSdUiDrJdfog7NNIuRs5UW3yLpD8JRxP6TpJfCG1beK2mFmR1rZr0Kbop5S6cKMbhysVYv71dP+IPkvN6CVi/v1+DKxZ16SwAAmklFfJSIkQCQJ7G05JnZDZIGJR1pZlslfUzSIZLk7ldJulXSOZI2SxqT9K7wtUkzu1TSbZIKkq51941xlKmeQo/p+kvW6uzP36kXXtqjv/69EzW4crEKPdnrhgIASL+sxEeJGAkAeRJLkufuF07zukt6X4PXblUQ5GZFoce0aF6vbGIsk91PAADZkaX4KBEjASAvsn0VIwAAAACgCkkeAAAAAOQISR4AAAAA5AhJHgAAAADkCEkeAAAAAOQISR4AAAAA5AhJHgAAAADkCEkeAAAAAOQISR4AAAAA5AhJHgAAAADkCEkeAAAAAOTInKQLgGQVS66h4R3auG2XVi1ZqMGVi1XosaSLBQAAAGCGSPK6WLHkuuiae7Rhy4jGJ4rq6y1o9fJ+XX/JWhI9AAAAIKPortnFhoZ3aMOWEY1NFOWSxiaK2rBlREPDO5IuGgAAAIAZIsnrYhu37dL4RLFq2vhEUY9u25VQidKhWHKt37RdX1j/uNZv2q5iyZMuElKE46NaeXvcvHmC7QEAQErQXbOLrVqyUH29BY1VJHp9vQWdsGRhgqVKFl1Yp+K6zYM4PqrVbo/bnn6wq7cHAABpQUteFxtcuVirl/er/F1sXviFdXDl4mQLliC6sFYrf4m/7IYH9Te3P6bLbnhQF11zT9e21nB8VGN7AACQTiR5XazQY7r+krU6bvECLevv05UXntj1v8DThbUaX+KrcXxUY3sAAJBOJHldrtBjWjSvV0sX9emM4we6OsGTDnZhrdTNXVj5El+N46Ma2wMAgHQiyQMq0IW1Gl/iq3F8VGN7AACQTiR5QAW6sFbjS3w1jo9qldvjyLnW9dsDAIC0YHRNoEa5C+uiedIZxw8kXZxElb/En/35OzW2r6hPnLuqq0fXlDg+apW3h02MsT0AAEgJkjwATZHUAAAAZAvdNQEAAAAgR0jyAAAAACBHYknyzOwsMxs2s81mdnmd1//UzDaEj0fMrGhmh4evPWlmD4ev3RdHeQAASAtiJABgtrV9TZ6ZFSR9SdKZkrZKutfMbnH3R8vzuPtnJH0mnP+3JX3A3V+oWM3p7v58u2UBACBNiJEAgCTE0ZJ3iqTN7v6Eu09IulHSuU3mv1DSDTG8LwAAaUeMBADMujiSvKWStlQ83xpOm8LM5kk6S9K3Kia7pB+Y2f1mti6G8gAAkBbESADArIvjFgr1bpjlDeb9bUn/XtMN5Y3uvs3MFku63cx+7u53TnmTILitk6SBgQENDQ3NuMAjI+MqFottrSMNRkdHY6nDyMi4JCWyPeKqQ9yibpO0lr8VUeqQ5DESxWzvh05sjywfS3k5p3ZIx2NknPFRys/+zPJnSsp++SXqkAZZL79EHWYqjiRvq6TlFc+XSdrWYN4LVNMNxd23hX93mNm3FXRtmZLkufvVkq6WpDVr1vjg4OCMC/yV4bs0MjKidtaRBkNDQ7HU4SvDd0mSBgdPbXtdrYqrDnGLuk3SWv5WRKlDksdIFLO9HzqxPbJ8LOXlnNohHY+RccZHKT/7M8ufKSn75ZeoQxpkvfwSdZipOLpr3itphZkda2a9CoLULbUzmdnLJL1Z0s0V0+ab2WHl/yW9RdIjMZQJAIA0IEYCAGZd2y157j5pZpdKuk1SQdK17r7RzN4bvn5VOOv5kn7g7nsqFh+Q9G0zK5fl6+7+L+2WCQCANCBGAgCSEEd3Tbn7rZJurZl2Vc3zr0r6as20JyS9Po4yAACQRsRIAMBsiyXJAwAAyJtiyTU0vEMbt+3SqiULNbhysQo99cbSAYB0IckDAACoUSy5LrrmHm3YMqLxiaL6egtavbxf11+ylkQPQOrFMfAKAABArgwN79CGLSMamyjKJY1NFLVhy4iGhnckXTQAmBZJHgAAQI2N23ZpfKJYNW18oqhHt+1KqEQAEB1JHgAAQI1VSxaqr7dQNa2vt6ATlixMqEQAEB1JHgAAQI3BlYu1enm/ypffzQuvyRtcuTjZggFABCR5AAAANQo9pusvWavjFi/Qsv4+XXnhiQy6AiAzGF0TAACgjkKPadG8Xi2aJ51x/EDSxQGAyGjJAwAAAIAcIckDAAAAgBwhyQMAAACAHCHJAwAAAIAcIckDAAAAgBwhyQMAAACAHCHJAwAAAIAc4T55AACgqxRLrqHhHdq4bZdWLVmowZWLuck5gFwhyQMAAF2jWHJddM092rBlROMTRfX1FrR6eb+uv2QtiR6A3KC7JgAA6BpDwzu0YcuIxiaKckljE0Vt2DKioeEdSRcNAGJDkgcAALrGxm27ND5RrJo2PlHUo9t2JVQiAIgfSR4AAOgaq5YsVF9voWpaX29BJyxZmFCJACB+JHkAAKBrDK5crNXL+1W+/G5eeE3e4MrFyRYMAGJEkgcAALpGocd0/SVrddziBVrW36crLzyRQVcA5A6jawIAgK5S6DEtmterRfOkM44fSLo4ABA7WvIAAAAAIEdI8gAAAAAgR2JJ8szsLDMbNrPNZnZ5ndcHzewlM9sQPj4adVkAALKMGAkAmG1tX5NnZgVJX5J0pqStku41s1vc/dGaWf/N3X9rhssCAJA5xEgAQBLiaMk7RdJmd3/C3Sck3Sjp3FlYFgCAtCNGAgBmXRxJ3lJJWyqebw2n1TrVzH5mZt83s1UtLgsAQBYRIwEAsy6OWyjUu7GM1zx/QNLR7j5qZudI+o6kFRGXDd7EbJ2kdZI0MDCgoaGhmZZXIyPjKhaLba0jDUZHR2Opw8jIuCQlsj3iqkPcom6TtJa/FVHqkOQxEsVs74dObI8sH0t5Oad2SMdjZJzxUcrP/pzuMxX1c5zU+S/L54Qy6pC8rJdfog4zFUeSt1XS8ornyyRtq5zB3XdV/H+rmX3ZzI6MsmzFcldLulqS1qxZ44ODgzMu8FeG79LIyIjaWUcaDA0NxVKHrwzfJUkaHDy17XW1Kq46xC3qNklr+VsRpQ5JHiNRzPZ+6MT2yPKxlJdzaod0PEbGGR+l/OzP6T5TUT/HSZ3/snxOKKMOyct6+SXqMFNxdNe8V9IKMzvWzHolXSDplsoZzOwVZmbh/6eE77szyrIAAGQYMRIAMOvabslz90kzu1TSbZIKkq51941m9t7w9askvUPS/2Nmk5LGJV3g7i6p7rLtlikOxZJraHiHNm7bpVVLFmpw5WIVeur1nAEAoD5iJAAgCXF015S73yrp1pppV1X8/0VJX4y6bNKKJddF19yjDVtGND5RVF9vQauX9+v6S9YSxAAALSFGAgBmWyw3Q8+boeEd2rBlRGMTRbmksYmiNmwZ0dDwjqSLBgBAooiRAJB+JHl1bNy2S+MTxapp4xNFPbptV4MlAADoDsRIAEg/krw6Vi1ZqL7eQtW0vt6CTliyMKESAQCQDsRIAEg/krw6Blcu1url/SpfWjAvvN5gcOXiZAsGAEDCiJEAkH4keXUUekzXX7JWxy1eoGX9fbrywhO5oBwAABEjASALYhldM48KPaZF83q1aJ50xvEDSRdnRhjiGgDQCXmIkQCQZyR5ORX3ENckjAAAAEA2kOTlVOUQ11L1ENet/uqal3sikaiiGY4PAACQFyR5OdVsiOtWk7w4E8akdKpl87ubJ1Qc2J7JhCAPdYhLJ37IIGkEAABJIcnLqfIQ12MVid5Mh7iOM2FMSidbNm97+sHMtWx2og5ZTmri/iEjD63fWd6fAAB0O5K8nCoPcX33EztV8vaGuI4zYUwKLZvVSGqqxf1DRtaPkazvTwAAuh23UMipOIe4zsM9keK8eW+zhCAr4q5DZVLjqk5qsiDumztn/RjJ+v4EAKDbkeTlWHmI66WL+nTG8QMz/gU+D/dEijNRjTshSAJJTbW4f8jI+jGS9f0JAEC3I8lDJHEljEmhZbMaSU21uH/IyPoxkvX9CQBAtyPJQ9foRMvmkXMtky2bcdch60mNFO8PGVlv/c7D/gQAoJsx8AowA+WEwCbGMjGQRj1x1qGc1Jz9+Ts1tq+oT5y7qutHYyxv30XzlLljhP0JAEC2keQBiEWWkxpMxf4EACC7SPIAAAAwLe6fCWQHSR4AAACa4v6ZQLYw8AoAAACa4v6ZQLaQ5AEAAKAp7p8JZAtJHgAAAJri/plAtpDkAQAAoCnunwlkC0keAAAAmirfP/O4xQu0rL9PV154IoOuACnG6JoAAACYFvfPBLIjlpY8MzvLzIbNbLOZXV7n9d83s4fCx0/M7PUVrz1pZg+b2QYzuy+O8gAAkBbESADAbGu7Jc/MCpK+JOlMSVsl3Wtmt7j7oxWz/VLSm939RTM7W9LVktZWvH66uz/fblkAAEgTYiQAIAlxtOSdImmzuz/h7hOSbpR0buUM7v4Td38xfHq3pGUxvC8AAGlHjAQAzLo4krylkrZUPN8aTmvkEknfr3jukn5gZveb2boYygMAQFoQIwEAsy6OgVfqDavkdWc0O11BADutYvIb3X2bmS2WdLuZ/dzd76yz7DpJ6yRpYGBAQ0NDMy7wyMi4isXitOsYGRmXpLbeq5NGR0djqUPUenZie0SpQ5zirGvU4yjN4v4sJPWZies4iruerWyP2f4sRNFKPbP+WeigjsfIOOOj1D0xslvOa3HL+nmtVVmvQ9bLL1GHmYojydsqaXnF82WSttXOZGavk/QPks52953l6e6+Lfy7w8y+raBry5Qkz92vVnCdgtasWeODg4MzLvBXhu/SyMiIplvHV4bvkiQNDp464/fqpKGhoVjqELWendgeUeoQpzjrGvU4SrO4PwtJfWbiOo7irmcr22O2PwtRtFLPrH8WOqjjMTLO+Ch1T4zslvNa3LJ+XmtV1uuQ9fJL1GGm4uiuea+kFWZ2rJn1SrpA0i2VM5jZKyXdJOkid3+sYvp8Mzus/L+kt0h6JIYyAQCQBsRIIKeKJdf6Tdv1hfWPa/2m7SqW6jbSdxW2SXq03ZLn7pNmdqmk2yQVJF3r7hvN7L3h61dJ+qikIyR92cwkadLd10gakPTtcNocSV93939pt0wAAKQBMRLIp2LJddE192jDlhGNTxTV11vQ6uX9XX2DeLZJusRyM3R3v1XSrTXTrqr4/z2S3lNnuSckvb52OgAAeUGMBPJnaHiHNmwZ0dhEUZI0NlHUhi0jGhre0bU3imebpEssN0MHAAAAusXGbbs0HiYzZeMTRT26bVdCJUoe22SqcvfVmzdPzHr31Vha8gAAAIBusWrJQvX1Fg60WklSX29BJyxZmGCpksU2qVbbffW2px+c1e6rtOQBAAAALRhcuVirl/er/F19Xnj92eDKxckWLEFsk2qV3Vdd1d1XZwNJHgAAANCCQo/p+kvW6rjFC7Ssv09XXnhi1w8wwjaplnT3VbprAgAAAC0q9JgWzevVonliYJEQ2+SgpLuv0pIHAAAAADFKuvsqSR4AAAAAxKiy++qRc23Wu6/SXRMAAKCLFUuuoeEd2rhtl1YtWajBlYu79joqIE7l7qs2MTbr3VdJ8gAAALpU7TDvfWGXsm4eMAPIA7prAgAAdKmkh3kH0BkkeQAAAF0q6WHeAXQGSR4AAECXKg/zXmk2h3kH0BkkeQAAAF0q6WHeAXQGSR4AAECXqhzmfVl/36wP8w6gMxhdEwAAoIuVh3lfNE+zPsw7soHbbGQPSR4AAEgMXx6RRuXj8rubJ1Qc2N7VxyW32cgmkjwAAJAIvjwijWqPy9uefrCrj8vK22xI1bfZoOU3vbgmDwAAJIJ7tCGNOC6rcZuNbKIlDwA6YLJYUsldkrRn36RckruHfyW55HKFs6hYcr2wZ6Luurw8U+30KfPVm6fuxGm5pP3FkiRp+669cj+4rvL7lOu0b7Ikl7TlhbGq15f0z9WcAr8lorFmXx5n2kJANzu0qxPHZZaVb7MxVrFNuM1G+pHkAYidu4dJQXViU5nUHJw3wvoqspIpy0squTS6b/LAe9e+PrV89d+nWApeGBmbaFh+eZD8uEtP7xzT/lJJk0XXZMXf/cWgnuUyPbT1pWnruHd/ScP/sXva+WbT+P4goD/x3J6m8+2bLMrdtfXF8arpAy87lCCDpuL+8kg3O8SBpKZa+TYbdz+xUyXP7m02uu36X+IvAElTE7NSRVJWChOdF/dMaH+YxEwWS9pfDP4v/929d79c0t1PvDCrZR+fKOrhCInUdPZMBEnZpmebJ1vl5OeZkfGm8wFoLu4vj1w7hDjkJamJS/k2G2d//k6N7SvqE+euylyC1I3X/5LkARGUSq6JYil4TAaPoPVCemz77gOtPKVSdWtVqSJxqidKN7zqWWpaqbzRK81byMrvu3vvfpXcddcvdjaeWQdbpH4+TUtThEY5ADgg7i+PdLNDHCqPyxde2qO//r0TM5nUROm2HLV1K+u32ejGH4BI8jAjpZKrVKe1p+QHE5soiiXXS2P7JU293ieYVvF/xQuNk6AG1yCFytcY/cdLew+0TpXCLnoH6uOu8f1BAvfQ1hFNTAatVLWC65BcO0frX0eVBSRlAJIW55dHutkhLuXj0ibGMpcERO223E2tW934AxBJHuqamCxpfH9Re/cXNT5R1N7Jokb3TcojtPq0Yu/+kh59dvZGZyp3s/vl882vMSong3v2FZvOBwBID7rZAdFbrbqpdasbfwAiycuAcgtW5Yh2ZcWSN+zyd2Bed+3dX1Sx5Cq6y0tS0f3AshPhIBKbd+zW+ERJeyeLmqzTclWK2jwHAEAC8tDNLm7dMthE1Hp2w/aI2mrVTa1b3fgDUCxJnpmdJenzkgqS/sHdr6h53cLXz5E0Jumd7v5AlGVn08jYhPYXy90Qg2HBJenJ5/cEyZG7iqXgBFGeJ/hfqtfxrVFO5HVeP5DITbNspT37ivrpL5sPcLF7b9AV8sGnRxrOszds3Xpud3a7HQJAWuUlRmZFlrvZtSJKstIt3fGi1jMv22O6fR+11aqbWreiXv+bpx8B2k7yzKwg6UuSzpS0VdK9ZnaLuz9aMdvZklaEj7WSviJpbcRlZ80vntujiTCxk4JhwSXp2Zf2JlEcAEDG5SlG1nbV3xX+iBhHF/4411Ve33SDSkV9z7jLFtWefcWG71kquT71/U3avGNUE5Ml9c7p0XGLF+gjZx+vnoovpA889aLuf+rFAz9aj00Udf9TL+qqoV/opKMXVa2zE9ujWR2iKpVcG7aM6Mmde3TMEfO1enl/VR2l6PVsZXtI8R5HcYmy7+fOKejYI+fr0Wd3yV06dE6Pjj1yvubOKVSVM+p8rdY17m0Sx3FUVugxHdY3R/N650xpKIn6uWpVo+Po1FcdMeN1RhHHXWpPkbTZ3Z9w9wlJN0o6t2aecyX9owfultRvZkdFXBYAgKwiRiJ2G7aMaPOO0XAAsGAgsM07RrVhy0jVfE/urP7xWgquuX9yZ/Pr0tOi/KX7Cz96XP90/1Z94UeP61Pf33RgwLSyqPXM+vaQou37nh7TR84+Xkv7+3TEXOm//caKuolK5XwvX9DbcL5uEfVzJQXH5gNPvaibHtiqB556ccoxmQbW7HquSCswe4eks9z9PeHziyStdfdLK+b5rqQr3P3H4fP1kj4s6Zjplq3n8KOP9zM/cu2My/zos7s0OTmp1y0/vGr66L7JquvOnto5Jkk6+oh5M36vTpocH9WcvgVN54lSh6j17MT2iFKHOMVZ16d2jsmLRR2z+LD4CjjLotYhyWMkiriOo7jr2cr2mO3PQhSt1LPecXTYoXMU9EScuW+89w33u/uatlaSoNmOke3GR6lxjCz/Ol8W5+c97nNHlHNbls9rz+3ep+frjOz88gW9OvKwQw883713Us+MjFddAmImLe3v02FzqztzpfG8FrX8cc9XFudxFJeo+75ctiRifNzbZLrjyN01ui8YLHDuIQUtOLTQMPY0K1vUbevuevqF8QMjsZtJfYcU9MrD++q+b6P9sHDuIQ3rFFWzGBnHNXn1tmJt5thonijLBiswWydpnSTNGzhWIyMjLRSx2pI+qVj0KeuoHVhkabj/J8dHm65v6+5guWWHNf4yE2WeVudzuZaredmi1CFqPePcHuX5pqtD3NstzrounSd5yWPdHnHN18r2iFKHOLdbUp+FKOuL+7PQymdmtj8LcW+PesfRS3u789fgGh2PkXHGRyneGBn3uTnOc1sSsS/KPO6up3cH2/vl+3dr/hxN+eJ4iLtM1QeDSZrjE5ocP5iMz3XX3B5pb/HgATW3R5pbGtfkePU6kzivleeT6m+Tsb1Tb8nkLo2Pj6vPD84ftZ6tbI9yXeM6juI6N0fd91HLX55Pmt3YF1eMd3c9MyqNh5cVmqS5BWnpgqmfm+nKFnXbju53jU9Uj6MxPlHUS7tHteCQ6MfRSIdjZBxJ3lZJyyueL5O0LeI8vRGWlSS5+9WSrpakNWvW+G0fPrutQg8NDWlwcLBq2v1PvTilGT+KT353oyTpo7+1qq15Wp1vcnxUn/ydta0UdVbEWYe4t1vcXti8QYcft7rpPJ3Y99PN18r2iFKHOCX1WUjqGIkiic9C3Nuj3nF00tH9OnROoa312uVtLZ4GHY+RccdHqX6MnMk1MXEfZ1k/t003T7l74v5du+RuemFfjw5/2dRrglq5dijKNW2dEOW8Viq5PnzTQ9q7v6jzTjl2StkeeOpFfeFHjx+4hk4Krht795tWTLmGLmo9W90ecR1HUY6P6bZHeZ5Wrhub7c9BVK1sj7HxcZ13yqsbXo/5hR89Lik4RlxSyXp0/tqpx8h0om7bmx7Yqn+6f+uU5U97zTK97aRlddddbz/EcU1esxgZR5J3r6QVZnaspGckXSDpv9TMc4ukS83sRgUXlb/k7s+a2XMRlgUAIKuIkYisfE1QufWq8pqgyi+s5WupoiQrPT2mk45e1PIX3k4rf6Eud5/8wo8en/KFevXyfh23eMGUL92rl/dPWV/UemZ5e0it7fssi7o9ml1n2eo+jrptjzlivnrn9FT9+NA7p0fHHDF/BjXtnLaTPHefNLNLJd2mYIjna919o5m9N3z9Kkm3KhgaerOC4aHf1WzZdss0U69dulCl8B5yJXeVwtsjTLllQinoRlEM5zmkp0cuadH86r61lV0M5vQEY9z0zzuk4n53PmXe8jCth82dM2W+yvX1hE3Qfb2F8LX611Z6+Fq5HtzqDgBmT55i5Ex+dS5fcxLXKHKtrG9oS6Hjo9dVilK26ea598kX6n5hLbnXXeaNK46caXE7buHcQzSy1xrWdf2m7frl83uqEtpfPr9HeyeLVbe+uOVVp2loeIce3bZLJyQwpH1cx9F0+z7q9iiLuu9n+3MQVVzbY2xiUt97+Nkpt4E467WvmHG9p9u2pxx7uP79F89PuRXHewdf1fDYTGI/xHKfPHe/VUGQqpx2VcX/Lul9UZdNyky7FZUTrde8ovF9ReaF8xx/VPN7j8zvDXbJa5e+rOl8Cw6do5Fxq/trVjOlMGENEtSDyWqx6No7WdT4RFF795c0vr84o66rAIBqeYmR6Lxuum9Z1BtxF3pMZxw/kOt7HkrddWPyKKJuj/JNzmsTrk7e5Lx8z70kf3yIIpYkD9nR02PqkUXa8cWSa3x/OfELHvsmS3LXgZbN8o3gS64DLZ8AAKB1SXxhTUo3JbRRsD2qRd0eSSVcWfjxgSQPDRV6TAsOnaMFh7Z2mJSb4Ncee3j9oVIr5hvZa/q1Y4I+05WjFJUdFr73SUf3N+xq6q4DZSy3bHqTdz6YpAZvWvJg7nLiGkyT9hdLmiiWNDEZPoolTRbJYgEAnVH5hfV7P/mZ3vqG16eyhSAO3ZTQRsH2qNbK9shCwpUEkrw2FUuuF8cmNLavqPWbtuf2ZDwTUS8CnlPoafhaefjb6brS1l6j2CmlkmuiWNK+yZL2F0t68MkevfKIeXIPrncMcsTwfwWJ4yFh/V5+WO+U9VUmruX5jlzQOyVFrXd956L5h0xJfMvPg3lcC/saf8TL877UE1wDWvKD5faKVtryNK7pBIDOK39hLWzv1WCOv7RmpcvbbOmm7RHlu3M3/eDRKSR5bSiWXBddc4827xhVyaXLbnhQq5f36/pL1nIQ5lRPj2luT0FzDwmSyUMKpqX9fU2X6QvnPW6am5GW51sx0Hy+eS1cA7pqSfNrOyXp+ccL014DKgWJ3/6ia7JU0v5J1/5SkOhOFv1AK+f+YmlKouthS6mHSaOFt/6aU7Ca9Ve/X3m+Qo9VDSxEngkA+UALTLVu2B6tfHfulh88OoUkrw1Dwzu0YcvIgevQxiaK2rBlREPDO3L9AUV3MjP1zjH1qie4e9cMHTY3OO382jGHR5rvlGObz1c7glvtSLPlp1G7EUuqaNU82HpZm7wWS67JYkmTpSC5LZYOJsHlhHeyFIzAezDJBQCge/HdefaQ5LUhqZGQys3cO8edLqJAjXIX34PPq1+P0o24oM58ntzrt3AedugcvbTXdNLR/Q2XLV+feuIrG88jTb0+Vap/jWp5vtcta9yKW7lUubxSRcLqB9d9/1M9es0rDjtQN0k6pKdxV2wAQPdhFNHZQ5LXhiRGQkp7F1GuUQQaM7OKpNOqpkvNrz0tz1PuKtxI1OtTy/PNb3FgpUYKPaZF89to4gUA5B6jiM4efmZtQ3nkn3m9we/+82ZhJKRmzdxJq0xAt46M67IbHtRF19yjYofvq1BOLJ95cVzrN23v+PshezhGqrE9gNnH5w5I5rtzt6Ilrw1JjISU5mbuJPpZ07KZjvdMs6wcI7PV/Trt2wPIIz533Y24fFA3jSKaNFry2lQe+eeyM1YEIwB1+CAtN3NXSkszd7MEtFNo2Uz+PVuRxC/ZWTlGdu71Wdlfad4eQF7xueteaY/LSZjt787diiQvY9LczJ1EAppEYhlVEkE9zV8kkgp0HCPV0rw9gLzic9e90hyXkW8keRlTbua+8sITdf6KQ3TlhSemprtHEgkoLZvJv2dUSQU6jpFqad4eQF7xueteaY7LyDeSvFkQdxe1cjP3f35Vb6qauSsT0A+e+epZSUBp2Uz+PaNKKtBxjFRL8/YA8orPXfdKc1xGvjHwSod128XW5QR0tgaBSfMFvOWgvmHLiMYniuqbhaCexHtGldSwyRwj1dK8PYC84nPXvdIcl5FvJHkd1sqIk4y+NDOznVhGlURQT/MXiSQDXRaOke/95Gd66xtePyv7K63bA8gzPnfdKc1xGflGktdhUW950G0tft0iiaCe1i8SBLr6yvursL1XgynbZwCA9qU1LiPfuCavw6L2xe620ZfKrZbPh/cGq3edIjeOzR+GTe4sPjMA0iBKjAfQWSR5HRb1YutuGn0pyr3Buu2+MlG/nPMlvlq3fJGIst+77TOD7sP5LxuSuP8ngKlI8jos6oiT3TT6UpRWy25q2Yz65bybvsS3mtTk+YtE1P3eTZ8ZdJ9uOv9lHeciIB1I8mZBlC5q3TS8cpRWy25q2YwaELslcJLUVItaz276zKD7dMvnPQ84FwHpQJKXEkncYy4pUVotu6llM2pA7JbASVJTLWo9u+kzg+7TLZ/3POBcBKQDSV6KdMugFFFaLbupZTNqQOyWwElSUy1qPbvpM4Pu0y2f9zzgXASkA7dQwKyLcm+wbhpuP+r947rlhqpRb5reLdsjaj276TOD7tMtn/c8SOr+nwCqkeQhEVHuDdYt95WJ+uW8W77EzySpyfMXiVb2e7d8ZtB9uuX8lxfc/xNIHkkekAJRv5x3w5f4mSQ1ef8i0Q37HZgOnwMAiK6ta/LM7HAzu93MHg//Lqozz3Izu8PMNpnZRjN7f8VrHzezZ8xsQ/g4p53yAMiHbrk+FflGjAQAJKXdgVcul7Te3VdIWh8+rzUp6U/c/XhJ/0nS+8zshIrX/8bdV4ePW9ssDwAAaUGMBAAkot0k71xJ14X/XyfpvNoZ3P1Zd38g/H+3pE2Slrb5vgAApB0xEgCQiHaTvAF3f1YKApWkpsNcmdkxkk6UdE/F5EvN7CEzu7ZeVxYAADKKGAkASIS5e/MZzH4o6RV1XvozSde5e3/FvC+6e90gZGYLJP2rpL9095vCaQOSnpfkkv5C0lHu/u4Gy6+TtE6SBgYGTr7xxhub12wao6OjWrBgQVvrSBp1SF7Wyy9Rh7TIeh06Vf7TTz/9fndfE/uKY5KGGBl3fJTi259/dc+4JOm/r+1re12tmu3PVNx1zfo5QaIOaZD18kvUoZmmMdLdZ/yQNKwg6EjSUZKGG8x3iKTbJH2wybqOkfRIlPc9+eSTvV133HFH2+tIGnVIXtbL704d0iLrdehU+SXd523EqSQfScTIOOKje3z783ev+on/7lU/iWVdrZrtz1Tcdc36OcGdOqRB1svvTh2aaRYj2+2ueYuki8P/L5Z0c+0MZmaSrpG0yd3/Z81rR1U8PV/SI22WBwCAtCBGdoliyfXi2ISeeXFc6zdtV7HUvJcUAHRau0neFZLONLPHJZ0ZPpeZLTGz8ihgb5R0kaTfqDMM9KfN7GEze0jS6ZI+0GZ5AABIC2JkFyiWXBddc4827xjV1pFxXXbDg7romntI9AAkqq2bobv7Tkln1Jm+TdI54f8/llT3JlfuflE77w8AQFoRI7vD0PAObdgyonJONzZR1IYtIxoa3sGN2wEkpt2WPAAAgK61cdsujU8Uq6aNTxT16LZdCZUIAEjyAAAAZmzVkoXq6y1UTevrLeiEJQsTKhEAkOQBAADM2ODKxVq9vF/zegsySfN6C1q9vF+DK5veFhEAOqqta/IAAAC6WaHHdP0lazU0vEOPbtulE5Ys1ODKxSr01L3UEgBmBUkeAABAGwo9pjOOH2CgFQCpQXdNAAAAAMgRkjwAABA7bhAOAMkhyQMAALHiBuEAkCySPAAAEKtmNwgHAHQeSR4AAIgVNwgHgGSR5AEAgFhxg3AASBZJHgAAiBU3CAeAZHGfPAAAECtuEA4AySLJAwAAseMG4QCQHLprAgAAAECOkOQBAAAAQI6Q5AEAAABAjpDkAQAAAECOkOQBAAAAQI6Q5AEAAABAjpDkAQAAAECOkOQBAAAAQI6Q5AEAAABAjpDkAQAAAECOkOQBAAAAQI60leSZ2eFmdruZPR7+XdRgvifN7GEz22Bm97W6PAAAWUOMBAAkpd2WvMslrXf3FZLWh88bOd3dV7v7mhkuDwBAlhAjAQCJaDfJO1fSdeH/10k6b5aXBwAgrYiRAIBEtJvkDbj7s5IU/l3cYD6X9AMzu9/M1s1geQAAsoYYCQBIhLl78xnMfijpFXVe+jNJ17l7f8W8L7r7lGsGzGyJu28zs8WSbpd0mbvfaWYjUZYPX1snaZ0kDQwMnHzjjTdOW7lmRkdHtWDBgrbWkTTqkLysl1+iDmmR9Tp0qvynn376/TVdGFMlDTEy7vgoZf94lLJfh6yXX6IOaZD18kvUoZmmMdLdZ/yQNCzpqPD/oyQNR1jm45I+NNPl3V0nn3yyt+uOO+5oex1Jow7Jy3r53alDWmS9Dp0qv6T7vI04leQjiRgZR3x0z/7x6J79OmS9/O7UIQ2yXn536tBMsxjZbnfNWyRdHP5/saSba2cws/lmdlj5f0lvkfRI1OUBAMgoYiQAIBHtJnlXSDrTzB6XdGb4XGa2xMxuDecZkPRjM/uZpJ9K+p67/0uz5QEAyAFiJAAgEXPaWdjdd0o6o870bZLOCf9/QtLrW1keAICsI0YCAJLSbkseAAAAACBFSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBH2kryzOxwM7vdzB4P/y6qM89KM9tQ8dhlZn8cvvZxM3um4rVz2ikPAABpQYwEACSl3Za8yyWtd/cVktaHz6u4+7C7r3b31ZJOljQm6dsVs/xN+XV3v7XN8gAAkBbESABAItpN8s6VdF34/3WSzptm/jMk/cLdn2rzfQEASDtiJAAgEe0meQPu/qwkhX8XTzP/BZJuqJl2qZk9ZGbX1uvKAgBARhEjAQCJMHdvPoPZDyW9os5LfybpOnfvr5j3RXevG4TMrFfSNkmr3H17OG1A0vOSXNJfSDrK3d/dYPl1ktZJ0sDAwMk33nhj85pNY3R0VAsWLGhrHUmjDsnLevkl6pAWWa9Dp8p/+umn3+/ua2JfcUzSECPjjo9S9o9HKft1yHr5JeqQBlkvv0QdmmkaI919xg9JwwqCjiQdJWm4ybznSvpBk9ePkfRIlPc9+eSTvV133HFH2+tIGnVIXtbL704d0iLrdehU+SXd523EqSQfScTIOOKje/aPR/fs1yHr5XenDmmQ9fK7U4dmmsXIdrtr3iLp4vD/iyXd3GTeC1XTDcXMjqp4er6kR9osDwAAaUGMBAAkot0k7wpJZ5rZ45LODJ/LzJaY2YFRwMxsXvj6TTXLf9rMHjazhySdLukDbZYHAIC0IEYCABIxp52F3X2ngtHAaqdvk3ROxfMxSUfUme+idt4fAIC0IkYCAJLSbkseAAAAACBFSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBHSPIAAAAAIEdI8gAAAAAgR0jyAAAAACBH2kryzOx3zGyjmZXMbE2T+c4ys2Ez22xml1dMP9zMbjezx8O/i9opDwAAaUGMBAAkpd2WvEckvU3SnY1mMLOCpC9JOlvSCZIuNLMTwpcvl7Te3VdIWh8+BwAgD4iRAIBEtJXkufsmdx+eZrZTJG129yfcfULSjZLODV87V9J14f/XSTqvnfIAAJAWxEgAQFJm45q8pZK2VDzfGk6TpAF3f1aSwr+LZ6E8AACkBTESABC7OdPNYGY/lPSKOi/9mbvfHOE9rM40j7BcbTnWSVoXPh01s+l+HZ3OkZKeb3MdSaMOyct6+SXqkBZZr0Onyn90B9YZmzTEyA7ERyn7x6OU/TpkvfwSdUiDrJdfog7NNIyR0yZ57v6bbb75VknLK54vk7Qt/H+7mR3l7s+a2VGSdjQpx9WSrm6zLAeY2X3u3vBC+CygDsnLevkl6pAWWa9D1ss/U2mIkXHHRykf+zPrdch6+SXqkAZZL79EHWZqNrpr3itphZkda2a9ki6QdEv42i2SLg7/v1hSlF89AQDIC2IkACB27d5C4Xwz2yrpVEnfM7PbwulLzOxWSXL3SUmXSrpN0iZJ33D3jeEqrpB0ppk9LunM8DkAAJlHjAQAJGXa7prNuPu3JX27zvRtks6peH6rpFvrzLdT0hntlKENsXZtSQh1SF7Wyy9Rh7TIeh2yXv7YESMTl/U6ZL38EnVIg6yXX6IOM2LuLY+BAgAAAABIqdm4Jg8AAAAAMEu6Mskzs7PMbNjMNpvZ5UmXZybM7Ekze9jMNpjZfUmXZzpmdq2Z7TCzRyqmHW5mt5vZ4+HfRUmWcToN6vBxM3sm3A8bzOycZutIkpktN7M7zGyTmW00s/eH0zOzH5rUIUv7Ya6Z/dTMfhbW4RPh9Czth0Z1yMx+QH3Ex2QQI5NHjEwe8THmsnRbd00zK0h6TMFF7FsVjGx2obs/mmjBWmRmT0pa4+6ZuG+Imb1J0qikf3T314bTPi3pBXe/IvwyscjdP5xkOZtpUIePSxp1988mWbYoLBiC/Sh3f8DMDpN0v6TzJL1TGdkPTerwu8rOfjBJ89191MwOkfRjSe+X9DZlZz80qsNZysh+wFTEx+QQI5NHjEwe8TFe3diSd4qkze7+hLtPSLpR0rkJlyn33P1OSS/UTD5X0nXh/9cpOBGlVoM6ZIa7P+vuD4T/71Ywkt9SZWg/NKlDZnhgNHx6SPhwZWs/NKoDso34mBBiZPKIkckjPsarG5O8pZK2VDzfqgx9ACq4pB+Y2f1mti7pwszQgLs/KwUnJkmLEy7PTF1qZg+FXVVS24WgkpkdI+lESfcoo/uhpg5ShvaDmRXMbIOCm1vf7u6Z2w8N6iBlaD9gCuJjumTqnNBE5s4JxMjkEB/j041JntWZlsVfoN/o7idJOlvS+8JuEph9X5H0KkmrJT0r6XOJliYCM1sg6VuS/tjddyVdnpmoU4dM7Qd3L7r7aknLJJ1iZq9NuEgta1CHTO0HTEF8RNwyd04gRiaL+BifbkzytkpaXvF8maRtCZVlxsL7LMnddyi4D9MpyZZoRraH/cfL/ch3JFyelrn79vDDXJL090r5fgj7h39L0tfc/aZwcqb2Q706ZG0/lLn7iKQhBX31M7UfyirrkNX9gAOIj+mSyXNCpaydE4iR6UF8bF83Jnn3SlphZseaWa+kCyTdknCZWmJm88MLamVm8yW9RdIjzZdKpVskXRz+f7GkmxMsy4yUTzqh85Xi/RBeDHyNpE3u/j8rXsrMfmhUh4zth5ebWX/4f5+k35T0c2VrP9StQ5b2A+oiPqZLZs4JjWTpnECMTB7xMeayeJeNrilJFgxb+reSCpKudfe/TLZErTGzX1Hw66QkzZH09bTXwcxukDQo6UhJ2yV9TNJ3JH1D0islPS3pd9w9tRdtN6jDoIKmd5f0pKQ/KvcbTxszO03Sv0l6WFIpnPwRBf31M7EfmtThQmVnP7xOwYXjBQU/tH3D3T9pZkcoO/uhUR2uV0b2A+ojPiaDGJk8YmTyiI8xl6UbkzwAAAAAyKtu7K4JAAAAALlFkgcAAAAAOUKSBwAAAAA5QpIHAAAAADlCkgcAAAAAOUKSBwAAAAA5QpIHAAAAADlCkgcAAAAAOfJ/AMTuQVfPpmiQAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# extra code – shows how to plot the Autocorrelation Function (ACF) and the\n", - "# Partial Autocorrelation Function (PACF)\n", - "\n", - "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n", - "\n", - "fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(15, 5))\n", - "plot_acf(df[period][\"rail\"], ax=axs[0], lags=35)\n", - "axs[0].grid()\n", - "plot_pacf(df[period][\"rail\"], ax=axs[1], lags=35, method=\"ywm\")\n", - "axs[1].grid()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2022-02-17 19:19:46.679147: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", - "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" - ] - }, - { - "data": { - "text/plain": [ - "[(,\n", - " ),\n", - " (,\n", - " )]" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import tensorflow as tf\n", - "\n", - "my_series = [0, 1, 2, 3, 4, 5]\n", - "my_dataset = tf.keras.utils.timeseries_dataset_from_array(\n", - " my_series,\n", - " targets=my_series[3:], # the targets are 3 steps into the future\n", - " sequence_length=3,\n", - " batch_size=2\n", - ")\n", - "list(my_dataset)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 1 2 3 \n", - "1 2 3 4 \n", - "2 3 4 5 \n", - "3 4 5 \n", - "4 5 \n", - "5 \n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2022-02-17 19:19:46.784180: W tensorflow/core/framework/dataset.cc:744] Input of Window will not be optimized because the dataset does not implement the AsGraphDefInternal() method needed to apply optimizations.\n" - ] - } - ], - "source": [ - "for window_dataset in tf.data.Dataset.range(6).window(4, shift=1):\n", - " for element in window_dataset:\n", - " print(f\"{element}\", end=\" \")\n", - " print()" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0 1 2 3]\n", - "[1 2 3 4]\n", - "[2 3 4 5]\n" - ] - } - ], - "source": [ - "dataset = tf.data.Dataset.range(6).window(4, shift=1, drop_remainder=True)\n", - "dataset = dataset.flat_map(lambda window_dataset: window_dataset.batch(4))\n", - "for window_tensor in dataset:\n", - " print(f\"{window_tensor}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "def to_windows(dataset, length):\n", - " dataset = dataset.window(length, shift=1, drop_remainder=True)\n", - " return dataset.flat_map(lambda window_ds: window_ds.batch(length))" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(,\n", - " ),\n", - " (,\n", - " )]" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset = to_windows(tf.data.Dataset.range(6), 4)\n", - "dataset = dataset.map(lambda window: (window[:-1], window[-1]))\n", - "list(dataset.batch(2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Before we continue looking at the data, let's split the time series into three periods, for training, validation and testing. We won't look at the test data for now:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "rail_train = df[\"rail\"][\"2016-01\":\"2018-12\"] / 1e6\n", - "rail_valid = df[\"rail\"][\"2019-01\":\"2019-05\"] / 1e6\n", - "rail_test = df[\"rail\"][\"2019-06\":] / 1e6" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "seq_length = 56\n", - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "train_ds = tf.keras.utils.timeseries_dataset_from_array(\n", - " rail_train.to_numpy(),\n", - " targets=rail_train[seq_length:],\n", - " sequence_length=seq_length,\n", - " batch_size=32,\n", - " shuffle=True,\n", - " seed=42\n", - ")\n", - "valid_ds = tf.keras.utils.timeseries_dataset_from_array(\n", - " rail_valid.to_numpy(),\n", - " targets=rail_valid[seq_length:],\n", - " sequence_length=seq_length,\n", - " batch_size=32\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/500\n", - "33/33 [==============================] - 0s 5ms/step - loss: 0.0098 - mae: 0.1118 - val_loss: 0.0071 - val_mae: 0.0966\n", - "Epoch 2/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0070 - mae: 0.0883 - val_loss: 0.0052 - val_mae: 0.0768\n", - "Epoch 3/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0059 - mae: 0.0796 - val_loss: 0.0050 - val_mae: 0.0741\n", - "Epoch 4/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0055 - mae: 0.0761 - val_loss: 0.0049 - val_mae: 0.0732\n", - "Epoch 5/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0054 - mae: 0.0749 - val_loss: 0.0043 - val_mae: 0.0666\n", - "Epoch 6/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0051 - mae: 0.0724 - val_loss: 0.0041 - val_mae: 0.0638\n", - "Epoch 7/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0047 - mae: 0.0696 - val_loss: 0.0040 - val_mae: 0.0615\n", - "Epoch 8/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0051 - mae: 0.0735 - val_loss: 0.0038 - val_mae: 0.0599\n", - "Epoch 9/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0045 - mae: 0.0670 - val_loss: 0.0037 - val_mae: 0.0599\n", - "Epoch 10/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0046 - mae: 0.0677 - val_loss: 0.0041 - val_mae: 0.0658\n", - "Epoch 11/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0044 - mae: 0.0664 - val_loss: 0.0038 - val_mae: 0.0611\n", - "Epoch 12/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0042 - mae: 0.0634 - val_loss: 0.0034 - val_mae: 0.0551\n", - "Epoch 13/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0046 - mae: 0.0680 - val_loss: 0.0056 - val_mae: 0.0829\n", - "Epoch 14/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0044 - mae: 0.0671 - val_loss: 0.0039 - val_mae: 0.0637\n", - "Epoch 15/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0044 - mae: 0.0673 - val_loss: 0.0037 - val_mae: 0.0610\n", - "Epoch 16/500\n", - "33/33 [==============================] - 0s 4ms/step - loss: 0.0045 - mae: 0.0676 - val_loss: 0.0035 - val_mae: 0.0584\n", - "Epoch 17/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0044 - mae: 0.0662 - val_loss: 0.0033 - val_mae: 0.0544\n", - "Epoch 18/500\n", - "<<396 more lines>>\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0440 - val_loss: 0.0023 - val_mae: 0.0404\n", - "Epoch 217/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0029 - mae: 0.0500 - val_loss: 0.0028 - val_mae: 0.0526\n", - "Epoch 218/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0458 - val_loss: 0.0023 - val_mae: 0.0387\n", - "Epoch 219/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0027 - mae: 0.0454 - val_loss: 0.0023 - val_mae: 0.0396\n", - "Epoch 220/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0444 - val_loss: 0.0026 - val_mae: 0.0425\n", - "Epoch 221/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0452 - val_loss: 0.0023 - val_mae: 0.0387\n", - "Epoch 222/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0025 - mae: 0.0433 - val_loss: 0.0024 - val_mae: 0.0432\n", - "Epoch 223/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0441 - val_loss: 0.0029 - val_mae: 0.0489\n", - "Epoch 224/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0031 - mae: 0.0524 - val_loss: 0.0023 - val_mae: 0.0394\n", - "Epoch 225/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0025 - mae: 0.0424 - val_loss: 0.0023 - val_mae: 0.0386\n", - "Epoch 226/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0438 - val_loss: 0.0023 - val_mae: 0.0383\n", - "Epoch 227/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0027 - mae: 0.0463 - val_loss: 0.0023 - val_mae: 0.0405\n", - "Epoch 228/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0445 - val_loss: 0.0023 - val_mae: 0.0384\n", - "Epoch 229/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0025 - mae: 0.0430 - val_loss: 0.0023 - val_mae: 0.0382\n", - "Epoch 230/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0026 - mae: 0.0451 - val_loss: 0.0023 - val_mae: 0.0397\n", - "Epoch 231/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0025 - mae: 0.0434 - val_loss: 0.0023 - val_mae: 0.0401\n", - "Epoch 232/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0027 - mae: 0.0459 - val_loss: 0.0022 - val_mae: 0.0389\n", - "Epoch 233/500\n", - "33/33 [==============================] - 0s 3ms/step - loss: 0.0027 - mae: 0.0464 - val_loss: 0.0025 - val_mae: 0.0469\n" - ] - } - ], - "source": [ - "tf.random.set_seed(42)\n", - "model = tf.keras.Sequential([\n", - " tf.keras.layers.Dense(1, input_shape=[seq_length])\n", - "])\n", - "early_stopping_cb = tf.keras.callbacks.EarlyStopping(\n", - " monitor=\"val_mae\", patience=50, restore_best_weights=True)\n", - "opt = tf.keras.optimizers.SGD(learning_rate=0.02, momentum=0.9)\n", - "model.compile(loss=tf.keras.losses.Huber(), optimizer=opt, metrics=[\"mae\"])\n", - "history = model.fit(train_ds, validation_data=valid_ds, epochs=500,\n", - " callbacks=[early_stopping_cb])" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 [==============================] - 0s 2ms/step - loss: 0.0022 - mae: 0.0379\n" - ] - }, - { - "data": { - "text/plain": [ - "37866.38006567955" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – evaluates the model\n", - "valid_loss, valid_mae = model.evaluate(valid_ds)\n", - "valid_mae * 1e6" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using a Simple RNN" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "model = tf.keras.Sequential([\n", - " tf.keras.layers.SimpleRNN(1, input_shape=[None, 1])\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "# extra code – defines a utility function we'll reuse several time\n", - "\n", - "def fit_and_evaluate(model, train_set, valid_set, learning_rate, epochs=500):\n", - " early_stopping_cb = tf.keras.callbacks.EarlyStopping(\n", - " monitor=\"val_mae\", patience=50, restore_best_weights=True)\n", - " opt = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=0.9)\n", - " model.compile(loss=tf.keras.losses.Huber(), optimizer=opt, metrics=[\"mae\"])\n", - " history = model.fit(train_set, validation_data=valid_set, epochs=epochs,\n", - " callbacks=[early_stopping_cb])\n", - " valid_loss, valid_mae = model.evaluate(valid_set)\n", - " return valid_mae * 1e6" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/500\n", - "33/33 [==============================] - 1s 11ms/step - loss: 0.0219 - mae: 0.1637 - val_loss: 0.0195 - val_mae: 0.1394\n", - "Epoch 2/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0170 - mae: 0.1553 - val_loss: 0.0179 - val_mae: 0.1482\n", - "Epoch 3/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0166 - mae: 0.1555 - val_loss: 0.0176 - val_mae: 0.1501\n", - "Epoch 4/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0164 - mae: 0.1558 - val_loss: 0.0173 - val_mae: 0.1534\n", - "Epoch 5/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0163 - mae: 0.1572 - val_loss: 0.0172 - val_mae: 0.1479\n", - "Epoch 6/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0162 - mae: 0.1555 - val_loss: 0.0170 - val_mae: 0.1496\n", - "Epoch 7/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0162 - mae: 0.1556 - val_loss: 0.0168 - val_mae: 0.1552\n", - "Epoch 8/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0161 - mae: 0.1580 - val_loss: 0.0169 - val_mae: 0.1448\n", - "Epoch 9/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0160 - mae: 0.1563 - val_loss: 0.0168 - val_mae: 0.1451\n", - "Epoch 10/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0159 - mae: 0.1562 - val_loss: 0.0167 - val_mae: 0.1454\n", - "Epoch 11/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0159 - mae: 0.1564 - val_loss: 0.0164 - val_mae: 0.1491\n", - "Epoch 12/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0158 - mae: 0.1559 - val_loss: 0.0165 - val_mae: 0.1445\n", - "Epoch 13/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0158 - mae: 0.1556 - val_loss: 0.0162 - val_mae: 0.1514\n", - "Epoch 14/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0157 - mae: 0.1564 - val_loss: 0.0162 - val_mae: 0.1533\n", - "Epoch 15/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0157 - mae: 0.1553 - val_loss: 0.0165 - val_mae: 0.1420\n", - "Epoch 16/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0158 - mae: 0.1562 - val_loss: 0.0164 - val_mae: 0.1425\n", - "Epoch 17/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0156 - mae: 0.1570 - val_loss: 0.0164 - val_mae: 0.1407\n", - "Epoch 18/500\n", - "<<687 more lines>>\n", - "Epoch 362/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0103 - mae: 0.1130 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 363/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0103 - mae: 0.1128 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 364/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0104 - mae: 0.1131 - val_loss: 0.0102 - val_mae: 0.1029\n", - "Epoch 365/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1133 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 366/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1128 - val_loss: 0.0103 - val_mae: 0.1028\n", - "Epoch 367/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0103 - mae: 0.1129 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 368/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1135 - val_loss: 0.0102 - val_mae: 0.1030\n", - "Epoch 369/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0103 - mae: 0.1129 - val_loss: 0.0103 - val_mae: 0.1028\n", - "Epoch 370/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1129 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 371/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0103 - mae: 0.1130 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 372/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0103 - mae: 0.1131 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 373/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0104 - mae: 0.1132 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 374/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1130 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 375/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1132 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 376/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1134 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 377/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0104 - mae: 0.1131 - val_loss: 0.0103 - val_mae: 0.1029\n", - "Epoch 378/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0103 - mae: 0.1128 - val_loss: 0.0103 - val_mae: 0.1029\n", - "3/3 [==============================] - 0s 3ms/step - loss: 0.0103 - mae: 0.1028\n" - ] - }, - { - "data": { - "text/plain": [ - "102786.95076704025" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit_and_evaluate(model, train_ds, valid_ds, learning_rate=0.02)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "univar_model = tf.keras.Sequential([\n", - " tf.keras.layers.SimpleRNN(32, input_shape=[None, 1]),\n", - " tf.keras.layers.Dense(1) # no activation function by default\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/500\n", - "33/33 [==============================] - 1s 13ms/step - loss: 0.0489 - mae: 0.2061 - val_loss: 0.0060 - val_mae: 0.0854\n", - "Epoch 2/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0060 - mae: 0.0813 - val_loss: 0.0052 - val_mae: 0.0825\n", - "Epoch 3/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0042 - mae: 0.0647 - val_loss: 0.0041 - val_mae: 0.0656\n", - "Epoch 4/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0041 - mae: 0.0636 - val_loss: 0.0042 - val_mae: 0.0714\n", - "Epoch 5/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0039 - mae: 0.0595 - val_loss: 0.0023 - val_mae: 0.0387\n", - "Epoch 6/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0033 - mae: 0.0542 - val_loss: 0.0026 - val_mae: 0.0423\n", - "Epoch 7/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0502 - val_loss: 0.0021 - val_mae: 0.0354\n", - "Epoch 8/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0030 - mae: 0.0500 - val_loss: 0.0020 - val_mae: 0.0345\n", - "Epoch 9/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0033 - mae: 0.0539 - val_loss: 0.0050 - val_mae: 0.0825\n", - "Epoch 10/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0034 - mae: 0.0573 - val_loss: 0.0023 - val_mae: 0.0399\n", - "Epoch 11/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0030 - mae: 0.0493 - val_loss: 0.0022 - val_mae: 0.0377\n", - "Epoch 12/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0029 - mae: 0.0478 - val_loss: 0.0019 - val_mae: 0.0328\n", - "Epoch 13/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0028 - mae: 0.0460 - val_loss: 0.0024 - val_mae: 0.0404\n", - "Epoch 14/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0029 - mae: 0.0487 - val_loss: 0.0022 - val_mae: 0.0371\n", - "Epoch 15/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0029 - mae: 0.0469 - val_loss: 0.0019 - val_mae: 0.0306\n", - "Epoch 16/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0027 - mae: 0.0465 - val_loss: 0.0019 - val_mae: 0.0348\n", - "Epoch 17/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0029 - mae: 0.0485 - val_loss: 0.0024 - val_mae: 0.0426\n", - "Epoch 18/500\n", - "<<201 more lines>>\n", - "Epoch 119/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0024 - mae: 0.0428 - val_loss: 0.0020 - val_mae: 0.0334\n", - "Epoch 120/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0024 - mae: 0.0423 - val_loss: 0.0019 - val_mae: 0.0362\n", - "Epoch 121/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0023 - mae: 0.0408 - val_loss: 0.0019 - val_mae: 0.0356\n", - "Epoch 122/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0023 - mae: 0.0397 - val_loss: 0.0020 - val_mae: 0.0395\n", - "Epoch 123/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0024 - mae: 0.0429 - val_loss: 0.0017 - val_mae: 0.0297\n", - "Epoch 124/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0025 - mae: 0.0437 - val_loss: 0.0019 - val_mae: 0.0359\n", - "Epoch 125/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0024 - mae: 0.0430 - val_loss: 0.0017 - val_mae: 0.0305\n", - "Epoch 126/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0023 - mae: 0.0399 - val_loss: 0.0021 - val_mae: 0.0409\n", - "Epoch 127/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0023 - mae: 0.0411 - val_loss: 0.0018 - val_mae: 0.0314\n", - "Epoch 128/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0023 - mae: 0.0394 - val_loss: 0.0021 - val_mae: 0.0392\n", - "Epoch 129/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0023 - mae: 0.0416 - val_loss: 0.0017 - val_mae: 0.0329\n", - "Epoch 130/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0023 - mae: 0.0418 - val_loss: 0.0020 - val_mae: 0.0389\n", - "Epoch 131/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0023 - mae: 0.0398 - val_loss: 0.0017 - val_mae: 0.0297\n", - "Epoch 132/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0023 - mae: 0.0415 - val_loss: 0.0018 - val_mae: 0.0333\n", - "Epoch 133/500\n", - "33/33 [==============================] - 0s 12ms/step - loss: 0.0023 - mae: 0.0398 - val_loss: 0.0019 - val_mae: 0.0319\n", - "Epoch 134/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0023 - mae: 0.0401 - val_loss: 0.0019 - val_mae: 0.0333\n", - "Epoch 135/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0022 - mae: 0.0384 - val_loss: 0.0020 - val_mae: 0.0398\n", - "3/3 [==============================] - 0s 6ms/step - loss: 0.0018 - mae: 0.0290\n" - ] - }, - { - "data": { - "text/plain": [ - "29014.97296988964" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – compiles, fits, and evaluates the model, like earlier\n", - "fit_and_evaluate(univar_model, train_ds, valid_ds, learning_rate=0.05)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Deep RNNs" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "deep_model = tf.keras.Sequential([\n", - " tf.keras.layers.SimpleRNN(32, return_sequences=True, input_shape=[None, 1]),\n", - " tf.keras.layers.SimpleRNN(32, return_sequences=True),\n", - " tf.keras.layers.SimpleRNN(32),\n", - " tf.keras.layers.Dense(1)\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/500\n", - "33/33 [==============================] - 2s 32ms/step - loss: 0.0393 - mae: 0.2109 - val_loss: 0.0085 - val_mae: 0.1110\n", - "Epoch 2/500\n", - "33/33 [==============================] - 1s 25ms/step - loss: 0.0068 - mae: 0.0858 - val_loss: 0.0032 - val_mae: 0.0629\n", - "Epoch 3/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0055 - mae: 0.0750 - val_loss: 0.0035 - val_mae: 0.0638\n", - "Epoch 4/500\n", - "33/33 [==============================] - 1s 27ms/step - loss: 0.0048 - mae: 0.0678 - val_loss: 0.0021 - val_mae: 0.0429\n", - "Epoch 5/500\n", - "33/33 [==============================] - 1s 27ms/step - loss: 0.0043 - mae: 0.0606 - val_loss: 0.0020 - val_mae: 0.0408\n", - "Epoch 6/500\n", - "33/33 [==============================] - 1s 27ms/step - loss: 0.0042 - mae: 0.0591 - val_loss: 0.0027 - val_mae: 0.0502\n", - "Epoch 7/500\n", - "33/33 [==============================] - 1s 25ms/step - loss: 0.0045 - mae: 0.0635 - val_loss: 0.0025 - val_mae: 0.0469\n", - "Epoch 8/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0042 - mae: 0.0592 - val_loss: 0.0027 - val_mae: 0.0498\n", - "Epoch 9/500\n", - "33/33 [==============================] - 1s 26ms/step - loss: 0.0039 - mae: 0.0555 - val_loss: 0.0034 - val_mae: 0.0619\n", - "Epoch 10/500\n", - "33/33 [==============================] - 1s 25ms/step - loss: 0.0041 - mae: 0.0590 - val_loss: 0.0022 - val_mae: 0.0400\n", - "Epoch 11/500\n", - "33/33 [==============================] - 1s 25ms/step - loss: 0.0037 - mae: 0.0526 - val_loss: 0.0022 - val_mae: 0.0408\n", - "Epoch 12/500\n", - "33/33 [==============================] - 1s 26ms/step - loss: 0.0037 - mae: 0.0543 - val_loss: 0.0019 - val_mae: 0.0349\n", - "Epoch 13/500\n", - "33/33 [==============================] - 1s 23ms/step - loss: 0.0034 - mae: 0.0493 - val_loss: 0.0019 - val_mae: 0.0334\n", - "Epoch 14/500\n", - "33/33 [==============================] - 1s 23ms/step - loss: 0.0035 - mae: 0.0505 - val_loss: 0.0020 - val_mae: 0.0341\n", - "Epoch 15/500\n", - "33/33 [==============================] - 1s 23ms/step - loss: 0.0034 - mae: 0.0494 - val_loss: 0.0020 - val_mae: 0.0360\n", - "Epoch 16/500\n", - "33/33 [==============================] - 1s 23ms/step - loss: 0.0033 - mae: 0.0496 - val_loss: 0.0027 - val_mae: 0.0474\n", - "Epoch 17/500\n", - "33/33 [==============================] - 1s 23ms/step - loss: 0.0037 - mae: 0.0559 - val_loss: 0.0020 - val_mae: 0.0332\n", - "Epoch 18/500\n", - "<<103 more lines>>\n", - "Epoch 70/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0026 - mae: 0.0422 - val_loss: 0.0022 - val_mae: 0.0363\n", - "Epoch 71/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0027 - mae: 0.0458 - val_loss: 0.0019 - val_mae: 0.0321\n", - "Epoch 72/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0025 - mae: 0.0413 - val_loss: 0.0020 - val_mae: 0.0335\n", - "Epoch 73/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0026 - mae: 0.0435 - val_loss: 0.0021 - val_mae: 0.0354\n", - "Epoch 74/500\n", - "33/33 [==============================] - 1s 25ms/step - loss: 0.0026 - mae: 0.0436 - val_loss: 0.0021 - val_mae: 0.0357\n", - "Epoch 75/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0026 - mae: 0.0432 - val_loss: 0.0021 - val_mae: 0.0347\n", - "Epoch 76/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0025 - mae: 0.0421 - val_loss: 0.0027 - val_mae: 0.0477\n", - "Epoch 77/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0027 - mae: 0.0444 - val_loss: 0.0019 - val_mae: 0.0320\n", - "Epoch 78/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0028 - mae: 0.0468 - val_loss: 0.0019 - val_mae: 0.0318\n", - "Epoch 79/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0027 - mae: 0.0466 - val_loss: 0.0021 - val_mae: 0.0366\n", - "Epoch 80/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0026 - mae: 0.0442 - val_loss: 0.0025 - val_mae: 0.0454\n", - "Epoch 81/500\n", - "33/33 [==============================] - 1s 25ms/step - loss: 0.0026 - mae: 0.0438 - val_loss: 0.0019 - val_mae: 0.0313\n", - "Epoch 82/500\n", - "33/33 [==============================] - 1s 26ms/step - loss: 0.0025 - mae: 0.0419 - val_loss: 0.0020 - val_mae: 0.0350\n", - "Epoch 83/500\n", - "33/33 [==============================] - 1s 27ms/step - loss: 0.0026 - mae: 0.0438 - val_loss: 0.0021 - val_mae: 0.0391\n", - "Epoch 84/500\n", - "33/33 [==============================] - 1s 27ms/step - loss: 0.0027 - mae: 0.0446 - val_loss: 0.0019 - val_mae: 0.0325\n", - "Epoch 85/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0027 - mae: 0.0456 - val_loss: 0.0019 - val_mae: 0.0318\n", - "Epoch 86/500\n", - "33/33 [==============================] - 1s 24ms/step - loss: 0.0025 - mae: 0.0419 - val_loss: 0.0021 - val_mae: 0.0372\n", - "3/3 [==============================] - 0s 9ms/step - loss: 0.0019 - mae: 0.0312\n" - ] - }, - { - "data": { - "text/plain": [ - "31211.024150252342" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – compiles, fits, and evaluates the model, like earlier\n", - "fit_and_evaluate(deep_model, train_ds, valid_ds, learning_rate=0.01)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Multivariate time series" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "df_mulvar = df[[\"bus\", \"rail\"]] / 1e6 # use both bus & rail series as input\n", - "df_mulvar[\"next_day_type\"] = df[\"day_type\"].shift(-1) # we know tomorrow's type\n", - "df_mulvar = pd.get_dummies(df_mulvar) # one-hot encode the day type" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "mulvar_train = df_mulvar[\"2016-01\":\"2018-12\"]\n", - "mulvar_valid = df_mulvar[\"2019-01\":\"2019-05\"]\n", - "mulvar_test = df_mulvar[\"2019-06\":]" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "\n", - "train_mulvar_ds = tf.keras.utils.timeseries_dataset_from_array(\n", - " mulvar_train.to_numpy(), # use all 5 columns as input\n", - " targets=mulvar_train[\"rail\"][seq_length:], # forecast only the rail series\n", - " sequence_length=seq_length,\n", - " batch_size=32,\n", - " shuffle=True,\n", - " seed=42\n", - ")\n", - "valid_mulvar_ds = tf.keras.utils.timeseries_dataset_from_array(\n", - " mulvar_valid.to_numpy(),\n", - " targets=mulvar_valid[\"rail\"][seq_length:],\n", - " sequence_length=seq_length,\n", - " batch_size=32\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "mulvar_model = tf.keras.Sequential([\n", - " tf.keras.layers.SimpleRNN(32, input_shape=[None, 5]),\n", - " tf.keras.layers.Dense(1)\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/500\n", - "33/33 [==============================] - 1s 17ms/step - loss: 0.0386 - mae: 0.1872 - val_loss: 0.0011 - val_mae: 0.0346\n", - "Epoch 2/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0029 - mae: 0.0585 - val_loss: 0.0040 - val_mae: 0.0790\n", - "Epoch 3/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0018 - mae: 0.0435 - val_loss: 7.7056e-04 - val_mae: 0.0273\n", - "Epoch 4/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0017 - mae: 0.0407 - val_loss: 0.0010 - val_mae: 0.0362\n", - "Epoch 5/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0015 - mae: 0.0386 - val_loss: 8.1681e-04 - val_mae: 0.0306\n", - "Epoch 6/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0372 - val_loss: 0.0011 - val_mae: 0.0380\n", - "Epoch 7/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0014 - mae: 0.0366 - val_loss: 7.9942e-04 - val_mae: 0.0289\n", - "Epoch 8/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0013 - mae: 0.0344 - val_loss: 6.9211e-04 - val_mae: 0.0271\n", - "Epoch 9/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0015 - mae: 0.0374 - val_loss: 8.2185e-04 - val_mae: 0.0299\n", - "Epoch 10/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0014 - mae: 0.0363 - val_loss: 0.0017 - val_mae: 0.0494\n", - "Epoch 11/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0013 - mae: 0.0357 - val_loss: 0.0016 - val_mae: 0.0473\n", - "Epoch 12/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0013 - mae: 0.0337 - val_loss: 8.0260e-04 - val_mae: 0.0287\n", - "Epoch 13/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0013 - mae: 0.0349 - val_loss: 0.0011 - val_mae: 0.0389\n", - "Epoch 14/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0363 - val_loss: 6.3723e-04 - val_mae: 0.0245\n", - "Epoch 15/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0012 - mae: 0.0340 - val_loss: 6.2749e-04 - val_mae: 0.0255\n", - "Epoch 16/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0013 - mae: 0.0342 - val_loss: 0.0020 - val_mae: 0.0549\n", - "Epoch 17/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0332 - val_loss: 7.3463e-04 - val_mae: 0.0275\n", - "Epoch 18/500\n", - "<<181 more lines>>\n", - "Epoch 109/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0319 - val_loss: 6.3961e-04 - val_mae: 0.0244\n", - "Epoch 110/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0354 - val_loss: 0.0013 - val_mae: 0.0433\n", - "Epoch 111/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0010 - mae: 0.0307 - val_loss: 7.3263e-04 - val_mae: 0.0281\n", - "Epoch 112/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0014 - mae: 0.0377 - val_loss: 7.8642e-04 - val_mae: 0.0293\n", - "Epoch 113/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0340 - val_loss: 0.0013 - val_mae: 0.0415\n", - "Epoch 114/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0344 - val_loss: 0.0011 - val_mae: 0.0376\n", - "Epoch 115/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0314 - val_loss: 0.0010 - val_mae: 0.0344\n", - "Epoch 116/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0013 - mae: 0.0374 - val_loss: 7.2942e-04 - val_mae: 0.0264\n", - "Epoch 117/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0336 - val_loss: 0.0011 - val_mae: 0.0393\n", - "Epoch 118/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0392 - val_loss: 0.0015 - val_mae: 0.0455\n", - "Epoch 119/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0369 - val_loss: 0.0011 - val_mae: 0.0363\n", - "Epoch 120/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0012 - mae: 0.0348 - val_loss: 0.0011 - val_mae: 0.0372\n", - "Epoch 121/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0316 - val_loss: 0.0012 - val_mae: 0.0408\n", - "Epoch 122/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0330 - val_loss: 0.0022 - val_mae: 0.0583\n", - "Epoch 123/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0402 - val_loss: 0.0014 - val_mae: 0.0438\n", - "Epoch 124/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0392 - val_loss: 8.6813e-04 - val_mae: 0.0323\n", - "Epoch 125/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0319 - val_loss: 6.3585e-04 - val_mae: 0.0243\n", - "3/3 [==============================] - 0s 4ms/step - loss: 5.6491e-04 - mae: 0.0221\n" - ] - }, - { - "data": { - "text/plain": [ - "22062.301635742188" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – compiles, fits, and evaluates the model, like earlier\n", - "fit_and_evaluate(mulvar_model, train_mulvar_ds, valid_mulvar_ds,\n", - " learning_rate=0.05)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/500\n", - "33/33 [==============================] - 1s 13ms/step - loss: 0.0398 - mae: 0.1953 - val_loss: 0.0073 - val_mae: 0.0998\n", - "Epoch 2/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0039 - mae: 0.0632 - val_loss: 0.0012 - val_mae: 0.0384\n", - "Epoch 3/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0027 - mae: 0.0509 - val_loss: 0.0010 - val_mae: 0.0362\n", - "Epoch 4/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0024 - mae: 0.0488 - val_loss: 0.0018 - val_mae: 0.0491\n", - "Epoch 5/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0023 - mae: 0.0473 - val_loss: 0.0012 - val_mae: 0.0372\n", - "Epoch 6/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0022 - mae: 0.0463 - val_loss: 0.0011 - val_mae: 0.0361\n", - "Epoch 7/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0019 - mae: 0.0442 - val_loss: 8.8553e-04 - val_mae: 0.0322\n", - "Epoch 8/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0018 - mae: 0.0427 - val_loss: 9.3772e-04 - val_mae: 0.0339\n", - "Epoch 9/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0017 - mae: 0.0411 - val_loss: 9.0027e-04 - val_mae: 0.0324\n", - "Epoch 10/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0019 - mae: 0.0440 - val_loss: 0.0014 - val_mae: 0.0427\n", - "Epoch 11/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0017 - mae: 0.0415 - val_loss: 0.0021 - val_mae: 0.0546\n", - "Epoch 12/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0017 - mae: 0.0412 - val_loss: 8.3458e-04 - val_mae: 0.0311\n", - "Epoch 13/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0016 - mae: 0.0399 - val_loss: 8.2083e-04 - val_mae: 0.0311\n", - "Epoch 14/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0015 - mae: 0.0391 - val_loss: 0.0010 - val_mae: 0.0358\n", - "Epoch 15/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0016 - mae: 0.0407 - val_loss: 0.0011 - val_mae: 0.0361\n", - "Epoch 16/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0014 - mae: 0.0378 - val_loss: 0.0012 - val_mae: 0.0380\n", - "Epoch 17/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0015 - mae: 0.0394 - val_loss: 9.6802e-04 - val_mae: 0.0346\n", - "Epoch 18/500\n", - "<<215 more lines>>\n", - "Epoch 126/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0317 - val_loss: 6.8940e-04 - val_mae: 0.0271\n", - "Epoch 127/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0328 - val_loss: 0.0013 - val_mae: 0.0412\n", - "Epoch 128/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0012 - mae: 0.0344 - val_loss: 7.6342e-04 - val_mae: 0.0292\n", - "Epoch 129/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0328 - val_loss: 8.3261e-04 - val_mae: 0.0311\n", - "Epoch 130/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0011 - mae: 0.0316 - val_loss: 6.7921e-04 - val_mae: 0.0263\n", - "Epoch 131/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0320 - val_loss: 7.7970e-04 - val_mae: 0.0297\n", - "Epoch 132/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0334 - val_loss: 7.4201e-04 - val_mae: 0.0286\n", - "Epoch 133/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0330 - val_loss: 9.3328e-04 - val_mae: 0.0339\n", - "Epoch 134/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0011 - mae: 0.0322 - val_loss: 6.9349e-04 - val_mae: 0.0267\n", - "Epoch 135/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0011 - mae: 0.0317 - val_loss: 6.6078e-04 - val_mae: 0.0261\n", - "Epoch 136/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0011 - mae: 0.0322 - val_loss: 9.1503e-04 - val_mae: 0.0322\n", - "Epoch 137/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0011 - mae: 0.0327 - val_loss: 6.7553e-04 - val_mae: 0.0261\n", - "Epoch 138/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0010 - mae: 0.0311 - val_loss: 7.1123e-04 - val_mae: 0.0276\n", - "Epoch 139/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0011 - mae: 0.0317 - val_loss: 6.7194e-04 - val_mae: 0.0260\n", - "Epoch 140/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0012 - mae: 0.0342 - val_loss: 0.0010 - val_mae: 0.0361\n", - "Epoch 141/500\n", - "33/33 [==============================] - 0s 13ms/step - loss: 0.0011 - mae: 0.0325 - val_loss: 7.6832e-04 - val_mae: 0.0293\n", - "Epoch 142/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0011 - mae: 0.0324 - val_loss: 6.7870e-04 - val_mae: 0.0264\n", - "3/3 [==============================] - 0s 5ms/step - loss: 6.5248e-04 - mae: 0.0259\n" - ] - }, - { - "data": { - "text/plain": [ - "25850.363075733185" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – build and train a multitask RNN that forecasts both bus and rail\n", - "\n", - "tf.random.set_seed(42)\n", - "\n", - "seq_length = 56\n", - "train_multask_ds = tf.keras.utils.timeseries_dataset_from_array(\n", - " mulvar_train.to_numpy(),\n", - " targets=mulvar_train[[\"bus\", \"rail\"]][seq_length:], # 2 targets per day\n", - " sequence_length=seq_length,\n", - " batch_size=32,\n", - " shuffle=True,\n", - " seed=42\n", - ")\n", - "valid_multask_ds = tf.keras.utils.timeseries_dataset_from_array(\n", - " mulvar_valid.to_numpy(),\n", - " targets=mulvar_valid[[\"bus\", \"rail\"]][seq_length:],\n", - " sequence_length=seq_length,\n", - " batch_size=32\n", - ")\n", - "\n", - "tf.random.set_seed(42)\n", - "multask_model = tf.keras.Sequential([\n", - " tf.keras.layers.SimpleRNN(32, input_shape=[None, 5]),\n", - " tf.keras.layers.Dense(2)\n", - "])\n", - "\n", - "fit_and_evaluate(multask_model, train_multask_ds, valid_multask_ds,\n", - " learning_rate=0.02)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "43441.63157894738" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – evaluates the naive forecasts for bus\n", - "bus_naive = mulvar_valid[\"bus\"].shift(7)[seq_length:]\n", - "bus_target = mulvar_valid[\"bus\"][seq_length:]\n", - "(bus_target - bus_naive).abs().mean() * 1e6" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "bus 26369\n", - "rail 25330\n" - ] - } - ], - "source": [ - "# extra code – evaluates the multitask RNN's forecasts both bus and rail\n", - "Y_preds_valid = multask_model.predict(valid_multask_ds)\n", - "for idx, name in enumerate([\"bus\", \"rail\"]):\n", - " mae = 1e6 * tf.keras.metrics.mean_absolute_error(\n", - " mulvar_valid[name][seq_length:], Y_preds_valid[:, idx])\n", - " print(name, int(mae))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Forecasting Several Steps Ahead" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "X = rail_valid.to_numpy()[np.newaxis, :seq_length, np.newaxis]\n", - "for step_ahead in range(14):\n", - " y_pred_one = univar_model.predict(X)\n", - " X = np.concatenate([X, y_pred_one.reshape(1, 1, 1)], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAADsCAYAAABqkpwSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB2LUlEQVR4nO2dd3gcxd2A37k76VROvVuyJUuy5YaxMbjQLDAdHJPQnFC/ACa0BAIxJSS0kNACoQQSWkwLxPSSmGqLauOCDe6WLMlWs2X1Xu5uvj92Tz7J6rqueZ/nnrubnZmdXZ12f/urQkqJQqFQKBQKhT9h8PYCFAqFQqFQKIaKEmAUCoVCoVD4HUqAUSgUCoVC4XcoAUahUCgUCoXfoQQYhUKhUCgUfocSYBQKhUKhUPgdgxJghBA3CiG2CiG2CCFeE0KECCFihRCfCiHy9fcYp/63CSEKhBA7hRCnOrXPEkJs1rc9LoQQertZCPEfvf07IUSG05hL9X3kCyEudeGxKxQKhUKh8FMGFGCEEKnAr4EjpZTTACOwGLgV+FxKOQH4XP+OEGKKvn0qcBrwlBDCqE/3NLAEmKC/TtPbLwdqpZTZwKPAA/pcscCdwBxgNnCns6CkUCgUCoVidDJYE5IJCBVCmIAwoBxYBLyob38ROFv/vAh4XUrZLqUsAgqA2UKIFCBSSrlaatnzXuoxxjHXm8ACXTtzKvCplLJGSlkLfMpBoUehUCgUCsUoZUABRkpZBjwM7AUqgHop5SdAkpSyQu9TASTqQ1KBEqcpSvW2VP1zz/ZuY6SUVqAeiOtnLoVCoVAoFKMY00AddJPNImA8UAe8IYS4qL8hvbTJftqHO8Z5jUvQTFOEhITMGjduXD/LUygUCv+kpaUFgLCwMC+vxHXY7XYMBhVPMtrZtWtXlZQyYShjBhRggJOAIinlAQAhxNvA0cB+IUSKlLJCNw9V6v1LgbFO49PQTE6l+uee7c5jSnUzVRRQo7fn9hiT13OBUspngGcAcnJy5M6dOwdxWAqFQuFf5ObmApCXl+fVdbiSvLy8ruNSjF6EEHuGOmYwYu9eYK4QIkz3S1kAbAfeBxxRQZcC7+mf3wcW65FF49GcddfqZqZGIcRcfZ5LeoxxzHUusFL3k/kYOEUIEaNrgk7R2xQKhUKhUIxiBtTASCm/E0K8CXwPWIGNaNoOC7BcCHE5mpBznt5/qxBiObBN73+tlNKmT3c1sAwIBVboL4DngZeFEAVompfF+lw1Qoh7gXV6v3uklDUjOmKFQqFQKBR+z2BMSEgp70QLZ3amHU0b01v/+4D7emlfD0zrpb0NXQDqZdsLwAuDWadCoVAoFIrRgfKcUigUCoVC4XcMSgOjUCgUCu/zz3/+09tLUCh8BiXAKBQKhZ+Qk5Pj7SUoFD6DMiEpFAqFn/DBBx/wwQcfeHsZCoVPoDQwCoVC4Sf89a9/BWDhwoVeXolC4X2UBkahUCgUCoXfoQQYhcKDbNhTy99XFbBhT623l6JQKBR+jRJgFAoPsa64hp8/s4aHP97Jhc+uUUKMQqEYGg8+CKtWdW9btUprH4UoAUahcCN2u2RtUQ13vreFy15YS4fNjgTarHa+KTjg7eUpFApvMRxh5Kij4PzzD45btUr7ftRR7lunD6OceH2YDXtqWVNYzdzMOGalx3h7OYpBIqXk+711/PfHCv63uYJ9DW2YTQZmjotmw55arDaJBNbsruG6EyQGQ29F1xWKQ3n55Ze9vQSFq3AII/ffD4cdBmvXwh13wF13aYKJzaa97Pbun6+9Fs4+G66+Gp5/HpYvhxNO8PbReAUlwPgoa4uquei5tXTa7JiMgjvPmsoJkxNJijBjMrpWcaYJSlXMzYxXgtIwkVLyY2k9H/5Yzv8276OsrpVgo4H5OQncNn0SCyYnYTGbuoTS/Q1tvLR6D/d8uI07F05Bq2+qUPTP2LFjvb0ExUhoaYHvvoOvvtJeTU1wxRXd+9x44+DmeuABWLBg1GpfQAkwPkVtcwdf7DrAyh2VfLx1Hx02OwCdNskd722B98BoECRHhpAaE0padCipMaGkOr3vb2jj+711zBkfS2aChaqmdqqa2qlu6qC6qZ2qpg6qm/X3pnbK61rZ19AOQLCxgNeWzFVCzCDZsKeW9zeVUd9qZcPeGkpqWgkyCo6bkMBNp0zkpClJRIYEdRszKz2GWekxSCkJMhp4/usikiJDuDo3y0tH4R08pV0MNC3mf/7zHwAuuOACL6/EiQcf1G6izlqAVatg3TpYutR76/IkfZ2DL7+EWbMOCizr10NnJwihaV0uvxzKyuDdd+HnP4f/+z8wGMBo1F69fd6wAW66CeLi4PPPITUVfv97uOYasFi8dgq8gRJgvIiUkm0VDazaUcnKHZVsKqnDLiEuPJh5mXF8s7sKu11iMhpYeloOYcEmSmtbKKttpayulTWF1exraMMuB79Pg4DYcDPxlmDiLWZiwoPZ39COBDpsdr7cdSAgLvTu5r8/lnP9axu7zv2MsdFcf+IETp2STFRYUP+DASEEvz9jMgca23ngox0kRJg5d1aam1ftG2zYU8vPn12D1WYn2GTg1StcJzTXt3SytbyezWX1fJlfxbe7q0CC2WTg1Sv9Xzh/+umnATcKMMMRRg4/HM49Fx57DC68EPLyNNPI8uXuWaMv4jAH/eMfYLXCa6/Bhx9qZh+AoCA48kj47W/huOPg6KMhJuagD8sf/gBPPw1XXtm/OWjVKrj1VnjnHa3fk09qc95yCzz0kPY3uuYaCA/3zHF7GSXAeAjHk+CMsdE0tVvJ21nJqh0H2NfQBsBhqVFcd+IETpyUyPTUKAwGMainx06bnX31bZTVtfLSt8Ws2LIPCQjgxEmJnD0zlXiLJrDEWcxEhwZ187nYsKeWC59bQ4fVjl3C1vJ6D5wN/6WxrZMnVxbw7FeFXcKLUcDJU5I4/8ihqfcNBsHD5x1OTXMHt7z1I3GWYE7ISXTDqn2LN9aX0GHVtIttnXZ+9fJ6jhofS2a8hcyEcDITtPee2que/w9VTe1sKatna3kDW8rq2VJeT0lNa1f/yBATUv8btVntPPjRDp74xUwSI0I8dqx+h+NGfO+9MHYsfP01PPGE5nNxzTVQXX3oq6VFG3vxxXDDDdDWpt3AR5NfRm4uXHCBJsg5mDULFi3SBJbZsyEsrPsYh/Di8GE54YTu33tj3bru26+7DqZOhTffhN27NQHmwQdHjSAjpBzC47sfkJOTI3fu3OntZXRjw55afvHsGtr1izaAxWziuAnxnDApkdycBJdcVB3CSKfVTtAQnmwdN4aCyibe2VjGc5ccyUlTkka8nkDCZpe8uaGEhz7eSVVTByfmJPDN7mqstqGd695obOtk8TNrKDzQzGtL5jJjbLRrF+9j3LR8E299X4ZAE+JmjI2mprmDvTUt2JzUifEWM5nx4WQmhBNsMvDa2r1YbRIhICYsmOrmjq6+6XFhTBsTxdTUSA5LjWLqmCiKqpq7hHMAKSHIZOCcI9JYcnwm4+P97+Kem5sLQF5enusmbW/X/DK++ELTnnz9NXR0dO9jMGgag7i4Pl/1r79JVN5nWv+wMLjoIs3RdMaMfnefl5fXdVx+SUeH5lj73HMwcSLs2qWZdP70p/7HucP0tno13H03fPwxxMdr87S3wzHH+LyJTwixQUp55JDGKAHG/fx9VQEPf7yzSzNy/pFp3Hv2YQSbXB/FPhKbf7vVxqInv6GqqZ2PbzieOIvZ5evzR9YW1XDPh1vZUtbArPQY7lw4help0S71r6hsbOOcp7+lud3GW1cf7Zc318Hy06e+oaXDxk8OH9Pt3HVY7eytaaHwQBOFVc3a+4FmCquaqWnufkOdnBLBz2amMTU1kqljoogK7d1s5/w3igsP5pmvCnlzQymdNjunT0vmV/OzmJ4W7e5DdhlDEmD6ukF++612Q8vL04SW1au1m5wQMH065OZSs6uI2BXvU/qLXyLvuYcGcxhNHXaaO6w0tllparfSpL83tlkJ/foLrnjyNl6deQaXfv8BzJ1H1HffQGurZi655hpNO2E+9Jri1wJMVZV2XF98oZnPPv5YE9qeftqt0UEDXnu+/VYTZD75BKKiNLPW8uVwxhmHan58BLcIMEKIHOA/Tk2ZwB+Bl/T2DKAYOF9KWauPuQ24HLABv5ZSfqy3zwKWAaHA/4DfSCmlEMKszzcLqAYukFIW62MuBe7Q9/0nKeWL/a3XFwWYDXtqueCfq7HaJSE+bovfXtHAoie/4cRJiTx90RGjOjqmrK6Vv/xvOx/+WEFKVAi3nTGZhdNT3HZOiqqaOefpbwk3G3nr6qMD0tTR1G7l8Ls/4er5Wdx86uArK3+xs5IrX96AzQUar8rGNpZ9U8zLa/bQ2Gbl6Kw4fjU/i+MmxPv8731IAozjRvXSSxAcDC++CK+/rqmirFZNYJk5E+bPp3XeMWxMP4w1dZIDH3zEzc//kVdmnsFFG//HdYtuZXX69F53YRBwQvlWHnrzz1z7k1tYnT6deXt+5Pn/PUTYy8ugsBCeegry8zWNwBVXwFVXaTdPXbjqEmB8UCvQL1u3wk9+ojnh3nQTPPPMQaFgkEJCp83OmxtKWV9cQ3pcOMmRITS1W2npsNLUbqOlw0pzu43mdivNHVZaOmxUNbazt0Yz2w3o2+UsyAihaYpef93nhBfwgAZGCGEEyoA5wLVAjZTyfiHErUCMlPIWIcQU4DVgNjAG+AyYKKW0CSHWAr8B1qAJMI9LKVcIIa4BpkspfyWEWAz8VEp5gRAiFlgPHAlIYAMwyyEo9YYvCjAA17y6gc+2VfpFlM8/vtjN/St28Mj5h/OzI/zPsXRDcQ0fbd3HvKw4TshJHPJNqaXDyj++KOSfX+xGCLjq+Cx+NT+L0GCjm1Z8kB9K6lj8zBoyE8J5fclcIkIGdgj2J1btqOT/lq3j31fM4ejs+CGNdXVEUWNbJ//+bi/Pf11EZWM7U8dEctX8LJIjzawrrvXJyKWqqioA4uMHee4efxx+85uD3ydOhIULqT3qaL5LncyaGjvrimvYXtGAXcIxJT/y5LsPcI2TMPLMfx9k+9+eo/P4+VjMJiwhJiL099AgI+Khh9g5dhKLtgbRbtUSNeaWb+G6iFpmPP5nTAItWuapp+D99zUBas4c2LYN3n6bPKORXCl9UivQJ//9rxY1FB6uRRB98cWgzUH1LZ3k7arks+2VfL59Py0dtl53EWw0EGY2Eh5sItxsJCzYhMVsYl9DGwWVTV39cicm8I+LZxES1M/1adUqOPFE7fMf/gD33DPcI3cbnhBgTgHulFIeI4TYCeRKKSuEEClAnpQyR9e+IKX8iz7mY+AuNC3NKinlJL395/r4qxx9pJSrhRAmYB+QACx29NHH/FPfz2t9rdFXBZglL62nuLqZT26c7+2lDIjNLln8zGp2VDTy8Y3HMyY61NtLGjSOCBeH30OQUTA2Jowx0VqY+ZjoUMZEh3SFnadEhRJsMnTlwum0SV5fW8K+hjZ+cvgYbj19ksePP29nJVe8uJ45mbH867LZbjE1eov7/ruNF1fv4cc7T+n/gutB2q023t1Yxj+/LKTwQDMC7WHV1RFSXqGujqYFp2D5fh1rzvkl/znvetYV11Baqzk7hwYZOSI9miPTYzkqI5aj3niO4vFTWLQtqMuX7r0pneSU7BhQM+IQMMfGhrJ8XSlfF1QxJSWSe8+eyqz0WK1TSYmmqXj2Wdi/H4xGSs4+m7FffOEfwouU8Mgj8Lvfadqr996DtIEf8oqrmvls+34+276fdcW12OySeEswKVEhbClrQKJps648PpOr52cRFmzq8//eOfACwC4hMcLMdSdmc8FRYzGbevm/WrkSTjoJjjgC9uzxnXOtmzk3ZM5gzrQJZdbGqiE9MQ81CmkxmnYFIElKWQGgCzGO8IlUNA2Lg1K9rVP/3LPdMaZEn8sqhKgH4pzbexnjV1TUt5ES5R+CgNEg+Ot5MzjtsS+5+Y0feOXyOX6TLXZNYTWd+j+2QAtvTowIoayulZU7KznQ2N6tvxAQHRpEXWtnV8RKZnw4b/5qHkdmxHp49Rq5OYk8cM50bnrjB25+4wf+dsEMvzn/A7G6sJojxkX7jPACYDYZueCocZw3ayzX/vt7LZJPQqfVzprCap8SYJYtWwbAZZdd1m8/u12ytriGr595g//bvpPnj17MRf97k0ZLDoedtID/O2Y8R2XEMDklkiDnxJi330oO8KqTtisnPQb4yYBrc+Q4Alg4fQz/27yPez/cxjlPr+a8WWnccvok4seO1SKc/vAHeOUVuPxyxr71lvbdF26o/dHervm3/Otfmt/LsmWHRPk4hLjZ47Vrx2fb9/P59soujcmk5Ah+NT+TBZOTmJEWzcaSum6BF6dMSSY6LLjfZcxKj+HVK+Z2/X2sNjt//WQXf3xvK//8opDfLJjAz45IPZjwdNUqLUJq6lTNuXr5ct/Rdh11FB3nnMvTC67DGB4z5Hv7oAUYIUQw2q/4toG69tIm+2kf7hjntS0BlgAkJCS41kPfRew50EysMPnk2vri/AlGlm2t5g8vfcbJGf5hyjDX2RBCe1AyGeDUpFayYzp0sddEp91ITaukuk1S3Wqnuk2yqdJGrf6rEsDMmA6ain8kr9h7xxEHnDcxiDd+KKe9vpKfT/J/h+qmDsnWshbOzg7y2f+D6aFWVuifjQLMdXvIyyvtd4wn+dvf/gZARkbGIduklOxttLOmwsZ3FVZydv7Ak+/d3+XDsmbcdJ59688UHB5EXdpMagr28E1B3/uaKqCxqJS8ouGtNRy4a7aB93cH8fb3pfz3h1LOmRjMCWNNGIQguraWw4G6iRMJf/xxtsXEUDdz5vB25maC6uqY+sc/Er15M8WXXELxpZdq5iEn8mutPLC2HavTHcooYFKsgQsnBzMjwUhCmB3YR0PhPr4s1PrcfEQwO2psTIo10lj0w6DPt+PvA3B1juT4eDNv5bez9K0f+euKzZydHcycFCPpr79O4+23k7hyJQlffsk3QPTttxPx+uuUeNvnSwjyF17Ocy/dwyfhQ39QGIoG5nTgeynlfv37fiFEipMJqVJvLwWcE2KkAeV6e1ov7c5jSnUTUhRQo7fn9hiT13NhUspngGdAMyH5mkd7u9VGw0cfMWtyJrm5E7y9nEEzX0r2vrieNwuq+L8z5pKdGOHtJQ1ILvBt/Vq+K6zhpcvnDDqM3Pkp6BcnHeUTT93z50vCP9jGsm+LaQ+O4foFE3xiXcPloy37kGzgFycdyVFe0m4NRC7w/PZPSYwI4d6zp/nc+Y6OjgboFrWzt7qF938o491N5RRUtmAyCOZPTOC3dU1UPPMiG3eaMVrtbMyeQdkzLzGjZIeWt8RDnHYSFFQ28sf3tvLytmo21ofwSEItE++/HyZMQEZFEfyPfzDDV7QCPaO3Nm+GxYu1nDevv07GBReQ0cuwfz6zGqs8qOH9yeFjuO+n0wb0Y8t10bJPAK6Vks+2V/LXT3byzx8bydsfwY3X382pU5MQBgN8+CG5U6d2HZsv5P9uXKtJbInNfbq29slQBJifc9B8BPA+cClwv/7+nlP7v4UQj6A58U4A1upOvI1CiLnAd8AlwBM95loNnAus1KOTPgb+LIRwXEVOYWANkM+xr15LVpcS5V9RJUII7j/nME599Et+u/wH3rr66O7qZh+lwyqZkBQx6JtPT5Wsr9y0hBCcNT2Fl1YXk7frAN8WVvOaD0ewDcSawmpCg4wc7uNhyznJEbR02HzyPLdZxtAWOZaVO/ZTUtPKu5vK2Li3DoDZGbH86expnHlYCjHhwYBWI2c45iBXk50YwatXzOHDHyv403+38dbb7xB77V9Y9P1HmL/5kg2ZM5i1fLmm1fC2AONI5rd8uVar6PzztVwvf/+7ZorphX99U8TqwhqMQgCSIJOBS4/O8LgTvhCCk6cksWBSIv/dXMGjn+3iV69s4LDUKK62x3IGsHPld+QsXujRdfXH+HVfAlAZFNI41LGDEmCEEGHAycBVTs33A8uFEJcDe4HzAKSUW4UQy4FtgBW4VkrpcLO+moNh1Cv0F8DzwMtCiAI0zctifa4aIcS9gENXd4+UsmaoB+ltKroEGP/wgXEmMSKE+356GNe8+j1/X1XADSdN9PaSBqS8rpXJKZFDGuNsv/clvis6+HP3RZ+MofDt7iqOGh/r807J6XHhfLRln7eXcQjri2vYN2UxCAO/XLYe0HwqbjltEgsPTyEtJqzXcb7y2xZCsPDwMZwwKZHHZ6Ty4FeF1NeHs7TmAEv+vpJnrj2RWd4WXkAToJYvh4ULobkZTCYts/D55/fa/b1NZdz9wTZOnZrE5ceO94kINoNBO9enT0vm3U3lPPDRdu4ql5wBvP7iR5w171if+E2wahU5779Gh8FISWfbrqEOH5QAI6VsQTPLO7dVAwv66H8fcF8v7euBab20t6ELQL1sewF4YTDr9FUq6jWP/5Ro/9LAODjjsBR+OjOVJ1YWcEJOIof7cKZYKSXl9a0smBwYKfnnZsYRbDLQ1mnHYBDMzYwbeJAPcqCxnV37m/jpTN8Py8+IC6OmuYP61s4+E+R5g3c2loFBc34WwGVHZ3DnT6Z6d1HDwGI2cfsZk2lut1KwU/M2GFu517eE8/h4TXgBuPnmPoWXvJ2V3LT8B+ZmxvLY4pmEBBmZPd53/kdNRgPnzkpjb3Uzj3/eToM5nMzKPb5zrteto2j8FMy11VC5d8jDfftRKEAor9M0MGP8UAPj4K6fTCXBYubG5Zto6+w9b4EvUNvSSVun3a9Cv/vDYd5KjDBzWGqUb1x0hsGawmoAjs7ynYt7X6THaZEle6tbvLyS7sTrmbENAsxBBs46fIyXVzQyfjozlYI4TYCZVFPqW8L5G29o70uWaCUCVq06pMv3e2u5+pXvyUmO4NlLjvSpyLqezM9J1Bxm48YysbrEd8710qUYm5uoTRreg40SYDxARX0r0WFBHkmE5i6iQoN4+LzDKTzQzP0rdnh7OX1SXqdru/xYWOzJrPQY5mXFHRIC7k98u7uaCLOJqWOGZtrzBhm6AFNc3ezllXTHYXr79YIJ/p+fBjgyIxZDdhadRhM3pPqQz9GqVVquF4C//vVg2LGTEJO/v5FfLltHUqSZZf832+cTTs5Kj2FycgTlY8ZzRHOF75xrKUk6UEZL2rhhDVcCjAeoqPOfHDD9ceyEeC47OoNl3xbzTUGVt5fTK2W6AJMaIBoYB9kJFsrqWmlut3p7KcNiTWE1czJjD+am8GHGxWq+JHt8TIApq2sl1GAjeNdnvnMDGiFT0+PYE5tKclmht5dykHXrtCitxESwWA76xOhh02V1rVzywlqCjAZevnwOCRH+keLgsLQo8hPSCao6oNVw8gHaKquwtLdgS88Y1njfv5oEAOX1bYzxswikvrjltElkxodz8xs/UN/a6e3lHEKFLsCM8VN/o76YkGQBYPeBpgF6+h7lda0UVTUzL2topQO8RWiwkeTIEIp9zIRUXteKreEAy5cv9/ZSXEZ2goUdsWOxb93m7aUcZOlSrQhlZubBthNOgKVLqWnu4OLnv6Op3cpLv5zN2NjeHad9kfHxFjZZUrQv27d7dzE61Zs1bb4pe3gB3UqA8QAV9a0kB4gAExps5JELZrC/oY1fPLOGDXuGHrvvTsrr2zCbDMSG95/N0t/ITtQEGOcaKP7C6t2a/8s8X7G7D4L0uDDf08DUtmLqaPD2MlxKVqKFgvixiOIiTWjwFQoLuwswaIVI/+9faymrbeX5S48acqSjtxkfH05+vG6q2brVu4vRadyuBR6FTx5edKsSYNxMa4eNupbOgHEqBa1WkkEItlY08PNnfUuIKatrZUx0qM9XFR4q6XHhmAyCfH8UYAqriQkLYlKy7ydCdJARF+5TGhgpJWV1rRjbA0uAyU60UBA3FmG3w64hR9G6h85O2Lu3mwDTbrXxq5c3sKW8gb//4oiuUgH+xPj4cCoi4rGGhWuFNH2Ajl1aKujYqYOvTO9MwAkwVa2S1bt9w74HTiHUAaKBAc2fwa4XDnLkJvEVyutaA858BBBkNJARH+53GhgpJat3a0nU/KmeU3p8GAca233G56i+tZOWDhumABNg0uPCKHBoBXzkpsrevWC3dwkwNrvkpuU/8HVBFQ+cM52TpiR5eYHDIz0uDGEQVI3L8plzLYqKqAqLIjE1YVjjA06AaeqUXPqvdT6jFfDnJHZ94chNAvhcbpLyula/DlfvjwmJFr8TYEpqWimra/WL8GlnHJFIe3xEC+OoHh1oAozZZKQpNQ27MPiMXwaFukNxZiZSSu56fysf/ljB7WdM4txZvp/HqC9CgoyMiQqlOCnDZwQY895i9sWlDDu5ZcAJMOBbWoHyAHQq9dXcJJ02O5WN7QFlrnMmO9HCnupm2q2+m4enJ9/q2tB5fibApMf5ViSSI7ru+Sce8tlCmMMlPspMefwYn7mpOgswj32ez8tr9nDV/EyWHO8LlYNGRmZCONtj0qCiAmq9/5Afta+UmmHmgIEAFWB8SSvg0MAkRQaOAAOaEHN0VhyVDW3eXkoX++rbkDKwhEVnshMt2CUUVfnGTXUwfLu7moQIM1kJFm8vZUikd+WC8Q0NTHmApgcASLEY2BGThvQlDUxwMPdtqudvn+VzYk4Ct542ydurcgnj48NZF5asffG2wGi1El9dQUvq8HLAwNCKOfoFRgFTUyL71Ao0NDRQWVlJZ6dnQoCPjO7ghUUpFBX4iIOaC/lFjpEzx8Wwdds2DD7gNNtutfHsT1KINzew3eliGBQURGJiIpGR/hU10BPnSKRJyb5/LFJKVhdWc3RWnN85VVvMJuItZt/RwNS2EhJk4IWnn0AIuPnmm729JJcxJlywKzaNBevf1Rxog7ycFK6wkKYxY3n2mz0AfFtYzfd763xG0zwSMuLCWRmZqn3Ztg2OOcZra5ElJRjtdmzp44c9R8AJMKEmQXl971qBhoYG9u/fT2pqKqGhnolUKapqxmqzMyHJfyIwBkt9ayd7qpsZn2AhzOz9n1JtSweGmhYmJkV0pfWWUtLa2kpZWRmAXwsxWQkWhID8/f7hB7P7QBMHGtv9KnzamYy4MJ/JxuuIrvvvBx8CgSXApIQb2Bo3DmG1QkEBTJ7s3QXt3s3e6OSur/5eRNWZ8QnhlEUmYAsNw+hlDUzDtp1EMfwcMBCAJqRgI1Q1tVPddGja9crKSlJTUwkLC/PYE2GnzU6QH2QfHQ4huuNVm9Xu5ZVodOrrCHY630IIwsLCSE1NpbKy0ltLcwkhQUbGxoRR4CfJ7L7d7ah/5B8J7HqSHhfuM0685XWtAWk+As2E1JWfxNtmJClh924aUrQaTUYBQSaDz7gkjJTM+HCkMFCf7v1IpMZtmlUibPKEYc8RcHfWID1Uc+f+xkO2dXZ2Ehrq2YtAp81O0DA9rH2dYJMBgxA+U9yx02bHZDD0Gq4bGhrqMbOhO5mQaKHATzQwq3dXkxodythY/7zxZsSFUVHf5hO/77K6VtJi/PM8DkR4kKBunJ5zxdt+GbW10NBAdVIaEWYjvz0lJyDqTjlIjQ4lyCgoS830+rlu31lAp8FIbE7mwJ37IODurI56iTv3HSrAAB61xdvsEptdEmT0L/v/YBFCYDYZaPcRDUyHre9z7W8+GH2RnWjpMkv6Mna75v8yzw/9Xxykx+tVqWu8q4Vp67RR1dQRsOkBANLS4qmMTfb6TdURgbQrLIHMxAiuPSE7YIQXAJPRwNjYMPLjxkJpKdTXe28xRYWURiWSGjd8B/+AE2CMAmLDg/sUYDxJp+1Qk0agYQ4y+sQTKgS2uc5BdqKFDpvd6zfVgdixr5G6lk6/y//iTIYeSl3s5aivrgikmFBCQ0M9rkX2BFkJFnbF+kAkki7AbAqKId2P6hwNhcz4cDZFjNG+ePF8h5TsoTwmmajQ4TttD+pqL4SIFkK8KYTYIYTYLoSYJ4SIFUJ8KoTI199jnPrfJoQoEELsFEKc6tQ+SwixWd/2uNAfzYQQZiHEf/T274QQGU5jLtX3kS+EuHQw652YZOnVhORpHAJMIN9UQ0wGOm12bHbvawQ6bfZhJ0TyF/ylJpK/5n9xJj3WN5LZOVdYX7FiBStWrPDqetxBdqJFy0+yYwfYvPhApAsw3xuiuwTYQGN8fDjfmvVswl7UeEXuK6U2KW1EGtrBXu0fAz6SUk4CDge2A7cCn0spJwCf698RQkwBFgNTgdOAp4QQumGHp4ElwAT9dZrefjlQK6XMBh4FHtDnigXuBOYAs4E7nQWlvpiUHMmufY3Y7XKQh+ceDgoww/8DCSH6fV122WUuWu3wMOvRPu2d3hVgbHZ7QJvrHDgEGF+vibR6dzXj48P9OgN1VFgQMWFBXo9EKqt1JMP033M5EFkJFvLjxiHa2mDPHu8tpLAQW0ICjcFhjNNzAQUa4+MtFIbHI0NCvCfANDQQ0VhHc2r6iKYZUIARQkQCxwPPA0gpO6SUdcAi4EW924vA2frnRcDrUsp2KWURUADMFkKkAJFSytVSSgm81GOMY643gQW6duZU4FMpZY2Ushb4lINCT59MTIqgucPW9eTiLTptmgBlGoEGpqKiouv17LPPHtL22GOPdd+nhx1VfSUSyXGuA1nbBRAREkRyZAi7fViAsdrsrC2qCYjIDV+IRCqva8UgIDkqhHvvvZd7773Xq+txB46ijoB3/WAKC2kao0VEpQeoBiYjPgy7wUhz5gTvVaUuKgLAmpExomkGk7wjEzgA/EsIcTiwAfgNkCSlrACQUlYIIRL1/qnAGqfxpXpbp/65Z7tjTIk+l1UIUQ/EObf3MqYLIcQSNM0OCQkJtJTnA/DmZ98yM/HgIUZFRdHY6DnTUnOrHaMQNDcN/2YTHn7wKcBsNndr27NnD4cddhjPP/88L774ImvXruXee+/FYrFw8803U1FR0TX2q6++4swzz6SoqIi4OO3G8t1333HXXXfx/fffEx0dzRlnnMHdd989pFwpUkoE0NjcSpD90NB1T9HSqReXbG+j0db7Otra2gIiDXtcUAff764gL6/O20vplcI6G43tVqLb95OX5xslPYZLqLWNHVV2r/5uNuxoJ9os+OarL3nrrbcAOO6447y2HlfT1NTEzo1rKEnUBJjdH3xAicU7mZvnbN1KcYaWh6ZsxyaaiwPvgai2TXvY3B2VQM7Gjazxwm87+osvmQHsCw0Z0f/WYAQYE3AEcL2U8jshxGPo5qI+6E2HL/tpH+6Ygw1SPgM8A5CTkyMvOP14/vTdJwQnZJCbm93Vb/v27UREuCah3IY9tawp1Krs9uWlfqCtCXMQRES45p/R4bznOAaL/k9+zz338PDDDzNr1iyCgoL47LPPuvUDCAsL6xoTERHB5s2bOfvss7n77rv517/+RU1NDTfccAO/+c1vePPNN4e0rpDWRuwGAxER3lO5djS1Q0sr0RGWPsPWQ0JCmDlzpodX5nryGrayfH0Jxx8/3ycrPG/P2w3s4JdnHUdChNnbyxkRGzt38d3KfOYdexxmk3HgAW7g6Z2ryUyS5OYeTXR0NAC5ubleWYs7yMvLIzc3l+QtX1MXFUdWRwdZ3ji+zk6orKT++EWEBhlZdOoJfhtB1x9SSm7/5mOqsqZx+OqV5M6aBS66Lw6W6i++BSDnpFxyj5867HkGI8CUAqVSyu/072+iCTD7hRApuvYlBah06j/WaXwaUK63p/XS7jymVAhhAqKAGr09t8eYvIEWHBESRGp0KDsGEYl09wdb2VY+tAqvjW2d7NjXiF2CQcCk5AgiQg71pG7tsGEwcMiFb8qYSO5cOPw/Wk+uv/56zj333CGNeeihh7jgggu46aabutqefvppZs6cSWVlJYmJif2M7o45yEhLu3VI+3c1nTY7AoEpwH1gACYkWWjpsFFe30pajO+pub/dXcXEJIvfCy+gq9ulVg3aW/WcyutbOWJc4ITy9kVWQjgF8eM40lsmpL17wW5nd0Qi6XGeS3bqaYQQjI8PZ2tdGgtAc5w+6iiPrqF9VwH15nAS0pIH7twPA+rHpJT7gBIhRI7etADYBrwPOKKCLgXe0z+/DyzWI4vGoznrrtXNTY1CiLm6f8slPcY45joXWKn7yXwMnCKEiNGdd0/R2wZkUnIEu9wUSt3QZsXhH2yX2vfesCMRvSqRXMuRRx455DEbNmzglVdewWKxdL2O0eti7N69e0hzhZgMdNg0J1pv0anngAnUi44z2Qm+G4nUYbWzvrjWb7Pv9sRR1NFbNZFsdklFXVtAO/A6yE60sCUqVQulll64lugRSFvMcYwL0BBqB+Pjw1kb6r1IJFFUxN7o5BH/rgdbwOZ64FUhRDBQCPwfmvCzXAhxObAXOA9ASrlVCLEcTcixAtdKKR1xcVcDy4BQYIX+As1B+GUhRAGa5mWxPleNEOJeYJ3e7x4pZc1gFpyTHMEXuw7QYe0/tHY4mpANe2q58Lk1dFq1LLuPLZ55iBnJarOzraKBlKhQtz+JOvvJABgMBmSPC0BP51673c4VV1zBjTfeeMh8qamHuBn1y8FIJJvXaiJ1jIIcMA4cdbUKKpvIzRm8pswT/FBaR2unLSAceEErfgdQXOUdR94Dje1Y7bKrjIDDfy0QyUqw8E3cWMT3jVBWBmlpAw9yJboAs94YwykB6sDrYHx8OM8YYpDBwQgvOPKaS/ZQEj2GSVEhI5pnUHcbKeUmoLfH/AV99L8PuK+X9vXAtF7a29AFoF62vQC8MJh1OpOTHIHVLimqaiYn2bX2vVnpMbx6xdx+fWA67Y6oGM9rBBISEmhpaaGhoaHLIXfTpk3d+hxxxBFs3bqV7OzsXmYYGs6RSGFeshp0Wu0+UVDSE8SGBxMbHuyTGphvC6oRAuZmxnp7KS4hJiyIiBCT1zQwZXWa4JSqlxFwOPEGItmJFl6Md4pE8oIAI4ODKQmJDtgQagfj48PpwEBH9kTMntbA2O1E7iulet7sET90Buwjq0No2bFvaP4tg2VWeky/aaYdhQW9oRWYM2cO4eHh3HbbbRQUFPDWW2/x1FNPdetzyy23sHbtWn71q1+xceNGCgoK+PDDD7nqqquGvL9gkwEhBO1eysgrpaTTLgkeBf4vDrITLT6ZC+bb3VVMSYkkOizY20txCUIIMuLCKfZSKHVp7cEkdoHOuLgwChP0vCDeyBBbWEhb2jjsBmPAJrFzMD5BE9BqM7I9b0IqL8dk7aQ5bdyIpwpYASYz3oLJILxWUsCbWXhjY2N59dVX+fTTTznssMN45plnDskdMX36dL788kuKi4uZP38+hx9+OLfddhtJSUlD3p+jJpK3csFY7RIp5agxIYGeN6Oy6RBToTdp67SxcW+dX5cP6I30uDCvaWDK69qAgwLMbbfdxm233eaVtbgbs8lIeFoKTZYo7+SCKSykLlnTADmyMAcqmXqdr9KUDCguhmYP/r51U501Y/yIpwpYnXuwyUBmQji7vFRSoNOmOfC60oR07rnndrthZWRk9HkDW7RoEYsWLerWdtFFF3X7fuSRR/LRRx+5ZG0hXoxE6vCitstbTEi0UN/ayYGmdhIjRmZHdhUb9tTSYbMHjAOvg4y4cD7ass8rtbbK6lqIDgsiXDePrl692qP79zRZiREUJYzjME8LMFLC7t1UHH8mJoNgTLRv/E+5i+iwYKLDgtgZO5YjpYSdO+GIIzyyb3vBbgyAKWvkAkxAX/FzkiMHFUrtDjptdkyjJCoGvBuJ1KXtCvA6SM74Yk2k1burMRoER40PDP8XB+lxYVjtsquooicpq20N6CrUPclKDGdbVCpy2zbPRiLV1kJ9PUWRSaTGhI4oe7q/MD4+nO/D9aKOHnTkbd2Zj00YsEzIHPFcAf1XykmyUFrbSpMXNAOjoTKyM12RSFbP+8E4ygiMJh+YCYkHI5F8hW93VzE9LQpLgDlTZ+jqdm/4wZTXtXU58I4GshMs7Iwdi6ipgQMHPLdj3ayxIzQ+4EOoHYyPD+c7YwwEBXnUZNeev5uKiHiS46NGPFdA32FzkrUIHG+YkRx5SUYLXZFIXijq2GnTSjYYDQH9c+5GUqQZi9nkMwJMU7uVH0rrmRcg4dPOOGrieNoPRkpJWV3rqHDgdZCVaCHfEYnkSUdeRxVqU0xX6HygkxkfTmmTFfuEiZ71OSoqdEkOGAhwAWaSHonkaUdeKSWdNjvBo0gD0xWJ5AUNTIeej2c0IYTQIpH2+4YAs664BptdBpz/C0CCxUxYsNHjuWAaWq00tVu7CTBpaWmkeTq82INkJXipqKNDAxMSH7BFHHvi0Cw2Zk7w6LkO2buHvdHJLtEsBpautwep0aGEBRs9LsDY7BL7KIuK6YpE8pIGZjSdawfZiRa+2OVBNXs/rN5dTbDR0GdaAX9GCKFXpfasBqZM97lxvtC/8sorHl2Dp4kKDcI6JpW2kDBCPCzAdMbF02wOG1UmJID9aZlE/e99aG2FUDdr+1paCKs5wP7DxxAZMnLxI6Cv+gaDYGJShMcFmINOpaPHhAQQYjJ6JRfMaDPXOZiQaOFAYzv1LZ0Dd3Yzq3dXM2NcNKHB3il46G4y4sIo9pYAM4pMSADZiRGUJKV73ITUOEbLS5I+SkxIDlNZUWI62O1aJJK7KSoCoDl1rEsCXAJagAHNjLRzf6NH82U4nEpHm1YgJMjzkUh2u8RqH13mOgddkUgHvBNp56C+pZMt5fUBl//FmfS4cEpqWj362y6r1UxWzr4CN9xwAzfccIPH1uANshLD2RatRyJ5isJCDiRoJVRGiwYm3GwiOTKEHyL10jGeON+OHDDpGS6ZLuCv+hOTIqhp7uBAU7vH9tnhxSR23sQbkUijMYTagSMSydt+MGuKqpGSgHTgdZARF0aHzU5FvedCqcvr2zCbDMRbDmY13rRp0yFlQQKN7AQL22LSEBUVUFfn/h12dsLeveyNTiYp0hywWsTeyIgPY31QHBiNnhFgdA2MMTvLJdMF/FXf4ci7a5/nLvKdNjtCCEyG0WXW8EYk0mgVFkHzjTCbDF6PRFq9u5qQIAMzxkV7dR3uJN0LRR3LarUIpNGSS8pBVqKTI68nzEh794LNRn54QsBn4O3J+HgL+XUdMMEzjrzW/N00BYcSPW6MS+YL+Ku+u2si9UanTRJk8M8kdm+++Wa3dS9btgyLxTKosX1FIuXl5SGEoKqqyqVrhdGZA8aB0SDISvB+TaSV2ytJjgxhS5nn/sc8TUa8ZlbwpB9MaV2rS0JN/Y3sRAv5cXqdHA+aNX4IjmXcKIlAcpAZH05tSycdOZM8cq7b8/MpiUoiNcY15zngBZg4i5l4S7BHc8G4IyrmsssuQwhNKAoKCiIzM5Obb76ZZjfXsLjgggso1P/BB0IIwelzp/PE3x7t1n700UdTUVFBXJzrTQwOE9JoyJzZG46aSN5i5Y797K1tYU91Cxc+t4YNe2q9thZ3khQRgtlk8GgkUvkoywHjIDkyhNqEFDqDzZ7RwOjXtx+D40gfJf4vDhyRSDXjsqCgANrd7GpRWOSyHDAwCgQY0LQwnoxE6rS5Jy/JSSedREVFBYWFhfzpT3/iqaee4uabbz6kn9VqdZnTcmhoKImJiYPuLwRYbd1NSMHBwSQnJ7tFI9Vp1YRFgx9qu1zBhEQLZXWtNHupDtX7m8oBkGh/izWF1V5Zh7sxGATpcWEey8bb1mnjQGP7IbkyJk6cyMSJEz2yBm8hhGB8chTlSeM8poGxBwez3xJLevwoMyHpVan3JmeAzQa7drlvZ1Ji3ltMSVSSy2pNDeouK4QoFkJsFkJsEkKs19tihRCfCiHy9fcYp/63CSEKhBA7hRCnOrXP0ucpEEI8LvQ7mhDCLIT4j97+nRAiw2nMpfo+8oUQlw7nICcmRbBrf5NrSms8+CCsWtW9bdUqrR1HEjv3hPWazWaSk5MZO3Ysv/jFL7jwwgt59913ueuuu5g2bRrLli0jKysLs9lMc3Mz9fX1LFmyhMTERCIiIpg/fz7r16/vNudLL71Eeno6YWFhnHXWWezfv7/b9t5MSP/973+ZM2cOoaGhxMXFsXDhQtra2sjNzaW0ZC8P3fuHLm0R9G5CevvttznssMMwm82MHTuW++6775BClX/605+46qqriIyMJC0tjYceeqjbOv75z39y3FHTmTE+kYSEBE499VSsVu/cyL2FIxKp8IB3qiWb9N+5UWiO1HMD2JHXk7lgKuq1KtQ9n1SfeeYZnnnmGY+swZtkJVjYGZPmMQGmdcxY7AbjqNPAjI0JwyBge6wHTHb792Nqb6MkJpmkSA8KMDonSClnSCmP1L/fCnwupZwAfK5/RwgxBVgMTAVOA54SQjjcup8GlgAT9NdpevvlQK2UMht4FHhAnysWuBOYA8wG7nQWlAbLpOQIWjtt2OwucC496ig4//yDQsyqVdr3o44CwGqXSA8lsQsNDaWzU8sBUlRUxL///W/eeOMNfvjhB8xmM2eeeSZlZWV8+OGHbNy4keOPP54TTzyRiooKAL777jsuu+wylixZwqZNm1i4cCF//OMf+93nRx99xKJFizj55JPZsGEDq1atYv78+djtdt5++21SU9O46oal7N5T0rWfnmzYsIHzzjuPn/3sZ2zevJn777+fv/zlLzz55JPd+j366KMcdthhfP/999xyyy0sXbq0qxrv+vXrufbaa7n2t7eycs1GPvvsM0477bTedhfQTEjSBJj8Su+EUh9o7CA9NozfnpLDq1fMDchEdg4y4sLYU92C3QOh1OWjNAeMg+xEC5sjx8CePeBmMzmFhVQnadmNR0sWXgfBJgNjY8PYGJIABoN7BRg9AqlpzDiX3R9HkgpvEZCrf34RyANu0dtfl1K2A0VCiAJgthCiGIiUUq4GEEK8BJwNrNDH3KXP9SbwpK6dORX4VEpZo4/5FE3oeW0oC3XUROrs7cJzww0w1LDEMWPg1FMhJQUqKmDyZLj7brj7bgxSktlhIyTICH1FIc2YAX/729D22YO1a9fy73//mwULFgDQ0dHByy+/TFJSEgArV65k06ZNHDhwgFA9u+K9997LBx98wMsvv8zSpUt57LHHWLBgAb///e8BTT29bt06nn/++T73e++993Luuefypz/9qatt+vTpAISFhWE0GQkPtxAdl0hseHCvczzyyCPMnz+fu+++u2u/+fn5PPDAA1x//fVd/U455RSuu+46AK6//noef/xxPv/8c+bNm8fevXsJDw/nuJNOY1xSHCnRoRx++OHDOpf+THpcOCaD8IofjJSSLWX1nDApkWtPyPb4/j1Nelw47VY7+xvbSHFzheiy2t4FmCVLlgAEvBYmKyGcd+N1rcCOHTBrlvt2VlhI+bzTiAwxER3W+zUrkBkfH05+QztkZblXgNF9jTrTx7tsysGKQRL4RAixQQixRG9LklJWAOjvDkeJVKDEaWyp3paqf+7Z3m2MlNIK1ANx/cw1JCboavZOm4vCe2NiNOFl717tPebgU6fDCuIOl4yPPvoIi8VCSEgI8+bN4/jjj+eJJ54AtBopDuEFNC1HS0sLCQkJWCyWrteWLVvYvXs3ANu3b2fevHnd9tHze082btzYJTT1hm4T7DcXzPbt2znmmGO6tR177LGUlZXR0HAwksUhGDkYM2YMlZWVAJx88smMS0/ntHmHc/1V/8eLL75IY6N3E7p5gyCjgYz4cK9EIpXXt1Hd3MH0tJFXlfUHMjwYSl1a14oQkBzVXdW+a9cudrnTT8FHyEpwikRypyNvTQ3U1bE7IrGrNtBoY3x8OEVVzcgpU2DrVvftSBdgTJmuE2AGq4E5RkpZLoRIBD4VQuzop29vt27ZT/twxxzcoSZULQFISEggLy/vkEEJoYL2DuuhN7l77+1lF/1j/PJLQi69lM6lSwl6/nnafvc7bMcfD0BDu6S6zc64CAPG/vLADPFm29nZyTHHHMNjjz1GUFAQKSkpBAUFAdDe3k5oaGi3Y2ttbSUxMZGPPvrokLkiIyNpbGzEZrPR3t7ebVxbW5u+vMZevzva+hIWpJQYBTS1dtBo0PxRWlq0C35TUxNmsxmbzUZHR0e3OZz7CCGQUmK327v1sdvt3fb96co8Pvj8a35cncd9993HbbfdRl5eHikpKb2ura2trdffhr8TJdrYXNzs8WPbsF/7+3bs301eXrFH9+0NDrRoD0CffPs97SVBbt3X9zvaiQ4WfPv1l93a6/TEboH0O25qajrkeKx2SUlsCjaDkdIVKyhyUwHLiJ07mQVsMkQSYj10HaOBzppOWjps7AoJY8KuXXz16afIINf/vnO++QYi4mhra3DZeR6UACOlLNffK4UQ76D5o+wXQqRIKSuEEClApd69FBjrNDwNKNfb03ppdx5TKoQwAVFAjd6e22NMXi/rewZ4BiAnJ0fm5ub27MKMveuxI4iIiBjMIffNqlVw2WXwxhuYTzgBTjuNsPPPh+XL4YQTaLK3YmjvICoywqVRN0FBQURERDBjxoxDtpnNZgwGQ7djmzdvHnfddReRkZFkZmb2Oue0adPYuHFjt3GOLJ+OtpCQkG7fZ86cyTfffNPN1NNzLUYhscmD5zosTLMrWywWIiIimDZtGuvWreu23++//560tDTGjNESHAkhMJvN3foYjUaCg4O72uymTuYcczwX/vQM/vrg/SQmJpKXl9elZu9JSEgIM2fO7HWbP7OhYyd/X1XAvGOPw2zyXBbR9R/vxGjYzUVn5mom0wDHZpfc/s0KzPFjyc2d5NZ9/XPXGsYn2cjN7a6pjI6OBqC3a5y/kpeX1+vxpH2fR2XyONKbm0l31/HqGt1t4cnkTs5w+9/VFzHmH+CV7WsxzDkew39eY35qKkyZ4vL9dNzxBzZFJTFv+kRy52W4ZM4BTUhCiHAhRITjM3AKsAV4H3BEBV0KvKd/fh9YrEcWjUdz1l2rm5kahRBzdf+WS3qMccx1LrBSaiEpHwOnCCFidOfdU/S2IZOTFIHVplWJHhHr1nUJK4D2vny51o4jrNf7SexOOukkjjnmGBYtWsSKFSsoKipi9erV3HnnnXz11VcA/PrXv+azzz7jL3/5C/n5+Tz77LO88847/c77+9//njfeeIM77riDbdu2sXXrVh599NEuDUpGRgbrv1tNSWkp+yt7r5R800038cUXX3DXXXexa9cuXn31Vf7617+ydOnSQR/fhx9+yJNPPM72LT9SUVrCv//9bxobG5k8efKg5wgUshMt2KVns8QC/FhWz4REy6gQXkBLHDg2NswjkUjl9a0uS/blr3Rl5HWnCUk3axRHJI66LLwOHLlgdse7ORKpsJCS6ORDUgOMhMH4wCQBXwshfgDWAv+VUn4E3A+cLITIB07WvyOl3AosB7YBHwHXSikdDhFXA88BBcBuNAdegOeBON3h97foEU268+69wDr9dY/DoXeo5CRHIIH2kaa5X7r0oPDi4IQTtHagwyZ9IqmaEIL//e9/nHjiiVx55ZXk5ORw/vnns3Pnzi4tx9y5c3n++ed5+umnmT59Om+//TZ33XVXv/OeccYZvPPOO6xYsYKZM2cyf/58Vq1ahcGgHfM999xDRXkpZx13BMlJveePOeKII3jjjTd46623mDZtGrfeeiu33nprl8PuYIiOjuZ/H7zPVT8/m2lTp/Dwww/z3HPPcdxxxw16jkDBEUrtyUgkhwPvaPF/cZARF+72XDB2u6Sirq3XCKQZM2b0qoUNRLISLPwYOQbpzgRrhYV0xMbTbA4bdVl4HYyJCiXYZODH8GTNedMdfjDt7QTtq2BvlOuS2AHahSiQXhMnTpS9sWtfg/zkmw2yprm91+2uYlt5vdxb3ezWffg6rR1W+UNJraxucu+5Lq5qkjsqGgbdf9u2bW5cjfdo7bDKjFs/lI9+utNj+yypaZbpt3woX/q2yGP79AXuen+LnPyHFdJut7ttH/vqW0fVuV21alWv7W+sL5HXL/ydlCDl5s3u2fmCBbJy6gyZfsuHsqKu1T378ANOfiRPXr5snZSZmVKef77rd7Bzp5Qgbzjzt7K+taPXLsB6OcT7vfdVBR4iIz4cIbQMl+5CSonVTUns/AlzHzWRXI27Egb6GyFBRsbGhHk0EmlLWT0A01JHnwampcPm1ur2ZY4cMC5UtfsjWQnhB4s6utGssT8+FbPJQGKE2T378AO0SKQmzffFHedaN9VVJaQSGeI6B+FRI8AEGQ2YDMKtlZKtNonEM0nsfBkhBGaTYeTmugFwR80pfyU70cJuDwowm8vqMRkEk1MiPbZPX8CR6GyPG81IB3PAHGrSuOiii7jooovctm9fIivRwu7YVKQQ7rmpdnbC3r0URyUxLjYMQ39RowHO+HgLe2tasE+ZAjt3gqszmusCjDXDdSHUMIoEGNCEGHdqYDr0PDPqpgohJqNbz7VdSjptdoLdUHPKH5mQaKHwQPMhdajcxY+l9UxIihg1DrwODuaCcZ8jr0MD01u9mNLSUkpLSw9pD0QiQ4KIio2kOjHNPY68e/eCzcbOsIRRl4G3J5nx4XTaJLXp2Zpgp+cKcxmFhbQHBRMydoxLpx1VV/8go6DTZsfqipICvdCpBJguzEEGOmx2bG5Ku25V57obWYkWOmx2SvSnd3ciHQ68o8x8BJpZx2gQbtXAlNe1EhliIsKFqnZ/JTvRQlHCWLeaNX4IiiU9bnRGIDlwJPErTkzXGlztyFtYSFl0MqkurjU1qq7+jpudu0wbnTap72f0qiIdhATp59pNfjAd6lx3w5FtOn+/+yORSmtbqW3pZNooi0AC7RqSFhNKsRtDqctqVQi1g6wEC5sjU5FuNGvkWxJHvQbGEUq9LUrXkLhYYLTv3k1RZJJrI5AYZQKMo3Kuu0wbnTY7BiH6z8A7SnAkVHOXz5HSdnUnSxdgCg643w/G4cB72CjUwICjKrUbfWDqWkntxXw0GslOtLAtOhXR2dklcLiMwkLswcHst8QybpRVoe5JvCWYCLOJghYgPd21AoyUyKJi9kYnu7w46ai6+psMBoxC0GZ13001yGjwehI7X8DdkUid+t8wWAkwgOYvkBwZQsF+9wswDgfeSckjzGrtp2TEhVFc3YwcaVLMPtAEmN4v9PPmzRuwXlkgodVEclMkUmEhzclp2A3GUW9CEkIwPiGcwqpm10ci1dRgbGygxNU5YBhZNWq/xBzkPudSFdZ7EHdHInXa7JgMhlEdOdCT7ESLRzQwm8vqmTgKHXgdpMeF09hmpbals8+K68Oloa2TxjZrnyHUf/nLX1y6P18n25GNFzRH3rPPdt3khYVUJaZiEIdW/R6NjI8PZ8OeWpg6FVauBJsNjC74H9c1Z3ujXS/AjLrH15AgLRLJHU9PKqy3O+6MROpQwuIhZCdaKKhswu4mx2nQHHg3j8IMvM5k6P4S7vCDcYRQu/pC768kRZohIoL6uCS3aGBKYlJIjQlV0YxoEXZlda105kzSMh+7ymSnz1MWk0ySi3PtjLq/WkiQEZtdYnXxRd4R1hvkB/8IFouFZcuWuX0/7oxEUsLioWQnWmjpsFHR0Oa2fZTWtlLX0jnqEtg54zA3uKMmUrkjiV0fAsw555zDOeec4/L9+ipCCLISLexJynC5WYO6Os2Bd5TWQOpJZkI4UkJFqp6rxVXnWxdgOsemu7zMzqi7A4R0OZe6VjNwMKzXtVoBIUS/r8suu8yl+3Ml7oxE6rSqHDA98UQk0uZR7sALMDY2FCHcUzyzbAABprq6murqapfv15fJTrCwPToVduwAV6XA0G+qW8xxo7YGUk8ckUi7Yl3sc1RYSF1EDDFJMa6Zz4lRdwdw3FRdLcA4Qqhd7VRaUVHR9Xr22WcPaXvsscdcuj9X4ohEcrUfjM1uxyaVCaknjqKOBW7MyLu5rJ4go2BSyuh04AXtdz0mKtQtGpiy2laCjQbiLaM3rX1PshItbIoYAy0tWvI5V6ALMNtD40kf5RFIDhy5YAraDJCW5joBpqiI0hjX+7/AKBRgTEaDnpHXtTdVd4X1Jicnd72io6MPaXv99dfJzs4mODiY7OzsLiHHQUFBAbm5uYSEhJCTk8OHH354yD5uvfVWcnJyCA0NJSMjg6VLl9LWppkhiouLMRqNrF+/vtuYZ599lvj4eDo6OvpcuyMSqc3FGpiD+XZG3c+3X+IsZmLDg90rwJRqDrwO4XS0khEf5paq1GV1rYyJDlHO6U5kJVjIj3e9VgCgJCpp1EcgOYgMCSLeEkzRgWbNkddF51oWFlIY4focMDAKBRjQbqyu18C4x4TUH++88w7XXXcdN9xwA1u2bOE3v/kN11xzDR988AEAdrudn/70p9jtdlavXs0LL7zAXXfdRXuP0vTh4eG88MILbN++naeeeorXX3+d++67D4CMjAxOOukkXnjhhW5jXnjhBS6++GKCg/uOwnBXJFKHVeWA6YvsBIvbBBjlwHsQLReMGzQwda3KgbcH2Ynh3SORXEFhIe0xcTSbw0Z9EjtnxseHU1Sth1Jv3z5yk52j3lRkklsivUZdGDVojrw1zR1IKRFCkJube0if888/n2uuuYaWlhbOOOOMQ7ZfdtllXHbZZVRVVXHuuefSYbXTabMTbtZO6dVXX80FF1xASUkJF198cbexeXl5LjmOhx9+mIsvvpjrrrsOgIkTJ7JhwwYeeOABFi5cyGeffca2bdsoKipi3LhxAPztb3/juOOO6zbPH/7wh67PGRkZ3H777Tz88MPce++9AFx55ZVceeWVPPLII4SEhLB9+3bWrFlziLanN0JMBlrcJCyqHDCHkp1k4b8/VnT9tl1JSU0r9a2j24HXQUZcGLUtndS3dBIV5rqU/2W1rcyfmNDn9gULFrhsX/5Celw4TeFRNEfHEe5CDUxtchrAqE9i58z4+HBW7TygCTCtrVBcDJmZw5+wpARhs1ESncRhSgPjGkKCjNil7HqSdwV2KTF4OIHd9u3bOeaYY7q1HXvssWzT/8m3b99Oampql/ACMGfOHAyG7n/2N998k2OPPZbk5GQsFgs33ngje51szYsWLSI4OJi3334b0LQvs2fPZtq0aQOu0RxkpMPq2kikTpsdgejKrKw4SHaChfrWTqqa+jbtDRflwHuQrkikGtdpYdqtNiob2/vMAQPaw4bzA8doIMhoYFxcGKUpGS7VwFTEphBvMXc9dCq0qtQHGttpzpqoNYxUYHSY6tyQAwaGoIERQhiB9UCZlPIsIUQs8B8gAygGzpdS1up9bwMuB2zAr6WUH+vts4BlQCjwP+A3UkophDADLwGzgGrgAillsT7mUuAOfRl/klK+OILjBbo78pqDjP1qRMLCwvrdHh8fT15eHvn7GzEZDV2e3A7Gjh3rMo1Lb/T2lO1oG0yumzVr1rB48WLuvPNOHn30UaKjo3n//fe5+eabu/oEBQVxySWX8MILL3D++efz8ssvc8899wxqfSGmg5FIYcGuuVA4EgaqjMeHMiFJj0SqbCTBxTkXHA68OaM0A68zXVWpq1uYnhbtkjn31Wt+Z8qEdCjZCRZ2xqSRszUPpISR/O/rZo3CyfOV+agH4+P1HEeJ6UwFTYA566zhT9gtiZ3ry2MMRQPzG8BZ/L0V+FxKOQH4XP+OEGIKsBiYCpwGPKULPwBPA0uACfrrNL39cqBWSpkNPAo8oM8VC9wJzAFmA3cKIUYci9UVSu1CDYw3svBOnjyZr7/+ulvb119/zZQpUwCYMmUKZWVllJSUdG1fu3Ytdie75jfffENqaip/+MMfOOqoo5gwYQJ79uw5ZF9XXnklq1at4qmnnqKxsZHFixcPao3mINdHInWoHDB94ohE2u0GP5jNZXXkJCsHXjhodthT5ToNjCOJXVo/Aszpp5/O6aef7rJ9+gtZiRY2WlKgvh4qKkY22d69YLNpEUhKgOnG+Hj9+mENgjFjRq6BKSrCajLRHJ/klurqg7oLCCHSgDOB55yaFwEObciLwNlO7a9LKdullEVAATBbCJECREopV0tNNfBSjzGOud4EFgjt8fpU4FMpZY2u3fmUg0LPsDEYBGYXZom1S4nV7vmb6u9+9ztefvll/v73v5Ofn88TTzzBq6++ytKlSwE46aSTmDRpEpdccgmbNm1i9erV3HjjjZhMBzUhEydOpKysjFdffZXCwkKefvppXnvttUP2NXHiRI499lh+97vfce655xIZGTmoNQa7IRKp0+ofCQO9QXJkCBaziXwXCzBSSjaX1nNYarRL5/VXQoONJEeGuDQSqSsHTD8mpNbWVlpbW122T3/BoYEBRm5G0rUCm4PjVBK7HqTHhSEEWiTSlCmwdevIJiwspCpuDCmxFtcssAeDvQv8DVgKOD9GJ0kpKwD090S9PRUocepXqrel6p97tncbI6W0AvVAXD9zjRitpIBrtALeqox89tln88QTT/Doo48yZcoUHnvsMZ566ikWLlwIgMFg4J133sFutzNnzhwuueQS7rjjDszmg6aFhQsX8rvf/Y4bbriB6dOn8+mnn/ZpHrr88svp6Ojg8ssvH/QaDS6ORJJS0mmXBCv/l15xZC51dSTS3poWGtqsyv/FifS4MJdGIjkEmOQoVYm6J1mJFvLjdV8+F/ll7I1OVhqYHoQEaTmOxr/wJEREdI9EWrUKHnxwaBMWFlIa4/oq1A4GdEoQQpwFVEopNwghcgcxZ293FtlP+3DHOK9xCZppioSEhD59TqKiomhs1LKUCruddqukvqFhxM63rVZtSdb2Nhrt7QP0Hj6nnnoqDQ0NXccAcOGFF3LhhRd26+e8PSUl5ZDcLxW6CtbR7/bbb+f222/v1ueiiy7qNg9oOWGysrKYOXPmIdv6w4idlg77kMb0hdUukVJi6+yksdE6pLFtbW1u9UfyFSLs7Wwutbn0WNdWaOe6Y18+eXkuqpHi55g729lU6brzvGF7O9Fmweqvv+qzT11dHeC6SEZfoKmpacDjabVKDoTH0BJmofazz8g/7LBh7y8zL48xpiD2W2Kp2rODvPr8Yc8ViEQb21kVlsIZ7z6LqbWV1cuXE1pRwZS772bbnXdSN4Tf3jG7dlGQfQyypcYtv9nBeFUeA/xECHEGEAJECiFeAfYLIVKklBW6eahS718KjHUanwaU6+1pvbQ7jykVQpiAKKBGb8/tMSav5wKllM8AzwDk5OTI3sKiQYvKiYjQHBBtxg7q2lsIDgkjdITOpdaWDmhuITIiPCAr9DY1NbFjxw7+8Y9/8Pvf/77rHA6WFtlGc0MbYeEWjCNM0NXcboXGJiLCQ4kIHZpNNSQkhJkzZ45o//7ADrGbr1fsYObsY1wW4rt6xXaCjcX84swTVAkHnW0U8OVHOzly3rFYXBDJ8mzBGsYn2cjNPabPPo5kln1d4/yRvLy8QR1P0trPqEzLJKO+ntSRHP/f/05dShp2g5GfnXycyyuK+zuf123hvWYDxj//GW68kXlvvglffAHvvMOME04Y/ER1ddDQQGFkMkdNySY3N8vlax3wSiSlvE1KmSalzEBzzl0ppbwIeB+4VO92KfCe/vl9YLEQwiyEGI/mrLtWNzM1CiHm6v4tl/QY45jrXH0fEvgYOEUIEaM7756it40Yh6DR6gLTRmeAJ1a77rrrOOaYYzjmmGO46qqrhjzeORJppHSZ69RNtE8cNZEKDriuJtLm0npykiOU8OJEhouLOpbVDpzE7qyzzuKskUSF+DE3fP8uVaaw7iakYZo1DiSMIcJsIsaFOXwChfHx4TS0Wam5+JcQFQVvvQVXXQVDEV4AiooA90UgwcjywNwPnCyEyAdO1r8jpdwKLAe2AR8B10opHXeuq9EcgQuA3cAKvf15IE4IUQD8Fj2iSUpZA9wLrNNf9+htI8aR5t5VN1WjQYxYu+CrLFu2jPb2dt54441uDsCDxZWRSAeT2AXmuXYFrq6J5MjAe5jKwNsNh//EHhc48trtkvL6tn4jkABuvvnmbikORhNtM45gSv4mOHAAqqo04eX88+Goo4Y2UWEhe6KSGRcXplIx9ML4BE0wr/pk1UH/l8ce0873UHDKAZPWj2P6SBiSACOlzJNSnqV/rpZSLpBSTtDfa5z63SelzJJS5kgpVzi1r5dSTtO3XadrWZBStkkpz5NSZkspZ0spC53GvKC3Z0sp/zXyQ9YQQhBico0jrxZCrZ5M+8KVkUidNolRCIwGdb77Ii0mDLPJQP5+1wgwe6pbaFQOvIeQ3pULZuQamKrmdjqs9n4jkEY7xgUn8vi8C7QvN96oCS/Llw9NM1BbC3V17ApPVA68fZAZH868PT+Sfs0v4d13Ye5cCA6G884bmhDTTQPjAwJMoBES5JpQ6g6bXaW17wdXRiJ1qBDqATEaBJkJFgoOuEaAURl4e8diNhFvMbOnauQaGEcOmDFR/V/oc3NzA8r/ZShkJVj498zTsQeb4ZVX4Oqrh27W2L0bgM3mOMapEOpeSY0OZcb+fN699RE48UT461+hpkZLaLdu3eAnKiykNSKKllALiRG+Z0LyS5yz04YEGei02bHaRnZjtdrsHk9i52+YTQYXaWCGl29nMFmJA4kJiRaXaWC2lNUTbDQwMUll4O1JRlyYSzQw5XVaFl6lgembrAQLU/cXYjPogRIjMGsURSaRoTQwvWIyGvj4zEv4IlUvFXP00XDuufDGG3DRRYOfqLCQqoQxJEeGuM29YlQJMEFBQd2SQDl8M0aSkddul1jtyoQ0ECF6TST7CGsiDTfjcWtrK0FBo8dhLzvRQlldK3/7bBcb9tSOaK4fS+uZlKIceHsjIz7cJT4wZXXaHEqA6ZukDd/y9/cf4LVbHoGsLIiJ0cxIQxFiHH4ZUUmMUwJMn2TGh1PknGX6/vu1EgxDqcNVWEhpdIrbcsDAKBNgEhMTKSsro6WlBSnlwZICIzAjeSuJnb/hikgkTVgcmrlOSklLSwtlZWUkJiYOPCBAcMh4j3+ez4XPrRm2EGO3S7aU1yvzUR9kxIWxr6GN1o6RaRfLaluJMJuIdEO69UBBrF/PI5ffw8dph8NDD8GePXDhhUM2a7TFxNFsDuvyYVIcynhdgOl64MzKguuvh3/9C374YeAJbDYoLmZ3RKLbIpBgCMUcAwFH+vvy8nI6OzsBOFDXSvN+IwfChpcLoL3TxoGmDuw1wewLwBwwrqLTZmd/Qzud1UHDLupodcwRHkT1EOYICgoiKSlp0OUPAgFHegC71ML81xRWMyt96GXE9tQoB97+cNwE99a0jKjIZVldm9K+DMTSpbQs38Tugmq4/GyYPx9efRUKCgY/R2Eh1YmpBBsNJEeqjMd9kREfTrvVzr6GtoMOuHfcAcuWwc03wyef9F9Qs6wMOjvZHhrv1t/1qBJgQBNinG9kf/zHt0gJb159+LDme2N9Cb97/0fybs4lI15J9H3RabNzzh8/4vJjM7n19EnDmuPr/CqufP87Xl8yl8mZcS5eYWBxwqREnv5iNza7xGQ0MHeY56vLgVeFUPdKhlMk0sgEmIFzwACcf/75w95HIJCVYOHt78t49LNdnPq7u5iy8ES4777B54IpLKQsaSJpsaEBm/bCFYzX72VFVc0Hf5cxMfDHP8INN8CKFXDGGX1PoEcgFUclc4YyIbmP2PBgfiyrZ0Px8NLLVNRrzneqfkn/BBkNjI8Pp6By+MnVyh3F7tz4DxEozEqP4dlLZmEyCOZkxg5L+wK6A69JOfD2xbiuXDAjc+Qtq20Z1O/6mmuu4ZprrhnRvvwZx0P/EysL+NmaVqp+tlhz5i0cRHmLzk7Yu5fdEYldgqeidzL1qtSFPautX301ZGfD734H1n5KuTjVm3JXCDWMcgFmw55aPt9eSYfVzi+e+25YfgIV9a3EhQcHZAkBVzMhKYJdI4iMKa9vRQhIUqrfQXHipCR+eex4vs6vonCYIdU/ltYxOTlC+Xj1QVRoELHhwSOqSt3Y1klDm3VQqvaWlhZaWlxXAdvfaGzVbpoO0+iH518DJhPccsvAg0tKwGZjS0g842KVA29/JEWaCQ0yalWpnQkO1rRd27bB88/3PUFhIdJgoCIiXjnxuos1hdXY9fDaDt1PYKhU1LeR4kYnpUAiPNjI3poWvi2oGtb48rpWEiPMKhpmCCw5PpNgk4EnVw7BT0DHbpdsLWtQ5qMBSI8Lo7jnk+oQcIRQD+ZJ9YwzzuCM/lT3Ac5JU5K6TD8mo4HD5kyFpUvhzTfh66/7H6zngCmwqCR2AyGEICM+vPcUAWefDccdp5mTGhp6n6CwkMbEMViNJqWBcRdzM+O6boYSLXRsqFTUtZEyQPIphabtemdjGQCX/WvdsLRd5XVtbv1nCETiLWYunpvOu5vKhqyFKa5uprFdOfAOREbcyEKpu0Ko1W97QBym0SCjYMbYaM00evPNMGYM/Pa3B1Pf94aTWUMJMANzSCi1AyG05HaVlfDAA70PLiykKiGVqNAglxQ67YtRLcDMSo/h1SvmcvX8LIKNgv9t2TfkOcrrW0lR/i8DsqawGpsektdhs7N699C1MOV1rQNmKlUcypLjszQtzKqhaWEOZuCNdsOqAof0uDDK6lp5bJg5d8p0DYy76sUEGidOSuK6EybwXVGNdr7Dw+Evf9HCqf/9774HFhZiCwpmvyVWhVAPgvHx4eytaelKFdKNo46CX/wCHnlEM831pLCQ0hj3+r/AKBdgQBNibjl9Er+an8UHP5Szce/gL0BN7VYa26xKAzMIHNouh+N/U1s/DmC9IKXUIzWUsDhUEiLMXDQnnXc3lvX+RNUHDgfeCUkWN67O/3EkeX5smDl3ympbCTIKEixmN6wuMLniuPHEW8zcv2K7lmX7ootg1iy47Tboy0eosJD6pDFIo1EJi4NgfHw4NrvkgRU7ev9N//nP2o//97/v3t7cDJWV7I5IJNXN1+tRL8A4WDI/i3iLmfv+u33Qaecr9KgYdVMdGIe266ZTJjIlJYLX15dQ09wx6PG1LZ20W+3KhDRMlszXfGGeWJk/6DE/ltYzOSVSOfAOQF2LllPKOefOUCirayUlKhSDCusdNOFmEzecNIF1xVogBgaDpg0oLdXMG71RWMj+uDGMiQrFbFJBFwPRoWtenv+6qHfBPD1dK6r58suwYcPBdj2EeltIvNLAeAqL2cRvT57I+j21fLx1cKakcj2EWmlgBses9BiuPWECf1s8k8Y2Kw99vGPQY8u7hEV1rodDYkQIF81J571N5YNyOLXbJVvLG5iu/F8G5CczxnRpFoeTc6e8rnXQ/i+XXXYZl1122RBXGJhccNRYMuPDeeCjHVo9u+OPh5/9TEt7X15+6IDCQoqjklQE0iCpamoHNP/QPgXz226DhAS46aaDqkjd12hXmBJgPMr5R6YxIdHC/St20DGI+kj76rWbqvKBGRoTkyL45TEZvL6uZNAmu7K6wVXrVfTNkvmZmAyCJwYRkVRU3UyTcuAdFLPSY3jqwiMwGQRHjIsecs6dstrBJbEDJcA4E2Q0sPS0HPIrm3jr+1Kt8YEHtHwvd9zRvXNtLdTVsT00QTnwDpKjs+IxOwW5zB0fe2inyEi4+2744gt4/32tzclZ2t2O6UqAccJkNHD7mZMprm7h1e/2DNi/vK5N5SUZJr85aSKJEWb++N7WLufe/ihX5roRkxgRwkV6RNJAWpgtKgPvkDhtWgo3njyR1YU1fLnrwKDHddrs7G8cfBmBqqoqqqqGl4YgEDl1ajIzx0XzyKe7tHpU2dnw619rKe83bjzYUb+p7ghLUA68g2RWegz/vnIuJ0xKxC4hv7KPKMYrr4RJk7Rw9s5OKCzEGm6hNjTS+xoYIUSIEGKtEOIHIcRWIcTdenusEOJTIUS+/h7jNOY2IUSBEGKnEOJUp/ZZQojN+rbHhdDyKgohzEKI/+jt3wkhMpzGXKrvI18IcalLj74XcicmcGx2PI99nk99a2e/fSvqW4m3qLwkw8FiNvH7M6ewuaye19buHbB/RX0bZpOB2PDh1axSaFyla2EGikjaXFqP2WRgQqJy4B0sVxw3nvHx4dz1/tZBFy3dV9+GlJA2yAv9ueeey7nnnjuSZQYUQghuO30y+xvaeeEbzfeCO+6A2NjuZg09B4wKoR4as9JjeP6SIzk6K457PtzWe8Zpk0krrrlrF/zjH1BYSMOYsSCET2hg2oETpZSHAzOA04QQc4Fbgc+llBOAz/XvCCGmAIuBqcBpwFNCCIfH1NPAEmCC/jpNb78cqJVSZgOPAg/oc8UCdwJzgNnAnc6CkjsQQnDbGZOob+3k7wNc5Cvq2xijzEfDZuH0FOZlxvHQxzup1u2tfVGm+wmI/gqIKQYkMSKEC+ek887Gsn7T3/9YVs+UMZGYlAPvoDGbjNy5cAqFVc0891XRoMaU1irfrpEye3wsJ01O5B95u6lt7oDoaM2ssWrVIWaNEuUDM2QMBsHD5x2O0SD47fIfeteYn3mmVrH6jjtgyxaqElIxGQQJ678dfJ2q4axtoA5Sw6E7CtJfElgEvKi3vwicrX9eBLwupWyXUhYBBcBsIUQKECmlXC21MJ+XeoxxzPUmsEDXzpwKfCqlrJFS1gKfclDocRtTx0RxzhFpLPummJKavhNUlevRA4rhIYTgnkVTaW638uBHO/vtWz7IYneKgfmVQwvThy+MloG3Xvm/DIPcnEROm5rMEyvzu/y2+qOrvpcK6x0Rt5w2ieYO60HN4pIlmlnjd7+Djg4oLKQ1OpZmc5jSwAyDMdGh3LtoGhv21PKPL3Yf2kEIrZxDQwPs2UNpTAqnV23HuPgCLWeMmxhUijxdg7IByAb+LqX8TgiRJKWsAJBSVgghEvXuqcAap+Glelun/rlnu2NMiT6XVQhRD8Q5t/cyxnl9S9A0OyQkJJCXlzeYw+qXYyLsvC/t3PzSl1w941Ati5SS0poWMsPaXbK/0czJ6Sb+s76ECaYDZEf3Ht5YtL+Fw+KN6ly7iONTDbz1fSlHhVeTGNb9Oaa8yU5zh42gxgry8pS/xVA5Od7Oyu12fv2vL7h+Zv8a2q8LtFQC+T+sZY9xYO1iXV0dQED9HzQ1NbnkeI5NNfHiN0VMMuwjIcxA7KWXMv222yj47W+J27CB6uhEIoJhw5pvRr7oUUiUlMxONvLIJzuxNO4hPbLHtXrCBA476iji1q3Dkr+Ne/PeY9O9d1EnBLjp9zooAUZKaQNmCCGigXeEENP66d7bf6Hsp324Y5zX9wzwDEBOTo7Mzc3tZ3mDp8iwk8dXFnBr5uHMHNfdclXf2kn7x58we+oEco/PdMn+RitHzrOy8a9f8M7eYN7/ybGHlLnvtNmp/3gFR0waT27uRC+tMrCYckQbXz64inXNcTx0xuHdtr27sQzYxHknzWFScqR3Fujn7Asp4KGPd0LKFHJzEvvst6LqR+ItlZyy4IRBzRsdHQ2Aq65xvkBeXp5LjmfSzDbmP7SKbxpi+NsZM2H+fHjhBbKXLQOLhW3jppOdHE2u7NCy9i5dOuJ9jjZmzunglEe/5JUCEx9cf+yhRYzffReOPprZuzbwyc+u5JQbb3TreoZk4JZS1gF5aGac/bpZCP29Uu9WCox1GpYGlOvtab20dxsjhDABUUBNP3N5BEdyuz//79DkdhWOEGoVFTNiLGYTd5w1ma3lDfy7l+gvh6OjqhXjOhIjQ/j57HG8vbGMvT3q+GwuqyckyEB2gnLgHS5XHDeezEE49JbXtw7JfHT11Vdz9dVXu2KJAUdyVAi/PHY8724q16LoHGaN5mbYv598SyILKrbC+ee71awRyESHBfPQeYeTX9mkCeg92bkT2dzME8cs5tjP39T8kNzIYKKQEnTNC0KIUOAkYAfwPuCICroUeE///D6wWI8sGo/mrLtWNzc1CiHm6v4tl/QY45jrXGCl7ifzMXCKECJGd949RW/zCI7kduuKa/l46/5u2yrqHEnslADjCs48LIVjsjWH3qoeDr0qiZ17uDo3C6NB8OSq7tl5N5fWMyVFOfCOBLPJyF0/mUpxdQvPflnYZ7+y2tYhpVu/4IILuOCCC1yxxIDkV/OziA4L4oGP9CSZl18OZ50FQGpJPr984lZYvhxOGJzGS3Eo8ycmcMm8dJ7/uohvCpxMzKtWwfnnU/3Cy/z12Iv49s9PacKiG4WYwVyhUoBVQogfgXVoTrUfAvcDJwsh8oGT9e9IKbcCy4FtwEfAtboJCuBq4Dk0x97dwAq9/XkgTghRAPwWPaJJSlkD3Kvvdx1wj97mMQ4mt9veLbldeVcSO3VTdQVCCO7+yTRaO208sKJ7ht5ype1yC0mRIfxi9jje/v6gFsZml2wtVw68ruD4iQmccVgyT64qoLT20GAAR32voWgWS0pKKOmteJ4CgKjQIK47IZuv8qv4Kl/Px/P887TnTObkgrXsOe8SJby4gNtOn0xmfDg3v/HDwXQj69bB8uUUHzYbANOCEzVhcd06t61jMFFIP0opZ0opp0spp0kp79Hbq6WUC6SUE/T3Gqcx90kps6SUOVLKFU7t6/U5sqSU1+laFqSUbVLK86SU2VLK2VLKQqcxL+jt2VLKf7n28AfGZDRw+xmHJrerqGvDICAxQhVgcxXZiRYuPzaTNzaUsmHPQTm1XNd2qSy8rufq3CwMBtGVMqCoqonmDhvTlADjEu44cwoCwb0fbjtkW3VzB+1W+5AEmIsvvpiLL77YlUsMOC6el05aTCj3r9iB3S5h61ZEZSWPHb2Y7LdfcbtZYzQQGmzkkQtmUNnYzl3vb9Ualy6FE07oir5LjQ7VhEU3+hopHfEgyM05NLldeX0rSZEhSs3uYq4/MZuUqBD+8O5Wrb4JmgkpNjyY0GBVgM3VOLQwb31fSklNC5v1DLzT06K9u7AAYUx0KL9eMIGPt+5n1c7KbtvKVA4Yt2A2Gbn5lBy2ljew+vk34Pzz+fzux3n0uItofulVt5s1RgszxkZz/YnZvLOxjA9/POiaWuZBk7+6+w4C5+R2T+lPqhV1bcr/xQ2Em0384awpbKto4NXvtAy9Wg4Yda7dxa/mZ2EQmhZmc2kDIUEGshJUunVXcfmx48lM0Bx62zoPOvSWqRwwbuMnh49hSkokP7zzGR2vvcZ36YcTFmwk6oxT3G7WGE1ce0I2h6dF8ft3trBPL25cXtdKdFgQ4eZBBTmPCCXADBJHcrt/6cnt9jW0kaKenNzC6dOSOW5CPA9/spMDje2U17UpXyM3khwVws9nj+XNDaWs3LGfqWOilGbRhQSbDNzzk2ns6eHQ63BOT4tWidVcjcEguPX0STw4fREvh2Sxt6aFcbFhWiZvN5s1RhNBRgOPXDCDdquNpW/9iJSS8ro2j5n71VVqCNx0ykQMBnjw451aFl5VxNEtCCG46ydTaeu0cf+KHZQP0dFRMXSuzs3GIATF1S1IKdmwZ3BVwhWD49gJ8Zx5WApPriroyu5dWttKeLCRyFD3P6mORo7X69o9uTKfnfsayVBFHN1CVoKF358xmS93HeCVNXs8mjVdCTBDICUqlCuPy+SDH8ppt9qxyUNy6ilcRFaChSuPy+St70tpbLdiV+farSRHhbBgspZwbePeOi58bo0SYlzMHWdNxmgQ3KM79JbVaTlghlLf66abbuKmm25y1xIDjltPn0RtSydlda3UNLer37SbuGhuOsdPTOC+/21n94Emj51rJcAMkTmZcV2fX1mzR/1DuJFjs+O7Pr+2dq86125mfLz2hCqBTqudNYXV3l1QgJESpTn0frptPyt37B+WZnHhwoUsXLjQTSsMPKalRnHcBO06sq64VgnmbkIIwUPnTscoBJ026bGHICXADJEfSuq66hvY7FJd5N3IRnWuPcqCyUmEBBkwCggyGZjrJKwrXMMvjxlPVkI4d72/jZKaliGr2nfu3MnOnf0XPlV0Z3KKVg5DCebuJSkyhAWTkwDPnWslwAyRuZlxmIMMGITmnKcu8u7Dca6N6lx7hFnpMbx6xVx+e0oOr14xl1npMQMPUgyJYJOBexZNY29NCw1tVkpqWob0lHrVVVdx1VVXuXGFgcepU5OVYO4hLj06A7PJc+da9Kzx4+/k5ORIdz+hbNhTy5rCauZmxqmLvJtR51oRiFz47Bq+2V2NAMxBhkELjI6ih4FUjdpVxRz7Q11HPMdwz7UQYoOU8sih7Eu5vw+DWekx6p/AQ6hzrQhEpo+N5pvd1d1U7ep37j7UdcRzePJcKxOSQqFQeJiTlL+RQjFilAZGoVAoPIzD30iZNRSK4aMEGIVCofACw1G133HHHW5ajULhfygBRqFQKPyEk046ydtLUCh8BuUDo1AoFH7Cpk2b2LRpk7eXoVD4BAMKMEKIsUKIVUKI7UKIrUKI3+jtsUKIT4UQ+fp7jNOY24QQBUKInUKIU53aZwkhNuvbHhd6Dm0hhFkI8R+9/TshRIbTmEv1feQLIS516dErFAqFH3HDDTdwww03eHsZCoVPMBgNjBW4SUo5GZgLXCuEmALcCnwupZwAfK5/R9+2GJgKnAY8JYQw6nM9DSwBJuiv0/T2y4FaKWU28CjwgD5XLHAnMAeYDdzpLCgpFAqFQqEYnQwowEgpK6SU3+ufG4HtQCqwCHhR7/YicLb+eRHwupSyXUpZBBQAs4UQKUCklHK11LLnvdRjjGOuN4EFunbmVOBTKWWNlLIW+JSDQo9CoVAoFIpRypB8YHTTzkzgOyBJSlkBmpADJOrdUoESp2Gleluq/rlne7cxUkorUA/E9TOXQqFQKBSKUcygo5CEEBbgLeAGKWVDPyXge9sg+2kf7hjntS1BM00BtAshtvS1uD6IQhOa1Bg1JpDGeHJfaowHxwghfHZtwxgTD1R5YD9qjG+PyRlif5BSDvgCgoCPgd86te0EUvTPKcBO/fNtwG1O/T4G5ul9dji1/xz4p3Mf/bMJ7ccsnPvo2/4J/HyAta4fzDH1GPOMGqPGBNoYX1+fGqPG6GPUNVuNGdbvYDBRSAJ4HtgupXzEadP7gCMq6FLgPaf2xXpk0Xg0Z921UjMzNQoh5upzXtJjjGOuc4GVUjuij4FThBAxuvPuKXqbq/lAjVFjAnCMJ/elxqgxwx0zHHz5eNQYD/0OBqxGLYQ4FvgK2AzY9ebb0fxglgPjgL3AeVLKGn3M74FfokUw3SClXKG3HwksA0KBFcD1UkophAgBXkbzr6kBFkspC/Uxv9T3B3CflPJfA6x3vRxiRUuFQqFQeAd1zVbA8H4HAwow/oYQYomU8hlvr0OhUCgUA6Ou2QoY3u8g4AQYhUKhUCgUgY8qJeBGhBCn6dmIC4QQt/bYdrMQQgoh4r21vkBBCPGCEKLSOfpMCHGenjnarpsuFS6gj3M9QwixRgixSQixXggx25trDBT6yYJ+lxCiTD/fm4QQZ3h7rYGAul77H0qAcRN69uG/A6cDU4Cf61mKEUKMBU5G8x1SjJxlHJrgcAvwM+BLj68msFnGoef6QeBuKeUM4I/6d8XI6SsLOsCjUsoZ+ut/3ltiYKCu157DlQ+cSoBxH7OBAilloZSyA3gdLeMwaOUSltJLThvF0JFSfonm/O3ctl1KudNLSwpYejvXaL/jSP1zFFDu0UUFKLLvLOgK16Ou155jGS564FQCjPvoNYuwEOInQJmU8gfvLEuhcDk3AA8JIUqAh9FyQSlcSI8s6ADXCSF+1J9mVX24kaOu1x7ClQ+cSoBxH71lETYDv0dTsysUgcLVwI1SyrHAjWh5oxQuomcWdLSiuFnADKAC+Kv3VhcwqOu1H6IEGPdRCox1+p6GZkMdD/wghCjW274XQiR7fnkKhcu4FHhb//wGmjpe4QKEEEFowsurUsq3AaSU+6WUNimlHXgWdb5dgbpe+yFKgHEf64AJQojxQohgYDHwtpQyUUqZIaXMQPunOUJKuc+bC1UoRkg5MF//fCKQ78W1BAx9ZUEXQqQ4dfspmv+AYmSo67UfMuhijoqhIaW0CiGuQyt9YARekFJu9fKyAhIhxGtALhAvhCgF7kSzsT4BJAD/FUJsklKe6r1VBgZ9nOsrgceEECagjYOFVRUj4xjgYmCzEGKT3nY7WoTMDDSn0mLgKm8sLpBQ12v/RCWyUygUCoVC4RGcH4KA/Rz6wFkHDOqBUwkwCoVCoVAo/A7lA6NQKBQKhcLvUAKMQqFQKBQKv0MJMAqFQqFQKPwOJcAoFAqFQqHwO5QAo1AoFAqFwu9QAoxCoVAoFAq/QwkwCoVCoVAo/A4lwCgUCoVCofA7lACjUCgUCoXC71ACjEKhUCgUCr9DCTAKhUKhUCj8DiXAKBQKhUKh8DuUAKNQKBQKhcLvUAKMQqFQKBQKv8MvBRghhE0IscnpldFP3zwhxJEeXJ5CoVAoACGEFEK87PTdJIQ4IIT40JvrUgQGJm8vYJi0SilneHsRCoVCoeiXZmCaECJUStkKnAyUDWUCIYRJSml1y+oUfo1famB6QwgxSwjxhRBigxDiYyFEitPmi4QQ3wohtgghZnttkQqFQjH6WAGcqX/+OfCaY4MQYrZ+bd6ov+fo7ZcJId4QQnwAfOL5JSv8AX8VYEKdzEfvCCGCgCeAc6WUs4AXgPuc+odLKY8GrtG3KRQKhcIzvA4sFkKEANOB75y27QCOl1LOBP4I/Nlp2zzgUinliR5bqcKvCAgTkhBiGjAN+FQIAWAEKpz6vwYgpfxSCBEphIiWUtZ5brkKhUIxOpFS/qj7Kf4c+F+PzVHAi0KICYAEgpy2fSqlrPHMKhX+iL8KMD0RwFYp5bw+tssBvisUCoXCfbwPPAzkAnFO7fcCq6SUP9WFnDynbc2eWpzCP/FXE1JPdgIJQoh5AEKIICHEVKftF+jtxwL1Usp6L6xRoVAoRisvAPdIKTf3aI/ioFPvZR5dkcLvCQgBRkrZAZwLPCCE+AHYBBzt1KVWCPEt8A/gcs+vUKFQKEYvUspSKeVjvWx6EPiLEOIbNNO/QjFohJTKmqJQKBQKhcK/CAgNjEKhUCgUitGFEmAUCoVCoVD4HUqAUSgUCoVC4Xf4vAAjhBgrhFglhNguhNgqhPiN3h4rhPhUCJGvv8fo7XF6/yYhxJM95rpACPGjPs+D3jgehUKhUCgUI8fnBRjACtwkpZwMzAWuFUJMAW4FPpdSTgA+178DtAF/AG52nkQIEQc8BCyQUk4FkoQQCzx0DAqFQqFQKFyIzwswUsoKKeX3+udGYDuQCiwCXtS7vQicrfdpllJ+jSbIOJMJ7JJSHtC/fwac497VKxQKhUKhcAc+L8A4o2dqnIlWSyNJSlkBmpADJA4wvACYJITIEEKY0ASese5brUKhUCgUCnfhNwKMEMICvAXcIKVsGOp4KWUtcDXwH+AroBjNPKVQKBQKhcLP8AsBRq82/RbwqpTybb15vxAiRd+eAlQONI+U8gMp5Ry9ZtJOIN9da1YoFAqFQuE+fF6AEVp56eeB7VLKR5w2vQ9cqn++FHhvEHMl6u8xwDXAc65drUKhUCgUCk/g86UE9AKMXwGbAbvefDuaH8xyYBywFzjPUXpdCFEMRALBQB1wipRymxDiNeBwfY57pJSve+gwFAqFQqFQuBCfF2AUCoVCoVAoeuLzJiSFQqFQKBSKnigBRqFQKBQKhd+hBBiFQqFQKBR+hxJgFAqFQqFQ+B1KgFEoFAqFQuF3KAFGoVB4HSHEh0KIZd5eh0Kh8B+UAKNQKPwKIUSuEEIKIeK9vRaFQuE9lACjUCgUCoXC71ACjEKh8ChCiDAhxDIhRJMQYr8Q4vYe2y8SQqwTQjQKISqFEG8IIVL1bRnAKr3rAV0Ts0zfJoQQS4UQu4UQrUKIzUKIizx5bAqFwnMoAUahUHiah4GTgXOABcBM4Hin7cHAnWhlP84C4oHX9G0l+jiAqUAK8Bv9+5+Ay4FrgSnAX4B/CiHOdNeBKBQK76FKCSgUCo8hhLAA1cAvpZSvOrWVAu9KKS/rZcwkYDswVkpZKoTIRdPCJEgpq/Q+4UAVWt2zr5zG/g2YKKU8w42HpVAovIDJ2wtQKBSjiiw0DctqR4OUskkIsdnxXQhxBJoGZgYQCwh90zg0Qac3pgAhwEdCCOensiCg2EVrVygUPoQSYBQKhScR/W7UNCkfA58BFwOVaCakr9AEn75wmMMXolWnd6ZzWCtVKBQ+jRJgFAqFJylAEyjmAoXQJbRMA3YDk9AEltullEX69p/1mKNDfzc6tW0D2oF0KeVKt61eoVD4DEqAUSgUHkM3Fz0PPCCEOACUA3/koDCyF00QuU4I8XdgMnBvj2n2ABI4UwjxAdAqpWwUQjwMPCyEEMCXgAVNULJLKZ9x97EpFArPoqKQFAqFp7kZzQn3Hf19C5rAgZTyAHApcDaaVuVO4LfOg6WUZXr7fcB+4El90x+Au/T5twKfokUsFbnxWBQKhZdQUUgKhUKhUCj8DqWBUSgUCoVC4XcoAUahUCgUCoXfoQQYhUKhUCgUfocSYBQKhUKhUPgdSoBRKBQKhULhdygBRqFQKBQKhd+hBBiFQqFQKBR+hxJgFAqFQqFQ+B1KgFEoFAqFQuF3/D+J8LFAS63dFwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# extra code – generates and saves Figure 15–11\n", - "\n", - "# The forecasts start on 2019-02-26, as it is the 57th day of 2019, and they end\n", - "# on 2019-03-11. That's 14 days in total.\n", - "Y_pred = pd.Series(X[0, -14:, 0],\n", - " index=pd.date_range(\"2019-02-26\", \"2019-03-11\"))\n", - "\n", - "fig, ax = plt.subplots(figsize=(8, 3.5))\n", - "(rail_valid * 1e6)[\"2019-02-01\":\"2019-03-11\"].plot(\n", - " label=\"True\", marker=\".\", ax=ax)\n", - "(Y_pred * 1e6).plot(\n", - " label=\"Predictions\", grid=True, marker=\"x\", color=\"r\", ax=ax)\n", - "ax.vlines(\"2019-02-25\", 0, 1e6, color=\"k\", linestyle=\"--\", label=\"Today\")\n", - "ax.set_ylim([200_000, 800_000])\n", - "plt.legend(loc=\"center left\")\n", - "save_fig(\"forecast_ahead_plot\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's create an RNN that predicts all 14 next values at once:" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "\n", - "def split_inputs_and_targets(mulvar_series, ahead=14, target_col=1):\n", - " return mulvar_series[:, :-ahead], mulvar_series[:, -ahead:, target_col]\n", - "\n", - "ahead_train_ds = tf.keras.utils.timeseries_dataset_from_array(\n", - " mulvar_train.to_numpy(),\n", - " targets=None,\n", - " sequence_length=seq_length + 14,\n", - " batch_size=32,\n", - " shuffle=True,\n", - " seed=42\n", - ").map(split_inputs_and_targets)\n", - "ahead_valid_ds = tf.keras.utils.timeseries_dataset_from_array(\n", - " mulvar_valid.to_numpy(),\n", - " targets=None,\n", - " sequence_length=seq_length + 14,\n", - " batch_size=32\n", - ").map(split_inputs_and_targets)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42)\n", - "\n", - "ahead_model = tf.keras.Sequential([\n", - " tf.keras.layers.SimpleRNN(32, input_shape=[None, 5]),\n", - " tf.keras.layers.Dense(14)\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/500\n", - "33/33 [==============================] - 1s 12ms/step - loss: 0.1250 - mae: 0.3791 - val_loss: 0.0287 - val_mae: 0.1935\n", - "Epoch 2/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0191 - mae: 0.1613 - val_loss: 0.0136 - val_mae: 0.1289\n", - "Epoch 3/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0131 - mae: 0.1303 - val_loss: 0.0102 - val_mae: 0.1113\n", - "Epoch 4/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0108 - mae: 0.1164 - val_loss: 0.0083 - val_mae: 0.1009\n", - "Epoch 5/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0093 - mae: 0.1068 - val_loss: 0.0071 - val_mae: 0.0931\n", - "Epoch 6/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0083 - mae: 0.0996 - val_loss: 0.0061 - val_mae: 0.0862\n", - "Epoch 7/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0076 - mae: 0.0941 - val_loss: 0.0055 - val_mae: 0.0811\n", - "Epoch 8/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0072 - mae: 0.0900 - val_loss: 0.0050 - val_mae: 0.0779\n", - "Epoch 9/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0068 - mae: 0.0869 - val_loss: 0.0046 - val_mae: 0.0751\n", - "Epoch 10/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0066 - mae: 0.0844 - val_loss: 0.0045 - val_mae: 0.0737\n", - "Epoch 11/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0063 - mae: 0.0822 - val_loss: 0.0041 - val_mae: 0.0709\n", - "Epoch 12/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0061 - mae: 0.0804 - val_loss: 0.0039 - val_mae: 0.0688\n", - "Epoch 13/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0060 - mae: 0.0796 - val_loss: 0.0039 - val_mae: 0.0690\n", - "Epoch 14/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0059 - mae: 0.0777 - val_loss: 0.0036 - val_mae: 0.0656\n", - "Epoch 15/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0058 - mae: 0.0766 - val_loss: 0.0035 - val_mae: 0.0649\n", - "Epoch 16/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0056 - mae: 0.0755 - val_loss: 0.0034 - val_mae: 0.0638\n", - "Epoch 17/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0055 - mae: 0.0744 - val_loss: 0.0033 - val_mae: 0.0633\n", - "Epoch 18/500\n", - "<<303 more lines>>\n", - "Epoch 170/500\n", - "33/33 [==============================] - 0s 7ms/step - loss: 0.0032 - mae: 0.0474 - val_loss: 0.0014 - val_mae: 0.0359\n", - "Epoch 171/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0477 - val_loss: 0.0014 - val_mae: 0.0359\n", - "Epoch 172/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0479 - val_loss: 0.0014 - val_mae: 0.0353\n", - "Epoch 173/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0480 - val_loss: 0.0014 - val_mae: 0.0359\n", - "Epoch 174/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0481 - val_loss: 0.0015 - val_mae: 0.0365\n", - "Epoch 175/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0476 - val_loss: 0.0014 - val_mae: 0.0358\n", - "Epoch 176/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0474 - val_loss: 0.0014 - val_mae: 0.0355\n", - "Epoch 177/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0480 - val_loss: 0.0014 - val_mae: 0.0362\n", - "Epoch 178/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0476 - val_loss: 0.0014 - val_mae: 0.0353\n", - "Epoch 179/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0481 - val_loss: 0.0014 - val_mae: 0.0357\n", - "Epoch 180/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0476 - val_loss: 0.0014 - val_mae: 0.0352\n", - "Epoch 181/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0475 - val_loss: 0.0014 - val_mae: 0.0358\n", - "Epoch 182/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0474 - val_loss: 0.0014 - val_mae: 0.0357\n", - "Epoch 183/500\n", - "33/33 [==============================] - 0s 8ms/step - loss: 0.0032 - mae: 0.0477 - val_loss: 0.0014 - val_mae: 0.0358\n", - "Epoch 184/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0479 - val_loss: 0.0014 - val_mae: 0.0353\n", - "Epoch 185/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0473 - val_loss: 0.0015 - val_mae: 0.0368\n", - "Epoch 186/500\n", - "33/33 [==============================] - 0s 9ms/step - loss: 0.0032 - mae: 0.0475 - val_loss: 0.0014 - val_mae: 0.0356\n", - "3/3 [==============================] - 0s 3ms/step - loss: 0.0014 - mae: 0.0350\n" - ] - }, - { - "data": { - "text/plain": [ - "35017.29667186737" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – compiles, fits, and evaluates the model, like earlier\n", - "fit_and_evaluate(ahead_model, ahead_train_ds, ahead_valid_ds,\n", - " learning_rate=0.02)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "X = mulvar_valid.to_numpy()[np.newaxis, :seq_length] # shape [1, 56, 5]\n", - "Y_pred = ahead_model.predict(X) # shape [1, 14]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's create an RNN that predicts the next 14 steps at each time step. That is, instead of just forecasting time steps 56 to 69 based on time steps 0 to 55, it will forecast time steps 1 to 14 at time step 0, then time steps 2 to 15 at time step 1, and so on, and finally it will forecast time steps 56 to 69 at the last time step. Notice that the model is causal: when it makes predictions at any time step, it can only see past time steps." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To prepare the datasets, we can use `to_windows()` twice, to get sequences of consecutive windows, like this:" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[,\n", - " ]" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_series = tf.data.Dataset.range(7)\n", - "dataset = to_windows(to_windows(my_series, 3), 4)\n", - "list(dataset)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then we can split these elements into the desired inputs and targets:" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(,\n", - " ),\n", - " (,\n", - " )]" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset = dataset.map(lambda S: (S[:, 0], S[:, 1:]))\n", - "list(dataset)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's wrap this idea into a utility function. It will also take care of shuffling (optional) and batching:" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "def to_seq2seq_dataset(series, seq_length=56, ahead=14, target_col=1,\n", - " batch_size=32, shuffle=False, seed=None):\n", - " ds = to_windows(tf.data.Dataset.from_tensor_slices(series), ahead + 1)\n", - " ds = to_windows(ds, seq_length).map(lambda S: (S[:, 0], S[:, 1:, 1]))\n", - " if shuffle:\n", - " ds = ds.shuffle(8 * batch_size, seed=seed)\n", - " return ds.batch(batch_size)" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "seq2seq_train = to_seq2seq_dataset(mulvar_train, shuffle=True, seed=42)\n", - "seq2seq_valid = to_seq2seq_dataset(mulvar_valid)" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "seq2seq_model = tf.keras.Sequential([\n", - " tf.keras.layers.SimpleRNN(32, return_sequences=True, input_shape=[None, 5]),\n", - " tf.keras.layers.Dense(14)\n", - " # equivalent: tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(14))\n", - " # also equivalent: tf.keras.layers.Conv1D(14, kernel_size=1)\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/500\n", - "33/33 [==============================] - 1s 17ms/step - loss: 0.0754 - mae: 0.2785 - val_loss: 0.0163 - val_mae: 0.1379\n", - "Epoch 2/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0097 - mae: 0.1050 - val_loss: 0.0071 - val_mae: 0.0853\n", - "Epoch 3/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0069 - mae: 0.0846 - val_loss: 0.0063 - val_mae: 0.0790\n", - "Epoch 4/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0060 - mae: 0.0773 - val_loss: 0.0056 - val_mae: 0.0729\n", - "Epoch 5/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0055 - mae: 0.0722 - val_loss: 0.0049 - val_mae: 0.0662\n", - "Epoch 6/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0052 - mae: 0.0690 - val_loss: 0.0051 - val_mae: 0.0683\n", - "Epoch 7/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0049 - mae: 0.0663 - val_loss: 0.0046 - val_mae: 0.0626\n", - "Epoch 8/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0047 - mae: 0.0640 - val_loss: 0.0043 - val_mae: 0.0589\n", - "Epoch 9/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0046 - mae: 0.0627 - val_loss: 0.0041 - val_mae: 0.0560\n", - "Epoch 10/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0045 - mae: 0.0616 - val_loss: 0.0043 - val_mae: 0.0589\n", - "Epoch 11/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0044 - mae: 0.0608 - val_loss: 0.0042 - val_mae: 0.0580\n", - "Epoch 12/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0043 - mae: 0.0594 - val_loss: 0.0040 - val_mae: 0.0554\n", - "Epoch 13/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0042 - mae: 0.0584 - val_loss: 0.0041 - val_mae: 0.0572\n", - "Epoch 14/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0042 - mae: 0.0577 - val_loss: 0.0042 - val_mae: 0.0580\n", - "Epoch 15/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0042 - mae: 0.0579 - val_loss: 0.0038 - val_mae: 0.0530\n", - "Epoch 16/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0041 - mae: 0.0573 - val_loss: 0.0039 - val_mae: 0.0534\n", - "Epoch 17/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0041 - mae: 0.0566 - val_loss: 0.0038 - val_mae: 0.0530\n", - "Epoch 18/500\n", - "<<219 more lines>>\n", - "Epoch 128/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0484 - val_loss: 0.0036 - val_mae: 0.0470\n", - "Epoch 129/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0489 - val_loss: 0.0036 - val_mae: 0.0472\n", - "Epoch 130/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0032 - mae: 0.0476 - val_loss: 0.0036 - val_mae: 0.0473\n", - "Epoch 131/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0032 - mae: 0.0483 - val_loss: 0.0036 - val_mae: 0.0479\n", - "Epoch 132/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0492 - val_loss: 0.0037 - val_mae: 0.0489\n", - "Epoch 133/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0499 - val_loss: 0.0036 - val_mae: 0.0480\n", - "Epoch 134/500\n", - "33/33 [==============================] - 0s 11ms/step - loss: 0.0033 - mae: 0.0486 - val_loss: 0.0035 - val_mae: 0.0469\n", - "Epoch 135/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0486 - val_loss: 0.0035 - val_mae: 0.0468\n", - "Epoch 136/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0491 - val_loss: 0.0035 - val_mae: 0.0467\n", - "Epoch 137/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0493 - val_loss: 0.0035 - val_mae: 0.0471\n", - "Epoch 138/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0486 - val_loss: 0.0036 - val_mae: 0.0476\n", - "Epoch 139/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0487 - val_loss: 0.0035 - val_mae: 0.0470\n", - "Epoch 140/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0492 - val_loss: 0.0035 - val_mae: 0.0467\n", - "Epoch 141/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0488 - val_loss: 0.0035 - val_mae: 0.0471\n", - "Epoch 142/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0493 - val_loss: 0.0035 - val_mae: 0.0468\n", - "Epoch 143/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0494 - val_loss: 0.0035 - val_mae: 0.0473\n", - "Epoch 144/500\n", - "33/33 [==============================] - 0s 10ms/step - loss: 0.0033 - mae: 0.0486 - val_loss: 0.0035 - val_mae: 0.0469\n", - "3/3 [==============================] - 0s 13ms/step - loss: 0.0034 - mae: 0.0459\n" - ] - }, - { - "data": { - "text/plain": [ - "45928.88057231903" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit_and_evaluate(seq2seq_model, seq2seq_train, seq2seq_valid,\n", - " learning_rate=0.1)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "X = mulvar_valid.to_numpy()[np.newaxis, :seq_length]\n", - "y_pred_14 = seq2seq_model.predict(X)[0, -1] # only the last time step's output" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MAE for +1: 25,519\n", - "MAE for +2: 26,274\n", - "MAE for +3: 27,054\n", - "MAE for +4: 29,324\n", - "MAE for +5: 28,992\n", - "MAE for +6: 31,739\n", - "MAE for +7: 32,847\n", - "MAE for +8: 33,282\n", - "MAE for +9: 33,072\n", - "MAE for +10: 29,752\n", - "MAE for +11: 37,468\n", - "MAE for +12: 35,125\n", - "MAE for +13: 34,614\n", - "MAE for +14: 34,322\n" - ] - } - ], - "source": [ - "Y_pred_valid = seq2seq_model.predict(seq2seq_valid)\n", - "for ahead in range(14):\n", - " preds = pd.Series(Y_pred_valid[:-1, -1, ahead],\n", - " index=mulvar_valid.index[56 + ahead : -14 + ahead])\n", - " mae = (preds - mulvar_valid[\"rail\"]).abs().mean() * 1e6\n", - " print(f\"MAE for +{ahead + 1}: {mae:,.0f}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Deep RNNs with Layer Norm" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "class LNSimpleRNNCell(tf.keras.layers.Layer):\n", - " def __init__(self, units, activation=\"tanh\", **kwargs):\n", - " super().__init__(**kwargs)\n", - " self.state_size = units\n", - " self.output_size = units\n", - " self.simple_rnn_cell = tf.keras.layers.SimpleRNNCell(units,\n", - " activation=None)\n", - " self.layer_norm = tf.keras.layers.LayerNormalization()\n", - " self.activation = tf.keras.activations.get(activation)\n", - "\n", - " def call(self, inputs, states):\n", - " outputs, new_states = self.simple_rnn_cell(inputs, states)\n", - " norm_outputs = self.activation(self.layer_norm(outputs))\n", - " return norm_outputs, [norm_outputs]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "custom_ln_model = tf.keras.Sequential([\n", - " tf.keras.layers.RNN(LNSimpleRNNCell(32), return_sequences=True,\n", - " input_shape=[None, 5]),\n", - " tf.keras.layers.Dense(14)\n", - "])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just training for 5 epochs to show that it works (you can increase this if you want):" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/5\n", - "33/33 [==============================] - 2s 25ms/step - loss: 0.0809 - mae: 0.2898 - val_loss: 0.0178 - val_mae: 0.1511\n", - "Epoch 2/5\n", - "33/33 [==============================] - 1s 18ms/step - loss: 0.0149 - mae: 0.1438 - val_loss: 0.0156 - val_mae: 0.1245\n", - "Epoch 3/5\n", - "33/33 [==============================] - 1s 18ms/step - loss: 0.0120 - mae: 0.1281 - val_loss: 0.0131 - val_mae: 0.1160\n", - "Epoch 4/5\n", - "33/33 [==============================] - 1s 17ms/step - loss: 0.0105 - mae: 0.1167 - val_loss: 0.0118 - val_mae: 0.1095\n", - "Epoch 5/5\n", - "33/33 [==============================] - 1s 17ms/step - loss: 0.0093 - mae: 0.1067 - val_loss: 0.0105 - val_mae: 0.1038\n", - "3/3 [==============================] - 0s 14ms/step - loss: 0.0105 - mae: 0.1038\n" - ] - }, - { - "data": { - "text/plain": [ - "103751.08569860458" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit_and_evaluate(custom_ln_model, seq2seq_train, seq2seq_valid,\n", - " learning_rate=0.1, epochs=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Extra Material – Creating a Custom RNN Class" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The RNN class is not magical. In fact, it's not too hard to implement your own RNN class:" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [], - "source": [ - "class MyRNN(tf.keras.layers.Layer):\n", - " def __init__(self, cell, return_sequences=False, **kwargs):\n", - " super().__init__(**kwargs)\n", - " self.cell = cell\n", - " self.return_sequences = return_sequences\n", - "\n", - " def get_initial_state(self, inputs):\n", - " try:\n", - " return self.cell.get_initial_state(inputs)\n", - " except AttributeError:\n", - " # fallback to zeros if self.cell has no get_initial_state() method\n", - " batch_size = tf.shape(inputs)[0]\n", - " return [tf.zeros([batch_size, self.cell.state_size],\n", - " dtype=inputs.dtype)]\n", - "\n", - " @tf.function\n", - " def call(self, inputs):\n", - " states = self.get_initial_state(inputs)\n", - " shape = tf.shape(inputs)\n", - " batch_size = shape[0]\n", - " n_steps = shape[1]\n", - " sequences = tf.TensorArray(\n", - " inputs.dtype, size=(n_steps if self.return_sequences else 0))\n", - " outputs = tf.zeros(shape=[batch_size, self.cell.output_size],\n", - " dtype=inputs.dtype)\n", - " for step in tf.range(n_steps):\n", - " outputs, states = self.cell(inputs[:, step], states)\n", - " if self.return_sequences:\n", - " sequences = sequences.write(step, outputs)\n", - "\n", - " if self.return_sequences:\n", - " # stack the outputs into an array of shape\n", - " # [time steps, batch size, dims], then transpose it to shape\n", - " # [batch size, time steps, dims]\n", - " return tf.transpose(sequences.stack(), [1, 0, 2])\n", - " else:\n", - " return outputs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `@tf.function` requires the `outputs` variable to be created before the `for` loop, which is why we initialize its value to a zero tensor, even though we don't use that value at all. Once the function is converted to a graph, this unused value will be pruned from the graph, so it doesn't impact performance. Similarly, `@tf.function` requires the `sequences` variable to be created before the `if` statement where it is used, even if `self.return_sequences` is `False`, so we create a `TensorArray` of size 0 in this case." - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42)\n", - "\n", - "custom_model = tf.keras.Sequential([\n", - " MyRNN(LNSimpleRNNCell(32), return_sequences=True, input_shape=[None, 5]),\n", - " tf.keras.layers.Dense(14)\n", - "])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just training for 5 epochs to show that it works (you can increase this if you want):" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/5\n", - "33/33 [==============================] - 2s 26ms/step - loss: 0.0814 - mae: 0.2916 - val_loss: 0.0176 - val_mae: 0.1544\n", - "Epoch 2/5\n", - "33/33 [==============================] - 1s 20ms/step - loss: 0.0151 - mae: 0.1440 - val_loss: 0.0157 - val_mae: 0.1247\n", - "Epoch 3/5\n", - "33/33 [==============================] - 1s 19ms/step - loss: 0.0119 - mae: 0.1281 - val_loss: 0.0134 - val_mae: 0.1160\n", - "Epoch 4/5\n", - "33/33 [==============================] - 1s 18ms/step - loss: 0.0105 - mae: 0.1162 - val_loss: 0.0111 - val_mae: 0.1084\n", - "Epoch 5/5\n", - "33/33 [==============================] - 1s 18ms/step - loss: 0.0093 - mae: 0.1068 - val_loss: 0.0103 - val_mae: 0.1029\n", - "3/3 [==============================] - 0s 14ms/step - loss: 0.0103 - mae: 0.1029\n" - ] - }, - { - "data": { - "text/plain": [ - "102874.92722272873" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit_and_evaluate(custom_model, seq2seq_train, seq2seq_valid,\n", - " learning_rate=0.1, epochs=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# LSTMs" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "lstm_model = tf.keras.models.Sequential([\n", - " tf.keras.layers.LSTM(32, return_sequences=True, input_shape=[None, 5]),\n", - " tf.keras.layers.Dense(14)\n", - "])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just training for 5 epochs to show that it works (you can increase this if you want):" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/5\n", - "33/33 [==============================] - 2s 29ms/step - loss: 0.0535 - mae: 0.2517 - val_loss: 0.0187 - val_mae: 0.1716\n", - "Epoch 2/5\n", - "33/33 [==============================] - 1s 16ms/step - loss: 0.0176 - mae: 0.1598 - val_loss: 0.0176 - val_mae: 0.1473\n", - "Epoch 3/5\n", - "33/33 [==============================] - 1s 16ms/step - loss: 0.0160 - mae: 0.1528 - val_loss: 0.0168 - val_mae: 0.1433\n", - "Epoch 4/5\n", - "33/33 [==============================] - 1s 16ms/step - loss: 0.0152 - mae: 0.1485 - val_loss: 0.0161 - val_mae: 0.1388\n", - "Epoch 5/5\n", - "33/33 [==============================] - 1s 16ms/step - loss: 0.0145 - mae: 0.1443 - val_loss: 0.0154 - val_mae: 0.1352\n", - "3/3 [==============================] - 0s 14ms/step - loss: 0.0154 - mae: 0.1352\n" - ] - }, - { - "data": { - "text/plain": [ - "135186.25497817993" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit_and_evaluate(lstm_model, seq2seq_train, seq2seq_valid,\n", - " learning_rate=0.1, epochs=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# GRUs" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "gru_model = tf.keras.Sequential([\n", - " tf.keras.layers.GRU(32, return_sequences=True, input_shape=[None, 5]),\n", - " tf.keras.layers.Dense(14)\n", - "])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just training for 5 epochs to show that it works (you can increase this if you want):" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/5\n", - "33/33 [==============================] - 2s 29ms/step - loss: 0.0516 - mae: 0.2489 - val_loss: 0.0165 - val_mae: 0.1529\n", - "Epoch 2/5\n", - "33/33 [==============================] - 1s 18ms/step - loss: 0.0145 - mae: 0.1386 - val_loss: 0.0139 - val_mae: 0.1260\n", - "Epoch 3/5\n", - "33/33 [==============================] - 1s 18ms/step - loss: 0.0118 - mae: 0.1249 - val_loss: 0.0121 - val_mae: 0.1170\n", - "Epoch 4/5\n", - "33/33 [==============================] - 1s 18ms/step - loss: 0.0106 - mae: 0.1166 - val_loss: 0.0111 - val_mae: 0.1109\n", - "Epoch 5/5\n", - "33/33 [==============================] - 1s 18ms/step - loss: 0.0098 - mae: 0.1107 - val_loss: 0.0104 - val_mae: 0.1071\n", - "3/3 [==============================] - 0s 14ms/step - loss: 0.0104 - mae: 0.1071\n" - ] - }, - { - "data": { - "text/plain": [ - "107093.29694509506" - ] - }, - "execution_count": 72, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit_and_evaluate(gru_model, seq2seq_train, seq2seq_valid,\n", - " learning_rate=0.1, epochs=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using One-Dimensional Convolutional Layers to Process Sequences" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```\n", - " |-----0-----| |-----3----| |--... |-------52------|\n", - " |-----1----| |-----4----| ... | |-------53------|\n", - " |-----2----| |------5--...-51------| |-------54------|\n", - "X: 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 104 105 106 107 108 109 110 111\n", - "Y: from 4 6 8 10 12 ... 106 108 110 112\n", - " to 17 19 21 23 25 ... 119 121 123 125\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "conv_rnn_model = tf.keras.Sequential([\n", - " tf.keras.layers.Conv1D(filters=32, kernel_size=4, strides=2,\n", - " activation=\"relu\", input_shape=[None, 5]),\n", - " tf.keras.layers.GRU(32, return_sequences=True),\n", - " tf.keras.layers.Dense(14)\n", - "])\n", - "\n", - "longer_train = to_seq2seq_dataset(mulvar_train, seq_length=112,\n", - " shuffle=True, seed=42)\n", - "longer_valid = to_seq2seq_dataset(mulvar_valid, seq_length=112)\n", - "downsampled_train = longer_train.map(lambda X, Y: (X, Y[:, 3::2]))\n", - "downsampled_valid = longer_valid.map(lambda X, Y: (X, Y[:, 3::2]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just training for 5 epochs to show that it works (you can increase this if you want):" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/5\n", - "31/31 [==============================] - 2s 30ms/step - loss: 0.0482 - mae: 0.2420 - val_loss: 0.0214 - val_mae: 0.1616\n", - "Epoch 2/5\n", - "31/31 [==============================] - 1s 18ms/step - loss: 0.0165 - mae: 0.1532 - val_loss: 0.0171 - val_mae: 0.1423\n", - "Epoch 3/5\n", - "31/31 [==============================] - 1s 18ms/step - loss: 0.0144 - mae: 0.1447 - val_loss: 0.0157 - val_mae: 0.1342\n", - "Epoch 4/5\n", - "31/31 [==============================] - 1s 17ms/step - loss: 0.0130 - mae: 0.1361 - val_loss: 0.0141 - val_mae: 0.1254\n", - "Epoch 5/5\n", - "31/31 [==============================] - 1s 17ms/step - loss: 0.0115 - mae: 0.1256 - val_loss: 0.0124 - val_mae: 0.1159\n", - "1/1 [==============================] - 0s 88ms/step - loss: 0.0124 - mae: 0.1159\n" - ] - }, - { - "data": { - "text/plain": [ - "115850.42625665665" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit_and_evaluate(conv_rnn_model, downsampled_train, downsampled_valid,\n", - " learning_rate=0.1, epochs=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## WaveNet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```\n", - " ⋮\n", - "C2 /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\...\n", - " \\ / \\ / \\ / \\ / \\ / \\ / \\ \n", - " / \\ / \\ / \\ \n", - "C1 /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /...\\\n", - "X: 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 111\n", - "Y: 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 112\n", - " /14 15 16 17 18 19 20 21 22 23 24 25 26 ... 125\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code – ensures reproducibility\n", - "wavenet_model = tf.keras.Sequential()\n", - "wavenet_model.add(tf.keras.layers.InputLayer(input_shape=[None, 5]))\n", - "for rate in (1, 2, 4, 8) * 2:\n", - " wavenet_model.add(tf.keras.layers.Conv1D(\n", - " filters=32, kernel_size=2, padding=\"causal\", activation=\"relu\",\n", - " dilation_rate=rate))\n", - "wavenet_model.add(tf.keras.layers.Conv1D(filters=14, kernel_size=1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just training for 5 epochs to show that it works (you can increase this if you want):" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/5\n", - "31/31 [==============================] - 2s 26ms/step - loss: 0.0796 - mae: 0.3159 - val_loss: 0.0239 - val_mae: 0.1723\n", - "Epoch 2/5\n", - "31/31 [==============================] - 1s 16ms/step - loss: 0.0172 - mae: 0.1585 - val_loss: 0.0182 - val_mae: 0.1545\n", - "Epoch 3/5\n", - "31/31 [==============================] - 1s 16ms/step - loss: 0.0159 - mae: 0.1561 - val_loss: 0.0181 - val_mae: 0.1505\n", - "Epoch 4/5\n", - "31/31 [==============================] - 1s 16ms/step - loss: 0.0155 - mae: 0.1535 - val_loss: 0.0175 - val_mae: 0.1479\n", - "Epoch 5/5\n", - "31/31 [==============================] - 1s 17ms/step - loss: 0.0147 - mae: 0.1488 - val_loss: 0.0166 - val_mae: 0.1407\n", - "1/1 [==============================] - 0s 74ms/step - loss: 0.0166 - mae: 0.1407\n" - ] - }, - { - "data": { - "text/plain": [ - "140713.95993232727" - ] - }, - "execution_count": 76, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit_and_evaluate(wavenet_model, longer_train, longer_valid,\n", - " learning_rate=0.1, epochs=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Extra Material – Wavenet Implementation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is the original WaveNet defined in the paper: it uses Gated Activation Units instead of ReLU and parametrized skip connections, plus it pads with zeros on the left to avoid getting shorter and shorter sequences:" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [], - "source": [ - "class GatedActivationUnit(tf.keras.layers.Layer):\n", - " def __init__(self, activation=\"tanh\", **kwargs):\n", - " super().__init__(**kwargs)\n", - " self.activation = tf.keras.activations.get(activation)\n", - "\n", - " def call(self, inputs):\n", - " n_filters = inputs.shape[-1] // 2\n", - " linear_output = self.activation(inputs[..., :n_filters])\n", - " gate = tf.keras.activations.sigmoid(inputs[..., n_filters:])\n", - " return self.activation(linear_output) * gate" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [], - "source": [ - "def wavenet_residual_block(inputs, n_filters, dilation_rate):\n", - " z = tf.keras.layers.Conv1D(2 * n_filters, kernel_size=2, padding=\"causal\",\n", - " dilation_rate=dilation_rate)(inputs)\n", - " z = GatedActivationUnit()(z)\n", - " z = tf.keras.layers.Conv1D(n_filters, kernel_size=1)(z)\n", - " return tf.keras.layers.Add()([z, inputs]), z" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42)\n", - "\n", - "n_layers_per_block = 3 # 10 in the paper\n", - "n_blocks = 1 # 3 in the paper\n", - "n_filters = 32 # 128 in the paper\n", - "n_outputs = 14 # 256 in the paper\n", - "\n", - "inputs = tf.keras.layers.Input(shape=[None, 5])\n", - "z = tf.keras.layers.Conv1D(n_filters, kernel_size=2, padding=\"causal\")(inputs)\n", - "skip_to_last = []\n", - "for dilation_rate in [2**i for i in range(n_layers_per_block)] * n_blocks:\n", - " z, skip = wavenet_residual_block(z, n_filters, dilation_rate)\n", - " skip_to_last.append(skip)\n", - "\n", - "z = tf.keras.activations.relu(tf.keras.layers.Add()(skip_to_last))\n", - "z = tf.keras.layers.Conv1D(n_filters, kernel_size=1, activation=\"relu\")(z)\n", - "Y_preds = tf.keras.layers.Conv1D(n_outputs, kernel_size=1)(z)\n", - "\n", - "full_wavenet_model = tf.keras.Model(inputs=[inputs], outputs=[Y_preds])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just training for 5 epochs to show that it works (you can increase this if you want):" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/5\n", - "31/31 [==============================] - 2s 26ms/step - loss: 0.0706 - mae: 0.2861 - val_loss: 0.0209 - val_mae: 0.1630\n", - "Epoch 2/5\n", - "31/31 [==============================] - 1s 18ms/step - loss: 0.0137 - mae: 0.1398 - val_loss: 0.0140 - val_mae: 0.1273\n", - "Epoch 3/5\n", - "31/31 [==============================] - 1s 20ms/step - loss: 0.0104 - mae: 0.1190 - val_loss: 0.0116 - val_mae: 0.1125\n", - "Epoch 4/5\n", - "31/31 [==============================] - 1s 18ms/step - loss: 0.0086 - mae: 0.1048 - val_loss: 0.0096 - val_mae: 0.1020\n", - "Epoch 5/5\n", - "31/31 [==============================] - 1s 19ms/step - loss: 0.0073 - mae: 0.0942 - val_loss: 0.0087 - val_mae: 0.0953\n", - "1/1 [==============================] - 0s 71ms/step - loss: 0.0087 - mae: 0.0953\n" - ] - }, - { - "data": { - "text/plain": [ - "95349.08086061478" - ] - }, - "execution_count": 80, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit_and_evaluate(full_wavenet_model, longer_train, longer_valid,\n", - " learning_rate=0.1, epochs=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this chapter we explored the fundamentals of RNNs and used them to process sequences (namely, time series). In the process we also looked at other ways to process sequences, including CNNs. In the next chapter we will use RNNs for Natural Language Processing, and we will learn more about RNNs (bidirectional RNNs, stateful vs stateless RNNs, Encoder–Decoders, and Attention-augmented Encoder-Decoders). We will also look at the Transformer, an Attention-only architecture." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise solutions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. to 8." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Here are a few RNN applications:\n", - " * For a sequence-to-sequence RNN: predicting the weather (or any other time series), machine translation (using an Encoder–Decoder architecture), video captioning, speech to text, music generation (or other sequence generation), identifying the chords of a song\n", - " * For a sequence-to-vector RNN: classifying music samples by music genre, analyzing the sentiment of a book review, predicting what word an aphasic patient is thinking of based on readings from brain implants, predicting the probability that a user will want to watch a movie based on their watch history (this is one of many possible implementations of _collaborative filtering_ for a recommender system)\n", - " * For a vector-to-sequence RNN: image captioning, creating a music playlist based on an embedding of the current artist, generating a melody based on a set of parameters, locating pedestrians in a picture (e.g., a video frame from a self-driving car's camera)\n", - "2. An RNN layer must have three-dimensional inputs: the first dimension is the batch dimension (its size is the batch size), the second dimension represents the time (its size is the number of time steps), and the third dimension holds the inputs at each time step (its size is the number of input features per time step). For example, if you want to process a batch containing 5 time series of 10 time steps each, with 2 values per time step (e.g., the temperature and the wind speed), the shape will be [5, 10, 2]. The outputs are also three-dimensional, with the same first two dimensions, but the last dimension is equal to the number of neurons. For example, if an RNN layer with 32 neurons processes the batch we just discussed, the output will have a shape of [5, 10, 32].\n", - "3. To build a deep sequence-to-sequence RNN using Keras, you must set `return_sequences=True` for all RNN layers. To build a sequence-to-vector RNN, you must set `return_sequences=True` for all RNN layers except for the top RNN layer, which must have `return_sequences=False` (or do not set this argument at all, since `False` is the default).\n", - "4. If you have a daily univariate time series, and you want to forecast the next seven days, the simplest RNN architecture you can use is a stack of RNN layers (all with `return_sequences=True` except for the top RNN layer), using seven neurons in the output RNN layer. You can then train this model using random windows from the time series (e.g., sequences of 30 consecutive days as the inputs, and a vector containing the values of the next 7 days as the target). This is a sequence-to-vector RNN. Alternatively, you could set `return_sequences=True` for all RNN layers to create a sequence-to-sequence RNN. You can train this model using random windows from the time series, with sequences of the same length as the inputs as the targets. Each target sequence should have seven values per time step (e.g., for time step _t_, the target should be a vector containing the values at time steps _t_ + 1 to _t_ + 7).\n", - "5. The two main difficulties when training RNNs are unstable gradients (exploding or vanishing) and a very limited short-term memory. These problems both get worse when dealing with long sequences. To alleviate the unstable gradients problem, you can use a smaller learning rate, use a saturating activation function such as the hyperbolic tangent (which is the default), and possibly use gradient clipping, Layer Normalization, or dropout at each time step. To tackle the limited short-term memory problem, you can use `LSTM` or `GRU` layers (this also helps with the unstable gradients problem).\n", - "6. An LSTM cell's architecture looks complicated, but it's actually not too hard if you understand the underlying logic. The cell has a short-term state vector and a long-term state vector. At each time step, the inputs and the previous short-term state are fed to a simple RNN cell and three gates: the forget gate decides what to remove from the long-term state, the input gate decides which part of the output of the simple RNN cell should be added to the long-term state, and the output gate decides which part of the long-term state should be output at this time step (after going through the tanh activation function). The new short-term state is equal to the output of the cell. See Figure 15–12.\n", - "7. An RNN layer is fundamentally sequential: in order to compute the outputs at time step _t_, it has to first compute the outputs at all earlier time steps. This makes it impossible to parallelize. On the other hand, a 1D convolutional layer lends itself well to parallelization since it does not hold a state between time steps. In other words, it has no memory: the output at any time step can be computed based only on a small window of values from the inputs without having to know all the past values. Moreover, since a 1D convolutional layer is not recurrent, it suffers less from unstable gradients. One or more 1D convolutional layers can be useful in an RNN to efficiently preprocess the inputs, for example to reduce their temporal resolution (downsampling) and thereby help the RNN layers detect long-term patterns. In fact, it is possible to use only convolutional layers, for example by building a WaveNet architecture.\n", - "8. To classify videos based on their visual content, one possible architecture could be to take (say) one frame per second, then run every frame through the same convolutional neural network (e.g., a pretrained Xception model, possibly frozen if your dataset is not large), feed the sequence of outputs from the CNN to a sequence-to-vector RNN, and finally run its output through a softmax layer, giving you all the class probabilities. For training you would use cross entropy as the cost function. If you wanted to use the audio for classification as well, you could use a stack of strided 1D convolutional layers to reduce the temporal resolution from thousands of audio frames per second to just one per second (to match the number of images per second), and concatenate the output sequence to the inputs of the sequence-to-vector RNN (along the last dimension)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 9. Tackling the SketchRNN Dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_Exercise: Train a classification model for the SketchRNN dataset, available in TensorFlow Datasets._" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The dataset is not available in TFDS yet, the [pull request](https://github.com/tensorflow/datasets/pull/361) is still work in progress. Luckily, the data is conveniently available as TFRecords, so let's download it (it might take a while, as it's about 1 GB large, with 3,450,000 training sketches and 345,000 test sketches):" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading data from http://download.tensorflow.org/data/quickdraw_tutorial_dataset_v1.tar.gz\n", - "1065304064/1065301781 [==============================] - 230s 0us/step\n", - "1065312256/1065301781 [==============================] - 230s 0us/step\n" - ] - } - ], - "source": [ - "tf_download_root = \"http://download.tensorflow.org/data/\"\n", - "filename = \"quickdraw_tutorial_dataset_v1.tar.gz\"\n", - "filepath = tf.keras.utils.get_file(filename,\n", - " tf_download_root + filename,\n", - " cache_dir=\".\",\n", - " extract=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [], - "source": [ - "quickdraw_dir = Path(filepath).parent\n", - "train_files = sorted(\n", - " [str(path) for path in quickdraw_dir.glob(\"training.tfrecord-*\")]\n", - ")\n", - "eval_files = sorted(\n", - " [str(path) for path in quickdraw_dir.glob(\"eval.tfrecord-*\")]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['datasets/training.tfrecord-00000-of-00010',\n", - " 'datasets/training.tfrecord-00001-of-00010',\n", - " 'datasets/training.tfrecord-00002-of-00010',\n", - " 'datasets/training.tfrecord-00003-of-00010',\n", - " 'datasets/training.tfrecord-00004-of-00010',\n", - " 'datasets/training.tfrecord-00005-of-00010',\n", - " 'datasets/training.tfrecord-00006-of-00010',\n", - " 'datasets/training.tfrecord-00007-of-00010',\n", - " 'datasets/training.tfrecord-00008-of-00010',\n", - " 'datasets/training.tfrecord-00009-of-00010']" - ] - }, - "execution_count": 83, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_files" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['datasets/eval.tfrecord-00000-of-00010',\n", - " 'datasets/eval.tfrecord-00001-of-00010',\n", - " 'datasets/eval.tfrecord-00002-of-00010',\n", - " 'datasets/eval.tfrecord-00003-of-00010',\n", - " 'datasets/eval.tfrecord-00004-of-00010',\n", - " 'datasets/eval.tfrecord-00005-of-00010',\n", - " 'datasets/eval.tfrecord-00006-of-00010',\n", - " 'datasets/eval.tfrecord-00007-of-00010',\n", - " 'datasets/eval.tfrecord-00008-of-00010',\n", - " 'datasets/eval.tfrecord-00009-of-00010']" - ] - }, - "execution_count": 84, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eval_files" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": {}, - "outputs": [], - "source": [ - "with open(quickdraw_dir / \"eval.tfrecord.classes\") as test_classes_file:\n", - " test_classes = test_classes_file.readlines()\n", - " \n", - "with open(quickdraw_dir / \"training.tfrecord.classes\") as train_classes_file:\n", - " train_classes = train_classes_file.readlines()" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [], - "source": [ - "assert train_classes == test_classes\n", - "class_names = [name.strip().lower() for name in train_classes]" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['aircraft carrier',\n", - " 'airplane',\n", - " 'alarm clock',\n", - " 'ambulance',\n", - " 'angel',\n", - " 'animal migration',\n", - " 'ant',\n", - " 'anvil',\n", - " 'apple',\n", - " 'arm',\n", - " 'asparagus',\n", - " 'axe',\n", - " 'backpack',\n", - " 'banana',\n", - " 'bandage',\n", - " 'barn',\n", - " 'baseball',\n", - " 'baseball bat',\n", - " 'basket',\n", - " 'basketball',\n", - " 'bat',\n", - " 'bathtub',\n", - " 'beach',\n", - " 'bear',\n", - " 'beard',\n", - " 'bed',\n", - " 'bee',\n", - " 'belt',\n", - " 'bench',\n", - " 'bicycle',\n", - " 'binoculars',\n", - " 'bird',\n", - " 'birthday cake',\n", - " 'blackberry',\n", - " 'blueberry',\n", - " 'book',\n", - " 'boomerang',\n", - " 'bottlecap',\n", - " 'bowtie',\n", - " 'bracelet',\n", - " 'brain',\n", - " 'bread',\n", - " 'bridge',\n", - " 'broccoli',\n", - " 'broom',\n", - " 'bucket',\n", - " 'bulldozer',\n", - " 'bus',\n", - " 'bush',\n", - " 'butterfly',\n", - " 'cactus',\n", - " 'cake',\n", - " 'calculator',\n", - " 'calendar',\n", - " 'camel',\n", - " 'camera',\n", - " 'camouflage',\n", - " 'campfire',\n", - " 'candle',\n", - " 'cannon',\n", - " 'canoe',\n", - " 'car',\n", - " 'carrot',\n", - " 'castle',\n", - " 'cat',\n", - " 'ceiling fan',\n", - " 'cell phone',\n", - " 'cello',\n", - " 'chair',\n", - " 'chandelier',\n", - " 'church',\n", - " 'circle',\n", - " 'clarinet',\n", - " 'clock',\n", - " 'cloud',\n", - " 'coffee cup',\n", - " 'compass',\n", - " 'computer',\n", - " 'cookie',\n", - " 'cooler',\n", - " 'couch',\n", - " 'cow',\n", - " 'crab',\n", - " 'crayon',\n", - " 'crocodile',\n", - " 'crown',\n", - " 'cruise ship',\n", - " 'cup',\n", - " 'diamond',\n", - " 'dishwasher',\n", - " 'diving board',\n", - " 'dog',\n", - " 'dolphin',\n", - " 'donut',\n", - " 'door',\n", - " 'dragon',\n", - " 'dresser',\n", - " 'drill',\n", - " 'drums',\n", - " 'duck',\n", - " 'dumbbell',\n", - " 'ear',\n", - " 'elbow',\n", - " 'elephant',\n", - " 'envelope',\n", - " 'eraser',\n", - " 'eye',\n", - " 'eyeglasses',\n", - " 'face',\n", - " 'fan',\n", - " 'feather',\n", - " 'fence',\n", - " 'finger',\n", - " 'fire hydrant',\n", - " 'fireplace',\n", - " 'firetruck',\n", - " 'fish',\n", - " 'flamingo',\n", - " 'flashlight',\n", - " 'flip flops',\n", - " 'floor lamp',\n", - " 'flower',\n", - " 'flying saucer',\n", - " 'foot',\n", - " 'fork',\n", - " 'frog',\n", - " 'frying pan',\n", - " 'garden',\n", - " 'garden hose',\n", - " 'giraffe',\n", - " 'goatee',\n", - " 'golf club',\n", - " 'grapes',\n", - " 'grass',\n", - " 'guitar',\n", - " 'hamburger',\n", - " 'hammer',\n", - " 'hand',\n", - " 'harp',\n", - " 'hat',\n", - " 'headphones',\n", - " 'hedgehog',\n", - " 'helicopter',\n", - " 'helmet',\n", - " 'hexagon',\n", - " 'hockey puck',\n", - " 'hockey stick',\n", - " 'horse',\n", - " 'hospital',\n", - " 'hot air balloon',\n", - " 'hot dog',\n", - " 'hot tub',\n", - " 'hourglass',\n", - " 'house',\n", - " 'house plant',\n", - " 'hurricane',\n", - " 'ice cream',\n", - " 'jacket',\n", - " 'jail',\n", - " 'kangaroo',\n", - " 'key',\n", - " 'keyboard',\n", - " 'knee',\n", - " 'knife',\n", - " 'ladder',\n", - " 'lantern',\n", - " 'laptop',\n", - " 'leaf',\n", - " 'leg',\n", - " 'light bulb',\n", - " 'lighter',\n", - " 'lighthouse',\n", - " 'lightning',\n", - " 'line',\n", - " 'lion',\n", - " 'lipstick',\n", - " 'lobster',\n", - " 'lollipop',\n", - " 'mailbox',\n", - " 'map',\n", - " 'marker',\n", - " 'matches',\n", - " 'megaphone',\n", - " 'mermaid',\n", - " 'microphone',\n", - " 'microwave',\n", - " 'monkey',\n", - " 'moon',\n", - " 'mosquito',\n", - " 'motorbike',\n", - " 'mountain',\n", - " 'mouse',\n", - " 'moustache',\n", - " 'mouth',\n", - " 'mug',\n", - " 'mushroom',\n", - " 'nail',\n", - " 'necklace',\n", - " 'nose',\n", - " 'ocean',\n", - " 'octagon',\n", - " 'octopus',\n", - " 'onion',\n", - " 'oven',\n", - " 'owl',\n", - " 'paint can',\n", - " 'paintbrush',\n", - " 'palm tree',\n", - " 'panda',\n", - " 'pants',\n", - " 'paper clip',\n", - " 'parachute',\n", - " 'parrot',\n", - " 'passport',\n", - " 'peanut',\n", - " 'pear',\n", - " 'peas',\n", - " 'pencil',\n", - " 'penguin',\n", - " 'piano',\n", - " 'pickup truck',\n", - " 'picture frame',\n", - " 'pig',\n", - " 'pillow',\n", - " 'pineapple',\n", - " 'pizza',\n", - " 'pliers',\n", - " 'police car',\n", - " 'pond',\n", - " 'pool',\n", - " 'popsicle',\n", - " 'postcard',\n", - " 'potato',\n", - " 'power outlet',\n", - " 'purse',\n", - " 'rabbit',\n", - " 'raccoon',\n", - " 'radio',\n", - " 'rain',\n", - " 'rainbow',\n", - " 'rake',\n", - " 'remote control',\n", - " 'rhinoceros',\n", - " 'rifle',\n", - " 'river',\n", - " 'roller coaster',\n", - " 'rollerskates',\n", - " 'sailboat',\n", - " 'sandwich',\n", - " 'saw',\n", - " 'saxophone',\n", - " 'school bus',\n", - " 'scissors',\n", - " 'scorpion',\n", - " 'screwdriver',\n", - " 'sea turtle',\n", - " 'see saw',\n", - " 'shark',\n", - " 'sheep',\n", - " 'shoe',\n", - " 'shorts',\n", - " 'shovel',\n", - " 'sink',\n", - " 'skateboard',\n", - " 'skull',\n", - " 'skyscraper',\n", - " 'sleeping bag',\n", - " 'smiley face',\n", - " 'snail',\n", - " 'snake',\n", - " 'snorkel',\n", - " 'snowflake',\n", - " 'snowman',\n", - " 'soccer ball',\n", - " 'sock',\n", - " 'speedboat',\n", - " 'spider',\n", - " 'spoon',\n", - " 'spreadsheet',\n", - " 'square',\n", - " 'squiggle',\n", - " 'squirrel',\n", - " 'stairs',\n", - " 'star',\n", - " 'steak',\n", - " 'stereo',\n", - " 'stethoscope',\n", - " 'stitches',\n", - " 'stop sign',\n", - " 'stove',\n", - " 'strawberry',\n", - " 'streetlight',\n", - " 'string bean',\n", - " 'submarine',\n", - " 'suitcase',\n", - " 'sun',\n", - " 'swan',\n", - " 'sweater',\n", - " 'swing set',\n", - " 'sword',\n", - " 'syringe',\n", - " 't-shirt',\n", - " 'table',\n", - " 'teapot',\n", - " 'teddy-bear',\n", - " 'telephone',\n", - " 'television',\n", - " 'tennis racquet',\n", - " 'tent',\n", - " 'the eiffel tower',\n", - " 'the great wall of china',\n", - " 'the mona lisa',\n", - " 'tiger',\n", - " 'toaster',\n", - " 'toe',\n", - " 'toilet',\n", - " 'tooth',\n", - " 'toothbrush',\n", - " 'toothpaste',\n", - " 'tornado',\n", - " 'tractor',\n", - " 'traffic light',\n", - " 'train',\n", - " 'tree',\n", - " 'triangle',\n", - " 'trombone',\n", - " 'truck',\n", - " 'trumpet',\n", - " 'umbrella',\n", - " 'underwear',\n", - " 'van',\n", - " 'vase',\n", - " 'violin',\n", - " 'washing machine',\n", - " 'watermelon',\n", - " 'waterslide',\n", - " 'whale',\n", - " 'wheel',\n", - " 'windmill',\n", - " 'wine bottle',\n", - " 'wine glass',\n", - " 'wristwatch',\n", - " 'yoga',\n", - " 'zebra',\n", - " 'zigzag']" - ] - }, - "execution_count": 87, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sorted(class_names)" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [], - "source": [ - "def parse(data_batch):\n", - " feature_descriptions = {\n", - " \"ink\": tf.io.VarLenFeature(dtype=tf.float32),\n", - " \"shape\": tf.io.FixedLenFeature([2], dtype=tf.int64),\n", - " \"class_index\": tf.io.FixedLenFeature([1], dtype=tf.int64)\n", - " }\n", - " examples = tf.io.parse_example(data_batch, feature_descriptions)\n", - " flat_sketches = tf.sparse.to_dense(examples[\"ink\"])\n", - " sketches = tf.reshape(flat_sketches, shape=[tf.size(data_batch), -1, 3])\n", - " lengths = examples[\"shape\"][:, 0]\n", - " labels = examples[\"class_index\"][:, 0]\n", - " return sketches, lengths, labels" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": {}, - "outputs": [], - "source": [ - "def quickdraw_dataset(filepaths, batch_size=32, shuffle_buffer_size=None,\n", - " n_parse_threads=5, n_read_threads=5, cache=False):\n", - " dataset = tf.data.TFRecordDataset(filepaths,\n", - " num_parallel_reads=n_read_threads)\n", - " if cache:\n", - " dataset = dataset.cache()\n", - " if shuffle_buffer_size:\n", - " dataset = dataset.shuffle(shuffle_buffer_size)\n", - " dataset = dataset.batch(batch_size)\n", - " dataset = dataset.map(parse, num_parallel_calls=n_parse_threads)\n", - " return dataset.prefetch(1)" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [], - "source": [ - "train_set = quickdraw_dataset(train_files, shuffle_buffer_size=10000)\n", - "valid_set = quickdraw_dataset(eval_files[:5])\n", - "test_set = quickdraw_dataset(eval_files[5:])" - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "sketches = tf.Tensor(\n", - "[[[-0.08627451 0.11764706 0. ]\n", - " [-0.01176471 0.16806725 0. ]\n", - " [ 0.02352941 0.07563025 0. ]\n", - " ...\n", - " [ 0. 0. 0. ]\n", - " [ 0. 0. 0. ]\n", - " [ 0. 0. 0. ]]\n", - "\n", - " [[-0.04705882 -0.06696428 0. ]\n", - " [-0.09019607 -0.07142857 0. ]\n", - " [-0.0862745 -0.04464286 0. ]\n", - " ...\n", - " [ 0. 0. 0. ]\n", - " [ 0. 0. 0. ]\n", - " [ 0. 0. 0. ]]\n", - "\n", - " [[ 0. 0. 1. ]\n", - " [ 0. 0. 0. ]\n", - " [ 0.00784314 0.11320752 0. ]\n", - " ...\n", - " [ 0.11764708 0.01886791 0. ]\n", - " [-0.03529412 0.12264156 0. ]\n", - " [-0.19215688 0.33962262 1. ]]\n", - "\n", - " ...\n", - "\n", - " [[-0.21276593 -0.01960784 0. ]\n", - " [-0.31382978 0.00784314 0. ]\n", - " [-0.37234044 0.13725491 0. ]\n", - " ...\n", - " [ 0. 0. 0. ]\n", - " [ 0. 0. 0. ]\n", - " [ 0. 0. 0. ]]\n", - "\n", - " [[ 0. 0.4677419 0. ]\n", - " [-0.01176471 0.15053767 0. ]\n", - " [ 0.16470589 0.05376345 0. ]\n", - " ...\n", - " [ 0. 0. 0. ]\n", - " [ 0. 0. 0. ]\n", - " [ 0. 0. 0. ]]\n", - "\n", - " [[-0.04819274 0.01568627 0. ]\n", - " [-0.07228917 -0.01176471 0. ]\n", - " [-0.05622491 -0.03921568 0. ]\n", - " ...\n", - " [ 0. 0. 0. ]\n", - " [ 0. 0. 0. ]\n", - " [ 0. 0. 0. ]]], shape=(32, 104, 3), dtype=float32)\n", - "lengths = tf.Tensor(\n", - "[ 29 48 104 34 29 35 28 40 95 26 23 41 47 17 37 47 12 13\n", - " 17 41 36 23 8 15 60 32 54 38 68 30 89 36], shape=(32,), dtype=int64)\n", - "labels = tf.Tensor(\n", - "[ 95 190 163 12 77 213 216 278 25 202 310 33 327 204 260 181 337 233\n", - " 299 186 61 157 274 150 7 34 47 319 213 292 312 282], shape=(32,), dtype=int64)\n" - ] - } - ], - "source": [ - "for sketches, lengths, labels in train_set.take(1):\n", - " print(\"sketches =\", sketches)\n", - " print(\"lengths =\", lengths)\n", - " print(\"labels =\", labels)" - ] - }, - { - "cell_type": "code", - "execution_count": 92, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAYRCAYAAAB72cuIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3xTVf/HP+fe7KRN96a9UPYeMsqyiiga3I8THKiAE/Tnijvu4HrEgQIq6iPurVF8UKkCgsiUvUPp3mnS7HvP748ErX1YTZPcpL3v16svSHLv+X7SnN587znfQSilkJCQkJCQkJCQkIhVGLEFSEhISEhISEhISBwPyWGVkJCQkJCQkJCIaSSHVUJCQkJCQkJCIqaRHFYJCQkJCQkJCYmYRnJYJSQkJCQkJCQkYhrJYZWQkJCQkJCQkIhp4sZhJYSUEEJeEVtHeyCE9CWErCGEuAkhVrH1SESfeJy3EhISEhISsYZMbAHt4CIAvpM5kBBSDGAFgHRKaV0ENZ2IJwA4AfQF0CKiDgkJCQkJCQmJuCVuVlgppQ2UUnu07RJCFB04vSeAVZRSK6W09hjjyzswvoRE1Ojg34KEhOhIc1giHiCEyAghRGwdsUZMOKzBbdPXCSHzCSGNwZ9nCSFMm2NeafVYQQh5ihByiBDiIYQcIITMIYRwCKyuAkAtIYQSQt4+2hjB594mhHzbxs5rhJDnCCG1AFYHn+9PCLEQQuyEkBpCyAeEkKzjvCcKYAiAh4MaTIQQLvj/KwghPxNCXABmE0JSg+OVEUJchJDthJAZR/kdvUYIeZ4Q0kAIqSWEzCWEKAkhrxJCmgghpYSQq9qcl0sI+bDV79VCCOnVns9HosPIjjW3CSHJhJB3gs+7CCE/EkIGtD6ZEHIRIWRrcJ4fJoQ80PpiRgixEkIeDs5le/CYywghScHP3kEI2UsIObPNuMed00f+Nggh9xJCygCUBZ+fTgj5o9V5nxBCcludVxyc55MIIb8TQpyEkPWEkOFt7F8XnLNOQsg3hJCbg383Ep0AQshEQsja4PyzBefCwOBrVwev3c7gHLul9WcfvF5uazPetYQQR6vHhYSQrwghVYSQFkLIRkLI1DbnWINjvUUIaQKwNPj8WELIL0H75cFra2Ikfx8SnRcS4B5CyP7gdXwrIWR6q9fNhJDdwdeshJBnCCGqVq+bCCHbgnN8PwAPAK0Y7yWWiQmHNcg0BPQUAZgNYBaA249z/DsArgbwfwD6AbgeQBOAwwAuDh4zAEA2gLnt1DIdAAEwAcDVhJBsAL8C2AZgFIAzAOgAfE1aOdVtyAawG8Dzwf8/1+q1pwEsANAfwJcAVAA2Apga1DwfwEJCyKQ2Y04DYAcwGoAZwIvB8/cAOAWB38kbhJAcACCEaBBw3t0ATkXgd1sJ4MfgaxLR4Xhz+20EPs/zEZhbTgDLCCFqACCEjADwCYDPAQwCYARwH4Bb29i4HcA6AMMBfIzAXHgfwHcAhiIwf987cpFsx5w+FcBgAFMAHJmPCgCPIHBDNhVAGoAPjvK+nw7qHQ6gHsDSI442IaQIwBsAXg3q+xrAo0f/9UnEG4QQGYCvAKxCYJ6MRuC6xhNCRiMw7xch8Nl/A+CxEMzoAHwPYHLQxmcAPieE9G1z3P8B2IXANfJ+QsggAP9FYM4NQSDcbCiAt0LQICEBBML/rgdwCwLf608j8B1uCL7eAuA6BHyVmwFcDuCBNmN0B3AlgEsQmJfuyMuOMyilov8AKEHA6SKtnnsQQFmbY14J/r8XAApgyjHGKw6+nnYUO6+0ee5tAN+2OebPNsc8BuCnNs8lB22MOs772gbA1OoxFzznzpP4nXwI4I02uta0ekwA1AL4utVzcgBeAP8KPr4OwN42v1cWAefhUrE/967wc7y53WoeT2z1mh6ADcANwcdLAfzcZkxTm78NK4APWj3WBcd96Shz75Tg4xPO6eDfRi0A5QneY9/geXnBx0f+/s5qdcy4Nsd8AGBZm3EWAaBif2bST8d/AKQEP+9Tj/La+wCWt3nujdaffXCOb2tzzLUAHCewuxbAg60eWwF80+aYdwG82ea5oUG9GWL/7qSf+PpBYCXUBWBCm+dfBPDdMc65EcC+Vo9NCOToZIr9fmL5J5ZWWNfS4CcXZA2A3GNs0wwDIODvrf9ws6HN4xEAJga3thzBbanDwdcKQxh/fesHhBA2uM37JyGkPjj+RQDy25z355H/BH9XNQC2tnrOB6ARQEYr3d0B2FvptiHgmISiWyI0jjq3EbjbFoKPAQCUUhsCn2n/4FP9EAxLacUq/O/fRuu54UBgpXZrq9erg/+2nhsnM6e3UUo9rY0TQoYHt2IPEULs+Hs+H3O+AqhoY78vAivCrfkdEp0CSmkDAjc8PwTDTv6PENIt+HI/tJrzQdo+PiGEEG1wa3UHCYTUOBBYRW07D9e3eTwCwPQ2c//I35h0XZRoL/0R2CVd1mZO3YTgfCKE/IsQsioYvuIA8G/87zwto5RWQ+KYxFOVgNaEGowsHOXcoyU9tc3oZwBYANx1lGNDmWBtx78LwJ0IhC5sBeAA8BT+/nI/QtsqCfQYzx25EWEAbEZg+6EtDe1SLBEJjjePaatjjhXX2fr5E82NI8e2nhsnM6f/MVcJIVoAPwD4EcBVCNw0pQFYiUCoQGuOZ/9470uiE0ApnUEIeRGBcJLzADxJCLkAJ3f9Pplr9XPBse9CYCfJicDqadt5eLTr+RsIOA1tKT8JbRISrTlyTTsXQGmb13yEkDEI7Jg+CuAOBEIXz8M/wwQBqZLQCYklh3U0IYS0WokaA6CCUtp8lGM3IjBJTgOw7Cive4P/sm2er0UgnrQ1QxDYNjoeGwFcCuBQcBUz3IxHYNvqP0AggBtAbwQmdkfYCOAKAHWU0o6OJRE6R53bAHbg79jWXwEguGo6CMCS4LE7EJgfrRmPwN14R6pmhDqn+yLgoN5PKT0Y1HxRCPZ3IhA725q2jyXiHErpFgBbAMwjhHwP4BoE5vSYNoe2fVwLILPN383QNseMB/AupfQzAAjGZxciEIJzPDYCGEAp3dee9yIhcQx2IJAkVUAp/bnti4SQfwEop5Q+3uq5gijq6zTEUkhADoAXCSF9gh/w3Tj6HTAopXsRSCx5gxByMSGkOyFkAvk7Q/4QAqs3BkJIOiFEF3z+ZwBnE0LOC9p5AUC3/7XwP7yKQGzhR4SQ0YSQHoSQMwghiwghCaG/5b/YA2ASIWR8MGHgFQS28jvKUgRWy74ihJwa/D1NJIFKA1KlgOhx1LkdnMdfIRCcPyGYDPIegGYE4vyAQNLeqcEs0t6EkGkIrMY/00FNoc7pUgQuzrcGzzEAePw4xx+LlwCcSQi5mxDSixByPYALQxhHIgYJXmvMJJCNX0AIOQ2B5L0dCHz2ZxBC7gt+9jPxv599CQJxsPeTQDWA6wH8q80xewBcGAxROfK3o8KJmQdgFAlUphlGCOlJCJlKCFkY+juW6KoEFw6eA/AcCVQ+6UkIGUoIuZEQMguBeZpLCJkWvGbehMBCkkQ7iSWHdSkCK6K/A1gM4E0cw2ENcjUCX+ovIZAB+jYCX8CglJYjkMX8JAIO25FSVm+1+lmNwNb7FycSRimtQCBpREBgRXc7Al/4nuBPR3kCgXi+7xFYaWtBsPxKR6CUOgFMBHAAgUzzXQhkjycjEOsqER2ON7dnIPDZfx38V4NAMqELACilGxHIGr0YgSQ+c/CnQ92zQp3TNFBP+BoAFyDgfDyCQBZ2e+2vATATwBwEYl0vQMCRkDJjOwdOBHaJPkHgC/sdBP4O5lFK1yKQUX0TAp/9RQgknfwFpXRn8PVZwWMmIxAm1Zr/QyAkZSUC1861wf8fF0rpnwhcFzkAvyCwAvw0QgvvkpAAgIcQmMN3IXAtXY7ANfsgpfQbAM8ikIR1ZC4/LIrKOIf8MxdEJBGElCCQ3NG2VI+EhEQXgRDybwBnUEoHia1FIroEdx4+oZRKxdIlJCSOSizFsEpISHQhCCF3I7AS4UCgDuyNAO4XVZSEhISEREwiOawSEhJicQoCW2h6AAcRaIgwX1RFEhISEhIxSUyEBEhISEhISEhISEgci1hKupKQkJCQkJCQkJD4HySHVUJCQkJCQkJCIqaRHFYJCQkJCQkJCYmYRnJYJSQkJCQkJCQkYhrJYZWQkJCQkJCQkIhpJIdVQkJCQkJCQkIippEcVgkJCQkJCQkJiZhGahwQZTijpQhAMYASq9mwRmQ5EjGANCckJMRH+juUiAQdmVfSnPwnUuOAKMAZLcoMdeWIVHX1fTsbhpwNEAagQs+knfs8vGrNYXuPHUrW5Rmd/Wv/Cke3zfua+u/TyW2u8bk/pZY78vdvrTulMkNT4Vj38EzvSdiSJngcEfi8hBKAyAEiqNiWbwelbUoqtXf/rdqZezBVVU2HpK/P2dvU74/D9h4VWdrD7lMyf6NVLbmln97xtFts/RISnYHuxm+KKPALwMgAeAGcJl0/JUJh7uJpypXlk3s1uNN7J8gbL3X49JdSEABEULLOP7jE/XkVLd122r1JNp28OTFXd6h/uaNgh8OX2JygaNLnaA/3K3Nw21p8CQqAFiOwE+4HyBwA71rNhhZR36CISA5rmBn92KKUamfuIIbww/ulbLnlUHNPhcOXmI2/VrMpAAKAQkZ88FM5BQg5mbFlxAcADj+VN8gYrydLU55t86Tssvv0ZRqZnWZpy4ccsPUpCI7nATBJuujGNn0e+HS+h1fNCcwJgEDwUTDykzzdwxKfO0nZqLV79fu8grI2QdHE5umsuYeaC1c5/QmVmZpyVY+k3Xnb64b92OxNruES98p6Je/Qbageu77BnV7fL2WLa1jGWttT1359wpshQLohkuhccEYLA+BCOeNe7BNUyUeelzOehnG5P7/V4k2495M7nhZElCgRo3BGC5OjLe3TJ2XbtB31Q9TVztwsOeMdRoF+fkHR6sgj3/kAA39DuqZG2+RJrvTwaqeCcauTVQ05je6UCq+gcilZlzpJ2ZjT4E4t9wlKHUAzjpwbHEvI0pZ7mz36z53+hJ+ztYe3jMpauWX+zKW+aL53sZAc1hDhjBYyhft8RJmjYPS2uhGpAIYmK+vOafSkKY8co5PbfAmK5gOVLd0+A7C5IGFf2iF74fOB1TT4AEwCsBaAJkdbmjQkY12f3Q2DfAdsfZCqqskYlL5h3J7G/pUVjgKPXtGQ3TN5Z/FBW++DDe50r0Zmz87Slo+obOlW7vJriZzxphII2V5BSY44xFma8v3dk/ac/cGc5/eK8kuSOC6c0aIHsAmg3QHwAPECmHR+4fvrVldM0ta5MhMKk3ZmF+p3D9xUM6ah1pUly9VZuxckHhiztW74Hrs3iU1TVxdmaCpG7G/qu9fDqxVauT1PLWspqHelN1GwWgCak1NDnQCxa2QOJKvqEyodeesFsE2ZmvKETG1Fxrba4RYBbCJAbwBAjmiVnFaJeGTWazNVbr9m/u9VE6Z4eHU+IJQRIJuCUIAICfImavclKQHsAmDO0Za+/9tDN3UJp0Din8xdPI1sqxvee7+tbyFLfIP7pmy7obS5B2P36bMAqFsdephA2DEs4/eUFp/Osrtx0HcAEgB8C+Cv7/yTvWYGFwd+anXuwz30u4cBmHzA1lsOkCQAULIueHnlrxTMmkL9rkN9U7aue3X22xvC9guIISSH9SThjJaL09RVc5SsS1nu6O4AMBRAavBlCmAvl7jXo1c27tpSO+pNAJutZkP1UcaJ2ApVqwmuACgTWGmlPoB8lqMtfXdk1qpl82culT7wGGDu4mnqZdYL/+vh1WMA3A4gERGYE9cvuFGhZN3Zv5adSRw+vW5g6sYemdqKgSvLJh/wCkpND/3uganqmiEbqsduFiiry9SUD0hQ2Hrta+q3GyAJGpm9GyE0ucWX4AOI8u+RqR8gD1vNhqfDqVdCIpJwRosawAyA3gOQglRVdWO9O/MmAJ8CGIXgtfn8wvfXr6uacF1lS7ebAAzRKxu8+QkH3txad8qdVrPBJeJbkIggnNEyKV1deSfL+J1VLd1sAAYoWdcoD6/+a5kzQdHk08haDlY7c78DsP30bhafSuZcvmD22xXHGDPsMazBnYFewzLWXuPxq07f0TCUBTAEAecWAC0HyLpeydvr83SHtqw4fM7bAAaFqiNWkBzW4zBn8fSESkc34x/V488GMCzwLAVAdgJY3TflT3uOrnT7z6VTP7KaDQ4Rpf5F6wk+KG29f2vdKVcAmAEgKV1dZa91Zd0D4L1Y0dsV4YwW0j9108Yd9cOGpqurbv/jkevni63pZOCMlokEwo/BkAU/gInxeuGT6FpwRkvC4LQ/Fu639flXiy9RDmBNd/2e1wenrf/P8W7iOaOF9E35c0aLT/fiYXuPBAA1apljwWndvn9zwey3y6L3DiQixdzF08h+W5+p2+pGzARwbquXGgFs7pO8VaaRO7Zuqin6AMB2q9nQKI7S48MZLarivO8vqXdnTNhaN0ILYDSAwuDLAgAC0GC4IInLGG3JYT0KnNHSB8AsBeO50SsoNQRCEwWTCICJx5WlwQ8v1QxOX79gc83IYodPXwDQ5gGpm3Zl68oeeeOmhcvE1tfV4IyWOwC8MCB144+Wux+aLLae9hC8IXoOwFi1rGXqzicutYitSULiWNy66Oqey6wXXusXFLcASOqh31VPwVx/0Nb7a6vZcNJffpzRQgBMAHA/gLPUshZKKXnezWuesZoNtZHSLxE5OKMlDcD0JGX9g02e1FSAeoPhegSgPEAeiqfv+aNx66Kre1ttvSZuqx9+OUBPD+66AiCrAFxgNRvqxdbYHiSHNQhntKi6JRyYxRLhMWtzTz0Av5J1fT8+96fVJYenrOKpbDlCiEOJJYIX3TEJiqb7XD7tuX4qB4CfFYx74UW93vvaPOMLKes8wpxievOpOneWEcAvCMyjuEvo4IwWtUbm2MMy/uwJucv7LZj9thQj3YWIh8Q7zmjJ0SsaHnXz6hs8vBoAvmAI//SBp8/7o6Njz3xt1pU76wffU+boPhiAu3vinhX9U7c8+urst9d1WLhEROGMFmZYxtprXX7NI7saBmUBRKGWtWwfkfnbhk3VY95v8Sd8gTj/nj8af4cL0mA2GGEIBMeorJWrM7UVV740872YXDVuS5d3WG98/fopm2pGT6925k4BkJqsqvVkaSo+3Nkw5N7WMajxcJFuD7cuuqb/MusFF/oFxSwA+XplA+/j5R85/QlWAN92hvcYa5z21L9nH2zu9XrgEXEhji+Is1+/4bLlh877QEZ833kF1bntWa2SiH2CMXJpAPJO6/bdhYft3RX7mvrxwTI7RQAoQNyIsTl888IZp26uGXVvRUv+JICyhfrd2wuTdj246KbF34TbFme09JUx3gcEykwHiCBQ9m0A86xmw55w25IIjSPf2/kJ+yubvUn9mjyplwLgNDIHTVI2fFHRkm+ymg1b2x6PTvI935rW7w2APVtb+lFlS35/Ar6Sgn0QwDtWs4EXU+OJ6JIO67BH3lE1etIuAugsgJzKEJ4KlP0MwEIAP8fjqleocEYLOyZ7xT0HmvrcXuPKyQg+HdfOVKxSeN+XJTyVnRosU+IHEFehJW3hjJa7ATwD4Dqr2bBEbD0S/+RYX75zF0+TVzjyC/+oHq8HkDcya+XF9a507QFb3xYAecnKulE2b7JcoGzbTog8APafT9HPzy/8YPr8mUtFTUTijJaBAIwEwjSG8BAou5CCecZqNhyItO2bF1479peyKTe0+BKuAKiyb8rWsgSFbdYnt5ulcCsRCc7/FcFVxWD1HPwM4I1J+d9+++bNr9lFFRgDnPPsk5fsqB96J4DRekVD3dCMda/+Ujbl0VhdgOhSDitntPTtnbxtfpmdm+T061gABwoS9303KG3j66/Meme72PrEhDNa7gPwOAAWoBQgD8SzMxVrBMMxDgPIRiAAPu63nDijhWWJr4QhdMzkgq/PXDB7yQqxNUkECH5Z/wxAQSAgXV1lrXHl1ADII+DzaBu/kyV+gaeygwDKCpN2psoZX+muhsHfAyibmPeDUs74tv1UOvV8gD55pGweQCgAkqKq9atlTlO5o+BZq9lwUvV8w8WVL/3fxbXOrPl7mwbkAmhJUtZ9MC735wWvznpnUzR1AABntGT2TNqxoMzOXejmNQTAdymq2hc2mq79Kdpaujq3Lrpm0C+HJ39j9yUXBJ6hNEnZ8ObmR6+eKa6y2IMzWohe0XClnPUuqXNlyQGsBHCP1WxYK7a2tnR6h3XO4un6Jk/Kk6vKJw0VqGwcIPB9U7ZV2r36OeWOgq+60mrq8WgV46IGAJXMOW3XE5e+L7KsTsMV8++6fE3laR8wxP+0QGV2dJItp5sWXje65PCUNXLGu6/Zm9zfajb4xdYk8dcN6BMIJIpCLWvxuvy6lQDK+qb8maST22vWV4/7GkDZuJwfG9PUNaUnKnnX94FPznPzmq+CN7R+ALeMy/kpaX9Tn3urnHmpAA53Szjw1rCM359/aeZ7EVu9mrt4GvmxdOrkFl/i3QDO0MgcNENT+R9rc6//i4UkkjPMz6Xta+o3C8AdANLydAfryxzdpwP4IVZXrjoLnNGiAHCbjPE+JQiMQgDrD66sxv0CQaQJllqc6eHV9wPI7JO8tUKvbLz049vnrRZb2xE6rcPa+/7P+nkF1UyG8NcLlE1UyVpq3X7t8wDePlp9VImA06qROS51+rWzALLCajZMFVtTZ+Hc5x7dtKth0NAp3Bd5L8/6T7nYesLJwIfev9bh0y8B8JDVbHhCbD0SRy063uEva85oORPADwDeAPDWkfGCuwdnAvQRgBTp5Da3w6e/G8AbVrMhbImcnNFCGOKfmqM9/F6Zo3sigCoAz4/KWrnk49vNojuqbRn88FLNgNRN72yqGT3JzWuSAbppTHbJt5mayse7SmeiaHL9gpuMv5ZNnuUTlN1Z4v/hTO6rF74/eLEdnTQmNVJwRotuQOrGd/Y29b/QyysFgLwhZzyP7n3qokqxtYnusIYzyJkzWlQy4rskN+HQS4eaeyYB8AP0i4l5/12drKx/Zf7MpTEdUBwrcEbLXQCeVbHOj9y8Zr70h94xAnf9tCJR0bThz8emnyW2nkjAGS1LAXrZ5IJvrl9808J3xNYjEf4Ekh7Gr+8RwM4DkGo1Gxravj538TTi8CXetabi1OlOf8JggFaMyf5ldYamcnZHspDnLp4mL7X3uH9TzZiLAAzWyuxNg9PXf7um8rSZ4XSII0Vw1W+agnGbvIIqXyNzVDn9uvsBLI12CEVnhDNaejDEP1+gsql6ZYPd5km5wmo2SOX2OsjQR97JbvKkPQDQ2XLGx/RP3bJ8S+3IS61mQ7NYmkR1WAMXVPoLAqsAboCcHsqF9cbXrz9nb1O/W/c39RsNICVB0WTrlbTz5401RTdJq6nthzNaJgD018Cj+M5mjwU4o+U8AF8BONdqNnwrtp5IcIb5ubQ6V0YVIYKn0Z2eYTUbWsTWJBFeznn2yf1l9oK8Px+brjzeccEV1+IkZf0rTZ7U/jLia/BT+RMAFlrNBufJ2gs6eldp5c3zWnyJqTLi2++n8kcBfGg1G+JuhXLu4mnyJk+K+deyMydRMEPkjKd2ZNbqXzbVjFro8utGQloFbBdzFk9P39/U5+3t9cMmAcSfqzu0eETmbw9HMhylKzJ53jNDWMJ/s6thcDcAtYDwHkv4Jp7Kl0d7vortsN4XDOIn7S3IzxktpwK4CUAfAEMZ4gcBPuepbAGAFVJsauj883OJ/2x2sSl+6t87yh1cN5+gSInHL9qT5dIX752xrmrCmwBZZDUbbhRbj0R4GfjQB4cTFDbHmodu7Hey50x76Y4bVleccQWA0xWM2z48c+0v2+qGXb7t8SuPeUMz67WZqXZf4qJ1lRPG8VSeyRLflol5y39IVDTd3xl2yYIO/VnZ2sNvVbZ0yw4msAkAPJAWB05I8Pd3mZJ1LfDw6uRkZd2yRk/a9Vaz4aitUSXCA2e0jATwGoARgTkb/Y5ZsmgZOgYlCJRKkSEQZ1VyMicFt7qChfwpNDLHkuJuPzy/YPaSLp3pH0ZKANLuz0Xifxlmejup2dO978C0TVu/uvPRTuusAsDHt89bwhkt/QDcffYzT236/p77F4qtSSI8cEaLEkjMcvgSn23PeUvn/PsNAG9wRsv4bF3Zp2sri6cCsHJGy3P5Cftf+/WBOX9tL/Z94JMkN6+5BTj/DoCkZmrKS6uduWfxVL58yS2vdppki2Di1TIAOX0e+PQdD6++GoHkOCVAigFIDusxuPH16y/Vys94oMWXONjDqzad1u27u5fc8uqbYuvqCljNhj84o+UzgA4DSHC+4mpEcb62rbMXVQKeOfkQgB8g7bmzLAYoAwAEAnX7NfskZzV8WM2GNQz4rwHqhHTH3yEa3ekX81RO9jb2v0lsLVHioVRVTf1hO/fata/c2ltsMRLhIV1dOQSBG9gtoZxvNRtW/XL/3Cy9sqEYwHoA5np3RuPYxxd8xxktzxY/9e91AphaAE8A5Pd+KVsu+P3hWQVWs+G/nTmz3sOrXwfgCq5YMRnqCrnIkmISzmhJ5YzfLvjBesFHlDL9AWEWQEZKzmrUKQGIBwAfKGtHZ0x/+Y57omVcVIcVAJKUdYQhvLOdTlEJQLwA9VMwbgHsipISoi8pIYmR0tnVGJS+oZdWbldLzmpHodMB7HX6dV3i92g1GzynZK2e0eLT+UvKprwQ3L6TiHP6pWy9HgAm5X/zP8lW7WHLo1f9YjUbzh6ZuerCJGV9U0VLwdkA7rI29xqZpSmvT1dXjbGaDYbv77n/q7AIj3GC19dJGpnjBTXbUl3jyrmPM1omia0rVrj/7fMUl8+/+x2A7gHIrCRV/XuT8i29rOZzF8d6V6bOyJH5CuAhAFNTVbW23ypOmzfm8YW3RsO+6A5rnq50VKKiSduec/7+pZGHATLp7SlT1wL4AMCKkhIidphDp6DGmXXAyytPOkFC4n+5aeF1owFS3DNp5++deZWoLQtvfOMbCvYugBhkxNdVVpY7NTsaBqsZ4vfr5PZfwzHeJ3c8/WW5g3sOgZAwAIQvtRfO/+OR638Px/jxhNVsWLPjicvvdPG6gQD2AtRy/YKb7hRbl9hwRsvEz/detX1tZfHVyaq6KgDDNpmuverlWe9axdbWlbGaDWusZsPTVrPhu7E5Pw/XyZu3VLXkvcwZLbdH2rboDuvB5l57nT5tu+tStvqlrSkuphTACwBeLC6mUuHyMFDZkl/mE5QxXzImltlYXXQJAPRO3v6W2FpE4JUEuW0dIcIrNy28borYYiQ6Rp0rK1ugss3zZy71hHHYEgBeBBI7vejisfJWs6EOwKR0dZXv17LJz/Z/8KMzxdYkBrcsvHbUyEffKAHwi5vXKEZkrn5oYu7ygVazYavY2iT+ycuz/lPe7E0eA+AzAP++6IUHV85dPC1iu2qxUIf1GwC5VrNheLjGLCkhEwFoioup1Ms5RHre9+Xrfiq7xGqemiq2lngkuBW+DUCT1WwYJ7YeMbhl0TXDfjo09Xeesrt9gnJ4Z66Q0JmZu3ga+ebAZXWUki8Pms+9Ppxjh7tWbGfg1kVX9/3BesHXPkGZB2Cq1Wz4WWxN0YAzWlQA7pQx3kcJwFJKnvBT+dPtKYUmIQ6c0cL2T920YUf9sCFyxvOOT1DeEImuh6KvsGrl9my1rCVsHnlJCSEAHgHwTEkJYU90vMTRGZC2aaxWbk8WW0e8Mjht/ekA+gN4T2wtYvHqrHc2uXnN5T5BORCBv0mJOMRPZYMFyqYU5ZTowz12652ycI8dr7wy691dPkE5HsB+hvDLbnht9v+JrSmSzF08jcx49ZYnCfhdAJ6QM77/Ti74esK+py94SHJW4wOr2cD3Sto5TCNzPO8TlNcA9OObFl4X9pwi0R3WZGVdnxzt4bxwjRcMD7gAgKG4mPIlJYQtKSGiv894o8aZvd/Lq6SLRYiwjN/MEh/G5fzUpTuuWM2Gz1nif5dAuP+GBbOleNY4ZG3FqYUA4PJrPhdbS1fBajbU9EzaeXa6ukooKT37Gc5oKRZbUyTgjJa+y6wXlqw4fM79CYpmDYAzdj5x6TkLZi9ZJbY2ifYxf+ZSuuOJy+4CMBcgF+6sH3zo8vl3p4fThuiOXLUzp7LKmbM5nGMWF1N7cTE9HHz4HID3pNXW9lHZ0q3cJyikGNYQ4IwWdkvtKVyaunbj0jkvlIqtR2zO6fGpMUVVx/9WcfqTnNEiVfKIM+rdmT0BYFPNmO/F1tKV+NF4V9mQ9D+G+KlsNwBLZ3FaOaOlqO8Dn5hHPbroVwBbPbx6SJ/krS+d1u37AqvZ8JPY+iQ6htVseGli3g8LDjUXJq6tPPUHzmjJDNfYojusPkEpa/ElVkVi7GB4QDWA6uJiKn4JDJO+CCb9fTDpi2J9XAXjkRMIUkmi0DhdoLK0ameO1B0MwMsz/1MpY3xnO/06PYCXxNYj0T70yoZihvAVVrOhUWwtXY1FNy3eDZDTCIRSGeP98YYFs+eIrakjBGOWS9y8+t4aV84EBeP+CUCvH+41zp0/c6lLbH0xSXu+3yPlY7STd2996RYKZipA+jLEv+a0p164kTNa7gt+/iEjetJVz/u/aNTJ7cs3P3r1pZGyUVJCSHExpSUlhANAiovpwUjZ+h9Melltmu9CuY8Y9TZ2KAFhKCj1Kiiv8BIrARF8Mprol9FUlZtYCQj1yajeL6MprR4n+WU0WeUmBwkIfDIh2S+DXu1mrABUFDQ/aM1DQE6DydbheLDzn3/kz31NfQduf/wK0W9q4o1xTyxYWenIGyqATbeaDdIqdRDOaHkMwENjslc8/uHc5x4WW4/EyTH6sUXuRIXNttx4d9hWSiTax80LZwxYXz12Q50rEwJlz7KaDb+IrSkUOKNlEYCZgUdUAMiDUtvv4xBwPH8GIEegksYkmGxrrEtUhDukVADQ1qT7cjxKIa9bmTILwOsUVAbAS0AmhcMX6Ag9jF8XyRjfSq+gZBFoNuBFB5oRiV6zlCV8Unf93sJI2gg6qwSBBJjUkhIyMJIrrjWvaoYIDL07vVaezIKMS6+T6yn+eWMgEDgowRZC4fPLaLZbJXRXetjNhIL3y2iuWyUUqNzsJgCCTy7keZQ0X+VmNwKAT07zPUqaq3YzGxFI7MknIACgBLC08UXtczY9v5ib4Q45K7uqJXevh1d1D/mX0EW54PmH9bWuIeMHpG3e/c1dD0vO6j95PEdbevuftSMfGPzwe4v/fGz64ROfIiEmgZasOTKW8F06FltsFsxesn3ko2/0ECj7I4Dv+jzwqdHDq3WIo+oKty2+KlstM0xz+XU00PqbdI223yb9qT5WuJih5A9WILtsif58h04YlFEj2yf3Mwq7ju/l1AhD0+pkW1iBKNwKfrSMJyNlPNO265kawG/Co4nuAqpQHXkyo/afhxEQUFA1BV1MTPqXHFr+F93djt1B57cYQEm0HNkD5vPWDDe9/X6DW3kVQFgEHO9ihNjOVVSHNVD6RyUcsPWOeIB10Gm9HkB6cUmigBL9eAATEIYPr+5lTYpHSW9Pq5P1VHqZUzIg7wUAfpY2APjEz9IVXoXg0bjY/wCQExCf2kPOOWJXHfw5QtvHmuDPUR+b9EUE5CcKKicglIKqk5tkr2pbGDNM+ocBvAVgANo5UauduZUAwllzsUuwuXa0AQDcvOp+sbXEGlazwXfDghsv+LF06rcAeZMzWqZYzQZBbF0Sx6U/QNiKlnypRKDI/PHIDRWc0XK6jHg2enjVS8EVSg9ntMRF++zfKycudvu1mr4pW+ftahhsQxw52yETcBL/K+cZxZGn9M0y6Jv/PiTBwSLBwYKCngWAqLzHT7dhKFHZdfw+bQvzLkNJsy3Rn9yiFVKzKuWHGZDHKKgcAAhIGoCFuhYWnicT3EowMgAEgBcmfdRWXxvc6a8BuBwBZ9WPDtykiL3CqgQIY/OkRCSGtS3FxXQ3gN3+lYn/Ynl8AkAgIJ72fng1r2oYj1K4MrlRVqRrYQemQjaWgMgEQv0AfqCgr5TleffwLH7gZripDMFftElfgXDf4Zhsa2DSTyIgxQBKynN9GxgBT2bUyM8A8G8K+iQC/q9AQE56oipZl9LLK6VwgPZzFYDSvY0DvhRbSCzyxs2v/xzsiLIwW1v6GIAHRZYkcRx66HedfcDWFzq5bZvYWiQAq9lQNfCh9z92+BRzAcKggytW0YIzWgxAjkHFOl9cds99RrH1RJFiACwAUFCBgLzn0PKfNyX5k1Lr5X+q3UyjLdHva07kvQovsyC9RnYRE/hcQUF5AvIQAg5esUDoBoaS8RT0dp2D6dmcyF+mb5ZdpP+/lj1/1Zsz6Vce8QUArAXQpybd90hyI3sagMzguCoAxSRKc8ZqNqzpff9nl3sF1We9krZvWG68J2S7ojqsA9M2pGyrG4FMTbkymna9CuE6jYsFAklnx/+DDy6j23V8pV9GC5ObZD0zIJ8M4EhB/U0E5PmqTO9+t4p+yM1w2wmAbkcdy7bmmHY6Qqtxg/XB7g5qH+GX0Y/lfqYHAn80J31x65uydfS+pr5JYdfaibl10TUDCP41JV1T9ea6h2dKK4fHZnG2tnROrSvrgesX3Lj2zZtf/1ZsQRJHJ1HZ9C8F48GkfMte4Eqx5UgAcPj0HwE4knwV89vqox9b+C+GZL0jUNkBN6/pSs4q8Hc3NzkJhEC8rrvbsUbX6gC9SV+ob5a9D2CiQ+Nv1DpZNQGRkSMhE8Hv9+Dq0X8b52tf51n6WVqdbBiAHdSU+INPTq0KH/PeUXyMXRnAFUdiYSmoioAQr1yYqTDpP4bJtj/yvwJgz1MXfz7m8YWNta6so7pGJ4uoK2gFCQfyAKBX8o6CaNpVu5gdQOAOBsf7gw98yL8CeCrBwS5JbpI9iIDDZ2lI9j98KN8zACbbcJhsxqybXIu5GW57VN7AyWKybZD7mWuCjwS04+JmbS6sc/k1vo5m9XUldjcMnEnBYHjG2q/E1hLLWM0GOiJz7aUMERw/lU59MhAnKRGLbKsdYWcIv2P+zKVSl7IYIbCNTqsIhK3oQAJLNOCMlqIaZ87HAmU1AM0FELaOlnFBwIGcBOBhBBOmjrxkXaJiq15Tf0JBtwEYIhB6fV06n0pATj/a8UdImdtSkX6rs4iAFAD4FMA5ch+5GcBPx6wOEBjndAD3NyX6v5T7SCqArS5zwmPWJaq2sbIRoaol75kmT2o+Z7Tkn/jooyPqCuuq8klOANhRP3R1NO0SEAUAJwF5Asffni/G38v51KOk71dl+a7iZrhpCoCU6MjtKBuD//4XwGMnEw4QcFJTJyAwP36Klxgpsdnb1H88QDe9fuOb34itJdZ5ZdY7Ozij5XIA3zLgnwRwl9iaJP5JIMdAPsDPy78QW4vEP0lXV6emqmv8y+65L9avy5MpCAmEToJFHIQvhJ2j7aya9D3yieJdhpJxDi1v1bWwE5hHmsu4wKsntxNrslXDpN8C4LJg0vUJdottawiwJilgP4+CLlS7mYcyamQ3w6SfA6AAkU3I+hzA02pZy6UI1MdvN6KusNq8KQoAaHCn10TTrkslnOaT0UqYbE+f4MMpAeAG4CcgbpWHeZWb4Ra3Dlg7Kcv1JAFAfYq/qh0TsRigwblBj/wRSByHYY+8MxjACID8R2wt8YLVbLAkKho/oCB33rDgxk7dfjIemZD73/4AUlNVNVaxtUj8E6dfU1fnyiwTW8dJsBwgLgSSbWI+fCHSWJeo2LqXNYso6FaGkkEtGv7uujR/D5hsoX6WJcHQAaA9v1+TrexQgXdqRbb3FZWLUQJYCuBxHG+VtoNYzYY9aerq5gxNZch5C6I6rH2St+YDQEHivqgsSR+BUPR16PgTry4fZzk/fiAKAKCkXQV3SwhoMAaTCujiF5mToTBp96sEAvJ0Bz8TW0s8MT73pznJqnpnSdlZ93JGS7LYeiT+ps6VMQcA0jWV0ucSY7T4EmvqXJn1Yus4EcGdub++Q7v0Tp1J3yO7Ur4lrV4+06uguwAM1N7jeK5Di2ABn8QMABT06vb4KNwMN82Z7bqNAZkfLLvZOs8lImRoKn8+1FyYGGr3K1Ed1tyEQwMAoHfy9ujtrpv0KqWHsAl29sOTO9625iRWYmOWvPJAe9W0evm6kz3HajasydBU3gsAWpnjyS59kTkJOKOF2Vo3vE+OrtS66sFbu3wr1vawYPaSugZ3+ql+QZEC4LXANrSE2HBGS9HOhiHXARS7GgbfLMWyxxYEPM8Sv+rER4qP1WxYYzUbnu6q3yPWJSrWOU/3EIA/FV7SrTbN93Jltu8UmGxhqUNdmeWtA4DyXG9OiENYAFAKCgoa0VXwHfVDTQAhCFzr231NEdVh/b3i1P0AsKVm1OYomu1JQIiMJ1uiaFNMjqxetytpotqZ+w4AtPgTm090rATGeXh1ermDe0hsIaHCGS1F4WidFwpWs2E9gfAogMsm5P735WjblzgqxQCRBWIPiRQWFGPkJRzqnZ9wYITYOiROgEnfPb1WVqpxsY8JhK4lIAPTb3XOCWdoIaHYCgA6B6s40bFH12hbY9cJTxIQUIJnIrw4pwEoBeiFCOTHtOv7RlSHtcWfIAeAGld21HpU16X6pgJAcwJfGS2bYlKe480DgNo0X992ntpAIDhSVLUjIyCrU5Giqr0doE4AX4osJSSCF40VAH0CIVxEwsF5hR/Oy0/Y37y28tRZnNES1aohEv9Lz6TtwerltF3VRSSiQ7M36XCDOz0q9csl2o91iYoVHk28BcBWjZPRV2Z53y3N904O16pqa7KqFRsAIMkmOz3U+NNEB/sIgDKGkkjfBBUDOJKE1+4bYVEd1u6Je3oCQGHSTn+0bFKCIgBoSPHvjpZNMWGEwAorJe1bYbWaDTRbW8amqOomR0ZZ5+CmhdcluvzqC/ul/FlpNRscYusJkWsAqgwUIqdqANdFe2t+/sylvgRF83ifoHADeJczWo7f7kUiwpAiBn6oZS3Po6vHHsYgNk9Kuc2bbBNbh8T/4nhW1yelQVbLUPIKgN8ISP/sG13XRDBhe0BwO38KQk2aMtkEP0s/o6BnH3pL1TP8Ev+iBICAQMxsu2+ERXVYs7TlQwFgUNrGqDms6XXyRgpawc1wd4kV1uwqRQMAZNTKN7X3XKdfu+5Qc494dcKiwn+t553p8uuIRu4IqUyH2Ny88NpCgL8YAA1s1QAAbiDg18549RbT3MXToua4Wu5+cCtAbgMwcUDqpiXRsivxTzijhd3X1H8oBfPNzicuu0dyVmMPlvgoS/zqEx8pETVMegKT/kZdC7te52B0VZnedwGcBZMtonkNfpaeDwAkEBsacvhOZbZ3DQFhVW4mYm3FA9cSshUgBxDCjbCoDuuGmqItAFBmL6iOotneBGRPFO2JzZFqCO0u/N3kSV3nE5Q5nNEitWg9BjyVXwmgekP1uDfE1tJeOKOF7G4Y9CtLaJqSdc0GyAMAKQZws5L19Fxx+JxHvrdetJszWi6L4ornu72Sdhzc1TDoqtOffuHUKNmUaAUBPxFADgXznthaJI5OYdKewemaqj5i65AIcPgN1Ri7jq8G8BqAtQwlvbJucl0Dky3iZTApoU4CAtrB8B2excc8Q/dn1MgiucIKOeNJVrHO7aHcCIvqiHh5lRyA99M7no5aFxWeocNbNLwrWvbEpiLb2wcAqjN87Z6EiYrGKgDKEZmrpQvjUbh54bXdCYTzNDLHF1azIWq7BGFk7n5b35yhGeve3f3kJYuDmby/WM2G187ivswbmbnqeS+v4gF8qJXZK6Y889TXnNHyQCRjXK1mA+2VvH0ygJoDtj6vcUaLtIoUZQakbX5Vznj8iYomqWVujFLvSttr8yTFfFmrTk9gVXV2XpniR42TSatL9b0C4EyYbIeiJUHuZ5IBeAmICR0ov8nNcFNWIEsIyASY9CF3ozoRMsbXrU/KtpDyFER1WJOVtWMY8IhWkkfVa+oCViBKh07wRMNeLMDy5Mhn7G7vuaOyVikAIEVVd0ZYRXUSqp0591Iw7IS85SvF1tJeRj22eAKAZwB8taF67LVtX58/c6nrkzuevgvAQALhX0rWpdvVMORcABFPzFow++39PJVNB9BPr2h4PVJ2JP4XzmhR7m4YxHGJ+3b9+dg0p9h6JI5OvTuzzOXXdZmFl1ik9E3VWJdK2AngdQKy1qUW+qXd5rwtGquqreEZaqCgK2GyPd7RDH+fjH4EALVpvufDo+6fcEaLwuXXkeqWnF9DOV80h5UzWoqaPKmnCmAUiFJmcla1IhcAMmpkcbd9GyqZNfKK4L872ntuZUve9wDwW8Vp3nDr6gxsqB43gCW+fSrW9YHYWtrDbYuu6uYX5D+rZS0tAK6zmg3HvMBazQb+oPnczxo86U/g72YSKoAWR1Kj1WxYXpCw/2ubN+Xqa1+51RhJWxL/4GyfoFDvbRpwt9hCJI6NgvEQhvBxUYe10xFYVZ2VV6ZYofCSPi6VYAQwWXe3I+qJ3IfeUvVnBdKrJsMfll1q+YPN+xxa3p5gZyMVjpUGAFXOvG2hnCzmCmtxqx7D0arz1wcACEiXqBAQJKQ6rACwvX7YDgB8iy8xL7yS4h/OaOkOYDxP5W/Nn7k0btr1ckYLsRz814uN7lR2Qu7ye61mQ8PJnUlKAOIJOK2E9EvZMjaiQgEMyVh3daKisaakbMrtnNGSFml7EoBG5pgF0FoAP4qtReLY9E7ZNixBbgu1ULxEiBx6SzXGz9KVABYSitXlud4JaqN9XrRXVY+QU6EYAQCEYlG4xtS2MA+qPEw6TPoB4RrzCIVJOwsBIFlZ1xLK+WI6rGuCzmrU6vw1JvkvCwYmWyNtK1aoyvQOBoDKLG+7Y1KsZoNPznhq0tRVEXdO4o3hGWteBgCd3HZyHdNiBmG2QGUXUTDGRTctPumL3JEWiwT0oQx1RePuxkGTgk57xHhp5nu2Zm/ymQBJJhDeiGbFgq7IbYuuyvUJ8rMHpm46FKcx2V2GGmf2TqdfJ1VwiRYmfRE1JX6ed1ixmlAUAbiFgJyRf717lZiy5H4yHoAto1b+TbjGJCAfARAo6LRwjXkELnH/OAA4JWt1Qijni+awjs35aTAAKBjXh4hSnT+ZnxS4VdQNk63LXIxZnlAAIBQhxaPlJRxSqmWuUeFVFd9wRgvZ29RvTLeEAw3bHr/yoNh6TpbZr99wCUv4BUrWVQKg3WW4rGbDmoPmc5+qceUMEyjrQxTqpVrNhi0JiqYnKJjzG9xpb0XSVldneem5Z/sEJZJU9S+KrUXi+NQ4cw77BIUgto4uQaCu6a8E5EKGgrRo+Vtgsi2AySb679/P0vN5hv4eVp/GZKt2qvkDHiW9y7pEFdZFgg3VRQ0AcKi559pQzhfNYW10p50rIz5M7fHp3GjV+UtwsILazSyPhq1YIb1OfggAsqoV+0M5v86VsbzMXtBlktROklPs3qTUw3buXrGFnCyc0aIrOTzlBa3cwU8u+Pomq9kQ8sXWajYcIhBuATB+ZOaqL8Io86ic3u27p/IT9teurph0OWe0FEbaXlfF7ddeAuDgqvLJ74utReL4qGUtLIEQWitOiZPGukRFnCr+EwTLQxIQPtEuSxZZFoBA0peMJ5m16T57uMe2JwjfqTyMPKtKHtZY1iZPqhYA9jQOCGmhRzSHdWfDkDSesr+8cMOHdVExaNKzAHoBSA61fVmcEnIMKwDYvUmbKZhUzmgJaQm/M8IS370AeICJWumSjhDsWvWah1fnuPyaM1+Z9e6ujo55XuGHS/um/Fm2oaZoao/7vh7acZXHZv7MpXypvXCEQFk3gPc4o0V2wpMk2sXNC2cMAOhkBeP55HhJeBKxQb+ULcNZwmvE1tGpMelJfqniOY2bzaWBpip+xFCb4m6HFX0AQO4jL4V77Mwa+UMA3CoPc3E4x83QVAwEBD+AkLq0ieKwckZLOoChFMx/o2WzWee/AYCcgk5AqO3L4pDqDN8oACjP8aaHcn629nA9AJySuXp0OHXFK92N3xTxVHYxQFkAX0WrJFtHGJfz02sApgN4dO9TF60Ix5jzZy6lemXjWIEyVQJl3+OMlohmLFvNhsMAbgIwZnjGb1J90DBT70p/CCDk9HyLqDF5EidHRUv+Vj+V0Wi3UO4qWJeoiEDoMwwl/0dBFwIYB+BhdKDOabghIJcCcKQ2yMNfx95kawbwDQW90rpEpQzXsBmayvF6ZRMT6k2xKA7ruJwf7wWAnkk7/4iWTZU7cKfQ0fZl8YbMH1hZZYTQYlgHp693AkCCwjYpnLriFYbwlwaSBaNa3SJkCu/7qt+6qgk3cIl7G0/NW/ZUOMf+aO4zhwEyA8CAwqSdn4Vz7KNhNRs+7J+y+eCmmtFn9b7/s5i/UYgnfq+ayClZ157Xb3wzbMkbEpGjqiWvDIHvsmh1oOs6mPRE28KsYii5SyB0MQG5mZia18BkezpWnFX+0cTxFHQKBdUiQgtwVZne7QQkJaNG9nW4xt/b2L/U7dfsDfV8URzWw/buI1Wskx+QuqkkWjYVfoYBEHPL+pEmtUG+HwCyqxSVoZxvtfVcDgC/lJ0ldVUBwFP5kXghHjE+jzijRc1T2cc+Qd5QkHhg3Du3vhz2ZEOr2fDDwNSNG/Y39TtnyjNPXx7u8duSpqkeT8GUegXVu5zRoou0va5AIC6YjPbw6i5Tnzre0cmb5QCQp7NKcazhxKQnAJ5Ir5OPrU/xby/N994UC8lVbREY+jwBiegCXGq9bBUFhdrFTEaYnGIPr0708KqQQ+mi7rByRgsptRdybl7z1fyZS6PSkrXmVY2cgo4AYEGMLetHgQ7FsP5wr7EGQJNA2YiWMIoXNDJHAUBbEJxH0UoYDIWCxH0WAAMBMv2dW1/aGSk7PZJ2nyVnPId2NQx+hjNakiJlBwDevfWlCoBcDdDC/IT9X0fSVldhcPofzwGAjPHGWYm2rsvAtI1DAGBw+h9JIkvpNFiXqIhHIbwI4H4Ab6Q2yAZzM9y8yLL+F5P+HDnPjKKgPCK4ACf3M+PD7RQrWVdBoqIx5EZEUXdYWeLrCSAfUSxM7VUI1xOQpLpU32+xtKwfDWrSfeMA4HCeJ+Se7Fp5c326umpC+FTFL4nKpku76/c6rWbDU7HsrJ45b95dh5p7njY4/Y+frWZDRGPFX5r5Xr1PUF4CIEcrt78dSVsAYDUbfhmctv6XUnvhaYZnn7g10vY6M5zRQkqbexQXJO6z7XvqwsNi65E4OUqbe2wBgD2NA2Nu9S9e0TmY75ReZo5XLnwKYHYsrqyWvqkaLxD6EYAtBGQSIrgA16LmWQAIOsbhcoozC5N2ZYd6ctQd1jHZvz4KAEPTf18XLZspDbLhFJQ6dEKXK9ci9xEnALA8CbkveLcEq5IGu4R1ZTijJbGqJVfJEj6mS6NxRkvPPY0DH9bIHFv7p2wxRMOm1Wz4g0vc+06LL+H8q16eG5E+1K3prt83VcU6926vH/YIZ7RkRdpeJ2Zokyc1qcLR7X6xhUicPBUt+RUAsK+pn9hSOgcm/SNp9fIpTXr/looc3+Wx6KzCpFem18q/EBjo6lN818Fk+yWSC3AtOmEiBQXP4hmEwSke+ND7Wg+vhtXW64dQx4i6w7q7cSCXoGhqKUjcvzFaNjUudgQBWc3NcMdFGaJwktwkOwAAOZWKkGu1HbT1+rTOlUkiXSQ+DhgFELKvqd87Ygs5FnMWT09QMO6vAPidft1U84wv3NGyPSb7l1tSVTXlK8snX8cZLbmRtDV/5nstbl5zAQCdinV+IHXBCg0C4UoAPp+g/EhsLRInj17ZcCSGVSu2lnin+XntEgAmAO8k2WQjYjIMIMCLajeT1pTkvzN1jjPi/lNanYzyLPbIHmq+PxxOscOnTweARk/avlDHiKrDyhktbJ0rs7/dm/RhtPqv17yqKQQwHMB30bAXgxypWRlyvLCHV+8AiBxARJ2QWCdDU3EeAvX4fhdby7E4aOv9k1dQ9ecS995lNRtKo2nbPOMLd70743SAKAC65JJ/3xfR64vVbNjBJe590c1rimuc2e9F0lZn5JH/nC1LUNhuz9Ye3m01G6SkyjhicNr6gQAwOH19ntha4hnbC9oliXbZtS0a/lcA18Nki0lntf4lrQnAjQCeSbvN+ULEDZr0MoaSkTKehLwa2paBqRv7A0Cu7lB8xLDm6g5NBKAHELUtVZ6lRgAoz/F2uFh6PFKX6ptIQdGRP8Qe+t1NADAya+XpYRMWhyQobFdkaiq8VrMhpKLHkYYzWi7YWjdiZK+k7ctL7r9dlDamVrNhj1be/ABAJsvZyCfxDEn/4/5sbeneNZXFF3FGS99I2+tMLDt44VnN3mRZD/3usH0pSUSHA7befwLAtrphMXktinlM+iKY9Mv0zbJrWzT86tp0/xkx7KxOSGpiH2nR8BUAHoiGzapMrwGA1q0UNodrzAxN5WgAGJC6SX6iY49FtB3W+wCgKOfnqK1QpdXJc/wsbfbJ6ZfRshlLyH2kmRJ0KB6nb8rWKgBgCT8mPKriD85oYQ429VYhijdb7eH85x8ZCNAlANbvbRowVUwtZ+R/O7+7fnfl2opTL4i0Ezl/5lJa2ZJ/KkBaALr0X/++L6INDDoT1c7c8wG0rK444xGxtUi0j3IHVw0ApfbCsJeq6/SY9EUUdCWAswDwWid7LzfDHZWKRe3GpE9MbZC9QSga69L8U2CyReXzJpRcCQDVmb4/wzXmqopJZQCwo35IyOEFUXVYt9cPS9UrGyo+mPO8NSoGTXqZ3E/GynjyGTfD3SXbDeqbZQcZSlwdGaPGmbUWoP61lcVdeduwrwBWV+3MjXiB/PbS94FPTj1o67VBRnw6AJdbzYaQt1zCwfyZS+lBW58RAthmBFqphnxHfTJYzYZKBeO+ESDDAfJTJG11Fm58/XodgXApgC+sZkOL2Hok2keqqkYBADna0kSxtcQbPEOn4u+GCxTARBHlHBPrEhXxs/QDAIUMJRcUXOfeGi3bGTUyRiD0cMF17vXhGtPLq1IAoMzRvSzUMaLmsHJGi7bFlzDI5klZGi2bdam+CwAkCYR25S0vOQK12kLm0zue9gHkEIAe4ZEUf/RM2nEZAChYd0yVsuKMliI3r/6x2Zus4KkMADLE1gQEnEgAswCMGJr+uyXS9vY8dfGnA1I37VxfPbaIM1qkEmwnwMOr7qNg9ONyftosthaJ9jMk/Y9eADAwbWNvsbXEG6xAKAEJd7mmsKN2MR/LeHJOi4b/N0y2X6Nm2KQnBGQcQ0lYbebqrCMY4vd05AY5ag5rz6QdFwGQEwhRq79KCeZSUBzu5l0bLZuxRrOOn8IzNKGjXSpSVTWuVFVNl3UEVKz7Cq3cTs/mPt8jtpY2FANEBgA08OdcLKaY1ljNhs8HpG7cv6V25OSBD30wPtL2ttcPGwWQAwD+wxkt+kjbi2fWVBQPUjDuljR19QKxtUi0nz2N/bcDQMnhKRM5o0VqU9w+xgAoJyAPIVabCJn04zJqZBfYdfyu2nT/PdE0XZbrGQcgu0XDhzXvR69sOiVJ2dChSkNRc1gTFLY5MuLD2d0/D9sS84lIq5Ml+GV0a8F1Xa+cFQDApC9KcDA9GQEMOthaLUdXSlx+TZetd7mjfgglEFZFq7rFyZKurgw60FRADK4W5CUcmkBBDjl8iUsi3UrVajY4AEwHaF7v5O2rImkrnuGMlgQ3r5nsFVRvz5+5tEPhQhLiUObongUAXkF1NYCfJKf15Dj0lmoYBZ3kVgpfxGoTofqXNAUU9GMCcijBwRZFO5xR6WHOB4D6VP/2cI67q37Q/mZPcofCGqLmsG6tG6HTKZq3Lpi9pCEqBk36LAIyRO5nunK7wWICQggI0MHWalvrRrzr9OvYrrhyxRktqQLY3g6f/nuxtbRlYNqmYQCQrq76FjHYKnbhjW9UHmmlmqc7GPH4X6vZsHZk1qpVexoHDBxuentGpO3FI4PS1t8FQCUjvg/E1iIRGmqZ48zgf1lEqJd8ZySxmZ1NQFCT4ftGbC1Hw7pEJZf7mI2UIBPAxTDZmqKtIb1OnkhBmwQGYW19LYDN91O5uiM3V1FxWDmjJdMvKPo2eVKjdoGsS/XNBQCfTIjJrO4oUUJBgUBgeQdX38j+4H+6d1RUvDE8Y82VAJCmrt4ktpa2/Fp2phKg/lOyVl8Ta87qEaxmw68D0zaWlDm6n3n+84/cHGl7ycr6KQz4Pxrc6c9zRotUp7INDl/CjSmqWr+hxye/ia1FIjTyEw6mBf5HI9ZLvjOS3CQbSUE35F/vjmi76lApOKR4JNHOplRn+t6GybZFJBnjCchv4WygUHjfV+MA2hugfdCBHYGoOKwDUjddDwBqWcuKaNgDAJmfXOKVC0J5ri9qIQixhrXAU0pAiFPF70QHY3UGpm5sAoBRWb+KWjJJJC5mCI+xOT9vEFtIW3gqKwLIH6/NXtIktpbj0UO/53y1rOXAltpRD3NGS3okbS26abFbADsNoIoUVc2yuYundfUObX/BGS2ZB229U1niXxJr4S0SJ89he/c9DPwtAHkYMbizEovwjyX2BzCcgMRkkxFqSjQQkAcAvJl9o+sGMTRYl6gKAfS36/jD4RxXybqfAAgAQtCBHYEohQTQazQyBz2z4KvofOGb9DK9jU1hBPJJVy1nBQApDbLeANCiE97uaKxOd/2ePQDg4VVdrnn1xpoxAgPhz5dmvlcrtpbWzFk8Xc+AH5OsrAtrrFEkeGnme3aXX3sBgGQl63o30q1UrWbD3lMyV7/b4M4YsK+p32vHOo4zWoo4o+W+LhQDeAlA2FpX9nyxhUiEjtOvSxcg22M1G56WnNWToyHFv5CCwqUSPhFbS1sOvaUaz7P4imfoLgC3iaUjwc5MAQCbnt8WrjE5o6WP068bG8iz6NiOQMQdVs5oIdvrh6kZwv84f+bSaBXnHUVAkmU8+TxK9mKSRDubCwDpdfJvOzrWy7P+cxhA/ZbaUc0dFhZHcEaLDCCj/FQevbIiJ4nNk3yxAJYdmrGuTmwtJ4PVbNiap7O+5OHVU+rd6YsjbS9XV3pLkrL+t+31w67hjJZBbV8POqm/AXgSXSRxJUNT8YBG5rBazYaYv8mRODZqWcsArdwenXyQzoBJT5IbZX1btEKZ2mgvF1vOPzDpVbnlikUASHmu90aYbKIlQqY2yLsB8OWVK94Mx3hzF09TamT2LwG0AOSCju4IRGOFtRdAujl8+qg5j/Up/gcpKPWztCvHr8LP0iHBWnP7T3jwyXEAXawW66l5y84FoM3THdwttpa2/FI2JQ0A6lyZcVOaaETmb8YsbVnpqvJJl3NGS0TjoefPXEqbPKkXAGhkif+jOYunt00YLA7+26Ftqnhh0tPPD6hx5mQNSt+wU2wtEqEzd/E0IlAmv1fSjlSxtcQRRTKepOla2Ki0Nm0n82U86ccIuCj/evcvImsZD2BDuJzmQ82FHzr9CX2HpK/7t9Vs+KajOwIRd1gHp/1xOwAkKhp/jrStI2iczCkOndAse6i5MVo2YxGHjr/craI8TLawdD7K01mJXtEwNhxjxQvN3qRzAGBw+vqNYms5CuMB7PnmrofDGm8USebPXMpXteRNBBgewLtnzTNHNL7UajbUZmtLb+eprF9pc4+2N7AlgXxEGoakxNhnv63vBQCwr7GvaFuOEh1nmfXCZA+vRrmjICYz3WMRr1y4mYK6AHwhtpbWVL6ufh3ALAo6j3mk+SsxtViXqPQCoWNtif6w7NhxRsuQzbWjDJma8jVf3fno4+EYM+IOq92XOCVFVes/rdv3eyNtCwBg0mep3Uy6zsE8GxV7MYzOwfKUYEe4xktV19jtPr321Kfmy8I1ZqyzqWaMGqCVcsYXU3Fiz3wwgVGyrsnp6qpwrZ5HDavZcEjBuOci4HCvjHQM6ZqHbvqwd/K21ZtrR4/kjJZJrXSsUbFOmqGprEYnT1wJxAzTaQBWbjBdF3dzRuJvPLy6AABqXVliZZHHFdYlKjWhuNKm5ytgstnF1vMXJv2gzGr5DXYd33SowPuI2HKSmtiJDCXEqRE6nGs0Z/H0BALhPYA0VDtzzw2HPiDCDitntMgO2vqk2r2JS6OYkXoWABCQ76JkLzYx6VkZT7I0LiZsYRFbakctFShLDjX37EqlgsYC5LdYy6jeWDNmnIdXq/qmbK0SW0sonN3983e66Q5U724cWATgCUQ4hnRP48AzAewG8M7IR99IO/K8X1A4BMr+2pmdVQBw8+pLAdKvd/I2qZRVnNMneesYAMjSltWIrSUeyC9V3Cr3M4ThETs+gUmvB/AZoajxKIUR3Ay3R2xJSTZZPwDIrlK82tGxyh35yyiYgcnKutusZkN9x9UFiPQK6ykAEn2CMmoTpUnvf9jPUheAzdGyGYvYEv19ASgpaDhjLw8E/+0Scay3LrpmEIDu3fV7YitIH8DayuI+ALCpZtRzYmsJhfkzl9LDju6LA+GjYACq1isafuKM397PGS0jOKMlrNcmq9ngBDCNQMhOVdduPFKlwE/l3jpXZkxVf4gEm2pGn82Apz2TdoYlmUJCPFLVtZMA4JTM1Z1+3nYYk76IoeQpAEh0yG7oaIvycEBNiUVeubCbgvYgIJel3eY8cOKzIg8FnQBgN0y2Ds0rzmgp2lA9dkyf5K1bNj16TVgrMkTUYR2a/vt9AEWCoik69VdNelmCnc1x6Pi9MNliakUs2jh0wsUAUJ7rlYdrzFMyV9cBwKisXy8L15ixTKm9+2QA6Jm0q0Pt5CLEOAB1Dp8+jhNoyHcAXAB4AipQwAOQJwGsV7HOljPMz+3gjJZrOaMlJxzWrGbDhpFZq/67q2Fwt28PXDodAAh4hYzxjunMFQI4o4WpceZMEsBaFsx+OzqhWRIRY13V+HICwc0SPuYSQWOQYgp6JE5e/MRKk74YwEqFj8kMPuMXUc1fCI8mjhMYGBzajvUK4IwWLYB3AFK2u3HQxPCo+5uIOqwVLd2GZmnL7FsfmxatO8FRrEBUSTbZk1GyF7OkNMiCcaZkWbjGzNUd2sUQP210p2ae+Oj458/akdkAvMsPnfcfsbW0JUlZ/69MTflhq9kQtzdmwW34SQAeomDG//nYVckAsgBcxen3lZbZC/IBLAFQfsqjbzafOW/eMs5oOZMzWtSh2lxXNXEqgFU8lb1ZeN+XP1IwCX5BPgKduKxVz6Qd5wPIA/C+2FokOo5fUORSMIdiLUwpRikBjrR7pKImVjbM144C8AEBOeJAU4jtQAOASV9EKH5iBUK0LUxhR1ahB6Wt/wVALwDXWs2GsJfAjJjDyhktuhpnTnZVS7djFu0ONzxDzwMgAOjS5awAQO1mMgHU5c10WcM15vyZS30Cle3b2zRA9HibKFEEYIPVbIip93vmvHn5TZ5UXX7igVKxtXQUq9mwpnWpE6vZUG01G95bds99fdy8JgHAUCXrfiBB0ezb29hvEoAfANpw+tMv1E6e98yrnNEykDNaTroJgdVs4AsS960AIOepPJiARYBYWH2JEGqZ80kF48bQ9N9jJ4ZPImQSFY3DExVNXaoedsiYbGu8CroIAASCKzraQCdU6l/SPJTYzP4ugOoAeAD4CUisVCYpJiAKACCBTlTFoQzS+4HPJm+tO2XE0PTfN1vNhojsqkcy23sCAl8CP0bQxj9wq4TbANRr73F06XJWAOBn6SmMgP0RuCM5AKAw/MPGFnMWT0+QkX+NLdDv+w4wiC3nH+xpHDgCAP6omjBPbC2RJLh6vCX48xRntGgAnJqkbLjU4Uu4ssaZczOAmxnCVxuefdzu9OtePWjr/Z7VbDhqWRbOaMnN0h7+oqql58ijvMwjNr48wgpntCgYMiw3S1u25ss7H7OJrUei41DKFHD6vTF1Ex3LKL3MCgA3spREvzqGSa8C8O9UyG9s0fDVdWn+qQWlyiM3xyViOdCtadT7JyXbZASBxT4vQrgOckaLHlC9CdA9GnlLcZgl/kXEHNYh6ese3VY3TNDJ7asiZaM1/GOJmVqB1TQk+7/RRsNgjCMwdGhzorA3Jczj9kraoS1zFAwN87Axx66GQeP9VE6yNOWxWn/VAyAWtUWMYOLU98GfGT3v/6KbX1CcmaKqvfqgrfcEp1/3bwAv9Hvw4z39UzfXldsLnqpy5tkZwp+qYl3dAN2VVS15slMyV3+3qWbU7zyVmYK9rQUASzpppYCzBMomVjgKnhBbiETHCYTD6JkDtt5duotje3CpBI/azaA5wd89EQhby9ETUfqmqjhdJf9U7WZSATyjdbIPaq9zHOn2GRPXGv6xxNOTBHaSXeuvS2iR/RvAilCc6ILEfd8dai7MBci49+c8H7Eb44iFBByw9c7N0pZXbHnsqqi0GWMFchYApDTKnomGvVjG/3hissLHMHIf+T7cY2vkjkMuv5Y9a545I9xjxxJ7Ggf2BYDVFWdELaTlZMnRll6XoamojbVQhWiz76kLD1vNhjfXP3L9qZMLvlYCGA3gYY3ModhUM2ZclTPPAuBXgTKPO/26WQDdCpABn97xlIGn8uUAcSOQ9OAB8K6Y7yVSZGnK7mPAN0EKk+osdAOAFl/iLrGFxAt1aT4dADh0wuioGTXpL8orU1hkfpJSl+qbA5PtXphs0WpNf3KY9HmsQD4AsKcxhR8Ck+2pUJzVM+fNm3mouefYYRm/r7SaDWsjoPQvIuKwckZLlt2blFPu4Dpcz+tk8cqFyyloNbp4OSsAkPGkDwAkONiwdxfbUjvqMwDY3Tiok9diFcYCsFrNhkqxlbRm8MNLNVUtuYkZmkrpC6sV82cu9VnNhnVWs+GJDabreozKWpkB4D0ANBCjSgUA31jNhgPAPxK+OtTbOpa59EVjar07vWhg+sZyq9kQW1+WEiExNP338QDAJe5tEllK3JDYzG4CgNR6WUWkbVmXqLQuc8JSAJ8xlGxrSvIPTbvN+XKk7bYX6xJVglsp/EZBNQTkgvzr3SH9bjijJW1P48DH5YxnT37CwYjHzkXEYdXJbecE/xuVu3rrEpWSUDKlMZlvhskmRMNmLGPX8acCgE9G90Rg+CM14zptHOvcxdNIosJ2YQ/9rhaxtbSl2Zs0UgDLbKsbMV9sLbHMh3OfrQWwAEBwFZV4AFLS+pi2CV+djXVVE872CUr4eflDYmuRCA8aecs4AOifuqXL52mcLPrmgKOq9DKqiBoy6fMzq+X71W7mSj9LFwGYkH6r88+I2gyRtDrZ5yoP06060/csTLaQSiPOXTyNaOX2/wBI8QnKS+bPfC/i35cRcVgLEvffp5Y5+D7JWzdHYvy25JUpRsn9hACQimIDcKuECwRCUZ7rtYZ77FFZK8sC//56TbjHjhV+r5zYo9mbzCYommOuK5CM+I7Utos5bbFGV1hFPQFXAji0o2GoqD3KJcLHbxWnVwBUOGzvvk5sLXFEMwUVnGq+T6QMUFOiAcAmlZtoKrK9z8keap4Nk80bKXsdwqSfpWthz3CphMVZN7keC3WYenf6Cy2+hCk99LvetpoNUXHMw+6wckYL2ds4ICVVVbf1h3uNHatCe5LIeHImACGlUbYoGvZinZQGWRMlOBSJdm8f326uV7FOd4UjP2wNCWKNKmfeSADYUjvqdbG1tKVAv++2NHW1w2o2NIitJR7o7Kuox+LWRdf0JxCmpKmrllvNhi6/69SJyAdI+Td3PRybzlAsYrIJPAsCivPD3unKpJfVvqJZTUC+BVBKQIbnzHbdHVYbYaR8kfoaCvoKgB/UbuamUMfhjJacVeVnXJOqqjk8KG3jbWGUeFwiscLaxysoU8ocXNSSVbxyYRrP0I0w2aRtEgCsQDhWIBHLIHfzmi1lDi7SbX1FQy1rOR2gTgAxtZ3DGS3MoeZCbaKiabPYWiRim31NfWdSMGRE5hqp9monIk1dPU6vbHCKrSOuMOmLWB5Qu5kMAD+FzWk16XMA/JxeJx9bn+Lb2ZDsHweTbV9Yxo4A/GOJmem1ssUeJaV+ll4Jky2kBcVAW2v6BkBU9e6MM+bPXBq15N+wOx1Z2rIjbTujUn+19E1Vf4WP6V6f6pecVQCH31CpKGgvj0KIZID5AYB22hjWFFXdtPyEAy6r2RATbfNa0d8vKDQHbH0Wiy1EIrbZ1TB4FEC3LrzxjS/E1iIRPniB7ZajLVWKrSPOKCYgR4rih6VBSPki9T0CodsADKeg01PnOPunzG2J3RsJk17OCuQTuY/wdWn+K2QPNYe8Q7encYAFIGerWOdbVrMhEnkyxyTsDmuC3HZjiqrWfyQbN9LkH1aeAgAyP3k2GvZiHUowkYCwDSl+RaRsDE7/I40hQve5i6eF3CIzVuGMFk2Fo5tSznpLxNbSlhRV7dnB/64WVYhETNP3gU96ABgLEKkVayeCM1rYRk8as7tx4Edia4kzSiioFwBooEtrScgjmfSs8GjiEzkV8nleBZUBOIWYmpeGRWUEcar5pQAmEJDr82a6Qq7hyxktV+9sGHw2QOHm1ddFu511WB1WzmiR7Wvqm6iSOaPW3QrA2QCqUxplP0XRZsySW67QAIC2hf0kUjYIsEmgLHbUD+mMq6ynUDDs/qZ+b4stpC1Z2vKbEhRNAv6u1CAh8T8MTl//GgAUJO6TVlc7F9kAZAKVHRRbSFwRqC16mlcm8F4FtQMIqVZo+SJ1Hwr6A0PJAz45/aoqy1cIky3mywvWvqIxa1zsJc0JvAUmW8g3sYMeer8fgAWBMoEEAIl6O+twr7COpGA1FY6Ct8I87lGxLlHJeYZe4FEI66RyVgFYgfQGgEQ7+0ekbGypHfkdAOxtGpAdKRtika6uPDf434gWQA6FfY39VFqZY0OwZamExP/AGS1kW92wAVnasupf7p+7W2w9EuFjTHbJqQDQJ3lbl24YEgrE1LwGBPcqvUwygDHtPb/xRe2/0mtlOwBMBHCd4gH7BdwMd23YhYYbk35YWp1srlsp7GlI8V8S6jC3LLx2DMv4/2TgF/BXqUD4EOV21mF1WAsS910PUAog7AXrj4baxVzMCkRVn+qXVpyCtGj4yQKhTTDZmiJo5gAAKFl37wjaEIUkZcNV6eoq77H60YsFZ7TkeAVldpUz7wOxtUjENIOc/oTcqpa8R8UWIhF2BgNAd/2eerGFxCMKH7MQgRJXc076JJOegUl/X1IT+xEAW1me9wqYbEsiJjKMlL6pKqSgXxKQepWHmcDNcIfUdZQzWjK+t170nsuvIZO5b2YBOB0ilQoM9wrrv3J1pS6r2RCVP6jMGnl/CiqoXYw5GvbiAUowukUrkEjaGJm5qlxGfBiQuvGqSNqJNpzRQvbb+igZwv8itpa2dNfvuRAAGMJL8asSxyRZVXsrQP0AIhYSJCEOayuLGwFgVfmkqCwIdTpMNoddx/9CCS4/9JZqyIkOP/SWqqddxx8C8BQB+VjhYwq63eD+LApKO45JzyY1ydZQgm5+ll4Ck60mlGGufmVODkB/ECib4+MVxQtvfONDMUsFhs1h5YwW3aHmQq2XV3wYrjFPgrMJyNrk21uqomgzptG2MD6Vm/k6kjY+ueNpQSVz1h5q7tnZagH2FKgsqdqZG3Nf9npF4w0KxoNze3y0VWwtErHJ3MXTWEqZ63ro99TE2g6BRFgoAFC/7fErY64DX7zQmOx/kVAgs1o+47gHmvQzu5UqNmodTF5dqu81AFfCZLNHR2VYeCLRzqbXpvvfkD3UHJJjee0rtyZZbT13MkQYDOCiA+bzVoVZY7sJ5wrrqQCR1bqyo7Jl6XhWdyWAU1xKPqQ7h06JSZ9GQFLkfrIp0qYcPv36eneGLtJ2oknPpB3/AgAV6/xdbC1t2V4/jFXJnFvnz1wa0raOROfnu4MXj2/ypLKJiiap418nJEd3aJJe2eAWW0c8k3+9+2cC8p3Kw0yHSf/gUWuymvRTASxiQBII4Emrl/8HJlt85A2Y9EX8o4kfAzACWJR5s3NWKMNwRouipGzKB6X27gkTc//7otVsWBZeoaERNoe1h373LQS8D0DkvXCTvkjbwrwDACoPc07Yu1fEKTXpvskA4NDyUVhxpgcAoWegiHDnQCNzTlexTpzFfbldbC2t4YwWnU9Q9G/2JkstNiWOiU9QXgHAubl29DNia5EIPx6/KjNdXR2V7pGdnOUAUinoozh6I4FBNJCLAwLCIsqZ8CFj0hdR0BUMxSVB/SGV25q7eJpcwbg/AcgUgJn19q2v3BlmpSETNofV7k08ldPvs1vNhmjcARYTEAYAgv8WR8FmzEMJnQQA9an+8kjbGpP9Sy7AJAiU7R5pW9FiW/1QyBjf7/NnLo2pL4Uh6esuBsBq5c1S/3CJozJ38XStnPFOVzDuZVazwSG2HonwwhktpN6dyexr6ieVKusgFFRDQUFAGAqqwP/6DyWUgAadvqhnwoeESa8C8AQAJQEBAAHAuPYOwxktZG9T/01eQXWeRmZ/0Go2vBFmpR0iLA4rZ7Rk17qyNXXOrFfCMd5JUALgiFMRHxMqCmTWKBopqEfuI79F2laLL2EFAGyuHZUfaVvRgDNaEgUq6+fw6b8XW0tbFKznagIBp3f7brPYWiRik531g573CQptYdIuqeNf5yQZgA5AqdhC4h0CsgKA54jTCmD9Pw4w2dZ4FXQSgAcATArWcY1ZyhepZ7uVQi2A0wkID8BPQLxop1/EGS0EwLM76ocOGJqxdsWOJy5/MgJyO0S4VlhnA4Ddp49OeSmTbY1dy28RQAXEwYSKIn0JyJ6c2a6ItxTdWjdiBQActnfPjLStaDA847fLAJBUVU3E43/by/qqsYKc9e59edZ/DoutRSL24IyWoj1NA28AKHY2DLky2t1nJCLPqXnLJgDAwNSNYkuJf0y2NQTkNALyBgDBoxDM1iWqf3RtVN1nLyGm5qdj2rcw6ZNg0i/MrVC8DkBVn+K7AcAEBEtOtVd7lqbs3wDuBPDq5poxk8IvuON02GHljJYiAuEhBFqevRati6XAUh8vgy+mJ1SU8cqFcS6VYIuSuYMAoFc2nLA8SDxACL2UQMDYnJ83iK2lNZzRwlKwo728Kprd4yTii2IArFjdZyQiT4tP1xsAMrXlUkWccGCyrYHJNrNJ739M6WWGJzeyP8Kk/ysfo6SE9CwpIS+WlJAeYso8FhUL1fN4hloB3ADgheZEPj11jvPN4Ptqt6N94QsPLa5y5s1NV1f9CGBOrDanCccKazEFYQIXS0TtYqlvlpXK/eRQNGzFA/UvadRyH0l26PioTDSr2eBIUDQJ+QkHL4qGvUizoXoszxJ+18uz/hPx+N/2MD53+TkAEtLVlVI5K4mjkqKq2RJYMIijmDuJdrG+erwHAH4qPXe52Fo6E0l3tDxmS/R/pm+WjQXwf61e0gOYCSC2HFaTPpeaEr/IqVTc41EKMoHQMTDZ7sy4xdkU6pCc0TJ9U82YG3J11p1jc34+z2o2xGzX0HA4rCUAoQhcMaN5sUwE0BwlWzFPaoO8OwFBar1sUbRsEtB9B2y94z7BgzNaGICM8VP5r2JraYuXV14CACOzVm0RW4tEbNI/dUsGQJCpKV8BEbrPSESFAgAuAFJ93TCjb5ZdCuATCvpszauae4NPbwKgKy6mMbGzZV2iYqteUy+loDsJyBSfTDDVZPjTmUeaO9SC/ZIXjXcD9G0AK8od3PBYL5sYDod1MwLLqz8iihfLFg0/vEXDd4r4yTDRFwAYSnZGy2CzN/mPFl9CWrTsRYribt+fCUCfoy3dJbaWtqyrmignECrljE9yQiSOyqryyXoAkDH8dZKz2jnprt9j0Csa3LG6VRvXmGwCgGtcaqE2tV5mtr2gPa24mArFxTQ2ftcmff9uhxW/Z1UrrnSphRoAA+UP2h8NtdXqESaZn7t4U83oZ9LV1bUAzo9ShacO0WGH9bRu340HgH4pm3+N5sWS5QkrMIjpu4Fo0pDsvwQAXCphb7RsKll3KUC7zX79Bk20bEYChzfxPAAYkvFHLG67j6Ngfp0/c2lsXDwlYpERAKpWP3izFCLVSbF7E/WJyiapw1WkMNlcten+0wFU65tlS2HSdyspIXNKSohJLEnWJaoE2wva/wDYzAqke5Pe/1BNhr8XTLb9HR2bM1pG7W/q97ac8ZaOzFo53mo2xEUXrw47rA5vYj8AyI5yMLjKwzgSHOzaaNqMZVge/bxywa822qMWJjEq69c0gDAy4o/rrOT11ePUAK1TMJ6fxNbSmlmvzRwJoFtewsEOX6AkOi9JynpDmrq6QmwdEpGjzpXFHLb3iLmSe52Jguvc21mBnAFAyxO6qtdu1eyUetlZoogx6cflVMj365tl030y4XsA/ZLuaHmCm+Hu8MLF7NdvOJ8h/H8B1Lj8uqIFs9+Om++XDjusf1SP5wHg58MGS8fltAsphrUV+maZR+FjohqDWefKXAYAaypPTYim3QhQBJA1sbaKWevKnAoAA1I3x1TnLYnY4exnnkq0eZJTuMS9cbFCItF+OKNFDSADUg3WyGOybfPKhWcYivycSnn/wVs1w2HSj4+WeesSVTffEwnvAlgl9xF3eY73QfmD9vNhsoWlBX3hfV/2WF1++idauV2rldvPspoNcXWjG44Y1u4A3ACitsJqXaIiAqEpDcn+ntGyGdMEynH0ARDVGMydDUN+B4AGd0Z2NO2Gk5sXXtsLQJ+CxH0xV+N0U01RKkAduxoGfSy2FonYZGfDkEEUDDZUj31BbC0SkeHMgi/HAsCwjLVxHXoVLyh8jABACHaMUlDQryoWqp+zLlFFrg25SV9ETYn/yS2TH5T5yVUU9EUC0j93litsxfs5oyWHp/IfW3wJLWNzVly0/fHL94Vr7Ggh6+gAXOLe8xrdqc4tj10VtdUpnYPRMpQAgNTVBYBDw1+hc7L6FjWfqo2u6UoCwZOmrhkN4LXomg4PFY78KQDQK2lnzCVcARgPkLW/3D834o0gJOKWEQBAwcRU/WCJ8FHtzCkAgAR580GxtXQRSgiIh4IqKAHxyakqp1Jxp0DoZJj0/weTLbTQMZNeXZfqG+xW0YnZlXIbK5Acp5ofS4HRGjAJBITIeNAmPf948h0tD4fzDd266OqeOvmUXx2+xAQKZtLCG9+IyzbfHXZY7V59kl7ZGNXSRmn1ci0ApDTKVkXTbkxi0hdpwbwNABoXcxFM+qJoNVOwmg3CqMcWkyRlw+Ro2IsEm2tHZwHgfyw9902xtbTmtkVX5RJcOoTT7/sPYBBbjkSM0itpx/WH7ZzTzWviamtP4uTZUjuKAMCv5WdKNVijgcm2Bib9JK+Cnrezn+uK5kR+7sBtmhEpjbJrAPzonJew26MQPky2yTwASoLHMwAymvT+wU6NcGZancym8DGpHoUwzC+jp2icjJuApKTVy1tbokoP0+BnqfLIEwSET7bJwppMzhktCSmq01e4eXX2kPQ/rvrqzkfj0lkFwuCw1rszFPXujE/CIaYdJAb/lWJYgRkk0N0GBIQg0LghatUaXH7N+kZ3akq07EWAsQA2W80Gp9hCWnPQ1nsyBQMuca9Uf1XimNS6MvKytOUNJfffHlPx1xJhpQCAACCmmpp0aky2NUpgzVDgPgDAJHwFk/4pP0vnKrzkaY1L9ggASkGp98kEQQFCCYg8ySZD0t+9Jh0yP6l2q4QWr4KuUHrJFpdKaKpP9bEJdvZHfbNsP/tws5c16YsA/IRA46Ww1rLnjBYVgK8a3GnZg9PWz/nqzkffC9fYYtAhh5UzWpIR6AgR1a2K8hzv8NwKBaoyvd2yomk4xihfpH44G/LrCEAJCA8RutzYvUkbAFzLGS0k3moEzl08TSlnLp6Yl3BoeaytYm6rH94DgLDisCFqjSAk4gvOaNECaUlNnrRXxdYiETn6pvz5r3JHvnfrY9N8Ymvp0phsbhkwz/94YhIFvTe4QEQEBs0utfCVxsWu88qF6qosH1F4yeqsakUV+3Az1bcaQg0g73/HXQOTfhICi00l4dohnbt4mjo/YfSfpfYehQC56uu7TEvDMa6YdMhhnZT/7eSfSqdieMYaWTS/8JUeogQAQklYMufiEpP+khzIH3FqBDehuEbjYnshjJP9ZElS1lc3eVITxuX8mA8Y4qoO5O7GgeN8gpLJ0R6OyfqrALbES308CVEYgkDirBS/2ompc2UoNLKWerF1dEVKSsg9AIYVF9Mrjjwn48nXAOYCkBMQn9pDzjnyvasAkB+KocD5Yfvu5owWJkl51qdNntSeo7J+fefj2+fFvbMKdLBKQI0zKx8AEpVNUStWDwBp9XIbAGTWyDdF026s4Hkq4VYAHxKQ33xymq+51/EpTLano+2sAsCwjLVKANDKHZOibbuj7GoY3B8AVldMekVsLa2Zu3iaWs54TuuZtENKKpQ4JqOzf7kNAAan/xGLCYMSYaLOlcVUO3N/EVtHF4VFwA/9m8D37CQADwOYJMb37vHgjBYC4KUmT+o5ycq6eR/fPu9asTWFiw6tsG6tOwUAUHL47GgXXD9S9zM+Y1gDMSvFaO+KqElf5FTxr2m87BA/S1fKeDIl6Y4WUWMvyxzcdwAeWll+RhxmstMigFQgxuobbq0bUeQTlCRdXR23wfESkafMXpCjkTk83RP37hFbi0Rk4IwWFoFFu0Oc0VIktd6NLsXF9OmjvhDmFdFwMjzjt5KNNWMnAniu0ZN2n9h6wklHk666A2iymg1NYdBy0lRn+M7MrJHjcJ6H7RZNw+0lUB81vSrTO5XlyYj0OrkXwBgKOgYACAhg0td55YKcZ0HVbmYHgBaHls/jWerXN8vWAGhpTPL3ZP1QJ0JWrHGzMgpKKaGPwtQseqLQ3sYBfwKAy6+L6Y/iaCQr6y/RKxv3x1rCygFbn0EAsKbyNCk2UeKYlDu4FAA/xVrDC4nwkZ+w/+pSeyEL0FMB8hNntEySnFaJY9Hr/s+NPmHsxIGpG3duqx9+T7zllZyIDjms3RP3XODwJQrhEnOyKD3EBwCUoDrato+GdYlKLvNjTF65Ug+gr13Hn8cIGKAFCwApWdV/7Sg4ATQBQWcVoAAOulVUSSjUAFwAEmR+kqXwEjkC3U20SU2sLng8gufycj8ZhUBmoahYzQZnz/u/aEhV1U4QW0t7OOXRt/IaPZny/MQDf4itpS0M8U8UqOyQ1WwoE1uLRGxS9PhrWqBbf4B8IbYWichR7cwOlgwkBIEs8mLE6MpeZ6SkhGQB+BrAM8XF9FOx9RwPzmi5AVA+zRLf54VJuy7/9u6HOpWzCnTQYa1zZyiSlfVR63B1hCSbTAZAyD+s7Ido/vGa9FoAvRuT/Gf65PSc9FpZLQHpk08UfRlK/vpdapyM3akRBAr6MQHZ3qT3N9j0/L6CUuXvAEYTkNYlLOYm3un4x3tQtTF7aImK5JUpTpfx5BtEoPRFR0lV1io9vOrUeNqyqnNljgKALbWjFoitpTVzF08jOvnZF2RqKnfHWuUCidhhYNqmKytb8plRWb+2SPOk8+LhNWzwv37E2HW/i9AIwIZAN8+Y5ZpXbnsBOOsOAvoDT+VXzJ+5tFNWlAjZYeWMFgZI0tm9Se+EU9AJCcR/XklBGQC/EpP+GQAby3O83ZUesjOtXr6bZ6itIsfb0u0G94m3zNvGk5r0pCbdV+BV0HMzq2WM3M9wHoUwgRIMVYFhASC5SQYKCkpwiFBs9Sjp+qYkH01ulL2r8jB/sg83NyS0MpEU/AnS7hIW3Aw3BfBTJEpfdBTOaCkCctQIJPDFzZaVknWd5uFVXoDEVOLeyvLJPZu9yQyn3/ez2FokYpfdDQM5AEhR1f0oshSJCMIQ/0iByn4D8C2Akni4tnYmioupB0BMN8bhjJYpBGfOyU840Dw0Y920l2a+5xVbU6ToyAprFgKLgdFuF1dMQdngFrkMwP0AkFvxdyIfKxB0K1NCeDTRy1BST0GbW7RCrsxP9qo8zG6eoc6GFH9/nZ0pU4M9n4LKAEB4LHEfC5KWUStPbmXPKfOT0uZE/jAl+FLtZlY71fzBqizf3h7XeJqBQG01dXveQagB27EZ6D0ZIEeqTcTNllWGpvIagTItqx+8xSO2ltY0uNPHAMCftSOl+qsSx6TUXpgDoGaZ9aKNYmuRiAy3LLx2kkAv6T4ya+WqT243Hz35R6JLU3jflxMA+ecUzJ8qmXvySzPf69Tlz0J2WM8o+PrcHw+dh6LsFaoob0mVEBA3BZUD8BGQK30yeqg60zsuwc669c0yj5+l6Q0p/rN1DqZG42JdAoN0gUE6yyMBwAhGQEpqvSyVoYG4UAICCgoEOmh97JPRAzUZPpnCS75Or5PvYB9uFlp7sBoAPaL5jmOYnkk7Buxr6g+A8gCJiy0rzmhREnDqHkm7vxdbS1t0ctsUhy+xGSDbxdYiEbsw4EcKYDd0tqQKib9ZVTFpFADoFU3SzauIlJSQ+wBMKy6mA8XW0pobX7/+Chlz9ntEQKmfyqf89957OrWzCnTAYT1kK0wGADnj2xw2NSdDsCsEASlGcGtcDiAP+GtrVwYgA3jhyGMWf/dyBQCCQFxofqniVIaS7wHICIiPFXDhkfFyo/BWOgN2r74oUdHgb/YmP4z42bIaTsHI9jf1e1tsIW3Ryh0XZ2gqm3++705ebC0SscmcxdOTQS4dMDTt9yopfrXzYvOkTACw542bX18ltpYuzkEAa0pKCFtcTGPiuswZLX0Ycv4rCQqbf3zOT5e9OvvtLtFEKWSHdW/TADkA/Fp+5m/hk3OShGFrPBgXWgKT/nTEWFxovMAZLb2A3G5yxvOw1Tw1bras0tWV59S6soEYC10ItDrOVRYm7bSIrUUidllXNWGYQFkwhP9BbC0SkWHO4unJBJdNYggvra6KTHEx/RDAh2LrOMJpT/+7F9B7uUBZv8ObOOjV2W93mTrMITusBEIPCqbSaja4wiko6sRmXGicIDwIMNQnKDeLraQ9pKjqZvBU5t9ourZSbC1tKAKA/U39opvIKBFXVLXk9QeAjTVjY+ZLVCK8OHwJt1IwiuJu31UCF4gtRwJASQkhxcVU1BCcG1+/vr/DO3aTjPh4P5UX7X/6/C7jrAIdaM1akLj/glydtW0FJokuQr8HP7odIFcDlAD4KFAtIPbhjBayr6mvUs54o78zcAIyNeUXA9QPQOpwJXFMtPLmUwFaC0Cq09tJ+bXszGwC3qOV26XmISJTUkK0JSWkAsCdYurgjJakH6wXfNDoTmVOy//u/6xmwxYx9YhByA5rlTNHIIR2Ke9eAjhr3ryLOaNlhcuv+3fgGQL8XR0gHsjnqTyt2pn7sdhC2qKSuS7O1R3yWM0G0TuYScQuCfLmqYX63ZASrjovfkFxJgX740sz37OJraWrU1xMWwB8AUC0RNg5i6enE/DfUTD9/FQ+dfFNi14XS4uYhBQSwBktckCbVGbvvjzcgiRiE85oKc7UlL9d7RxYQCBUUzAvAmQ2YrCRwfHombTzX/ua+kHJun4XW0trOKNFAfRQZWkrpM5FEseEM1rUQK6iIHH/f8XWIhEZZrx6y0TgnEK9omGh2FokAhQX01vEsj3qscUKnXzYdoCkM4S/9MDT53XZ2PWQVlgVjPvC4Lkhr9BKxD6c0UKuX3Dj7T3v/2I1gBV1rkzN2JyfP5/S/fO+VrPhDgCTADwMIC6aBQCATt58lYJxYwr3xVaxtbRhOMAoq1ryYrr9n4ToDAEIc6i552diC5GIDC0+3Y0AMD7vx5i6qe7qlJQQxYmPCi+c0cLWOHOWHrD1TR+X+9NbB54+75Noa4gl2r3CyhktRQSK9wCAQLibM1q+jRdnReLk4IwWAuA0OeN56qfSc0erWKfDD8UcnsreeH/O838l2QU/97j67LfWDYda5to0f+bSmGoYUJi0c/r+pn6QM57VYmuRiF3ydNazyxwcZIx3g9haJCLDuqqJKSzxHXh11ju/iq1FIkBJCbkXwOMlJURbXEyj0va0u/GbIjnjW+gTlIMA/N97t73472jYjWVCCQkopiAsANBAh6NixJnTInF0OKOlKF1d8WCiQjWk2ZuS6xOUFQNSNy0oTNp1f2eIpeKMltMA+SCHT/4fsbW0hSX8hamqav8G03VVYmuRiF2SlA1XNHlS6KT8bw8DF4otRyLMcEaLBkAxT+ULxNYi8Q9+A/AEAAUCIXARJbAwiFU+QckEEnHJ2kjbjAdCcVhLAOIHoIiXzkYSR4czWsiE3P+OEyh7zeqK07MBck6tK4cAFCzxzeep3Gi5+0G32DrDQaCKAV0WaCNLr+CMloWxsjMQWNEeIE9Q2L4VW4tEbLOrcSCvlbVsmD9zqZRw1QkZn/vjravKz1Dm6A5JzQJiiOJiuhLAymjY4owWGYD5FEzrkMtiSAuD7XdYrWbDmsL7vnyZp/I7CYRLD5rP7fK/xHiBM1rYIenrTtPKHbP/qBonB5SjV5afmRV4VXAHM/4BwM9TebXVbOgUzmqQYvw932WIrQtAT4Ck271JMdcqViJ2CCRcKXrZvIp5YmuRiAxVLTnnKBg3Tsn8bTlws9hyJFoRjGFVFRfT5kjZmLN4uj5bO35FZUu3YQD8gWelhcEjhFQlYFTWqu5rKk/D1B6fbAfODbcmiTDBGS3K7ol7JqVrquZsqxuuAXSDt9SO0gOAnPHUAliuVzZsLMou2bv80Hn1PGWWA5B30j+QEgS2cpSIsaoGQ9L/uGFL7UikqqqlJAuJYzIkfd3kLbWj2ERFo2jldSQiR2CnpX83AuHbl2a+Zxdbj8TflJQQAqABwOsA7oqEDc5oSUxRnfF7gzu9T8+kHS/ua+r/MYJdOGNlN1BsQnJYyx35ZQBQ7cxuCK8ciY7AGS0JiYrG03on77h7d8NAPaDvfbC5t/Jgc29o5fYqAB8pGPdvZxR8s3fB7LdbFc6/6sj5k9BJ/0CsZsMazmi5E8ArALkjlt5fozvlIjnjoU2eVJ3YWiRiF53cfiUAjMv9+SAwXWw5EuHnEgA9KBipAkSMUVxMaUkJuR9ARKrLcEZLJoDvG9xphYPS1j/yzV2PPBZ8KWa+p2KBkBzWUnthPQCsq5roCK8cifbAGS0ZAMYPSV9330FbrwwgOa/Zm8xsrBmDJGVDBXxYAGDlFO7z7a/f+GarJg8XH3W8eMz6bw89k3ZU72vqj55JO6oAg9hyAByJrS0sBCgAspwzWuKmRJhEdFlbeaqbIX6bgvFICRidjECSjfABBQOA3sYZLV9I14HYoriYvhSJcW9eOGNCsrJ4WaMnlQDk3G/uemRZJOx0BkJyWJWsO9HDK/1W81R/uAVJHJ1gqSkOwIQ+yVvnVrbkdQeSkwFge90wIV1TVdnsTX4SwMrBaes3fHnnY61Wv2PDORMbLnF/t31N/cEl7usmtpZWXAGAtOkYJn1RSfwPPJUNBfC7lHDVKbkhWHUHAIm1GHsJACUlRA6gAMD+4mIalr9BzmgZxJLzP1ewHtXp3b674a1bFkjO6nEIyWHtn7q5eEf9kJDOlTg5Lvn3fcwf1eP7A5hQkLhvVoI8vZ/dp1cCwEFbL09uQmltszd5HoCVemXjhjUP3diqrqjkoB6N36smbAeAtZXFO8TWcoT8hP1TS+09EKy8EVOxtRKxw5zF0/UElw1KVtVLTkwno/C+LwsB+SUAoQB4SNeBWGU2gJcBZAPocPnB055+YSrQ5z88lbco2ebhb92yYEuHFXZyQnI6KxzdSgXK9g23mK7M3MXT1N/sv2yIAHZCpqZ8mt07dBCCncSqWnJt3fV7a/Y29n+Wp7JfvIJq24r77hBElhx32L1JPgBw+BKjUvj5RPR+4LN0XijI7564d//B5t5vohPGDkuEhx31g++gYJhMTXmC2FokwsecxVdlpqonbql3ZQg8lV0CoDek60CsshzAdQCcHR3oshfvuavMPuZZFessd/OacZsfvfpQx+V1fkJyWKuduY0AmsIrpWsxZ/H09OWHzh3u8uuK9MqGC12+iwYLYAEATZ6U8l7JO/aV2wteavSkLfPw6gPL7rlP2gbsIL2St6ftbRyAPsnb0mJhFdrLq2YCYEvtPc6zmg0xs+orEVsE4pwH3A8AOxuGXMwZLa9KDk38wxktRMWe96aHV2lPy//uvrdufk1KtophiovpbgC7OzoOZ7RcDUw0p6ura0dn/3LGK7PelZzVkyQkh1XBuPV+Qe4Nt5jOzM0Lry38vXLi6Hp35nAV65ziEy4ZwFMZAFCnT7drQOqmzU2elEXW5l5f7H7yX1K3owhQkHAgb2/jAHRLOJArtpa5i6epGXLZbQJll+9/+nzJWZU4HsVA8G4WUKWrKxcFk/NqRNQk0XHudfMaAwP+3rdufu0ZscVInJiSElIAgCkupgdDOf+8503vAiOvAshPta6sC1+Z9a5UvqwdhOSwdtfvHdPkSUkLt5jOxE0LZ4zcVjei6LC9ez+G+E8T6CV9gi95vbxy/bDMtWu8vGrJ1roRH+996kKb1GYx8pQcPosP/iv6anWTJ+UpgbJZIzJXz4uF1V6JmKYEgAegSgLK1LqyBwIo44zffjkx779rVpdPWsdT2URIW8lxw/ULbnoQMDxOQD8SwD4rth6Jk+YXAKvQzrpynNFCMjXlb1U7R16Vp7NuLnNwBqvZ4DnxmRKtITSEZLehj7y71i/I07c9fkVhBDTFHZzRQs4q+HLKflvvcfua+hcAdAJACoIv2wH8NiJztV/O+D5eW1n8cSfrIBUXBLZVsQKBxgEeAKeJ+eXe6/4v/lCw7h5n5H+bMX/mUl4sHRLxQXD+FgMoUctaml1+7fUM8V8nUJk+WBJNAKi/d/L2x1Wsa9HXd5mk1dcYhTNaesoZz9Y0dQ2Ksku6vXDDh3Via5I4OUpKiAFAVXEx3XCy5wRbrS4EcF2W9vA3o7NWXjx/5tKYyKOIN0JyWDmj5UcAaqvZMC78kmIfzmiRndbtu4urndmTdtQPSwMwHkB68OUaACsHp//RlKqqXbbi8DlfWs0GqfyXyHBGy30AHgfAApQC5AGr2fC0SFpOAfAHgDusZsOLYmiQiH/mLJ6uX1c5/vsqZ15Rq7bKR2jSyBz1eQlWzWF7969dfu3O/IT9zf1Sttq31g/78bcHb24SQXKXhzNaEhAoV5XVM2nHhB+Nd+8UW5NE5JizeLp+R/3QP/c19csH8BgAk9VsEH2HL14JKSRAzngTaGCVqkvAGS3qouwVVzj92vO31I5SAyhacficYFciehAg3/dL2VLG6ff98v3Bi5cHJqS0zRtjlADwAlQNgDDEv1ksIfkJB146bOecFMwSsTRIxD8vzXzPFuze9hMAOUD5fimbP9vXNOBPn6DoppG3FNk8yXkuv+YqAJpSeyFK7YFNMc5oaUyQ25qzdYflexv7fUzBHuydvM3VQ7+nfpn1ouVWs0GKrQszz3wwgeESL15vbe7ZEyBnSs5q/FFSQpIADAWwtriYHnenlDNa9HLmou99gjJ/VNav7398+7xHoqGxMxPSCuu4Jxa0qGXOlh+Nd2VEQJPocEZL0pD0dVeyhJ++sWYMBchIAHICAQC2UzC/dNfv3tM/5c9Vr85++6S3BiTEhTNaiuSM50qfoLwVwKNWs8EUbQ3nPPNkwZ7GAdYBaZv+/OrOR4dE275E56N1uMDRwlyCTUdSR2atHKeWOcf/WnZWDQAuU1N+qkCZHrWubApA0+a0hiRlvStNXe3f19T/MwAHB6f9IWRqKw4vP3T+CqvZIHU5bAec0VKkZJ3PeHjN+DHZJV98OPfZi8TWJNF+SkrIJQA+BjCsuJhuPtZxV8y/q3BNZfGnABmolTfP3P74FW9HS2NnJiSHtd+DH1tVMufhTaZrJ0RAU9RodaHf2jNpZ6FWbr9+W90wlqfyfgAIS/yQMf4tHl71Q5b28JbRWSvXzJ+5NKTsQInYgTNavgLo+NO6fd9ryS2vNpz4jLDafgjAY8Mz1hR9/n9PSC02JUQn6NCmj8v56VSeskPXVhbbAHC5ukOTXX5NZoM7XQ5A1ea0+lRVtV+vbLIdsPX5GoD1lMxVsgRF8+4Vh89ZaTUbWqL+RmKU7sZviihICUAUAOUJ6ISD5nOl5Lg4pKSEZAAYDOD34mJ61F2IK+bfNXJPY//VTZ5U8FR2rtVs+CG6Kjsvocaw7gXwh9VsuDL8kiLHzQtnZGyuGdW3oiW/QC1znOf2ay6mIEfaYkLJuqBkPRubvUlfJSoafy/utmz9SzPfqxdZtkSYOXPeM+fuaRzw9dicnz99f87zl0TL7qjHFitqnDmHAGy2mg1nR8uuhERHCDq0GafmLTvD7tX33FhT5AbAdUs4YGj2JiXYPClqBJIZW1ObqSlnlKy7otReuAyAdVzOT1qGCBtXlk9eYzUbOlx8PdbhjJY0JeuayRL/405/wpGyZH4AD4sVPy8RWTijZTBAf1CynqTivGW3LLxp8Vtia+pMhOSw9jB+VUsILeep/KZYLKPCGS3palnLwOEZa6/b19RXUe3MTSIQBlAwrepvUgEAE3RWBUB4/fzCD++aP3OpSyTZElFk1GOLyxrdaaxPUORbzYaoZGxe/cqcl38tO+vWXJ318tUP3vJRNGxKSEQazmhhAGRMyv92SnVLTva2+uEUQHcuce/5da4M1uHTJ+B/HdqaHG2pCoTurnAUrABgLe72fbLbr165trJ4vdVsiMvrMGe0kNO7WW7e3Tjg6nIHNxSAIklZV2vzpCTTQONCH4BJsfi9KXFylJSQ0QjUYv3HZ3jdqzff+PPhc+YBpBnAWVIzmPDTboc1sI1Ofwue7oJIf3yc0ULO7v7ZqEPNhf131A9NAmi/bgkHL6luyVF4BdVf8Vgs8fl5Kv8ToDtHZq1K8/Cq5X/WjvwOQBqAHwDIIV1Euhyc0XIugK8BTLeaDUujYXPww+/tlTH+nAm5yxOlUlYSXQXOaGHkjCezuNuyqQdtvfT7mvorGPDdOf2+C6tacv1Ovy4ZgOKfZ9HqPJ1V6xWUm2ucOasVjPvwhLwf9Y3u1J831hRtiTWH9qqXb++2snzyxQj0m++rkrVQL69aIFD2NavZsP1EccYS8UNJCfkdQHNxMZ185LnhprcvtXv1H2nlzc1NnrRBVrOhVESJnZZQHNb7APrUkW10ndy2a1zuz0/8YL3w/UiUaxj7+Gvyipb8QgD9hmWsvbrelZ5Tai9kAfQFoG11aH2OtpRXyZz7Dtj6fgpg5+ndLHUJCtumYzkH0kWk68IZLQwDfrtWYU84vdt33ebPXBrRUiOc0XI9gDcAPG81G+6KpC0JiXiCM1qYTE153uD09efsahikPGzvoVPLWvplacvOrnDkezy8Og2BhYW/YAhfm6srVbf4dL83uNPXJSoaa0ZmrVZVtuQt31E/dHs0al0HQyXGZmnLnqhzZRT7BQUArE1TV78/Nufn96Vwss5JSQkZgoDDehAAOKPlWgBvaGSOvafnW85/Zda7e0QV2IkJcYUVPwFQABQseIaHjADYAeDdkVkrv/nkdnO7l8I5o0U7Ife/Z7r9mtF/VI/3A+iXrKw73eZN1guU/avIYIKiyW33Jv0KYOeQ9HWMXtG09dfyM7+0mg217bUp0bW56uW5b6wsP/P6Mdklcz+c++xLHRlr7uJpZJn1wmQPr84YlLZhSIqqdszK8skHBcpmpKqqJ9e7M0YFjhRvV0JCIh7hjBa2d/K27gWJ+ydvrhlNal1ZKXpFw9AUdd1pZXbO5RMUmWhTolFGfHU5usPKBnfqLw6f/s8MTUXToLSNzP6mPt9bm3vt7kiXoWkv/V82BXlpffXYYV5eVQgIjiHp661K1n3Xx7fPkxJsuhCXzb/nm98rT50K4EcAF0nl4CJLqElXf61Mntvjw4qNNUVXljsKDADGEQhIU1fvrnVlPwngcwQy6ooRXMWc9dqs7v89dH4ugH499LsuECg7zNrcywugoJUJHsD+LE2ZM0tX1ry5ZswbAHb2TNq570fjXU0decMSEkeYu3i69tsD/9rPU3k5gE/RZqU9GJuX2jflz165utKi3ysnNDh8+qRs7eGhKaraoj2NA0t9giJZwbq78wKbzFP50czwLPH5eCpTBXclpKQLCYkwwhkt7JD0db0zNFWnr62c6LV7k7LS1FWjdXL72FJ7d7tAZbkA2FanUAXjaczSlsmrnbk/eHjV7m4JB5y9k7f7NlYXfd3oSTtoNRu8rcYvAmhxgsLmsHuThgP0MoCoU1U1lfXujIcBfCiV+eo6lJSQzGUHz7/5sz3XnOWjitG9k7dZ9zQO7Cu1Wo08ITmsx+LCFx4aLmP8L2yqHt3TT+W5gOAmgJKCACBURjweP1WqjxzPkP9n77zDq6jSBv47t6cXCKETqhSjiFiwHsEeXHt3F9eKYl13NeqqsceCrroo6meJrr0rsQNHQUFsaIDQCT1Aeru59Xx/zAQvMYEkpML8nidPcmbOnPPOzdyZd97zlmAgNXpzcEtN74/D2r54SOKS0iGJS9f9svXQzxfcebl/J1NZWLQKaZm5TwDXGeUtCYH4yWOv6eay+wZV+BM1CHv9YwThYLy7THgDMcv8YffaJHdRcFDC8pSVZSNyy/1JqwfEr/SNSP49tKjogB82VA3cAhzC9uTulr+0hUV7kpaZ6zik5zcj4tzlR3+z/sTqQNjVv1fM+qPc9toxBRVDykD0o55C67HXlPeI3mxbVzlwHtgmgHaYL5xe4NX9Uxa899FNd3/ZEedj0bFc8czlU75ed8p/w9oO6JDTFpArHjh9bkfLtTfQokpXjfHBP+79BZCmb88Rsc7Kl6oC8YPr/F3tttCasT3UqmUl++aU+rr/EtaOtfPumBz+YwSrOpRFu1Ni1mIHtB3oI4Re0T9+daiwuq8q8qYu6R61pXp0yg9xq8qHz1lTPmyNxlb6291/bc6b3ry0zNwJWP7SFhbtjlEaOyMPyGtof1pmruPIPl/u57QFxs1an1ENpKVEFx6rEfuA7RDAVFa1Bh4qyJ54t/Ws2nuZtf7kEWFtM1tCB8KuIwFLYW0HWtXCWh9zKcW0LAnLsmTR6bCuUQsLi8aIiNmwVkcsgO3XxCwMg591TbQjbaqwghWJb9H5sa5RCwuLxrDuDxb1sa6JjqHNFVYLCwsLCwsLCwuL3cG26y4WFhYWFhYWFhYWHYelsFpYWFhYWFhYWHRqLIXVwsLCwsLCwsKiU2MprBYWFhYWFhYWFp0aS2G1sLCwsLCwsLDo1FgKq4WFhYWFhYWFRafGUlgtLCwsLCwsLCw6NZbCamFhYWFhYWFh0amxFFYLCwsLCwsLC4tOjaWwWlhYWFhYWFhYdGoshdXCwsLCwsLCwqJTYymsFhYWFhYWFhYWnRpLYbWwsLCwsLCwsOjUWAqrhYWFhYWFhYVFp8ZSWC0sLCwsLCwsLDo1lsJqYWFhYWFhYWHRqbEUVgsLCwsLCwsLi06NpbBaWFhYWFhYWFh0aiyF1cLCwsLCwsLColNjKawWFhYWFhYWFhadGkthbUWEEEoI8d+OlsNi70QI8bIQYkb9vy0sLCwsug5CiAIhxD8ba++tODpaAAsLizbhekB0tBAWewdCCAUs0lpf09Gy7A5CiIuB/2qtYztaFou9moOA6o4WorNhKawWFnsgWuvyjpbBwiISIYRTax3oaDksLDo7WuttHS1DZ2SPdAkwl+afEUJMFUKUCCG2CSGuF0K4hRDThBBlQoh1Qoi/RhyTLoT4WgjhNY95WQiRELH/ZSHEDHOcjUKIUiHES0KI6J3IMcGc60qz3UcI8aZ5bKkQIlcIMdTclyaECAkhxtYb43IhRJEQwtX6n5TFnkp9lwDzO/G0EOIB83raKoR4VAhhi+jjEkI8JITYIISoFkL8KIQ4oWPOwKKrIIR4GTgamCKE0ObPxebvk4UQC4QQfuAEIUSWEGJRveMvFkJURbSzhBCLhBCTzKXQKvNe6xJCXC2EWC+EKBZCPFbv+i0wj/2feUxh/WVUIUSCEOI58/qvFEJ8U3fPFUJI4CUgJuI8stroY7PoogghThRCzDGf4SVCiC+EECPMfWnmdXOmEOIrIUSNEGKJEOI4c7/NvL9eW2/MYeZxB5htywWgAfZIhdXkQqASOATIBv4DfAgsB8YCOcD/CSF6m0rn50AVcDBwOnAY8GK9MY8E9gWOBc41+13f0ORCiDOBD4ArtNbPmnPMBmoxbu7jgM3A10KIaK11AfA1cEm9oS4BXtVa+1vyIVhYRHAhEMS4tq8BbsC4jut4CePavABIx/iOfCKE2L99xbToYlwPzMO4fnqZP+vNfQ8B/waGAz80Y8w04FRgInAmcDbwEcZS6fHAZcC1GPfgSP4B5ANjgLuAB4QQZwAIIQSQC/Qxxz0A+BaYJYToBXyP8Z2oiTiPR5shs8XeQQyGPnEwIIFyjPtkpFHpfuBJYH/gR+BNIUSs1joMvIFxL47kQmCJ1vrXthW9i6O13uN+AAXMi2gLYBvwccQ2J+AHzgIux7jo4iL2S0ADQ8z2yxg3YUdEn+eBr+vN+1/gCnO84yP2XQKsAETENjtQDJxjts8CSgGP2R5hyrBvR3+m1k/n/zGv0Rn1/zbbO3wnzG1fAf9n/j0YCAP96/X5EHi6o8/N+uncP3X3voh23f3zzHr9sjB8XSO3XQxU1evjBRIitr1r3sNdO5mzAPiq3tj/B8w1/x6PYZSIqtdnIXBzQ7JYP9bPrn4wFNgQcATGi5YGrozY38fcdoTZ3i9StzC3rQBujWgXAP9srL23/uzJFtbf6/7Qxn98K5AXsS2AoRz2wFAMf9daV0Yc/z3GA3xkxLYlWutgRHuTeXwkpwLTgBO11l9GbD8QGAhUmstVVRhKbRKGsgCGBcEPnGG2LwEWaK13WEKzsGghv9drR16/YzBe7JbUXZ/mNZrBH9enhUVz+amFx63TO/phbwGW6x1Xmrbw5/vvvAbadffwA4FoYFu9a3xfrGvcookIIQYLIV4XQqwSQlRgXIc2oH9Et8h77Sbzdw8ArfXvGLrIBeZ4h2Bcf6+3texdnT056Kq+c79uZJsN40GtGxkncntjx0fyu7n9UiHEfFNZxuy3EDivgTlKwFCihRCvAJcIId4G/grc2YhcFhbNZWfXr81sH9RAP28by2Wx51I/0jnMn7NXOBs4rqn3b3szZLFhKBdHNrCvohnjWOzdfAJsBK40fweBJUCkS8D2a1VrrQ1vlB10hdcwDFL3YLgDzNFar21bsbs+e7LC2hyWYCiJcRFW1sMwLrD8Zo61BsO3SgHPCSGuMJXWX4DzgSKtddlOjn/enPNqIA54s5nzW1i0hF8xFImeWuvZHS2MRZfDT9OUx21AqhBCRLzMj25FOQ5toF13D/8FSAXCWuvVjRzf1POw2AsRQnTDWJGdUnefFEKMofm61GsY/tWHYsQR/LtVBd1D2ZNdAprDaxiWgFeEkS3gKOBZ4H2t9crmDmbeDI8BTsRQWoU5xxbgIyHE0UKIgUKIo4SRyWBoxLHLgbnAI8C7Wmvrzd+izTGvu9eAl4UQZwkhBgkhxgoh/lkXtGJhsRMKgIPNKOnuNP5sUUAycJu5tHophu9+a3GoEOJWIcRQIcTlwN+Ax819XwPfYdyDTzLvweOEEHcLIeqsrgWARwhxnBCiu9hJFhiLvZJSoAi4XAgxRAhxNDAdw8raZLTWGzAC/qYDCcA7rS3onoilsAJa6xrgBCAeWIDhSzqPP0fsN2fMVRiBBydiKL9e4ChgNcbFuRQjCjsJ40sQyQsYywsvtHR+C4sW8HeMSO+HMa7PGRjXrLVUZbErHsWwTi7BsKL2b6iT1jofuAojMPV34DjggVaU4zGMoJZfgfuAO7XW75pza+BkYBbGStYy4G1gH0w/Q6319xhKxBvmedzcirJZdHG0EeV/LsY1tggjXuUOwNeC4V7FyCKQu4tVVwsT8ceqjEVnQQhxC3Cp1npYR8tiYWFh0RUQQhRgZA2wUlFZWOyBWD6snQghRCxGvsLrMfK4WVhYWFhYWFjs9VguAZ2L/2L4WH2H4UZgYWFhYWFhYbHXY7kEWFhYWFhYWFhYdGosC6uFhYWFhYWFhUWnxlJYLSwsLCwsLCwsOjWWwmphYWFhYWFhYdGpsRRWCwsLCwsLCwuLTo2lsFpYWFhYWFhYWHRqLIXVwsLCwsLCwsKiU9MpCgdMPXfiOIwypuqmt2bM62BxLPZS0nPSt1+HeZPyrOvQwqKLsiFzzvbvct/sI63vsoWFSVpm7vbvRkF2Rpf6brR7HtZI5RT4EaMu7wsYyrMfmGAprRbtjamsKsCOeR1aSquFRdfDVFZnAU7M77KltFpYbFdWZ4N2AgEQxxZkZ8ztaLmaSrtaWE1ldSZoDyCAIIhIGZwYyqx1c7Fob04G7TIuS+0CIbGuQwuLdmPa5FlHA4cBasr08S367v3+/GUpCfYzp9tDsR4AjXYJhMT6LltYAEjQbuM5hxtQaZkzVgxNzE8IhJ3fF1QM/cxGaNnJg94tsovQsicuf61TVZZqb5eAY4AoUynAEeVfIWzhVYHqqImgNYgQhpXLwqK9+RS42VBWsQMVHSyPhcVew7TJs44FvjKfA7XTJs+a0FyldUPmnKPjXRNn2EOxsRodAuyg7SFnxU9tI7WFRZdDAV5DaSUE4g2XzZ9c4U84bmtNr1OBM8PYmbH6XBw2f81Hmbm/u2y+NQf0mJ9cXJvy8cqykd8AKwuyM3wd4VrQrgprVErZcd5tiQBhwGdzhN7yV3nGt6cMFhYNkTcpb156Trrs56r5R3XIflZpyPWf418favvyghVPdbRsFhZ7AdcZv4RozgrHhsw548J270TCjpE2nKfZ/YllNck/Px5dcuA7/uh19ztr+klbIP5fGzLnjMXyZ7XYi1FKnPLyiVx0+9xpf9lYNeAg6imaaZm5dmBAr5j1Y9MSVpyfX7x/bZmvW2pY2477ofDo7sAJRk8d3u/OVzUkCeP7ii8tM3d8eyit7ebD+t/Ljxnvq4ieaXOEfOGg4zebIzgmHHQ4AB/gYruLAHfe9NaMB9tFKAuLeigl3CVB5/0Pbx58bHXYsf8IT+Vb+bVx5+dNyutUSyMWFnsKbz81SZSs+EtVyJ8YbW4KgThyVxbWDZlzxmn0bIylTQQirNE20Fpg+wDYErb5LrCF3QmYRhIsf1aLPYjmWDmVElcDFwNHSKn9kfvOfvxW249bjnBFOardE/rn9llbMSicVzQ26LHXRA2IX3X6pqp+6bWhqG8DYXdxz5j1RwVCznOLa1MT61bLkz3bKqMc3ks3Vg14ryA7I9w2Z9sOCuvUcyfaMDTzTyM217jiq3+O71s0tyi//xdo8RmG/2qABoKurCwCFu3Nvz5MjVtWG/vDGl/0COBZ4Jq8SXnBjpbLwmJP48Xbp53hLR7xXnTqzx/XbDmwB3AQMHLK9PHLd3bchsw5twL3ATaN1sLwyxMajUBUAzVh4U8U2uk09wWBO/tmH2kZRCy6NGmZuVHAFcCjoB2gw2CbAZQPS1p8eIU/oaKwum8h4Oobu2ZMVSC+sszXrQy0O8ldPMgbjPbWhqIDoN12EYoJ6SYttvuAYwqyM+aZivJMwCUI47Z7dW0oxgGsHBC/8uP9uv/81FNXvFLQ2ue92y4BDSmTU8+dOM7h8U12J1QfhEhKQIveRm+NM6b2gUB11IcOdyBO2PQoV6y3u78y+l6bM3B4TEqZw1saP2HquRPHuxOq0zxJVQdWbU4sA9fRgADhn3ruxGMspdWirclI3Oo7SW/d9FJRv+qFNQlX9nTWHvXPD1OPfvS0Lds6WjYLiz0Jb/GI80CXEnZeAMRCeLU7cc07MH7/XRyqMB6iTmHEPwDYBSIAHNc3+8h5ZsaAmfxhEFFtcxYWFm1HWmauAEYAJwyIX/lPu0hLDWmH3dgrwMipL4GSYm/31JB2xGBc774YZ1Ws0xaoKfN1WwXC1zNmI5X++PUbqgYuBeHbP+XHg0t9yavXlO+zFLTvsN6zDtnm7bl8Remo5aBPBs41l/7t5hzzTKV1AiA1NhXjrP6lNhRzBugpayuG/GNjVf8b0jJzPwUKgNdby12gRRbWqedOPAq4yO72jQj5XEcAGkQtMAFjeWYW5qfYBky/6a0ZV7XR2BYW21FKPAQse7IwbeRKX8xNMbbQ6qqw47C8SXlbOlo2C4s9gZezHhpcXTh2KYgnpkwf/0+AV++/a3bF+qNldMrvJ/393hs+39nxkflWK/p8OsgWjDnXXTH08YF3nTu7oT6WO4BFVyEtMzcJOHZwYv5NW6t7718ZSPAAxLtKi/rHr161qOjAt4D7iVidrq8YKiUEMBeIAcZIqZu1XB9hSW10jvpcOf2ys+dtktdU+JOOMjfVAq3i49pshdW0qH4HCKg7VoDhI/Rvs3HfH/sNvdUZ430grk/xwOqtiQt8ZbEb3QnVtvh+W3tXbe72u7ckdpsz2jcqHHCcHA7ZjtMhe6o5cD62UICwfT+jqQGePXdg5nyNHiYQn1g3IIv24Oy30qYsrY17BCh0ifDJP/9t8dKOlsnCoqvz0r8f/7GmaP+xdnfJpMlPnPUKwFtPXN6zKP/cPLAtBo6ZMn18kx5SSonJwDNALyl1YRuKbWHR6qRl5jqAg4YkLrnWG4w+eWPVgDgQNocIeAcnLi1ZWTb83pB2fl6QnbE24phd+rAqJeKAHlLqVS2Uq9nZANIyc28Ffb8ZRBkCcUdBdsZuu+K0RGG9FfQDpiIawlBUHYBwxVX/4q+MWQD8HbQdsIOoAkbd9NaM9fXGEcBYYQ+d64z2XeevjHYCGnQesJ8xrvA5PLX5wVrPGNBa2MKMHhv18bBtN/5FowXocEXvz75weftsjSod/aylvFq0BUqJE4DrMtcPv78mbP/YI8KJB8WWXT3tjE3PdbRsFhZdlWmTZx0Beo7ZDER1X5TtLUp/GtgCTAGecsYUnn3F1AvenTZ51vaHZmPBWEoJD4YlqbS5liQLi44gLTO336CEZZc4bf7LlpeOitPYEkDrvrEF1ZX+hOfL/cnvAgsKsjOaHT+hlBgErJVSh3bZuZUxlFz9rZFnX9eC6EgLq/7ePNwLXA+kOGNqLg1URw8y8+j53QmVQV95XIwz1vu3616Y+apSInrZR4f6qjZ1Ozy+39aHq7ckjQj5nfFAyJNcsdGTUPNZ2Zqej9ucga/CAWc/c7oQYBOOYK4O2r8feOzCUfttu7vSXTHscoGw6+0WXrRA1GpCE1adeMzfgdel1CorK+tw4ChAZWVlWcqsRYtQSpwB3AWc/GFp6tBfqhM+Kw05bSAuzJuU925Hy2dh0RWZNnnWv4F7G9jls7vL/CFfYpzRDL8ATAJhA+EDmp2j1cKiM5CWmRvVJ7bgLylRW25eUrx/sj/sSQNIcJeEXTb/Z9u8PV8Bvi7IzijZnXlMq+pS4DMp9WW7L3nzScvMfRn4K3BkQXbG960xZkt9WPMAD/C37YFW52XcjuZe0zk3BNrefcR6ivL7H+mMrbklunv5xKrN3QIhn8uJCIcS+m+zexKr39/y26DLb3prRskHL/V8tODr0eeGg46+htKLmfhZFAFDbnprRgVs90earY3SYhrDyR4gGHRve7TgmDP/Dtz63Xf/3BAIRH+OEaxVC0ywlFaLlqKUcEipgwAHvjKqu1/bPgYOHeCqeWLG+atu7GDxLCy6HKbV1PSP02F30orpvtJhK4ABUcn5p3hLRuzTwGFB4M4p08f/aXlRKbE/cCwwXUpd3abCW+xVNMXCX5+6pXSH8G8Y2/P7s5aWpPcr83UbCbgdNj+J7pIlRd6eL9pE8ItTBr29uDWrSpm+q38FFkupf26tcZtDWuaM50FMLMjO6NVaY7ZUYf0cSL7prRkHR2yrK7vqBGGH8IaobpVTvcUJj2P6s7riapb5K2Pusrv9n46+5KvpGEs310ybfPRV/sqop8NBB8Bi4Pq4vlu/rtzQg/h+W6+//NEFTyolcoD5Qz7/dqEm/J3pGxEAHKaS7IXwhFUnHjM/L++8mPLyfmuCwajuEa4LPwE3WkqrRUtRSriAe4Bnr127b2GiPfBlWch5xABXzadr/dGn5E3Ks5YhLSyawc4UgWmTZ9mABcAgCMcYzxXhpxELq+XDarE7RPpqnjr49QXlvqS479afZP9bpfvvSWHxEICGwI/u4E2+gTNdGhG7oPCoAiBqdMoP40La4ckrOnA5EN03ds3xG6oG7As2W934ie7i0jJftxzgi8N6z5r3+nVTy9viPJQSQsp2SrC/E4576OFN5b6khAV3Xh7TWmO2SGGdft3hywLV7n7XvjArOnL71HMzxjljvF8EqqOiHR7/LcFa5z1gM/voIIgdigJMPXeiE3gYuAHA7vajQ7ah4aDDhggvju1VsvXKx+f3AVBKzARmDv5iVj+hHZMBNOFw2OYvFtqRUDTiP7aK/h8/qtRd94D+CDjOzE2mDX9aAYS1x1N+2qGHPvkJhq9TdWf4x1p0DZQSA4DfgLuk1E/c/GGqc3ltzOerfDHjgfeAv+ZNyvN2rJQWFnsO0ybPmgB87UnK/7y2dMS37NyH1YWRpaba8mG1aA6msjoLY+UYp4aRfjv7+x2khmyYuX0JofnOE+QHz05dSr0O4XcFtdNeF5DutnufWHb/Wf9o6/NQSiSa53GblHqnGTbamtF3vbLCafOHfrzrsuGtNWaL8rDqsNgS9Dn71N9uc4QOClRHx8X2Lvq2alO3R/gjU0AIIzeeAsMaa/f4z3XFB/7ur4iJN0cNJQ3e/E9ntG/V5p+GzkLbqqs2dR9bN7aUegLAhs/nfGf6roZABO1hTzeNtqXk3xAI1aSUREdvza+pSek/ZMgXq0G/sXLlSWOB4wAbCFFbm/jq99//4+E+fRbc53DUPgLcrJRIAXKAR6XUs5QSCcAZwEwp9TqlhANwW8tMezdS6rVKieF11puHT9sSACak56TfCDzWw+E7/KYPUo+cevqWlR0rqYXFnsGU6eNnvnj7f4t9Ff2PG5rx169dcZuS/8hOsyNm9R5/gzstOi0tWW5vAyRoV4+gjf39dkb57WEnNpvfUxIoSy4sTige2lOHHWEBAbfmH4f0/GZrlLPGp9aflA94j+zzlS3WVV752ZqzyguyM3T9dFC+UNQ77XQeSRi5iYvaab5GKfN1A/i1NcdskcJasy1xATA2ctvUcyfuC46HQH9WtanbD8BREcvxXwN39xq7fP1/rzz6foi7OVTrdIRqnZhBWgKwFS0ZUBrbuygXhLS7Ao/f8OoXmyPnyP9P1mlxTDhMIKYD68K22pGE3RcJBEEtxHdb0q6v0YE+KSlLnrjoovk3AGRlZY0zZNEuQxZR4/fH3bdmzXiAa7Oysj6QkkIgBaNELMBg4EXgdGAdcACwQClxipR6hlJiX+Ah4FYp9e9Kib4YOWg/lVJvU0q4AZuU2rK27WHUKatKiaHAACn113mT8h7/6zv94xfVxGWpym6z03PSj86blLe6g0W1sNgjsLsqzg8HYr8sXnHa7b3GPP0RkNtQP6XEGOBE4EkpdVW7CmnRIl789xP/glEPG7qCCD9745uLPImrddXmQz8GiqN7LIxzx60XpatO+Roojusz1+tJXL31nGtf9rWWDNMmz4o+2+GKcWtEr5CdAJoaoT9NdpZn9xn8yfc90l+xrZ975+kVG44eKkC98sQJ84zinZFk7NCKTKxPM9JB7S5S6jVKicM6x8qxTgHRqoV2WurD+hxwOXDkTW/NmPv6w/skFS3tuzJQ4wmhxb4YCt8cM7VVCMRsIBn0mB3rCegwRlBUvSIDGsALYocyrSuyny50VaWlBGLWdx9y65Wlq+7NWeKqHjhikygJzXUutVWKWqJjtt10883THo8czVRaJYaF91jQ9xBRqi8rK2sHB36lhBPoB2yTUleaCumFwFtS6gKlxCHA08AlUurflBKnAR8AB0qpf1FKnAm8C4w2908AbgSulFJvVEoMBw4G3pNSVyslogAtpa5t9j/DokMwXVQGAMPrgrEmvjF44lp/9CtAoIfDd/bMC5d/26FCWljsIUybPOs10KfH9p4/etKdtzdYstXyYe1aTJs86yhE6Gu0zVmnFwh7bY2wBTzhQJxg58WHyoASR/RWj8NdTm3p0G+AkuiU31Lt7vJA5YajPgNK4vupaIentLhkxem/A2VTpo8PmnOPEzbfhZ6klcd7S/bpjXbEBER47Q9RNd0XOijMf/gvQ9r27FsXc1X4RuChzmAou+75i+I+XnV+xdjUuV++e+OD9bX7FtNsC6uZ1uoS41rSX089d+Ix7oRe/wxURyWn7Ftw+9/uWLQV2Dr1vJMfRttuBeygjwXxc3SP8v/ZHMGSqk3dLwecbC+np+1AEMRcYIKpwDoxy4ABbMicc2AU6anepN9eGXrLNaUbMudIN4NGrHGvmj9LrDlEm6Vba2pS5teX2Qy0mmf+LYB7TMtug6X6pNQBYHVEewOGRbWu/QNwYMQhnwNDgA1mewlwG1CX4DcG6MMfy1XHA08AnwHVwGTgMaVENyl1iVLifOB84Bwpda1S4iBgH4x0XWGlRCwQkFK32lumRbO5FAjXKasAM85fNSM9J/0wB+FZpSHnN5e+2/fWF87akN2BMlpY7BHYPSVZIV/8+cHaxC+nTZ71LA0sH//6/Il5Oizu0JqB5qqZRSfl2RvfnAQ9nkPbN4FOxdBFAjrkOfbqaSfPmzZ5lh1ISBz42XAhwgNLV2eUAMmxPRcciQj3q9p86Cog2e6oPiQciEoEDgKSa7alJxtVSjkfoGK93GHep6fkBm32QADiPTrsFt7ikTjj1q8IVPa/1Kltc+e57FnAv9Myc+NePnFiLfAl8B8p9Uft88m0mInA7cAnQIdkBYhkSfH+PQCqAvG/tea4LXEJkBF/u4CrfOWxZ9hdgWf+dseiB7bv0bZKw4IqbBiWzPeuemrugwBTz534Jn9YPAER8TeHU6/us5nK6gWgMqp0/2sL7vj4ODuJbwjExm9Y95mGQ+vV092Z+X2L2fcD4NHWyBpgWkZXRbTzgfyI9sfAxxGH/B+GslpstudiXGxlZjsW6I3hiwJwLnA18JrZvhfDwh0LoJS4ARgrpb7IbB8DJEup3zPb8UCt6eNl0QpIqQvq/lZKHCSl/hEgb1Le0hs/6Hn8bzXx3y6oTrw/PSe9LG9S3vQOE9TCYg8gVJu80hm7fl1tyfABoO8D4Zs2edb2bAGGIcU+C+PZcdvUcyfusDrXpchK+GNFMKu8a57DTnjlvqzXgt4jLhD22p91yHM8iH2o58M6Zfr4EFAC478HInJ4jn+tgSG38/7/TXR4i0f0KltzkhtITkj74ohwICa5cuMRW4Dk6G75x9VWpKVhPF8BgoHK/i9NmT5+DsAXU7MKft92kG18v9zJwJsYQXztnni/uUipX1NKfC+lXtPRsgCsLBsZB7C0ZL8/GRB3h5YorMpMLeIBBITPBdvykN9ZPxelMpM8O+tbMs0bSeQXcfvfU8+duN3v46a3ZszbkDlnnCasBDaXRmuB+NoeSBwrEEKj/f1C3WvWOLZiKscNWkwjiY0tHF9V1RMhgg/dddd9C1pw/ruNlLoGWBHR/hH4MaL9PPB8xCF3A09H+KV8AkRemDFAYkT7KoxqYe+Z7ZeA4cAoAKXEA0CUlPpGs/0XwF8XVaiUSAKqTEuzxU5QSlwAvKaUGC+lng3w+OmFi9Jz0vsDbwHPnPrmoBPj7cEzXj17nRW5bGHRTN54bMrfXHEH3+Ov7DfADOK1UW8FzvhbO810h07TCNL1lL2shOOBGRjGFz9ZCRP2FKXVTFP2CBx1QVS3JQWxPX8+7pxrXyrF+D+1yjmecdmMIBBRVXN8vWf8+Lt3zP+7o84wIH7V53nbDmR1+bB9pdTrgcPMnKadEtMVoIeUekVnUVYBoh2VfWqCcQBbW3Nc26677IipbE7AePsAhAv0AGBMI/3uBJr8tnvTWzPm3fTWjAcj+kujvJcxGTDS/I1A2MIifKK56z2aUBzAbq+9CsI4nTWJTZGnMyClrpRSR7oozJJSPxnRvl9KPTHikCsw3A7qyMFIH1ZHLBAX0b4NiEy58SURFmGlxP8pJW6LaF+glDiyrv3CrdNPmDb5qyzzRrC38S5GGckd/FXzJuVVAaf2ctZ+udoXc+pGv2dWek66q8ERLCws/sS0ybPOnDZ51u8ly8/MCfni+9tdFc8CXowVu/rGCcUf6QN2abjorGj0URjKuJ0/lPIuz9tPXRznils3F+M5819v8cghprLa7phW3O26SaRryVOXv7pZY/tlfeXAAWZsCZ0jgKlR7gV+UUp062hBIjmo53cZACemvd9qOVihhUFXAFPPnXgr6PtNf9MgsEOO1dbCdAfYnh4CoxTsE4BziygLfeL+yYXhv+plFwprVlbWRaBfaWr/vQWlRDLgkVJvMtsXAjWL35wZBE5PGvreeFfM1p7Fy85+Lujt7orv++2VQV883pIRK3XInQw62RjJ+Ez31rKJZjk8X6Trxc0fporltTEvrfLFTAJmA2fkTcor6ygZLSy6AubL71zABjrojN5y+hWPXTBjZymQpp47MQf0RcARN72V2yXvQTorfhzmErgw76dd3cI6bfKs42zOqtfDgdjunsSVT9aWDblhyvTxnVYJTMvMfcIuAlc9e9xZFQ5bKK0zZ5xQSvQGJkipX+1oWSI54v7/Zm+oHHjLkX2+6v/qtf9Zv+sjmkaL0lqZKLPk6Q7+pq1N3+wj523InLPdTcBsLwLk987l/YErzQAwV0PLQEaGgPCEhIT1E6H/2IiMBPWXlPZapNQl9dqvGQ8G/R0IUbriTHOPngIUVxWOXeuOX9vD5qhZHwq5S4Fk0+i9136mZiDcTxi+yTfUbX/4tC0auDg9J30m6BeTHYH1N37Q87jHTy9sVd8eC4s9DAnaZqY7IlDTMx2YMeq8CVuAozGy0NQ/phxERZf1XQVEVsW82gdiwwJR5vaLiXuAsjoO+DwciLFBOFhbNuTNzqysAoxNnVvy05YjnPnF+y+89uyfO6WyWlcq3DQydSplFWBD5cAwEJyz8biNrTluixXWm96aMa++v2mrSVWPvtlH7uDjUtcuzpo5DrgY8JgKU1FWVlYs0C81deHxVVWpB0Ovc0A4yssH4HKVbfT7E5NpYyV7D0H+8afWNmf1o92GvXfrOdfm7OCAbtyQRKQFXLWjjJ0GKXWVUuJ/wDcN7c+blPfqFe/1SfqlOuE/syu6f5Sek35C3qS8he0rpYVFl0EZv/6UzaUEI2Amvv4BUckV6b7KqE7rb9hU/G62uH2EurqyaiIjXzzoAgaN7lFbPwSynv7tZsfUn3PHtVcO1WbytLmid2FnrOrmtnv7+kKe4oLsia0qW7N9WCNpwN+0XTGW88V1gFl+VT8HVAJLtmwZ/Z/q6l4XAA7TAhv2+xOnEeG7YrkD7BQF1BoPDEQ4ELu6vrIKO/cH2tuQUt8rpf4WQCnxp+/Wc2dufDLKFhobMoIWvz3tzUEXtLuQFhZdAOM+IkpBLCDiviKlLpNS7yel/rT+MXZ3IM0R5Y9qd2FbGU+tmO0MiISOlqOVUMYvDV3EoJHoLjkVtPYGY48CZppVqzoNZhDYamBlZ1RWAQbErz6uZ/TGVr+Gd8cloLPQHTCrZWkwcqK+2r17vq6tTYirqur9HyKiASNzslo0zpTp4+eZdbxPAC6B8P3Tr/twn5A//u36SqnZtj5TE6XEFcDfzMwBO6QSm3PRsl/Sc9LHRYnQnDW+6NfOezttvzfPKcjsIFEtLDozGvixqS/BVZu7LQFdvOuenZe0zNyzH4k7dNzZekFcwUueXml/r92866M6L1Omj5/39JTPqm322k0hf8Kkzm7QUEqkBsJnZ/FH0YJO5+ZmBoF16vzem6r6ljptgVYvD7tbFtZOgsLIVxo0g37uycrKev2aa95645//fO45LItqi5kyffy8KdPHZwl77R1gSw75424AZu6l2QCawzaMHLuehnbmTcrbcFR88VEpTt/axd64W9Jz0u9Mz0nv8kuZFhatic1RkxzX+/s/3WuUEkcrJVabFQMjiQHRKX0Om4JhydNvflN98ECA91ZdMKGjZWoNdMhdEfIn/ClIrjMipd6yrnLQuQJNZ7QKKyX+rZQ4vKPl2BVVgQRnqa/7otYet8srrKYS2qhSmpWVNS8rK+tBS1ltOTrkGmv8tUNglUUjSKk/AE6TUlc01ufR07as3xLwDANeAe4e6K7+4V8fpnb55UwLi9YiHHIFAt7uBQ3s2gT8Qr0VQmdM7RB3fHViO4jWVkjAtlGnABDQzmM7VJpWQ4MIdhld450bst+JdZavcttqS4AJncWH1SwAdClwWgeLsksE4Z5Om7/V05btCS4BWMv8bY2tLpdaQ/kPLRpASq2VEt2B/wK3NpTUOW9Snj89J/3iIe7q2JW+mDOKAu7Z6Tnpx+VNyqtsf4ktLDoZ2kFt6bDl9TdLqVcAZ/2puyYlHBYxU8+dOK6LZgr4BmCD7q4BcUzsvC6j5O0Mu6c0NSpp5eE7pgbvfCglTsZQBm+uDMxYAXTrLMoqgJS6QimRTievvHXd8xfFac6PPaDH/KFwequOvUd8ISzajmmTZ43D5jsTgiuxAquaSxyG1WRMYx3yJuXpD85bfWZ/V01WZdgxFvjm4FdH9m6sv4XF3oARWKIdoIM76bPd5WbquRPHBWs8zkBVdAIw0yjV2uXYBIIiEj4KChgUt7K+y0OXJByIqvRX9ew0VZh2wlCMlGlVgpAWhDuNQU8pcaxSwi6lrpJSeztanp2xcOsh3QGKvKmtnrrRUlgtGsXMxTqbsDsebANpIFm3ReOYVtXBUur3dtU39/xVdwOnCPRwlwgXXPd+r4y2l9DConOyNW+SA4SI7/dNg/56SonLgQqzjDTAcfyRO6lLui0dlDr3LwBnDP3fL35PiPgKe6MuRV0JHYqq8Vf239DRcuwKKfUTwEgpdXBI4tIDesZsHNHRMgEoJcYAX2FUVOz0rKscdBTA6vJ9qlt7bEthtdgZEuPmT0QOPYtmIKWuBlBKjFdKTNxZ37xJeZ8dHVd8eUALVGW319Jz0o9uHyktLDoX3pJhDoBAderKRrr8DDyC6dYW07O4r7FZh+iibkshbTsCYJ/kvIUhO4WOoOjR0TK1DmEhbAF7R0uxM5QSMQBS6hBAqa9bQYU/odWj3FvIr8A5wPMdLciuMAMHnzNaOqu1U4JZCmtnJithHFkJt5KV0LR/enP77xoFwgeEMHKHqlYad6/CzJt3P3Cb+XejPHXG5td8YdswjdgM+stz3077d/tIaWHReajafKgNwFsyokGFVUr9i5T6din1NgAdsg8T9qAWNn0PMKEr+rD+svWwKtCFV5y+5BNnQHwPDOxomVoDu6esR0zqr4d1tByNoZRwAMuUEnfXbSvy9txQHYjv8FgCpUSMlFpLqd/p7K4AJpLtRi4ctLKRq9P4aFhEkJUgal3he9yIfwMIhNZZ8QXeqHBvZ0CUOIO2Uo0W3qjwIGfAVuwMijKNjgEGAGGB8JGVsNs1qOtysUZ3z7s8acgMTrv4qy73EOgMmAFYZwHlZg69nbJw0uKC9Jz0wxPtwXlLvHH3TnxjcK+1/uhr8ibldeqShhYWrYXNWeUIB2JBhBoNMDGLc/T/+ZmMtZA4BPT7N72Ve087itnajAKxBKAiPhTbY5szds3L7u4DL/Z1FktfizB8WHut7mg5doIbw3r5fd0GuwgS1sLZ+CFtj1JiPPCmUuIEKfWvHSlLM1BA2CjkRKsbuSwLayej5qHYkUCux2+rU1brdlX7XXpb0EEBsEQL8o22XgMsAarN/jbARSu92UyZPn7ewGNvWJeY9vUJSono1hhzb0RKvdEs3+rYlWsAQN6kvJJDY0sP7uWs/XmtP/pq4Kn0nPROvaxmYdFadBv2fg+AhP47zfn8GJBndwXGAH1A5LaLcG3A9c9fKJw2/5g+sQXVSgl7cbfgoQADCzwpHS3b7mL4sPZr1ZryrYmUulpKfbeU+qu6bcOSFh+U7Cka0JFyAYXALGBZB8vRZIysCmKV+dPqKcEsC2tnISshujQx+FZCrX2iRlcKxJMCcTmGeT0gEFck3li9/Z9vAxIjDhdZCeM0ehZGsnp70KY3tOI/92Hg3jr/HovdYgrwH6XEmF29NT9y2pby9Jz0g4GHgH/2d9Wc/K8PUw965LQtXbqaT1uQnpM+DuMlTeVNyrNWAro43pJhQQB/Ve/GfFgB3gB+ie+/9ZHSlX2I6VH6dftI1/psqek9KhB2OQbEr6qQUocWveP8FpgIpAH5HSvd7hK2CXugQ62VjaGU6A0MBuZGrn4VeXusrA7EdaiBRkq9BDivI2VoLlc9+/dEOHOIx+59fOn9Z7f6fdiysHYwBS95ROie+LOA/KQyx8SyxNCaTb0D48gqv56Iggi7XN7PKp8nEOOBR0NCV4bt+qV1L3jGt4aMUuoaS1ltNZ4BTmnqEk/epLxw3qS8f+0XVfHSen/UwNkV3Wan56R3eatLa3LgK6OOAOYA9wEzTeXVogtTtfnQAIC3eNSqxvpIqX+QUr9SubFbP3d89bbJT323vv0kbF3mb5Z9AL7fNOE5gAFr3dcClCYGu3y1K7unLCWmx2+HdrQcjXA5Rv7bvpEbt3l7bagNRXeIz6hS4hilxGNKiS5XSCYYdp4Hwjaut6pti/EtC+tOSMvMPRzDajOrLRII+x6IG5Xstn9jD4tuQB5wVPL11XO2dzCU1KbPa/bf+IJnTu9Nrnf6rXe9TlZCDvDh7vqzKiWOAx4AjpVSl+/OWHszUmo/MANAKdEf2CKl9u3quNfOWXvJ+NeGqW1B97PAvIlvDD5zxvmrfmtjcTs9SokL+7nSnlvli61zl+h0tb8tmo/dVe4K+RMQNv9O/bafvvrIC4Le+MFBr/i/9pKtjRhl/l4CUNwtuD6m2kbIrrv8y1c4EF3hr+yzM0t5R/Io8IOUeoeXHafNZwuGnR1lFT4cyAC6XMDtNxtOiAfwh1wvt8X4loW1Ecx0DDNB3ycIfz8w8+OctMzcjLF3v5gS2SctM/fWZqVuyEoYp7Pi7yIr4RW33/ZrTLU9bkuPwDvAGLLK5+zy+CbQ/9Lajx0hcYVApAI3AzNbIXNAJVAL9NptAS1QSvQAFgL3NvWYWRcufwUYbyfcoyjo+vWyd/ue31bydWaUEs4668Psim7Hr/LFRIMOY1Vi22NIHPRZGkBC2tcHNtZn6rkTx3lL4v4HQgB/66LFAgAYmrj4fI+9xluQnVEEUDDQ939+l/Z1L3Z2WatxHTrkCfqr+qQaeb07F6b/6uf1tw9PzjsozlWe2kEy3QeMkVLXdMT8u4M/5DkQWPvadY+3yQuKpbA2jgQcINAINPaLgBlF3tStB2a9WJOWmfsJxoPxXmBmk5RWw8/0GyAL+CvwlT0s+qdeXXMOWeWNVnRpIb01231ydjuRtpR6vpT6SCn10t2WzAIp9VaM62B6c47Lm5Q3T8YXn2FHV/9Qnfhiek76aW0hX2fFDPzLA/6dnpOe9lFp6ukpDn9Ngj04EdN9xvJh7frUlhhJx30V/Xf24JPo7UGpdrpwnuhyf1KflOgtkWmU5oVtegNG5pcui1l8pjvoscDMzqS0KiXuV0qc2tC+rTW9l3mD0a2e+H4X8hyklBgGf+Tv7mp47DXHxjrL28zn2lJYG0dhpGUIgvACxwJydMoP73sc3rXAMRjR+HbQTY3Kv14gnAKBNixCc8kq39I24qMADaDRrWZ1Ukq4lOrYdB97ClLqJ6XUq2G7ItYk/nN64dcVYedgEL+Bfv+Ctwe80HZSdg5M9wlMq8O7pUHHT8D7IWzhkqBz/7kXLf0sb1Leg5ayumdQvfWAGgBv0b5rd9JNgaili1vW0zJzxdaa3tHrKwe+W7dNSv0csCJo1+kdKFprII1fQoDuNBXIzLK+ZwFjG9q/pab3hkDYHWhHeQRGfMO7u8rV3VmZPP3SkbWh6OT07r/422oOS2FtBNNndXvQU0F2xuyC7IxvPrzpnjO/+/eUEcBxoAOmTmjDWN5tlLLHY04CTgfCQFAYCflVm52AEYT1NIBAnLK7PqwASolRwFYM/xqLVkIp8RCglBKuph6TNylvKzC+p9O3KM8bf8kxrw17JT0nfY/8PislrgOW1ymtn5b1uON/xX0fAA4ALlo4aXFn9Y+zaCF2V7kHwOZofFXULA6w/R7dFYsFmPQGEjD9V+uoig07HCERs/G5qLiOEatVUKBNBUaY7Y5HSl0LjMCIy/gTbrvXIQi3W4yPmaHgFOCvTcnV3Rn5vOCMIQCbqvs921Zz7LVBVwMzPxnncdScrhGqNhgzPy1+hSO9+y+xeUVjqgoqho4GjgC+KMjOeLCh4wuyM+alZeYeHeOsuLE6EH8q8HBaZq4A9gdUZJDWxueiDkypccwIOHSZMyguxHjQqtZQIndBnWl+USuNtxwjlcy6VhrPwmA+xt28WTeqvEl5NTd/mHrgrzW8Wxjw/BVwp+ekT8qblNcmEZrtiZluRkipNwIfADFAEcDsim7X1Gr78NHR5d++eva6GR0opkUbkTjwy5HFy84mIe2rdJj4XmP9TCW1qyqqABzd9/Nzv9lwIgf0mF9ZZwtQSvw1tZvzmB7bnPTZ5OqFEUPQ5TCLz0hgGrCvsAXaakWxyZgFJ5BSh4EGMwGMSP79oKUl6fHtJE83KXWxlHozsLk95mwjDgFCayuGqLaaYI+0yOyKtMzcwzRirjcY+6/aYEwuUFxQMXTLJ6vPXVVQMXQL8AVwhyA0e2e+qQXZGfMW33v+OcBJEB4KOhf0jj6tWQmxvTc5X3AERWBzL/8ksso/J6v8wXZQVilJCvYG2NzT3681xpNSB6TUV0mpf2mN8SwMpNQfSKlvllIHmrsc9PBpWwKFAc9pGMF15/R2ejfe9EHqoDYRtJ0wA6p+A7IBpNTrpdQPSqlr0nPSD6nV9qkC/UW0LdTlU/5YNIy3ZJ9tAL7ygY2mtdpTKKzuMxCgT+y6nyM25wNvm3+ntbdMrcmU6ePnAacggkQlL53d0fJgvBWsVEoMbaxDYXWffH/YvcvsLbuLUiIGWKCUmNrWc7U1PaI2nx3jqFxbkJ3RZsFie6TCmp6TPi49J/3WneRjvAejIhRmdPGMZM+2Ow7rPes9t937NcayPQKcca6yXS5/F2RnzEqJ2mJGGgo7ZpBTwUsee1jotwQi3abFqf0vrW1Xa5DfFXYChG10a+ox+cNHjMsfPuLW/OEjGlXUF57R7y+LDhvy0M76WDQfpcQ+wFylRLMUzrxJeTpvUt4jh8SUPrYl4E6eWZHyRXpOelrbSNk2KCXcdRXAzJrZVwN3Rfa56YPUkVG20NegN2rEBc+eubG1AxUtOgk12/arMn9v6mhZ2pplpekuoHjG6nO2uwRIqX/qWejMAihODpzcUbK1FlOmj98Y33fuNzVF6f2fueaTjn7RLAd+Bgoa61BY03djWLdLYUEf8H/AR+0xWVtx9uO32ir8CUMGJy5t09y1e4RLgKmYju/h8BUn2gNHQ8xZpuJYm56TvkPU8LHZj0yHkROAEKBBBIAHfsm6eB5sT2d1OGinRoQq/Ym5YCwjmEsIDbLN2+sh0BkYn2kAUDHVtrk2LQ4NOMK3OP9d+UWbfQCN0HOLay5wc59NribVojYV0Nka7ULAorFDf7BXOVaEPaGoQFrtGEeha5mt3GFzEXOCuXh9bf7wERNGLM3v0ktynQg/0A3oCTS79vb/nbXhpkNfHfFZddjxDuh5F73T/9L/nb3u01aXsm24FnhEKbGvlHqxlPqdyJ3pOemOBHvSOwEtYo+KK7lk2hmbSjpITot2wO4piQ7VJmN37RUpn0cBSwqyM3ZwCSpPCK1JKLcDjOwQqVqZmm3pfwHyw8GYqdMmzzpwyvTxHVKMRkr9LfDtzvpEO6pcNcGYNtdYpdRBoEG3w67Ej1uOGA6IVeX7PNWW83R5C+u4V4efBXoucN/WoPuZ5b7Y80A4AAHaTURU4qH3PHvByrIRV5qugkGMN5sd6t3+EWwl7tTYjinIzpinlDgLIygmuTE5zBq6lwDEuUpfKfBcsE9KkfPQkqTgLxv7BB5pi3NvAnVvO02NQJeAUyAEGiG8tn2BI0TAdohji6u/rcZ+gNDiYDQIw4G+00R97glIqdcAo6TU37d0jPl/zf8aONwtwq7FNXG5414d8VF6TvqEK9/r0+leTpUSE5QSdXk2nwVOoF7gSQQPloecIxPsweumnbHpnUb6WOwhJPT7djRAQtrXgztYlDbl+ucvFFGO6nFDExfv8P1USvQoGOirDtso6lbi3NZR8rUmV/7nbC+G69L+sT0XdMgzUSkxRikRu6t+I7stPFCg2+yeqZSIUUp8qpTorBXAmsshANWB+J2+COwune4h1hz+9WFqnCDpNbYr3jocawvNrArbjwCiAJuD8PZk/IU1fc+KONwOrGuogpW5LXK7wLCa7tQ3oyA749WD73n+6YNF/sWEuASYmVzqOCn5+uoOifrb1j2QlFLkZGtKYL8eRunKXaEwrHweIGgL2Y6vbz3NHz5inEDMxFBWu2wqmc6KlDpk+rFeAWyVUn/Q3DHyJuUtOeH1ITdsCnhyqsKOvwB/+b4qmdE5+4ZDiDKgOtEeSLShvSUhVz5QPcBVM1hD2Tp/9E9A9b5RFSMD2rZlWW3sj0D1wTGlQ2rDtk2/exMWA9VHxRUn1oZtWxZUJ20CqvMm5TVred5MK/Mq8B1wtpS6Eviyob6Xvtv3QUj6J/CMunBZm77BW3QOvMX7bASoLRu8Rwd4/l40tp83GGOLcVbVz11ZCkzVQh8HIq0DRGsr3vEkrpzuLdnn+hdunX7fpQ9ObreVEqWEHWPp/WfgtJ313VCVtlhjOzItM1fUt3y3Ev2BfQB3G4zd7gxJXHLZ2oohtYGwa1lbztNlFdb0nHQBKf8B4RLooHFFiUBV2HEXQIrD9/C2oPuIKFtwH2CueVgchnk1RDOULSn1O0qJd6XU2nzQ7i+l/qHBvjHzv8us+PwEr92+LSocOpus8nbL5VYfv0uHALTQSU3pP2Jp/rz84SPGh2KC3+qYkC/929V/UubNPhMwLKvKcgdoExzApcAajAj5ZrMpENUXwxfbDoST7f5lSY7AmlW+mAIgJsEeOKw2bAtjvIylVoQcfX3a1hsYBsQs8sbXpdi6FGBB9Y6X0LeVO7pFH5AzCiHwBrStCKju6azt5wvbNpWGXCtBV+/jqR4d0GJTtC1kX+KN+3pMTN8xwFd5NXHfhHJGnTUurnTY1oB76bLa2NVRtpD3iNiS6KKga+NvNXEnQMIt3ey+aiG4oSWfhUXXw1syogKgZuvorR0tS1uypnzYEICF2w55PXK7lDoA3Fr1Y+yhoA/eUxJfT5k+Xr/20GeX1pYNfi/kT7gN+Gc7Th8GzsFYXd0phdV963yn7U3p31yk1PlKieHm/7nLU+ZLHtEntqBK3XZjo26TrUGXVVjt6GtDxhL8fRrxKaYCVeevmp6TfjTwa2XYeXN6TnrOeP9+oSjHqYc7hP+nykDSB9RLPbUrInKjZQE3KiWG1K8/TFZC/P3YBlcTxeTwtV/nZN1duvtn2nL6bHItBkjd6mqyP+SIpfnzfj9u4MuO9e5L84eP6DNiaf7GhvrQxVPJdGbMbAEnYVhZWorCsJY7gUBJyHXpNxcta/L/7F8fprq3BNwJv9YkOICYo+OK9i8Ouljkja8AYg+JKZ1QFHRVrfLFbAViRkRVnVQcdBVvCni2gY6JsoW7ecP2MNADiCkMuAf6wraBQS3sYcThP1Un1k31N4A5EQqwN2znq4qUCGk0xSGXA8SBWNfdXoHDUxwbrO2Gw1PcJXNSNhVBeF9tLBD+yRVGKWEbGR2lY6pt0cVPRkd1u66mTQNa2osLb3nkg2mTZ70EXPfsjW+/cOXj57RZZaRIzGd4k+4fsc5yd1UggX2S8uyQ0WoKq1kg5iLghT1FWU3LzI2GnvFF3tTstp6rSyqsU97vfX2Y5P94RGhmrbbflTcpL0y9CzFvUl44PSf9LuCDkZ7KuzeX9v3SG4yJOrLPd4tfvfaJ3XFyzgZ+ra+sbng+ytUH55tOwmm3B//+83zST5z032sdOdc81ZGRzHUuDE2uogTgXO+ZClwGnAk82dpCWewaKXUxgFIiCThVSv1yc47Pm5Q3Lz0nfbslvLkVoB45bYsPo0hEHSvqdXm/Xvue+mOYFdFuBFZJqd8zl+R6Pbx5cOHIqMrUNb5o9/LaWHucLZAwJqZ87FpfdHmBP7o2xhZMHhVVeczvNfH9arX9CDOjR13pTUth3QuI6z3voNLVE0lI+7o3nP1rR8vTVqR3//mK5aWjQrWh6MIGdn9XER+K6bHNSbcSZx9gTyqQcbuw+f5qc1XMmTZ51lRAmemv2gSlRF/gSuApsyz2ThnVfeGYHzYfzajuv8ZgRPK3Fhdi+Ov/BjS4StsFORCwg2jz8+lyCmt6TvoAG8lZSfZAzSGxpRc/fNrWnZmgP0p11lZvDrj/uW7LwVsAFhcf0GBli6YipS4D3gJQSowGrhv3fWxOss3+ukD0Dgt9dVWvin18G6IO1IirgA7zuStM9YueW1zUukNXeLISFjc19+uIpflLl+y3z8pwbOgGLIW1o7kW+LdS4tu6Mq5NxVRSO1LBCwHnAQuA96TUIWCDNPbVt9z/VK/9gpn9w/KX3gup3HywBigvmNC9o2VpS9ZVDrLHuio2Lb3r7IYsyc/YwgwB0jFyse4xCuuU6eMLX/z3f37wFu13BOj7gdBLd059PCp5xT3n3TC9qg2mlMCtwItN6byuYtAi4KRFRWNaO5PB/wG/SakXtPK4HcaBqd9f8/OWwxgQv7LN87N3qSwB414dEQ18GEaIkpDrgIdP27phZ/3zJuXpFIf/ltKQyxXV/+Vb7NGrC3/Juri+pWh3ODShzH6Syy++iq6199bosE2LhdHOqixBqPLbDScc1IpzNZvu25zHALh9trHATLISmpw31ZdetdZe4hz46wV9hreZgBZNIRs4pLnKakehlDhCKfGZUiLKTAMnpdSTWzKWqXBvL73ZXCuxRddk2lVfjQt6U64GCNZ2nz5t8qw9Nt9zma9b9yJvz88b2ielfiW+wv4uwNaUwKntK1nb4y3a7wuM1JIChKNm6wH/Kl56VvG0ybPUc/9446k3pl77r1cfuCOxNeaSUv8P6G1mYtklm6v7FQIsL923NaZHKRGtlOghpdZ7krIKsKW699AEd0ntN7dd/yf3wdamyyisN3+YKno5axeD3h+4IG9S3vKmHLfIG/+L1mh7VEHv6H4vpO6kmECzkVJP3+/36ByBcAIIRBiQz1z5UpnG/iZwZlpm7i5TaLQJWQkuR1g8oNEIhKCZKahsVfZMAM8v8ce3kYQWTUBK7ZdS/wqglDhIKdEpo0ojKnQ5gKGY1Xmk1BW7M27epLx5eZPyHrSU1b0DpYRIHvrBi6Drgv4c7KGp846477+9gO40kspNKWFfNdhXrNE4A6J/+0rXLswEaoEg6Nro1J9fwSjhGhOoSZlSsuL0hyvWyW3TJs+a//zNL/3v9Uevv/vZG95pNLVkY9Tdm5riClBHgqvEA9Andq1rV32byD3Aop2lxuyqbKhK61buS26XwgddRmH9uqL7rSt8sWljosu/zJuU1+Rk6CFvn78BQgjQIizMdqthD4uPMHxcgkQsWyZ7tr0JRB/aS3VIUuCyhOB7QG+B8NeXrSns/9G6n4DfMaIqLToYpcRg4Hsgs6NliUQp4VRKvIWx3IaUWgHDpdTtEkhhsWdg+jcjpdbu+PW5iHAAdLPvW12JfZIXnQNwVN8vGktQf4s3OrwBWJdU5titF7/OiOmzaq6giPF/v/tfk6ZMP/YfU6aPP6j7yNf7JQ78/CYQDwMBf2Wf80tXnnpnsDa5aNrkWQtfuHV67msP/St72uRZqU2Y6g2lxKPNkW1U94WjAQ7oMb/JVSJ3wUvAg1LqPargSVpmbk+MFF3t4o/bJXxY03PSTwTbfaDfTnX6z2vOsf7ScXh6fgAiBNqOv7SVV5eyyueRlXAMZnBLnZ/okX2+mj1347H+NeVDT8bwQ2w3yh+LOSOhwj6xJCn4e3KpY3J92ZpKsJdvrmOz++ofb0wZe9Dj2+r7GFq0I1LqVUqJS4CPO1oWAKWEy7T+BpQSAQx/VWB79RaLLo65GiUBdVLC1vkAn5X3AOCkBMNY1ZJ23d917cf7Lx5ih49mzhZX37Bu329O6r71X/21eA+QmrBaf+KF82/+0KhU0tDxXaX9WXnKoSAkZhDk0pL9EgHsIvg1DfMlUAmcDQxopE+XxlRa//RcOve6FzcCj9W1337q70m+8v4TKzYcnQYc5SsfcGJt6bCTgVumTZ61LKrb4hJn9NbvKtYf89SU6ePXmW4kEhFSo85lG9AsRXFN+dDfgbMXFx+w09zru0IpIUw3gMXA4t0ZqzMi+352jdpwEmN6fL8BdlnFfrcRWnfurCE3fNDz2DmV3T4NarEsjDg0b1JedXOOT8vMHedKnj3HnfqF3bvpTH+w/CDZnHRWu8OgWz/OCmv7nUBaQXZG+yTAzkpIAn4PCx1c199/cNrfa1tcJeWna3ucGPNVt8/8g2r+s/+na29sRSktdgPTGpUkpW5Syd02mP90jKW7MVLqwrqbckfIYrH7pOeki2Pjt43cFPDsv8QblwCMTHH4LtwWdCUZaXotWhGNsQw+oTI/+yZgInDMzp5JNdmxi11+McwRth3VXKPDnsrbT10cVVO07zHVW8aMAn2UzVGTEQ7G1F2shRBONa5dUQtMaG4GgrTM3Cswovn7FmRntNg3UynxCEaGk5v2xHvkUfc/+dqGyrTzJw5+u9uTl/+vzdN4dmoLa3pO+gQ73d51iLB9fHzpVY+fXtgsZRWMqlXjnvhofhUcnugufuCndlJWAcLangPcZRfBvwH3tfV8BS95RG+n83VXwNbTpsW43VFWAcY+tfXzJcOH/+5aHd2hwWMWf+JNIE0pcVh75fJTSjiAaNMnNQ+jQpUTdshRbNGJSc9JtwH9gBHpURUXVYQcA9f6ozUw4uuKlEjfusrqsD3SXSzc3eFbFW8P/rTaF7MMYL+oisMqw/Zta3wxKwD2jyo/ojzkLCzwR68EGB1dfmRp0LlxrT96tdk+uiToXLvOH10g0OKY+OLJLhFO+qI85UEBYv/oiiO3BlyrNwai1jsIO9KjKw/fEnCv2hTwbHCJsGtUVOW4woB7xeaAZ5NHhNwjoqoO3RxwLy8MeDZH2UJRwz1VB2/0e5ZuDbq3xNiC0cM81Qdt8HuWbAu6t8XagrFDPdUHrvd7FhcF3UXx9kD8YHfNAWt9UXklIVdJoj2QMNBdM7rAF/V7achVmmT3J6W5vfut9kUvLA85y5Pt/uQBbm/6qtroXyrCzsruDl/3fq7aUStqY36uCjuqUhy+Hn1dtSOW18b8WB121KQ6fKm9XbXDl9bGLvCG7d6eztpeYS2O2xp0DcSMJzBc0/TpgA3EzLTM3An1lValhH30r9EnJtTahwM2jZ4pshImWEornHPty17gU/PnkbefuthZuXHcwbVlQw+E0GSw9TQUVu0yrdrN+sy6ebZGF9f2oG9sgaelMpq+s27AsafeI9dVDu4J/Noeyip0YoXVXI76IoTNHtLC93VFSovTS3T3FLmqgJE95rerRaogO2PNwfc8v9YXdN+ZljkjBKJZxQqaS0KZ7R1XwHZidVTo45hbqlplCV8g3gbuyzticFr63FUFrTGmxW7zPyCZNqjA0hCmsvozRnqqy6XUKzGWKS06Iek56Y5DY0oOD2I78qfqxBAwMtnuP84pHCkBbbMB5HnjibKFghh+0e/s46nSyQ7/snlVye8CG2vCjkOJSClWFHRPmn3h8la7dykllgI3ZiRufUZKvaW1xu2spOekjxPo2RrtBBEwXdNspgW7LiC2/uc7oiQ5OCOh3K7Fzvvt9Zxz7csBjJfo76ZNnvUj6Jmg3cLus3cb9n4ljG/WeCO7Ldx3zsbj2S/lp17AqpbIZCqp10UEpO5RTPrvtQ444SAQ/2uvOTutwtrN4X+gOOgyndHFbiUNL/EnbMUDIRGobDUBm0i8q/TnlTWjBoC+F/A39CbdKmQl3JiI40yNJtprO46shHGt8SbuG179uXtpzH2BQd7HgdNbQVKL3URKvT0iUynhaCufUbOa20opdVAp8Qp/Lh5g0cGk56RfBDqjh8PfLc4eHLbKF10FYuj86uTI6OYNQNEwT/WGxd6454H8Qe7qVR+dt3pnS527VXiiPuZLz7+AAin1Gxi5rN8xc/Pu8eRNypv3wCfJ0yvDjqt/rY4/bWn52ErQk0FrEI0Flq0LOvSjwA0Yz+o9NgCtNZkyffy8aZNnTbC7SzNS93shPmnwZ88a6U+bzoqykXkAi4tHt8hyqJS4EpgtpV6+p1pXoxw1J4OIG5s619se/qvQSRXW9Jz02ChhO8xw9yG4ky90k9hWm1zijoeF3tgdUmH1nL1we1BB4TGj2+StdWXZSHNOYQdctPIb8toXPYMSyu0zEnGMEH/4m7Xam/joD9f9vGjckCL3kph9dncsi9ZFKXEk8JJS4vjWztOqlLgYeEEpcYCU+ncp9dTWHN9i9zFXoV4BIbYGXfi0wIH+PAi5/Vy1xYPd1Vt/q4n/4NuLlpW3ZPxWLjwRBv6CUeHnDfMhvlcoq3UcFld6K3DTg6duDXEBpGXmbgXWA9c2ZMQw3W/+VTE1ZmR8peNkrzt0QdStVZZ1tQn8Ecx1ZouOL6zuWwSwtmJIs12ulBIJGC6AbwHXtEiALsCiojHDAeJcFU3O2rS7dEqFFfi3VztcPRy1mVuDHhu7+YafErtmbAVgc5TvA8yH7crqbAzlzt9z9sLxram0pmXm2oCMBFfplHJ/MobyLexA67klZCWc2U+4ngOSq6NCM2O89sNog6pA9lLn48D9+cNHZAMfjViab900OwcbMCpGNZYWp1koJXpj+KmuBD4CUmnhcphFuyAxbywCdHXYcdevkxbfq5T4B/B34NCnzthc3VFBcWZZ4UzgXil1lVLiOCl1W1Qx6hJIqb2RbUHY7rAFFq544IxG76dKid4joqKq4yuhpFvo5z5tL+YegVLiDKBCSt1YBoadkhK1OXqbtxf94lY3O4+6lLpcKbEfsEdf6xuq0gYD5bPXnzy7vebsdArr+W8POATi/gHi5ZkXrnhod8dLz0kfR5QwqjUJ/Vx6TvpyU/mVpkO2ADx2/N8eOvuNogJG5AC/jOGbVb9xmCeE8yiaYYH98IukoxduPeSjHtFnurfW9PZUBeKqzWcKGBaF3S41uPZFT3qPrc7norAdatPil+Lk4FndrquebVaykrQghdUuWAGg0TcLxHX5w0dMsJTWjses2nJ0a4xlZh74HiOJ+clS6lJgt79/Fm2KwsgB7dSIQFCLuofzOuAnKXVdkOozSomhUuoJYPyv22kpfjjwD4zr6qO9WVmtQylxLRAnpX7Aba/tNjw570A4Y2eHzPG5wyUAfTa59vrPrxncDhQDLVJYR3VbOFxt6MWobgv7A00uOaqUSJdS50mpN7dk3q6EXQSOCGnHgoLsieH2mrNTKaw3f5gqKkOxuW4RtoURt7TSsNJ0LQDDEiWVEno8d2yczakBwKURwd6sXVFFQneMG6zzF47GPE4DtT1nL5zQkNJqOlQf/tOWcZU5i6ecVht84dpA2J3QN3aN3icp79ZlpelzQX8LWmAk8VctPpOsBAH8ta/N9ZzQuAMOfY8zKO7tdl214cNoKKltoUgOaaBilqWwdhKUEi4M5XKOlPr9Zh53OvC2lDqklJiM5afaZciblNegn6mU+l3g3Yiuv7Hjys5XSokCKfUl0Lp+0EqJgcDBUuq3pNTzlBIDpdQ7LaG9lzEOSATwhdzBrTW9Fu2i/z/jK+xHA2PbWrA9jMOBlJYevLQ0PQ8gr2hMYVOPUUocAPyklLhKSv1cS+fuClz3/EUpYX3OyDE95m81MrO1D51KYf28POUMjei2f3T5K/87e12Ty6jtAqWxh9BhhxDUKYwPXiHuTf1JH32cC19GNFVfLzjmnK8Aes5e6AZG9WTts4X0PxDDNOqhnpKmlLBJqcMPLbjvypC2P1NQMQR/KArQs+wi+MiBqfO+eOLy1zRAWmbuDPP4E1oacLXuBc8hfWyuB+xhMV5oFmzo67+7/6W17eU7ogA0Wovd9Ce2aDMOA2qAJiuswEXACxhuBXOl1A3WNLfovDTFz1RK/Uy9TbOBbbD9hXu1UuL/pNT3mNucu5EuLQs4WSkxQ0pdbSmrf+JCKbVOy8wVYHdsqu6/09r2UuoPti2KPg1gQx9fXF9ol/RBXR0pdS2Gf3CLKKzuWwqwsSrN14zD8jAMXm+2dN7OTGQhEfemG+I1djSiOc+b3abTKKzpOekxIB4Hfv+tJuHS1ho3b1LevKMfv3FtifYNoNucCXmT8uYpJc4G+i8/ZsIvSom5wDqlzn1bSv2PwmNG+4Bfes7mOmAmaA8gBrO4BEbX3eA/BTZd/szl6/JLTssyjLBaD0tadM+Xt9ySZcx8aoQU+kcQpwxLWvR7s6PpshJsIZue0gfXExiBC9fZtHi6/6W17RawMGJp/rz84SM2AVuAKZY7QOdCSu1XShxt3qR3ilJiPKCl1LOBVzGWj79raxktOg9S6nsjmh7gDeBXALPW+XrTSvSKUsKGkUfS39h4SomDgY1S6o0YmQD+HeGOYBFBnS/xPkl5rmWl6XgcO/+YlBIp+zg83QBsYdFuS69dFaVEH+Ad4AYp9YKWjtMzZn1MYXU/+sWtjm/ivHZzleKJls7ZmTGUVf0NYAfhK3etfwFvT37demi7Kue2XXdpH0ZFVXyCkdR6St6kvN1enkrPSR+XnpN+a3pO+rhwzeByW9m4qoglsyIpdZ1fykCgD7AZQCmRqJT4+k1xgAAmxFPytB0/yWy9zzxWY7xJnR3vKr8TdNgwwtpCy0v3bfBt7Mg+X/UCGJy47Mgmn0BWwrjAffHTgJ/sYfFk0KF/39DXL8kqf4qs8naPrtU2HQq7QystZbVzUqesKiWGmkE3f8L0U50G3GoeE5BSf72npl2x2DVSaq+U+hYp9SfmJhfwHMY9DuAgoEQpcTQYbiRmiirMdhIwC8OyipR6q5S6xZatPR2lhFMp8eaV+z96HcDolB8P2MUht1XHhI8F6L3ZZb0E7Jo+QBzNLMVan1HdfhsMMCL598G76quUOCS/OH3Vofc8+1haZm4r137vWCJyyErACcIGOD3R604UhNcWZGfsVnGi5tIpFNYDXxm1T743Tu7jqVqdNylv7u6OZ5qu52Cklpi5SddWlfuTG7uJlgNl/LF8kJZUYh+y32/R123+5iieE8f+5wTeqf0R2f2g2e+8f9bs+8+TUt8MpFX4EyeD8GEkcG90qbzSn/ANwKKiMbt+W8tKcJKVcJVGz3EEuVqjDwAecPttBwy4pHa3P5uWEk4I9goMrD2wo+bvLKRl5p6dlpl7aye+MV0G3KaUSAFQSvRXSjyqlHCZgTanYqQXsrD4E1LqQin1jVLqX81N5cBLQL7ZPg8oVkrU5QvyYUQN3dS+knZNTFeLPr6gJw5gY1X/33dxSE5Sqf3Vtpdsz8C0qu5nZjppMYuKDlgC8Nu2g3ZZUv21/MvHTf357gGFNX2uB2YNu+39k65//sIuXyxAKXEqkKeUiMXQbbSRN5iArXrowOHJee1+jh3uEpCeky7A9gToSoE+tpWGvZI/Uv04HdGreoaqRjSYi1BKXaSUSKkLOpAq/liN7g8MAE5LLXS+vH/q955PuZD1DDl9MwNOHTZ75qblx+hvpeT5tMzcRZh+HY35py7cdsj3AOsrByY2KG1WQkrQrk+pjAtlJQh7d5sWUQACgUaHgCqyyltkBcsfPmK738nuWEdFtb3YscW1fNc991zSMnMvBP0/QIOobbMiELvHHcBTUuq6N999MXIBfgB8J6Xeq/+HFs1DSr0UuDZi0zLz97tKicMwIi4uBfoDKCXigUrLat84Uuoj0zJz+wB3rK8ctHYXfRduWxTtAVjf1xffz/JhbRTzJb20NQIIt9T0KTd//2nV9Mrpl6UGw85L526ckOQLRR0Kpxxm2v5sgMcfdn+au+YsPrn14/VhbV+f7NkW7B+3OmFpSfp7taHotUMS831DEvNr5m8+em6Zr1tZQXZGp/muKCVGAMVS6q0YLoCbgO5mgGcRsC5UPfDuyor9Pu6WsOy99pavwxXWUVGVNy72xp0A4sZ3zi3YqQN6U/jXh6lRHpH8l1ptNyoJIwLJoeQUW+zaxMaO2X6BZyVMAB6B7cqiY/hSz7qLUv/5BIhrAVsIu5jA++8pdWwPKbU2FZZdKS2bQAfjXOX7mvMIYP9t3QMPxFXaR3iwDXCEhIitsgWqYkO/xFc6PhSIOwFnS4Kc8oePmBSKCU7RzvAoO85o81x8+cNHHNNSpdXmt9Xgt7Wr+b8T0t/4JQRod0tqVLcDQeA8pUQ5RmDNZ0CalLrJ0a4WFvUx3QBSpNQ/KCV6AZOAH4F4oDbCx/VFjO/JweZxyRhKRKd5KHcGekZviCus6Uuss3ynViqlRNwwp6c7gD0k9qpCCy3gOWCAUuLA3b3e+sauidlQNRC33Xv5vne8nnhQz+8O/WXLoT3K/cmj4bQDQNgFYZ3kLlrvDUZ95AtFnaIRAkQoNWrj+33i1g5cuPWQVUBPf8g9amlJemptKHp/gJVlI1hZNqJuKu/If79V3T1qi3Nd5aAvQGwalLDU1Sd2nZ6z8fj3gU3Dk3/fuk/SotK6IO62QinRE8MVKBvDD30+cHzdfhs6McXh/2rluitHAqwu3ye/4ZHajg5VWA98ZdQEQfQjCXZ/TXnI9d/WGLPAFzW1VjuSRkeXf7CiNmZxddjxqb968FtOe6DRaD+lRAwwY1T3qPKUIqcWCKHRaMCGmL2RQQBXYKR0CsVS/nTdF0IpkQt8JaX+T6MyZWeEDs+azqnR6sryx644KAFHP6BPSpGTmqhQKXA3kOsM2n5x3lRpONZnJXxDC3Kq5g8fcRnwvK3ajmlkNhOLC3coITBr8ehhE0ctXD6zqePVoe3aqV3h6OYet4ehAK8RiCdsdBKXmkik1GGlxPEYvlwjgeul1E92sFgWXZ+PgFSlxCFS6hqgLvPAF+ZPHe8ACRHtb4BFwPkASokepvVmr0Upse+1Y/r9ePvcZzgwdd5IuGBn3Q+sjgmfCJYPaxN4EejWGi9Hsa6KIwF8Ic9ffaGov85efzI2EQoC3ztE8OGj+31RftqQ14bGuSpPAC6++PMZozCf1z/cdUWDz+u0zNwYoNeBqd8dEuWoGTN343EbgV7Jnm1HasQgEKOBjNXlw2NWlw8HmAKwtGQ/VpcN0x9l5q4ENveNXROd5Cnx5RUd+AGw6cDU7xzJnuKNX639ywIgnXorvtc/f6Eo8qa6vts0wQW4jxvwcZ8Kf4Lzh81HV/991JOnJ3qKj/1m/Qn/98vWGdtOSPtgqta2hEd/uueORUUHbgTcB/f8VpYFYnzhHsJZUTpWQvh8I25HPJGWmbuoPVcZO0xhNfxMbZ8DNl/I5sBw7t+tE0/PSU+GuHM9IjS/l9N35qtnr6tLK1WEURWoQaTU1UqJ0rLE0OKUIufxGu0CCLj0P923Vcx7U4nD5uiT33yRW9d6if3ykWP+Nw9AKeEGvIDfbDuBf49aFJWXUuQcWhUTKq6OCcseWx3Js7XD7qoJOYJ2+yEa/YFAzPB6wl9G31LVcD3vFuZUDUeH7hU1NsQfhQrCgNBCC+G1aZvf/nX+8BHf+vatei4woPb1g6Zua9KXOxwf7BlM9e8qQGCPpiA7Y15aZu4E4DjQZ9gI33Pp01f5X7j6mUc6Ui4zSvsR4HQpdQlwmpS6RilxEvBlR8pm0XUxX+RrTAXgOYyArJ1Gqkup34o4XgD/BQrNtgtYo5R4TEp9h7m/596QZL0eRTWBmJXAvmsrBu8qD+vv3YodzwOXt4NcXZqIwMHdZmPlAFdEwZ9wd8+Wjw7rM+vvT17+P9O18DSUml53/VYUSHb5vC7IzqgGVkLGSuC1xvpd/ezFPb3BmOGz158M0Hvf7j+fEA7bBywpGV0I9Kr0J+xTWNMnBiPXLD9vObzeCMYjPS0ztwpwCM7z6Ajbyldr/whheGnxdXV/HgPwRcHpf5JnQeFRCEcFsT2gtGpwL2OFUUAH5GTvSAur/GN+YaMVTtwpwvcGtC2xVtuvfPi0LVop8VcgCDM8GMEBjQsjtVFuJCvhU4GQgHLfVlEnz9FHik8zjuTTgVLqmrGvjDzep+0Hwr4qb1LeWRHDHBBfbr+9e5EjDDhjq+3EVtsJC13wZWjs4ndCR/e6e+i9A9L+XlsNELU7J9sAeUcNutZR4+6phQ6jCWMEgl0PdBdaKOG3/wpcroW+3b0o9n/2za5784ePuBTDv3Wniqut2l7kKHQtbWWRuxx1LiCXTLv6pSXF+y//Zv0J96dl5s4uyM74qb1lqcsFjPHS1AtIA0pMCxhS6s/MfnFAgpUT06KpmAUAvsWoGPSKlPqj5o5hKrrPRmxyYJRq/dFsDwRWKSUullLnKCU8QPyeboGVUhdenJl7GTC/oGJowwaLP/qWbF0cHQOWD2tjmKnXLgXeNSv07TaVgcQ3MAJYnUCgqDb1kTpldcvTUecllTr2lYH43FauKAnA01e+XIj5kmeQ8Xr9PkYeX+KB3kf2+eqYqkBcn1+3HjoGOMF0WdPA78B3o7r/OhItqhcVj/lxv+4/Dh2TOv+KdRWDXp21PuPTGGelHp3yw4BA2FWyoPCofMA3vv+MXt5ATMm8zcdsAHwnpr3vXuha2qcavrPHLr8jUHbo7bRBCfim0JEKqzI/VEErJKO/4YOeJ4Z096t7OWu/+PKCFXWRl5cB/kR30aAe0YXsKgeqUkIgWSKl3uEilFI/qJR4Wkpds1/OvidobJ+bb1/B9Jz014HpeZPy5kmpF/jvj8vGuCmj0WG/S7/ovq3y8ptuf/c+Xzjq9rtrLuWlXZyLUiIKEKaVzIXhR7JUSr1SKZEI3Am8L6Weq5ToC3wa/Vm31+K2ptyv0aAJYiyPvNKAz+pTP/4j5RV7sfN5z4/xRwGztCv848+TU9+M+iZpntBCUi9Aa8Ft3aJj/SnC7nf2yh8+YpyV2gpenPL0+rMev23/wpo+XwCfpWXmHl6QndEuAU3mDfoVjOpFN0ip85QSw03ltX5fgVGeUCslxlm+hBY7I6Js61rgK6DVrmnzReqpiE2VGNkFvjXbxwCfKiWOkFJ/Z97rbOaqwR5FStTmxG3eXiS5i3YZaR106GQAR1C0SjWyPZDDMVYAyoG3W2PAiNU0ScTyus6KH9cD5xsAGv0PkZUwoS2U1ibIpzHOtxwy8gHMzDVHY6SfCgD/fPnEiT8AJwObpNS/KDUxBcN49/CLU542DRjn1Ru9vp6UwflvDzh8kTee4d1/XLFww9/+9Lm0Fx3mg5c3KW9ed7vfm2AP1AAT6nKktpQ5ld3+YRc6kB5VGZle5TTgeF8oKugPuYsaOTSSBRgX/p+QUpcD2NBm7XYBhsL/N2CmmUoLV8CWC/g1OigQPrff9qJS4qjjBnxyAIDH4R2nlMhSSmSAoXwoJb4zy2JiWhlqgBvMqV3AJxglNOsmvhzDPxGgGljtzosZiuGrijAs1usaUywPemxb+ZicTeeIsEgDrtEOPTJaJU9FMxe4Tws9N++IwUvyh4/4Ln/4iA2x76dUC0QqMBqYaWYe2Ot598YHloM4XhAW8a7ShVOevbhN036ZLzKYiuk2InINNqSsmts1ho/0zZayarEzlBLnAguVErFS6rCU+hIz8KJNkFJvk1I/JqWuC7bNx8gRXJdS62KgyAwGQSnRy8xC0OU5fcjrtwCM6z176K761kSHjwHoVeiqaWu5uiJS6jnAgRh+1q1GQXbGvILsjAfrKWVnmc9YBKJuSbxTYMo5AcOgVZfBxo2Rlu4a2P6du665q23x9mA6QH+XVzTyubQLHRo0Uhxy/VYRcs7bXWU1PSd9gl/bjgto2x1TTy9cXLddSl0qpdbeYIyvoGLob00Y6gVgp6kaQtg+MXKvRj77tWdsdNk9AGSVz1s4uqZyc6/Ar0Dd29d7AxNWJAL8WHh4DMbFc7QpYxhD8fCa7VrgFoxk3GAopIcAL0ecU5w0axWb7dNcq6NfwHhz2mlO2EhGLM2vHbE0f1qNLO0TigvOFXWBRBqbrdI+GMM39+tQUjBfb7eG06m+pB1NQXbGiuPTPrrOF/J4vl438Z20zNzktpjnx3+k3BCT263o1wv7nANg5sq8pynHSqk/lVJ/C5B35ODx+cNH3Gq9dFg0wHoMX/+4jphcSl0gpc6uc2nBsPDeGJHh4k5grVkAA6XEQNPPtsuxpmLIfIAyX6P5wbfTvcjxfNtL1LWRUv8ipW5OGdUWIRB1gW8hOmBJfFcUZGfMe/nEidUvnzjxLqWEkFJ7MVYurtydcb+vSl4FsKA68YfWkLOldGiWAI3Q7Kj5NZubP0x1JtiTXq8MOdaHETuURTNvbA/ZxEcxYW3fZdlKKfX0XfUx8pHt+x4RoZ0CrYdHVW1PyVWeGHqgPDG0pveV3jpF/JQ15UPtwNwib88UjPQw289bSn1KPTkejvhbY1h+d4pZPnW7qb45y/YHPbatPH/4iJuBmZi+KTaffULdGKZys30fnexL2tE8O/n/Xh91xxvF1YH4j4FP9rvzteN+v+fC3baGmKmEElInDx8WQ7dHMdI+vJV3yJD/OMqdywGCPfwDCRNyFLnWGW3fIMIi4ChyrQcIpvoGi6Dw2YtdG0Ixof72GudAjdYCUZs/fMQEy71j78V0LXkYw+/5ASn198BJHSzWdqTUi4HFEZteBuaZLgtgGBjiMAJ263JIrpFNKFHc0Xy19tSfAb7fNGHFrvr6XbobwLp+vvj+lg/rDiglpmDkTM9sbJWpNamODh0UVWOrsSHuB2Z3hDtAQyglDgR+M1N01mK420QD1VLqXQX2NYVkgOqwoykr1W1Gh1pYY2zB/h4RSq9bTm8Jy2pj7ioPOXscGlv6Tt6kvB1uVFLqkNacpDXu0Sk/jGnKeEqJJKXE2J33Ev8F4cV8y9LYJt8ysfSKiHmfkFJ/HNGeP2P1OT+ADnWPKtztHHGNMWJp/rwRS/MfbIkSYh4zAbhTIHZQZCL3AZaS0wCL7z3/C+BC0ONSojevuv75C3crps70PZ2D4YssBcJmZn5AhMV2C5h2hqNwas/2tktH4YhoO3W0NvfbvDYHGgTCspRb1K3u9MEI2Ov0SKl/kFK/ErHpPgx3l0hf7RfrdiolDjBjADod3aMKUwD27f6zZ1d9wzbj++sMWD6sDTAUo7JVmyurAEIjK+NDNWSVP9CJlNXxwE8YVQyRUj8npT5bSt1qadAGuGoOFkYRow5Nrdahaa0E9r6m5jYzPSe92X6s6Tnp8RBzuYPwggR78J8N9Xlj6WUHauzemmDMpiYO+wIwVikxoDHF0qz6sN2a2RS5C7Izggdk5dAjuvCEJsrR7piKaIPnsrN9FgYF2RnvXvjkP974btOEC9ZWDH7ho8zciwqyM5p1I1VKjJJSL5ZSa6XE8xjuIlsw3pqdAhGwVzqOb8lLg2UptzD9QR8Cbjf92C6KsFh2KaTUsyKaAiNXdgmAGbD1E3AvkGWuto0Ffm6NSki7y/DkvIPmbuzJ30Y+8wXcmbSzvn6X7geWD2tDSKlvqHMRaXOyEhKisLltYf3Mrju3Heb5XgdskVK/jpHr+EraMIVhlC20T4wtJOb9defZhNqaDk1rpSFsprRy04K0VjG24P3VYUePILaMh0/b0uAH+eXa0xwAy0v3bYoPK8ADNOFzMZXUZskbCLkWrSrbp0s+HCyaxmvXPXbhwMyPlwXDrrsF4U1Agy9SDaGUOB14XykxXko9W0ptWIuWQkvdPSLZHbcRiz2GaOAUjACVDV1VWa2PaWHLjdjkA84Clpjt0cB8DFeuN0yFdiDGMmq7WOciWV46ahWANxi9y6Ie3YodX2Io2xYRKCXipNSV7XgNHyIQwuMTn7bTfDsQeb5mgOQy4HXz/BsMFm8tltbGFYEuSs9JH7e7MUe7Q0e6BCgjeAkN2tbTWbvTfHT1ufGDnkfWhm3X9HF65+VNyms0B+ZfBr/RB2D/lAW7jMYEkFL/JKWe3xbL9lWB+IW+UFRqa49r0bnQ2O+1i+DTGttN5z3xrxk762tGPu9nNj/DUHD/5LO8O+4ebTGORddBKbGvUuJfAFLq1UB/KfX7HSxWmyKl9kqpP5BSLzM3rcTI3/OV2T4Z+AVDkUUp0c/8nHaZZqo12FrTuwbgru+f/M+u+lbHhAeD4cPaxmJ1GczywIVmrvV2oSwheKkZfLzLmJLWxvz+rlRK1FWbPE5KPak95jZdNo8C0YOIjEgdQYemtQIm2NCP29FaoKem56Tf2tQPY1ZFt3vDiJDYxZuFQCcCDE3MP6ypsiklRpjO3K1KvKu0CHTvK6dftreXON2jKcjO0BMHvX3d8OTf1s7fLDPSMnP/3lA/8+H4JfB/ZkRnrZR6amv6HllYABcC/1JKdAOQUld1sDztjpS6XEr9lpS6LmjkK4zPpW7l7XLz73gApcRIpcQ+baXAdvNsTQW4cMR0l1Kix876Ck0AwO/SndIft4OoK0rRZmnX6mMPiaNqosM+ssor2noupYRLKXFhxLXxHYa7ohNASl3Z1jJEIEHX6YodGvvQoVkC6pbVT35jcPp6f/RxwAOgQ2e+lfZhVchx8xcXrFxtKrASUG4R2pIeXfnYEm/sfmEcA4HwhkDU0+k56csaM1OvqxwYAsgvSd9puqp6TASylRLvSqm37N5Z/sH+KT8mztl4vLCL0CHA7NYa16Lz8cTlr4UOvuf5YRg5dJ8ffvs75UvvP/t9MwjkfOB/5tLO1cBmK0eqRWuilDgBKJRS/4bhxzlVSl3cwWJ1GqTU24DICkLPAb/U5dsG7sJISN8PQClxCLA1ImfsbjEocdnBxYU9mND/02XAG8BVjfWtU1hrokM9gF1mFdgbMFOd/aPdJsxKsMdhjw7ZdKMlVVuZNOB/wI3Af8wMHt+309z1UcYvTWsUedodOjRLQB3r/dHf8EeNavvy2rgzNwWiVqXnpG8EPRf0/cB3Pm1f9VN14qla09Psb2MXGv+vW8d5ARYXj1ncWJ8GeAGjRnCrKasA6ysH5gJ8s+EEd2uOa9E5WXDn5X7gTLfduySoHe9e9vSVVwMnYqTnORmMpNdS6pUdKKbFHoa5bPgyZsU9KXVNhGXRogGk1Buk1B9GbLoN+FvEi+SzwP/V7VRKTFBK9GnpfCtLR+SDDttE+HoMxaRR4ivsywF6b3Ktaul8exJKiVFKif3bedqRQLw9LL5pqwmUEo8pJR4DkFIvx8i/vksf57bGMAaKuSA20wpFnnaHTqGwYiTJr0t67+3j9N6MUempBLCZtXEBPh3irt7Pqx0TaHqSfA/AVftnP66UOLwpwkipS8w38FaloGLoQoDqQFyLb3QWXYuC7IyqzINvfbx71BYxc93E7Eu++LAAo2jETn1bLSyag1kx7y+ma0kNRjnniztYrC6LlHpVvSwEF2AUdEEp4QQ+BG6v26mUOE0pkdLU8Ut93WtB1Eqpc6TU3+20b1LoAICa6LBl6DC4E/i6PVOWbeseuAqgKib0c2uNqZQQSonREZucRKx6S6kXdERAYCMUAmUdqaxCJ1FY6/xZgTtBTPj8gpWP5E3KewIjTYkXdBBELXDfB+etztux/841/mMHfDwWINpRk4yh4DYJpcRopcRrSomE3Ti1+mwAHe4TW9Bkf1qLro1SQgxMWHnJDWPuXagRFWHt+OKBH7KLLRcAi1bmDIzI/zrLfV57VP7ZW5BSL5FS1wX3hoAjgf8AKCX6Ax9gFpNRSkQrJc40MxE0SKK7qKdNBENKCYf5rOneWF+XXxQDlCQHB7fKyXR9rgLOkFL722tCt08cHHCEQ0Xdg/mtOOz1wC9KiSEAUuprpdTXteL4rUZPZ23vGFuww/M1d6gPayQNpYnaWb7TpqaV2lzVtxrg63UTL7n27J+bU1YsGjgO2IdWigosyM4IHHBXjk5wl8rWGM+ic6KU6IuxHHublLpCKXFhz5hN20AMdNp8P5XUpvx62dNX7vd/Vz+7tKNltei6KCU8wCAp9RLgfeB0oENS7uxNmFavhRGbNgIHY5S2BcP39V2MqmGfm64DY4CZqZOH7w9IefIxR8yKPSwGGAL8imENz2lovoRy+0qAWk94PH+U7N5rkVKXYBRVaTfiKx09NHpZ2lr3obQwH7lSIh7D7/ZTKfUC4E2gjD+um05LvD2YWB1ydHgZ5E6jsDZGS/KdRrK4eEwPgN+2HRytlHAD/iZat+YDvVo7x1tVIHZ5fvF+MWmZueMKsjOs1EJ7Jr2BSzECrr6QUq8DKJAsufyZK66fte7kp79ed8rraZm5siA7o80jTi32WN4ADlRKDDWtqR92sDx7JeYz4se6tn2TS4mwODZ6VlLpT++kXhCdlHRMKCF4WcwXye9poU9HIy75/NvwmiOGlGIEUZ2Pkfy9QWxahAD6bHQ939bn0pkxSwk/B7y0KzeK1iRwX9x5Tmz9BCIMzCQrYUJzqlwpJaKk1HWVMa8BvMACM3Ds5TYRupVZXhv7DbDTbBbtQadXWHeHtMzccaAfBIEgPH1F6fDpQ5OWDgXW7urYtvAdMeTxDMOoCT8zLTN3gqW0dn3M1Dc3AG4pdbaUeoFSom9DUdnPX/Xc82mZuRuAj20i+Ml1z1/0lycv/195/X4WFg1h+klWmArqg0C8tfTfdvx4U4rbvTA22bnRkxDs6evvH1ZzlCs/ptixzWUPJQYGB/v4pLPAs8FW7XCG3eF+2h1O61YxMCQQzgaGO7PuD3s4ZNu/cI02ld03dybDlh6BI1K3OgnbaJccsZ2YNCADo1pfuyisSglxiD3meUdQI4wiR3VB3k16bislXgCGAUdKqauVEkOk1GVtJnDb4cMo8NSh7NEKK8aF5QTQCPs3G078bmjS0iYrokqJYRipT26RUs9sHXm0zagi2LwL36LzYpZRHQtEmUEvemcphAqyMz4bdtt7l/nDnpeXlqTnpWXmDizIztgjKg5ZtA35w0ccFYoLZjgvj5ocGOZ9FLjXXFa0aAL5w0eIYA9/jO+Ayn2dq6I8rpXRjnB0qJdvv6oMZ4Gn2FHoDoTd4d7BPj7p2OIqsVXbHVrolFjdfXuyfkehG0fhH89sW5kj6AwJG0ERBazDplcF+9YGHIXuufYS5/JQcsDvG1XVw1kQ9Z1zvWdN2BUeLPziLYFwhmx226Ke/X0ASolUDJ/YDxpa0XP7xEaALamBYwdEZCrY25BSrzb9hduNo76JO9WmRaxGhzAiv3ca5K2UiMGosPaqafT6FliulLBLqUNdVFllgKum/3p/lOUS0MYowI/xZhCau/HYW/537ePN8RfZAFRBq73ZKoE28h10cD4zi93DjO6cDpwrpV4LXNIcS9fyB87MOe+Jf50yf7M8E5iWlpl7VUF2hhWIZfEn8oePGAfMtFc6HMmPDUCj71nC8NsFIqAdYbv2hN2iyr5ZIALh6FBMOCYU79jmWgoEQomB5HBcKNm53vMTEAj28PcKxwWTXauivwcCgT61/cPxoUR3fswcIOAf6B2oY4Px7ry4bwG/f1j1oHBMKNrza/x3QMC3b9WgcFTIGfVjwgIgUDu6sr/2hEXU/ITfgYD34PKe2qlD0d8lrgAC3nFlidqpA9HfJm0CAt7Dyhzarmuj5yRVA8ERS3ddm9w8f4lZTvi3UwbYXSuik4FuNbL0KMdml921LKZWo7v5Rled7ih0VToK3dUa3T2U6j/YVub02bB5HFtdbscX3baPa6uxEzV/e0xtpfCLUpvXFqOd4Y1gz8ehK2rTK4fbi1zznOs8eeGYYIX3kIpExxbX7+7FsQUCUTnyxxXN+c4uqSuN/N8TTvzXlm4xSeb2k4CXgBHAn/zaE8sdawACTn01e6nCamZmCEqpA+02aVZCrA3xJLBIIK7CeKlQu3AHyMBY5l8PzJJSN+iX3NWItwfjwwjbzR+miodP29Jhz6k9WmEtyM6Yl5aZewrwJYhnXz5x4nyl6F/nU7grlLprf+ALoFrK1pFnyK0ffBbUjqNAHN/e7gAzZw3efuOfMH6VZdltAXVvykAxEAf0Ada2ZFn2zesfOSstM/cB4NYkd5EPI2rUwqI+EjOji0brUI/AWnuR8x3COII9/EPCScHBrsUx8wFnOC44OBwX6s8211rAiV3Hmu/IMYBT1NpSbWFHInAg4LSXOLvZy5xRQH/A6VzriUJjB8YDuJZvN6pcAOBeFLuDYJ6FcTu0oxbsmFQlal7iju3vd2wvGTlcY9NhEbRVAYFwTDAe8NuqHVuAQDA+0M+OI1ogBKAX7zdMu/zR27PbRKuk7WMJBO7fY9FOXQOsFYjicEyoWDv0CttGz49AsXdc2QhbmfNXd37Mr9qmi2uOLRGExeqx/91Ss/N/QetglkSe983t754ivNpjbp4BjAVW7+zYPhtdZ+5s/x7OTcD5SonD2qsSYElS8KPkUkc/4Hyyyr8D5tbvY1pUnwe+llK/iBH8eDh72Mppnjd+NnDsZ+U9XA8b7gEdwh6tsAIUZGd8lZY5o8xtr43CqF5yu1Ii3nSC3s6GzDnblbm+2UfOy8rKGgf6W4wHhe/hh6eccvDBT38npa7dHXmC2lUEFHeMsqpnAy4QgZmzBl8L1d8J/CvHjy/x/dHHUmgbQynxPEb2iAul1OuVEvu2Qnqq25M920aW1KZcd9bjtya9e+ODf2sFUS32LBTGQ8IpEAHHVtcFpuLTZuQPH2EHnDVHlMVpVzg6ZlZyLeD0jivrpZ06JvrbpG2A03tI+WBsOjpqXuI6wFk7tiIdcHt+il8JOGsPqBhDWDg8v8UtA5y1+1UeLILC5l4Smw84/cOrxwm/LeRaGb0ccAZ7+w8VPpvPVu1YDTiFIBVD2QYgHBvaGOxeu8C1POZboNh7WFkvAmJV1I8JvwHF1ScVVxw0dVunX6nwhaLCQCmAWdSh0cIOhan+o3pucSHqFuf2TlYB37WXsup7IG50YsA+viQpuCz5+uod/GWVEnZgqJR6KVAD9AISAKTUQTquIlVbUqekurEU1ralV8x6V7Sz+i/ACRjL/Dvkn92QOWecRn8DOAQitPbfn+UOj2a/pX4chjeAjuoXXfFlVNFBtt9e+NutsZvHzy5Le3dwbeLvR9j9yU/3XfDU4pUnHuUExJDPvx1DhOJbX5buUYVp1YG4dkt4PHPWYAEcATwLos4By2W0Y9BEM3PW4E1AKeiRgAbhmzlr8ARLaQWlRFxE3eY17OinutsPkILsDH398xee++vWQ377acsRf03LzP2sIDvjjd0d12LPYcTS/Hl1S8mYy+LtMGcII6q5/gv6hnrthfXaX9dr79a1XOcOgeHzH3CUuM4d8X3Xvy9FO6q620Rou5+7UmIcMERK/Wr9vlFe2zqAzb38l65R4t72zD/aWZBSvwO8FxK/bwABAABJREFU0y6TZSUc5sb2mkaX13rCJzTQ4zlgolKiv5Tap5QYv6fn1R7mqRqwvDaWw2JLugMdltlmr1BYQ9qxeFNV/15S6l8xct7VR4J2CkOPddiC0RlDK8c6lrqMPNF27AzbeK4tdUMCGJG5pC66pe7YqzRaD/rqcxEWATRaC8PltXZD5pwJ9ZXWZE/RUIcIJtHGzJw12A41N4DjLnDFAeVGAQaE6T97G1QPBltfiCrFUGqFUVUMD4ZfVZd/MOwOSokjgU+UEidKqedLqR9oi3meuPw1X1pm7mjgc9A5pz92R+wH/7h3r05hY7EjdUvJHS1He9MRynp74LHXDBRC945IbzgJOFcp8b/6yk9ChaMAIOjQ/waeATa1u8AdiFLiMOCndlHUsxLGafQ3AuEQCH/vza7eSokAhkvCA2Yw7bNALmYhoj1dWQWIswU9AE4Rbs1CSs1mr1BYt9b0ngNclZaZK14+cWI3IC2iagmAAu3XhB0Cm09gm7Ah9csfKUv22bWYN8DhesbV6zN/YMvRJU5vL4cvbvmA2oTlY2O2HbLS7ksWgZiNg2oT8o/zlO4bbQ/G98AwyzaYBWBV2fBFQKNVTXaXWbOSkzRxl4HjCogeAoEAeKdC1J0g9qeRJX/THWAmaI9ZCvfaWbNSkjRxr4No8Jg9EaWEA0iRUm/GsB59hOGv2qYUZGfUpmXmnproLl62pHj/506bemfhhzfd80lbz2th0dnZ05R1I71hihPjGTEzLTN3wssnkoWRjeZPyo9GIxD0W+8euGaQb3N7y9uRKCV6YOSofQS4rU0ny0pwhWz6UVvY0Is02iYQEiOf9rUYEf8fmdk59qoMHT/XJM4FLv+msnuH5g3fKxRWmwgVhLU9amDC8n7A/cCxSonedTeHvtlHztuQOUcSsZT/9mMv94RkGw7vx3+7467XlBK9i4c/nWhUlTkS4LmsrKxxeJCEeDnruvuuNP1gty9f0UAWgJB2OIBW98OZOWtwd9DXQPwdYLdhJLI+B4LvTxi/qS5VSqM3/gnjV82bOWtwnSVjIwQf0MRfA/pqjHQe/r3ETeBTIM507q/EsHy0CwXZGeXXPDfpuJnrMmYt3HbIS2mZuUcUZGdY1bAsLPYspJl4ZrthQ0rd6H11S2rgqJ5bDC+yvcGaV49i4BRgWVtOUjE1Zkw8jufsYXGgRoc12qYFCI2SUi9SSvTaWarCvYA61yDPTnu1MXuFwnp03y+6zV5/MkMT848DHseI6tuOUiKOE/kt8qaRkLBudEVFP1JSlgwwN83G8GE8EcAIyuJbI68qoaysrClZ2VnPb8ics335qiEf1gRXaR8hwrsVuFWHYRUN/h3CB4FrHxBREP5dUPW8JmHahPGrmnVzM5XReQCzZiW/oYmbCY4jzd17bN5YpcQBwELzYTC9I2X57xU5eWmZuYcC39lEaOaUZy8+ddqVL/+0ywMtLCy6CspwzxJO0CEQCkApMRkoklK/G9k5ymtbC7C5l/+KNUq8KaX+vd0l7iDMjCyft9kEWQmiODn438Rq+9Uhm66xh8UZAlFYmOq/rzIuPG/oRb55phx7s7LKvlEVfRZ54xkbUzYYWNxRcuwVCmu5L3EWcNfvRQe6npPP/dJAl0uBR823qG0AmzePHg5QWjpwq9nnaqAw4phTYHtQlg30tKysrEVZ2Vk7Xb6KdVX0jXLU7LaF1VzC/xbsDqNwVugrsN8wYfy6Jbs7NsD48SWBmbMG3wJ6DsYEgbob6x5BVsI4QK7t76tkEE8BZwPvSqnf72DJKMjOWLXP7e9mAAt+KDzy231uf7ffsvvP2qtvmBYWewoF2Rnzjst++I4VZaOyhyUu/vTLzFvqnhdXAiuBHRTWhArHWoCgQ98KrAP2CoX1pympV9jLHKc5CjyPpH+3anarT5CV0BN4sVuJ46Ti5CDL9vFG+916npS6sCdM6NnqE3ZdYm0hO8DK2pgL03PSt+VNyusQw5Vt1126Pr9sPexngMLqvokASomDlRLHRHSZA9xRp6xmZWWNCwZjHgLw+ZJuzcrKGielnimljnyz+MR4S9aYyzs2DAvkTtlU1W/NmvIh81vhtCTbFWZCYJ89YfyqVlFW6zAsrt4cY47anD3FHSB4b7zUhiJ+b/91rod7bXJOpS3f4lvAsvvP+vmIPjNvLPKm2n2hqBlpmbkdXmXEwsKidUh0lz4iCBUvL9u3KmLz0cA59fuGhbYBDFzj6Y8R8LPHkz98xLjoWUnPuH+OO8le7Mw1s0W0Gmtf9DwfcIQ3a/R44JrFo2p6+d16fyl14S4P3guZX51UClAWcp4FzEzPSW/V/0dT2SsU1oLsjGpBuDjOVba/uelh4KG6/VLqn6XUD0YcIjGsioB2mW2UEuOUEhcCZGVlzRsyJNcPdT5Fwk8TKldpbK6QdraCD2vQ9G3U4abO3RIEvn+A9oLH3hbjdwQ+V/gxgbADdoFw7rM8qlhKXbXLA9uZF65+5kkQ5wEHxzgrfhx060d3GAEbFhYWXZl3bnwwrLHPAsanZeYKACl1RUM+qlt7BI4ACDq0fS/yYZVCC5tAIBB17mi7hf/+uKN8D8Q9RlbCJwPWuS+r9WiWjPTeR1b5tKMm6MK9ydWiBfTAsM7ZQLtphf9HS9grFFaAPrHr3N2jthxnNq8G/gJGpQqlxCgzGXAdCvAb/x+EEIE6i+iVGK4DNoC+fX+eaLMFlwBrgQlZWVm7tEB67DXdU6M37XaWAEF1svFXQAFtFgw1fnxJOYhPQJxqpMrq4mQluKK8tn4arbWR5qtTl8gtyM74oEfUppeqA/Ejwtp+D0ZUsaW0Wlh0cXrHrPsd6HP8gA+PAVBKdFdKPGmm09tOdI19DUBhT/95SokLOkDUjkCZv8O0wj1aZ8Uf4QiKb1x+cSMwUaNztvYIxI06J3Df7om516CAWlMnsnlEsENc1PYahdUbjPppY2VaDYCUekmE6f8oYBFm6D8Y1lNggsPhfRMEWjsHmbtuA4ZJqcPmOLMdjtphLlf5jvUJd4LT7k/oEb2pz+6ejyYuaPwV/lfbL9UHPwd6CCoubtt52hjDb/UNG6K7QPxTIO4EJuyiNnSHs9Xbe5VhyRcAUR57zb+vf/5CZ0fLZWFh0XJG91jwI8DWml6nm5tqgL8BwyP7xVfa1wMEHZwDnNeeMnYUNbL0Z4BQXPA3YEJL8u8qJYb/9r7jfZ0V/5hAfGbThr0WCAnEssF/83W6VbXOiumzOiHaFnrChi6q1Y670nPSd1uPaS57RdAVQHFt6g/A4WmZufaXT5wYxrgxbAZ+wUhdtEMkdlZW1rysrKz5wMGg73vooWvivN671gB98/LOP9/rTaa2NqF7OBznBJKAmVlZWbu0slb6EyqWFI9uBQdy2yAgDJ42j9gTVH2hSUATdfvMWYOXdElf1v9n77zDo6jWBv47szU9ISEFAiw9QZoIAiowgj1Yr1dU7IqiqNhdFTVWYhcriih49bPde62xXYkriEFQipQAUkILIUB6sn3O98duNCIlZZMNYX7Ps08ys6e8szs788573hJICD0PiACkQOS3dUW1Hg4QLsAMUrj8kWf8uOOkvTZ77kTgi8KcrCNlmVBHp91gUjzfgixavnt4RwBVlbUOh+hQZxCpw69Ig0ETZBZEnN5has2u8EjbygiZDODtU7ux/7s7GnyddjiEMnxRdGqES7lwaFTUk9E1BkNwJW2hRI4EFBEonONoGcHbL0GlNX/A3AFvAgvNwr9oyNtHzfVKJbchQVhBv1f18v/592T9IpNoQiGQI0ZhjTJVFdV4Y0wDkn7prapyrcMh7gcWq6q8GHj7AN1GgOwCwuR0Jj1Xt7O0tBdGo6vSaHRZPB4TwepQDUz7JKx+aQyFD+tZoNSCMuTQczYPSXy3gK+sqTsw7zDNx6oCFoEgWJJb5TBJ0VWYk5Vvs+eOA1SBdIxJ//of+TvVC4HPQC64+pXr35x9w6tzwiymjo5OI5gx6V35qT03DzjFZs8VhTlZcl9lFWB3R+/xqbvMVMX4IzqEQc5wEPl9BwXA+mvsNw3qkB03xmn1Zx9tilStLqEBisWtrNvRybMhwqlc12FqzQ4RzAwDOA4jY0Wr4XAIk1JmNER9lWgQXhHl6+xOUyqNJqXGYMIvIrV4byel0qjN1YT169SIn9YbracY/dxn8vnvfeCWvqWxRl+irDbuNPjAjIwwK1q8qDHsNfpRkERM8RusCVVSHrUVESyG4SzIyGyU9fyIUVhHpP0QOW/reFKjdpwErCXgAlDicIizgZ/qMgTsg8ofbhNSA/HqMce8vik6uvgmIeTwdevGn7Zz55DXCHyOh3xqCzjXS0vXmM0pzTmWQEorw+C6zVZQINXgcjRAXRDa4faDdwBuibSKwANGcpjlaRTB8o3Bz/zMfJs99x7gGrPiyZm3dfxbAx9457JKT8L1hTlZLZpgW0dHJ3T0il+zYUN5v0tOtX08HrI+dzjE8cD9wBV1bmtRNYaNALs7ekdsdojrVVXefbAx2wl1bnaHrqyUHXcK8E2Ey4DVJamI9a+KrzReaJpWWfCXNeuAktpm7lsOh1DMa6KsEQvijf5kT4JwKZFalD/RuMPi9Sd605Qag6JF+ZONu8zV/g7erkqNwS8tWkelzFStxfq6KE6DT5q0DkqFsVqL8ncWbkVDkTFKrcEpLVoyXkUKiVW4FJ80yXjhEwI/RuFVNASR+DEIvxD4hBCaMCX7+yrCL8ShJYeAD8sfz1YClMSAakBa3U5NKPgMJPoM4DWCxyCxeBCKpM41o9G53Y8YhXVXTafvgOlLik+oq/+70+EQPYFPgGvZp5hAEEcwAt9EYBnh3ZiYnUuA51RVSlXl7ezs7N8JPrUdyh3glG6fWL7dco7w+M3H16sh3RTUwJ+mfelNwBFU2BWQh2c+1uyKfJEdNw44EThVIqfufC3C1ek65z3hFq0pFOZkeYFXb5516X8LK3q+/tueoWOB1cMffv3LoakL73/52rkrwi2jjo7OwemTsGbehvJ+2Zsreo8jUAIUIJXAA3UxQEy1YQeAzyj7A9c7HGKaqkpvWARuJVxDK/tbf4nF3b86oQHNjyGgPSmAL77S+D7ZFQV1bwZTYqlSSEfNGXuXmwqtFm9XV5Jxt9nk7+BNNm61un2d3V0NpUavP8GXbtpq3evr5O5jKDXV+ON9NtM2yw5fmucoQ5mxwh/n627cYdniT/YcpZSbyrQYn81YbNniT/RmKJWGchmppRt2m7Zrcb4eSrWhUrNoyYYK0x4twp+qOA1OqcgYxak4pUJUsrevFLJhCmJDkIrUMEopBR5p1oxCUiuNEiRO0Cz4RRVG6ZaKVqtFaNXCJypQpBeBS7NqRuEXFUCtNEifNGsIv6hAE1XSrGkYpQ+fKBdeUaFF+cWSDpbOX6dG3uU1YPAa8Q8rd19/wSJfnlJuqnYPrpJajL9m2DO73XWyBd0B5vXZLs0P/8tvAKRoQjCdkEdIlgybPdcCOIGHCnOyHnI4RAzwIFAKzFZVuV/foGBFK5X9KKQOh+gPpKqq/K6BMowDvgsqf25gXFOU1j+LBmAMHlOLL9HPy+vsAOsY8J80bmzhvJacq6XxPBYT6THLnZG1SowUjDI8ULkw3DI1F5s9N0Xgf0AIeYMiNL9PM08HnirMyQpr7WcdHZ2DY7PnbgaWFeZknbe/932PxN5h9IunaiO0pMi7q46IAiJLr+g0NWJR3PO1Y8quPea14v0Zk/4ksNRfvyT6H4G0BRmZ10rkH7lrBaHRD6WQoOCTZs0gfKJKi/JHCZ+o0CK1SKVGKfIn+DoKl7JLxvhjlXLjJn9HT2dRbdiqxfkTDKXGdb5UT1dDhXGTP84XZyg1/e5Lc6cbykwbtThfpFJm3OJLc3c07DFv1OJ8ZqXSWOxLc8cYi82FWoxfU2qVcl+aRzFtiNiJglOL8bkQOI/+vx1/cydpSep8UgFHQ31YY1zaKW88538AcAjEtMb6sB4xCitAD/unpSaDZ5fbH3nVnNPGLwF2A4+rqnyqMeM4HGIs8AqBqiRDVVU2qCiGzZ77Hn9GefqABwpzsqYfpMsBmZdnuxsMOeB8ZdzYoilNGaNx8/V8CpgybuzGyJaeqzXY8qY1o+tW85cCEQuMJLvi93DLFAquf+3KsQu2n3JHtTf2dND2jEz7IS85sviqGZPeCYHftI6OTqix2XNngzx3WMrCpI9unf43paP41Yj/pO4yn7elq7t7t6tchWEQsdUpyMj8B4GKX4My1xYcOj/qAfxTCzIyn5LI2wVCSKT0J3s2SrP8wtfZ3UWpMBZqHbxxhp2WNb50V6qh3LTF38EbaSyybPB2dcUbSo07tHifMO6wFHl6Oo3GEvNuLcrvNBVGVA78drOvpY69PfPLjckXRX2X+H+1x5c/fczsnXc2tv8R4xJgs+eOFCgJbn9EAjDviq+/GDfntPF3AMuaMFwxgdyrrwH3NbRTx4idJ+12pgKi2fk/BZWvSOJyQBzd1DEaSQJQ3kpztTjdrnKtJTvuVInM9xnloqI3rcd3u8q1NtxyNZdXr3srD8iz2XOHJVr3/Ct/54kXGBXPcZ/ac+8EPizMyWrVp3AdHZ2DMzDpl+2/7RmakBhRMgF4z+EQtwDnqKpUAaJqDBsAqmL8HR0OcTswc5+qi+2R2ODfqga1PrB/6n8FYgpgEgivscRyWVNSZOmEBsvymI4Awi8+a0r/IyYPK6BKhBb0+7QYhG8s8BLQ6ETMwTyup6qq/FxVZYN8BYc99MZRu51pSX0SVv0MPEAT3QHqGDu2tArEJ2DtOi+vZ8j8YA6MewT4zC0/TyuSXfF7SbL3RkUTHVKLTV+THdcurMcAhTlZS07o/F3mkOT8KT7NXAa8F2cu3Xz1K5PvCLdsOjo6f5IeU/gpwOq9g48J7qoCdjscwgQQU20oAtAUTMBEoFs45GxN3EdVjwRwDqtsliUzqJyOI3jP1ZXV8GLcY+4GuCIWxf3UpP4hlqct4wj6jVoBRQhtCYFMAc87HOJYVZWLGz2gQwwABgAfqqo86A9rtzPtcsC/uaLPuYU5WTsbL/7+EJ8B5wCDgOWhGfOAc8WB1u78R1JucL5f/lxUYlyF4UXgXbLjzie7wh9uuULBjEnvSuAVmz33NZPiuUwI+fq8rWc+ZbPnngTYC3OylodZRB2dI55Xrntrqc2eu35bVY8MAFWVs4HZde/7DNJi9Av6rrOutdxbdWRkthJ0BPAne0qbO1RQSdUV1TaAFuEfKdzK2n5r1jbpHnvEWFiD1sxxAu1lkAxI+vUxAsv6aTQhxVEw4Oo34F3+XL7YLxn3fXQiyCnAj78/fl6IlFUIVKCSQE2T/GAbh7kGzHuDAV/tivhba14WiFuBc8rifT8UvmVtBYt161GYk+X//fFz3xqd/m1StKnifgLFMJae8eRjG694ecqwcMuno6NDHsjRV78y+Y9VLIcjEEG+J8k7HKA41XvQ+0x7wrIqej3gHvbMbt33vj1hlMM9fWujmtr9iFFYIaC0bs4586Z+iStW/7Z72NBfio+7RFVlT1WVXzRhuLXAvwi4FBwwEttmzx2Z6I7833CXKbKTTxwXyjrw48Zu2QneUrD0C9WY+yOopPYJvua1R6WV7IoZezv48hPKjcen7DJlh1ucluCFSe9UrHrk4keBnr3iCz77vbxfD8e203+02XOfsdlzE8Mtn47OkcqINMdeEDEG4b8EwOEQnxO4vxBdbVgPEFNlcDoc4mmHQ1weRlFbixga6r+qc1iwZmDfZKXKqCi1SlP0LeAIU1jrWLN38EkG4dO+3XLWXU0dQ1WlT1XlZaoq3zuYO0CGx3DjBdVWwwkuIxOqLaahLsOkps65f8zPgbHrvLyezSpGcHC8NxFw/q1f0avdURXjH+UzyK8iXMr9ZMedH255WorCnKyy7+x3nmOL/b0PiHeAW8yKq+j85+75zGbPbTd+vDo6hwsdrHveBVhaMjIjuOtnguXCo2sMxQAdyoweAtfe/mEQsVXxdnOO0KLbWczEEY7wKAMATFsivmzyGEdSWqv62Oxf2EFMn5j52uyTu30+HDhLVeXmxozhcIg04Drgc1WVv+77/iUv3jrMsOHUvGFuU/Q++d+KzLFbqsxRxduqdw5/A1gOWhIoowHHlJljG+xvMy+v52BgGWjXjhu7+eD56prIvLyuX4AxC/AHCykcjqVZG0Z2XATwnUQO29HZc3P6JNfMcIvU0gx+8O3BSRG7vt5Q3i8F2AE8ODTlx7f/fev0dp2cXEenLWGz564EdhbmZJ1Sf7/30di7TT6RcyTlYf3t5O6/C6fSccCPG+PDLYtOaPhtbPccU5H1bmnWUvr9tq6kKWMckRZWgBM6z3upg7XEl7f1jMv8mrIdaIpfxbEEig+8su8b5z47bcDqPYPz0/wiEkAipUT6CGQmyJN+c1p18dBxwPvAWhA/gnwMmPfy5LzGLLmvAL8L3NlNkL+BmLqBWAbiftqzsgqQXeEsj/P902WVpBabZ5Ad1zfcIrU0yx+6bPl39jtTDcKrAtuBN7ZV9ag6/cnHrw+UE9bR0WlpBNr3Am3U5JlXR0OgdKfDIax7E73HAuzu6I05+AjtB9M263bjHvPKcMuhEzq0eN95WoxPa6qyCkeowupwiInXDHg+OyVy5507a7qYrv72s49VVa5qwlDfAXcBl9bfabPndl1WMvLTLjXxoovPpJijiv8rEPcJxOgpM8feNGXm2EuvfWZinClidwQwhECCZAjUuG/Ukvu4sRsl+NeBNXleXs/RTTiGgzIvL30ggSWoOePGbpzerpXVIPG31hSVJfhUg58K4Cuy41rQ3aLtsHH6OT8AI49Nnf+gVzP6C0oHvQLMPyb7LTXMounotHvGpH9TJVGsfmm83OEQ8UAFcH10tWEd/OHDepXDIV4Nq6CtQwwHiQ3ROfwwr490IlnanDGOSIUVGAiMKygdNAOYD/LRS1+c2qBqVfVRVVmjqvIpVZXr6/Zd/9qVQw3CNz9aI/Hk6qgaU9TOHTGdFl00ZebY6fsu9V/77MXuKTPHLgOeDabcgkBNZEdDZQgEQJkzQRiBb0MdECXw5gT+qzmsy7E2lk7XOX8SiPESmeqyaMsK37J2DLdMrUFhTpb88JYnHi51JccD14PsvdeV/P3Y6c9utNlz2721WUcnXFiNztdByoU7xnZRVVlOYDXu1+gawy74w4e1G9BaxWLChj/O29vbxdUp3HLohIaCjEyD8Cl9lGrj/OaMc8QorM9MGD/ymQnj73lmwviRqirvBoYU5mTJeMveuwSyY5SpaqfDISIaMlZBRubIgozMe1eO6jnW4RBXOBziVodDnN773v92Wrxz9AKj8Ha5vMqyRkExemvSTrzo9hc9BxsvqMiOBVmF4ilv5KGpIIP5dKWREAdESSJs4N05bmxxe6+s8neyKxbvSvE+bnGLtNRi0+dkxxnCLVJrUZiT5S3MyZp5TMpPmcemLphXWNmzE7DaZv/itRteu3JguOXT0WlvzJw8ewuIpbW+6BEAqirvUVU532PSIgFqIzRFVeWDqipHhFfSlkd4FYu0anr503aCa0jlcMDqj/Nuas44R4TC+syE8SNB/gjycWBeUGmVAMsfuuznISmLdpYt6oN23/CnCjIyD2qhDL7/A/CYYbcp17TJ+hbw7O7alHu9muX7UleSdn3cr6sjpTJCMVVPmzJzbENr1EuQUWimZJDfN8KP1QHUJeFtlHX2UMzL65kOhkwwvRSqMQ83Uq93PuqM0B6wupXhwAtkxx1RPp3/ufXxsg9vyTlJk8ZuwCsCefV3W8avOPbhWa/Z7LlHTF5IHZ3WwGqsyRdox98865JEh0MIh0N0Ku3gGwFHlg+rUmvwmX+PbJY1TqftoEX5zwNwDa0qa844R4TCitDOB5RAViYZYYmr/vLFq8feXmdxvfK9/DseXDSX1L0VU4B5h1BaVaDO0mYpfXfYuw8snPHutIUvZgCdB7hNV5oKT+xjTVi3J7HPf2Y0Qkr1z8xRNNhSGvAp9T0a2PI9GFofU/fk4D//Dd2Yhx+Rd1c/AjwF3FDS0fufcMsTDgpzskoKc7JuPr37f09Oj9lSUFLb6Vpg4wmPvvTYnW/+Mzrc8unotAeO6/R9iUQx1nijrwLOAHYY/KIKIK7CUOtwiKEOh/jU4RA9wytpy1GQkWkgEASt52FtJ0T8FO+SSE24mp6DFY4UhVUqXYP/+EHgroiO91RHPA3yEZDz4ox7X4SgOgsWDq4sOgC3RAJCvNv59Albq3pMdPsjkpLMux851Wm+EWl0uyu6D7ngprmNKT/mABFcAhFeGmUpNf0Y/LuwEfM1AHkDeN3jxm5cG9pxD0vs5XG+wuTdpnO9j8Zeeujm7ZNXrnvr+7x7busHDBNoK7dXd7/3m8Kzi2323Its9twj43qio9NCCHgNpD9va1YCsASYGlMVKBwQX2H0EgjKtREISmqX1JxUmgrgPqq6W7hl0QkNwi+OEoj1x8ze2axAunZ/g3nzvqO7gDwDRC6I7/58RwDCgMRSbozsgCKlXwg8BqPyzNETuva859Pjx05/trvNnntCxn0fXfXP5+15wx564+vTz3n6ibtOuK7mP73G4FEMnLL1VyMSQMozTcUPAaOAm2945bRtjZFzysyx+Qbr3ncBhOI5tzG5WEEGE0nLAY2Z82DMy+uZBJZY0P4dqjEPa7IrtPJ4/2BNyEUmn3iD7LiQZ2Q4nCjMyfrlrJ7vjxvX9Yv73H5rEfB/Au3Xq16+4Y5wy6ajc7gy+4ZXS0AslignqqosUVX5gpD4AKqj/AZVlfmqKgepqlweZlFbDKVGSQCQJqmXZW0naBH+E/yxvu3NHafdK6xI8SaIyOjU0keBh4BgNL4EKf2KlEpsx1Iqrih678duR/1gP34y33UbOtkvDT9uqui7CVjg8kfOXlI86sRqb+xIQKxM6vXlinEdHD/2OmrxyOLVjCpaLpM16U8qOtoSmbRyJ/B2U0SN6riqB0BS5vsNjsgPZgV4Orj5XAizBJwJwgCW50I03mGP7UpXhSJFlkRu9ivym62zrVnhlimczJj0rpx9w6uPu/0RGcBlVqOzW962rKcyp32w0GbPbfeRzDo6LUGCdfcygTb8plmXpjkcIm5XivdcgL2JviPC9SYiP14DsC6PWRBuWXSazy9TUjoqTkOSt3dts8cyhkCeNsszE8aPQaQeb4qp3XbdjJ8WBfedaLC6v/R7DHHxVR5Xp7IarWMlfUpuqirPKb3iVpCjA/lQNRIse/MtBtezVw94/sI4S/mzF5yx86c/Rx9PwWuZxpp4w64rty7usDr2aA/SWG1N2KBe+ejUJpUPqykZtAnhH3rBTXMaU2FI5U+fWiW4HQI/Vu9UMBaDaFbetHZHdkVp8cyISxP3Ghel7TS/S3ZcBtkVxeEWK5wU5mRpwL9unnXJZ5sq+jy3as8xZwNLRzz82vwhKYumvXLdW/qNR0engQxJXrR53tYzRamz4yVAgtsih8IfPqwG4FPg36oq54RTzhakzt1B92FtB0TN69ATwLQ54q3mjtVuLayBzAB8i1QivFWRycFtbv/gi3xrfPWLaEZRHhkRVdA5yfJVv97dVVW6CPiRukD6QDjL3Em354yevL13wtqxyZHFCoDDIQY7HOI1h0N0yVxb4Ns5ZOgLa/veiOKPiETKmMjv48Y0VWa/O96ANDS29J6DP8q+Cg8hyBKQl5eSCIZBUFscKEygU5+0yc4lVTH+8UYfJuALsuOOCMvHoXhh0jsVX9zxwFVAT6PwPrXXlTz668JzHDZ77nM2e25SuOXT0Tkc8Grm10F6FhaNSwb+lbjXOBMCPqyqKv1AHNCgFIyHI86R5ccCOIdX6NeM9sEAAEOpqdmGtHarsBLIT2oK/m+gXiBV9DrLIKQEIZBC1FklKczJygfGgXgAxLjCnKx8VZWLgI5AnXW1NzCBoGtBVY/4s6QIKoxSGjSD4bW3J741s5HlVQFQTJWDEN7IxvQVVFQBCsjvCFHZVEn0uMCpYchu7ljtlcSba78SiAkSeXRVtH9F4VtWS7hlaisU5mSVb5h+zl0ndftsmNXg/BC4WaBtmvD8XV/fPOuSxHDLp6PTlnn7xhcqQeQDY1VVFkTVKDsg4MMKoKpylKrKdlvtStQaIgEwymalQNJpG3i7Oc+XBukGtjR3rPassDoCfyTAH1H3BRmZY+NqXGchBMiAHyv1rJKFOVn5hTlZ04PKKwCqKv2qKrXg/x8BiaoqSwDibf8bIoQPND9CahSljhJV0V2vA354eXLeHW8//Ojw95+7PvJQwr48Oe9izRszCGlMAuY1XGlV7gMQVLwQwpRW1wA1YN0TovHaJ9kVX5Qk+96OqTb0SC02/etIy9F6KF697q1f1jx64UXAwNSoHYU/F4859YtNF6y22XOvsdlz27U7ko5Oc+gUvWUtyCFTZ03sXpLsHQ9Hjg+rdUVMFEDEwnhzuGXRCQF+McSX5vZkri3QmjtUu71p3P7BF/nPXXLqr5pf6YlmyLr9gy/yATwJvik7OsQS4faSXlqpRXj9b52cv7hRil5wWQaAyKQ1Cem7511iqvK+6LIkUNRpVMAFNpB+5KmqouNA+Hl5ct4GYF1k0kqT0Vq2pXL76PeEwZVoiiy52+tM6gCRPQIj/tFXpQG+qJLoZNB2gGxWfrM65uV1PQOMJwMSxP/m5fUMidW2vZJyQ+2Vnsdiqqxu5SZgKZATbpnaGoU5WauBgWc+/dA/V+4ZehswK9ZcNv3yl26a+cP20x4ozMnS3U50dOpxVOKKlUXV3dha1eM8QxQZAJ23mzOBQodDPAJ0VVV5eXilDD0FGZkjJdIuAvfBfxVkZBZlri3Q7z+HKQUZmcKE1SKFXFeQkTmyud9le7awonlN0WjK7vr7fk/ukFJjNdOvaLfWu6TcnV5W1aSI/jpUVZaf9Z+nX+q2/evqjuW/bgTpDvjASidwTWzXvOcik1Z9AiwD0p2lfU+u3D56EpAn/daPPFVdh0pfRA/gIxBOwEc9i/DBmJfX4xQQKijzxo4tDdFNX7k/mPJL8KfirHMQzF7lFuD/gOk1T0T/RHZcqDI1tCs+v+PBj4DjooxVF5kN7tgftp82DVhgs+ceH27ZdHTaEkt3jXgDpDtqT+TlqTst0QBGTfwneG3R+LO6YbtCIk8kcN8B/f7THjgTiBFSDOHQRZkOSbu1sAbLsfYFBMiFz0wYf7MpylnoMycOi6l1k1zpfBz4srkav8MhTgN6pGgZzsTdG75NHvTmFhCPuytsV11yz2Pvw9i/tP/wxcsNzrI+faqLRt4OXEngocFHQKF9jsAP1HGoPKzz8rqdBoYvA8fHhHl5PWc21xIayL1qGBAssCBpoOJ8xJNdocns2NeAiyOdykiJXEh27NKyBH+M0cfPsVXGPIks3NbF49cUfrFd6XKGW+RwEbSmvj911sSPvyk8Z5LLH3kf8OPJTzy5M9FactH7U5/+Idwy6uiEm72u5CGAaaDYNEBKEbwcBxQ4VZUPhle6lkMapVB8ChIpRaML6Oi0NbQo3wVKjRECek6DV44PRLtVWAl8MFogl6gUwIveGisoghqria8G9vjy9g9zQ7HUcB4wXirSKKP8sR37vfcOgSjOhfDY3xoHq18VvDw5bzZwMWCqq2wVVFIPKdO8vJ6dwDCbP9MD1AWVNfN4vM+AMQLEpUA3wKG7AzQMgTheIv0CYQCQyOSoGqWz2SN6A5cKBF23WZBISXbcDk3I7RVx/hSTV8yPrjEs9Bpl0c40j1/RyE+f5KoI8+G0ODMmvesGXrLZc9/ql7jszY3lGf/8vaxfns2eO9ukuLN/f/y8onDLqKMTRlSQYpHWDw8mLNKjKaJ9GxAKMjIVBeUCYKtAvAZ8r7sDHN74UjwF5k1GJFILxQOIkLJ9uo8F01jNI6DVe4GFIE8KGFwlCHHv7R98Mb258zgcIgLwd7yjl8trc60Z/O9t/RvaNxhYpdIAi2odeXlJ50piXwSRANIIQiFwfM3yNc3LSxwqiV0C7hXjxhYNbuo4RyyBpbr659s4sivyyY6zAF2cVi2jPN53Xny50RnhUqJ9BpnhM8ohFrdQROA7rM8uvyJ3Vcb6E6wu5bsIl/Kry6KV7O7o9VrcyoLkKbWNTX3W5hn+8Oupu2o73wPyeqPiNRyVuPz7FbuP/UdhTla7V951dPbFZs8dCTIPsA4R6/0Pmd6eNUDZ/DbZFfkOhzgTeBg4TVXlrjCLGjKWTew8zfpr7CPAJZlrC94Ntzw6zacgI7M3sB74EHi+uQ8g7VZhhT+UVpU/tfp5SBmhINGEclxdIFZzmJfXMwu0Uzo8a7rGvJUNiscwedfMtYuAIcAmVQ1Nao5ABSvtZuBCkDVgOB6IJHh8zXcH6PEmcKmgYszYsXt/OmQHnb8TUFpVwEF2RcO+j+w4I9CpKto/sDraP75DqbHC4lE6eEzaYL+BQVaXkAKxb7Rsmc8g91RH+6Mja5UvzV5lVXWUv7IsweeKqzB+F1tl2E12xWH5w1Yff75fhLH2y4LSQd2AvSAfPc328RszJ8+uDrdsOjqtSUBp5VngGKBrYU5WMYDDIcYCtwKTVVXuCKOIIaMgI1PxJXkqAItreGXUsGd2N6Z4jk4bpSAjsxOwA5icubbgteaO164V1n15ZsL4kT13lX2cUONaO2bJr2pzxwsokXI+CCMSjFvA8rvi8/au/tLXfc9Z4Lv6xBPlm80YX4GanqBcAda7QBgD5mHPlePGbp/bXPnrzZMJrAJmjBu78bZQjasTArLjFCClNMF3jMuqnZRcYtpr9Is0l0U7VlNk/win4hOIqH16VXuNsqw20m+JrjZ8atDEhsoYn7Mizl+TWmz+yuQTxW1dobXZc48BngDGdbDu9sWay+4qrOwzI1hVS0fniMBmz+0Ncl1a1LbZ+fdfPync8rQUBRmZ/wD+7enuvHPQV4VPH7KDzmHBsgvSO1p/iylx9615Y/CnW5t9/h5RCitAQUbmXuD9zLUFU5o71ry8nveAfASEAQ2UCtBiqOcZLPeCWAI1RuAriHqfgG+oSsDq+yu4+grcJ0sifWDqAL5B4BsD5mpQUoB9rWs+4IFxYzc2253hz+PovAEsnUB0Gzd24+5D99BpMwRyv3bYneQ91muSatpOU7FAdKuN8I+Wgr6RtYpbIBL26eX2GrVKZ4QktsrwKVBYFu+jNlIr7Vxk/gIoIrvC3ySLcQix2XPF6M7f3lpQOuD+3c60eGBZ5+jCxxZOm/Kf1pZFRydcjMt5emtxTef0cV1zE1+Y9E67S6a/7OLOimVpzHKBsAD9MtcWtMsMCEciv05ONUc6EtzugVW5gz/cPr654x1RCutie2JszCfJFe7Mmg8Hf7x1QnPHC1hYmYcmI/AJEmcY/KZtwlNxWc3TzqEAlnSQxwJH/RkfJSV/bIh6/wfeBLkbPJFgWATGpeDbA56+EHFJIICs+f6qfz2GrqPANF9QnTd27K5xoRhTp42RHRdbnOIZKQVD04rN5YCtOsp/kpB0i6o1eIHkfXr4fAbNbfCLKIHQCFR1GxcOpRXAZs9VgItAPgrClh5duG17te2cwpyspeGQR0enNbloxh1X5e88cTZo1xXmnPm6wyESge+BJ1VVvhNu+ZrLr5NSn4pckHCHL9V90wDHppfCLY9OaCnIyHQBMzLXFtzd3LGOKIV12cTOA62/xq7wJXryjXvNt4ciAnHe/3qOjP5a+cq0lV0RK41zAEfm2oJ8h0OYgX8AGzQtYZMkagiYbwaZxR9ltsQ80D4UVMVIjD9A1MpxYzd69jtPQDlWCWHk/ry8ngJYAjIDtPPGjS38NhTj6hxmZMdF7OjkGWn0iaNSSkxuoJvbrF1l9ojUYAJv3GbtM8u9VWeHU8zJM6+OrnAn/Gtx8ahxfmmMUYT//dNsH7/yynVvLQinXDo6LYnNniuAX4AIoP+c08abgPeB2aoamoIx4aIgI1PRIvybpFVLch5XkaD7rrY/CjIy9wAfhGJV+4hSWAsyMi8F3iaQeNkNjGuu0lqQkTkUWAJckbm24A+/UodDmIDdwL9UVd4E9Syy9SLJw5E2al5ez17gugsMl4HJQr3PQ09jpQPUz3pglkhFIERthH9ZpNNwDtkVW8Mpms2eGwfcrQjfHQJpijZXzalwd7irMCdLd2fRaZf0m/bBlbW+6DdHp39zz9s3vtBuqukVZGSeD3wETMxcW/B/4ZZHJ/SsHtKn0p/kWTPw28IRzR2rXVe62g9dAAkoEmkhBFU0vJ1dM2RgmX9n/f2qKr3AUGBq3b6gMjgOeIBWVg7n5aUenZeX8tW8vO5rgN/BOingjSAlf03qq6NDcPl/HHC/38CJJR29n0U4lb5AgfvxmEcL37LuG+jVahTmZFUU5mTde7rt45G2uA2LKtwdLgM2jnnshZk3vHZlUrjk0tFpKU7u9vmHcZZS/+9l/a4NtyyhYk2/jOOlUZslkVuAD8Itj07LICP8CgY6hGKsI83COlIi5xFYWgHBGf0K1n7VjPFUifw+MJRwEgKLbSjJy0scJYk8G8wqgdQogK8QjC8A/wbSaQMWX53DhOy4bhL5vECc47RqtVaXOENkV4a9MpXNntvPIHxP+KVxfKSx2lnri54KvFWYk+ULt2w6OqEic9qHDzp9UdnAoDmnjZ8GeFVVTgyzWE2iICNzpBRyvpDCKIX0CSlGt6V7p07oKMjIXEOguNEVeh7WRlKQkTnSH++9USk3ni8QC4FTMtcWNPrGVpCRmUrAFSA9uMsHPJC5tuAv0fsOh7gHqFRV+XJzZW8I8/I69wXrmSAvADEsuHsx8KGgKm/s2JJlf20fet9YnfbNjtcjHkotNk02aCJZIt/e0dn7WPok5/pwy3XNK9ddv2DHyZPc/oijFeH/fUz6N/+JNZffO2PSu0fWRU6nXWKz53YAthmE79+zTz1nPeBXVXlYugcUZGTeI5GPCYQIrlDOE4gHWlppDdayVwnGmrTkXEcqyy5MT7Euj+kC9PJ2c15v3GIdHYyFaLZR74hTWOuo82f1dnL9Z2De5vMb0/eXG5PPsS6Oe1+pNMhglaI/qk3t+2U4HOIbYJeqystCJvw+zMvr2RU4H7x3g6ku4vsXcC4VuN8ZO3avHpSiE1qy4yKB+yTybr8BxRmhPRJTbXiI7Iqw5kkNBqicHWMun1XliU8yK+5fPZplamFO1sJwyqWjEwrGPD7j6x1V3U49rfvHA1+6du7KcMvTVIKK4zzAKgOl0wEQiBoppEuL9cULl7JHcRtKpUHTfKmeboYKY6FSbSzWzJrwdXVlGvaYVhvKTUVapN/k7ensbywyLzPsNe/wx/os3j61Rxm3WH8x7jYX+xM9Fk9GbR/ziqgyQ7XpNgLWPg9tbEX0cKEgI1MASUAv16Cqs4RP9Lesjq4AemlW/9GKy/CXVJwSSVBh3a9RrzEcsQorwIozuv3PvCnyJG+68y3T9ojfacBTV0FG5qlSyP9o0X6re0jVxZE/JGzjIE9sDocwqqoM+dLkvLye6eC8FwwXgzkusNe/SeBcL4m4adzYwg2hnlNHZ1+2zraenrjXOCuq1tAZWOy0ardE2KvCfhOYOmui5ffyfo+s2Tv4EiAtJXLHiiHJi+57dfKbueGWTUenqVz/2lUnfbX5vP/FmcueX/HwpbeGW57mEFRaH5TIkwVCkUgpEPma1b/e28N5vHGnpdBQZqrQLFqcP809xLDHtE2pNjqlSYv1J/h6KeXGPYpH8UuDjJRmLVG4FI+QwkC9TOgHQiKRFm2R4jbcAvyi5379K0GlNM01uGqMtGhqxM9xe4Be/njvCcKppCpuwx/xT1JIhBRbgA3edJfmT/ZUW5fGvg1skEYtWfiUL6jndqhbWJvIkts7RkQ44tcoNQYbIBFo/kTvTOMe82dalK/UOarCi0esG/rKLldBRuZILdL/qFJrGAOs8id4z+6fv2FLa8kaWLr3XwDuQWCNBiW43O9xgngZTK+NG7tRV1J1Wp9A8YKLJPJZIKU83r8wodyYRXZFRbhFs9lzo6yG2ruA+91+KxJlNpBdmJPVLkpa6hx52Oy5n5oU99iXxl3kthg8nVRV7jcV4uFAPUtrSBQagF+vSTNqsb4Yy6ooYdoaYfTanLGevrVdIxbEd1FqDa9JpJlAxLEmEIo0alWeXs7dpq3Wh5Vaw+eZawtKm39kbZ+CjEzFNbTyKC3ad3LEwnin8CrdfUme0RjkIMMusyYQkXVtJdIvEJv9Cd4qX7rbYF4TNUf4xXpPn5oSTy/n2mHP7q46yDwhc8M4ohVWgIKMzEeB+w7RrFIiY4L+NppAnJK5tmBeQ+dwOMTDwGBVlWcdqE0gJ6ovXlB9gsQaBVYzaF3BeT5YJBgHglQCvzP/LjC8CPKjcWM3hd13UEcHYPssa7rVpeQm7jUOEIhdmpC3b+3qec92pSvsF5kbX7+sz3dbzrzV5Y+8WqD5h6TkL0uJLLrglevmbA+3bDo6jcFmzx0DOC7s+8a207p/kqmqsibcMjWH1vQrrT8XsB44xdvVdZtht2mw4jQYAc2f4N3s7e5cb10aey+BAO1Wka0lWHJ7R4vwiuOsP8fGGCpMXXwdPcdrsb6xpsKIauEX6YClXnOPZvEX+9LdFuNOyydKrWGlN921x9OvpsS43bJw8H+3hf3BSFdYg094EmkCfDLSf41Sayz0dfT08vZ0nmpeH7nLUGoaIZHDgwqrL+gc3mA/jO+/V26XMvYMSYdN4IoDsQesLqATuE8Fox8MkdRlL/gLmgRqQIkCBEg/iPtDWZpVRyekZMcdA8wEhtZE+KusLuUtgxTvO9TKXQQim7cBOByiJ+BWVbk9uN0LcKqq3BHc7g3UqKosCm73AapUVe4MbvcFKlRVFge3M4AyVZW7gtuZwF5VlSUOhxBAxmsrbo8squ762paqnscowldpVtzvu/xR24B5hTlZh90NSefIw2bPFZ2itlbXeiON5Z6kh4Dv9XO3eRRkZBoIpKHM8nX03Gjcbf6jnLUkoCMJxHqg3Jfm7olXVBn3mDcBPm83Zz/hVkqNxZbfAZ+nd+3RolbZZdphXQf43EdVH6tUGXaYtkasBXyuo6uOM5QZC02FEesBr/PYiuMMe02bzBsjN0gh/a6RFccaSswbzRsiN0ujpjlHVgw27jJvMq+P2qZZ/NI1sqKvsciy1bw+aqcW5cc5sryL9ZfYJEO56TgtyufxdncNN22KqFRqDSkS2V0EKmQGjkVIlz/Zg1JjyFeqjb/4O3hL3AOrNOMOa67598gNbd014ohXWOHQT3jNXbaYl9fzn8CH++yuAYrAHQ8UgmU+UCSo6iQRyyF6EbBz3NiNNW2l4ICOToPJjjOUx3m/iKswnlYXIbp8UM328gT/GlWV5wA4HGINsEpV5QXB7Q3AIlWVlwS3twHfqqq8Ori9C/ivqsrrg9vlwBxVlbcEt2uBl1RV3hXc9gE5qiqnORzCQNDpX1XlI+c+e/9p5a6ErzZX9oVAbmYXME6/8escDox8ZObMnTVdrqNe0Rf93A0dK9Ue6cZiy3MEqlWKYOBQAVDo7eI6WjiVWuMecxFg9KW6+wmnUmuoMO0FjP4Er024FZdSa6gBjFqkP0l4hFf4FD+Be7ipJWXXzH4wsUmpMfyiWf3b3UOq4g17TF+Y10ctAooz1xYctkrfIZ2TjwSCyucBf+yZawvyCzIyx9H0pYEMAhcWJWAhlU+Cct+4sRsbdOKMG7sxf15ezz/m15VVnTZPdoU/PjtuPnAygahck63Q8uPyhNo367W6Hajv5zoV2FtvewpQXG/7OqD+Ev5VwOZ625cBv9fbvhgoCP4vgQuBVQBThzz63VNLHn4P5AQCmT7qCmfovy2dNs/Omi7b+eOeop+7oWaAY9P2gozMZ4EswCQQXuDqULkFLLu4s2JdGmv0x/iMzhPKE43FZmldFuvVIvwm56hym3GHpdayOrpWs/rNzhPKM01breXm9VGVWqTf6hpecbRxq7XYvDGyXIvyR2pRvpsMJeYTgoFrPuFRHuj329p2uQKrW1hbAd1CqnNE8md51z/O+2AFrTaBzZ77N/l0K5XO4YB+7rYOh0Pe1pYIXGur6AprK6En6Nc5IgkorSrgaEvKah3BG78KOPQbvs7hhH7u6tRxOCjWoUBXWHV0dHR0dHR0dNo0yqGb6Ojo6Ojo6Ojo6IQPXWHV0dHR0dHR0dFp0+gKq46Ojo6Ojo6OTptGV1h1dHR0dHR0dHTaNLrCqqOjo6Ojo6Oj06bRFVYdHR0dHR0dHZ02ja6w6ujo6Ojo6OjotGl0hVVHR0dHR0dHR6dNoyusOjo6Ojo6Ojo6bRpdYdXR0dHR0dHR0WnT6Aqrjo6Ojo6Ojo5Om0ZXWHV0dHR0dHR0dNo0usKqo6Ojo6Ojo6PTptEVVh0dHR0dHR0dnTaNrrDq6Ojo6Ojo6Oi0aXSFVUdHR0dHR0dHp02jK6w6Ojo6Ojo6OjptGl1h1dHR0dHR0dHRadPoCquOjo6Ojo6Ojk6b5rBWWIUQDiHESw1sqwohpBAiqaXlCidHynHq/IkQ4gohRHUrzVUthLiiNebSObIRQnwhhJhziDZSCHF+Q7d1dNojjdGFDmcOa4UVOA+4J9xCHAwhhC140Rwabll0dHR02hlpwOfhFkJHZ38IIeYIIb4I4XitZpxoixjDLUBzkFKWhluGUCGEMEspPeGWQ0enJRFCGAG/lFKGWxadw5e666WUsjjcsujotAZCCFO4ZQg3bdbCGjRxzxRCzBBClAVfTwkhlH3avFRv2yyEeFwIsUUI4RZCbBJC3HyA8S1CiI+FEEuFEMlCiGwhxKp92vzlaaaujRDiGiHEViGEUwjxySGW3zcH/y4JWlodwbHmBJe87hZCbAe2B/cXCiHu2M9nEZLjPIicOmFEBLhdCPF78DvdLoSYHnwvRwixLni+FQohnhRCWA8x3plCiF+FEC4hxGYhxGNCCHO99wuFENOEEK8JISqD8925zxi9gueeKzj/+P3Mc1DZ6v1mrhBCbATcQFRzPy+d9oUQIjJ4TawWQuwSQty7z/uFwXPpTSFEOfBucL++5K/TIIQQo4UQi4LnWIUQ4mchRP967x8nhPhBCFErhNghhHhVCBFb7/3ThBALgrpIqRDiGyFE5kHmywYuB7KC56kUAZe9/a661j+X67W5SAiRJ4RwAtcBbwFR9cbLPsDcZiHEE8Hreo0QYokQ4tRmfHxtgrZuYZ0IzAFGAgOBWcBO4NkDtJ8LjAKmAsuAbkCXfRsFT8JPCSjsqpSyUgjRUJlswCXA2UAk8DrwJnDWAdofCywGTgNWAPWtqGOAiuB7DRaAZhxnI+bQaV0eB64HbgPmAx2Bo4Pv1QBXATuAfsBMAorf/fsbKHhhepfA+TEf6BrsYwHqPwzdCjwIPAWcDrwghPhRSpkvAg+GHwNlBH5/kcCM4Bj1aYhs3YGLgX8SOP9dDftIdI4gngZOBv5B4Fx6EBgN/Ldem9uAR4GhNO56qXOEIwIrO58CswnoFSZgCOAPvj8A+JbAeXcN0AF4nsC9ve6BKCq47zcgApgGfC6E6HeA1dGngczgWJcG95UCnRoh+nQC1+yrg7IaCNwregbfP5B7wFvBNhcTMIadEZR1mJRyRSPmb1tIKdvkC3AA6wFRb980YPs+bV4K/t8bkMBpBxhPDb6fCfwKfAZY672fDazap88VQPU+bfxA13r7TgiO2/sA89qC7w/dZ/8cYDdg2Wd/IXDHfj6LkByn/mp7LyCagBI3uYHtJwMb6m3ve57OB+7fp885BC5uIrhdCLy3T5vfgWnB/085yLl+RSNkywa8QEq4P2f91TZfwfPfDUzcZ185MCe4XQh8vp++Eji/odv668h8EVAaJTDmAO+/DczeZ9/gYJ/kA/SJCl4jTzjIvHOAL/bZdyCd4I9ztV6b2/dp85drfb399XWEnoBW/9od3P8J8Eq4v4vmvNq6hXWRDH7SQfKBR4QQsfLv1sKjCXxJ3x9izG+BpcA/pJS+Jsi0Q0q5td72z8F5Mwnc8BvDKimlu5F9Wus4dVqPfgQsl/P292ZwmegWoBeBG7kh+DoQxwDHCiHurrdPIWAVSCWwSgEBS0F9ioA6t5FMDnyuN1a27VLKXQeRV+fIpidgJnB9B0BKWS2EWLlPu19aVSqddoOUslQEMk58I4SYR+Ba+5GUcluwyTFALyHEhHrd6qz4PYESIURP4BFgOIEVMCX46tqCojflnB9CQPY1+6wcW4C8UAgVLtqsD2sTaOgS0RcELEUD9tmv7WeMlnZyrtnPvkPJ0dzj1Gl7HPA7FUKMAN4HvgHOJPDAMo2Dn5sK8BABC0HdayAB6/zueu28+/ST/HlNOOR51gjZ9nee6+jU0dBrmn4e6TQZKeWVBJTN+QRc+NbX8+tUgDf46zVzEIFr5vJgm88JKKrXBcc5GvAReNhqDHUP/X+c9+LAAVVNOecVAtfyYfz1eDIJuG8dtrR1C+twIYSoZ2UdARTtx7oKAWuiApwIfH2QMe8n4EfynRBinJRyeXD/biBln/kG76d/ZyFEl3pPZscG5y04wHx1vi0Hs4jVZzeBVC0ABANYMgj4qkLzj1On7bGGwJLoOP5upT+egKXzkbodQohuhxhvKZAhpdzQTJkOdK43RzYdnX3ZQODhaQSwCUAIEQX0BzaGUS6ddoYM+G+uAJ4QQnxFICjqGwLXzKMOdM0UQiQSUPimSCm/D+4bwqF1KA9/v/fXGQ3S6u0b3MBD2N94+7KMgDKcWidre6GtK6ydgOeFEK8QsBTeScDp/m9IKX8XQnwIvCGEmErgBEwHbFLKf+3T9j4RsJXXKXMrCPiAdADuFUK8T8AXdH/Rp05grhDiNgJLrDOBXCnlgdwBSoJ9ThVCFAIuKWXFQY45D7hKCPEZgRP7PupZrEJwnDptDClllRBiBjBdCOEmYAFIJLBMtZ6A4jiRwJLpqcBFhxjyYeALIcQW4EMCVoD+wLFSyrsaKNZ3wFrgbSHErQTO9eeCY9XRFNl0dP5CcPl/NgElYjcB15QHaPhDvo7OQRFCdCdgGf2MQFBfDwKrTq8GmzwBLBJCzAReA6oIGIrOlFJeRyD4dA8wSQixDehMIFj1UO52hcDpQoi+wF6gQkrpFEIsAu4OZk6JIxBc1RAKAasQ4mQCimmtlLK2fgMp5XohxLvAHCHE7QR0hA4EdJpNUsr/cpjS1l0C3iVw0fqZQIaA2QRumgfiMuD/gBcI3GznEDgZ/oaU8t7gmPOEEIOklAUEorSvJeDbdzKBaLx9KSSwDPo5AeVyE3DlgQQK+o/eTCDysIhApOLBmB4c91MCfqg/EjjhQnKch5hbJ3zcQ+CieT8Ba/1/gHQp5ecELozP8+d5+cDBBpJSfgNkEbDCLw6+7MDWg/XbZwwNOJfANeJnAkEJjxKwBNe1abRsOjoH4A4CfvkfB/+uIvDgpqMTCmqBPsBHBB605xLQL54AkFL+RiArhQ34gYAVdjqwK/i+BkwgoOSuAl4mcK0+VAzKLALX818IGKCOD+6vW5pfQkBBntaQg5BS/kTASPZecLwDGSCuJJAp4EkCOsIXwePb0pB52ip1EcNtDhHIV7pKSnljuGWpI5jz7HwpZf9DtdXR0dHR0dHR0QkNbd3CqqOjo6Ojo6Ojc4SjK6w6Ojo6Ojo6OjptmjbrEqCjo6Ojo6Ojo6MDuoVVR0dHR0dHR0enjaMrrDo6Ojo6Ojo6Om0aXWHV0dHR0dHR0dFp0+gKq46Ojo6Ojo6OTptGV1h1dHR0dHR0dHTaNLrCqqOjo6Ojo6Oj06bRFVYdHR0dHR0dHZ02jTHcAhxO2Oy5IwEVcBTmZOWHWRydFkL/nnV0jixs9tyRBuE9PcG6d4mUyvy9ruShwLHo1wCdFuKZi844Hk0ZDThu/+AL/RxrAHrhgAYSVGLmA0aQHhCqfiFrfwS/5x8BAXiAt4C39e9aR6d9YrPnngV8zN9XHCXgAsbpv3+dUPL8paee4vcYvwlsCScwTldaD43uEtBADMJ7MsigRVqYY81ln9nsuV3DK5VOqDEK76kEfhcCpAXkdcC8oCKro6PTTpg6a6K47KWbXxFoH/HHvVBK0H4P6KoIkGYCqy06OiHhmQnjhd9jygnYRASACf0caxC6wtpA+iSsTg+cXFITaP5KT1wssKb3vf+9a+qsiZZwy6cTGmxxv1cF/qtbeRAC/YKio9OusNlzkz/fNOG/87efen0H6+4aApZUHwgXKE8B7j+vATjCJadO+0Mx+SYBR9fb5UU/xxqErrA2kE0VfSMVfB6j4n1EoowCpS/g8GqWJxYXjyob/ODbJ4RbRp3ms7Omy0YAk+LJBeEBfOgXFB2ddsNFL9z+AMhVmjSckRSx6/ETOs9LAcYCDxBY/p8F4kTgFxB+YFNYBdZpN/zrsX7nSk28ZrS6l4L2EoDB4rlQdwdoGLoPawOw2XONwE7gf4U5WRfX2y/GpH+ds7h41PVOX1Q08Epa1Lb78++fXBY2YXWahc2eexPwApAK9FCEb+yxqT9ufH/qU++HWTQdHZ1mYLPnxidaS97f60o+NdZcvqXSE59VmJO1+iDte4Ncmxq5451FD1x3eWvKqtP+eGbC+GihaMsVky+9Y/8tQ/0u03m7V9seSh6w+bpLp61+PdzyHQ7oFtYGMDTlx0uBJIvB+Wn9/YU5WXLujS/e7fRFpQMvgbyhxhu9+7xnp91ns+eK8Eir0xzSoradIPC7gJLCnKz8N089p+fkQU/PcDiEKdyy6ejoNI3jHnn1H8Cqva6OJ2V2WPHf02z/7XcwZRWgMCfr9z4JqzeWuRMvu+G1K7q3kqg67ZBnJowXwKtSU7r73ebTJ961bpXPZf4GoLwwxRpm8Q4b9LRWDcDtt95sVtycavskD87/2/uFOVmVwM2Xv3TTj+vKjnpjacnIR4HjbPbcN4AM9NQohw3RpsrRyZGK+PmBa+uWHl4DPqeeQ5uOjs7hgc2eG90nYdU3RTX9j1OEb70mjSO+uuveXxrav0vM5tvWl/X//MvN518OZLecpI0jaBBRgRHo95c2T2LfbW/sXdflEqH4H7ntva++Byjb2Gkp4PNURaaGWbzDBt0l4BDY7LkKyG3RpsqCVY9cfFID2huBG4HHQEYG9gofMG1EmuPj96c+tb5FBdZpFj3u+XS11eAqXvPohHHhlkVHR6fp9LB/doKGYQ7IHoM7Lv6la+ymU1+Y9E6j3bVs9tyPCSiH3YLGibBgs+fGAGO7xGyaXO5OOKnKk2AE/ATS7+mpt9ooz0wY318o2tKIxMqquG4lqRffud5b996zF52x0WD2bpw693+nhFPGwwXdwnpohoPoVO2Nu6shjQtzsnzA8z3v+aSTXxrvDKatMAI5i3aqOUfd/351jTfmK2DRmPSvy5eVDN9e6Uk4Bv0pOewErBbGbrW+6G/r73c4RCxwKfCZqspt4ZFOR0enIRz94FyrLe73+RojhgGbQaif3P7w/KaOpwj/Y5o0nDMkOX8uZJ0bOkkPTtCKOrBz9JYrTIrnCugVDcK4rapHsIUEhIE/s5jo9482xjMTxkcDH0lNKfW5zMfUV1YBIpPLo30u86gwiXfYofuwHoLMDiseFmh+ILcx/fzS9HEwIbAPcBqE97qRad9/HGGs/RUYBjzzw/bTZld64r8BHkXP9Rl2RnX+tgcQlRxZtK8VJgF4ETir9aXS0dFpKDZ77jFl7qRfl5WMHDYg6dfVUabKgYU5WU1WVgE2TT/rl55xa/es2jv4DJs994GWvE7b7LmJx2S/eU3WU4/+blQ8e4HlO6q73eLyR1g7R2/5MDVq+5NG4SXSWFVS7/6iZzFpg/zfU31EVErpQpB9gYtveiNvx75tfE7zPHd5lHhmwnhdF2sAuoX1INjsuSLW3HVkj/h1pfPsd5Q3pm9hTla+zZ47jmCJz43Tz8mHc/6IBDw556lulZ7YObtqO6sEHhz0p+QwE2F0qgCJ1pKuNnvuPQSt3qoqtzgcoo+qyg3hlVBHR2d/TJ01MaKouusXcPxoECUG4Tvj8zse/CpU42+v7vqQxx/xIvAgYLfZc0OyBG+z5xoU/MOOScmfvq7sqC6Q0GOvK0XU+qK0lMiipTuqbS8D3y66/7oimz23O8j8SGN1xYldvzold9MFkeglpNsse9el3+ypihwY32Nn3tXTf83bXxt3RfR84CKgM6Cv3h0CXWE9OIMrPQlRTl/kbU3pHLyI7PdC8j/7nVts9tx7Qf4IUgGhPyWHme+2jncBFJQOuhykUSClzZ77FPAOfLGmUA2vfDo6On/HZs/tZxD//D+/NA3qEbduxaaKvidunH52SFMLuv2RMQTW4JVABTyh0kTjgs2e22lEmuO+bVW24WDroWFIWLLrOJIji3dVehIeAr7uGrP5l2/utvvr+tz4+mW9BP/8UqKYa30xI1++dm7By4G3dEW1DfLMhPH9IXK6UPwLIjpUnXagdsYId6HPaSE6rXQkusJ6SHSF9eCcB2hezfJxSwxemJOVf+Ljz27bUdO1q8cfoTvNhxlNGoKpa4QCIAMOyHcBd5kVlzfrqUdM8ZbSXxcWnXTfwKQlyz67I7skfNLq6BzZTJ010bShPPN1GHyRX5qqOkcXTsq757Y3Wmg6B4HqV1ZAMQpPbEM72uy5luM7zbuy3N3h/NV7j+4IDFy0UyXGVOEF3gW+7ha7yfHDvVN3/dkr64//Bj3wr4hYy7G/KsIfA/4xG6efUxCiY9JpAd6ZnplsMHf91u8xVkrNcMG+fqv1Sey7fe+u5T0xx9SeDXzYimIelugK60FIiii+TSA3LXnwmt0tNYdPmr71+CMmAUtbag6dhtE5esvYXTVpVT5pNgKmoNX7MiCid0LBLZWe+CFr9g4eAny9cs8xHP3g3L1l7qT/Aj+p6V9tibOUOWZMeldPu6Gj08LY7Lk94i2nfFXuTuoTb9m7sNyd+I+F06bsOnTPphF08RprNTjP0qQY79Ei7DZ7bvXZPf/v8f395q98ecpIt996009FJ0aDGLuwaFyUQXhRhH++Jg13d4vdsGBwx8WLDnW9sNlzDdDh3QpPQoya/vXTc258aUFLHaNO83lmwnhhiUtx+D3GtIikiuk3vPxj8cHaK0b/UoR0VxSmVLSWjIczelqrAzDikZmDi2u6LBue9sO7H0x98pImDZIdN5KgjxHZFfu1ntrsuVcCbwI9C3Oy9BKAYWTM4zPKpBTK1qqep7Ef3zCHQ4grvv4i2iB8w49JybdvKM9IKHV17AHEA5gVl9OjWfMEWv64rl/URJpq3n1h0jst9rCjo3OkMXXWRLGwaNwde5wpD4L0DU9d8FZq1PbbWvNB0WbPNRO4Zk/sEbtuc2FVrzdjzOW/HJO8aMTCorGd3P4IFegNYFQ8O3ya+dPkyKIfj++U9/1z17x3UAWmPlNnTRQ/bD91brk78VLglsKcrBktckA6IeOZCeOvBV4DKUG4gHGHKrv6zITxK4Ctt3/wxZmtIuRhjG5hPQDFNV2yAH7eOebuJg2QHTdSIucT+IydIjtu3P6U1ghjzU6nL4r06MJ+6DWrw8qWyp5VJsXz04F8j1VVykKVKodDLAdOUVWp2ey5SufoLYO6x62/efWeo+M9bmtfiZL13dazAO2Zz+y5yy0G59LhafPdLl/EG4uLR68ozMnSnxJ1dBqJzZ7buWvM8EV7nCnpivDP06Thyg9ueaLV/f4Kc7I8NnvuZb3iVw/cUH7UAJCPVLg7kLctC0X4PcD/Io3Vr4/p8s1ys+Ke96cyPalR82yvtn1Q7k78Z3Jk0TuLH5ikK6uHB0HjlhA0MJDaYPHslJo4pqUFaw/oCusBUITvAk0a8wtzsv6WiqKBnAYYBQIZ8HtS2Z8S1OVrvtr8D3rErzsD+KLpEus0h4DVRKR7Ncvag7VzOMRo4DvgFAIWWA1YBlxZ1+aiF25PjzTWXrl456iEKm/cQK9mvmT+9lOtwBSg+Kj731s5IGmpu6i6y0tbq3r+UJiT5WrBQ9PROayZOmui+HzjhEvA8MK2qu7W4zt9935SRMnF4XS/KczJ0mx23gN5VMDnXWrJkTu+GZE2/6IXJr0TXN6d0OTxbfbcC+G4f3aL3bBycMfFVzRW2W3rFGRk/rH6mLm2oF3EbvzfU32EwdptmN9lliD8NDDdWEynvTHlW1LS/u/JPhEX37Xe2eKCHsboCut+uH7mVaM1+Y+Bgzv+/G595/fGIJGxQWVVisDT1n5rUfs0488AK/cMCVsFFR0Y1fnbYxfsOEV0i91Qc4imS4DngS0HavDezc9sBx6p2546a6LF5Y84J29rVkevZh4upXLqop1qR2A84Ol///9t6p2wpmZ92VHP1nhjHYU5WUUhOCQdncOe0598PF2TA37WMHQCFkqUK969+bm2kl7OAcJN0N+9pLbzI38qq03nvGenXQoj3gAxf0tlr1N/uHeq/9C9Dh9WHtdzvEGYPglEtQpPQUbmuPagtFZsST7a77JYo9P2fl29M3E+4DiUOwCAszTmIzTluF0renQBWrUSZjCnsMphkhpNV1j3ww/bT7kMoNyd0CQH98K3rCLFapqs+GWxxau8ABwPTCp5OdKUPKX2yvptZ13/epnNnlta5urY4KhTndAjhBwB0CdhdfXB2qmqdBLIHNBgZkx61w18ENx8CeDaVydlfrvlnL7ASKvRecGqPcf09WrmdwEyp31Y3i12Y9na0gHPg/gJWFGYk3XASFMdnfaIzZ57Dgx8XRH+xGNT53+2uHj0eYU5WW1Geds313YobvjnPjttzNrSgW/HWcr2Vrg7nNMeV18EvCmkMAQ3203+8drd8VcBVO9MfPX2D774rKH93BXRiwE0n7EXraCw2uy5MSPTvr9+W5XtQug+iEC6Nk+ocgu3JHrQ1T4Enzh+JJDM30kTajS7psecbnUrXxaneGamXu+8nuw4Y2WM//eYKsXmM8ock0+ppF4gVu97P15jMbj2rnrkIr1EW5iw2XOvB16JM5d1WfHwJdsP1d7hEAOBDqoqHaGY/9QncizrygYMAkbaYn+ftNeZ3KPKGxcBYBRef0pU0Z4d1d3eAvIHJP267PM7HtBz9um0S256/dJuv5f3+2Zt6cC+wDJF+C7bNP3sVeGWq6Wx2XM7A4vMBlfMKd0+O/2la+e2aeWhsQTdAG4CLqpbeZRIj0Coh7uF9ZkJ4/+mNzTEugrwwtXjUrzVEcVRKWUzJr+w8JZQy2az5xpHpDnO82qmq37ddVwkiJGAURE+NGkgWD7eBzxQmJM1PdTzhxLdwvo3pAoowS+xSU9/VrdyBVCWusscKDiQXeErfcs6JKrGvNDkU+yAH/AQDMTqFruhQ7U3dr8uAzqtRg/AXeFJOPhyfDDzQ8JAw6VSoJAdN5eDZIFoKN/cbXcDi4OvGQA2e24XYGRG4m+3FFV37QLcDphW7jmGQQ/8q6LC0+FT4KfR6d9sT7Ds/XbGpHd1K6zOYY3NnnuKQZz/tkSkZHT47T9rSwdetGn62e3+vL7p9Uu7GMU/vvFJU5zHbx390rVzl4dbplASVFbzACugCcSN0qDdC3SqGVcaEV7pQoIaLAAEjdQbkjK2lexa3kN6neYLn5kw/oOGKroH48IZdw4zCN+tPxePjgbz6EU71TiBhknxrPJqlqfTorblV3tiaqu8cd+CFIdL4SJdYd2H1Mgd64tr0wmmpWj0l7jj9Yi+nTCdJxAvkl3xhwO17UpXGdlxH0rkgwJhoN5JXeZKXFDmTjolhIeh00g6RxeeUuHuUL7qkYu0A7WR2bGjCJ4PA3+L9AEGAr6qfzx8hFKmwpysbcA2yPoQwGbPjVDwHzMs9Uf7xoq+SQQC+y6bv/1UjIrH86k9dz7In8Z2+dJlNda++8p1c7aGUh4dnZbi5lmXpiwrOXYu9DjVL40FveILJn591z3zwi1Xa2Cz55q7xQ79RUMkx5jLx698eOLycMvUAqgSaakX1xFfe1LZPyJ+iP8pYn78CwUZmUdnri04nB9MHIDWlKqVO3/pMwIknsrIZGDeMxPGN9g6W8cFz9/dOdJYc+uvJSM7V3nih4PaHcCsuHYD/441ly0Ynf5t/kvXvv0Xl4Nx059ev7myd1+z4sla+9g/27yVW1dY90EidgBEmao+r/HG5jTWHcDkFS8IhLE4xfNx6t/f/gZ4QCKFqHdS73WlLAXOt9lzowpzsg4V9KPTAng1sy0lsuigEZqawiWKhiICT9Hmem+1ih9WYU6WE/gRzhoPYLPnis7RW/r2jF978+o9RyftdSX3BqblbctSQD5ms+euMSuuX4enLfDVeKNmLy05Ll9PqaXT1rDZc0+INp3xWY03OiHOXPpGhafDzd/Z7zgioqVt9lwBzN5S2Sv5uE7zXvq/m5/NDbdMLYQDQCIRCA/gGDqjZPGazIyLhBQfAg8C08IpYHO4/YMv8p+ZMP5DAtUxG6twqiCCZX8bdi859YkcS5eYzdet3HPMgF21nQfBqGNAKEbF4wa+NgrvcyfbPltnVtz/+zObxt/Tydf6op/QpPFNl9/oboS8YUNXWPdhV23nZIAab+yjhTlZSxrVOTvO0BHjUS6LVpB6vfPvAVvZFfnVT0V/FlNjOFtDXqRkV+YDxFv27C13J9E/cWl/yPo5FMeh03ACN41OlJD20cHaGTQxRyIvl0iT+KN8qwTwCYSjFUT9C0Hlcy1wQ92+i1+4LSnSWHvZ4uITkis9CQP80njegh0nRwNXAaX9pn2wsn/SUk9JbdqrhZW9/1eYk3XQIDMdnZbi5lmXxOVtPWM6xE2u8UZvGdv1y2mzb3j1lXDL1ZqkRm2fXVyTfglw3//d/Ozj4ZanBVkWNNIsAe6s81ntV7D2ozUZGW8B9/46OaX4mJm7XgqrlM1jJXAhsLyR/RxAMNvE/lNh2ey54lTbx+M3lGeM21ie2Rv6j1lXNiBKoEkgH8TDavpXW1Kjdryfc+XHwUC9cw458c6aLnUPSCcAPzVS7lZHV1j3ISVyx6BdtZ2JMlU2JajlFoHobHWLA150Y2oM2cDZCuKPrABDU38yf7flLFKiilRAV1hbnw5ALIiDF27IrsgX2XEnAmpVlG9QTI1xQnCJSwNOLXotYlOn65wtVh6yIfzfzc/uAZ6t2546a6LB7bee+v2209Pd/ohjhZCnLy4e3Qk4GdD6Tftgc++ENc5NFX2er/LE5wGFuhVWp6Xpcc9nQxKt6oJqb1wkyNckyh2zb3j1iHp4OvfZ+18trhlxZafoLV8VVXdr08EuzUWz+McoboMZeHzfAKvaU0rvtf4Se4l1SdzjBRmZ72SuLSgPj5TNIyq19Nia4g5EJFVcCLzV0H5B6+wf2SbqrLM3zbq0/7bK7hcs3z28G3DSN4Xndgp2WQ9izpDknzZ3jt764YvX/iuoqzQ+BWdhTlZJ5rQPi+Itey8Hnmz0AK2MniVgH8579r5Fv+0eNjyrx0fGGZPebXgKlUBlq4WAEAgnsH+fxuw4RSL3eMzyB8u9VecCnPbk9P5rSweujDZVTln1yEVHlIWhLXDpi1PPX7DjlI8yO6yY8tVd9zbs88+OuwaY5TXK8SafuAI432PSKE71/tZ1m2U42RVtNh3NDa9d0e3Lzf/sB4xMjth5YYUnvpfbHyEALAZnVdfYTZW/l/WbAeKnBMueX5c9dHmbPRadw4trX51k/XbL2XeDmGZS3JWj0//33OwbXn003HK1NjZ77lkgP06L2r7m2NQFQ4Op79otyyak/2xZGX2sr4srduA3hVX7vr8iq9sppo0RXwrER8DFmWsLDivFJJAlQP4AwgTSDeLExvqh3jzrksQyV9IVC3acnEbAoDAw8I7cC+K73gmr1/VNWP11qLNHjH/64bUbyzN69U9cZv7o1ukHjOFoC+gW1n1YVzZgt0Hx7WyUshpAJaCswsH8ULIrtIrnomqtLuVMh0MIVZVybenA9YCs9sZ2bJ70Ok3B5Y8YANA1dtPORnTrBGDyif+RXZG7dbb1iuhqw1tdt1kGAutrn4iesXKA873hZ/jbXBGAV66bs4VA4YOvgAdOfSLHsK5sQH/guM7RWyeV1Kb1AfEkQIUnQRv5yMzynTVd5gL5gzv+vOKT2x9u1eTWOu2D856dNmpX7dFfg4gE3vVqlptm3/BqWbjlam1OfPzZB6HPfSDW7qzpMqK9K6sA5t8jU/wdPVv2p6wCDMrd8m1BRuaDwKOuwVVbAHvrSthsVIJuYiCM8T12TnM4xHOqKr87UIepsyYanL7IC+dtHd/NL43jFC4Yo2EwgPSA+DEtattzAzv+8qvV4Hw/oI80rYjRodhQnvG0yxc1a8muE5612XM/aMu5WMOisG63L/ijukJ6zqg29eHUeGM6EPALbCwOoC4C8qBRgkLyntWt3DH6hxgbKpsLc7I8ve75pCzBumdYk4TWaRZLikc5Ab4pPPd/De1TFe0fHVmr1BgeqPQAdL3aNQeYQ3bcWGB6pNPwdP9VEU/Xroy+KtJpmEN2RZu1GHxzt90PrAi8sl4FsNlzk4GR/ROX3rKzJr07cD1w6/Ldw+l////VVHvjvgB+Or7Td0VJESW5Mya9e0QEyeg0Hps91wDcAiMeizDWitGdv815+6YZ94RbrnAQyPPdJzu42Z2AFa1N3QNDTUFGZqqCoZtSazjUd57j7ey61VwQeddvJ3WfO/C7zQWtImBocAAewATSmzyg8GjgbAJlvHE4hElVpXfKa1eMWLDjpKGVnoQTjOKfp/ukqc418Ldoc+Wbw1IXFvo1wytzbnypvLUEd/mi6qqz3QRc25YLCLS6whpUVr8HzBLpW//kc/+VBtfcqN0nLEzPGRX28qQmxd3bpHh+aHTHgH9jDQGH6zsPluIortL4FnCHIsVYYDZAStQOi8XgGtE0qXWaSQ9gd2MCkDRF9nVbNEPkvm9kV+SRHTdis831dsou04RIp+FN4PoN/7L8ur2L5y5Vlfu1MLQ1CnOySoBPIetTCKTeUYR/0LGpC+7eXNE7tdobdxwwYWHRSRiE1/epPTcf5E9q+tceq9H5zszJs3UrrA43vHblmM7Rwz7cUd0tGcSnTl/UdW/fNCOsft5hRg38aXqe78MNX7LnfGOJGeDbg7XLXFvg/+Wm5DMjv+vwjWm7dXZBRubozLUFvtaRsnn81Q9VOGI6lf467ccXx+z530fTO0dvSUiPufGyG777oKLW98+65EE7hdByR3f+pkIR2ow5U14KGsn+Hsnf0kSZqsbUeGOgEVkKwkWrKqwbH50TJyIs/zE5O1sEAoEwRZYOnQBMANhmd+zxxGyyKL7ohSZn2kKfuWxrVadvfQZvzHf9bppe0tLyTZ010eLTJnQc1HFJSiDYr3FIpKUmStsSfWf1ob7sAk3IvS6rnBgZVFjLXIkL3f4IvXhAGOgUveVUty+iUctycZXGYoncf/Wd7ArZHS4lO+4K4FK/Ip/otdE6LHGv8VoccSPIrmhc9ok2QGFOlgdYAmedX7dv5CMzu/dNWHXj6r2DU3c703oCtzm2n24C7rfZczcYFc8vw1Pny1pf1JvLSkZ+35bKauq0LMF0TdcKzn3OYnBH9E9c+siqvUMe1AP6cIBwAxYCJTEdYZWmFdCsfrtm8kvhU6yHajv0xZL8gozMa4H3/PHep4FbWlzAEBH0Wc0HsNlzJ4GcCSgbKzIprOzlV4RcOTzthx8zElZ+Pyr9O8dJY71rAlmwwkvHiJ3bAgqr1Np6AYFWC7rabl9wDvCSRHYGKQWKXyK9rvjfHjZ4Eneaa9NTfOa9w3zWPSdZqnp4hTTt689Zohlqilzxa2JMNV0+MblSF3sit26v6vS/wkHXzCkKztEsV4P+9/+frdobt7lT1NZ7frr/+pzG9C18yypsWyxaSUfv/OQptWMO1b7s+agtkbVK+s40r9F2pUva7LnPA1cDsfpFvXUZ+MA71SmRRdv/Z78ro8GdsuN2AF+TXXH1oZoWvmWNMfiZ13mHuaciRQenVctfm+HcUhHvv1JVZbsJaLrspZtjrQbnxMXFo9LK3Yn9jcKr+qQpIfh2ldVQu7J/0lLfbmfqzC2Vvb4qzMkqD6e8Oi3DlNeuOOanohNnlbmTjga+G9Rx8c2f3v7Q4bS826LY7LkjjcLzvkHxJp9q+yz5hUnvHBarLk2hICPzb8HIDSnDuvLEHj8Yis2jnaPLrznmteLZLS9p87HZc4Xa5at7Vu8ZPGm3M8325ztSA/FgYU7WowAOh/gYGAl0UVUZ9mIJNnvuiQSqkM0C3mqr7gDQChbWlTOnDLWW9/84gv7pwG9ScV+gaFYJqALh6G2/cb8fznb7gqjaDr8c443aPj66eGytwRubrhncx5qrenQ3ehJvBzDXdiVxw9Vsu8exR0hDkUQeBSAQnu32BeMaq7RWe+PSAYpqui5r7HF23G00AiTtMR7Qybo+Jq943eJRHrVtsfQB1nWM2Fmz25kWPSb9686Qdcha9jqhwWbPNUGCtdKT8O+G9il8y2rqhjmtOlozxzRkjitdVcCxZMfFALeavOKhwcsjR/qMCBxxd5Fd0S4qUr194wuVwKt121NnTRRezTz6+22nd3f6ooYZFe8Zv+4aaZMYRgNk3PfR1t4Ja5xbKnu+WOlJmAesL8zJatNRqjoHJmhVnWg2nDkbiTnSWHVbrS/m+U9vf0h/AK9HYU5W/tWvXP/qvK3jp68tHXgb8FC4ZWpBVIEQwf8bvNzsGlx1ceT8hFURP8TfX5CR+VHm2oKwuwseiKtfmWyet/XM84G7HdtOHxhv2es3Cs+LPmm+BjAFrZb1q7ZNAvqpqvQ6HEIAbwMfqar8LAziA8QH/75SmJO1PEwyNIgWU1i32xcYgBvjueAxqXiiahOXzIncO+zaro+fXPdEcdCTNj1nVA2Mmg/M38/YUUDP2g6/jvWby0+N3qXulEg1WPIUmuiH0SNu3bBNFX3pGLGz0T5WUbUGC4AiRYMsZtE1hg+AR4ETgXX9EldE/LA9jQhj7XBAV1hbjy4ESqwePAdrPUxe0UsgRE2U39gQhfUPsiuqgId3vGl9P77cMCOu0niORJ67/Q2ruTjVe++w8f52lYsxWGHlh+BrDgRKcH628cKjgJFxlrILN5Rn9HP6ol8CMCke57icp6s2lfd5SWJYGGWqXLz6kYuOqNychys3vn5Zhlk55ymPZhmvaYbFJ9s+vefV697KC7dcbZVoU+UTAu3i9WVHTbDZcx9pxw9qDon0E7jGehtaYGXYc7t3FGRkngEskEK+QjicOw+BzZ4b0T1u/f0V7uF3EtCl1kSZKq8dk/7NOzMmveu02XPfI7jiW99qqapyD3/qNYnAYGABgMMhjECcqsq9rXUcRycvOm5ZyQiGpvwoWyoTQahoEYV15cwbL46xjH3C6O6YLlC+dsVuuL3PnbetCdX4AWWW32DUb8DzEHAHkMifgENG6R+IjpHFJ2+q6MuITj/sgmsa1XdXsjchpcREZYwvJfbQzQE2+oUs9xvkNHN23Ip1ypO5wK3fbTnT01i5dZrO6PRvsuZvP5Uhyfnehv5YOxeZIwBSd5k/aMqc3a5yrQdOJzuui9siX07fbj6zU5H5MX6JswALJHK4QHx/sMC9w5UXJv1r1wuwi8AS1GP/fO4eZcmuE/oAx3WN2TSp3JXYT2J4GKDWGy2PfXhWVUltp3cIpNRa1S1244o/Sw3qtAX6Tfvgn4o4/X2fNADc5ZOmZ1+97i3dX/kgzJj0rvzUnpsDvNvBuvt84MNwy9QSZK4tyF9+VteFlvVRo72dXFcNzNvc4Gta5tqC/NVDez+rVBvv/PXqtPJjZu+8sSVlbShTZ03s9lPRiTdD2qWbK/p07BxdWD4s5cdHl+w64bnVj1ykwUVAwJLOIYxmqir3OBxiIAGFHgJOrXMcDjFCVeVvLXogf5IKkB6zpc2nmAupwrrdviAaeDief97iN5dLn6XkSqM7eW5v+/UtfoNJzxmVv92+YCOB1BJXN8WHdXnJsUWK8Fe+OOlfjcnHCYDboiUC1EZqqQ1UWEcokjjFJ+Ilct6T3n9deBn34JOmzo2dW6fplDo7dgVIjty5rhHd6iqONPo8+QvZFduscNbW2dbT07ebJwEPBku9IpEukR03tj0qrfUJJqpeG3hlvQlgs+cmAMMHdvz1ll01ab2Ay4Ablu8ezvqyo9w2e+5XwE8j074v7hhZ/MULk95p8xfa9shZT2cn/7Zn2FMQfVm0qaLwlG6f3Tpz8uxPwi3XYcRHMeby16NNlbNopworgAgEFo9Wag2lje1bO6b8fuuymGsi8uOuLMjIfDpzbUFh6CVsGDZ7bieQt1oM597m9kcowJdAzo5q248Lp01pso6jqlICddkQlgMvAKsAHA4xHqgGfgi2CznLSkZsAuQnGyZuf74lJgghzVZY6wKdajv80jtCDDpdSFMKwvdGZfoXjw28dtaWEMjYYCRyA2gdu+SoTbrJu/0RyUBhU/p23WYpB0jZZWroMphKwBosANPxyur+oGndYjeNAmY2RQadxrNq7xAf4P268LxfG9pnT6J3XNJeE3s7+CoSQyBD16tdXwFfkR33EjAlWO7VCKgOh1gPlLbUxaotUpiTVQZ8DVlfwx95PI86rlPenZsreqfX+qL7A+fk7zwRBb/2mT33F+CnUZ3/5zMbXO/OvmHm8jCKf0Rw3rP3Tdpa1ffVQKC7eLjaG/fozMmzwx5AcjhRmJPl/cdz9/73113HX9rrnk+O3zD9nIXhlqklMK+P+h7AUG7q0di+w57Z7S7IyDyGQJ7oTwoyMj8C8hoSuBUqJs+8+uTCyl5PwoB+IIyx5vIfhqR8/eprk9/4KNRzqapcz1+LJkwD/KoqjweoKzYU4mnjgYrDwS2lWQprUFmdJ5HWyNKhwmfeW2X0JB7fZfq4/C6MC5GIDceZuMRmrurZu6n9o0yVAxVkUwNgLACChvmwAg6B8BPIfeY1CO37BEupjDJV6blYW5cewJbGpFwSkl4A5fG+raFQWOvxmUBMkUhNILwS6QC+AX6nbp3pCCT43fwGWZfW7Tv24VlpRyUun7Jm76DOu2o79wA5ecGOk63AHTZ77jaD8C0+Nm2+cHqj5izfPfybYFounWZis+dGA0/CcdcnWkuqT+n22fWvX//6O+GW63Dl113HXw9k+aTpDqBdKqzAdilkrT/Rq9IEY0zm2oLNBRmZzxJYgRooEPcVZGQ2KNtAUwkUeJATQWTCuSeaFI9IsO55r8zV8b4lD16zubEug83gRIJL9g6HiALyHQ7xgKrKT0I1Qfe4dcfvrk01HLpl+GmuhVUFLAIhJFIavHFPhbNyleKLXmrwdOiz3b7AkJ4zqtE+VFIqXXskrGlSipHdSd70jntMlMX7OiYcujlkV+TXPhG90OpURiuIcWRX5Ffd88mvZXsT9YpBrUhq5PZTDIq/UUvKiaWmIqCk52Xu2hCL4wMQiDnAGz+oVYuB14C9AA6HMADHqqps124CDWHxA5N2ErA+AIEa9cA/f911XLe9ruT+itDU/KKxKQR8wlx97/vPyqMSl2qlro6zCit7fx4sjBC8Mf09MELn71zzyuTJcebjn6rwJESBeHavK3na69e/rl+vmkFhTlZNd/vnL0vEtEmvXnfKrOtfO2hy/cORzLUF8rexPSRm7eRmDOOWSIK6hkUgVFoouf2gB98+TZDwpUQRAALt7dO7f/zkC5P+tbol5jsYqiqdwObgZkcC/v8lAA6HSALiVVVuaM4cmmaMizTWtnnrKjRfYXVIpF8Eaui6hWxYSqeWwlrRbwEBS1QyjfQvDFgOosWWyp6fNmVut0VLBaiN1Do0SGEFnBEy3uRFKNMCfoo+adoE6OVZW5Eyd2JEt9iNjc0RmUZz/Vf3Q2mC79IOZUZcFu1e6z1Vu9TA7ln1mlwA/J/DIcaqqvw+1PMfzrx+/SwX8K/6+6a8dsUx3287rW+tL2ao2eDKWrF7WB+/NA0H6HPff4rSorYBvToGa4B72nJJwnBis+dagYdh/B0drLv9/ZOWXvjFHQ+0W5/L1ub07v99739bzrx/e1XXpzhENajDFaVWcSjF5qHNGMIBOCXSKhCKRDYwVKRx2Oy5qdDhDYKlyACfxLA2HMrqvqiqLATqK/03A/c4HKKLqsripo67parnTg6TzERKczqn54zKd3ZYtgDAE1V4eTitqwASrQjAay1utK8MgfRGlLsTm5TNIH2HpRCgc5G5wcs6iaXG34w+/vDzTY3a7lOE3zZ11kRxsH46ocFmz413+yMs68v6f9yYfk6rNrw2wm8KtTwGPyPcZs1vvafqQGnVPiVQXOIHAIdDnOZwiKNDLUd74eXr5vy65tEL/68wJ+u2lQ9P7JvV49/xCv4TgDs7WPYU76zukgrCRCBCty4Vnk49rpt5zcURxpq1wJ3A64OTF6fpympoeeW6twpizeX/LigdlGGz56aFW56WwFBu+lFoIqUgIzOuKf0z1xbkC8Q4gXhAIn8G7EuvSns9lDJe++q1p4G2CEQigeBtH9CWKz+9ClxZp6w6HOJOh0P8ownjxAPlIZSrxWh20JXJmboMGOvqsCI3BPI0i4pu/46P33IBtR1/Pg3+2Sh/oLSorZfsrOlKjKkspYnTW4J/G1PiM1og/sgz2SNuvbW4Jt3g9lv7Eoic1mlZ6krhNjgHK4DRR1x1tNwVGWJh4iqNQiK/PND7qiprgTch4HwPPAlUAieEWJR2yQuT3ql4IeAnuBB4uu99H90AvAz4ads3plYnUFBD3quIsx6MNlX5PcJ3xsbpZ38F48MtWrtkryvlHgLuK1P5a9BNu8Cf4C00lJlwD6geAzQpQX7QZzX/l5uTXzKvj9xo/SnumoKMzLzMtQXvN1e+4x55dXyZe9xnEUany+mLGhV8kFVpw65Cqip3Au/AH+5ilxBwk/hPcF9E0KXgoESbKnomReyqbes5WKGZFlYAk7OTD/AcNeWZmhDI0ywMnvglABGlAxtVF95mzx1ZXJN+N0CVN3560K+tUezt4O0d/Bvf0D5Oq9bPbdai6raXlxz7IcDXhedFHbiXTqgYnf7NBIDjO33X8Ojm7DiDyaeYEsqNn4RUmOy4aKCPQDQoW0EwUnQUcAWAwyGiHQ7xusMhmrK6cEQyqOMv5wKYFPdTgO4OEOS6mdeMF2g/g8i2Gpyfjkn/pndAWdVpKQpzsjZ0sJYssBicd9z0+qXtLrWha1jlHgAtxnd2c8ca+kJJuVToJhALgHdWD+lzYXPGs9lzLymq6fpfgdx5YpevTinMyfqlMCcrvzAna/rhck1QVekHjiawEoLDIfoCxQ6HOO1QfT1+iyXSVHtYBKU228LqM5d2Nnjjwq6sAsTsPGU9oJlrupsb2VWVf5aPM9CEKlkes+wEUBupRTY0ctxvkKleE74602ytL7rO0tcVaHCaJZ2msaO6awxAB+uexpTiTSbwoBdSH9adqZ7z04rNoiLWt6Oha2aqKiuAiuDmMGAi8AaNtBgfqRSUDkxKsOzZteyhy+8JtyxtAZs915Bg2XN/lTfrQbPB7XT7I85f8+iE/8CEcIt2RDA0Jf/Nb7ecPeaXXcffDNwdbnlCifAo8yXSY10cW3Ho1odm0JeF1QUZmeM1szZfuJX3fp2UmnHMrOLsxowxddZEsaO66zdwwsnA97W+mPNeue6t8lDIFw5UVWpAXdC4D/gEWArgcIj+QMy+Abs2e64RrIY1ewfXLx3bZmm2hdUTs+l4n2VPoypUthTpOaN8Eq3Eb6zq1ciuDgIppqCJVbLSis2rAbpstzS4OkV0jWFbbJVhQd12t9gNxQCZHVa0fk6wI5CN5ZkCKH3x2n9ta2ifojTPcQB7Er2WQ7VtDGaPGAlQHu9vjPL8B8EgrM6qKhcDOBwi++HPOuQOmNv/qQFzBzR6xaC9Y7PnRlR54jPL3EnvhluWtsC46c8cBXxf5k56MNG6e9nJ3T4fVpiT9Z9wy3Uk8fr1r78N8vudNV2ustlzpzVlpa+tcszMYo9ArBM+pU+oxsxcW1BVO670LH+SpzxiQfy9BRmZUwsyMu8pyMg85Odms+eavtr8j7d/2XXCyX0SVhUApxXmZJWHSrZwo6pyo6rKy1VVlgR33QN84XAI6z5N64LXyltNuGbQbIXVUtlri+KLatUCAQfDE70l1hu1pVHpMwpzsvKTrMW5ACbFc1oTlwGa4sMaQ6CKBQCDOy4uMggve5zJ49vTxartInvQSGukySu6AbgtcncoJUksNZmBkm5bLUubOoaqyvK6/3+piev177JOp4O4A5inK61/xRb7+xkEfrNHdL17mz135NHZcxZuqeq+SqAdDVy+q7bzMS9dOzfsUdFHImlR2yqBJOAhYF57ug/4Y33FWoR/eCjHHPbc7m3GXZaeAlEokc9L5GMSmXcwpfXKl6ekgfzSo1kuiTFVPJPZ4bejjoA8zdcBWaoqXQAOh3jf4RCXXKHsuGi4y8hp1k3NyeDQajRbYTV446XBFx3yFD9NRfFFrjLV2Cob269H/PoogDO6/3tJU+YtTfD1Ayjp2HDLm88gU6qi/X8EeX268eIRfmmUu51pXWlnF6u2SFJEyYk94wviG9On4x5TNUDnIvMPIRZnCLCU7IqQVDGZu6fL6noD6RHw+5AYUXKrIvyc1PXzI9b1ptc9H08EfixzdTzOr5noGrNxamFO1tuFOVlHTFW1tsSQ7Dljd9V2OjtQPQyFdva79Se7OwinkrRqWO9TQjlu5tqCUoKlbYOVI63Ai6sH9VWX3N7xj4w7NnvuyIz7PnpuRcnQQoEcC1y58pGL75gx6d12f76rqqxWVbkIwOEQsUCnnUuvH5tU2vOlE1xGjirOnPDy5Lw2r280W2HVDLUpfmON79AtWweTK2WZwRfd6BxtS0tG/AiwpPiEJh2L1yQ7A7isDc+/q2hY3RYtut4ulcAPTtDOLlZtDZs917DXmWRUhNbYHKydCNxRDpR6qtEUvmWNk8iBFbG+JhWtOAAOQAZvfnoE/D6s2jMkOsZUsfGNG2Y2OX/h4YrNnptxyhNPrvdJ0zsE7wESxbelqndTM6ToNBObPfeoUlfHfwtkMeCi7adUahQFGZkjTRsiBwgEhirjZw1Ztm8kuQTytGoEsn5kKm7l+4hFse5Vw3o/evklj54J5Ln8EbeUujuaMzr89kphTtacEMtwWKCqslJV5ejS9edtBVAQCISRw0DfaLbC6jeX93bHrmszkcmaoXY3kFQw4/5GZR3yaWY/QFFN1ybNm1JiWgbQdZtlR4M6ZMcZFSlE0l7T1/X2OkDqSkbr0FliUH4vO+qLxnQqj/NleY3STXZFyOqmx1QpJwgEtZHa76Eac+XlK/OTjZ6aWIPPBYE6yQPmDrhHdw0Amz031u2P6F/h6dDsdDiHE1e+PEW12b94B1i9sbxvt97xq1eBdNLOlKPDjSmvXXGsWXH9ALj90jQSxFjgAdpX5gpVIAwAEmmRQoY0TqNentZpAjEKSHYNqXxGWuReQ5Xxvrt+effTh/LfsB6/YyVGze8vKB1cFMr5D0+UbyR4AhXEEKDtDbdEh6LZWQKMro4VQjM2aRm9JahOdaTH7jgDn3X3YOCnhvbrFruh65bKXhzfaZ7SxHxkjfVhrbOs/uHDWpiTlX/sQ69Xuv0RpgpPh5Pa0cWqzWE11PZ2+SOh8T6sMT6jdIayakBiqSkdIK3Y/EYIh2W3z7xR4Y8KKA7ADNJ3zvs9HupjrXnsyXN2tfulsP1xVOKyC1fvPdpgNrgc4ZalNbDZc3t1jNj5yh7nqScLNJfE8IxfGp/6n/3u3Xpp2vBis+d2SLCc+LUitIS+CSvHfHO3vRAopIXKjoYRBwHlyCIQirt3zcnAo6GcoC5Pa71ddwB3FGRk9vq5b6+vem/Z2WvakrepMEcZvIrhxFXf3dJTqTXM7rdmbXv7rBvElJlj8294+NnPq/Ye9Y9jPaJEkcYnX56c5yawiuiYMnNsi3wuQdcDtSlzNFthFdIUYXQnt5mgK1NtZwdwRdSuURGN6ZcSWdR9S2UvkiJ2NcnqXB7nGxhfYaQ8zueJb0D7nameLmnFZsrifSn1S7mWODsvh4Dy2hQ5dBrGsNSFExfsOJmTun7ubMwDSlStoYbQ30yGEIjSLAzloBIR60esAVSQxmC1QeNGd9Qjm92R1341d8C/U02u/x0dWfndk+fsCpnFuK1jNrivNSoeTrN9/Cs0pTDM4cENr105Jn/nmNugY9ZuZ6pnUMcl+d1iN02qX2YyeJ3RrzVhwGbPjQA+K3MnRo1I++Ga96c+NT/cMrUUmWsL8gsyMscBqi/Zfat5Y+SwgozM1My1BS3uknP6OU8XGRVPfPyg0rKx63/7+h+rf+yd6Ko4GQygcHlBRuboXTPXLgJMqirbe/DVX9gSUVu+OsJH79jCrMTdGZ8DcwANhPvlyXnjQqG0vjw5zwAkJ/TIVZ2lvUdBn2sIpA9t9BzNUlhXv3SnMY6zonyWkAZMN4uIskHLAcy1XRMO0fQv/LLr+AXAyU31YfUZZYpEEn9rjb8h7TWFFACXVQt5iU+dQ7OxvC8CTUaZqhobld+JYG67UFET6b8QKI+6qzqkFk+T0FISDN6oEp/FYUBKDZDg6m6u+XKzJ8oCTCn2Wm/9ocroHzC3/xwQHwPfrbx8ZaMKbxxurNg9zBxprFn6wqR3ysItS0tgs+faQE5TxLlXK2ga8AKIJz69/aEjzl+3rZJx30djok2eD6u9cR1BXPD+1Kf+HW6ZWpo6C2hBRua/gVVADsHCJy3MLT7NnLTHkzrqyfev/rEgI/MeCUcLhEFqUhCw9lUDPzoc4jxVlYdFTtJQsHrv0Qog3/TazHZLxad+d9x1IBQgAvyPffD8tQ/uWXuhjwNYRN+6/zlD7e5BKUB6bPoPJ0tp6FO144QSoIs5evsovzcqARJMgLFs098MQ3VxOq2jsPrNZWkAzg7LegWqyoUfv6l8p8Ebjydye3+gwRcBTRo0aLoPa9Je0zJgREPbdy4ylwOkFZu//8s4EcXpTRJAp1EU1XS1AIUzJr17yNJ1dRS+ZbV0w5xaluDv2CFUgmTHmSKEElUR5/8llOXNBswdIAwQlWZyJc+buD7/vk87PrDZHTlspTP2yc8u2pQfbBMzLKrs3iKP9eRazXgBcLVJaP7x7/Vcv8UT+TDw5crLVzY640ZbxmbPTQTDgGpv7P3hliXUXP/aVcMLK3q9CgMHgPAnRez6YHjq/JwXr/3X8nDLphMgaFV9CCLuwB8pBJpfIhoW99BOyFxb8PuajIxnBOKeXyenLDxm5q5ZLTXXja9flmEU5z2goXy+afpZPwZ3OwTCA5jEn3nXPQQyDawGcDjEucDNwMXBEqjtjqA70KUElt6++1lGTx0KTpCWwC5F3bP2wvkgtcC2ps2+9+UCV2nmGqCLYq7sr3mP+iPAvXL7mLp/XcB2KRWnJXZrRe3uhE+A7RGJa7o6S3vfjTQC+JuS875ZCmvMzpONAJaKjB8P1ba1cHZYtieq5AQ80ZtOBbIb2q977Hrb5so+zfFhNdP4HKxQz4cVIMJY29BCRzrNwCB8ffzS0Cj/1agapZtA4DfIUFqq+ilSGBLKjSH1XwWsfhRWO2NyAR47e/fj+zZYefnKKgIJpe8ZMHeARSDH9rLUPL3RHdUVeA+kJ+u9nnuiFf8Ha1wxT6y8fGXIMiOEi8Edf560fPdw4sylbeaa1Vxs9tx04F7BuZMMwm9Mjij+d4kz7ZbFD0zaAZPCLZ4OgQelYSk/vm82DB3p8Vujgu45SBRJEyorHu7UnlL6rPXn2LvMq6JzCjIy38xcW9CglcnGsq6s/ysaiuU028cz4Szgr+4JgCNzbUF+ZqB5/R+LgYB+tBvA4RBXAr2BacGKUu0BtZ6rmOn7SG/SUI/xj88lsc9/fJVFI97xVncOFntQFFdZ7wEgrSC2Gy3lSy3JK4xV24//P1C2RacuqbV2WL99z5qJv0+ZOfYvq4UvT85Ldu7ttwDhr45MWplTu2egRmv7sJqcnSIAzLVdtzZnnFCScesD2tZ7/1cSUTawUUpFx8jibpsr+zTZh7Uyxj8wslaxNPQDLenoPTp5t4ndSd7ojvX2b6vqoSfsbgUijTVDusVtWAfjG9yn4x5TbPDvl6GSQxPyGEUKCLGbAcEKJj6UModDGAgkIy9RVblft4OgG8BXwFcD5g4wACOiFf+lVX7j1Vs9kbcCtwya2//nIVEVJQry0dnnb28zgZaNwSeNEywGJ2qXr38OGBcOX4575FVbx8jizwTHZEoMUiLeOKnb57NnTp79S7hl0wlw/nP3DPpl1wlXA1cv2XVCZM+4tUUbKzLuAJ4lsCR6RGZnGPpCyZ4Vp9tuNW+OeIGAojgz1HPY7Lk94agTYs3l779y3Vt/uWbvJ0DrL6iq/Dd/XaEdDAyrU1YdDnEVsENV5TehlrsVcQT+SOqsnUEFMvi5jOXlyXlXAPMIBOx6kMq4KTPHHeBzG7vfvR+8cFUXxXROnuaN7ow0nHzlo7csbKrAzUpr5Ypb3QXAE7m1TT1xKJp1o8Eb36hysYuLR/8A8OnGi5vkw6opMtFvkA1+AJCCZACXVWvX/oJtkaPufy+6yhunOH2Rjf3hdAr+DVlKlNIOvql+RWolHb0hS2kFcHRkRQ+A7paaaKAHUEwDNLRnJow//oovu911xZfdtPxLCyaPiC43W4T/aOAhi6Kl/FITf9bimoTFA+YOWHH8OxnPTv049YK7PkkRhxq3rbBqz5AIIK8xriBtDfXx57vZ7Lkzimq6rF2555j+GR1WrQR6F+aMv15XVtsGNnvu0cc98upPS0tGLgc5GfgwylQ1aN49t3cuzMmaSSDVXHtLXdUozJsjXgK+l8jHfp2U2i3U4xuE9wnAW+mJv625Y6mqnAqMAnA4hCCwMvXH9dThEOc5HCKtufO0MjsC1lXxGQc4D4MK7DjgfhDjpsw8qVHn6suT8yIqt41ZpPksvawJv189ZebYJiur0EwLqytu3WBrxVHUdvw5CSY2Z6iQ4jdWVwhp6Neac8ZXGFfxZ2qrQ5JSYtoI0GW7ZU39/R0jdjbNiVanwdR4Y7sDbCzP/K4x/XYle89NKTFRlOZxdjp08wYRU2WweMxyR/KU2pA+9MUYfD0B0k2uaKCMgD/WQdO8PTNh/EgCuYCNgPOZCePHPfnBrnxgefD10K0fp46ZV5k0VCLOqfQbb82r7IhAPvnV3AH/6WxyfjcwsqrNZhyw2XM7g+jr9ke0mM9cSxH0NxvfKWrLuN3ObsNB+kHMiTDWTP/qrns3hls+HZg6a6Ko9sbcsXDHuLMh8vidNenVRyf/vCTOUjrprSmvrKjfVs/OAJlrC+Sqkb1uVyqMSw2lpi+Bo0I19nUzr7ncL8/9R9eYjXPn33dzSHxQVVX6g3+lwyH6AfEADodIJmCNfRB4JLiidRSw8kArWm0Bi8E52u2PAHioMCfrgCt8f7W6NpyXJ+eZgI88VelpsV1+eOTS+x5+r+nSBmiWwhq9a/QOgIjSwcuaK0gocSWsSIsoHdwoxa9H3Lrumyr6NteHtTEpMfbrw2oxuKL301YnhCRFFA/Y40xFEf5G+bBaXcIikXjMckNIBMmOM1hQ0oE3QzJePeZXJe4EWFSTkPfKP4r2AC82oJsK0hB46pYW9uNb99y5xT8APwDP3P5x6lG7vObJK5xxPYAbd3gjbiurMvkGzB0wB/g4weCZN/+SdW1mBWFY6oKpS4pH0Slq62GlKASVVQdgLqrpii12/ba0qKJ/vDf16cPSLaO9YbPnGoHzFTHBrknDoAhjTS1glyiv/fe2R8vDLF6bpn/+hmUrzu76g3l11OiCjMxjMtcWNLtUss2eKyyG026wGmtcQ1IW3Rt4Vg8tqiq9BP1bg38HEDAMQCD4+kcCOfP+63AIK6C1tZRZGR1W3rFm7yDZKXrbb6Ee+8MXLzdY4o9f6C7vNQzE9Zfe93BIXD6apbAa3UmBoKuq3m0qGMNU0/U7xR81aMv9X0R3e2R89aF7QFJESZdNFX2b7MNaE+nvZ/CLeGsD25cm+EZ2KDNSlOapqW+t217dfc0BOzWDgXP7n2kR2gkuafhk5eUrD6sbdqjpHV9wwR5nKmd0/3dZnSN+Q4irNNYAxbYrXSFRwmoi/f2jag1RhN5/FSAOwCuVsuBSlU9V5aHyzzkCfxpWae2Zc4tXAzcBDJg7IHZ4VNn9WzwRY2o14wTgmhrN6M96r2fBVk/ko8CXQH+CDv3hOAfLXEknRhqr5bDUH3+G61t7+uaggjQFl+/8hZV9X3Xce5uurIYZmz03aljKj6/EmAacW+WNi9GkYV1Gh98e65Ow+okXJr0TyjLL7RrzuqizgfXASwUZmcdnri1o7mrTGW5/xLHAjc9f838tXtEqaEWtH3tSAFxDwPcT4CLgeYdDDFRVucXhEKItWF43lmfEdLDu3fzDvVOb5AZ5IF6enCcssWP+7a60DYtKXfL+Fdl3h8w/uVkKqzt6Uy9LdQ9csetqg+4dbQJzbZffAAzeuDSgQb6Bi4tHzQdO+XTjxb4ZTZhTCmL8BtmYnKoJfkXKTtc5Q3qy1OfOT1LiFlUn/LPcb7oOxFCXNADyzgFzB3wZqfi+HR5VvsuiaJ88dc6uNmMFaw3WlfWvMQqvyyD8jV1K7UQI/Vcr4vyTomoN7Ojk2ds5VIMG6WutHrLOFU2GtcpPIN/hWKDLwfqkDV2/aOfSnsIS49zhroj+5+0ffNFgpTKY/upOgAFzB1hMQju5p6XmqQ3uqG7A+yC9AoyBusPCPWDugHGtqbTa7LkCMpMF2iczJr3bIhHJLYhDIKUMaKweEI5wC3QkM3nm1X2+Ljz3YhA3Ltl1QmKXmE1VEi6o9sb95+u77mlT8RyHA5lrCyrWHNXXLvzKm84RFa8Ak5s6Vu97Pz7BYvC/7/GbiySG10MoZoNRVVkKzK63a3Vwuy44/WGHQ4wATqtzM2htbPbcKIjtVu2NzWmB4bPdlbZzzDHb3o1MXBPSyNZmKaye6M3HWqp7UJ36fU3ggaJt4I0oKjM5O+FMWDEARoU0mOVARNcYNgENPvk6lBnXAwP33Z8cWdRs5/MBcwcMMKBdZxaJNzilQQBlICWIuuAYtVYzZn1flYRAur6eO+DnOIN3bf+IqvJSn+n1DycUNmqp/HCj1NUxHlg7Y9K7jXrKrY3wj/Yb2NuoaL6DkFBmjNaE9HtNslG+tA0hSvH1AUg3u2qAWUDuofqUrLSloRlQjP45t3/wRb7DIe4GklVV3t7QebfbF4z8ildUwJGeMyozmHHgOLPQnvVIZWjwHLQS8LtpTStrD6CrRHmyFecMCYU5WfkDH3jnvUpPwkSD8GVtnH72Eb1CEi5s9tweyZFFT5a7sv4RTAX0mVlxP73gvpsWhFu2w52a00rftqyInmFZHn1ZQUbm3ZlrCyoaO4bNnjtSYPxeYjYKNCswlDbgJ6yqcjGwuN6uncCmOmXV4RBPAztVVT7TWjJ1itp6YlFNVwONKF/fEP712APvgzoBmO2p6jLpgpvmhtSS3CyFNXLPsWsl2pjBV73boGX31qI65QctofAiPFHbTgT+25A+PeMLem4sz2yuD2tjfmQx7OO/CmBWPJFNmXzA3AExx0SWP73ZHZkF5s5+FE8Ho3N5N4vzXz9Vd/gZxHeAKZi+4uShUeU+k9AuX1Idr/gQQyv9xmsWVncwAHcPmDtgW7zBs7GXtbZyRU3sN16UBCCvvbgSmBR3hkQ0On2Y2aOI2khtW6jkiHApXYGltitdIY9YX1obvwr45zpX9LaUyQmdgD4FZI4MpnPZL3632Qbg3BtXdxFLA9IcDmFoiCVgu33B8cACAj4F7u32BeNW5qzMBxYMmDvgZpDzCAQmKga0Wyf/p3PkzH/saHYEb0MYkea4Z9FOlZ7xBT838fcdVio9CfnARL80rgq3LEca1828ZuLinaOuhKQTS2rT/P06rFiTFr3tttk3zDycUxq1KYY9s9u/Uu1xuuIyLCCQP/3WJgyjShQDgAw8UKi0AYV1X1RVvlL3fzDjQC8C+kPdvseAr1RVtliu6PSYwpuKaroyrusXq0N1PZx588fX+T3qhIikVYXOPf2v2zcXayholsJq8MUYaZyS1iqYa7osBojZcWrf7fYFI9NzRh3ypE2w7E0DmuzD6rJoPfwGuaeh1Yqqov1DTV4Rs6/P6/Zq2/+zd97hUVRrA/+d2ZpNbyT0pRNwARURVHQEO/beUT8LiordYF2s2NtFsRsV+7VczVWvEkcRUcECEYLUAKGE9J5tc74/doMBEtI2pDC/58mT7Mxpszlz5p33vCWnuX26MlwT4kzeGaUBqwOY9Ft1XGSS2VOrIG/WEW9+df6awnpldwQErid47rCDu/XTlNgq3XTGgorEGGC8VyrHL6mKi2GHkaf0uDJcR3Z1oXXGyxeY4IyBrqTfi+C05ld0x1rMCEdMhSksaftyX7eL/ljHAu+2U0yoWKDqiVmWYyTyCwCBuCNneNrkxoTWiMSycTVFsZgjPHVC+S2qKpttsuK3Fp9v9iYIguqnndLuZU/NXvTPHJQbkyzeFxZWJtzoythvDIhFwBftObc2VThdUZYy736Jf7TZqaMjSIrIVwprUhgcl5MMUzpPLuxuStCEhKNB3ganTbaZagLAYyCe/e9td7a7XeS+iEtbtzBneNqLEnnd7//X8+sDXt36VQub0EK/ZWuyKHUEIVvWU0OCK5omEoFrCDpy/ahpwgZMBT5phg9Cs1lRNCYiylKe/+o1L2wIR3tzpmWdCrFzhKn2x6iU30+47IHr28XUoU0Cq8++bbDJF9tuNpitJbLgsMEAQpqPluhH5KUvUJsSWpfkH/YjcFxrbVgBe10c1vlZg84E0oBvJ09a22C/QuIImFpveO3KcB0K8ofSgFUJBf79PMbke/ygyLIFj56av1u7IWGg0e/gsVPzy9jFW33smyMe90jTjQTj9doSTN63XRmu/bKnZnfZGJbapuN7+nQbJbWJ/2tJPV3IFEUKQZhsWBOKTdMEIro4ztcvbGle69HbUnNgod+qA6MBIULZTNiD1sEeV3ViTVEsicPyNgHUCashp63TVVXOaaw/TROid+Sz1WZvAhKpiwYeGPXn4K2fpnyUVW553itNl4E8Erixvexag8KH0wl82FIzkM7Cfkm/O7VNxzM4Lmco0C6OmQbgTM+0jE35cVYPx8Dp26t7xYDY0icq94n9e/z81HNXvrVPpVDtCAKJ3ntEtelK8yb7OznD0xLTVuY0+3491vmJ/evc04TDXJFV7Y++qyvFt61zwlJVWRQKk1XnD3MY8CKQB/xX00QyQV+KZa113HKmZyoQMxL4pO0jh3efuPYmxCmPIk1LZMB+/NnXvdFuO+5tShzgj9ju8tvz48I0lnCiAnrwIS2sulLzfF76gnZNeWr3KNtjKsyL52f1Po5gTuL7QC6Yn9WnQaPjqCrTlshq027hwFIcW5wpji3OPfXlynA5gJdA1P3//MCihReu/KEhYbW1eKTp34AHpF+ALA5YBwJ/ujJcncfDroWUeeOdALnlQ1q03bK5t3cywLYUb3JTZZvEHTshusL0NEB8qXkS7tgJbW5zF2yK3jfKFLAQFBrrXir97EHrULYxuUAogaILZ+aU7nLqKuAxTRN7ChU3sbz3VzcBCMSTwOQ9vSQ+dmq+xytNa/7JU42d4H0bdiyKZyTQA8hqj/b3BqtLRiwG+C3/kNIOHkq35PqXL0oZdudHtwCrl+QfNlOArU/0+tuAAT/eNf0WQ1jdO+y3cG2Bb3D185aN9njg7JbU3VzR/ySAI/r+77GuJKzuiqpKn6rK6tDHLILRVerWrnMJxsQeCKBpIkHThHW3RvbA6ORfxwEJJuH7ua1jnTMta2zJ2hNnWyO3+mP6/HDm9LmT2tU8tE0Cq61s+DpzTWpntKnSAI9E+kHqih4xCshZPfuFa5e9fFmDO7CD41YMBkI2rK0i2mPRD7PX1n4adHACwATWjPlZg96anzXo0vlZg2bOzxpUJ5w0aMNqVrx2s+JtNDrWjZ+kDksye9aCTCMYesjfXtsfIW3XZBD3SMShwNEEbW1+OPeD/svO+6B/eygH25XeUbkHATjMlbktqRddYYoI/RmO+a4KhBlABF861DC0uRPrPJFrivzWpWkrcxYJxBkE1fB7HLvus6RK3fR3A6ceBkarqtxTCuY1kQXjf5JIHbijOWY4hO7TUBitus9h56DUhfcCjEpa3GVDQW2u7L8ZoKAm1dTRY+kuONMzJzjTMx8YfueH73674cStnkDEY8BGgX7S+J5a5I93XvtY7uwpnSp25r6ALTv6BoKh/p5YfuDQZscl/6vogN4gN1sVT7exLVZVKVVVLldVWRs69D5wnqrKugg39wEbQskKqPu9J2KsZVcCHNP/P216CZszLSsN+Erqls2RPZYeeNFd7ry2tNcc2iSwKro1QdHt0XnpC8KuIWoLoYflZIG4R6AcBhwshbcoonS/5yLz1Zy89AW7eeLH2UpSoJU2rO7YCRLZw+oT/UaslGZknSCJB/QvgNMJbrc/AMyfnzVogteiDyiPDuwWZmhzpXPl5krnyoa6cWW4Bi+oSPiuNGBJHe0onwkcQSi9X3vZ/2VPzV6UPTX74dDvbwFXmr1i8fKaaNdfNdF/uDJcx7RHv+1Fr6i8UwQ6R/X/vEU3a1yZWQCk5lt/bapsM9AkUspmxjttJbFAeejvglB/YyUyK2d4WoP3q2L272e2ewt3Pa6q0qOqcjWApglXQ3VVVW5RfDE9A7Yib5/ZE5uV6So4Z8VkEF+Eoge0S4asv4tH9om2llb85xZ3dnu0vzfoHZUrAfpFrzUy4bURZ3qmOOaR2feB/BG4szbgODfaUrZxcr8v/i939pTD188+6YsuGPqs25C2MicgTfr1QG/vkOpmCZ/BbW6OBJHVVc1+moOqyu2qKt+rd+hj4IF6TrGfa5p4tYGqO1i87VCrWfgqC2tSWi3Yv3rH81cKU+1S0AWIo86/7YkWOzG3hlYLrHnpCyZI5DCJHAbM74xCa5/ZEx8O/V5SMnDe2Iqe//vUWtm/L7Biw11f3rHs5ct2pFJdkn/oQoDP1p7fIptcTRPXb031PgFIgSC+PCDTVlW+DpVfCVFyx+RJuScDjwE6we/bAqhKQFisXtGjudvBR7w97HBgkUearP2tNSe9fdbGR+oLky0Zc1vInppd+cE5ueMsQh4Oogb4+rh3Bq8f9+aIR10Zrk41BxpieeGYIrPiK2hpYG+J7EXwf7i9zYNwly2qiNK3BExSBybjLgv7/y9a8Q9OMXviQh9VAPHP1vstOcPTdrr333tqkEMPmJKiehXF0QiaJo4DlmmaOGmX41M1TRxoreordFNNi9IghubuBSAr40y++1pStzk40zNNRbUpwyu8cR+Eu+29yajk3xwAztg1Yzt6LF2VC5+78TBneuYsYNWqEtfd/PP8C+TX9H7x1WteCHvGOYPWMWL53ws9w6tW2/6MGp8zPO2Jxl6y6zjW+ckpQHJawtL1e2mInQJVlVm7+Bb8TNBkAE0TQtPE/zRNXFx3cs60rAljK2OO7uu1Lf3wxodbHDP4pZveGTRnWtaTtcXD5sqAzQJEETS32iu0RcOqEnTmqO8R3GkZdcVrnrQZ958mUNKA+SZ/1INR2yYVb7zzq7YKWT0Lkv0BoJagVtWXUlD7tknZPlwRpUNDZb4G6a073zevptCsC4vdo/STyPn1hdYUx+YBKY7NA+p3cPlHfe6u0M3fm9FrgUM+PXfdF20cc5v5/eLlC4AxSWbPws2+CGeNVG4F5nd2obXaH5Xi020tdlopiQ+c5bXoEndZWDQvdo9YBWJTewirABJi4sy+uqAVmkB4JDIgEDpweiDet2rJdT12pPnaumRIL6Sgpij60z00+y3B5AA74saG7KdmA9PNnuRIa3XfFtuJZk/NLk+zV64sD5iOH/9W2tPhnEN9onIPI5jzu8varwKsLHatAVi6/aC9Ele6u+BMz0x1pmfeMPretzb8uPmoBSDvBjbGWIuf458120sX8Cjf17D+7bgxZDJ1IzB/T0Lr6pIREwEGxq76cm+NrzOiqvI+VZV1abhjCToIKAAv3/b6ZITvx4M95h6nV1kPnjMtq8l1ds60LDFnWtboOdOy7n351oxyX3XqGuDG4I6YAJR2MWlrjLZECdCAgESaGvII7qz0mT1xY176glPK+n42O3rL0VcpAcfCvPQF/xobtyJlSemIZsVh1TRxOrBWVeVS4O7iRH9AIMYTChtluqd8EZpII/j2gUlZVySlzabL+I/A8dTQdVUq/2hcI/J7+GalwDHBsv6dsmW5MlzXQJy7h9lbMsZRduwTp+WvCvNX0mqOiC5yfl+R4AxFKYAmvNA7AxbFk2Y1eVscmspRrVRLQYu0h3vC6lME0G6OHJW62ft3bdRXAGkrcxblDE+bLBAq8H0g2r+/8CjPOb5N+CRneNojwAP66EEDADxlUY2miQ1FDXgcQNOEGQioqvRqmhgWmT8xCbgUaFXSiUrdlKGjjK3SxXXAleGKGNAnOve2vEonh/f5+reuGH+1jvVlQ4sAyrwJbTLj2hdwpmfG9Ited5VZ8d0OQ+NBKNW+qBXje2r/kVKkv3/Dozmhcu8SWrO7spNOd0VIMYrQc1IiI2RU4GIaebasKxs2GFgz56o32uxI1F1QVVlK0O8EAMXkPUNKk6IEn9VmCGS9dsfz1b7ahM/81T2yLJFbVwQ8MdG6P/IwoNjR48+zTbb+BwU88ZGAlLplY0yf7/9XnnfE+0AGwef9XpX9Wi2w9pk9cVFe+oK3gYuAY5rpZNEp6DN7ouzDxNvz0hc8CDwgkdc+ULGfeAszl2896ba89AXfNnY9miaigDkEtUwX7YhTqbJT2KjQ8dLQxyIhPHeYxLYMVZVbN663j+mTZ9WFREqB9Nj0T0JtR2yr+mytLk2B2z5NMeXURH0AjtNBfLHdbzv3idPyq9rtS2khZ74/4IDtvuhfFCQ6igcwsZcnb0sZdc/bx/j0+IQBsasGNF16Z+weRQF2i+rQWvwm2RPIb1NcuUZwZbjMQCT/2LASir1aNz9/WnxD8vzIbxPuwi9mSpO8qG983sZNJX2YsHbTlJzhad49JRgIhV3JBJ4D3lRVWZ499xoVoLzX13GtSdO8yesIRfEQO8xmCMOLz1+FByREW0u3v3ntsw05k3UZ+sesqdpQPpjUyE0DO3osnZEzn5ppj7aW3/3n9nETIGnCxoqB9gR7gW9g7N8frCsbft/qh07L2TXuckhI7TLPrX0QjaDztB0QotJ0ac7wtLXA02krc3aY7p351EwLHHrEoVuys3KG3zIT0Pa0fu2r1JYMeUtHXiGQZgE+i73kdz1gG+OvTj4fuNRX1ZOg8imogKre7gpEJOUU1foib5a69dMrnzg/v66tOdOy8gi97E2fO2mvfddtel56otavslUOUMp7fVXRmodUR9Nn9sRy4Prlc27+Rd8y+bWrsVullLOAmXnpC3YKy6NpYgSQo6qyUtPEkUCz89CrqiwiuG0KwLpBHlNRor901DLHsyZdfLtukKdknSZigOsGxf598AZ/YOX35QlrqqXZmWqpzdzms5+WPTW708S7dWW4DoaoL6xC9x4eXTxdq0j6m92TEnQqnOmZEyDuM4BVJfuNdqZnTmiJVkUiewnEL+Eaj98sB9dE6I74cDVYj4lRRT0XVCYy2FbVaAiug54uWAlcmDM87RU9yv+Z5e/IQ0SSJLbSc5OEa/eUYAAoAjYBJ2mamAqc06fkhSQAIZVWOaXZRWBxrTQRCnMVlhcfZ3qmFWJGsUt84a7I93fM8A++4xN6RW4ybFhDzHj5AtPfJfudurJ41DFw6Fkg4u3mKg/wCjCvuDb559/dl3RbB5zuTv2dIWnSc0RAuQR4LJDgu/XPE/vPsa1x+ACtx7UTRk7Ykh1zx+K3TpLIkwFPE+vXPsn0uZMWqTd/ubSvX0kd77GcddXTZy8CmDMtywwMM9mLngrUJhwd2i0NgOn+yx64flZjbdEBL3ttElhrEv7QbZUD0M2VhwJLwzSmvU7ByCff37jliOkqcoKys03uIgBNEwcDC4HLgTdUVTboxd9cVFX+S9PES6Z7yoMhUzSxiOD/4upKU8kD1tQvXNXSDMjANp/twc4krE77d283xN8OYrNXKhOeO33rmtCpzr44qFAXr25HKKlmjTn3dXuEE1vy9mTf4HBZl1u9ogpaJ9w1hY5IBYg3+5q8v9NW5miLb0ruU76qT26Ez5egIEwSGRGI9n+SMzztbuCrtJU5O6WjDXmknq5p4gLgYqDIXjYyGiB669Hft2bMR8QUbf66rAc9zJ7l2/32q8Lx4jMsPvv4v0tcDoHepe1X69ClqSyneNRe8cbtzDjTM0cBF0RZplxb6Yt1gKwG8emIxD+0IXE5bz9zxbwum9jEYGfq7wzlDE/7zNe39kqlyPy8dU3ELEBKJNc8v0iY9EUAJhBIISN0W+BYOv8zaa8y4+ULbJusZ48qiyp9/61ZU3d8N9PnTvIDy+dMy7qXYKKCuq3+FiXX2Ru0SWCNLBj/BfBw3MYzy5ss3Lm5Nb/n/AnevDOwIf11Nrn1cqgvBtIJU2YIAFWV9eP7zQBiL/nqC4s1MUtakQJASoEQnccm9OC30q6r0ePvTTZ7iwv8tkOyp2a33WN+76GB9IGwgQyA0JpbMaHY1BvA4hPhiePpjhUKIsruEc3W0reEhZUJXoDFVXHfNKf8QU8WVPx05gn5sdW1cRIJAiFqlAjgJYDsiYNqZUTgK8vGiDnAgrSVOZ5Q1XcImoJcrCu1w4RuqxSI3cJiNYfFlXG1AH6pvBYuLX2srXSGQOf4Af/+E05qsnxnR5emshp/1D4Zh9WZntlvaPxf7lJPwjnQywEEzIr/t8P7fL04t2zwHT/ceX15V7ZRNmiaUNarF5ePGToAuI2gKlDmxqfWLo8dUHnyukXREmlBkVJ4la8h6Cnf2oxQ3Y1yb9xJAWm2jEpeUhzM9roz0+dOWjRnWtaOFO57c6u/ubRJYLXU9Kp74DrbPpQO5cVca+kNM6ju8S9hu88izd+uOe7wXkC2polDVVWWEHI2aQ9UVQY1bV9lzvRXD5RWaRESPyB00LX26re5uDJcApgF5rsdiv/HAyLLznz81PyuJKySO3vKouMeefiJlSWj7khLWPr6l7fd2eybMabCnAAQX2puUXasxihI8kUnF1rMHquu25ou3hrqsrqVNbdCwCr7ea3yB4H4HxJN+MXPQJo/0XuejAxcY95gnwKcKoWsWXpC/wo93v91cvbQ+wueXXUhEPDErN7f5I01DbznglY9HIoDVkvod35TZZvLn9vHRURaKtc9f9Ub3SLUjd1UTYSlytnR42hvguY7qIn2/JXDE7LP+HXbxCFgG7eqZD/6Rq+r6BW50b2lqt/zf866uCCo4DfYl1BqTZ8B1wMWEL45I84w5SQOmHfyukXvC4RKQGhpK3MWaZpIBL7WNHGTqsofOnTQnYDvNp2QCrC5sn+jKbY7aqu/ubRJYO0ze2LNxju+KfdF5k2CiQ+Ea1B7i1Be3iJVlcWXfJX5LAQeOFJWz86dPcW3RmMsQTu9RrNOtceQ9Bqnp3rj5VazY60uzFXT/75xbodOnls/TYkYbo9YurI2egjwarVunvb4qfmdxkShJRTV9vgvcMe2qj4tihLgtegDrT4FXcgt4XDRrnboAwBK4v3O1DC0tytjHGUH/lkdy2hHmaM55ec9OqynDAyJNA8urUl7J+fheqdWAHcDd+cMT4sE1ECK9/+UCvNp1nWOi4CLkmcM3eYbWlVoHdjLEoioarVj0yBbVepaTyQ9LbVhkeGd6ZkOsB3g1W3PhqO9zkBixPZEu6m2Wf/TrsqQOz45DCzzQViKanuIhVuOItJSnu/TbXcD7yy487pWRaEw6D7U2bYC6pvqxNE5cQPOGRqf7djFsRQgheAOUEmHDLTzcQiweU1pWpcNjddmJ2WfY7Mihb/B7DedGU0TdoKxGX8DLqk7PveoM66F2qdUVS4Bjt2bY8qdPWWRMz1zsl7TX/XW9O/wUCuuDFeUIPlDiRgyxlH23Z/VsVdkT83ustsrBTWpVQAlnqQWCdzFCf5TU/OtbOrr9e2WIq0V9NhukQDRFaawaGx3RUAqQJzJV91UWYBtvw1JBqjYkvh+Y2XSVuZUEYwMkKlpwmr7M+q66PdSLNKmX2BdGTlS6R8t/Mt/j/tr/OCl3qHVG+xLYmYKXawIbeM1SR9rzfC1nkgG26vCIsOPSf7l3D8LDrY6zJXdRrNSUJOarUulwdTS3YHhd3442m72fOvzxtfZmutxtqJ3jujz9cXdOXuRQctJW5mzyJmeCcj7QLKqZL+LnOmZr9d/ZqqqXKFp4oA6kwBNEw8Axaoqn+yocXckUZbyE22mmj9/c1/WZe+lNgus1qr+/0OaupzACniAucAqgN5RuRM3VzpZUzriOk0Tc3axMd1rdJZQK8e8M+R8sD0mEakm9GlvnbXxxY4eU1sZFJdjW1uahjNmdc+W1IspN5VJpC4FbXK2qyOiVnEARFabcsPR3q78UR27AeD7iqS/mlllIIC/2t4shx5VlV5UnuAGAGavmnnfECGtqzy9N8IWOSDi19hRBI1G85YdPWCtv0/twohFcY+mrcxp1EThj+rYTQA5NY3HgW0JJhG43CT8HNX/i1/hnHA02eF4A/ZCoHdHjyPcHPPII5GrSva7Exy3+nWzT6D7ZTDWua/Uk/i8IawaNIIKos6m20wDjrT1hFUFGAGEzeSoK3HWUzOHV/oOi3Yl/VbU0WNpC20WWIU0rwVOzEtfoPSZPbHFqb46Ak0TNlWVHmCOpolRJz0+65QtlQccBfD4kvtSQRyYq3a80NgRuDJcVpBusM0MHfIGUJZ15JjCxdD4FfFrS9PoH7M2rSX1HDUmM7DNeWltWHLdV0QFBkRXmqhyBHakogozMaHfzbJhjepVdEzllkTs8RUbmyqraeISgoH63qx7GHj7FR3p2ACeMdUf7v/02nOXntxvqHVV5OHAcabt1tMsm+xHALfnDE/7ybNf5fZAvO9dx4L4rcARhGImlgcsCkCh31bc8svdnd+3jzfbzTV/PnvFW93mARVvK4yoDUS0hxVJh3HGU3deWlQz6EWCnslv+KX1FmAoRkB/g6bRQIay1uw5FJ6qSl3TxBmEZB5NE8MIZtCaGfJR6dYszj9sP4A/th/8aEePpS20WWCtjVnpt5cPt5b2+zitDxM7fcgVTROHAO9pmjiFoHY1q4dj6xZJ3Vab6PTZmtqDWz9Nic7z2h+BmCkg+tXLXtWiEFCdmcXbDs0F+D1/QosE8IAiByo628K1F1sRHTg4utJEUaI/oj0E1iG2yolrPJFSImqbU14xB8YpFj/xg7YWNKP4+YCuqjKj7oCjcKwVwF46cg5AyU2bClVVvgK8svjm5Ajb8sjJltyI8VLIE2x/RU0EzpBIBEICtTnD0yb3vdfXb5M3gv7W6jabCTvTM2NBObDGH/lgW9vqTMTaigZXV/VNbWkM4c6IMz0zEXgMDrk03lZYe3ifr29+89pn61JKdopdJoPOTe7sKYvG3POmblL8FUW1Kcc3dU+EXrDrlA6HAWcA7nYeZmfhEKC2NuD4raMH0hba/HCojcvxAgjdfEBz67jd7glut3um2+3uiLzzZcBGYL2qyirg3NzywbcTNBHw08mzNYUbV4YrwpXhuv678sRNf9XEXG0VgRLgJhA1dLPvo7AmtQagwhcbaEk9j00fXxYb6BWucSQVmjcAxJaZVoSrzfpU6qa+pqDmYXxzypdv7LFN95mWnX/rquZsvR4LnFf/gLXKGQ8QvW3SEk0TJwMbNU2MBqg6qdBfnL6hNn/uyrdG5Kw8oGTGxjNrD9wRBW9HzOPeltrRAEPsVRHNGfOeOCh1wRWAkhyxrdsIPc70zAm55UP7eAIRApgf8qTvcjjTM8UFz970VIS5ajPIi4HZJZ6khHrCqoFBs3CmZ4pyb5zfovi+aukLnKrKV4FBqiq3AWiauFcLplPvlqQ4Nl+YaN++OXf2lA4xdQwXbRZYY/KO/zdAbN7Jzdouvf/+2y8HFgAPAPP3ltCqaaJOQWYB0gil5lJV+e389Fu+BCYD9wCTu7r2ojlc+e/eiZd82Pc/JvQ84BmfVP46PLrotskxRftnT81+inrfR2fNXtVShsQvNwH0j1nTpyX17LWKx+ITS8I1DqtPsQDElpvDvl3tynBN2OqLGOFHUYD5rgxXc+6vASD26H2taUJomrCoqpS7bqEFLGWjJPq2PrMn1hBMsLGKkOMXYAP+C1wK4E2r/jgQ678S2OmFaFlN9HKAZdUxbfYCr/FFnmZRPIxNXbiwrW11IlQQIrTrUbcL1KVwpmc6gf8u3DL5hkR7gX9EwtJJubOnzMy1nz8Gd+xM3LFdUgg36DBidUz2bdV9WrU2q6osB9A00YdgLPSTwzm4zsLoe96KKKhJSeobvX5rR4+lrbTZJEDR7bmhPxt1oA4JpSc7HPmnBwI9hv5zRlpAqOyd7Z/ZmiYCwH3Af4CdQvB0Fmen9mbcmyNiaqRpOsTfDCIx1VK7YZvPftrSqX/t5E0dElK71fcxLH65fXXJSPpEbRjR7EruWKuCiI2sNoUnaQBQHREYGlGj6AJRFa4264hQ/NfU6OY6R4QmzVveeWyoEMrgoba4qqbMeSYBGZomjldVmV3/hDdy08mIgBWOQFVlkaaJOOBq4OtQKmMVWAahbTmVl3OGp/0VGpuWtjJnUXWGazzAdr+tomVXvDt/FR0QbRK+71+46rWuntCkPto/iS90QNE6eDzNZsbLF9jyq3t9qDDxGB2TD+T1B6b8NPeZK+b5cMdOkMjvAZNAeHDHTsZd1q3WHYP2YVBczrC1pWlEWcqbY8rUKKoq8zRNDCcU/krTxKFAjKrKL8Mxzo6mzJtwICD+LDj4sY4eS1tps8DaZ/bEio13fFPjjV57Akx8ZNfzIWH1O8BWXd0DhyN/fXV1Sp+graikJRmHWoumiQkEM2O8pqqylpC2Z1/CleGKH2GvyNBxHA+YQXzZ31r97Bfnrf2qo8e2t/hl68TtAL9vP7jZnug+s36Kxa8QEDJsKYZqIvSDLT5FWO4qC6v3862fpthsIu7smuB91SxzDn+NdbjUFbMjqUn/rAqCgu9qTRMpwH6qKucDmGuTrTUJf9Qvey5QrWniU+BhVZU/7drYrjETe1pqB2312elvrW6W3W1jONMzewCugLTc2ZZ2Ohu5s6csGjTzs8mKCCxIjczbuODO67uEUOdMzzwAznsZxAEDYldtWF82dGLu7BM3wYkA+E3yWFMAi9hZc9wlrs2gY3HGrD1ybWkaE3ppUbtYKbUYVZX1E+HcCozSNDG8o6IFhZlDQr+7/H0Vjjjo+CPyA0iLs+GzUgUZCgYuAtXVqS8L4Z+kKD6voniXu93uvfElJgLrgU7tITdnWtaEOdOy7pgzLStsW2M3fpI6ZHTGfg8DuStqo0/qY60t7GOtOTJ7avYJ+5KwClBQ09MDUOOPap4Nqzt2gtkv3gZQJDeEa8sytsz8tynA5nC0VZ+vypKvLg1YrYNs1a/TTHOOguXOOIDi1b3ebKyMpoloIA44O/TCNxP4QtOEPS99gc1c20NGlIzeYYMYyty2CRgODG7O2FMsnlECyYiISk/TpRtnQs/vZgA4Y1aHTSPeWVj78CkLQXyxqWKQ2Zme2anjsV7/8oXJJz0+awHIxSB6JdgLpo5KWjIgd/aUTfXLmQPia0CXSOhG9vIG7c/v2w+uBthW1WtBmJs+BzhWVaVX04RZ08TFmibarNzrKAbF5Vwbay0uz509pU2a6M5AWARWa1X/b+zlQxvc3oyNzY0LpfyVgBfQ7r33wR913fK4rttdbrc7bM4s9dE0MUTTxHmaJt4CsoE0VZWtzsTT3oSE1CzgQeC7tgqtrgxXyuFvD3vlh4rEVTrcDnwNjPn03HU9vzxvjdb2EXc9hsb/pQP0jV7Xr5lVVP7ZhaiLltBmzAFhV6QI6+LhynD1BHEf8NVaT+T/ZU/NfriZtscDAZBKXZplNE1YNU1M1DRRF8Qgg+D8GRT6PIegl623Jn7pCIEQii9qp8gLqirLAJeqynnNGf+KmuilEmoePTW/TVrn/OqeE22mGjk6eXG3SRhQH59u/RroR93/rRPiTM889sv1py/LLhx7WJ+oDd8Aab+7L3lz13iqmib64i5bJBDzBCIAHGOYAxg0l5La5FiA7MKxYX2uq6r0qKqsywZ1MsH1b68mEQoXzvRMkVfhTOzh2NYt0lOHRWAFNgD989IX7PbWX1bmHAiBGkXxPQRMrqdRfR1QoqK23hWmMezKE8A7wGnA4FDc1U6MVEHWpYE10Urh6KZPUvc/at6QD4H1JQHLpb0ttcuPjC46KXtq9tnZU7OXhmmwXZK0hGU6QM/IvOZ6g2oCoQMIhJcwaX+8Fn2Az6yH1RxgkK3qO4GMAK5vSTay6N6FJwGMOOf7KE0TdY5ShwI/AEeG7FFPA1YS1JqiqnK1qsrfVFXq3qh1JwBU9P7Ksmvbqip9AJomJofswhrFKxUTiGZl5toT68qGp3oC9sxnrpjXye/31tE7KnchwEEpP97S0WOpjzM9c8LIu999avQ9by4BvvLpttKxKQsv+PGu6cflzp5Sumv50HxYp2nilIqowFLAtDXVuzfTYBt0cRLsBaMU4S/NnT2lPe/1Twja7/8XgmExQ2tiV2GQJxDhWF064vmOHkg4CIuauyZ+qSmiZLSjxPneoD5MXFN33O129wdxOpgev+ee+3cSTN1u95rHH7+y1O93XP766+r0Sy/V2vwA1zSRBPhC2p1pwDVAeZ03YGcmMnWxq2rbOEIOFS3aGgt5gp8CDDaReJpEKAKZIREP/ee8tavaZ8RdklqApQUHNc+r1F22yHd/9CpzQCQKxGnh0v74zXKQ1yqL48LRGDDhrbRjKvXIYWMcZT+8ddbGZuWJ1jTRDzBJfcJQc4RHRiRU/grcQvBFbxHBGIULVFWWaZo4kGBKw90eDJHbJ3oATJ6ErEb6sRDMKLcGOL6x8SSZPYPKA7vJvC3CmZ7ZFxgC4oU2NdSJGZvy09Jyb5x/e01qp/GoD4XYyqryRdsBzMKb4ZfWqz668aE9CRLLgMeB+aVx/ojoShOKjgp82/4jNugOJNoLDreZam3t2Ucodut3sCOd+8cE18fT2rPfcGFRvBN9uhVgNz+CrkhYNKzeyI1lAGZP4n71j8fHr30t6FjFnIbqmc2ep2pr4ywbNqhz2xreStOEA/gdeCb09j5RVWVeVxBW50zLclQXuI4yO7b5LVFbnwYmT587qVHh6LZPU8S4N0f0cWW4Tpz49rB/C+RCkLcDZ1gVXZsUU6gum/rXJdlTsw1htR6hLcmAJxDR7IxsUmF4SXygIpxblRE1SlFklSksdleuDNdhlbr5LZBbZTAdaoNomkgIecKiacJEUGCYWbk1ocxfY1sEnA28C6CqslZV5cehFz9UVf6uqjK3oXbNnqQUwBO9bXKDgnJIyzoFOH1P1xFv8g2PNvlj9lSmKQ7r/e1MgBGJf/zRVNmuyjNXzJMV3tj3NpQP7tmJ7FhVwBoKuRXwS+vfe9J6aZpQVFVWqKqcqaqyMr7E/B+J1FO2W/17a8AGXZ/c8kFFFd6YvRYIP2S/fwJwBwRt+zVNDNlb/beGtIRlt9hMNfpBKT+2S8zvvU1YBNbYvJM+BojeevQOR2q32x1ZXt7n8NjYDVvcbneDKR9LSwfUPbSvoJUxWUM5glFVWU0wtutTwA3AA6E3oq5AugxEJPurUydf+fhFN9YXVm/7NMUy4+OeJxzx9rArXRmuRw9+K23RDxUJgRpp2gR8Xhqwni6DqekAAjW6+dunTtv2fYddSSdHISB7R+U6m1M2cF9MqtWnKFav+Hc4xyAQURa/aHNMvKBmXc4HeoBIXFodO7LunKaJCE0TI+sV/xp4EUBVZQC4mKA2dQDBJBofqqrcUr/9kA34Y3u6j/zWorG64t28p7TMqipXqaqs0TRhaWyBX+dx/FXit7TpBWtd6dAREeYq35C4nHA7YXQyRBbQAxjZVMm9hAaEHBn3bDqjaeI8QAvthgEQdWtltQjGAd6vsXoGBrvi022plb5Y695MohF6ec8JfbwTWFbPlKrTsbZsWHSCvXDthzc+3GwlTWcmXDasuaHfznrHLgoEbOba2vhL9lBvfEgDuyPjTUs61TQxGPhN08RBAKoqX1JVuZRg+sjJoTeiTs2rd/xruu7Pu0uvzNItJS/ce9jbwyf+30d93j7i7WEfuzJcP39ZllyeVZGUWRywvgjMqNVNEf2sNav7WasfIej4clS9rFRhs7PsrlhMXnMPx7ZhzSlr0oPZmqKqTGGLprDlxQgzEFMdEbCGoTmV4H0DSFOKufaceudeAubXS5gxE0jfUVGV/9ny65CNIPtH9ihpLGLXfgTttxrVlumWioM9Mauimzne14Dv6jlz7SCAYtERrY7B6kzPFFuq+g2q8Ud+9swV81qUyayrMSh25U8AB6d+f3dHjwWCIbcGxPz9A0CUpezUJhKv6EAVUFr/YI1dL/VY9UntN0qD7sSIu96fBMSDPIiOy/z2NHBNvWxZjcai7wic6ZmxVb7oPlur+r7d0WMJF+EK1VCqC68/YCu5Ni99wU/fDLv7ZzhiBojfPZ7YBm3bQmih6AEC8LUiJmshwYdpJICmiXOBz0MpVxvU6jbFE+ecKABz0sgN0QIZWbDc6QWsiWkb+wlwFOb0KwCsCUPzhiNFRPHq3hsBa/ygLQdIXVhK1/dcDdhindsOlgGTKN+UvAqwxvTdfkjAZ9artiWsBqxRPYsm+GoSLd6K3sNlYAsghRfzpBN+mDJpydAioq2lAZPJ+1u1pex1V/xGxQcfj9JeqLYFHBMBrb4W1pXhmkwoCHt3yUrVXngC9vLsggN/aU7ZiqjAidGVJvwmuTRcN4rPInsDVEQHejla2UYwgoQ88oTBh4j/Ji/UQZoU0C9I2ny9pon7VFUWA88R3OJXgICqyt1sAz0VDhcIbHFVDQZhVVV5p6YJd8iOazfy0hcIC30Dwl4wv5lDfxr4LHR/7kSMydeXf/J8t5g4W9HwUk9iH6C5Y+myzJ95899j7n2zOrd8cKfZjnRYqrYATOilLQ7qCxpGVeX7miY+2HVOeay6ObbcFK/PijlCubfc2CEy2CMBaToqFMe9vrJrrz77QoLq6xCMSgT8pWniRlWVncLBKcWxeXJ+dW9BN7FfhVYKrE+cc+IEQLVE1vw06uKsvMH80ENIi9lc28MJzI8uGZMBYnhsbO5dN974xo6F6Z3HhpqKVvYxeysd1lhnfsyQ+IraddUnvxNQHBc4vJvu6hm5aMBTF/yi6H6TObp3YT97XOWgghX9liEVa1TPosG2mOrBFVsTVsX0KVRriqPXWxwHDCxdl/oNiONXfX7w/fbYkYdVF8Us+e2FE3Ps8RXDTFZfalV+QjZgtUZXD1LMgfjakuj1gNUc4eklhIz0VduLAaswBWKQwhxSOovC5Tu/LBXl7BwJqXjVztk9S9buHJ2rLHfnXYLyvCQpFKkD4wBPbWlUnO43C6kXE9IyAwEiPclMXjMFgpECxgHjhOKVQvFeoAccDoLCfe2caVk77Fy7Y1aq9kN4/dLSLNs/v1me6LHqAdsdFSVNl24evTdbFYD4EvM3rakfCnemAdb+605jgDV/1frYtTH7O0pvGGCrUQhpQ0OxUPdI8ao+MaHf7+16TtNEoqrKojpP/0aIF5iiLLWpzYp5qqryN+C3UPumkGkCAA4l0C9C0Vud+Wtk4h93LtxyFAf3/H5Z0GS2e1PqSZwHnONMzzTnzp7S4bafy4sO+Avgmw2nNKiN1zRxNbBNVeUnu70AuWMnxGEeASAkX+GOnWSEtzLYE55AxOdBvw2pgOgM8Xs3AfcTdMpC00QsUFl/jdvb9ItZf/326lSO6Pu/7O6yJrZYYA0JqwtAmnzVdnI+PBR/4JfcYbHjEEKgSz1iU0H85cLsQSzdcv8T50y5NZTVygZDd2w9luWmUJabgiV6C4E+gyGv/Intnn9CC1ZsTqJi8w4zJyq3JlK5NRGAwhU77ShOBjyVWxNETWEM/lprLyDJV2OLkrriIJjT3Avoikn3AlsArznCU2O2+6J81faFgNeRVD7AZPNFlG/ssQDwRvcuHGSy+Syl63ouBLyx/fMHmqx+Uby692LAEz9oS1/FHPAX/d13OeBNHL4pUZh0T+Hy/hsAb9KIDVahyJqCv5ylgO/m9/67m5ZqzrSsK3X/lhe9FR8RNAEzEVG1/JuYMRue9JT1T6jcNg6gZ1TqkrOrCvbrwQ6TCxmBkRGmVVhNtdZEe4GzOWXjSk01fjM/hrN/c0DEAFh9SmttWFWCmcqQupVD15432DTk7eVvTP38/Va0NSD0e139gyHb1z80TZytqvLTxipXJ/56kKNoHD77tvyWdKppYgrwpKaJw1RVFgDk+2wbTMhW27DmFI/u5TBXVqU6Nu8r90QWcEWUpWwcnVyDEnLyuwjYSjBM0K6o/PMsMrJdGTRJ7uwpi5zpmRcSDF35XhNmKO1OyPzwgXqH3gDiNE1MamyHqr1ZUTQqItpavvmN6f9q0frcmWmNhlUFTCBASmrLI0vyTRsKh8Qe2E9IoZSKKr3MJs22isJVkcml/qpt8T8FvJYyW2xVvCOpfED5puQFAa+lPCKxPCEiqbxfUZmjALjRPjDwWayy4a/iVb1+1n2W6qheRdGOpLK4wpx+yyISKkxJaRuH1ZZGrSpc2Xdjnwk5iWUbeuRFJFR4euyXazFH+AaFbFe7FFE9fzm4cuvBRFgOWqd483qZ/cXfXf7xWyfsXnLSEyHN2vxgrFYhFEvF8L0+4G6Aw1wVmWgvaHor1R1rF4ihFj9hdbgqjvcPSygxUx4dUFrpEq8R1KJaQEqL32E56q8bXXOmZX0I3Dl97qRmC30xfQvOKs9LlFE9S3bNulUK/Av2LKz7IvKPBahM1WrhrJZcw0YgD4ioOyARdn8rbVid6ZkKJO8HfLxrcPruypjkX375s+BgRib+eTec32i4sL3F/j1+HvvH9vGcMOAjO0zZKZ6uqsqApgkVaMx5T5NIXSAUifSJvZCu26Drkzt7yrv735txTZUv6uLhd364rTbg+LyjBVeAkN/AB0BsnbCqacK2N2PBO9MzTRCTBnQb+1VoncCqATWABYRP91qmXPD+c4vy0hdMANTvYxacgNc2zhPd6/Ar3C81Kdm/9trk4ZUbudGUrNROnZ7dYBIBTRP/AQ4ABl04M8cD5Nc79zhwqaaJAXXamq5CwBs93hxRGLhq7p2Dmio7fe6kRXOmZQVtVRXPMbov+uI507K+mD530od7YajdhjJP/KZyT1yT2+Xbk31H9yiwmKojAutba2vaEDUR+ihKoCzWb2uNwFp/HpRG5P/6b9eT3x634dTfeucfcjzI0zNmPfy3yVZ2xoXps3OaastXY+1hifDWXPXUop22rVRVbgZuaqp+9NbJxQDm2h5aS65BVWU2wZ2RHViFnhRr8iW0pJ06hsQvn7C6ZGQyQa3jPsGnN9+3fsy9bxauLHGldPRYAAprekQBfJ93zIHADnMXTROnA1+qqqwhuNO1O+6yRRVPRH4XU2E+utYmz4qYWd7hQodB1yDZsfW7khLXYSDTgRuc6ZmTO1poDQmp79Z9Dr2sva1p4gRVlcsaqRZWRib+ftjyogOiTcLfre6lFkcJuPn9LxYRfNjcA0wOfabP7ImLPu//5BslfuWw+Ph1G91ud7PU0EIE/gZZU1Cw305anlAInDpP6jsJ5jFv6A3lPuCyriasAtQUjbD5axI+a2756XMnLZo+d/LD6LbjQf6ECMx798lrLmvPMXY3JIpPx9TkvNcVeQpAYZK/Vc57jdFzq2UNQFKh5ffWthGcB5Mefm/Mw6k+k4fPB77/KTDIkbzsx8ptB6aV5R7925xpWQ+/cO3ncXtqp6Yw1hsyidmBpolTNE2Mas44lICjL1CYdsO9Ra25jlAcw6c0TfRSkNEpFk+r0jQn2bffAjCpb+ZfranfVSn1JM4r8yQMd6Zntmvw9KZwpmdO2FQx8CiAKl/MZ3Ue26G4vx8RDDO4R2IqzD8BRHiU/7bjUA26GatKXDUg9V2crzobZcCvBJOn7AjF2Z7E2YqvBDim/2cb2ruvvUmrvrib3/9i0c3vf/FwnbBaR37+6PN03YrVWnVjc9sKZrgSG4AdXk6aJiKAhcAsCGpkVFXuZKelaaKvpgmhqrJAVeUHrbmOjmTOtKxEYBAoTWr7dmX63Em1Mf2+u8ASUShK1x3/rznTspzhH2H3JNJSHtXDscXZVLmUfEuVRFbrSjDLSbhQpIgGiKhV2vSCFYrB+lrwk7xr7oQZAy+9/8YjrFFb00B8HHRIEAVv3n/fB3OmZUU00swAYEeO6dBC+jTwUHPG4LcVjA+YK9pyHT0JxmA+ulYq/uU10RWhrG0tYmnB2FiHubLwtenPNy+DWfchC4joF722o/OcqwSdRAFpDX1GVeVKgsqNp5rRRhRQhbusW8SLNNhraCA8BMM6dgbnq91QVfmHqsrTVVVWh+y5f9A0Mb09+/x9+wSrRfGUWU2ebhWTOmySvtvtNgHXAQuuvvrjL1pS12Yr9dpsZePrPoe2jzRCHsW7omkikeAby+OtHnAHEzfgq0sAHMl/rm+iaINcdMcDuRGJKybpfocX+GLOtKzYcI6vuxJtKY+PsxU7myonEGMEYqnz0tqwenmWRwdGAVQ5Ag2GkmoBKjtisGIOfeaKx6aunD530oWOpL9UW2xuScXmw84CVs25+n+Xf/DcJTs0cfMeHdYTSIruU7DDg1FVpU7Q9Oa65gxAisAIT8yq3WKqNvsCVLkKGHjdhv3WgjBLxKHA/JYIrc70THO1P/rAan/Ux60dR1fl8D5fLxEESHFsbdJ8o53RQHpBIpBCIaBpmugLoKryu+bEwy6L8U/wm2S7a54Muheh7f8dO74dbQ7QDKIIOn4XtmcnNf7I/X26Lau72fSHbYHo2fP3WYDTai1/uaV1IyMLLIGApaemiXmaJgYCqKq8TVXlR41UKQYeJRQDrSvirUo9EHQcyX8tbLp0w1x05/0LQJwBcpgtJvf3+gKJQcNsq+69YlXJyD2m88t93S4Cijy4xq5vC3f/Xqs+JqBIIm+rbHXM0RAa/8Qt9bOLZuHSB2b8cNmD1/ZABI4ENiPNL5dtmFz+yu2vXjZnWpaoKYpOA7BEeHfaMlJVWaKqssmXqLz0BWZzbQrWyoGftuUiVFVuTzB5bwl9VGjhtt7o5F+PA2LMildryzi6Im9e++yWWFtp7l9F+3foy2pQSBCToizlJWbFV/LKsacOB/7WtGDijeYgJNEBU8d4Uxt0bXJnT1mUO3vKw11AWEVVZZmqyrNVVb4PoGniYk0TbzaUTKW1XPKva4cCgyItFa02O+ushE1gLSkZcK7VWu7v2fOPFm/PFxcPnuf3O5RAwHIUMHZPZTVNRKqqlKoqn1JV2WVt1qq3j4kGZcU517+2q4d2i5g+d9L82H5Zr3vKnQOL15z45ZxpWTNDEQUMGkT4QezR2dDqFQeYdGEri/XXhLv3xCLzUkWnzYJwMPaumBn8JK5pLGHE9BeO1oAJcc6v79MD1lpP2YBXgWXVhWfeA1C8uvenAK/dccBDb9w7au1LN40/qZlD6CMQZrM3PruNl4JVCQwOaeckLdzWs5tqpgMc0/8/e8WZobNR6kl8r8YfuZ8zPTOqI8eRO3vKokpf7M0+3Zb45JJZ+QTNAJo9N2IqzOttXqVNqXkNDLogPYC+BB3Zw8L26p53AvSNXt+ha0J7EBaB1e12j6mtjR/k80Xeeeml3zU7dEMo3/mFIRtW/vjjsuP2ZI+qaeJsgm/unSbDS2uYMy1LEEwK0GL71Ya48I4Hr1QsFZ8EPAlHEowFN98QWhsmzlaUkGjfvscUer22WnsDJBSbXwx3/wIRKxCl4Wgr3uT9G6CH2bPHmK7T506SF6Q/cq+/JjkReAjkSBkwHwFgi7n8lqcvmjm1ZG3P9KKVfQdWbE58PxRreY9UJf94OIAnam2btrZcGS7LNl9EzxjF94dDCTwITG5Jtrbf8g+xR5ircp+/6vXlbRlHV8Uk/N8B5uEJy87u6LHE2Yo+BenNr+55garKO0MmJs2lFxCHO9ZYtwz2GVRVPk4wjbweckL9KBQHu1U40zMnrCgefQFIVha7ru+glLXtRpsFVrfbPQECbwC1Uppaag5wFfBW//4/9AJwOAoPaaL8KuB7oEt7viWlvTsB6BGZsqQ0XG3qvuglBFNmKfUdHwx2JtZWkhxlLe/ZRLExgLT6lLBvqdTa9DSvRQ9LptdRjvK+AMMjKpvl1T997iQ/UAnoUi8FrKBEn4lwvBH0shWAaNbcCVgqjgSoTv65TQKrQB4FJJTrVvfPF+Xc/Vz/v34OZYlpEmd6ps0vLQfX+CP/05YxdGWmDPzwN7Pw4TBXTevosTx95NQZB/T42eoN2M+d8fIFlqZrhHDHTpDIsRLpBOYbQqvBvkS9F7s0YCIQ3frW9MtAmEJreWeNmtBq2iSwBoVVmQXK6JCQ1GQwe00TiqaJOoFhDjBRSuUHAF1XGnyzqAsDoaryT1WVF6iqbDieXxehunDEwQC2mI1h0bCG+A7q0mhKQSf0luwMbCgftGRD+eA9auMqIwNn+8yyEHdZZbj795uls9aux4WjrfUex0qAv2si81pQTQPhlXoZwhSNEGKKYlkXisAhALPJGnvq9LcevCfrDfcjBzfWSPSW47ZIpN9S3fuXNlwCQ+xVT1uF7gW+Dh3KAL4MedPukYNSF5wDRMRaizt1pqf25Nkr3i6KsFQtW1owtjPYr1eP6fFrbpk3XvnP2nMOa0G9owEEAjpvaCIDg3YllE7bqaryZwBNE9dqmji1ufVnvHxhZKy15OJQqvdOGzWhLbRVw6oC1uCDDknzFpo3gSxNE3ZVlT5VlT9u3HjYEiBQWDiieNfCoawR72qauLONY+00VBeM7gV4i1efHrYsStPnTloEQhXm6q0Et5z/CFfb3Qvh5x/v+gax+MSAqshAk57NrSGyStkcVWkKS6isjV5HMK2p397sF7jgPGGy7s/Pl3rND9PnTvrK4lg93GT31CLsD5kdRzxui4qsKd90+JFV2w76ec60rKUv3/rGM+8/c8VOgf4FYqBAbBx+492tdh5zZbjs62odzn7W6pXZU7PrTIn+C7xPaNXdE7o0XSIIcHif//3c2jF0Byq8cR8FpMXlTM9sVeKFcKGq8tGPVk0dCVRKTOe1oGqyQCCRAbrhQ9agfXCmZ05wpmfO7E7b3qEISXXpjC8Gmm3qk7XxhNvLvInWtISlL9N1oia0iLYKrFpIAADEHheakOAJQc/+xwimlwTA7Xb7gQLghKDWdicsQC2NZUnpkshxwB/T504K6zVNnztpkfQ7LgKRAFwYzra7C8kRW1NibcWNB6h3x0bbvIojtsz0Unv0LxCxihQl4Wgr2eyRod89WlKvtuTJn5HV0cjq354458Qe1dtj4x2JFd/c/N6Hd854/cZbr3zyvCGx/bPSgBlApbei3/WFOed9O2fa/N/mTMu67bW7nk3z2woO8dsKW5VKtR4n+FGsazxRdVECUFX5nqrKZ5pj//hb/gSLWfEve+7Kt7q0iVBbibaWLgDEmORf/q8j+tc0MUvTxASAZfddUB1hrvzGongunPHyhU16Pue+bk+WyPOBXwTibmAy7rJu9ZA1CD/O9MwTQC4E+SDwXXcSWiGYzhg4FLgagnHn7/4s6aXRGfvNbijsnzM9s3+FL/YW4JMvb7vzyq4SNaGltNUkYJEQvieDnwIXut3u3b4gTRN2TRNvAtMBVFXOV1X5Wl2O3VA7E0CmgNwfmF9faA1t/19CF465Wp8PnrvEJkyewx3Jf7aXAJ6lWCpXmSMKn/zgualNbqvua8TZi3tEmKoT91BkFIBA/Nke/etCJlVGBlqTlXU3xjjKHQADbdUHtaRe6gFrRgCOuAHb4oEzQYiKzUl31C9z4cyHVk6fO+nZ6XMnHZo4/L3xjqTsF0Ivp4/UFO63QvfE9yuhOnXOtKy+rR2/TQQuIfiiupvGWdOEqmniU00TDWrDnemZkSDG+3Tbl63tv7swqe+Xi22mGnSpXLC3+9Y0EQ9MBU6sOzah5/fLfLotIr+6Z5PB0SNqlFcFIqEgyfcE7rKHDWHVoJmcE7K7FyBtBLWR3YrQDnQZwMKK+Ns/LU29QofbaCBWdc/ITZ8HM34xoyPGurdos9NVjx7L+wH06/fTmvrH3W73BLfbPVPT7t4fiGXPhsQqEHL6CNowaZropWniE00TvUNhrLpFjL7i1SdfKAN2ZMDaLlqh6XMnyZi+33/lr0mKrtw6rkM0Lp2Z1SUjf9pW3afROKMFSb7LAEri/GEPsbP5pYhoRQpTtUMPy9btOo9jC8Dq2sjVLalXlR/nBBCKvsxs914FMufm979oNETcuTe89MulD8y4ZvrcSQeb7UVDEvr+8D8rZraX9k4BNr5y+yslb9zz+L/mTMtqypltBzd+kpqqI04aaq9cnz01299AkQSCTgi9G6o/oed3/weYe0ZuWtzcPrsrz1zxdpVAfr+scO/bsaqqLAFGA+66YxaT91GBXvrzVnXMHiu7Yx09tpsn1Nj1nORrqz9s14EadDe8zbAa6ja8V9x7MyAbSkF7/KMPXb21qq/r4NQfsnJnT9nUUWPcG7RZYK2qSs0DqK2N3ZGi0e2+dwLoP4K8H5T5339/5yOqKh/eQzMaCElwBtaZFowAxgNxbR1jZ2HOtKwJAW/c8wA1xSPObK/QU4rJeyvI3JritEvao/0uzh5tWG0eMcRvkoGy2ECLhMDm0HuL1QGQXGAOi1f7Wk9kBUBxwNrsUHIAFZuTYgG8lRFb/bWWUfGDtu4xLFZ9rnr6rDUTKybfCtDTImZYIrc8JXWLvWr7AdOBzc9P/3LRvNm3v/vOYzcN3lM7iyrjj/dJhXiTr8HQYaoqPwZcqipzGzpf5o0/0SR87N/jl++bO/buTG3A8QWI4c70zMbNXcJIyHn2HE0TSigY+g5b5henvVItUd4HTglqwhtlmkAkRdQqV7T/iA26Ga9RT2iNtxVsC+3I7JX53wFo/5hfyh2JYpzpmY6c4tG3mxXvmtTIzed02Oj2Em0WWCsrU0sAtm8ftcMuz2qtvBUUJRheAYuUwZiPjREyJaggGJd0stvtXqSq8ltgoKrK7hRfUWWHsCR3pNMMN+fd/JwXxBPAhFdnzj2+PfroqvSK3Ngn0lKR1Nj5mAqz1RwQC5yX1rbH63ssQLjisKZaamsBEkzeZms2ARByIEDV9rhBIFDMgVktqV6Z8v2xABFJfy2/8okLb7risakRCP8IYJZi8vQvzT323JK1U/6eMy3r25dueevWD567ZLe4yVW6+TKg7Jeq+JWN9aOq0qtpwhLylrXXP7eiaEy8Lk0/Pn/V6+2a4rCr0MOxZSHA2JQfm5VWNwycALwHnNrQyeAWJY7Den97X0Pnc1+3J/pN8kG/SS7CXdbqbH8G+yah7GpqjLX0BZCrSzxJ92SuO+N4v25K7uixtQfZU7MXxZu80wCG2Kp+qItVHWUpfwjo79et//fMFfPCnuims9FmgdVk8tTFTNyh5fF6o3sF33xks0IrvP76pBQgJjY2N0dVZ/XWNHEa/OMx143QQK9zJgnQjt6wJlvp64ql0i9101tG9qt/iLMXJZkVX8MZQNyxJoI2rH+2R98FSb4RACVx/rCk4dvfUe4XSPrZalpkwxrTp/Ais93jR4qTgD8vuW/pDy3s+kCAmoQ/d5hWTH/hmJzpcyfNShjySe/4QZ+fCOIhoJ+vsvejBSsuWDVn2rdfz5mWdemLN3yYcPK7A28AeRjIGODbhpwI6jEBeA44ve6AMz0zHjhAosxv4bi7LRN6ar86zJWyzBN/7F7qMhM4HvikoZPjUhd8FWMt8a0pHXZUQ+cTik13mwPCvrWn9+32HKRB9yV39pRFy+678BpQ9leE/umHqy61Prb4gQ+c6ZlH3OmePi/7njEvdKeYvuOjSl+PUvxVRX5rNMBRsx+7ucoXOSPJvu3P3NlTWrqGd0naLLDGx687Qgg/brdbB5g16+79gINBzAVxDyGN6Z7aqKmJGw5gt5cVA9cAN9XFXu1OTJ87aZEtdv0zAOaIgttDIYbahWnPnF5lidyyyFM2KBG4HyP7FQArivZfUOZJKGro3KY+nslARHG8v7o9+vZZQprNyEBYnOEePTVfArVrax05LalXUxzlk7riBQ42R3g+b2m/UflHFEhkGSKwmy3w2ddlyPNvfSpz+txJdwPDEoZ8fI4jccXnoAwBXvN5YgvTls14akjBWCx++272WLuiqvIHYKyqynfqjk3s/c0NgDI4LufPlo69u/LMFfMCtYGIz1aXjkx0pmeKpmu0Dk0TNk0TKSG/gq8a8y145op5gXJv3HPbqvqm7RZuyx3riKkwn6sLqfW9vPb59hqrwb5B7uwpVScNfP/McakL5v9d4hp6gFj13V3y/fNHiNxpuhTfdReh9dFT82VlwPxOsd822pn+2bw1pWmPSRQKa1OGd7coCY3R5ow7VVU9NgD7132Oi8v9qLS0f0BK811ut7tBwWBXtm8fZQfIzx/9cVrap3cA0S1M69dl8JQNegu4yV/ToyXB3lvXV+nQHwhmzjDxj2Cwr3vh+mlk3kdVmkYB1ETo7RLDttdW60aAPpttP4arTYmoqdAtLYo44auKiAQcAInD8r5pRbcDBWL9qCte26PZxPS5kyRM+gD44O5XVdPK8l6vxZUPvHhI0f56vxKX4hc+8uJWmGJjtgyaMy0ravrcSQ0malBV+RuAponeQGle5ZMHWxSvHJn4Z2vG3m3Rpekbglv0A4G17dTNLOAyTRMjVFU2YY4h3gVusiq1ZwNz6456rPpNNq+SokhxVjuN0WAf45kr5kngqBPveurL28R7x9nxIQQEpLB9FTgovfq+o784Vf81WYHvumIkCmd65mDgvOj4k88m9T8OJSLvXL3GWXe6zrywy11XS2mzwFpTk1gKlAO43e5UGDA4Pn790hkz3mqWsBpE9gNBdHRevqpKD/XMC7oheQCKpWrgXugrE+SdBL0LjYDcQP+YNf22VvZtMGJFfKk5HvD33mJtsdaxmcSFfpeGq0ETumIS8khXhmtCnV3Tnnj5lnFWSO4HAqHov184M2dBS/v024om6KbqNU2XDOLKcMX1d1T/tcFc1FtJWPbW6uTF04ZtP/iCJE/Slc7qvgdQMvr/gPOfv+arr+MGfL3ObC996OzrXt9p/dA0kQAsA95cXza0D/DNM1e8XdXSsXdnnDGrf84tH8LBPb+/HaZc2U7dvAkUNy2sAvBbrK24IsFW+BAhgTX3dXt8L2mZVeUIbIy8rbLFc8/AYDfcsQI4XCJn/McsjpMSdARI8GFGC4w6+QHl9ZMBPJgD991z3cse57bs3lEbX7/x7F86rdmhMz0ztU/U+hkgrgVnFIC/evCfZhgz0vn239k5dzkJKqL2mWd7mGxY9ToNzzWgKCUlg85tSRupqX/eCDpjxrx5eFvH09lJHplRJBQPkT3+bHYGi9Yyfe6kReaIQp/ZkV8BTG5PE4SuQpytOFEIaW3k9BggB3dZu7wwlcT5xwEUJfjCYnLgynBNCCBivVIZSQOx+RoiIrFiAgTNbaSutNh+cOVT9ykmb0ycL3JjoJljHAn8usEbkTousuSDY2MLpmrXfF39ovu+lx98+PqDkgd/blUslUcCryHkkSVrT7qpYPn5m+ZMy3rnxZveO/+D5y6NBVBVWQzclbXxhPeAkUBWS8fe3RmdvPiPaEuZb0tlvwPC3Xa99NgrVFU+2pw6ubOnyL5Rud+vLx8SN+SOj3sC9N1kvczqU5TSuMDscI/RYB/DHevYPsfxfK1NLwI0gTiiKirwwcOOk6+63X/l3BXSOdcufIfMsP57jknoKAJM6KbYgGfaR6sumfPSspurnOmZXxz2wL+efOy9w95+/bMhe4rPvVc45pFHEy967oZXXffMWwJszqsckB6QJmVI3IoXgX45sy7dP0rxb8ujPMGW8vkMumlGq8Zos4Y1OnrLobW1cSkPPXTzsRB5KygL3G53i0ICVVamVlitlQGTyfd6W8fT2Tn7ugz5wvWfFdaWDG5rlqBmIXXLchlwYAirQZYWjPuBeiYs9fFa9GNq7frysET1b4CASQ6QSCqi9dIwrYxq8JcAsEcp/ltu+zTlzJBta4NUbE7cESHBHOFpcWrgqPwjpwAisuDQJrVj0/7d+3GF+Ok6ohSE+uqZebuZQpx9XUad86H2wXOX3Oj3xE4vWXPScOAMf3WP84r+Pp3nr/nqXalb58H8Vzfs98ljAPv3+Hk5TGnp8Ls1z1wxTzrTM9+v8MUe40zPFLmzp4Ql0kUoS+HbmiY2qqpMb0ndv4oOuA040afbzsYd+5IJcQvwXe8ra14Ix9gM9j02vmo/tO8m66kC8X89CizxVY5ArceqX2/zKq9E31JZc9eOksH3qp7u2PMAJDJgFrp3XMxv1xT3KLj2x82TS/IqBwzJqxwwZc6fM7Eo3nNmLcqc70paUnb8gE/GlnriD7zj/O9KQ6Hb2s1E8eZXz4nLLjzgolUl+6kwYsqqkpG2GGtJOfAg8O6iu6ft8FEIKiXMSYDZmrDwWWvCwknN2VnrLrRZYK2uTtwYCNisgYAlExQTyPGhpAFNfokhm7SEysp7a4CfuktygKbQvdHZuje6MS1fWAl44lYCLfIi7+Y0aMNa9WhUj0ifyVwRHchur46Tiiw5wFjnpbXN0k42Aw1EDWADKSp18+mLKuO3uDJc1wMfZ0/N3q2f6oK4BABzhKdmxhvfbGxJZ3npCyYAdQHer89LX/BJn9kTd7vPXRkuk0A+KEm4uZeltmy733rgHxcv39JU+2df94YPeBpgzrSs6+IGfDXdU973/JqikccB5wlTraf/xnFiGB4uSlx4zZxpWS5AM17GdiILuFAR/pFAo8kgWogJKCFk+tUScmdPyXGmf7E0wlx9RXmU/6iYSnOqRN7Xbl5hBt2ToOPUpT6TflDfgHUMoAMf+01yTkGy//tGwxC6Y83AycAfAvEhoKm3/7ZIhTfqioy//8W+B/T4+cHF2w6NLKjpOSy7cOyx2YVjUYR/+0vpmQsO73193LcbTjzgg78v+5dXt82fNvrR/BhradF3G09Y8+GND7dIkA05R6kCfYFEiQDOt5rOvtAbsJuBfBBzRyUt/nZA7OrMkF3urqiENBQg7TGK/xL2AdvVOtossHq9MZWAD2Sd57NC8w2AnwUOA1kNYt+JxScCW2inGKy7YrKWVQR8Ud01mHKLGRy3YsCa0hGmGS9fIOovCJHVpv0AEostb7Zj93GE0X41e2r2IleGazKgRgj9l1GO8ouWVMWqwAcm5LorPurzfZzZd91jp+bvsPUUpsDpMmDCX2NrkaYshMo/SRcaNPS/+ZOUwQrJL+qISTYReH2Uo3zGY6fmt3g3YfrcST6Y9DTw9JxpWVbgqIjEnCfiC0YPP1kqbF105/EgjwXhmTMtyzB3CTEy8Y9flhftz/ieP7jhlDPD0aaqSj8wPaRpbTHjUn/cKPITT4quNI+USATiCdyxf3ZF5xeDDsAdO0EifxAIszkgKI8O/FEeG7iy7+W1S8yAcw9Vt/T0Pthrq7V/rU2/0z6zYl5DZX6++6pNcNWO1K6nPnFPvzh78fTf88f3KPfG7//D5qNHs/kYgGuBa+cuvW1HXWd6Zo3NVCMiLRX2Cm/sBp9uK3aYK02pkZt7b6vq/Ue1P6og3lZo7xezbuDfxSNXQ+QpIM2SHfdSeay15JtRyUu+y6twPvn17emBJnaONIIJE2yAUqmbznFluP6VPTW73RQtnYk2C6yK4ovVdaUy+BKO3kLnnmsDActo0L+02So9zdXMdnWiey90Vmw+pPcHz11iCWmV2o3I1N/6lG+cFPH+s5emnHP96/nt2VdXIMZaGgtQ43fYgNq647qQBypSACxtr76rHIEDzH5hC2f+zNB2UN09k+XKcJmA06NM/md+roq/VCCP+yrD9QjwSvbU7CoZMB0XKttsp6l6aAQdIncz9HdluCaY0C+OUBKuIKgB+L8lF694rXVXtTPT507yAv9VH1q2ZlOM5+/zK6yLU3XTWIIvx0b0i3pk3nrXitH3vFW5qmRE/7a2pWnCRFDj/ayqytWt3QGLtRXfN86Ue1IwseQ/6bcx/mcGzaA6IvCio8ZkBhAIf2yF+cPYm6uWNKduQrH5zFqb7t2W6vvA2cz+Pr35vo3A7XWfh9350WxPwH5ryPZfT4rY9udBKQtjFm1Vvyj1JPoP7T3/Fm/Axu/5E/7y6TbZK2rjJCkVh0+39jE5Vg+viVqZuKp6iL024NgPMAWXR4ndVP3v2oDjwsX3Xl4LlzdrbP8oKYRqE4EtHml6EPjhuHcGn//V+Wu+bOYldlna7HQVEVHkMps9QwGE8H9CM+KuapoYqmlCqKrc+ssv18aACY8nZigw3+12d/t4Yv7ahB+RZsrzJra75tNT5pwPULr+uLj27qsr8Pv2QxYA/G/DqTtpi0rjAld5Lbofd9n29upbCpJ9lkYdvsJC9tTsQPbU7A8PiSrpvV9E+VUSsRp42ioChVc/M/KnekU/euKcE1t0r4W2/ycTMvSvMwc47O3hx4PUAijTKnWTaaCt6sHsqdlhEVbr0zc69/aAAH/i2nkEXzaalZhkX6PMm/BuYU3qUGd6ZlsVEkOBCwgmb2g1L1/90pLv9dHLPFgkxv/MoCW4Yy9z1JhcEillMxMR1at7kN2jDLR5xO3OS2tbrRjyBCI+A+EhOHc9hTWp174w7bUhf866+Mbc2VNuvXjE3KjLXc/0WvHAOSe+cdyJp941/rYVd0+45S77sHsuc/R/JdWS+GOEue/rXlvKF1cDNcF2RE1twPFE7uwptXvufXeyp2Yvyp6a/fCSi1dkAIdaRaAy32/776Uf9b2tycpdnDYLrLW1cfl+v8ME0KfPL883Q1gdCPwBzATwemOODp4RTQYR7y7UFO73I4CnbEBKe/flKRv4F4C/JrnRdKT7GKF8zDvvLkRXKGa/WbZG69hsoqpMW6OqTHvF9OXRU/Plu2dveCl7avYRFqEf3tvqKfNtTtwheEiklVbca8+OP/Pnxw8+a/F5+10+xpXhen7smyNWlQfM/wUREsSFf40nql1CxWQXHpBqM9VUV/db8Cz1BGfDHGA35gMxPSK2HtKWRlRV5hAUWt9q64B+Uwa+cb73TrHS0uMdYLJhDmCwR9yxE3wPRH8OvAJ8JRCqCCUiau7c8Zvk7UCFQLTp5Tnkgb9jvdnVI19VZZWqyq2hvwOqKg9SVfkgwfVVCZmc2qwJC4fvqZ3WkD01e4MaXXR0nMlXuKQq9iFXhuvipmt1XdpsEhAI2ENvLnqFovi+a0aVXOAugnmogYAjZE6wz7x5C8WzWeo2LJFb0oBf27MvS+TWUl9VT+zxq0bCpH3HTrgR0hKWDswpHs0Rfb6KhSlB20p3rNWC0svi58l27j4WKGvnPnbj94uXLwBSH/7iuMXAWIkkoEjTnwdtmeLKcL2fPTV7XWN1T35vUFxfa81lOTVR/Qr8tkGC5EMkoi5zUYVfit8G2Kqr1nkcI0JbZu1yDwezNyWOAT5/5op5kiuobwphUI9xqT8s/nXb4QyIXTUTaHHKRk0TDuBYVZWfNDPeapMc2ferr75cf9qTF/lvP6ygtufc3HA0atA9Cdqsama/sEqkFIhHcJf9QAvmcsXjUVMjA8oZlY7AkqjbKlvsLLgrIeGypeuNFtTMSisIE3BJ//1ueuf7C/9+uK3jqc8Tp+WvdGW4BhJMk5xx9vvOSR+ck3tJOPvoLLRZwypEIBSEXfnl0ku1Rm2cNE0ITROxqip1VZVP1b2RRESUnG6zlRQSeuvYF2xYE4d/VAHgSF5+Snv3Fdvvu2oA3W+fbqRmhWhreSSARfE66o5VOQL7E9Tu/9mefQcU2as8OtCjPftojHceGyqsPvNYAJFc/sOqQzas+yvRdxCw6tC3h2ee+t6A210ZrpmjMvY75/KP+rx01DtDMl0ZrqXrPRFFP1QkPlHgt80ABkn4bFxkyRvjIkuOAeL/nLr8yM/OXbc/CJXQPdweYVZGJS8eB/QC3Yi/2gQf3PDIulhr8fYVxaNbGz3tGuBjTRP7hWtM/11/ZpxE0QtqUgcC8/eVVJIGrUIFLCKomdRpqUmKO3ZCVKXyigAiqxVXR6VmDa2Dk0HcDZxnRtdrdNPiq//d6/x26KsCmNLTUvtHTm301KPmDclwZbi6XTCOcDhd9QoETNhspY1qaULcQtDTdEKdsHr//el9A4Eke0LC6o9mznwmrG8dnRkh/GsRAV/V9tGl7d1X0d9n9ADwVvR1AfP3dY/qX7dN/Am4+NuNJ+9IA1oeE7gsstpEXm9PaZ926nf7HIeSrJutXqve5nuuNQQ8lh1W/b0Gbj3p5uvWlLsyXL2Am6oCphvKA1EnQNCH+5eqeKxC9wHfgfjkoMjS0niT99MnTsvPbaz9XZy/wk60pXwGwLHOz1bDSe3VTbehzJvwLnClMz3Tljt7SksTYTwNLFVVGa6wWAAq/3hGG05XBntCEwgJIBBeWrhjI5GXC0TdOmuiA+da/XXxpk9St/xSGfflj5UJL7oyXBuzp2aHLUV3qC/PbZ+mHCyr+WSbz34x4HdluK7Knprtb7JyF6HNGtZAwC4AEhLWNKV214BPgW316h4DUFw85JG2jqMrcfZ1GRJpyvVX93A0XbptSN12evCvfcdGuAnqjO93CI7xJWabLqTfb6Y5Ji17xJmeOcGZnnn3rhqkHgWWKIEgqcji6Yg3/oIV/cYE/5Lrz7speK9mT83ekj01+xaLkE+BlCFbK92h+F+aHFMYkT01+9jsqdnu187c9PSehNW9we/bx8faTDXFdlON1pHj6EJkARGD41ac0NwKmiYSNE1Eqqr0q6r8Jszj0YJzTMI+Yvpl0Dpy+3t+l0i/LuRiWmjvnPey/QpdcKlEdjoHvydP2/ZDuW4ZBmIzyP9d+GG/K8Ldx6On5vu2+ewnAfcBlzmt1Wtv+CQ1Ltz9dBRtFljrqKpKebmh46HQKKiqXKyq8ob6oVHM5uqzQW4GlodrHF0FoXi2K+bqYe3djzV6Y2zwLxmgE928HcWopCUDAA7tNb9n3TG7RxmpSJHv3GBrdUrLEx57YPCxj8z+EeRC4D6QPx77yMM/XDJnel3ShqNCv48D5u9NofWJc048VAaUiwAUS2C3t/paafoYRJ3XvadaN7/x6Kn54Upu0Gac6ZlKjT/yYE8g4vNGgmkb7MKxzk9+EwSItxXf0IJqrwGLNE2EfRcgd/aURc6Y1RttplqdfSiVpEHLMQU4VSCs21J9i1vknOeO3b/3ZusTPqv0VEXqFxEyUepMDn7ZU7PzgCNiFH/ZX9XRL53+3oCr2qEPmT01+94DHKXzNngj+mnliT+6Mlzu5qTu7uy0SWB9/XV1h41EeXnf3eylNE1YAU3TxIzd6x4ZIaVyTHz8ujK3273PPYQcydk9FUuVq737sURuH6dYKiRwN4ZHNQ5LpR3AZq6JBJDumAkSOVYie9FCQfK6ly7qrT70dLozPfPbFUVjVv1d4jqUHVlIUP4uGTVR23TCr870zCV/mvo+XXecvajpDoauklkgogEik0t2s6H9x9aq/WxQ28JBqQuOARIjzFUtdiDaV3lx2iubo60Va5cWjo1sQbWngSdDiQLCTm750G89gYhthrBqsCd6bbEmAVh8otmp2sufiDoQ+J9AlFi9YljUrZXzcJc93JmE1Tqyp2bnj48qOTTSFNiw2hP5L1eG65z26CfjrE0XWoX+YABlJMh7BXLB5HlDzm2PvvYWbRJYN28++Mh6HxuKoWoB8oDd0jLm5R08PhCwoyiBZk/K7oSvuofmr0kSc6ZlmZou3Xqqth1g0gO2XBBGCkvg563qYoCsjSfmA0gR1HyKoMmEDZi0p/qH3P+CxZmeOcWZnvnul7mnb8wtH/Iw4ARxX6J9+2WhVKl+EDUDY/++RhH+2wF/nqdXXynBLwU+aZKfcPDm9rzOeqj8k52K6sK4Bvuti+3X2YRVAJMITAOY1Pe/yzp6LF2Jcm/ch96AfbQzPTNqT+U0TSgAqio1VZVvtOOQegBRhsOVwZ4w6eI4oDq50NKsmNV5L0ccavOIXwOKtAJHKfeWtyjldEfwxGn568oDllEgFoF857KP+s5tj3480lRFMKETEmHa7re948pwLZzwVto9N36SemSTDXQy2iSw+v22I+p93E1rFIpPdp6qyg/ZhZD9qr+oaGiDpgTdHW9Fv8WhMEDtFot1zrSsM0EZiG51EnS4Mh4Uu9iwKlJ8C3hCNk+KRF6W93LEDfUrONMzhTM9c9xRsx//tswbXw18ARydHJH/xdH9P7sSGJI7e4r7N/elr1NPU5k186YX1j18yqO5s6eMP8ry28ptSkzRq4Epued47zbfWDsjY+ysV2uc6V/c70zPHBMM29QuaPWumYDXktFO/bQbv26baLUqtZvmXPVGs7LbGASxm6o1wOxKWtKoVkXThAX4XtPEle05lqCQqp8IMgYjSoBBYwRDWk2RSAfN2fFyx/buvdnyltkvfFt6eafiLlu9dwbadrKnZpcDx/W21G5ZXBV31YS30m5ph240wAPSD9IrkG8AjkrdPOvb8uSsMRkjV7oyXPcdOW/ohNs+Ten0UQXaaMOq/FLvww77SE0TozRNZGqaaFQYM5urzxXCv8Ttdu/1uJSdAZO9uAAgInFF2ELH1OeD56YKs73wtZCTg+FwFeLAlJ+cABN6ZQ0EwF22SCCOFIg7gXS/mYQ+m61P+e+P+eKlx0846eyn079VCKwCfllbOuzwvtHrt6U68i4Eei26e9opL1/90su5s6fsMGnJnT1lUe7sKQ/vtO3pjo22S//QnrL8hasemDfgdzm097jUH95UhL4ZxB3AH7HWkrITHnvgG2d65kHhFF5vfv+LRbCTMNKuqYDDjTM906JL00Svbs/s6LF0NY5xfrbELHxYFN+ehFEHUAyEJd7qHjgy+IK+U2pWA4NdUQERCmm1x+QmG1+1D5fI+QKRZNLFYX0vr/10r4wwjGRPza52OSpGOBR/VqVufsyV4Qprtqp6obXuAaEum7r8suyp2fur0YWHjY4oezeAkg/cWei3/fRTZbzHlbHf064M1xGhFN+djjYZ10dFbV1dWbnDd6V+DNVBwDD+sefbiVdfPXqU33+os0eP7JVt6b8rE+f81lS08mzscWuPBv4X7vaL1550YaA2IRr0AMEQIfu8wxWA3VSjAFgU3z8RGoJ2TosAnn9p0jeuwspXD/WsPf7CiiVTyvy92WDLz8n39Lpcovz7q9tmlra0z829vNN6b7EqhYm+TUlA7uwpW2HKVABnemaySfhOS4zIfyCnaPQk4FeQG095wr0t0lLx7E9bJr2bO3uK3rarlpvq8leDmP/EOSdODgqynZ9De80/Y+GWyVGJ9vx2TbDRHXn2ireL5t/13u9/bB9naayMqsoyTROn1neGbScqQnNQB2GsRQaNoRHc8bKJ4A7kENyxE3a1RdVnxRyTarZ8IcEEUhXu8i67+/LYqfkVrgzXccCbwCMXfdhvSk+LR3301Pyw3JMNhRx87vStC4GFAK4MV48DHaWzNvvsR5QFLNOAGXYR8Jzy3sDl6zyRbuCb7KnZLU4h2x60SWCNj1/vrBNY6wf8V1X5iaaJL1RVNqjN2bTpkAMBAgHr423pvyvjq0z9CaB0/TGj5kzLmhBO+9I507JiIGE2yD8QgeuRykTAsGEFFm6ZvAzgh7xjN9Qdc6Zn2oETTcI/Fa4/MSAt9BfbVj9vfSpwq+WD4TMs7/W0CqUAKGtNoqqYctNwiaQySv9y1/y4ubOnFAAvAS850zPjgZMd5qqpywvHHOmXlreBR4fe+e/Mw3v/b0WkpXLOM1fMa4WGVBwcCltVX9Me9rkQ2uZVAS1cjjU1fsf5AAf3XPATXBaOJvcpqvzRnwKznOmZCbmzpxTXHdc0EQM8CtytqrKg/Ucix4KoBPEo8K3heGXQIO6yRcIdeyRwm0SeClwKXCzcsf/1m2RleUzggKgKJd8qlYkWHwLwCUSXjzOaPTXb58pwXTjcXrH/n9Wxhy9DPvVlhuvG7KnZ7e6Qnj01eztwNYArwxUtkMf1tdY8st7jGAn8B2TVye8N3B6lBN7Orol5Mntqdml7j6kx2iSwFhUN2Sn2qqaJ64C1qir/25iwGkQcD2wtKhq2z2atKc87vC+A1G1HAxPDGdDfEpX3X19l754g7p7+wrE/AmENUNzFqZuXU53pma7hCcuutCpDR3h1uzUgzduGxv/1v/4x617+ZsPJ/x456y+Z93LELb22WC4HPgsoUtv8qv2Rfv9X+1VLOoyuNPUFljkvrd20p3K5s6eUABlAxnUvXdT7240nTq7xR53i1y1Tv914stUk/Hd/lp75UaJ9e+Zhvb/95pkr5tU0cwhaKGyVhTBq2p3pmSZX0m+9ekdt2P/7TccOgsjZBAN1e53pmWEJXfT79gmRJuFf8fxVr//d9hHveyTYCxYW1yaLA1N+uhKmzK53agJwEcH51q4C6/UvX5RiVU69KCVyy3cL7rzu/vbsy6Ab4C5bhDv2V+BkgVAk0gQcoejURFYpSeaA6Ms/ZgOCbpKEIntqduC2T1NGrq6NfDaAMsOEjLrt05Sr9maIwVDGrA+BD10ZLitwpEMJXFjos52/XjffDaSPydhvwdjI0nyr0B98/owtezUkaZsE1urq5Drp3xMy3p8KrAL+21id118/0qYoh5xkNnu+vOOOx/e5cFb1UEPbYwpIeyi1ZZtuujnTskZD4DHofWjo0L/mTMvKMTSr/9Aveo26sWIwIC8HwariEf5hCcvXryx2TZcoWf+7/fadFoc+V9Q8jjv2GWA68GifPOuXgftinjLp4l7cZRVN9bd9jsOSjHmCQLzZknE+d+VbmwluEb15/csXJpd6Em75Ie+Y/sD5RbU9rvxmw0ly0MzP3gpI8wcENVaNZjO6+f0vFj1xzomTCWk/GzMHcKZnKs6Y1UlpCcsO/Ktof7GpYmBEon374IFxfx+zpiRtW4knyRxhrhoQbS0bVVSTXAOW2OzCA0V24YG7tCTtZuE/hjbO55Dm+9CAND/flnb2ZSb2/mbRV7mn4fHbzwR2CKyqKr/WNNFfVWV7266yeNuh53p1uxgWv3w351sDg0bQBMJDMEWrDzhOubd8kQ0IOWLNJ8wv4J2BR0/ND3yZ4bpWQZYHEOlrPY4jT3h38LD/nrdmr2uRs6dme4Gvga9v+zTlEq08cUKNNJ1sFvqFv1TFTwLOc2W4fo41+b49KLL0h2/LkysJPWPaK9pMmwTWyMj85KqqFEDWqqr0aZqYSBOOXLW1cWfpusWemLhsfVv67gZoBL33IgABequcYeZMyxLxg/9zdfX2UTeBcxCYvHtj+7erUuJJSgrZcgLoOub7v7ztjvv2WMld5gOe3vS6/Zse281POmpMNwLnFT7neK0ySr/LeWltoy9eHpt+hkBEbU/2le8WALWZPHvF2wXA7QDO9MyIQ3pl3bytqvfp68qGnQJcbFE8vmMeeXTtqpKRM4ES4BCC8+vneHtB7PieP4xds//httWlI3Ps5qoDf3n69lkbygeV5Ff3DlgUb5/EiPyDimp61IItOrd8iCm3fMiOvotqe1C0rQdm4asCNgd0c1mcrbhIl6afC2tSlsdai6vH9Pg1dWnB2PxST9K9IG0ghF+apjnTM/8G3q/vlNYSJvb+32ULNh9j6xe97o9WfnX7PM9cMa9myB0fz/+r6IDeAJomegNDQiGs2l1YBdha1fckYN23G096cW/0Z9ANCGpZd7xk72TDuqdz3YCQGcDMqR/2PfD36rijgfddGa7zQgJkhxDS8v4I/Hjbpym3e6Ry0nfliaMl4pSygOWub8uTCckdOuB1ZbjaJZ63kG2wtX/ppRPSt2wZ97DFUsmhhz5hU1XZ5BfqdrsfADkzMXFV7+uue3dbU+W7M3OmZU1ABI5Bms4DegHjp8+dtKI5dT94bqqpYPlFJ4NyO3CwyVaqI8XDAW/sDwRT4Na9fe7zyQLqE7KzrP923vKta3fsOL9Jvm4OiBEeq77W5lXuJ/j/223x9DwU/YrNq/xfRZT/8uhbql4N02UA4EzPtAKTRyT++fiakuEDvLo9IhQVIoTwUS8Ga33MirfWr1s3CwKFg+NW9q/0xfy5tarv71bFUzK+l+bcXt3z55XFo7Id5oqCo/t/XtIc84M6G9YE+3ZTcW2Ps4BRyRFbtyXYC9/6u8RVQgttW4979OFPVpWMPHXKgA/7hDTOBq3AmZ55C/AY8PC1Yx4cOTZ10ZFAf1WVJe3d90GzXrmgoCb1LRCv5s6eEvZUlAYG3RlXhusG4KkIEVhwREzRKY+dmt/u92xLueGT1MO18sSvAyj20CE/cE/21OyHw91XmwTWBx647R6/3zFLUTz07fvzDZde+t0zTdVxu92/ATVut/uwVnfczZgzLasvIvCbyVIRKaX5X7ov6tPGhMw507Js9rg1NwZ8jlm+ql5WYJ1irnomcdjHb5193esloTI7nF8MYXV3wuEclPu63WSvFc+n5FvOEoh4GRIUBaII8PlNMkoiIywBpS48SA3tmCbQmZ5pAV4AeVlQuy4liB+Azw/r/c3ACm/s0qUF45YA248f8O/yF656rbyJJts6HlOKY/N1ld7oJ6r8MQpBSbqWFrwgONMzF4I05c4+cXx7jrW7s9/d71xZ6Yt9MTgnqD3e+fHNL0x77YX27teZnjlBoC+QKCaQHhBHGs5WBgYtY8JbaddX6aZnUi2ebVt99qEhO9NOgSvDZR5kq1q51hM5CKQvtLPro50yJrZaYA1ltfoesIS2WD3AkfWjBezKY49dfX5VVco8m6303zNnPn1mqzruprx+zxOzq7ePuT34SejmiO3ZjsSVheV5h78CrLJEbh0c8EZN133RI4Aka1ReuT1+7dPlm464f/rcSV3eS7LL4o6dBdxFMOkAAvEr8GdFVGCQ2S9GRtQqKQTtD/zAPbjLwv7WWUdYtMdhZsgdH9/v0613hoRoHcRdubOnNPkdONMzownGB30sd/aUO9p/pN2XAemf3yERD4bMYALA3c35H7QF193vpFX4Yj8ERoYO+YF72rtfA4PuyP991OeZX6vipoNYDBzfkZ76dYRitb4BXLi/o+w/f1THzqadbVjbkjhAJegRTHOCQbvd7glVVT0yADye2JMaSOO6T1O9ff8yQinUABHwRg8vzztsMvAu8Juvquf7ui/6cJAJwAxvZZ+4i+6cda8hrHY4XwEewC+CaVlvwF12VfQtlUdF1CqnE9Qq+tkLzgEh4XRHpq2OFlYBfLrtv8EIBVKCUIbFZx/enHpq3y+vA8xpCUv3qhdqd0SilNcLiW2iHZMEONMzk0549MGFVf6o5SAHEJz3e2X+Gxh0V149M28GiLOAA6MVf/bNn6QM78jx3PZpiine5P0MuBC4882zNp6yN9J7t0Vg1QDfPzZzMsCeF6QTQNQ5eSkYmU52RQtpqf1ArQxEHBnT58cowAXMC23nETJqjpw+d9K+HGGh8xDc4t8hJO7mHNDYuXaiwUxbHUidEK0I/Z5UR97Wv0v2O9aZntnk7sr6siFjTcIvB8Su/nIvDLO7E13v7wCwazjgNnP9yxfGDkz/z+3A2hXFo8fvl/hHzv49fnYBR9CJXqAMDLoq2VOzPxliq7yyRip9fqpM+MGV4erVEeNwZbiUlTVRC0oC1ikpZs+L2VOzH9pbfbfJhtXtdk9QFM8MXbedExFRkHn77XNObKzsgw/evNDnizoERADwsnNmLAMatz0NHd9pq9ewTTXoajjTMx3At8CBQ+KWn/9N+m3/3kPZ34Gy3NlTjtxrA+ymhExFfgp99ABhsyV1pmcqvaI2XFPjj3y6pDbJBGQCt+XOntIs51EDA4OWcfGH/ab+UR3zLxDbCdqK5u6tvl0ZLgH8C7hmqL3yi0G26pPDlZGrObRJYK0j5EhV5Xa7G9zumzv3lKnbtu3/RlTUliWVlb0+BjRDWG0ZhiOVQXfAmZ6ZEGUpX+7Xzanjei44+c1rn/181zJjZ72WXFjTIx/EvbmzpxiB5sPAQbNe3l5Q0ys53laQ88esS0aEo80jHnrmpA3lg+8BxiZF5Be5kn574PXpc54OR9sGBgaN48pwjQf5VZQSsB0cVXLK06dtC3t691257dMUsbI28uv1nsijCUYduX1vZOKqT7gE1odA3mazlSfNnPlU6S7nLCB/VxRfz759fx556aVZ+W3u0MDAoMsy/cVLxn236fhvq/2RVSAOyZ09ZaeYzJf869pHtLzjbxubsvDcj2586P2OGmd3wpme+SZwkSICjE1ZOPyDGx5pdeYwZ3rmsL7R6z7bVDFwmEDfLFFmAvNyZ0/RwzdiAwODPTH9415nLKmK/cCjK2UBlMOzp2b/1V59uTJcIsXseTvfbzt/oK1q/jpP5NF7W1iFttmw7iAhYVU2CFNCwur03c/qN4DYT9etlxvCqoGBwZyr3vi12h81AYRNoH9z7UsX7+RAsKJ49CCz4vUnRmzfTftq0GrKAHRp4tdth5/Vmgaufeni4UPu+PhFYHleRf8+B6d+/7+TBr3vyp095S1DWDUw2LvMOX3Lv+1C3z+AUgMsPPDNEa+4Mlxhd2YPmQE8kO+3nZ9s9nw8zF7VIcIqhElgjY7e+h9F8flLSwfstNX02mtHjVMU/yNWa8VPwGfh6MvAwKDrkzt7ynKFwIkmERjwx/bxi0fe/W5U3bnt1b1G+HXrty9Oe6W6I8fYnegVuWEk6IBcAlzpTM80NVWnDmd6ZoTr7ndmfbvhpBy/brkCeEliGvj+DY8e++wVb3e6QOYGBvsK31/49zLgepDRXmn6P5ALXRmuJ10ZrtRw9TEqovxr4A7gpQK/7ay9abO6K2ERWC+99LsqXbdk1tQkjnK73Tvip2zZcuCDUioyNfXP291ut+HVbmBgsIN1s0/+aWKfbx7cXNnPUeWL+bczPdN60uOzBgJpQFZHj6+74EzPnLC1qu/hoeV+NNA3xbH565AzVqPMePkC07GPzJ4JrKzwxd6TYC/86/gBH5+YO3vKNbmzp2zfG2M3MDBokqEE30YhGL/uRl4jruoAAQAASURBVJCbT3x3UJE6b9gMV4YrtjWNujJcE8ZkjMxaVhNz9FB75Qrg6uyp2R26k2Juukiz+Qo4JSYmb3/gd7fbPQUijgLuuOyy+T+GsR8DA4NuwuvT59zjTM/cALwSbS39d7y9aBPAEX2+Wg9TOnh03QZV/qObUECSX91rMqCOuOv99LOGvfH0rIu+3CmeszM9U02wH/1OcW1yT7PwZful5cif7r5ag6v39tgNDAz2jAbCC1hC6bj/b5Ct+swiv/WE0oDlaeCRI94e9ntaROXCv2qi7/7xwpW1jTXkynD1GmCrPi+gcy1E9A+gCJCBdbWOqzpaWIUwOV0BzJ176kHbto35NSKicLnHE/0KKA/punk7iKFut9sblk4MDAy6JQff99KT+dW9b7QoHm9AmoRJ6JNWP3Sa8aIbBnbJgCZBmkDskGDjbEX+cm/c47o0/ZlgLzi+whsz3KfbDlZEYMthvb/9LN5WdN0zV8wLdNgFGBgY7JGQ7apKvSxTIdvTg4DzHYr/6mrdbAXKgY9HRpQvWF0btcYrleOjFZ+lj7X2xDWeSIdPKn0BzOj4EYQSjviBe7KnZnd4lrqwCazBzFXyp3+OCEK5ZY8wQlgZGBjsiRkvXyCW5B/y++ZK5xiC2UhqMYLNh42Q0KoSzHL1DKGYzkPjsv9d4Ysbu7Wq7xDA9E8iGPECcHPu7Ck1HTJgAwODsOH+T6L196q409Z7HceCPANETPBeD1pwWgnIaHPgjyK/9R0z+veA3Y/yP+rFfm/PDFbNJZwmAWooC1M9u1ghgsfp8As1MDDovDxzxTzpTM/8EBhFcA2pS/VsrB1hICT4LwJwpmf+RUgb87/09LpjD4JMD2peZQDYZAirBgbdA/fJRV7gfeD9yz/qc/06j+OLAr/1cIISa8CLcq92wYoH69dxZbgms4vWtqMJp8CqEcyiYiWYrzqAkT/awMCg+XxHcA2pe6vXOnQ03ZT6wms9vgBxI//YwWl7fWAGBgbtzitn5lW6Mlwz2Sl7ptjNyTUkpHYKQbWOsJkEQJ1ZwI5tpySMjFYGBgYtoN7WtWaYA+xdjO/ewGDfoSG7185OWAVWAwMDAwMDAwMDg3ATljisBgYGBgYGBgYGBu2FIbAaGBgYGBgYGBh0agyB1cDAwMDAwMDAoFNjCKwGBgYGBgYGBgadGkNgNTAwMDAwMDAw6NQYAquBgYGBgYGBgUGnxhBYDQwMDAwMDAwMOjWGwGpgYGBgYGBgYNCpMQRWAwMDAwMDAwODTo0hsBoYGBgYGBgYGHRqDIHVwMDAwMDAwMCgU2MIrAYGBgYGBgYGBp0aQ2A1MDAwMDAwMDDo1BgCq4GBgYGBgYGBQafGEFgNDAwMDAwMDAw6NYbAamBgYGBgYGBg0KkxBFYDAwMDAwMDA4NOjSGwGhgYGBgYGBgYdGoMgdXAwMDAwMDAwKBTs08KrEKIS4QQlY19bmWbTiGEFEKMbfsIDbojQghNCPGv1p5vRX9vCCG+2MN5txDir3D1Z2DQXuw6l5ua2wYG7YXxrO849kmB1cDAwMCgY2jli9kM4MI29GkIGQbhYhPQE/izuRXCoRQzAHNHD8DAwKB7IYSwSim9uxwzAwEppeygYRl0YaSUZR09BgMDACllANjW0ePYF+mSGlYR5GYhxGohhEcIkSeEeLje+d5CiPeEECWhn0whxJA29imFENeG2qoWQmwQQjT0xt9fCPFNqMwKIcTRu7RzuBDiFyFErRAiXwjxlBDCWu+8JoR4XgjxkBCiUAixXQjxuBBCqVfGKoR4JHTdVUKIxUKIY9tyfQZ7DbMQ4pl6c/Ox+v/b+gghLgz9bytC8+BDIUTvXcoMF0L8RwhRJoSoFEIsEkK4GmlvtBBiqxDiwV2OXy6E2CiEqBFCfCqESNrl/KWhuVwrhFglhLhxl/kohRDThRAfCyGqgIfqzA1CmoW1gAe4SAhRJISw7dL+PCHEf1r0LRp0SYQQbwBHANND80aGtJ9NrYtNmbcIIcRtQoi1oXmcvcv6vD70e3GoT609rs+gcxN6vs7d0xrc1LordtHWCyHU0OfJoTlcLYRYIoQ4oO488DoQWW/Ou/cwxvFCiKzQs71MCDFfCNErdO44IcSC0LiLhRBfCyHSGhjbGWIPckhXpUsKrMBDwN3Aw8BI4CyCanqEEA7gO6CW4MI4AdgKfBs61xZmAf8BxgAvAW+K3beYHgSeBUYDi4H3hBBRobH1Br4E/gD2B/4POC90HfW5APADhwDXAjcA59Q7/3ro2s4HXEAG8LkQYnQbr8+g/bmA4H03AbgKuJLg/7chrMC9BOfSiUAS8G7dydAi9iMggaOBA4A5gGnXhoQQEwneF49KKe+sd8pJcKv1FOAoYAjwWr16VxC83+4B0oCbgduBa3bp4l7gvwTn45zQsQEE5+hZoWv4JHTtp9RrPxY4DXi1ke/AoHsxA1hEcA3rGfrx0bx1cU88EKo3HRgRqvuiEGJK6Py40O/jQn2e3qarMOjKNLUG73Hd3QMPA+kE1+EiYJ4QQgA/hdqv5p85/3hDDYSe4d8Ba4BDgfHAB/yzGx4JPE1wPqtAGcFnv3WXphqVQ7o0Usou9QNEERRGpzVy/jJgNSDqHTMRnEBnhz5fAlTWO7/T50balcDLuxz7Fng79LczVOaqeud7h44dFvr8IMGJqOzStwdwhD5rwKJd+vkGeCX09yBAB/rtUuZT4PmO/v8YP3ucQxqwape5eReQV+/8v/ZQf3hoPvWpN582ANZGyr8BfEFw0S0HLt7lvBsI1J9LwGGhPoaEPm8ELtql3g3AinqfJfBcA237gJRdjv8L+Kre56sJbq+ZO/r/Y/zsnZ9d53kz18U3gC/qnd/xmeBDvAaYuEs/TwP/Df1dtz6P7ejrN3467qepNbiROruuuzvNJYKCowSOrVfn0F3qXEITMkao3Dzg5xZcT2RoDT9sl7E1Kod05Z+uqGEdAdiA+Y2cP5CgZqcitEVaSfAtJJ6gsNcWFjXwecQux5bV+3tL6HeP0O80gsKoXq/MjwTf6AY30kZdO3VtHAAIYEXd9YWucQptvz6D9udnGVpFQiwCegshYnYtKIQ4QAjxmQian1QAS0Kn+oV+7w/8KHexF92FAwlqNv9PSvlmA+c3Syk31vv8C8EXojQhRDLQl6Cmqv5cm83uc20Ju5Mnpczf5djLwNFCiD6hz5cBGVJK/x6uwaB709x1sTFGAHbgq13m6dUYa6LB7uxxDW7GutsYe3r2N5f9aVy2QQgxSAjxTsj0pRzIJ6gt3nVs4RhLp6MrOl2JJs4rBL33zm3gXHHYR7M7vro/pJQyuCOw48VAEHzTaYj6x30NnKtrQwl9PqiBcjWtGK9BJ0QIEQl8TVCLfxGwneDW1AKCD3Jo+l6AoO3eduAyIcR/pJSeFgyjbs5NI7ittSeqmnNMSrlUCPE7cIkQ4lNgLG3w/jboFjR3XWyMunl6EsEdgfrsukYaGDRKM9fdxqg/1+rmbUuVgk2t6Z8DmwmaMmwmaDq4ooGx7UkO6bJ0RYF1BcGtoskEt/535XeC9k+FUsrSMPc9nnr2faHPOS2ovwI4Wwih1NMmHAZ4gbXNbOMPgpM6VUr5XQv6NugcHCyEEPXe8McDW6SU5aFFpY7hBBfKO6SU6wGEELva3f0OXCga8MqvRzFwMsG39k+EEKftIrT2FkL0lVJuCn0eR3Bhy5FS5gshNgODGtHOtpaXgdsIXt9CKeXfYWzboPPjZWc767aui3XPhP5Syqw99AkN2Hcb7HPsaQ0+kKbX3daw65xvjN+BSQ2dEEIkEtyNmF737A85dnVFOa5VdDmJW0pZATwDPCyC3suDhBDjhBBXh4rMI6gm/0wIcYQQYoAIeqA+IdoYKQA4XQhxhRBiiBBiJkGh+ekW1H8e6AU8L4RICzkEzCZoz1XdnAaklKsIXuMbQogzhRADhRBjhRC3hOnGMmhfegFPCyGGCSHOBG4Fnmqg3EaCD+FrQ//jKcD9u5R5nqBN9wdCiIOEEIOFEOcJIcbULySlLCQ4V/sAH4udvfRrgAwhxBghxARgLpAppax7GXQDt4lgZIBhQoj9hBAXh+Z/a3kXSCW4ZWs4W+175ALjQh7NSbRxXQw9Ex4HHhdCXBa6D8YIIaYJIa4MFdtOcK4fK4RICTn7Geyb7GkNbs662xpyAbsQ4mghRNIeHMAfA/YXQrwkglFdholgFJd+QAlQCFwRmuNHEFyv9xlzqi4nsIaYCTxCMFJADvBvgg9jQgvc4cA64ENgJUEv+niC//C24AbOIGgfcjVwqZRycXMrSyk3A8cTtFP5k6C29l3gjhaO41KCXraPEry+Lwhe84YWtmOw95lH8E37F4KaxldpQGCVUhYAU4FTCWqQ7gVu2qXMZoL/dytBz9I/gOtoYAELCa2TCNqk/rue0JoLvEdwqymL4H1zab16rxC0M70IWEpwa+xK/gkT1GJCAsYHBLUOH7S2HYMuy+ME//crgALAQtvXxbsJrs+3AMsJOqqeQWiehmykrwcuJ2jT91mbr8Kgq9LoGtycdbc1SCl/Iihcvktwzt/WSLk/CUZrGQ78HBrjuYAvtPtwDjAK+ItgNJa7CQrY+wRiZ9tjg8YQQkjgLCnlRx09FgODro4Q4kuCTllXdPRYDAwM9g1EMP7uX1LKazt6LAYtZ5+xfTAwMOh4hBAJBDUIxxCMEWhgYGBgYNAkhsBqYGCwN/kdSCDo1PBXRw/GwMDAwKBrYJgEGBgYGBgYGBgYdGq6qtOVgYGBgYGBgYHBPoIhsBoYGBgYGBgYGHRqDIHVwMDAwMDAwMCgU2MIrAYGBgYGBgYGBp0aQ2A1MDAwMDAwMDDo1BgCq4GBgYGBgYGBQafGEFgNDAwMDAwMDAw6NUbigH0AZ3rmBEAFtNzZUxZ18HAMuhmuDNeO+ZU9Nbvd51fO8LQd/aWtzDHms0GHYaytBvsCnWWed4vEAXvry5zx8gVic2U/85L8w0zJEVst43t+n7CubJh/edH+gQR7gW18z+/7rS0dVvF3icuTFLHNcWDKoiGrSkYUrC8bVp0UsS16TPLikX+XjMzbVDGwKjliW+zIpD/G/F08cu3Wqn6VSRHb4tMSsg/8u2Tkyu3VvaqSIrYlDY5beeCqkpF/FdcmVyXa83sMiF29/+qSEdll3oSaRPv2lD7RuaPXlA5fVuWLqY23Fab0jMobua5sSHatP9IXaytOTY7IH5pbNijPL62jQQqB9JsV/6TVD532Y3t9Rwb7Fq4M12SQXwMmoAbE5PYUWnOGp50HvCmRJoGoBSYbQqtBR+BM//wqUOaAVARSxtsL3y6u7fFJnK1o6yG9viu1KN5Vz1wxTwbLdo4HvoFBQzQ0P53pmfHAAX2i1t+0ubL/8TK4IV8LTO6oOdxlBFZneqblhAEfDd1W1Svx9+2HACQe0ivrxPWlQxK3VvedApgEOon27csKa1OXA+YhccsnlHvjivKre28FzM6Y1QeWe+OKimuTC0Gae0Vu2q/CG1tS4YstB2lOsBc6q32RlbUBRy1Ic4S5KtEbsHkD0iJBWkCYOvI7EAQA4ZMoPkX4iTDVRNQEIkp0aa61KB5zjLU0vswbn+fXrdUR5qqIBHth6tbK3mU65p7/tKKXg/K0SfiWBqRlGMYCatAKbv00xfZTZfx15QHLvUBU8KjUQdyVPTX74XD2lTM8LdKzX+XdSrHlSssWW3zdcYkMCMTdaStzwtqfgUFD1D3UHeaK8tTILbPWlQ1L/OesBMRO5QW6V6LkWpUar0+3jZQICcJDBz7wDQzqc/3LFyZnrjvznoA0Tyc4gWWstWStWfH3L6rtYfmn5I757QfuyZ09pUPW3L1mElBfggeWAklH9PnqwGp/ZPLibRPLgMTRyb8eV+WLjlhTmpYPJKY68g6u9EWbKn2xADH/XX/mTm3+tGXSTp8lgjJv/DAgEvCXeeMTPQG7ieCX7A9IkyLQdaAShD/SUlnml+YtFb7Y9YA/NTJPKalNWre1yrFOQdeHxS8fX1iTsiav0rnOrPjkmORfx+dX9/p7U8XAXJuphgN6/DxuS1XfnA3lgzc6zJXKgSk/HbCpYkBObvmQzTHWUvMBKYtGbCgftHJ92dD8eFuh+cCUnwatKxu2dl3ZsMLkiK3mA1J+7rW6ZMSGdWXDSlMdecqBKYviVpWO2L66ZGRl76gN8oAei6zry4aW/1V0gOeglB/9H974sN7K731+UOCWEpQckHcHpFmEBAyPMz3TWEANmuSfrX/pTzDHzSoPWCKAP0GmAVYQCrAlHH1pmhBRH/Y4P+LH2KMVTKfb/oqK9id5vYEY31tKuflswFZXNBz9GRjsidA6mgXYqv3RIq+yn3dQXM78taVphwAWwGcWvrP80rKtf8ya/XtFbjp+WeHY/CpfdJJEOUIiBAgBWAk+B4311mCv40zPnGBRPCf2i16XuK5s6LmS82J3KSLKvAmDAaxK7d92c427whtbLFE+JTTP6cA1d69oWJ3pmRcBr/P/7J13YBRV18afOzPbN733pSdA6AiRNiQIarBgw44NG3b0/RZr7NFX7CivqBg79kLswABSRJoECJ2E9F4222fmfn/sBkNI3SQsCfvjj+zs3Ln3zLI7c+bec54D6p6hJK22VbI20SGpCwBUxeqPhioYZ+3R+sHrAFSNCd8UTwgt2lZ29noAValx2cy28olhdfaQb/Dvh+lzvprRfLo/6dEV71hF/Xz3bq8+MfnoHbid1dUAVQMEGiLWjtXVvX1xUNkrP9WGX7K+IbifkzI3KYlsn+5fedZLF5eVeDJObmJSIICrKSffSURmGGWoSGTyKSX0XfP5VX+OX1xB3TGsWQD8AcQk7cuVuu9Mffg4mcRHvsy0SZr/c9+7ZABP5WWmP9mRpX5XG7oaIGoAiNAW/joxal36a/M/8X1vffQoBmO2X7Tu2JQE/8O37qwYH2oVdZOa+18scZpkyuqoa4JVgss5nQwgSsE4IMrsNxTsdpf/RkoAhMJLK7M95rAajNlkSszvtx4z9Xs0v35g7L97KAXIrwC+HhO+KUivMNWuK5q5EUBlcui2mh8ffNzhwVi++KBOYDBmTwGwDq4Lr2+Jyke7JGclLwLwDAAGoIhU2Jf8fvXBuwSBXAFgBYDkt8oSEvfZ9F+O1dbhmtCiQTOmy4cEgcwAcCuABTxPKwSBDAdwFoDPeZ5aBIEEwkE04fcPHuQcaFmmOKTtTyTCAdhpG2XaKkbZn9H/HBqNZklWuYlJcwF87uhnvXLkz3krvPCR+DhDMBiziZYzbbKI+gkAZE+W9d33qBn+yppZ9Y6gSZHawp2lltipeZnpph4z3McZxfDHPtU1OANGq1jrxAGB++88WjdQaRX10XB7qBxx2ESqULtX/qFgHB8ffO6S64CTfSiDMZuZHvfTLQWmflceqk1KAhDJQpRkMAwFkQHigBf8hi45rC05ioMe/nayKLN3ULCjAAz1U9TJDJG+qHMEXwTfLOhpg8GYbQawE8CDvv8LH+3hnmFdBUABUCcLOmPnvD0bBYGEAxgJYAPPU8u8L+P+2G4JTOMgfyqCCRmtrc2/KaxwKoBJPE+rBYEsVBxRvxT4etyTUrBzn31Uw4vqbX5xXJkKlJOd1on1sE2sO+ocaB3G81T8+8HQhbqfQl+ADELcjkLSvtxNu87pp2ErFGZngi1/1PfH+nnzs/HRtzEYs+cDeIch4jsy5fLQhYmRe5ddQ46Z+r+7o3zCPIDsZ4nzosPPX3yoWw320ee5Z9m1IYdrEyfvqRodD9BxYZrSyyutEWoKhgCAv7JW1ClMuXpF/a7z+n17nk1SX/LOrgcdgLwaIIrOOJwGYzZLIE0O1ZR/XmGNjPRmLKvHDuvQRz+/3iLqs9DkiRMAAeQNbnlXSiC9dMGAL55/ff7HNb5Z0NOLYY99XhuqKTu49uF7x3vbFh+9g47IVyVnJWsBWuVa/jweqH9rzrycZQCwe+LAaUwt9xtcD6+EgEAMcRxjqxRPEJAvy5buuwDAZTxPL8tNTFKIoY7DXKUyzt29CODxxiSrXTMNv3MF6qmEkvCkfbl1PXryPs5Ibl9688W/5V/0hUwZASDn5mWmdzqPoCUMxuxUgH6pZq3+Z0eveez9BW9ldke/PvoeBmO2ho/9+bJKa8RZu6vG6AGMI5CH039l9Evj/Q6b/ZR1u/PrB35439gnEwYG7v+N5+keQSCDATwH4P94nh7uih/mPnYNABVAqb+y9txdT137W/edaft4nHSl5mwzLKIf4PJOFXB9CGgSHyFRsDWvz/+4BgDcH47PUT1N8FPWgVIS7m07fHQDGQH/JjRm1J2y31hyVrI/gJH9lJZLAjjnDQUODQModP+qaRy/FlwKYJkgEDZgYPQi1VY/BQEhFJRKQc6PkjccntfYMAn4HMDnW+8NP0sVoV/JlanCKKhIXH2dEPCvOKZ5GMAWAHMBvNPzZ+zjTMJgzNYFqqa9r1OY2LHhm+764K43u8VZBYC8zPTVN791++w9VaNXrS44/1mDMVsEsDgvM713yPb46BEMxmw1gBGjwv66wSLqJx6oGcYCGCYUnteoUFQOYOvAoNzcCG1xzp9F57x/0YBPi+cM+tSf52mdIJBAACUAggA8zvP0AIDj2epd8cPcoQLTlYztQYesvCREXfE/gzF7UF5mutiVc+4MHjusdkm1DsB17kzzJjcSYsVpkE3mo21KzbFbADTPEPTR23A5q6vh+s05kBGQhoy6Td3txP6bdAUlQDHl4yGMK+EZOOrQwk90Ik5pAwv6br3EKmyUm9dkhvVrdzeBlmk141Tb/STIAAFxsjWKpc3Hyk1MmqVlg7+gHPW3J5seU+X4rUKzGFY3WylLD8p68f/gc1h9dD+v19qDA4cG/3P9B3e9eaC7O3/vzqWbxj/5bgRA3gfw3xB1+cwRj3/8Ur0jaCx8K5F9ln/l0Rr+soj6egDj4v2OXOGQlGcBMSqAcDsrJkCnqJcB+htAfhwSlFM8KGjv3yuPzN3qeqhJP96fIMz+2f3yPJ6ntYJAkgEc7gnb3d/JSy975eEPtpZNmgfgfwZj9i2n6kHLY4fV7PTf7npFPgHwdhOx2TT4lv57A1UA+nvbCB9d5gIKqiYgoKAKAsIjIwBwPSyyaOrEdoEohfXNEqda3ThryhJqSQ8o09ZL3BNbLYHvPhe3vxQA5XlXjFFyVvJVACkG8NwbCbt3CAIhPE+rBJARABLQggP698IwhXqb39scVDcRiex2DrTcNOrLwq3u3SfZn7Qvl26/Lnq/5u+A2dtviJ425oPitV05Rx8+Gpnz8qNPASk3AeTZn/7zyMc9Nc7fT9xiMhizr/BX1jxXZQs1AuQcABIAh09usG9x77JrVD8cvvJWgHkZoJxF1B3fV9wQ1xDvf9im4SzvWEXdnzH6/F3jIjYcbiw80eigvglAEMgEAFcCeMB9vf2q6Tg8T3s8Jvqr+5+7wWDMLgDwaIL/IQ2Aq3t6TKALDmuMPs+/qMGACG1R9l+P33r8R/XBubPTAYzneeqTSTqN6ed/IKTYHBfXfksfpyt5y9UkjihTGQpQUABgqgPFwXoz86TSyTSKPjeG63TqxicIhAHwhUyxaeGxoUoRmjEEFNSt3VslqmacG1ixudFBbQERwFdvJOzeD+BvANcB+JjnaTH2ori5PbmJSZHqCL/NXJkqQdZKXzAW9saR3x+ztGuokj5IQc/TbA44D4DPYfXRZVKfXzyyqGHUozH6/MqihoSMnh7PPTu16Kynlo0vt0SlwfWg6dHv1sfphcGYrQSQGqIuv80uzb6oMSnKnalPVaz1W7ukWShSRf7qRQubXUvvPP5KEEgcgAqepzYAwwFcD+BVAPk8T987BafSEo/H+x0+O79+4FXnvfhc7c//efjO9g/pGkz7TVpmaMiugQAwLHTHwGa7ygDkdcEmH6eAAFUNdUgq5awXMr1avcuH56js5F2Wkgl2Ff2YElQRECa4lruBAoSCinA5jR0OzREE8j9BIP8DAJ6nskTBLik3zBHBPKci0g8aRpoBkEcBpOXMy9nUhrMKBZG1yZr6qQD+BHA3/g0LOIm9SYnTAOxgy5Th1ol1y4ZtPzA3aV9u+84qgDHvlewnID8DuD43MemUFULx0TcxGLOnHqlL/MkhKc2jwrakn8r4vHJL9GMAkVyhNFSEL6SuV2IwZqtHPZF1Rfp/nznEEmc1gJ+rbGEz4vyOHovW570BwApABIjNLmleystMz2trSV0QyGgA+QDmuN/6GEAMz9P8Hj+ZNsjLTKejw/86N1xbvDW3euQdBmP2VT09pscX+N2VowsAYF91cm7T93mevtFVo3z0PDsrJvwEYOb+muQgAJXetsdHJ8kIiI+E4goAEDl6qdrOaBp3lUY5xyUcU2nRQgyrIBCG56nsfv0MgMk8T3n37hq47pa45atYfZXYb9whuy4WwCt2yj6Yc32ODJe0VZsIArmAYCgaZLbCPdabLbXLTUxibGPrV6rgdx4FPUBAZo75oDinsx+FGO74mitXzrZMrn0IgG9lx4dHNBH4ZylYR/bRy9klp3D8vMz0TcMe++xWs9P/vcFBu3N++7//882u9hIMxmzt1JjfHjtQO3QKEDui1h7qZxO1Upxf3va8+kFPA+T3n//zsM3d9jO0ETbpXt3KBJDH8/QtuCqDGgFsAACep/ZTdV7t8dr8T5xuXfdfAJp1/Zv3RH941+uLe2o8jx3WEnOcDQCKGxJqu80aH6eSKvffEPgc1l5F3nI1a4Aq3505D4WTKMrCncv8TMxytY3ZGFLJ/grgNQCCwNdv5d3HCQK5C8AiQSAJPE9FAMcA7Gl0YnmeGgEgOSs5CAj8DiCx43S1Pyy/rOCBTppYIgNyhVNV0FqD3MSkEABZ6m3+5zkGm49JweKkMR8Ue/Q9tI2v/1K7Jug95WHNJfA5rD48RMHYz3XKysYVJwZeWJLf8/RV70959s1Hj9QNHmwwZqvzMtNtp3J8Hx3n7mXXRRWaDLfuKJ+YDOC8dUUztVquQQTwAYCv/FW1a4SH7zupEFJLmfqCQHQARvA83cTzVHbPqioA12oXgBd7+nw8JS8z3WYwZl8UpinN31wy7b/jnnx/y9YnblrfE2N5HBIQq88LAoAYfb666fuCQOYJAjksCMSvq8b56DlGh2/2A4DJMb+P87YtPjpIRkCKJdNvpSFfdXyZsjLE+VZJlDMw4k7Lrdr/a9jUoJd+11u4CADPUFDBv46td8c/AcABAN8B0AMAz9N3eJ4uaJxxBYAHvo08iwXdDJCJBPSq5ZcVXNQR0wSBDBcEMt/d71aREluDzDa01HbnBfHPUkY+CmAWBb3LMchq8NRZBYDxiyvMxMK8yZWoRuQmJgV72o+PMxsla3e4YwtleFHlpsDU7xZRVgbAFfft4zRi/tu3xhuM2dcbjNk/ZB+5rGBH+cQMgE4C8MGAgH2Xn5Pwgz4vM31+Xmb6r1sen9+Zqp2vAPjV7bgCwLk8T+/v9hPoIfIy0+vGR26YKlOmpNIa8a3BmD2kJ8bxeIZ1cPDuxMIGA4aG7IxvtqsUwGZ0wRn20fMEqqrrAcAuqSO8bYuPthEEwsTlKxf1h+pJrY05HnNcEerU7xlulQCwBle7swxByun+Jg5w/f7YqBLF1voAiQAAz9PfALQq9Dzuw6EjlSRwA0sokSnO2TVv95pOmPkAgJmCQD7jedqgJFSbqG6Y1rzRntGD71ZatQ8DAAW1E5Dt4xdXdFkShYAsB3CPrJIbkxF8+OgUZqd/NAArQJ4H8IcXM/TXEMg71JzlyXuXXfP+a/M/kbxkhw8ABmN2KICLg9UVd9bZ00e73y4IUNZ+PC5yw18OSbUs6643xKZSU+0hCGQigKUALnLHor4K4EMAFgDgedrr/s/fum35LoMxexqADUrGtn7B/244b8ltH2zrzjE8dlhzKsYeAoA9laNP0KfjeforgF+7aJePHmZNwfmbAeDv0ilV7bX14XWUoVXcE8QtyO9WBHhhz3CrH1zB+A8AWAIg16yXv6agcwFQAuKIKlU+GHW79Vh7AyRnJfMA+51ESe1Uv+rbX7ukpF1n1S1SreZ5WgrgXgBanqcNACBSIh62a9XJWckpjVWxchOT9AzYDAoKdzgDi25adk3al7tz99kDq6hKfhY+h9VHJ7l32TWEJZfPkSj3a17m7Ke9aUteZjq9/s171q0rnHVvlS38YQBetedMxGDMPk/FWu4LVlWmAHE6gDC19qD8UWF/b5Eo+/Q/FWdl73hyHgXmtd8ZjselpgIo4Xm6By5xfweAcLgy/ff22MmcQvIy0w+lPv/yFcUNccKmEv53gzF7QF5mek139e/xLGiFNcoVw2qON3WXMT5OKdXuvyFetcJHiwgCOVcQyKeCQEjSXs23AfWcoul+AnIYLkWO5wD8BQA8T03DrnBeaVXLFruSWgF0SH/1tq9jXiGgvwMoFsGMfe2SklYz+pvYx8KlAPBR49g8T8sAV5EBGYQzy9xwAKvcRQcghjk+pqBBxFXKuVMKBh3BGWfL5kpU2r1Jia/lJialdFe/Pvo+Dkk1R6KKqLOjV58WD/BBqqr/UzD2sj+L0mZ625YziTv/d+OQEY9/vBLAT3ZJO7PEEucXpSsQAIyRKdfvmweemfD9widXdlQoXxBI46SgBsA3cCmmgOdpPs/Ts3ie/t0ddidnJackZyUvarzWepPVix5YOyZi8+3VtlAdgB8Nxmxtd/Xt8QxrrP5oaGFDP7hFY48jCOQsuIRsr+J5uqGrBvroMeoIZAwL3TEDSH/Z28b4OO4ENi4HhQMYNWGz3qixMedaVXK12k6CCAgBIAMIdctKPdm8H6WT+ZmVML4jzuqIrOH3UQTdF62w1VWJyslbr99b3VZ7dwEAyvNUEgTyBICi5m1YyBdIrmdhAree5Pbro8drKgIucgyy/KE8qH0cLVeu6hLqf/w+B3A9oeRuAPNzE5PSurN/H32XtYWzRgGAXmF61buWuHht/if2743ZzwN41WDMnpiXmb7Z2zb1ZQzG7GAAC5XMBUaHrGAASgFCACKWmOP/yMtM39HZPgWBLAEwBMAMnqdmQSAzAOzqTrtv+DLOb5sl8CoAbwKUIwBNzkp+BcCuJLUpKJhzYkND8AYA9aO0dVKkwl77S114dc68nOMOt9vJ5QEIjathXeXTexb/z2DMrgboiihd4d/3LrtmzGvzP+myuoHHDuvAoH3DChv6ISl4V1izXdVwSd/UdckyHz1KXma6nPToF06bqPUlx50GCAKJAvAHgBfgimX6JGWjXqNyMEsB/KixMy/CFX+qICeUQj4ZTiI5AC5BRoAKGXUtXiRGZg2fRIFMCjKZg/zjCK1p3n8vLmtz6UYQSDCAzwSBLOF5+gPP0xZnYvurLOqDdj0ayzYnHaPb1Fv8l8taqdgxyHLZyB/z69AD2deSn3gV64rfPe4o98Q4PvoeFlE/A8DWd+5YttvbtjThPY5xPJfgd+QTIH2At43pi9z9znUJhQ2GZcCEiQDR6xSm1fGa8p8P1Q59Gp0sMS8IpD9cFZ+ecyey5gCobqLCsqUrtv7nuwiFVWZmCabQMAATAljnBSYpIPrfFgTUde1bCAC5thNv7TstxyuxS8lZyfU6RuRYQhlAoQFAAOocmTU89Z95u7tlojEvM/3Lixc/nrazYsJtm0um/WAwZp/b1RKuHjusuyrG7QWAfyrG5TV9310W7MauGOXj1GAVdUcO1SaVeNuOMxX3jGo/92+mFK6n7woAGLJP/aTSQR5xcvRvhUiuQEadDRkBx8setzV72qCTavRmljg4+Q1lRsDy5m2Ts5JTCLCeghCAiiKYF9pzVt2Y4VIYCGirUZ2kqAIADSO9aZW5zzM+F+8mIBHEwk4c/3JFjz3ISoHO6YyJBQCxPafeh49Gbl9682BgzkQVazutJNHyMtMbLn3l4R3bys6elPz4J0Nynrpmv7dt6isYjNn+AO5hyWVGiXK6YHXF+mpb2IIdT87Lce/fiA6UmBcEogUguytQTQSQAeAHALt4ni7tio03fxU7TEHodVvMgQonZUazCD1bAqNy766XKTmUrK0/mmvV/+yg7KMAOIA6AXIJgAPjdTVJHKHRmxqCSwD4D9OYUgho+G6r/0EA/qGcI6VGVBgAaAEQgCg5Iq1Jzkp+FsAHOfNyulyY4LuFT90+8en/odQcexuALIMxOxftfKZt4bHDWm0LswFAiTne7GkfPrxONQCfDJD3eBeuzPoB7gueq1JIRsA5kVA8ZNXIlWURzgv73WB3aTG6HM92f+hOhRwBsFCI5GYA1yIjoFksK73a5aweZyrcotTNEQSiALAAwNs8T+2CQKY0lcFqiXJRFQnAZJW5+z74syKTSEFXSSGON4dvOLy1Pds9JTcxKUIBdbgcKK5jaxW/oJvDDXz0XcxOvwcAQvi4X/YCl3nbnBPIrRpxBUCOmhyB96JprU4fHjH12df9o3SFKzgmZYooK3USZb9Pjcv+8P0Fb33TtF1LWqnNEQTSD8BOAPcBWA5XjOpqdxJqp0jOSvZPUFpmhHKO+XusfoyNssOAoBjXXioC2Kll5C+HaWstFU7VssN23faN1+XKTY5fDYAHSNNl/SPNhvm0hXFTAKwCqIIA4Ag96qB4AqBPnP/ZwIpA1vlWjtX/hZx5OR7rAZeaY+9giTNGoorr3KtudoMxO80Tp7ULMax54YUNBvQP2KdqKufg1hE7BOBZnqctVrjxcXoQ53c01Caqm4d0+Ogiroo5Jz+du2dULwfwE8/TegD/A/AzXNmiAICq17VzgsF9TED2a60s3++GhjZjSlsisJYLAwACwqDFpXEy1v1CRPszkZPh0ggsAbCiPWcVAFREGuugzL4Vz0vhlAm8VQxzVNvOqv9PZ8+jk9xGQJRsrWJ+0r7cA+039+HDxfqitBCWOCvVrPVzb9vSnL3PXFlsMGZ/BNAb571590tZd73R3Anx0QFGPP6Jtt4ReCcw4P+OmQaE9vM/UHi0fjCflzl7KzC7w/0IArkTgJPn6TK4StC/A3dcqnvSoV1nNTkrWQFguD/rTI1W2G47atcqATY+36El+Q4t1EQqA7BKQ6SdE/Q11SyhX746p7S+rT7dTmqnHcCceTmbkrOS0wDCU0D467rcTclZyQmhnONBk8TdUeDQZAC4d9yHQ78+W1/zx+uXlKzo7Bh5mel0/JPvOiusUUCr96SO4bHD2i/gQHJhgwGJwbv9m+2yAvgRwEFP+/ZxalCyNlO1LSS6/ZY+Osq/5R2hBmAzGLNTmzityQA+A3AXgCU8TzfDpVkMACh7S3teSB33jcjRKoVIZiKjrtPOKgAQkMaL20mZ+Ld9HXMTEJwC0CUAKUIrgfaCQOJ4nhbwPF0jCGQ0z9OdHR1fSeiEfsqGw4Dmf0QmGq5COWb84gqrJ+fSEf5eGKbTaoMWgaEbh2096HNWfXQYgzFbCTAzJcqsOF31ToeHbnt3d+XYmy2i7l24pJF8dBCDMVs9PHTb6zIdeBNcMnq/Bakrnlvz8P1rO3K8W45qMM/Tfe63LgRgB7DMnfT6UFvH/+e7CLLHqk885tCOJKATohW2mxioNTKIol5SQKRE9mPFPXaRzSCgW87xrzi0eE7ZoS6ccqdonnDVuF0pqj49L6D8vt/qwlIlkBudlLlhjSn0ltEfDntcpMxbAD7NmZfTYbkqs1O/DcAcgEodmCRpla7EsP4DANvLJhY3fd89A3Orp/36OHUcrk0SACR6244+Bg9A7a6Yo+4fsO8RQZj9G8/T13me7hQEMg0uOagTyQhIDAeXJbGoK4lyXhB/s63Ty0qN1PtJE3UNjJWl5Gk0iXdNzkomUQrt83pGlMfpap9445KSFiV8BIHcDeB5QSCjeJ4e6oyzOu7DocF2yjFpLrGWiyhD/zN0774e1RhU7tfexVhYtYWv+aknx/HR95gU/cfNG4pn+IeoyzpTJOOUsvLBxzenPL10z7ays0cZjNnavMx0i7dtOt25Z9m1fn/kXzAf0C/cXTk2up//gZqBgftu/27hU190sqtnANwnCCSa52ktgMsataZbYuG3Ef0LHJrUXJtfNICztEzwuRaZc+tnE5sI0mBQWTYfseuWA9hikbmjf12X2+XCKW2RnJVMZvhXxJc5VYYcq78aQOwITf3lRQ5VCKAaDYAFKJKzkhsPoQBsP9eFp+XMy/kdwO8Lv414tMypeuQfa8BoAG8yoK/N+bxf/iG77lWA+AFY05bCgEX0c2uBk1cAfHPKY1jrHMF2ACi1xPpqHfdeqgFofTWrO0drS/5unK4/LlmUQpNh5qr882feaPxRT8Gsycuk605onRGQYlfI1ytBLiMgMifhrPibbV2aJeREDDXrZav/wobmSSSpJU51eIzCmtmas+rmGwChcBUl6BR2yiaF1FFM+k3dzxlnq7OPaHi1s310htzEJKKE9lIKul/WSZk9OZaPvkeNLXQuxzgwKWb1H8BN3janVUrMcXcCWAuXUv3bXjbntMVgzFaqWct8NTfzNYuoZwGsB3DNmofvFzpyvCCQwQBeAvAgz9MDAD4GsBeADQCaOqvJWcnqFH31pfWSgt9j9dMAmACED3TvpgByQznH1mDOnLPTEvA2gJw/rj7o7I7zTM5Kng5gFoCVAPLO1ldPa5C4+F1WfzOAmH4qS3qDxOorRJUTQMwf9WEnyI/usjZfGCfNN05Ytl88p+wIgJvdY48erG5455BNNwIgr7uPsSZnJae15rRGagsHlVpiEaYpeeHvJ27xuAx3V2JYowobDBgUuJdrXpJMEMjfAHbzPPWpBZzGjA7fHLOjfCLONXwzBEj/x9v29AYMxuzzAXwL1/KSo2nwuDscoNFpkgA8oWAcxo9y7/CDq1rNicHmGQEpFHSV0kk0AEBBrycZ9V1b0s4I4LRgNRQnZqj+57sIAoQ9C5CCIqcmo/lhgkBuhivL9Vaep0UAnvBk+GjGxt/0kwKMkzgkipTxiyu65QLdGmKYg+cqlOMJyILxiytOyyVdH6cve6tHRbNE/P31+R9XeNuWdljPMY6dCuLI7Gf8MZiCWe3F0rGnHfcuu0ZzqDbxcWDMlTZJa9AqGo6lxmW/sbogfXF7UkqCQAYBYHie7gdgAjAKQH8AB9wVqPYmZyUzyEpOHKapv06kzMz9Nj0AjNzUEOwu6EKLAfKXQWlZE6u07v2zIeT9nHk5bcadtsedX0eHrm8ICQEQa1BarqkQlTPMMhfXrNn/AcDGhhNypx2lDqXIEMhwhZxt0zPiaAoYzDKnPPFwCoBQAM4AxvFGnay4EyBtynnlzMvZAWB8clbyY3CpIjAEVA1gOlqJS431y5taZonG2dFr6oBbOvEpnIjHDmu8/5FhhQ0GDAnOUbWw+xsAxS287+M0gmOcZQBQaQ0P9bYtpyNNZ1InRa8aWWaJXggk9ncHjgOgCoDw+PdHmgqAdYcDEACUgvkfgAdbCTbnCYgaACioTEBiu8HsQQDUBOQEoWuTxD4BkAmRCtui368+2JI2azQAA1yxtx7Fm+YmJqXcO5hm9MujkBm6cMQfR3M96aczyMHO5XI9J4GjH/b0WD76FgZj9mAAgyTKveptW9ojLzOdnv/iM7l7q0ePAuhTAB7xNNO6L2EwZnMArtIrZr/W4PQP4hjHP6KsPK/aFv7r+wveanep3a2CshkujeureJ6WCAIx3J0/PBxZyRfGKa1zGdBzAQ0LkIA9Vn+oiAQGdJ0M8nKC0nJksNq87eU5pds6anNyVjIzSV89kCN07FpTSOOM6HQFkYcfsOmLAGoAyMCmRSjzHG0Wi1o3TFP/ZTDnLD5q0x4odGqmWCn3GihVAHQGQNAgc2BBpSiFrbzEqX4PwMYh6oYd+236eLjvcX9et39Tclby12gS09rOqfwBYBFAVSwoiVXaWi2usLtytAmgju8PXz3utS5oY3vssP5TMW4HgMu3tFCLnufpaaVn56Nl/i6dsh4AtpZN9s1MNcPtrK4CoAJANhSnER1nolquIdsi6s4DGJaAgoIITQ5bDRArAEVjYLlF1APAva73IOLEp9Z9OO7dEjs8DERvSlm487qIcgVqA8S8QPd7yVnJjJoEXhvAOi2jtPWvNbZ1V6UTeZ5uh6vE67MdUQFoidzEpBQKutpwgONkQvHLaEYa1tWTaX/MGAXRxjoHW9aN/P5Yq3FlPny0xLiIP5/ZWjYZEdqi37xtS0fIrR65xz0j1qVM677AoIe/nRyiLnuRJZEJElVEW0XN7tS47Df9lHVPvDb/k/ZmVP8DYDrP0/N4njq/+l254MvqaHp3VvKDgaxzNsWQyXCtoKHAoZYjFXa7jpG+NcvcqjDOvnOcri7nxYvLWlw5Ss5KVgOISVSbxgRzzqlbGgILRZDoQFac7qQk0Sy7SmxvOHFGFEftxx3SpGbL8+1AARDtHqv/DC0j8haZa6KRTdz7aTZAnpRA/vnt6oOOpkcnZyXHN93ujNrAvwoD4NWMvCHPoXUmZyUvQjNnd+qzr99ok/qf7/7erurKg5bHDqvZ6e8AgHJLdIv/cY0lHD3t38cpoTEL3afFejI8QDXuHz0lkL9KS1h56+vzP64Z9PC3kxkifmOXNFo0KU2al5m+yWDMPi7u3/ijHPXEh/9Xaw95uX/Avg9WL1p4/IdaHSRmBNWwMgH5L4DvO1JKtT2UDjJSJhS1gdK2wH/fvtRG2QE2ib3uvxeXWYHjNa4/hStONc1dDrYr8ABRNdaNrdeRJclZybu7q9RfK9xBKGGU+3U39+AYPvoox0z9x4Rri81/PX7rKcvK7goUzGq4PBCgExWY+hoGY/YcQPF1qSWOuD8Oo0QVL7Y2oyoIJBAuOcHl9+cPTUnSxF3rx0j+92YNf48jdLKTDh5M3U6iSeIK+qvMRVpG+rzEqf4BIDt+v/qgJTlreIqaSHNrJS50p8X/mmkfDxkmgYysk7gwwFVSuyn7mlWZqpUU3fwpNEIAYByAcRa50Z2j+QDiADAAJIBw/qzzuTDOMWzch0P32Skj+TNitILIBkCpdocEONqKQW3Kgm+ilU5KkjY1BPsBSBimaRjjkMn9B+26EPeYtmHvTjnPfMgYw0C6UUa/tCZOeJcetDx2WGP0eTFFDQYkBf+DFmJYPwAwHkBPT7L46AJTY3+l6wpnYWKUcD6Q/k37R5w5EMhH6fEnVGKjYF9+ff7HNQBw8Lk5fxqM2RMA7GKI+NG9y65JbZTEaUlwemrsbx+sPHL5y2rOdvxpVn7SPy6IssNrgqS9wfeajd1ld1AtxwD4x3CjzQy4yvlpSMirVsrsBchn7vKqtTxPRUEgcwAUdtPQAkAJBYHIArsTCIMenAH6+4GwAB0XfA8k8uPQ3H1He2IMH30XgzE7EIhOAPBfb9vSUfIy0zclPbKimmFku9npf9mZGA4w/flX+gOD38W/hU9EAEzzOFVBIAQAx/PUCVeo1jtfV0fqRJCXc6wBjcfe5KCNLykN4xzmBpk7dNCur9Az4shYpXVunagwj8wapgeYeBt1+aUlzpP809MIKgIklIDaWMgaCcROQYZbZFZx2K4LBxAFAPWyAv8++wBo4kje/21ksIMy49eZQgAgob/KPJMAww7bdRUA4gmC45sWntljbXTOKVwVXqGWaseuAsDIYPNidPmri8zxk9yOfZcetBhPD4zV5w8FgGEhO1va/QtclR98nMboFaYCAKi2hXr8PeiLGIzZhIK5HSAmlkiZAE5awsjLTD8apil5Qqbc1L9KpuxyhxC0yOvzP66RKbt9b9Wo4wHvDCX/R0DkwFq246rVHWMkgOMJdGVO5QtWykan6Gt+fCNhdxSAPXBVZgHP0xyepx3W0msLy/TqSAKCvwYDT1/FSAdiiQM9OAPEVioyicj4WafV9NgYPvouLHGeC9eEzUpv29IZQrXlXKi6QnEmOqu3L715aIPDL5eBqIdLC/WEwifJWckpyVnJi9I/GzALwAEA892H/lglKlIEU0jkv701n4wlpEJU6a0yOx3AFQ0yN6vQoUkwydxQGUw8PIaKAEwKIteriehRuNW/9lIKUAeA+/qpzHMn66vu0TJiKoBJwzX1F03RV10LkEkAzonkbJkiGJGC0QA0RqRM+Mn9AU3CBjiAzkvOSq74oz6sap0p5Be4/Lj/HbVrL6kUlQMBOhRAQrMqicVqWfV9tD2+lMoKSikBpRxiOLmIJc7pAAZseOzONIBMB/A4WriXdgbPdVgrx20FMOvvskknacLxPD3tKob4OJm3bltebTBm2w7UDG9L4uiMY2TYlmf+qThrGoBbDz9/0bLW2lVaIzYBMi21xA5Fu7E5ZAuAqwzGbObPAZcmx0B5KwH5gHmivsv1mhvJf189NAGqqNoA0RyIxooqAReriXQwkBUfgWu1/mMAv3fXmI2UVOpvHADgl3PE3w74qwV0LGjfI3ITk4ga/imySjoq6+RXe2IMH32bWL+8l4oaEiRRVnYmYNDrFJj6bwAQ4W07TjUGY3YocPEXHCOyaQnZd/+ef9FONAm9+s93EfczCHtBBrhjDg3NLB5QSwj++/jHQ14xy0MZB2Wa+TqdihO1wZWMCgAUIDUMqE4GaSnhvBmEA+DnpAycns8Pwm0vAaAE8OpRuw5H7brje3c3k6kqETXNj22pv+OoiCRJlCkUQYQohU00qCxkpyXgW6vMRlNXZcSbAdKYBbZjoNJeXF2eVpRfkj7EBHJRJWSo/fbsRuDWXEZZ/vZjo94oBN6YwfNUADpW6rYjeOywWkWdCAD59QNbjH1zx8hJvjjW055q+GJYj8M/92p4hTXRGKPPqy1qMLzXVlsKhofLCWThSs7i0cqPckhQTtn+muSAQFXVu6b68ElAraIi1Pl2d9bF1TcwEwDAopX3BbosvBEg/S4NLtk4UV8bwvO0HO1UZvGE/3wXQaZUBk8tCIW41189J2deTk8Lm08hICOJnZ0/fnGF7/rio1MYjNmTgIHuOu34vZdl29cBGOxtI04ld79zXQLBFd9TMANEWTlz2R3vrAYAQSCHeJ5WAIBFZm6hrmRXACBFTnUgC8oQQKaAyIA2qBlJ55AZuwQiE1CHHyv5mSW2XARjURBZEcA6I+skRYGTMmY1kTRBnDOmSlQedFDGrCJSuIqRYy0Sc1AEW6pjpIBQhd1Q5FDvdFDWHMA6Q8I4e79Ch8Zkp0w/CqJp65w6Di1hgCr5eHglEQFkDlY32INZZ9hmc9BGAFKS2hQbxDkDNzYE/w1AilJYp5Y41f9xO8wnoGechxpkrh+OK9oQu51y091JVAElTvW5DOhCSnE7XKvwDgY0tx/1K9t99OZqlaSP2SNz6Q5ZDQAHVaz1qRnxK39ectsHx6s2CgJ5PaCWvdb5jF+UQmR+7o78DKALDmu0Pj+uuCGe5mXOPumGIQjkQbhig/QAzF2wz0cPE6Yp9fNX1ZzTPA75TCWvftAzAKUTItfP2/DogvaWcAQADldyFghOVAw4AbukbgAApZ3c0K/eQvJVgdsNdx3b3m2GAwipVoQAQHSJ8pOHvosI8GOC3lQytHCCrnYggOEAVnfneI3ItdzzhjIE7B8g/3kKnFWIkfZP2XKFg8hMr0iW8XHacXl3JYGcauL8joSUW6Ji2m/ZNxj35Pv+anZCDiGyHhTnH828oNFZvQvAYkEgsTxPKwodmoco8JVbatAJkLSd83b32P9pclay1mTnhiepTXeXONUptZJiQF3HEqusDGhphMIe3iCx+02y4oiOEZlohW1Elagsq5YUNhZ0mATGHb5AomR33KkrJAAygJ+/nnv0pHNLzkomAJIMSsuDVpmZ2+isKiEVD9M2HMy3ax6slpTbNl23j7pLsF7vPvR3g9Jy2ezPBqwENP4A4cqcGlsUUVnyqyb8aKmaatara+bsMseOBAisoEjwP3Qgzi/vqT+Lzvl0/7OXUeCyE2xJ2aj/WukgtxGQxwA8hIyA1O5wWj12WKN0hYll5pjW5tU3wiU87pv9OM0hRK6stYX4/p8AjHz8Ix4Ing+Ql95f8NYP7bVvVAWI1BZ9UmqJ7jcz4Xtza45/Xv2gaAB4hPuEKOHED5bp++7pXvMBl+B1ocDXm8sr/LNMskIxVVf1CiF4m+epR9qq7ZGclcxetclvAScDAyzODtXn7gp7ExNvZaFsvGH/lJuYlJa0L7dXOBs+Thsa9SIl9LJs+1BNuba4IV5jMGaT9gTxezsGY7YWiPgRoLr0fl/97/IhWemCgEKep7vhkhx8Cq6kK3x35ZGfGiWW4EE4ktuBO+HY5KxkoiJSUAArzmQIvbHCqRovgQQ1PS63mRpAB9DIIP1KnGoAGANgjFnmcNCuB4CBACC1Gq5ACFyreTzcD1jJWclksLphloZIj3PwixLBGPIcWsQorKYIzv5imah6Z9u8vYeb9mIwZisHD9FfaWesV9dIrERZx+15Di1YZyCcpmEOZ30yJGu8usYVwnAVgJp693Sq2w4xv37QB2sfvu+T1k5S5WDOxr/+Zbc9FHrssOZUjN0iUXZMS/t4nm6Ey2n1cZpTboneDmCot+3wNvcuu0aj4ab+7JSV9RZR/2RHj8vLTN901WsPziu1xK77Lf/iNAC7WmmaczbJwYXsJlAAC9jvL0VGwJvdtVQCAFa1fLHE0mKTxD560Ka/QkmkzUsuKX65u/pvifO3yI9fuI7oKShURcoHchOTsnvKgcxNTBpCQF6hoCCui3qvmh3zcXowy/Ct/de8OYjQFq4rs8Q+0ovCAbCjfGI2gMnoQoGP3sA9y64N0CvO/6PB6T8GIFdfPiTrDwBHAGyFq4pmLoBnmx7TGQ3RpiRnJacQUMEVUgCanJV8PNjUTlmUiz2nCkBAixngQKTCZgvhnGWH7dqvzDK3L1ZhLf+/6MMmnqeNs6Gr4LLPyYKuX/BN9H27LX4TAOXkAzZ9LAOKANa5p0ZS3kll7vvo2nMCHJJqzKGicyYajNlX9Q/Yf4FdUscWNSSIrN/u2BKmwXWOrATZ6Q+uarpFL4ZX1poGZAM4MjZio9JPWbdPKDhvdV5mem0TXfI2q2A1QaCgIgFRuovitNe+Q3jssDpktQzXE+pJuCUl1ACcPE9FT8fwcUpgAcQZjNkpvenC3d38fPSSex2yWj097qeXly9Y0ikR+s/ufWm9wZi9DcDVAF5pqc3kmN+V55blg5DGxUh6wpNyV7E/56dWO4i2Jkg+9F5FfJTJpcm3sDv6bo2HvovwC3AGP8RQ9LgDufW+sGEav8BNxMQ6iEuAmkMvmx3zcXpQZo6uBoAQTeXXfz1+W2+75tW5/wagjzqsBmO2MsF//D9mp1/CNUnvHHx23g8rAApBIJFdXSlqMpO6jYA645XWC0JY9voqSdWo4OJxEl4g67A7KLPFInP/BLEO22C1OSzPrvm9TFQfjFTYakZp6yv/e3FZp1VZcublbEr5KOlCGbjDInNKCfhunSkkhAWlsjNwi2gaujbaGRNLJN1AU13iAgAvrQZOKI1V3BDXEKopdwLIVvjtjgbFdNdFm4JR1EOO/F5bB3ADOPuQ/ioLNpuDngGQ4Je09o7kLKOQl5nTosZ4q2TUbTK/qH9cb2EzzVr5Nf1/GrwbwxqlK4gvt0S2lvaWBlcm8lQA6z0dw0fPYjBmpxDIF9JuqEDRmzEYs+MB9WMAfli+YMkjnvQRrK5YWW0Le2LUEx++V2sPebf552gXNRozXHH4FFQiTeRYuoP9Q2wfjsjRkmqb8rtip3ppgtJSsvKqwz26ynHMoXnZmcBq5hBRIpSwFNTZ2SfpQuP6yQCmABBiM6e0+N3LTUzSaXSB3xIH42fla6/XCkGH4L5w+sIBfHSWnRUTKgBgb9Wo7tIgPmUMC9kRtKdqNCZFrxoCpJd6255uISMgBQB/aIBNkRcjjwS+RX79wISLBny69ZyEH+9sbNYNzupkgApwJxtREOS3WPKUUgJUh3IOvU1mck2yYq+aSHXDNCZDmahaW+jQ7ApkHTXjdXWiSMne1y8p6fa4/TEfjJ6qptxNdfZgmTLicKVSOV4iMqislMSGIU6xfgTEhiEEVDkBwIRjxGkP05ZRAnkrBfNbv4D9jv4BB61CwblfSJTL2/fs5cc/u+Qs4xSAng1XkpqoIeJ7SobydRKXWC6qostFVSqAO1wxs4QCsCdnJaflZXZuBltvYX8BkKm3sJvbbdxBPHZYw7Ulg+vsQepWdh8A8DCAY5727+OUwNPjc370jF1ejfc78luByUAoGI/DSvWK+rxqWyhq7cE3wiVfdYLz/3fZ5JKLuP2QKCwsIc8AELozHCCijKsCgAWhESOsMkuilba7uqvvlkjOSvYD/C5Sx0lbnP2s21RHtHc4BlleGfXjsQ6fU6Fx/bkAfnIv8YuFxvULYjOnnCAjlpuYxAH4jDFzA8RQx9Vjl5Z+5t51xn1PfXQPDJEgUxYEXZDF9BKhmjICACwj9o3EK5ezug4A1++wRnwpbz7nnuR81Ckr3lu++y7phl+y/QDg/H5f6mrtweLG4jQ7AFww4HN9lTXM2dZ2mTnGsaV0igMAQhK5dAcR3ZNslIaxzjINYbLzbAF/scQZHKywTZRl9Q9FeTd+q3KGSsMSsvUF9f3sxRUTnCpNGfGLXqOrre9nN7m3ndFrdIdrh6gMxmw2VFNGUlzbtr1Vo8VY/VFmdMRf2ubbuVUjrYdqkySOcUxQsfbzRZnbZ5c0tdG6YykhmvJZ+6qTK2V1UX9NHI1xEBsYTTEAQKQErMUAe/2wg6IzeF+I3wGVJvKXyGp7wHci4/g7JWT3yAbKasxWv0oAQaFq06xiiYNW9+cYAEH8Jw+MtkgsrJRlAGibTCSzVsrdaT1hrZxaVERW2ynDwNXQU9/A7v7bAfmvjuGxw7qnatQWSeaiW9rH8/QYgOc9tsrHqUJwCy8rASLhDFxeHf1E1jM19v5DhgTt2vjr/y3yWBP1mGlAlPuJtLUfuC6RKUCDiqsIeLiqy78NQSAMXAUACniefslKZGIlR+RilrsewNfvXFrUo5XLWMgPSWDCbJSdLUc4gnFEeweRSXknu5lCQQkBAXU9MC0pNK7f3TjT+vfCMKJI0mxR5epGA1iQ/Ofhz9ruzoeP9jkn4Ychv+bNAR/3y1nABd97257OsLbwXAEA1hXOqvSyKd0FT0FZAgJKCdff1hjxgGd+Onr5M00b/nT08hMO/PHwlZ3arsmfD238uy5lKKogeXl3RsrWhJsB3AwA9a5mFwN439Ls+EprRKe2Cxv6obChX6vboqyEKB+vI4NiczzqHQGUY8S9sl9OFSFSNFwXRlCgjiWyv6zNIwptXqICSLQAsAAAVzWaBbDFEnjCuR626yQlkW0ADgOo0TFimY4RK445tBsB1IzS1g0QKcnfbfX/C0DNVL8qnUhJ/saG4GM583Y7msfNwgPfoDDGHhxbpEJphIOPdJUB7zIeO6yirKRwZ+g1xx3Dqgcg9lR2so+u485ynwfgM5Y4Xzz8/MVn1KyVwZg9FQh9GKDYX5M8uotxvAJAbGjlBz42bMO0IfUFqNfJ1oCumd0IC+AKAPsBfOlnYlWLwgMZEPgBtEed1Ye+i0hiScijQaz9rzXXHNiS+3ySPwAoD2s7+yS9EsBDFFThdlpPKOeqXRP0GGNhR9tGmjaPXlH4VreehI8zlhJzbJX7b68LCcC/MayB3jSiGxHgXnd2gsNmOQlwSTf9Mi5ig9ns1NfmVo/cDwDjI/5MMTn9q/ZVjzgAAGdFrj+71h5UfqBm+CEAmBC5dnK1LbTkYO2wwwAwIWrtlCpreOGh2qSjAHBW4NFpx2rPtlVz1TrZPPDIWYFHE8qU9qNH6wYf4xgHOy5i4+QSc+zh/PqBhUrGxo2J2DypuCHu4DHTgGI1a1GOCt+SUtQQf6DA1L9Ey5nUI8K2TSgwGfYXNRhK9Yo6zfDQHWcdq++fW2yOL/dX1uiGhvwzLq9+4J5Sc2xlgKpanxS8a+yRusG7yy3RIwF6nmtyg8oAeUOnqH9099NXNwBActbT/zqLBE4CnDcroGJLuVMZv80SGAjgPoBe554ckQF8OE5X+4uKyKUbGoL3Aqjdfv0eZ1f+U9yarB6rLgCAwslUA4DaxnRLNUWgCw5rpLYwvsYe0lpIQCBcgvT3AXjN0zF89DzT4376USg4F2MiNk92PVyeUVwJl34q0MWEoUaJK7QSlB7pNPv7EStIrfLtrhgsCGQygB08T82CQGYBqEdGANmo0cb/rtS7W5F3k7OSj/ZUpan1puCFTspgpLb+SQBI2pdbn5uYVEMZ2r8z/cRmTtlUaFy/gIK+RUE5ALRq4Pv2Q8JUEnF74pUM2CcpJ38lxtqvbLczHz46yK6K8ZUAsK96RLG3beks4yPXy3+XTsHIsC0pQPoX3ranG9gKQK5mNAdvtf7HsJ0Obqw3/8xX9z/X7PrVXDIwfXHXtpsz58UTty9ttv/yZtvNL0tXN9u+tsVRXBn3ZDpcMaROACv2PH3V8UTfNpzFowCQnJW8FCCX49/JkXeWX1bQ7dd6T1UXGokoV5QDQGAd122/M48d1hBN+UC7pG5NhMwE4EH4Eq5Oe5YvWGIe+uiK+ry6liuW9WUSg3cN3Fc9AgCV0A1JUG2Vn4sxOZxQAGpZ3OJp/4JADADWAHgBwKM8T+sAwLxFP+hXrVbXpMRzj8UjJ2clGwDuOgDvvTqn9OfG98Ughwog1+YmJmU1JkIVGtcf1zZsLaEqNnPKskLj+t0APpYZm7aB+Xxx4Oux8ymhg0CxjojMteMXV5xx300fPYeCcRCnrARHnF2plekVInVFNQDAEDnS27Z0E/0ICBMiW5/fRoccQEez0Hsx7U1uAG07i90x+3mKOH1iWHOrR26hlLT4g3dLWbXzNOPjdMEi6rdbRH1L6ZJ9mjp7EJSMzeGQVRno4YvkEPXBsZAAq59zb2elpgWBqHie2nme5gkCuRLAr0331wZK8wJsxxNIRPSg3FO0wvZxsVNFAXJcqzY3MSmFhcJd7QurchOT0vwufgdwVdZSAbAVGtenteG0bipYtOpVRla/HrJ0oiTXlyQCgBTqfDX5z8P2lo7x4cNTUuOzB/+aNwdTYn8fB1z8rbft6Qw/Hr6yFIC8o3xin6jyZtJLE/0aWDg5eqi76s33Brp6rl2d/TwV5CXYRUO+CuVhzhnhwIvtH9E+Hj9hypQlFEyrGquCQIIEgfhq1PcK6GECeZC3rTjVlJjjwhyyek1e5uzne/qJPpatMByjofB7sKG+tTZLbl+dsuT21YuW3L46pfE9dwjAEUEgyQDA8/Rrnqcn6MSGVrJDJEKghCQDeBxAWk88dV/5hWFqiVM1KVlj+idnXk7T+D+egFB3HKpaCnJe2xC+VqCgaricWCVcswEtsvOSOGWlaWEapTIUUWNZt6ar5Ei0/J8gkE6XkvHhoy2KTAkVAFDcEFfgbVs6i7u6VT36SAyrRStfCgDF0Y4Sb9vio3vJ62d3UFCqsTIV3dWnxw5ruLY4XqcwtXUz2Q7gVU/793HqGB/5ZzQFE3b3suuivG3LqeL8/z6rBehwuL6nPU5/R6UogpXcMi4n4XZS1wB4BqBr3r7rx2kAcOSP1/xLtt9hKvjz8SEtdpwRkKJysHMKOA4D7CLJOXqs00tEi+fOTlk8d/aixXNnt2hbI3usfg8CMEUoToopFeBa/pHBcEQz4Lo79eXTlO7KzCIAB1qY8d09aYB/bmLS/cq9ukPqP+wXifWHwEWPdSVzEoi2iXUjACR35lx8+GiP3VVjqgFgf01yr3SS9Io6tl/AgTZ/q72F4GrOJBNqSrjJdsTbtvjoXnieUgJi82tguy2G1WOHNUhVZdAr6oPaaPIYgCxP+/dx6rCJWgEAdpafZfCuJaeOWH3e5QDhUqLWOHp8sIwAPpQ2KA0oYwGsaslpZVXV1wNUBYABiEqWVMJbd/500Fo5/PvqA5cNqi+c9mHTmddGRJZeQEHZIgWHWFEC2pjJbAm3k7oawNMAVrXmtI7/cOhUABdQkMxX5pQebbovaV/uJsvkmjvsU9W7dOc+XaSKTYX90K+yLefzxZTSxwGcEA6Qm5gU+c+F8T8QM1sD4GUCcsQZa7uW8x90LxsQS9jwoa8TSqY7B1oT3GWeIQhE0Znz8uGjNVSslQEAJWvruZqbPYiGs8gyZbpJbMS7KEQSw1Cy29t2+Ogx7NR1X+sWPHZYD9QM21Zuidrf2n6epx/zPF3laf8+Th05lWP/AIACU/8zZoZ1T9WoOADQKhp+ba9tV7Er5esIARhXTlRjQtQJsKr6i12vqAQiyv5xa0Epq4Ere55p7TiTXpwog6CI4xDrFDutpUsY+S64yiizbof5pDH+810ECeEcP6iJZEYrqh9k2vgrgyKeHsWoAoLlhvLrHbu//k08LCys3nftvNpVN/nlJiYt+ue8hHv3Jg9ZDiBfcUA7W4yzlzgGWc5P2pfLj/jj6CeUdX4DAIrUK8/xu/gd8DytAAC3GsJeQSADOnNuPny0BB/3yyAAmBS9eqy3bfGECmvUP/n1A4u8bUd3IDF0hJOjvVFezEcHcChk/+pgaUZ39eexw0rBMO3EsAYLAon1tH8fp5TDAOCvrBnhbUNOFUUNhngANauOXdBtZeNaw8nRrQDgTnU/KSFqye2r0x31hkhN6O71AHmMEHlK3NnPRYIqLncVI6AtHoeMAC6wjhuQp2HKREJQFiit7Ez1rOWPjXqbyri6yRgMp7aftEy6uj7kwiKnJmC41vRNzrwcM+DSWhYEcv3aVerzCo3rM8L2PDRL5hpMtYYvL4x/89KPAMy2D2tYqdivHcKY2F8o6LOKo5pXIZLrACwnIENG/pgfO/LH/ONKA4ysjKOQwdkikgGscqsMAEAFgCMA+opYug8vUmDqVw4AhaaE3lqJsQ59IIY1b7k6ipVJcHWw6O9tW3z0DIxM6tU20m0lhD12WEM1ZXEByuq2kqreAfCLp/37OHXkZabX6RT11OB/uLnQXJ+FI84JAN3uTmLoUfQWdg0AbCKJtQDSmjqVWU89qwfo6wptmdkw/aG4YVemLb7zrXM38jwtW7A0dROnrvnarRM7c8HS1ObO6KUEJP4nP20WAJRqSXZHbVo8d/bC6gOxt2tDTaUKvW22Qmt/B4xsEm2qJxfPnX28gl1yVjJrp+zTAA5vNQfe3KQLjrUH/jdyxzM/AXiCgHyksMZEJt/29h8AkLQvVxr1dcEFVEE/JSCEuDS3KNVKbyTty709aV/uwRbM4uFO3kKTGWWep9t5ns7ieVonCIQTBHLGPFj56H72Vo2qAYCDtcO67UZ6KjH4H4z0V9YO9LYdXSW2UBkLADoz87W3bfHRM3ASqdBZ2LLu6s9jh9VfWRvjr6oLbaPJW3DFsfroBbBEOnKkbrDF23acCu5ddq0OwIjR4X+dUimvdY4xu5o6q4JACMPaVwKkvz7q70UM65zH8/SEmFrRFvKn++Xepu/nLVcTq1p+U2Jo4bvaoEMAsN0S+Ed7Nnz638HkrTumfgrgJQBfWCoDDPe8t+qne5b/cRtklgcQzHDimk9eHBIDACM09U/Dlfj06BsJuzWCQB4RBKIc+Mu60QnrPuO0VaNhCd7+AoAbYjOnnPT9YZzMmwCsAEQCYmPMXFti5wIBadTnak2a63EAf7k1aX346DR6RT0HAAyRLneJuPcuNJxFdEhKZfstT284yRXiozezPb7K5cM7UFC7Wy2mW/DYYT1SN2RXgcmws7X9PE9X8zztVRp3ZzL1jqAtDU7/th5A+gwbiqcni1QBUeZ+PBXjFUU7YgFAo6o/rqohCERtq+33h6no7Kna0JxDVz/08hs8T9c1P1ahLRMBQBuaE930/aAa9mKNjQmtCHOuZRg6GKAigDZlehbPnT25Yk/CYWu1/1WqAPP3AK5euGLlcZ3ThStWblcFNtwoS8zg6oPRO168Kv0JU2nQgxEKm3WUtu4LACnqmmFPx6/7aAuADYykM1lC/04f/J97jbGZU1qcqXYXEUiDW26rsahAS8RmTtkkcnV2iasvRLNErSa8AeBenqd5bZ2rDx+tEa3PPxcAZMpcDWBVb3Nac6tHrrZJWtZgzCbttz59MemlNApKAfQJTVkfJ2NTyQPtKnlGa+o4naUrlT5YgLRagUYQSKAgkCRBIL36R3WmoGDs+QCNn/fmPRpv29LTVFojhwNATuW4L0/FeKwEBwBoNbXHk9rKc663F215aBClxGGpTOZbO1Yf9Vc0AKiD958g7xRQz91IQSsJJXdEcLbr1EQiAM5qrR939v8q0arqB1DJXqd9YeGKlSf9fu/6n/CVLrx2haNeF8bIeGLSpmjF1Gr88dHlx+SBv6yrj/nrTVlpSRhJQRkAtw5ZaPypvfNP2pe7KWlf7vNtOasAcOC/i0M5MUBrCd22u7UiAzxPK3ievgMAgkAGCQKZ3974Pnw0pdDUL8AVs00IWklmPM2pheverW+n3WmNyNEZdhWVkVFn9bYtPnqAjIAUtZ1RqeyMHq2o43QWz2Wt1BUxIery8Daa3AnXMma3SRr46DlSotaGAoTRKeone9uWniZQVZUKUBNciTw9jrossAoA4FAeFQRiFAQS47SEP2arHhIHyj28YGlqqxm/1qqkvwDAVDSprvG9+sW6MQAuICBvztANGF7k1ITbKMsCWJWcldzaRYGH6+YMgFCA8K2NaS4L/oeCgoAQRiYYYCFT3LJS0wGmUQpIBtCtWdbaqrOGA4Bf6fQWlQha4D4AzwkCCelOO3z0bSyi/mu4Qk8oerAqXE8xKuyvWAA4J+GHXh3HGljL1nAi8YUD9F14Atc/dNODoccOq44zh/mrasPaaPI9gCtxPDnax+lMlS3sZwDYUjqlz1cW0itMFxr8D0l5mely+627zgE5TgMAjJMtBfBo1f6LH607Nu1RTlPuCB789VttHWurHXQMAJzmqKsadVidCnwiE0ptKnkpXIlKQPsXBcF1f25FcQDA4rmzUxfPTX80sH9JHABQUIDAaSoKvYbnqRMAcV98ZALSEzf6Rge4o8Uc7gWQwvO0CnDFBHezPT76IHmZ6ZsIxE8AihB1+dzeVrdexdlMANDg8Ou9lSQzAggBGcBJZKe3TfHRYwhwFY4BBe2W+wXn6YGFDYb9AKpa28/zdA+APZ727+PUsqdq9CYAqLRG9mktVoMxW0EQr4jWF3Q4o76rVCXUpqEAKEfg8L1//O/ZgZUDnwSgEK0aR/WBy0ajjZrQjMKUKDv9ANCrAXLpN3e/edmcEHZAXYC0OfB+cxmykgW4KkmpACoDRGipn4UrVm56+epznZzGUels0F62cMXKTZ++OFhXXxg2w1wWNJpV228ClHEAaE1+OKnVOqGQCdaNrpLLg+w1Zy+7ifVXXnQP6wgoIGCXAljT2rK9p1gDd92iNBvMCU+nl3ekPc9TEe74N0EgdwBIEQRys9u59uGjVdLif97yx7ELrksO2zYZuPGUxLJ3F3+VTPsTADaVTO+1S+nFUY5B0SVKf4tGqjilma8+Th0ZdZtqXtG9F1TH3V4bKC4Nus/S5ftFV2JYObi955YQBKIXBDJSEIiuC2P4OHWUEsjWEHX5BG8b0sMkUTDKooaE70/FYIJA5hSwgZkAkCwWDCQNuqeoqxgAAMKgnWUSVmm6oklbhR9bvpCAcIF13A0AkDMvZ5OSyLM4yDROYS1rrSzr4rmzw6jEKSW7YiOAya9cO2td2T/9G8xlQd8B9DEqsu6ZdUKoxEDiKAgIyoPsLABeVZ/4AOcIDq+P/emH2Mwpz3W3swoACktsuFNT1CFntQWCAPSJ6j8+eh6dwvQeQ0Trn0VpvTHRtNb9N9CLNnQJmcE5AFATJPkeLvswFp38OgCobWx9d/TXBVmrmsgIbVFMG00mA9gJYKSnY/g4deRlptNwbQkJVlfM9LYtPUk//wOzAUDDmXf21BhLbl+dsuT2VYvcS/g/1RQMLgeAsVINOZ/kcABIW0vzTRGtIbmuV1QikKVhul+mUNANyKg70Nhm2/V71gZxzvVFTo0uOSv5eLnJT/87mCx/bNTkxXNn3wHQvQAgOxWXAXhRFrnwkMRCxJ69d2Xydatf08z6x09kKGRQUAKp1s8paewsiAynUlas1VWkXEuJ84ikqry/Wz8sN4XG9X6cIzhIXZ/0gSfH8zx9DsAlPE+dgkD8BIH4nFcfrfLa/E+sMuV+E2VlWm/Ltp8UvUoNABOjhGnetsVTYouUdgDwr2e/8bYtPnqOmFutuQBKNTbG0B39eRwSoOasgf6q2lZnWAHsAHAZgANttPFxGmETNX9X20Kj22/Ze/FX1c5VsVbMTPh+P3BFt/fvclKpAEAJUOz5fFWRH2MKXo6LYJGDAVAQAKy6ukiyhVzeQjGAE6CySgIgh3JH35vq/7+boxQHWApMQEZASlNN1wpR9VZYjfLzKfsCViz+afZeAPGcOmGuaFO5NfBc9+Tos/aJJdsGJYy59RcVAGTXhpdvqk14sY5yTOT4suKpBZrN2uLAlyI4+x0M1V83to7c9mT5C1EARhCquH7E/Pd7akZklNvIbZ52wPNUcsexfgUgUBDI2TxPfTH0PlrEX1mzvt4RdBEf+zMPpK/xtj0dRc1ZKwHA7NR3m76lFxgMwO7XwLZUQMRHH0ImNIcSnM2237RdPJ5hLbdE5x+sGdZqhh/P0zKep1/zPPWVU+wl1DmCtzhlVYzBmN2VUJHTmj2Vox0cI/7z2vxPesqR4QFwbgeRUtDKUs5JNExjkj8DgECyhWxsz1kFAIWueAph7WVzQxcOjlIeaPzNEzQLJbhiVQx3/qZI+NdoL4WrYMfF+qhqNn5qDtTBpmRNaN0vDCdKVGaUY279pQrAxjy75t2dFv/SOklxJ4D3S0MciY+98uelC1es3NRP13AQAKZVMU5RU/qhpKirAfBZZz6IVasHpKxaPeDhVasHtCtnYor6/R4AaAhft78zYzSH5ykF8CqA13zOqo+2mByzaisAWETdrd62pTOsOjb7KADkVI4r9rYtnmLRSOc4OVqBjDrfb7SPUxUi6gjFoLzl6i4ndPdkDKtCEMg4QSCRXRjDxykkQFldCkA9PuLPwd62pScwGLMniVQx0uz029eDwwgAsQMQAWIrjNn224daDasI3Vzq8jOP6+u3q18KAAxnOytUuycKLgdVhKti1PFQAkEgHABo7dwjjcdQUFrlb/9swLnbR4QNOxa+4O21u62VAWGyTCpLtg6eeHf+cMfbZQlfLS7tf3alqMRkffWLOfN235IzL8fU2Efl3oQfACCg5Lw7lGaD1hy2+YvYzCltraicgMtJpWsB+ixAhVWrB6QIAvEXBHKFIJCTEvtU9YPDJK7emvjAI10WEed5+jPP008BQBDIZEEgiV3t00ff463blq9lIJZsKZ0yupcVD7DCFU4U6GU7PIZQkmjWSX12YsTHvyic5CuGEkQXK5K62pfnslYKU2iMPj++jSaBAP6GKyzARy9gXORGDgAC1VXneNuW7sZ1Q6KrACgAeklP3aDcs6bHKztlO2NUBLJcgwHbACBIecQGALrwHe3HbmUEKOT6KEWEWIaqYOdaAFMb+0VG3SZBILMAVHz07NCnACRRAiqDQmIo2Tys+qa784cH8TytcBUNoGMhMxEg8tpRJlq51+Z3F0DWiZQZ8valRf/XwuiRADDAb/TUBmctXb1p/8cd/QxWrR5AADwKQOGeaebgcriHAFgBYBwACAI5SxBIpSAQXmlOCCWU3SwI5ElBIPHu/TpBIBGCQDy6Trmd+fcAvOOTvPLRHIMxO0UGGwaQIehFFa/yMtOphmtAUvA/ad62xSMyAji1jbB+JvZzb5vio+cJrONWAoDSySS317Y9PHZYOcap9VfWtiXYXQvgQgC9SjLkTKa4Ie5nANhQlNYXMzd5HBfOB4serG6zYGnqpgVLU59fsDR1k8kROJmC2WgvnRDhz5aUhTBFKk5dZbvhqYVtZk3WvqLTmaWgH5xUo3Ay7B8h91h4ga/PE/j6sQJf31jhJlcWmZV1x8IfVeqtto3Dqz7aMbgWv04oQ0WQXakm0g/JWckLrErpYte8LoFMiYKW+QeN0tZ9AuC8nHk5LS4rchr7RZGa/ghWRSG3brNsl61TOnLuq1cH6wDbZgDnuyvhie4ZZwFADoBkAI0laOsAfKmuSa6hoEl2v6OlcIUzNF5XzgVQCmAEAAgCmS4I5GtBINHu7QRBIKmCQFosTuKWvUoHcLU7VMCHj+MMC9l+Nzmu2NG7Kl4pGKfN7PTrrQ9hCQREwcpkt7cN8XFKOExBzVa1fF5XO/I46arOHlxRZw/e2Np+txaiz1ntReRWj9wLQLKI+jhv29IDCHDplarhWloXenrAm5bcOQRIHxMrS4sBLNTo87+oMcddEcIV25snTR0nIyBFYugFShW5q14K8QOAqvjKxhCGagDDAUQAAM/TY4vnzt4B4NrgQUWPHYoTNwC4HKBKAhAHJTYAb64eWy7P+isCjAzIDIXE0qc+u/xYRlu2cxq7PFw1CWZnLfJMuxzowOe1avWAUMBfANhhgO0zQP0mgGkAhLTUw43nevwmxfN0P4A7dr99z3wCwoiakt0AlPg3bmIngLvwb0WyIACJcP0/AsAcAK8ACAVgFwRyO1zVr8bzPDUJApkMYAyAt9wzrEsArOZ5+tXxjzsjIwUuR0XIyMjoVQLyPrpGmLbsV7ZaukKkhKJnCmH0GPWOoIP1jiBPJeC8SnmYMz28QoE6f7HCJ+VxBpBRJze8pJcAdHnl1mOHFe3EsAKAIJBxABp4nvZkzKCPbiIvM9056OFvygJUNZO8bUt3k5eZvslgzL4YwC8AeetUVLcRKXc/AMwN2jID9anoz/zz4xbxxiuSldkBFHR9/WLdIb2Z/YOVicOslaJFlo7yBzuQkcFqrAx26GJLUI0o//i1MwGA56ldEEhS42zhy1efFwGwTwD4+cZndrx0I4DkrOQ0gPAUEHbN270pOSt5mDXE/NGvE8pGR1apURpilyqC7Pb2bI9xTg0PCYjGQdu6tTLoooUrVrb5ea1abRgJsN8CbDRgXZSWWpzp3tXqQ20jmqqxcQAgKWt+cc+Kwn2+h+FyMhu3vwHQNJTiMwD/wOXIA0AxXE5ug3v7QgB3A3gDgAbAHQDuEATC8DylH3884VlgltFdKcyekZGR5nNaexb3sjsPQPBWhSlBICqep3ah4LwDAJa53/6wl1W8qkUv1R0mFGcBQG2gdKhXnoCPTqNwkp9UdnIBMgIYZNR5XGHSY4dVxVr9I3VF/dtp9g2AVQBu9HQcH6eWOL+jKrukGe9tO3qIPwBK4/yOBp6KwTYUpQZyxFmrqhiqg664IVh1ZJoEJYK5QgBg9Q3sEIYihoJCY2U46pr9BQEBBZXqy8fvAWhk5Z5rxmCOq8+mS9v6qGrBVBSqByXHtVHdhQM2Ndnek5yVvKAhyLGqIsihQAe0XwuN68lAv9GzbKLZMUg9ddb0FY+06eCuXh1mBPTPAbQSIFPTUou3dOZzUjX0jwVQHph/xY7OHMfztAxAWZPtHwD80KSJEUCm+zOzCAKZDWAQz1P6wgv3pErSpFsApjEsqnFJuDc5LaclBmM2CyB6QuTa6YTQMZtL+BoA/YJUFbOA0MhGibWBi75xcozE2CRtAwAoGZuWEMrYJY1rm7VpCf7dVrE2HUBhlzRm17ZVB+CEbQpCHZLa4t7WUxC56TZAKMEXjPOX750A6w4lITKAfhcuznByRNy5vTzlBwAH8zLTa0/NJ9Z5+vkfiG9w+vfKhOawSkU9Ba2lBF1SBPHRe1Dbmd8BXAlgILogdeqxw8oQWemnrAtsp9nVAHyyVr2ICmvkzw0O/9netqMnyMtMl4Y99hmCVFXjenos101bMSNAIr87Lf6XAnhmK+b2AwCJMhIAB0tJmsDXTwLwPIAIXvAfQkFXU1AFAXGUOwc5AVJ43aMZ5ub9L77y/PGgoYkBhrItt7ywtc0Lf868nE2umVfXzFZr1bAaqYn76sGggsv894s/5aVlPt+qs+qWq3oE8DsPcDYQmM9PTa3e2s5HcxKUOCeActvjMqd2a5wpz1MZ/86+gudpNgC89NKtM2228F8oZRtjACV0wJH34cIttB8xJnzjJJ2iYdr6opmlAPqFaUqmSJTtB4QRgCj+Km3UtacUIMVWUats0g3VKcx5sX75FXuqRv8NAPH+R4YqWYd2b9WorQCQ4H94OEdEZW71yO2u7UMjGCIz+6pH7AQAg/+hkQCwvyb5HwDoF3BwtEwZ8UDN8BwA6B9wYIwoc46DtcN2A8CAwH3jRFnhCFDWRu2tGimaRf1wt/NMADohp2JsIAUzG66EQQx77HNJxVoLq23hawEcnBLzW5BdUq/eUjp1XV5mugnepcrs1EV42QZPGUxA9htutPniys8Q7Ep5t8rBoDpIvCgY+K+n/XjssFpFnXl35dgNbbXhefqnp/378A4mR+BOANcajNnBeZnp1e21721YRe3RPVWje/zJflL0H5duKJ4RMl2y2wE1A+BQmXnMIgBY33ALW+3PvTT1sRWbIJA6ADYAIjLqNpGMgFS4HUubCp9ytKqmed+L585mAOZ1AGUNxSEdigtqPvPaFprSyXdaRBOK1Kt/a63NqtX9JgNkratkLJEA5UWpqQWddlZ3Lbs5IAjXDTWHr690iSD0PA0NkeMAQtzOigTgDwBP+sIBXLgd0pDk0K3jQtQV52wsnl7pkNVxweryFI5IQ4FIGSDq7eVnNz2szC5pTDH6/NI6e9AKiSoODQ7a3TAgcH/5lpIp67dl3Gh3hwO4lTrgrHMEz/vnoeuafObpzSzpvm13DDPnzq1Ac1sAcv4lgz7K3VU5NvFgzbBIBeNI7B+wf94xU38JLtWP69cXzQSAB1zHryyP9zuidsiqv0rNsWtUrPVovN+R/kfrB6lFWflzT4cXHK0fvAnA0J4co6dwcvJEh5Ju89VsP3MoiXLmxh9TQmLpHHjDYUXHYlhHANDzPG03js3H6UGUrqCyxByHMeEbJwHpfS5pTqZcKU6BfqFV1N1IIGOYtuBCWXZaRFtoLNy/N5ly9IB5RvBUADxP9wLYe/xAVyLWJgCg93wXrwnJPcm5DjCUPluXFzkRwI33ffRrt9RobqTQuH6aGpGG7XV/oKIg7LXWW4pPAcrG5XQKYCKATlcLCsi/9GpCWSgs0bs8MtgjmDUArABVAsSBPuysthYzajBmBwwO2jMiRp9//rayFHO9IygsQFk9VqOwjCWIlikYbU7lCQsR1VZRWxXvd7TCIup+aHD674nzO1I7LGRnfaHJIKx86LEWZhxPdCDdceTHZ/pPcczoAwAuFgRyPs9TU8u2pANAk2I4cxrjsHHei8/5x/sdnbm7anRQUUNCqJYzjwJwbqU1fByAc+ySBgdrhzU2f9BgzE7r4fOrA+BnMGazeZnpvUZ8v+ZVnX+QyOlqgpxWn8N65mC40WaSnvLfF1rJdWllwmOHlSWiyhBwcODJT7Un8BSAfgBGejqOj1PLyLC/TSXmOPgp62egD6o8BKkqGVFW9HhhhO3lKQF6OHc5KpOGasN2rxFtoQJcM6lKgHXYawd80tbxS25fHQj4M5aK5BP0T9+4JdVfFoMeVAebTLZqvw+7225JUbdYsqssR0z/yEBbMWYKmzuZX/Q0w7rQuD6Fhd9rAKBqGHhLoXH9p7GZU3rcicnIyNiUkZGRBhAefVgdwGDMTiGQBQrCAUQe8siX20LUlSPKLNEiwPkdqBmGAzXHnSyTVdSVhOtKah2S6vdqW9j2ME1JxdiIjfYKa5Tw9f3Pdktol9uJ88bnXQDgKIDj4TWdseXn/zxcD1fJ35MwGLP9Vaz1JbukvsU1c9/z8dBjIzYO3lZ2Ni7o/3kskJ7fU+N0N0G1XD8ACK9QvO9tW3ycWliZuOQOMwIIMuo8Cgfx2GGlAKtXmPzbafZIV8bwceopNcesAoC1hbN6pWRKe8Toj4UUNiRE9+QYBmP2TAATh9o0awGWs1SMzFiwNHXTkttXH5/R6UBZ1gEAIIva3KZvOkzaNwFwCp31hYUrVnqcbdkSB1547UWtc8zYfPFPKAJrSu5burbFmZtVqwewABkH4He4ZlWbylZ1Bp6CcuTE4gKnxJlxO6l90lEFAIMxW6lirW/aJU1j3Chjl9QDNApzQ6im7M8yS8xGnaK+eHLMKqbWHrz2r5JphQeeu6SFm8gtp9Tu7kYQCMfzVOR5+gWAL3pijLzM9HqDMXs5gGtxPMSgZ+OhnbKiEABKzHHt3YNPNxonC3wJV2cYFo10TGtlwwtj7ENjgT2e9OGxMylTjv5TcVZ7MaweGeXDe3y38Kk6gzG7BCADvG1LT3CwdujPdknVY7XD3bNaP1EwJEoi0yTQahZkM3C8ClaHnCS/mA3nm4omQROypwxIBQAsnjt7CoDrAFBrZeAji+fOXt2e3FRHKTSuT9Fg9AMUFPHcBFRq9x9rrS2B6RoKvzBA+jgtNc/jWV67/ki+sqEfoaAgvUwH83Qm5emlg4G4j+ySZgxA3Q8dxAEwF64yPtjs+3LVqTfwFCEIJA7A74JA7uJ5+kdPjnWqwx12VYzfDABbyybdYjBmf95bJLmqgp1XhlQrUO8nHeltnraPrlEdLFZoi1iwErkAHjqsHlW6MhizGbgyFtqMnREEMlAQyIWejOHDe/gpa2uC1eWTvW1HT2CX1MUAURuM2doeGuIKCsJyFDA4WVITUORcsDTVk5nQ8QCgC8s5LgHCaW03uF82XXbsLngCwhIQMIRBvJR6uLWGFOx8gIKgflVXBlQ29IsnIJCUNe8BSDsV4QB9nStfe8hYaw/eRyAPBXA5QKYA5DEAPR1TeToiAyiBq1paj5OXmb4pLzP9+VPzOdNY94sF6EVlZdVWZqjIyJK/iR3ubVt8nFq0Flcp3qhSJetpHx7NsE6KXqXYUJyGxOBdg9qJYb0KwFOCQBRNBcF9nN7E+x1RFZj6GbxtR0+Q4H9IkV8/EBMi1w4A0nO6s2+DMZsDMAsgMIiMrARhbErLck/6MhVNqgJo8dz73jkeO6jQ2s2iRQ2Ayt1dmYdCFlzqPoBMZUiy2GK83qrVAwigiQDoutTU6iJPxys0rmcIyHwAaw1PXdS7151PAwzGbAWA5wF+YaS2sH5a7C8XLb39fcG9+4xyVAWBMAAoz9MiQSCpfbEsb6S26KpSSyzgKjPdOzSEMwJSdGAHw/XAvQoZAWktVvvz0ScJvtdciYyAIwBGedqHRzOsas6qBAANZ25vlup9uEojdmusnY+e5VBt0mf1jiDWYMzWeNuW7qZ/wAEdAByqTVrU3bMSyaHbPgaQBOCxCTbFThnUFFsx+HEPuxsIkENN37BWBhS6XpGnAaR1VzgAANT0/6SBgKCS3Y11VR/Lf5Z/810rTRMBMghgVnRlvLrYlfcD6C8paj1y6H38y4L/3TAxRF12BMBCAG+VWmIjmjirZyKvAninsaKZt43pCSTKugtmUBG9R0OYh8vn6IkVIh+9AJtKLnEo5BmeHu/RDOuqY7NlANhRntLmDZPnaREAj2dhfHgHu6RpTPTpDw9jTU5X1hfOOAYAVbbwuQAu7i75mQlPvTO20jpi7uCg3ceu4IoXO+rPXUQUzp/ueONCpyf9MYqGsQpNZXM5uCEAyhauWJnRVXubE5h3RQgAHKjYU1nPHi1buGJNKzd62xJXQS7apd+1um7IzZKijtbFf/cNcEFXujqjMRiz0xXMhV+wRNL2Czhw75pF97/ubZu8iVtvtR6A0104ok9SYY2qAlAFkMXwYpnbTiJQl7KIL2b9DKXeX7KEVygCy5dow8MXWDqd2O3RDCv+dXTbi2GNEgRyuSCQIA/H8eEFBgTsqwSAsREbZ3nblu5GpMow90sG3fSUbzBmK8osMf+TKVvVP+DALI2kuIXKKm1A/JpD7R99Mh8//3Cw7NRrVAFHT6gypQ4yzVb5m9ssk+opjKwaCAA1ltpge53u65bauCpbqaa75KzIZ+5KV8cxGLNTDMbsdmeuC43ro1WmQYOJrHxtxPz3vF0xqFeS+MiX0wY//PVfAFY6ZeWBlGhhms9ZJYTnKeV5+iiAB71tT09CIA8AsP/Uxcx2Axl1m2QCya6iRwH4wgHOQEKquNcBILxCMcST4z1yWPnYnwMAYHjI9vb0LMfAJSXS47qXPrqPYaE7jgIAgXyWt23pAX53xYBSALRbnvIjtEUvAhhLwdyx9Pb39tUeOT8RkK2MwuxRRY+6/BnxAFBfMH05AESu2clHrtm56Ih2SKBCZ+uRUsd2v4PnUEiSRaxnAGxppRnvWs0jQBNn32DMThn1RNZWgG4A8DTaSQKhkG4BwDKSZkk3nsIZQz/jjyl2SS04ZPVZLhUAct/yBUvWedsubyIIZCSA7YJABgNAXw0FaCRQXT15SFBOqLft6BQZAQxLCaO2Mx/7nNUzE1Ym290vR3tyvEcOK8eISgBQc1ZVO03XAxgO4BRWsfHRVQjoIYDWbS2b3CPOkTfJy0zflBT8z5cAQbi2+Omuzk7c/NbtF1Vaw++L8zu6Iy8z/cslt69mAMwBmJ+uvO8dT0vbDnT/PZS6ZtmLAF0DSp9Zce4tyv0xyWWCQPp3xeaWkDnLVCtXylJQRI45dLSVZgJc8egU7rg5l2NK19XaQ8e6RdObJoGcxK5lNykkVc1jTk3R/tjMKR7NQJ/pUDA30eOXbkIBnN1W+zMEFVzfTXN7DXs7BmO2osYWzMiU3eltWzqJDq6n3W6tzuejV1EiMtRqU8r/QUZAp3NIPHJY/zh2QQMAbC2b9Fdb7Xie1vM83cPz1OrJOD68w2vzP6EAOYx/Hac+RYU16laA2sotMZFd6cdgzFasOjb7CZaRGkaGbbkSAIIGfj8PQJTSr2C1p/3qozZfTgEsvkR/QS7GPgQAIISRWBbmAepzAVwNAIJAlIJAlgsC6bIEmbomucZssVcyCrH6mv/bt7elNq7iAM5jgGQBkOYuFsADxH0doQDocWe2pT78imddwtlDOWvwjm+7avMZTOPvsjcl3PQI7phV8DzdAmCcO2+irxMPMORg7dBfvG1IZyiMsRsAoDLEafCuJT68yERWhlrlIDFwKUV0ymn1NIa1UUervRhWnSCQaxqXaXz0HiK0RXY/Ze0Eb9vRE2x94qZ6gPwC0Esvf2WRp78BEMgPA2S0Q1LPe/PWDw8AgL22/2UgTvjHrfWorG3kmp0pPxiSp2alaahFoXxKAfsmADZQmbKSBMZOnwLQmFkfA2AWgFgAEAQyQBDIMUEgM93bOvd7bZ5joXE9S8AMJLLKL5TtX7t47uw2LiKSDaC0SWUrAYAdLucJkdpCEqopTW9t5lphjb4bgMm/aHZ2xz4RH01Z8L8bxhHI09Sc+RsAj+PM1FcFcFy+6gtBIAuAvh8G0IifsjbR/fKIVw3pJAonEwgAMuObYT2D4Qlc/+BBDolHN+spMb9FAMCosL/ac0T9AHwMIM2TcXx4jxj9Mdns9Auc9txrfbK0blLwP38DJCZQXeWRBuitb8+/ghCa4aes/SkvM/0bAFhy+2piqUweAsr+Ovee9ws622fkmp0pAF2zIS42siBETQC86oBmEkBSxx9Zv/uK7PfplIJfX2icReJ5epTnaTT+LTnJwhWGU+zengrgEIApACAIZJAgkPmCQAKbjuvQ5c0DoAhRRammRFzWP0QVs6Y1p3Vb2VkHvz90gdwYo+p2ltIAPB6qKZOi9IXYoLhPRkbAouZPzweff2chBZ0EQA/gt0Lj+l4hdn46cbB2qBEASY37+dVelXDTM6gAKPHvBMoZwciwv68EgJkJ31m8bUtniChX2AAgvELRXP3Ex5mDgH9lTju9OuSRw8oQWQkAStbR3oWiAkAiXE6rj17E9vKUD2TKIr9+YJy3bekJhgTv/pAloryrYhzf2WMNxmzl2sJZz2g4s3Na7K/3Ht9BxGQAAwCmxSz7DsADULpCQUEBlJdOH0VLp4/axP/++8GY0sIDV//nwEnhNY3yPTxPD/A8vYbn6W73rl1wFYPf4d6eCeAdAFoAEARysSCQz4isTAEAQhgwhEG4Oq7FJ9+05xdf+fY/N83+4cgsfzRJrGqs8FNpjVyvr9TuVDrIbwCeRZMln4JFwjiVqf+LjZ8UfDqMncZgzFYeqBk2mSHSL2/dtny9t+3xJm5FACuAOQDe8LY9p5KDNUNFAknScJad3ralkzRWY/XNsJ6pZNRtsqqlQpGVzfBAKcIjh3Vt4blVALCldMq2ttrxPJV4nu7neeqTrul9NCbEDPCqFT3Eq7d8WihRLrvMEpPaESmmZjxslzSDLE795W/e+uHxxCH/mI2vAjIU+mJPl7uPgIKAUrAypTjx6XMUALnt5foT4XlaxPP0PZ6njTeIt+H6/yxxb4cBGJlfXrqRUgpKKWQqo9x2zAlAEAQy9MrXHrqyn/HHR25ccmdxQUPCZxSEuC4b9CSHk4GMO9nvhwNEiSZOaaFx/TRC2dVE5irxb/jAGR176QkKxn4FgAiJKl7zti3eRBDIOQB+FgQSyPNUPlNCARops8RoKdijr83/xCONZ29RGuGYDAAlkY5AL5viw4vIDBi7ilo8UYro0RhWABAEclV3JIX4OLUMDdlRAgBjwjde4m1bepCdACIA+gw6WI975guZjwHy44D829HMC75vus9cMWKwyv9Y2a0vXVvc2vFtMch2+AVWAibvteG6NfX0sRUukYGXrz5vMkD7AzQRwKrOOK1Ncd/cjzTe4HmeLiv+e1Dytsrf7qiyFzkk4jDvUryzrcpePH3sHdn7DtUk7tlWdvZnFOSZNQXpUQHKanBEBOP62Z/gcF666OVzlikW8ynsPk6iDCiFBMBZ6Dd1ACXiHxS0kIAdQ0Cmwx17GZs55Uxezu40kbqiJX7K2loAv3nbFi8TBiAEZ2gFRY5xJBLIrSl5nLYonEQBADKDKm/b4sN76Cxsic7Cbm+/5cl4FJ84Jeb3hPVF52BcxIZBQHp7zRcD+AnAn56M5cM7DArMPXSgeji1iPo+qRQAABzjYERZAVeWO1UChEcb9bgNxuyZwPCn3JtTDcbslMYYwiW3rx4IBMZI9sD7PbFl5JofUsrUAxIm77Fg+m5b49uN9pzn1j5tupTeLc6ew6T5ACDjHZqiPzkaOzlqRPGtFz67brsgEP89VaPgdH0+AKg8NmLzseTQ/Thcm2zYXj5iTsbZC+4WBJw34JBqxzuaoM/8JTsed87Dbtkg3cD99sdUOWkjrbjoCYf+mM2hP3pu0n1PNFa+8zmqnaT/ou/nybS//8DAvatynrrmjHTUGuF5+qkgkBU8T9udMOmLcMSZHKypjGx6/ekNhFQrSgEgplh5wNu2+PAqfgCOeXKghzOsVAEALBE7shQzAa4a1z56Ea/N/0QSqWL/vuoRDd62pacQZWU2ALu7chMLoK61tmc9+e6lAL50bREAhEOTJXFWVXOt+6VHck1liH+UkakpZb+t0RlxwD2DSSX2V/d7MrpxKX3x3Nmh1QdjLlQHm0q0cQUrAYAydgFwSdLtrhyd73ZWJYDYf8u7+OrE4OIv0/v/jscmLtYAsPc7ohocU6T8XMPYFFc5HsGH0kxsp0Mc+eI9e0zSnAzKOrZag7cPSLrviWOAq1rWqtUDFjWvkuWjdQzG7BSZcu8CwKHaoWd3MnylTyAIRCMI5CdBIKmAK9zM2zZ5g37GHy+3STpSbo0KQwdXhU4j/Nx/fSGCZzAOhWyo95PiPTnWI4d1fdHMYgD4q3RauwUBeJ4W8Dxt1RHwcVpzGH00hhVozHAn0wGSCeAoA+m1G5cseL5pG4Mx23/mCy/8XW6N+gqQagDSYgwmp6leqPQrqFuwNDW/s3akrXnnYgDnB4n1b6udIsNpKvYBSFuwNLVx9mQ9XF61ACBt4YqV3TKrotBZl1FK9LZa3Qx92bR3ACBsz0NHC43rUwzG7AsO1g5L6Oe/PwcgjwFIWzbzfgDkfgAgsvz56G0BEQnHVHMZSv6uDhaHbacDHTquYe9TgQe3z6F+D1jCNpG8aZetHH7nq6WCQNSrV/v9BtD1cFfD8jmtHYYHaKPW7ZmarBYEl3xbgLcN8SYUTIbrFel1iYtVwc5zZEIpXHHsPs5QWIkoJJZ6FH/tqWRRZ2JY0wHoeJ5+0V5bH6cX/QL2c4Umw7B7l11DXMUE+h7uJbVN4598d7GKsx0RCs41Gow/SgBjBmQTwDx0oGZY7NjwjZtj/PLP/eHwVUPhukkITcIBYoABel3E9s86O/6CNbcTM/gsPWqdt6wtqgCi4Bez8ZmrH3ztuFO6cMVK+vLV58E/tlJzy4t/d8lZFQTiD8Be8OfQ653mfheHjzzijDs718n9sigRAOVs4ckVkFezgF0Cdh6tHzIxLzPdDgCrVt+zKKDeyYRUORFS7VD5m+l5Ikvf4SRy9/PspaNkcMpLOElMrR07yRK8/Uj5sP9eLitNpatXBydQxBoBbob7Rgt0c2hDH0cgoDJ1ha7IABG8bdCphudpsSCQMTxPRW/b4i1uWnLnvUD6UFdJaULQyxIXFU5Gkhk4mcfq+uS9xEcHyAggLAgTVMut9eRwjxzWyTF/DP6zaAYmRgn9OxDDejtcAuc+h7WXEaKuKD9aN4QtbDAYAPS6IP/O8PcTt1Te/+5VA4tM8T8C7COuCU0GAI4BZPLXDzy7CQBedzlYzZ2siwDAXDbm6c6O+w3mz6Jg/cdh9TJl9agpAAprDl30afN2hMDuaFDXdLb/pggCGQRgu+Rk76k5GvmMQmuTtaF1Q3ieHi38Zf1lFBQUIM/CoiagCoBc3eisAsCgww2VMcU2hnHfbo5Fc0fjb626DQAOPPfqIACYYIseAWCptnrMAocywA+y/mGAPAQwBMAagKa4wyl61c3Wm+Rlpm86++m3Hig2J7weoKp57Z8nrz9jnHxBIDcAGAPg/jPZWTUYs9lg9VkPB6kqJYmys+sdQWPR5KG5N+BvYkvwr0a0jzMTNVw3Vo/CQjwKCZBktvG4jlxA5gGY7sk4PrzL1rLJnwPAtrKzo7xty6nglVs+K6dgf3SVFyVwOa14r72bAququQWQDixYmprbmfEi1+xkKNjnAORN2md+EqDnAvhmwdLUk2YgZJGttlYFdPpi7640d5178xCAJfu/SxnsbNCEs0rnbZfeWtT4ICIAsK+AA1sh41K/Y1vyMtNPOJ+4ImsE4/5kAFCHUtlv9erw5YXG9Yqz7ZEvAkCIquLDgzMuf2r/zCvfAXAUYP8DOHMJauempR5OBUgq3CoBTapl+WiHYnPCewBQZw850+L/EgEkwXNFm77C9dW2sHCWEe/Y9dS1v/XSohH+8GmwntEUxNrjAc/L83p0EdhUMv0YAGwu4fe115bnabUvhrXXctj9t88qBbTAKgA2d6KRFcDvbTVe8frNAyWH/2i/2I2VnR1oKn54FsBoBexPJTTUPAgQZVD/lXtaaW4DoOlIv4JAgppszgNwA+AqXVmwIekja6X/AgC/2Wr93mtsFJs5ZdM7sN/+NuxyCljbAtOwQQdfeHNc037rAiSDy42nMgBbbQCtpVQ/ry5qw4Zqe3C0loh2y7RFuTKjOQqobwboXwDGpaUWDktNrfoCANJSD29KSz38vM9Z7Rx5mekWArlIy5lGeduWUwnPUyOAdJ73LOatL3DPsusiCORMAJsrrZHvetseTzHppYlmrXRGTH74aBmF01VlUWbgUTL3qdBhPVsQyAMejuPDi/QP2JcPyBgV9tfV3rblVOFOxEprTDRqbxajMvfKKaAs3DeUDhO5Zie3Cym3R+KY/UJ88HFdfmo/wtpMnKZ6eUvtlf7mKH1U1dT2+nX/1o4JAmlMTrkKwDmN+61V/j8QhvppQuoeXLhi5fGZ3HuWXRv2naJisQxamgbFFLB2lcISvXn32/eObmwTUMfGyKA1AJ4gQJpsG3u2whLpLB26fHyu/0HEBh5VAXgewGaCuhvSUo+cl5Z6uM3iIj46ToL/YV2IpuKc9lv2bgSBhAoC+VEQyAAA4Hnq8LZN3qS4IfZLCiZ8UOCep/Iy03tt/KfCSUQA1d62w4f3iCxT2gEgvEKxwZPjPXJYz45ePQwAJkWvMnSg+UwAiwWBnOlLOr2O1YsW2vyU9ZYqW1hQ+637Do2lRju05EbZmwDU1RdO6+wM63W1CAt0QnHz0BWXs7KoTaOS+rMr7v6gxZkkKrJVDrP6pIu9IJBgQSCPCQLp735rDYCX4F6553la1Vi6dfHc2dNMRaH99VHV39/51vqcpv1sL0v5rMHpFzI97ufMWzLTttbF/XAr4/SXAvIv/aTQuD4EGQH9CMgsBuR1klH/TKFtZWBkzn0bwvZfoaRERLElHNG6UgC4NS31KJ+aWpnVyc/DRzvYJM3G4oa4M0GD1QBgNIBwL9vhdQzG7LitZWefleB/aMfvxv/87G17uoLazjToLOw/3rbDh1dplDY7dTOsTlnhLnZOOiJP8SIAPdwBgT56FyZH4F8Fpv5nwk2y07x914/TADoZoP4AVi25fXWHZJruXHOHH4H8FICtVYj61C9mw20A9IS1fdfaMU6LOt9Rr6sCXHXU3dn+gCtM4HEAaQDA83QHz9MneZ7WNj1+8dzZCgBvAcgzFYWeMGNuMGZfWthgSAtUVS9dvmDJGwCQfPubnzOyaiYB6U+J9HNlMD6koKjWJnx15KlPvgDwEyOrg+x+RVKt3V+2iFpE68tkAKEd+Qx8dJ5Sc+xaiSoCDMbsQG/b0pPwPN0KYCDPU1/YCPA8wND8+oFzvG1IN+CLYT3DKY1wpLj/hnhyvEcO69+lU44AwMbi1MPtteV5auF5aj7T6j33IQ6hD2uxdgWGs1/pLiLQKU3ECsQsp2Bik7D11dLpo6gsqu9kFA00NPGLdW0cZgWoWhAIgUulYCkA8DwtAhDL83RZW2MGDSz+GsBQwkr3LVyx0tL4/tRnX7uJQP4EQG6NPfSepsfEZk5ZS4nzalBxfGC1frKFDHGY6v67VWmJv5y6nz911UkoboimABClK/Vl/vcgas58FAD6B+wf421begJBIA8LArkZAHie2tpr39e5bektNwK4RsOZ38rLTO+0vvPphsTQyOogMcnbdvjwHpxIVAAgM/BI8eZUxLAOEQTyqCCQM355pzeSHLpVDyDs7neui/G2Lacboi1wp+sVldBBmabINTv1G3AuH4X8vKHY+umS21crzGVjwhjWnn3F3R+YWzpGEMjIupG6GX+fnTL+SrpjIoBPAKxs3M/ztKytMRfPnR1beyTyXF1kdekDn/78feP7BmN2SoGp/7sURAXQfgDGNT827vnUb5R+72/j0ACr/SoVI2kUdt2RT4krIU3U1A1yHCwZ+w8AENhv9iVT9Rx87K8SAMT5Hb3I27Z0N4JAWABTAExxP5Sd0RiM2WRL6eRH/ZW18oyEH1/ytj1dpfYVHcvKhDAyirxtiw/vEVqlKAaA6BJlpxR1GvHIYU2JWjMaAKbG/toRJ2YIXJVt4jwZy4d30XCW/QBwtG5wordtOf1g3Mtb5A2cWJmqLf4rgwspQcJzS6YvpQCmASRItIW817SRIBDt82tmKm5a8+ANz9E3v1g28f8gJKcrAKy6ku7YyvP0JK3WNniFyoxkrfKf1Oz9cykIaanUbFOCHduDRBoGmzwGBERWmfvvhisE4XEAaeuqBx1UMA7zwdqoztjko5NIlF0DABuLp4/qZSU528VdavUCALf6VuMAAJfX2ML6O2XFXW/M/6jE28Z0lcA6Tu/++5e3bfHhVbpUntejwgE2SSMCgCSz1g40/wmA8kyWJenNbCmd+gOAjN1VY86oxKuOoA3NmWapTIZCW5Zx68tXtSvdNnTNr+cB4bcDoAB5LXLNzt3Phe7OsFYlOkC5XyPX7EzRwjSnH/YmBOK5i/9CmlWEMgCQXeqnhACgSoDw6GCFqOWPjboHiL0MwGP3f/zLkWa7ZXduVqszxMfeU8+IJ6r+dc6rJYClje1iM6ccL6BQZ6x/AcAOj6qhZQSkwF05DBl1vtnZNvg9/6JEANQpK6fAVUe+XRWL0x23EkAGgAU8T33xjQDuWXZtAEsue1miin+sou4db9vTTXTJUfHRN6gMcaaFVilQGOMwx3pwvEcO647yiYcBYEPxjML22p7J1Un6CO44ZeqLY20GozCfxXAWdMRZBQAG0r1uB5EAUBCZTnfUx4/Xhu4pX5Q6fRSAPy3QM3swAUpYHTqY/hyEXduKYcgpleNWyCzHEEpBScdKcy6eO1ul1Ie8oPSzOEDx3+b7o/X5F5eZo+skqngRwJqWnJ/IUsXlFFQ26RU3og6x+NdZBQDcu+wawpArRnJE+qYjNjVFfNr/fNYV2kAJiB0ZAWk+p7VNeNcfQgCqgUuurLd/XuPgUpIJhy8hBwCwr3r4TxJVxETr8t/f+Nid7Ybd9QYKYu0j4wpVKI1wDI70tjE+vIbGwgTJoDS2SDkWHly7TkUMa7AgkCcFgfTJRIG+Tl5mer2WaxCHh26/3tu2nG40lEzIl0V1u8UzGqlEtMUllkFFAM4JB2xVksNfaasZ+DBczoh7eZ7KDmie3D89bfbK6fc/cc3S94qu/OE9wopO9Mvfj4eWPtrRIR9yNGjU2rC6e+9+b/UJih5pmS/pKyyRI4eH7ijIy0x/rsWZuoyAqUoncy0BWRe76PWPYjOnPN/UWQUAiXJJMuX8x0Zu8D/p+HYgFOcSEEJAGHQiae0MRgCozfUdIgDIzQZj9lletqlL8DxdAZciwCFv23I6YDBmX3WgZvjZAEWxOeHBvhL6obWwBAA4keR52RQf3iIjIEVnZScwrqXCVe7VtU7hkcN6VuS6swAgNS47rAPNtXDFuo1ur6GP0xOtoqGsuCHujE+EOBkSCzAdyt6NXLOTABgLkHUAeRxA2jn/WIcAcMii7nu4luNtAES45OLWNDmcjyk7RhOKjqAuIIRFBxy7t++anATQRwB8dfPz25Y233+4Nukcp6wildbwx1vsICMghYL+AdfvN6W1i8v6whmxAFBrC/muPZuaw8pkt/tlh5PWzmSaFLV4GJDvBkAAuvGyVxYJ9y67pkNV0E4H3LJsLwkCmQQAPE99y8QArn3j/qcB+oH7YQToQw9xIdWcHQBCqxQ+HdYzFx7/TnZ69N32yGG1ilobAIiU60gMaxEAlufpe+229HFaUmmNFKpt4Vpv23G6wXCWJKVfQYc0as/Hx7MBxMfjwO+l00c9//ruVzZz6qo7lfrC/QuWptaXTh+1CU0SmdzbjQgAsceU5tOqoHA0hOoM7Y1HWHkNYWUOwP2tNJkDoLqowbCylf08XBcVUNBWneQ6R/A5AJBbPbK2PZuaY1PJte7+3wHgCwfoAP8WtbjgTQAjBgbuy9laNnnayiNXbDIYs3uLZFAQgAvRpALbmYzBmM2OfiJryZ9FMx71V9bU4fiDa596iPPFsPoQKChxSyJ69N32yGHNqRx3CADWFc4qb68tz1PaWGnHR6/lMEDjU59frPa2IacLn750n04WtTp14JEOfSb5GHIhAIzExl8BwFR09lTRFqLShO7d2NimdPqoTaXTRz3fzFnFwhUrNwFIC0fhSgAo9Yu59aNnh85rbazFc89/yFwaHKENrdu4cMXKk+LMb1t6i1bFWq8K1xZvzctMby0ZUgBAKSgISIsXF9dyJb3fXRNkRWeXL2uCxFkAUBDn+MznrHaevMz02j+MD46O1BbeJFEuFqDbL1yc8e69y65h2z/ae/A8rQYwHsBT3rbF24x84qNgACtr7KF3RuoKf+Hjfh0AIBXuB9fenlTXSEmk41wAKIi1671tiw/vYFXLuwkI7CqaAw8nKDxKukInYlgBQBBIBoB/eJ5+6+F4PrzIxCghcHMJT4YE7+EB/OJte04Hag5dGA4ApqKzOyTltAfjBwA0Z9n0V/8GAFvtoJkApLq8mY905PiFK1ZuGrrm1ytAaX1RbAIp/9Pw0uK5swcByAawGUBEYL/S80Wb4hogeDoAmMuCxy+eOzvF7fAeJ79+wKV2ScMNC1mzpY0htxMQCcAGAItaurgQyGkUhG22fNnhi1BAHVsBAAon2d/RY3yczObHb1tuMGb/HKSq+n5XxfibC+r7nWUwZqfnZaYXeNu2pggCOQvAxQAe5XnaoUTFvsyNSxZcwJLxXwGUAchtmx+77R3gNrzu+g31CUe1Ea2FMQEAK5F2E7V99E00NmYwAKjtTIanExQezbCOj1yfAgAzE77za6+tm1sATPVkLB/eR6bMZgDYXz3MV/zhX+IAgMqKdmNYI9fs9AcwBSA/A8AXb8wjINLlAIQFS1OrOjrg3umzbCDk7z2G0UdBmVBXjCrdCNA6ACW1RyPfaygJSYXbg0QrcUL7qkdMAmDeXjbxudbGqgh1pgLg7Ep5eWsXFwoGjUli8GCJR2t1yWRFlSorOnOcj5PJy0wvnRr728SxERvfrLGH9AOQM/yxT18yGFcuOo0Sdy4EcCWAQC/b4VUMxuwUgzH70zUF533hkJRkRvyPt+dlpvcV+aoWCajnqgEgukTZ6zVlfXiGTOhw90uPigYAHjqsDQ5/MwDYJXVHYljB8zSW52lrsXQ+TnO2lE5dAwBH6hIDvG3L6YI+euMMANBFbG93pigVXz8MgEvGpm0AIEvq2aDsIL/ojZ3OjB6IXeVWjXaQk2UbNVRBWPkIgHvVQaY5muD6awFY0UoM3Lw37+YAejGAn/556rpWf78iR68CgLII57E2zDkfQCFAHoMHy5dOjiZQ0Bpk1PmE4ruB1+Z/Qr++/9m7ATKSQCpocAYsBPAcgLUGY3a6t+0D8BiA8e6QgDOSs556Zw6B/CeAqwCiNDv9Lnn3zv/1+fwOCuoPwI6MOoe3bfHhHapCxFtlQlEa4WiuB95hPAoJyK0eeQgA1hae69PNOzMoA6hZydp7S1JHj0PcT4uakD3tzrDuw5iRKljFwdj1IwDUHD7vSgBwmCM2tn3kycTiyI5DzIiLS8NjxbiSfAYgTiqxdzRd9l88d/YRuMX4m4cDKFn7LQCJGB66bSfQug8TUaawUdAGmWl51vTWt2+9HrgoJVRT9vjWJ25qdaa2Lcw6iVc6SIAvm697yctMP9LP+OPnAH3aXW1CAdAfpz/3So2Ks729r3rE4rzMdI9qeXcWQSAcgMUAFvM8PQagwysKfQn3LPcCBv/P3nnHR1F1ffx3ZrbvJpveaKHX0BFBxQEES2yPXbChoigqPvKowYJrJfraFUVRsSv2QuzAYMOGIL0TSnrdJNtn5r5/zAYjQkiDTbnfzyewM3Pn3jO7U86ce0ryeUxP4wYAGoOQgTplltsr5XFKZnSVaDRGWhBOxIiqFkXFwEpTrvMFDt/64BwtH9brAZgliT3RxPE4ESQ3O5Mde98LgsNUdQ6A6yMtT2ugOu+4fIBVXnjToqL62unprLoPBvDJ/PHP++bPWDYGiL4YAALungvmz1i2rYElXQEAMs5+DsC9y8ee9splHz6/BwdRSsPLB+3zr5JRxwmkaN2jt71W3zgCo6EAfk+f5j+o9XN96bCrzaKPjUld/gpwZUPF/wd2j1jMiJU2aWdOvTAIywDcCd0tRIk1l35bFXSeUlbV504At/W/a/H3x6T8uFEgzbV872l9EX7BOQJBPn0BXAHgTwD1nnPtifSsHBFAOoD+vWI23gr0Px4gQfu7WhyhfWUBqBerTygFqDLScnAihyUgxAJY0Zw+mqSwjkj++bhVRWNxavcPxfqsNHU4CYAdAFdY2ygMtDGvphsvUvI3XQA6bFCLHe4rPXCmAdgKAEZbYVbIm3Kgj2mDlYTC8UNLU5av2VSUmNZ19uIl1zVG4PSsHALSjgfw1TPXvJF3qHa5iyzWbjANC5jZ6wdLgZCelZMCdD2WoD1bXz+Hw6iQEaAGF17gNJzc7MyV6Vk5ExFWRFffe8XKWQun0uc7LxypMfFiBrp6xb5TJgJsOnQLrEBgSnpWzmUAPs3NzmyQu9fhkCS2QZaptySxw2aUaYukZ+UYJnb9/MSqQOwxvxcdLwAYkGAtPFWkeKfKjAIAbK8cgHAmDUAPZHwZwB4cmReEVonNJ7oBtKogQM7Ro+xpmzUOhl4Eeq85/TRJYa0KOqsAQNXEBvmjSBI7pynjcFoPRd5OywHcmJ6VI+RmZ3b4NGVGW9GxJCiHs66OITjCwRTslu5f/fnV7apxcvjhpeAQ6aIOR1+srtqD3qfOXD5DnD9+QYNLN/aPWyNtKh+aDuCB+toZFDqVQIbyuJA37SDbHcaqW2pC0QYG4ZlGiv4PNGIpmoBVTZ3m4dRPWBnarxA9Nf0t9hTwO4DfL3/2xtv8ivXSXwtPnAHgGIDAQEYA7wBA/7ve88aYy30Fni7fANg1KGGVOdZctueHvMlfANiTm51Z771flukMAE5JYm+2B2X14qf+Z1tZML4HgAH94taer2jGIdsr+wcA9F2654y6M927DaQUDoj/a8O60pGLAGy0GjwxPsX+EfQX1BCA1zuKoloLA3MCqOLVZzomXpt2cnw5CYXJQUdzrF5NelZsqxi4AwC+2X02d6DuMGg7AMHcLXp7DwAdvoyiGrLFWuO31KuwApAYhLC/Ghm6FwXvUAPxFrNz56MBd49y6FkCGv3gikHpj1swbPTvmDACQH2pqf6B3VjjIqg4rtOyZfXNjHTOM8UAQFS1+NKB225aeEkU0amzu0Tt2vnDnTdsa6zsteQuslBXmOIqYpWeDSmXx2lZXrvhGQXAovSsnM0AlgLMBEAFaB4AtZNj95meUFQygGMBXLC+dEStG9hTALRBd7/td5iqKws9nb8DkDsi+WeHWfRv/Dl/wnd9Y9ftmzMa12woHdLzyjmfdtOYYVlbUdAq70m9qEK0nrfEPog9VnLNFoAGOIzu473KuP2n6ebyDMRbikMA+xKgJb1jN9R0j96++5vdZ32Sm51Zc7B+61q728p30ZJ4bdooxcBqeNRuxyS2wpAMAMTwbXP6aY4PK2uopW3nq+Y7rH7hrNRC0/98Fu3XouSQ0e4R1MRSo+azaKhvudKpUGWMaoipFJUYt4E1ZdnuEccaFIwl0DKeoLxpTOj6RfSyPaejd8zG0wE8GWl5Isn8GcssQJTRUzjycNMbMkD6XCBjyjHb/BKAT69++OpbmzP+r5j0HIDZe9BnOBqhsP5VMiotzlK29c0bn9x1mKYjAFRH1YjrDtzw7e4zz/cpdmFo4m/zGyf1P0ksMcQIjBBTKSpwOcfw6zIy/O06QBL+oUxl3l/bJj0rxzC52yejSn3Jvf4sHmMAkJ7m2HteuT/BBj3JfadVRWP3G8+2VGQoNyx9U6sJRRsB4X4ArgnzHt1EoHU73P3WA/CNTVs2otyfsH1z+eBNAPwTui7pV+xN3bm+dESuQIp/crdPE0p9Kfl/FB1X6jSV+/rEbgy8/995TZ7ZCQc97T/GmxZemrx0T2Z3TyiqbyfH7klWg+ekBLemvW3ypkarXlxdtRLLSVL/ZH23GYXQ5uFJKzdvKh/8iicUvdppqti6ynVlHZeJw7vFHWjt7miYgkI1Ma3DGzo6Kg6PmAKAJReblh+2cT00SWEdmvjrCWtLRzTMuu9yjukO8/2kR0Z+b/ULSN9t3r/5cMsxbgNi3IZmLQNAuBwYU++L3lPjUK1WnyCbQsImr1X1V8Sq9phK8Vu7V9wOoBgut9LAr6LD4AlFLQOAdaUj+Awu0Dn8f70+Wcfgu7W/YSIALL9m9eqMlPK0eAi4uQXG3wWwAjP8EwEsaMgO6Vk5FwDmXmX+pMP6kfvN2hmChj2mO6v/oSDoPrD26wFs+iFv8pNNkjyM3SueCQBGRTgewFK4nLw0a4Q4nDKVm52pAAe2ybyn9lN6Vo75lPSPjhtRWTSpu1B4Tk7VxD++F/ueWhOi2HATQ25V7wyNGTJq9/k5f8I/xli25/T9nzVmwFe55+5fdgfj8HvR8eiR9ZmiQawhaIFYS2m8X7EVeRVHkYFCSpfoXb0q/XHbKgIJe82ij/WJ3TCoyJu2ttiblmsWvZ0JlosZiABiPed87FbZRbWyIb+mSyjZlq9eZvxqNxFSCYAFQfUd8wP3ml3l94PTbIwKwaiIGyItBycyKCIbKarIJVdVs3zjm6R8uIOx5WhghgD8M3G5phFbXpqgqDavsM3hEfMVkZnL45Rj7R5hi90rFoYMmrUiVj3GUSNssvnE4qBRs1XGqKMcNcJGm08sCRo1R2WMOiKqWlxv9QtlAZMW7Xaqw6KqxbVWv1DhN2sxVdHqkOgq8S9LQKhURHaKqOJ40tO7gAGCQaEoY4gmADjf5hPJ5hMB4C59O2OhB6OYQaENAqM9PoumVkepztgKw0dGhXa5oxVvZYxaHlduWBf1v5oOo9j+WnDiGgBKkbdTXKRliTQx6V9PqMw9GY7UXzTdwHRwEpE/HiCaXPybN3lbr0RHpx+XXHb33Nzmjl84fig7cfkifwnS/tOQ9uESqm+Gk/xfl56V8/6hpiWrH3UYbCGhc0WssibhgG3Hd/r2kh/zJo0gqNfvyj6zWblTg0YtyxgihF9kGx18xmk95GZnBuCa4mNgtwEQJhq2dluknHrjfbjsKYT9NjVmmAjgVwAmi+i1Tuj6Rbd91d3Y2tJRiln02cZ1/mbknqoeVVsqMqrMot8xOuV7aU9198Lcqt4VZtEXlZGwamJeTbe9BZ4uFSYxGJNizz++wNNpr1dxVBNpMYpmMAZUSwIAp6IZHblVvdK8IUc3AIaAajPVEZcAyhudsuKPEl/KBzvdfWUGYecvc69V4LptDAP7iQFEoKAZ6ndH/9tsnzCwKAA13Ie1YxI0aSeFjKyquS4hTVJYd7n77ALgb2BzmUABhG9cAqO7k2Z69z+YDADqlk8yHrBsOsyy+YBlS/hvf/8u53IAS2vHN2h0oeG2Gn18l9NYnBjqGTBro9PyTdWiRkk1Du3YoIkdG1cu5gHoZApSz8QSQxSBTgQAZ5UBzioDGJgGl7M4aNQCPqtmja4SPyVQvjtaMdY4NLVTvukzAPnVDrW4PSi2udmZSo+sz/Zajd6hkZYl0qghWw8AMEfvrbdqy2qcEAsAqet7DQewrTrv+PNaSgYjgl+VI/m67st/7Lpr/PH1JfcHdGWw9lqvVzmMqhH7AaDYCsPTB24r8qTdYzPUsJO6ff6BXrSoaZQ/ZbdFa2Jf6NFnKjpQep92jFRrFAAgXmn4KuE+5bKD+W369b/zD8gDe97v/1w+950DtjfZ0tk96/PjGOhbAEaAQiozXrP45kf+ff673CuV+6PeMKrCZQBO5xb/liF3kcWcDrOtODE0lJdK7IC4nAYrBFETNLm5XTXHh7VhFlaXeyVczv03rqN+E6hvfJc7lARshv4HAIg6YIpVBLD3JYulyz5zPIC0srjQ2JCRjUgpMuUCSFUMbIwxRPEEOhNAkrPKQHoOBdwNAI4agQUfjFJNIWEtgIJqh2oPmLVgQpnxIwD5JQkh5rNqe7vuNW9o7a4I3Z3bonyK7cRIyxFpqvNOcAJA2Zbz6/298tE9GQAS3ZQGsJNnLpjQ5ITJB7Ieo18GcJ0PjodTlq95unD80PquKxl65avaKGW5nrYXAICo0T9eSNOzcjoDA9ITrYWvPz39zWaVUo2rMPwHAHkt6j02v6jLw5WDto4MQIN+ywzhbyU14r/rruwzfmpo0JNRFb4EcBkAXi64hYitEKMAwOKnf/nEczoE3QlkdHjEr5rbUZMU1oyEP8Ztr+znaPAO+sMocjeuZo7f5Wq/H0AegLx4PS3Mfv5RpcflNOalBfsRw4C0ApMfQGpljDqZGLqZ3EIhgE4Wv9DPUSNYAEwGgMTS/RlRNLicxX6zJoaMrCaqRvwOQH5pfCheFbEvudi4FBG22HpCjh+LfSmT0rNyKDc7s0OW09QT/+PqcGqqL+bPWDbxUJH+nd1VZ5VZHIixbi2++ulrv2lhUaxhGS4E6KyU5WsmHkppDQfW3AXgYYBmHPKB7XKOYWB3AgCBXoHLubuOInk9QFTiS3W1gOzTAey0+cUH4HJ3+BRp7QKXe2XNI45lDq84KWTQzjDeVR1xRbUuDVWePTa1yO4VUR6rjIsDuILVAjirDDYAiK428O+zA1JjV8c6PCJUgW0WD9+8XpqksFYG4ko0JjbUJaDj4HKHOuk3uf0XZuwBFlsjgLKn7ab4ckMigLSipNAkUUVqQpmxAkBqyMgmGUPkgD7nmpRQZvyH24+jRkDogWifUaFNAAoqYpRUADtjKw3fAcjPTw3aGGF9p3zTlpa22BZ6O/8A4GwAceigJRYBSAATwv6gFhxien3+jGXjDZLj+DhFRcDdK3r+jGVjmpLC6lDEoujKCuiZQtAAH9A0+56N+Z6u6OncXF1PVLMEQCAQ6vZ508JLYq2GM2+1Grwr/3Rdkdscufe8bJncFeYTvVbtUdvt1VxZbUd4HNp2h1ecVBavVLXVCiNl8Uq+3SsiaNJOAtCsTBgcnYBJizMHBWjEaoTDN+e0Mzx27SKHR0Rep+Ders3sq0kK697qHrsBDG7m2B2W+Js8QYQttskHWGyj6i64nMY9XQIZVp/QKbHUKABILYtXzjMHBMFYI/oAdLJ7hAxjiIYDOA8A0gr2xxdocDmLPTbVQQy7bD7xFwD5hcnBHsaQ8Gt8ueFXVWD5e7sEy9Kn+Rs0VW0z1OzxKg70itk0HMhsVj61NowMUABgVujKYv6BDRY/Nb2nYMz8tNzhRLcSBQAZ0MJBRVWIDf9mTG1IAYLBiX848z1d0TV653AAHx2imUx6JZ7907oAsLp49AyfYjeMTVv2vl5ls+nEVhiu0YihJDH0erdm9cRpbSQXGz8GcF1Kkcl22MatFE3AVgbmSS4y8qpMLURJYmhU5zwzClJDvTpFWhjOUSeuXPSqAivvepV/X3P7OvI+rJym43KHuuo1uP+sXZVwgMXWBMDziMNo94pJDCwtPy10dlS1gOhqg8rA0hQDO9PqE5wAzmRgSSlFJgJwKQCIGqHbbhPU+6KrRI22a8SKK2LVdHOAfnZ4xN8UkRUXpAYdFr/wa2KpMeljW+KZc6pnwuHYcybQvATAbZWZCyasnD9j2USATgFwPYBb5s9Y9s7MBROCADB/xrJOgvGM5QFmjqqyi4jdFdBwBIKKVJiGAtgM0OsA5MP4sGJj2ZC/AGBV0djcQzbS/b2XQE99cDJc7pV6KqseFwFsrcNY/a9ArEbhcpqiII5jYB93u9LPpwfbH7XBf10iKkUzSJ/mZ3A5dwLoHmlZ2gvRVYYaALD6BJ7WqgNiVISuqKPDNIcmKawD4teckF/ThQf8tRLst9WEAOQRkNepjsWWANRNI1H+tN1U41AzYisMMdHVoiNo1LpXxqj/cdQIXotfAICuUdVCP2OI+gG40qASuuzTc+IyMPQJluAt00O4p3hqhy5YEp7aXzl/xnerAOHTqM4/fAZMOGXBrI/6AzFfaiFHTO6wnXcByQ9oovoRgMdb0h3g6uW3ZACXHWtH1YM7xo+b15B99lT3LAaAqmCMqb52VVFqnNUniMa7qlYCQK+YTf/ZXtl/MEBXPzX9reamsrrQFBISCbSwOf1wWiflsUp+XIUBpfGhcxOANyMtT1MJmLQqYhhZ74XCaTDR1WIIAOIqDDsiLQvn6JK7yELdYBqkinijJRK4N8mlpMIfVxRUTQctQcdpHcgyCeH/zbJM58gy9Yu/yRPc1SOw+88RnptkqSpkurP6yY0DfVf/NtpzyvcnVr8t3FM18Ofjavp9P64aq4d6bqqxq+NzuwVeKo9R3ACY7iypIEPbOzCyR9c6mLngpM/sSat3V+8bM3nBrA+/YaphHUiJBiCV9Ml1AEB0/0+XtKSyCgDlSLwFAMbj4wZXuYo1l1YBgM1QPTVc9eegqCJzMGL77y0Cqc/aDDWq01T+dnNkhss5RiO2ICRqAQAtHYDGaQXEzfJUKyILmYL7Cwa0SaqjVKuoUkruIgtPG9oCBI1aMgAoIquOtCycowsxjCaQpTQhZG+J/pqksBZ4uu7zKlGlLSEAp/HIMo2QZeod/kyyTE/LMp0XXjbJMlUByAo3FwF8CKA2ybwPQDr+dpfNAzAbwKrw8g4mIMEdo8533Fojp0/zT4+rNJxKID8ARYWgLadBHdrCWhe/u9ssQCQ1EDtJU+yiNW7LvTMXTPjzd4wPAoAPthZ3nfgZp6QaENxthu/zhu5TGYgbBjB4FcdYAEsPpbTGVhr+MIWEMgBIz8pJ31oxMLlL1K6cv+67tOkVSvTsA8ssQdFmUMkA4Jgm98Vp1RhU2hBdbfBEWo7mEFNpeFvUCOm7zXwWsQWoiFUmAkBepyCPuepgpOWbEgDA4hc+aIn+mnoCcR/WFkSWKVGWqXOd5etkmS6os7xClunROrt8BeC/ACBJjEEP+x4YXg4CeA5h1wBJYl4AwwA8H172SBIbIklsce12SWKPSxLbGF5WJImVSRL7O4JbT200EcDce6zn5P1Bvbl/Vxg1EDcAoNrvSvGVDbQBQBXi0wCUvjP+vn8FZTWHlOVrnABNUGB6b/74BQ2eomcQJP3TPzIAHI4bAGJbKjJmNl7SfyARyKyPTqyBY3PaJnvRhn1YAcCg0pbwRxdczkPORnAaRlS1mAcAgvbvAFVO+8ao6Ia1GLfhx5bor0luBX1i14+tDMTFt4QAbZ2M1zLGQH8AlwJIACA/0239LwDsksRqAECWaTIAhySxj8LLTwEQJYndEO7ma+jR5rUFta8BsBPAe+HlVQC21Rn2AuiWUQCAJLGedWWSJJZ1wPKaZh0ksD+X7bL7FiZXBWNnpWfl2HOzM9u0JaWFkAGEK7n9Ha0fhYpRQZibHRV5IMfhyzt+wqnGZOz9GhjaSDkpAMCs528l+WCNqqLU/laf4Jz1wrQkg3DmTAL7bNtD5zTrOCqdiuB0iwRAowZkNOC0XSqditNRIw5oCX+1SBE0akmmkAAGdg2BLofLOZEXtmg6Np/oB+AL5zPndCD8JvVcU1DwC6BeaIFiHE26r1T44wv9qrVD+fdkvJZxIoDzAWwfaK2KNhLrucbrDAC4GmGzFcAYQP713qhfB9mq4/F36q8bAHTF3+mEFOhVYWq5B0Bd5e9YSWL7U01JErulriySxJa32IE1kmJv2i8AZgHoAZ5Yu07WAL2KTq2/qghlUB9szgXGtuh4eUg/JQrl2vHIkYEzGrxfuHjAeIvoedGvWgdN7vZpD+DfBQQEDQmCxszdKv0vKJrJMqnbZ18B5zRLZoNC16oiGIBHDSo+4Q//9osqsgKDSmL5U/bYuFmeisPv0foQVerGwEAgAQ3Iccypn5CBJRsUeDqUwsABXM4JZgjHhZeWtsSLX5MU1hJfaiH2K2ntn8x3el4LWBfUHvIGX/QhWhIBzPpeeap9Z8C24sbXMuYAkJ/phmugW+EAAJLEZtfdS5LY5wcst1gJz5YmwVq4r9SXgr6x604AMju8wgr8nTWgdjll+RobkCia4V/SkuOkLF9zItC/H6B+Pn/8gka75ORmZ6688cVLT1+6J3PLin0nz0nPynk3Nzvz735czjEOiL0ZgzjL++3ZfwmD82yGmuZF9Luckx0Qu3hs6jz7bTV3NKsvTqsnvtz4KYAL4yoMqQDapsKq0VcM7A7oz0cNfEagWdQ41HEWv+C0RloQztHmEQA4sBBNczpsog8rE/WE5e2bjNcyxmS8lvHs3qClbv5J1ULq86c4iwcAOAF6EFP4u2AMACpU06hvqxJvANgDAJbeuHtQd0libfLmfSBjUlfkA0CspeyUSMvSiukFAEXo0mJWmZTla8YA7GsAJkA8RV9uPM9c88ZurxI1LaBaBwK49oDNEmMQiAADFAyjnSmf7phybFNlzl1kMTKw/wOwy+4V721qP5w2RW3C/eYWtYkcLvdKAkkAdjEwdU+XVms/aBPYPcI+g0K8EEMHwv24/UYAIwikQJ9RbhFXsCYprD2cW0d1icrt39zBWzNh39RlAGYyCEYAQehffNDPxDf+7+yiTesuX/cj9GCkuwFcA9CdAI0F8HjYT7DulFK74JlrXt8pQK3+o2hsYaRlaa30xyoJAJKxt8Vu0iJCkwCY9y8275x6VyB1mUEIPn7ji5fur1iXx+JXBmEAY/qN4VetH5ozjjlA8wk0uNqhPg6Xmz/1OwAFKcEaAChMDp4faVmahcv9U7VDPU0TYIkrN3wKl5NHuDcRU0hQjVxh7TDkv2AdaveIT/ksWgGA8QDmAmgRP/Cm+rAWMZCxuYO3ciSAmcI14zWAXoFeyUVed/m6/V98+PM/foiM1zJAwCwGiABTDhXg0lbRIG7VNJFX1jwEMSg5FQDG4qvdjfEzrQ8NQt8652Kz3lZzszPZdS9cOe/b3Wd8uzJfeic9K+fNKGOlqTr0zLThtJWmiV/iDMOvyBB2aX+o/Zo2jstpTSbjWT6LVlIWrzwfdfg9OO2AgJltYmCwecU2PwMc9b+azaXP2B5PKDPOBnAzgMcjLFKbRCXWlRgUweUcw/3X2zkup5gK4xOMECxJDF3S9Sr/jwBaJEMA0NTCAYGE0spAfEFLCdFKkenvwCgVwOvrLl83r66yeijWXb5uJQOdC4AB1O7K0TlN5RVWQ82wSMvRWvkdEwoFKOXPj5+fd/jWhydl+ZpJDOIUAJ8AdBeAiYcrxXo4nr/2le+MQvCdUn/KAIA9VB2KcQGa+ifrM+5m5YaxO7TUbXcZ3gzlWqY01TJyk8AoyeoXzk+f5m/37kMcnfRp/gCB8qKrxWCkZWkJEsqMtwL4jIE9VPmEvcnuMR0Wl3OMwJBOupvUUp4mrH2jEbuVQJLA6LquV/mXtXT/TVJYCZqBoLXrh1BY6bxLX6KrG6KoHkCx7tPKRgBsadjFoF3QK3aTNaBaE2ctnNrmrShHAgWmHhoMm1qirxnLb+jnQOUSIwI7AUwtHD90XnOV1Vp8iiMsIwFgTCDt1dzszB92ZJ+5sqdQcIpAmlgVpX7f2H49jzgu0MAe0MB+hsu9oiVk5bQp9qCN52Ldj8vNAExXRTBjiJblLrK0SMWeDoQE7A+8sWjEmpdyhNNq2fuSZSqAeUGj9h2AV4/EGE1SWDtH7R7c3blt8OFbtnm2hv9f24R9xwMQGpmovU2ws7LvYo2J+HTHlPvqK/PZUTHDOyQOReXN7Sdl+RpainMX+mEzTsbi2wrHD/W2hHx1+A560KACkF9jhu/2b3G5dxYnKcuiq8Xu/nlRUxvco8t5jc0rvEuAgYCR3KLS8XBHK/F+s3Z8pOVoMVzu4qLk0ON2r2jttts0J9LitDFkAvkAaAyMwPC/iiftX8LljIm0YJwWxOW0p+WbHlAMLFCQGro2/KLX4jRJYXUHYovdgdh270SdbPCPA4BEQ2BcE3YfVGu5aq7PYWujIpCghD/egnrKfHZErlk+KykAm7MvVpsP3/qw3FiN2OMZ6L8vj3/8wxbo7x/kZmfur2AGYGJ4eT8+q3YuA1trCQjZcDnrdUPNXWTp5MuOeh/AAgBEoNo8llJLy81p9Ww3BUmEy9luUh92usZ3J4BFBJrDX8Iawd9VEu/yWbXLK2PVHTGV4skAdij3R9+eu8jC3dvbB4+JGnUzhYRTu13p33mkBmmSwloVjHGX+ZNaxD+vtZLxWsaYYsV8AwCUKKZHGzOlf/a7PbIBXAzgfT1zACY2waWgNZOiZ0FAu8uC0Fw+w7RTAOAvjP21Of1cufx/FxDUxwC2RIXx6cPv0TRyszNX5mZnzjtQWQWA9Gl+H4GuYWCdauzqG4fsxOU8o1OecZvFT+dpYB+GLSotlsqE07ZwVhm+FhiJABIjLUsLc7MqsGK/WVu661VzUqSFaTO43Cvhcs+z3V7zetwsTy8CDQewyqBSdkqhsTz0QNTlPAtD2yXvReuDAK7ViD0Gl/uIFjVqog+rahRIOSIm31aExEBhCwGZTKQ98r9PkpMPt9OU97pdsytguz3Z4N8E4OKGBmq1Mb4i3T8X4ErJfsK5URcCgBfRtzU1V2rK8jX2n3HygmhUCCdj8azC8UMjd6253L9WxKq/2z3CWcXzbWfX3bT7FUuGdm/0hwA+EzTat69z8CrBVXU+6lhteVRwh2QvAGjE2m4u1oPhclcVpAbnmQNkTcs3PRlpcdosLvcauNyT89KCWcRQalSEVwH8Wv6U/aJIi8ZpJC5nakqh8b8em+rd0zXoOtLDEWONfxaOvu9Ff4y5vOzr27M6HQGZWgVhi+pSAKbwKtEmKIpXE2cBtBZ60QB53eXrVt72STKpDN3lqvgzghAetpBaeWJ0+bBHzy5qt5kU+t+1+Haf4sgGcGduduZDkZanNZCyfM0cgN0PkBh2BbmzcPzQeU3o50WAXd0fq6YuH3/1O0dC1saQu8jSpese0xqB0R4AowCoAZN2g6jSU6IKjUD3APg/uNztIjKc0zzyXrRe0CnftNhjVVfYfeKc9vbSwlzRjxHoFgCnweX+MtLytGlcThHAVI3YPIFRmsembrB7xQvhcre77DrtDpdzLPTgqq5VUeqY6Nk1q4/0kE2ysFYHneVl/sQj5qfQGghbRWuLApwwPqr0KhHYAtB8gH0PsIcA9lPGaxmFX7oTg99UJe0IQnwSILOfGZxfu5PSI3oARxif4ngUwD6AtZ/giuYjAwgCDKRbn+XGdnDm8kfvAjAdoIdbg7IKAOnT/HsFRtcAGKoR+wHAb+ag8LRiYDv3dQ6eDpf7Qa6scmqJLzXEAIDNJ4xDO0xlRKA7Gdh6VWCLd79i6RVpedo0LrcKl/v1PV2Dg4qSQl/avEJXAGtDD0S/tfsVC0+d2ErxPuyYwcB+BNAbAEVXi5ajMW6TFFav4vCU+lL2tbQwrY11l69bWTul//Q5Ba9Ua4YMAK8BoHD0PwHIM5P2bJIhsFFP6g5AL8ggRUbqo0NudqaaHr1tBYGdOvOFK0ZGWp7WgJ5uiiYK0H5nEPwAVjVm/+OWv9l7PUbfl4ZdFdCn1FsT+QxMExgdy8BGAnjEEhD6dLna/1WkBeO0LixB4QoAIN2lqv35uLvc/vy00D3EEJVUbMiBy8kDsZpJ+jR/RfL13tMI1APA0wYFF3XeZ/pTuzf6IbicE/l3HHlyF1mMnkccU+Fyfmvzic8jrARB1yOloyFDk31YDULHM6isu3wdA/AC9geVkA/ADX9ctvG/xYr5aoAC6EDBJgPi/1rIIGBV0ZhLIi1La6Fw/NCVGsQHAFgBHNfQ/VKWrzHswKBXfLB5R2DFuYXjh4aOnJRNQkLYaRl6IY1KuNzaoZtzOiK5iyzdGdgIBqaiHd8LO13j+yhkYO9a/WIfAA+gHVqSI4LLXQqX+797uwQnBMzaTwKjOQC+Y2APMrBl/DuOAC6nEy7nzakFxiq7V3wTQD8AzwPw4yhf401SWGPMFZ37xq4f1dLCtAXquArMRZ3o/0Otb888d+2iFQCWF3o7n5GelcOjPMPY4V4uQNWG4KcGW0ljUPowgOMZxGsXjn/yiEZaNhGZQEEASvh/OcLycFohMRXiGwQy+SzaC2jngXfmkFCbp5tnS2lhul7lX2G7veZ4AM8xsFprvQXAe+p90Q/tW2i5JneRpSVSB3IOwd6XLJMqnrT/wsDyADwBYHd+avBxAD3gcl9PoAk4ytd4k4Ku+tz5YXmMufyX3+ZOP+0IyMRpQ6Rn5VwC4A2bofptrxL17MHSI3VEhi7/tLwS8SY/HJMOV5nq0uVzZnyH855PwV559fizxx8tGRuNbt2QAMjtVQnhNI3SZ2xDE8qMcxnYfwAgnNqs3SqrAOCfF3WmJSB8ysAYgfxo58cbEVzOMQxsKQAzAI1AmxjYQAIJGrEagdGXAZP2Q2FK6OduV/ob5YLF+Te5iyxi1z2mUwRGNwA4RSMGxcA+MYWE++Fy/xlp+ZqksKZn5RQC+Cw3O/OalhepfRFOqi8BkNujMtfrjo/HK5oxXDNYf0i1x+NsDOF0ViugW138ACYcSmlNWb5mMsDes6JaOAWL+z4/fn67zSzBaYe4nANr7OqLdo8wFoAaLhZB0KcK58LlbnSWjLZC3ovWTp3yTfv8ZnWVJSDeyJXVI8QBL8p7X7J0E1WalVJojBMYTQKQBgAasU0CoyU1dvXn0gRlafo0f3UkxW5TuJxRPos2C8Bcq18wAihQBfbivs7B97pd6d8YafFqMTRtN80qkDYsPStnTEsoJ7MWTqU1JceIu6t6GY7v9K01wVoc9cn2qR4AhtEpK+LircWxX+w6vwiAYWTyTymxlrL4b3efuRuAYXjSyq4x5vKEZXsztwAwDEv6pZfdWB3/Y96kDQAMQxJ/6281eON+KZD+AmDISFiVYRb90X8UHbcGgGFA/OqhRiHk+KvkmDUADH1j1w0TSLVsKh+6DoChV8ymYQAzbq8csAGAobtz61CNCbS7qtc2AIYuUbsGKZqBFXi67AZgSLHt6xvSjGqZP7kAQDTAeuhHSSw9K2dt16id8SoTKvJq0v8C4BmUsGpQULUUbq0Y+AcAz7Gp8kBvyL5vbemovwB4x3f5orMn5Mj7rXDcTgDe07q/D6MQKntq+lutwsdR0UxjddfGf5Sg7eg3bgn73W2YJQl5twJD/1FDe+byGbQRI+4DRt4BkOBDdOBjTE9/HuAKK6d143KO8VnU/5qCQlcRNNruEXxl8coqq1d4wu4TF0K/D7RL39W6dMo3eQDAEhALIy1Lu0Z/Edj/TOlytX839CqLgMtJ+anB04whmpZYaowFcLPDI95q9QmMuaKXEOgrd7SywnmLZwOfIfo3e162TIgvM8y0Q5xk9QtRHptaWpwYWphUYnSJc6uC3SIt4AE02sKqWwzZz+HdNZuhenuirSg5r7rbVoUZmd1YlRBlqkor9qbu1phIVoMnxmLwxlf644sYBNEoBBwGQbH7FJsHIANBMzIIrcX/UREpJIiksqBmqQag2Aw1DpFUVIecRQCUGHNZokCaVu5P3A1ASbbldQGgFHk7bQOgdIna2Vtjgj+vJn0zgJ4AGxhW5hiAXan2vbFexa64A3E1AOxm0Z8YUM30d8Bdg/EDzBtjLncqmrG0JhS9D2Dens4t/atD0TuKvWlbBFL9QxJ/G17mS1q/p7rnJqMQCB6b+n1GoafT2m2VA7bbDDXBEzp/2zmvpuvW9aUj8hzGKt+ErjkagZU/Nf0t9XAChK3HjwM4FnogThDcwlprYV0KMBPARBGqpsJ4FwBY4Nnqh70PwC4DqF8dZV8BMLcpeVs5nKOGy3kCA5PDllQoAnMTcIuo0Z9VUWpxVLXQjUAS/lZW9c+tXUFwOSm3W8BkDJGhU76JARD3dAk4TUFCSpEpAEDc2zmQmlBiHGANCMdqxCqqHep/nNWGQQA0AAFwl4DI43I6CpODs6w+4SRnlaEbgO4AEDRoPpMiGAEIDEzz2NWXHB7DUgBqQUpwsClIRfHlxl0A1Ly04ABzgAoTyoz7AKh7Owd6WX1CcUKZsRCAuqdLoLPVJ5QllhrLNGLq3i7BOJtXcCeWGqsVkan7OgfNVp/gTS42BooTQ8rGgT4mSU2Yyj4S/K20ewBMZmCZjABieJNAz8Dl/i2yAtZPUxTWOXoOUl0JMwr+4k6Ovea8mq7rQprZE2Mui02yFXTd5e79R0gzexOshQnJtvz0rRUDfwppZl+qfW9ysi0/fX3ZsBWKZvJ3idqZlmLP7/pn0bHLVGYIdXdu6ZRiy++8skBaCpDSJ3ZDpyRbfsqPeZNWAFAGxK9JS7IWJMj7Tv0ZgDI44Y/UeGtx9PK9p/0JQBme9HNinKXM8t2eMzYBUEanrohxmiqEb3afvQeAMjZtqcVhrGHf7D6rHIAyvssXiDZVBj/dMUXJzc5s0ZMqrNAtxd8Wh4Mqc+lZObUO5bbM7u/3zvd0EVcXHxsAYBvf5YsTCjydPJvLh1QAmu3Y1O9PK/B0Ltld1auUoNkHxK+ZXOJNLS72pVYSVEeaY++IykC82xOKCgKawyQEE4Jak1Kk+QSofqelItoXsuX5VVuxSfSrXaN29SjxJa91B+ICADsZgAhAA+hFAK93dGW1lrDSKnXCzp356HY3gzjw7yB7AoAfOmP7rn3oeQFABoTPj8P5u3I4EcXlvAvAfQAoHAzzj80aMRDDLgJVMbAMAAKBFAAfVUWpMYqBJcRVGFYBEKsdaj9VZDExbsMaAGKNXe2nCcwRXW1YD0D02NS+jGBxeMQtAESvVe3FCCa7V9wFQPBZtO4ARKtfyAMgBkxaZwBkDgolAMSgUUsmRsyoUBUAURFZDDEwUaMAAFEjZiG2P/1Wo9HAQEDtd9DuXSDaHC4nAehVlBR6IK7McIJRpdRIicLANAIpDExVRVgFDV6BkY+BaUETizcoVC5qVKMRQ8DM0owhKjSoVKkKzOCzaunmgLDbqFC5IjKT16b1tvpom1ERykIGZvXY1b42r7DRFBLKgkbN7rFr/e0e4S9TSCgPmLToGofaP6paXGUKCWYGdh4AMXzOlnut2rsliaEXu13p/ytS301jaKKF9fBKGEenNfiwhiP4LXGWkqjRqd/32loxQNlR2V+LMZfFDU/6Zcz2yv5Fe6p7+KJNFUkD4v86cae7T26xN83rMFYld4veMXZvdXpuVTA2aBG9ifHWkgGlvqSSgGp1AixGV76YCtDdudmZ/GZ9EFKWr7kbwL0ACGCMwB4rGD/81vC2/ecHV1Y5rR7dQrMUgJGBhWrs2swoj7gJQKeKGGW8KrIhCWXGPQDGMLDudRRavyowaAIzGhWhBIAaMrBoTWAmc1DYB716WrwmwGT1CzsBqH6zlqYJzGjziVsAqF6r2k0TIDo84kYAao1d7ckIFFUjrgegVkWp/QBo0dXiXwBUd7QyCEDIWWX4C4BaEaMMIQZ/jFtfLo9VhgkaamLchrUAtNL40AhRJXdspWEdALU4MTTKoFBZXIVhIwDVa1GvsvqFEWEFV2VgrxDoEtR5FnILayvl7/PWxMAUn1W72eYTfwQg7usUGGjxCzUJZcYSAGJeWnC4xS9UxJcbisLLY2xeoTi20lDAwAwFqaETbF4hL8ZtKNCImYuTQifYvOKe6GqxQBWYpTRBGWfzCruiasRCVWC2snjleLtH2Gn3isWKyGyVMcpxNq+w3eYTSxWR2d1O9Vi7R9hmCQgVisgc1VHqCJtX2GEOCm5FZFEeuzrY6hN2mkJCjSKyKJ9V62v1CXsMKvlUgTn8Fq27xS/kixoFVYHZQ0aWagpSqcBI1YhZFQOLM4aoikBmBmYhUK0CfQ9c7gci+rs0kqYGXUVcCeNEFv7i0nD+dhH4+7viyimnzdIQX8A6ii3aizJ3sGPSkdAW3B46Oh3dh7UdXJNNUlg5HIC/uDQGbknldDjao4LQHo+J03Fo4+cvV1g5HA6Hw+FwOK2a1hKdz+FwOBwOh8PhHBSusHI4HA6Hw+FwWjVcYeVwOBwOh8PhtGq4wsrhcDgcDofDadVwhZXD4XA4HA6H06rhCiuHw+FwOBwOp1XDFVYOh8PhcDgcTquGK6wcDofD4XA4nFYNV1g5HA6Hw+FwOK0arrByOBwOh8PhcFo1XGHlcDgcDofD4bRquMLK4XA4HA6Hw2nVcIWVw+FwOBwOh9Oq4Qorh8PhcDgcDqdVwxVWDofD4XA4HE6rhiusHA6Hw+FwOJxWDVdYORwOh8PhcDitGq6wcjgcDofD4XBaNVxh5XA4HA6Hw+G0aiKusBKRRESMiBIiMLaLiNYfZF1RWKYrDrWuAX3nEtH/Wl5qDuefEJFMRM+2UF/XENEeItKIyHWodRwOh8NpHbTkM6A1YziagxGRDGA9Y+yGozluPTwK4JnaBSIaBOAeAOcAWAnAfbB1LTFw+MF/HmNsUEv0x+nQnAMg1NxOiCgWwHwAtwD4AED1wdY1dxwOh8PpCBDRqwASGGOnt1B/VwB4ljHmaIn+2hpHVWFtbTDGagDU1FnVK/z/J4wxBgBE9K917RkiEgAQY0yNtCychsEYK69vOxGZGGPBBnTVDfo9YQljrCC879AD13E4HA7n6EJExkjLEGmOmktA+E3jRAAzw1PrjIjS6zQZQkS/EpGXiP4gouEH7D+WiFaEt+cR0fNEFH2YMQcQUQ4RVRNRMRG9Q0QpdbbvdwkIWzw/Dm/SwvL9a12dfacR0UYi8hPRViL6b1jZa8h3cQV0q+3AOt/FFeFtXYno47DM1UT0ERF1Dm9zEFGIiEbX6WsfEW2qszyJiDy1JzcROYnoxfDxV4e/w5F1ZSGiGiI6LfxdBAH0b8hxcI4ORGQnotfDv1MREc0hoiXha+pf00FhdxQXEb1CRJUA3gqvzyaiLUTkC7d5hIgs4W1XAFgd7mJnnXPywHXp4fZnENGq8Pm/i4geJCLTkf82OO0VIhpHRL+Ez3N3+HkwqPYedUDbf7iS1bmPTSSi9eF74HIi6h6Zo+G0Ng51ftXZXq+OQUSnENEPRFRBROVE9DURHfJZGdYfLgeQWec5LxFRevjzyAPaMyI6L/y5ts3FRLSMiHwArgWwCIC9Tn+uQ4xtIqKHw/qBh4h+J6KTm/H1tQqOpg/rLOhT6osApIb/9tbZPg9AFoDhAMoAvEVEBABElAHgGwCfARgCfQp0KIBXDjUYEaUC+B7AegDHADgJgAPAZ4dQLB8FMD38uVa+g60DEU0H8BCAudCVu9kAbgdwfQO+BwBYDOAxAFvq9Ls4fLyfAEgGMAHAeABpAD4hIgpbhP8MrwcR9QbgBJAePl4AkAD8zBgLhfvLAdAJwOkAhoW/k2V12gOABcBd0C+IAQB2N/A4OEeHx6C/7P0H+nkxBMAJh9nnFgCbAYwEcEd4nQfAldDP2esBXATgzvC2xQBOCX8+Bvo5+f5B1u0N3/jeAvAsgIHhPs+Dfk1wOI2GiAwAPgXwI/TzezSApwA0ZqbHDGAO9PNxDIAYAAtaVFBOm+Rw51cDdQw7gCeh3wsl6O6Bn9fzov4ogPcAfIe/n/M/N1L0eQCeg/5c/gzAzQC8+KeOcjAWQX9mTAGQAeC1sKxDGjl+64IxdtT+AMjQ/S/qrpMAMAAn11l3XHhd5/Dy6wBePmC/oeE2SYcY6z4ASw9YFxve55jwsgu6T23t9vP0r+Qf+xxs3R4Alx6w7mYAG+ss5wL4Xz3fxT/GDq+bBP0CSq+zrgcADcBJ4eWHAXwd/jwdwJcAVgC4OLzuJwB3hj9PgO7yYD1gnDUAbgt/viL8nYw4mucC/2vYH/SXrCCAi+qsswOoAPBqePkf11X43Pu8AX3PALC9zvLI8LmQfph13wO4+4C+zg6faxTp74z/tb0/AHHh8+zEg2y7AkDNAetqnxsJddowAH3rtJkavnaESB8f/4vsX33nV3h7U3QMe/h5fXw9474K3Z2q7rr0cL8jD1jPoMe11G0z+4A2/7oWwuv3PwMA9AzrDF0PaPMJgOci/Vs05681+bCurfM5P/x/EoB9AEYA6EVEF9ZpQ+H/ewIoPkh/IwCMO3Aqqc4+vzVFSCJKBNAFwAtE9HydTYY6MjWV/gDyGWO5tSsYYzuJKB/6G9Z30E/MmaRP+UsAlkO/cCQi+hTAKAC3hXcfAcAGoCRsrK7FAv07qEWBrsRyWh89ARhR53xljHnogOwWB+GPA1eEp5tuhu6r7QAghv8aywgAxxDR7XXWCQCsAFIAcF9XTqNgjJWHXVy+JqKlAJYCeJ8xtrf+Pf9BgDG2pc5yPvRrJwZAvX7enPZNA86vw+oYRNQTwP3QrbOJ0O95AoCuR1D0f93HG8Bw6LJvPOC5bwawrCWEihStSWGtG+Vc6ysq1Pn/JQBPHGS/vEP0J0CfDj9Yaqmipgh4gEwz0Hjz/uEg/H3sB1K7/gfoJ94o6Cb/J6ErHy9At0yH8LdyI0A/1oNNH1fV+RxgPMiqtVJ7x2lswJ/nH50QHQvgXQD3AvgvgEoAZ+LQU0r1IYT7ef8g20qa0B+HA8bYNCJ6ErobypkAHiSis6Fbiw40BhwsAEU5sMvw/xFP38iJPIc6vxhjX6NhOsbn4c/Xhv9XAGwE0FjffS38//5zmg4dUOU5xPr6EKCf+6Pw7+wxvib012o42gprEE2z6PwJYCBjbHsj97kAwG7GWLNT/tTCGCsiojwAPRljrzejq4N9FxsBdCKi9ForKxH1gO7HujE8fg0R/QngGgBR0I/TCP0tbyrC/qvh/v6E7g+rMcZ2NkNWTuTYDv2mcwyAXQBARDYAgwDsaEQ/xwHIY4zdX7uCiLo1UaY/AfRr5PXI4RwWxthfAP4C8DARfQk9aOUNADYiimaM1b5oD42QiJw2zCHOr69xGB2DiOKhz4DOZIwtD68bjsPrUAd7zte+1NeNIxnawENoiA61GroynFIra3vhaL955kKfSkwnooRDBD8djIfD+y0gomFE1IuITieiF+rZZz70gKTFRDSaiHoQ0UmkR8xHNfM4XABuIz0zQF/SI1kvI6I5jegjF0A3Ihoe/i7M0Kf8/4IecDYiHEX4FvSLqa4pXwZwCYAfGGMqY8wP4NfwOrlOu++g+7R+SkSnElF3IhpDRPcS0eGCdjitAKYH2r0C/QY7kYgGQLcE1L5FN5St0F+GpoavhesAXNxEse4DMIWI7guf+/2I6DwieqSJ/XE6OOF7UzbpkdrdiGg8gMHQX9R/hW5pmhe+95+Lhge4cjiHO7+Aw+sYFQBKAUwPbzsRekDfgVb9A8kFMCisJyQQkZEx5gPwC4DbiWggEY1Fw2e6cgFYSM8GlBA2XvwDxthW6HrDq+H7cg8iGklE/yOicxo4TqvkaCusj0J/Q9gI/S2jQb4fjLG1AMZBd0ReAV2pm4d6pvYZY/nQrUoagK8AbICuxAbCf02GMfYS9EjUS8Oy/ADd4rmrEd18COAL6L40JdCDphj04JUS6IrncgCFAM4Ob6tlOfS3LLm+deF9ToOu7C6EnpXgPQB98befMKf18z/o59hn0H/ntdB9m/wN7YAx9jmA/4PuQrIWeoDf3KYIE55Cy4SereK38F8W9GBEDqcpeAH0ge5mshV6VPNbAB5mep7hqdDP2XXQ77V3R0hOTtvkkOcXcHgdgzGmAbgQupK7HroucTcOr0ssBLAJ+v26BLpOAuj6AwD8Dt2d766GHARj7GfoivI74f5uO0TTadAzBTwCPVvMkvDxtekMQPRPPYjD4bR2wtb43QD+jzH2WKTl4XA4HA7nSNOagq44HM5BIKJh0P2nfoPut3x7+P/FkZSLw+FwOJyjBVdYOZy2wS3QXTlqU5CNY4zti6hEHA6Hw+EcJbhLAIfD4XA4HA6nVcPz03E4HA6Hw+FwWjVcYeVwOBwOh8PhtGq4wsrhcDgcDofDadVwhZXD4XA4HA6H06rhCiuHw+FwOBwOp1XDFVYOh8PhcDgcTquGK6wcDofD4XA4nFYNLxzQQObPWDYGgARAnrlgwsoIi8PhtGkeu/D0/dfT7MVL+PXEaTbpWTn7z6nc7Ex+TnHaFPz8PTy8cMDhcDnHbPJOuGxZ1cyrGMgAIEQgiSutHE7TCCurywBmAhAAaCJXWjnNIT0r5zgAy6HPGgYBTOQPfU5bID0rRwBwKUF7iYEIIH7+HgJuYa0Pl3MMgKUeLdYCgAgEDcxUJGqXAeAnE4fTSF6eM8ICpD4IwAIQAGYF2LOPXXh6FgAvgHHgVldOI0m27XuwyNvZGF40QrdU8XOI0+pIz8ohAH2GJP42qzronAT0jQMQx/Z7aDIzQJPBz99/wRXW+pEYmKWzaT39BgYNDCqA1SYl0nJxOG2OV+4YPslXHv0pACsAFWCkb6G+AL4BGKD/43/swtO51ZXTYGqC0enh80cBKARAjqhAHE4d0rNyugyIX301GE0FhlgA6vRXyTGINZeqBgq9rTDjToDNAWAESADYTec/mZWeZt97/VPT3/JFWv7WAldY68Fn0X4xBQgJxh0QEIJXDOAjqzmQb2CvR1o2Dqet8NiFpxsA/A9IvU80h1h8vz33lW3u+hVAEnTFYjVIWwRGFwFEYVcBCdzCwGkA6Vk5o4HobgCeBFAM7gPIiTDpWTkJPZ2bL7Ybq6/dUDbMBhi6bywbBoexitmN1V95QtH3xZpLvx/X+ZstT01/i4X3+Rr6fa80yuS+8ffCE66wiN5T0rNybgbwfm52phbBQ2oVcB/WepBl6hJXZnirZsPklNX5s3uPjXmCPSMcc/plk+fmAugjSeyTCIvI4bRaHrvw9DFGu+9qgP0n5LHFAvgAwHWzFy8pPVhbAEuhW181o33ILUbbmBRNsX3G/cU59ZEx960vq4POsQB1zs3OrI60PJyORThYanKUsVLtFbv57E1lg6P9qq03AJhFH6wGz2+VgYR3bYYaeVK3z9Y+Nf0t9XB9zlo4lSr8Cbd/nzdpCkAZNkP19jFp8osvX7/g/474AbViuMLaAG674ZvfOyk08rrki/0mCq3+/oQqtyaiL4C+ksRCkZaPw4kkB8ugEVZA5bC1FJYY74vx/XosqNjxH9IUW7wtYd1wo71ojLKpX40hFOgbjDNEBQ3FXbylO4kpeVZT1KUQDAmAHpQ1niutnINx/QtXjP0q95yfBsSvWbHkf3OlSMvD6VjoyiqTATIBgAgFsdayraW+5DcEqEvP6Ll4TXOm9NOzckQAU52m8hfdwTgzwL4FKCs3O/PPljqGtgRXWA+BLFMnAP6ctddXJW4+K1hhDNTMi71kGoD3K53KtrWDvSeMm8iKIi0nhxNJwsrqcoAZAcZI9C9mqq2KeT8/OxDYlqK3Ihgsx8FgPeZf+5OmwhiqhjFUw5BUXeX1x/3oK383UzD2gcl+KgDGALpz5oIJ847qgXHaBD3nfPqkyoQbM7t/OGb+ta/+Fml5OB2LY+578Ytib9qpegApVIGU+3fOO+velh7nuheujP6j8Lj/lfhSrgcQ3yd2/fbuzm1XvzDjpRUtPVZrhvuwHpp7AfxHq+7ytl0zoCZu/Wrc4/6g5Fnb54mlxjNG/mGfK4t0A4BUSWL5kRaWw4kQFwEw6zdsAlOtF5OmuhGyxAAAmL4lrWYXnAU7QiZvtWAO1YjGYDVMoWoYFJ+eKwCMIDIPqcLen4b03uoObunDLMcxEqMJAFdEOP8iPSsnGjBcCWAxV1Y5R5v0rJxhhJQJ4WA/FaCgxgzfHImxnr/2lSoAc9Ozch7rErXzmV3u3pdurRi4ND0rZwGA+3OzMzuE8YwrrIfmCQBLA2V9H9HAkBS1+1oA8Ni1s5xu7QObT7y+W66py+704ChZpv6SxCojKy6Hc/Qx2Ip6K94kAFABhEgITj7xl1kX/JWUekNJlA3dSyoR6/MVRqf+FRSrTL+IlcYdamxICw71dBbW2/Oo2jibgRlBIGhUBuDi4Rt3OZf37wpUvEtazOno5V7x/uqLLtts2mJ7QfCJfwLYAmAEwm4I/Tdv4u4CHZChib8+u6ZkdJRA6uORloXTsRh09zs9gOgvGMRigjaTgQbhKAT75WZnugFcdskzNz/0Y96kWQBmiKRMP/+JOSs3lA09c+MDF1YdyfEjDXcJqIern7u2T+f1528RgH1znzupy/4NLqcZwLcMbMz6Qb7vyxKUkyWJHTLX1VNXTDpPC4mTNMXwKk/Vw2kvvPfM5VSZe3KABL8vWJ2eDUCeIM/cqRFWfTcwvVOy28OG7C3xA5h4KKVyU7/++/1f+2/etHJTv/60emT0pQWhhFcBECAiyjwex/3xAgRNz4LFwDToCeIZgertn9M+Sc/KMUSbKqpiLWXBFXfMiom0PJyOww0vXtbrl4IT11f44xWVGY/Jzc7cGClZ0rNy+vSO3fDVtoqB3QGUArg/3lL8wirXtECkZDqSCIdv0rGQZSJZprtkmfqw6rTnEjUBBmvpkn80crkDNXb1goCZsX6brcdLcnTnQ/X32IWnj1F8pvc0RbwGwNJwMAqH0+Yp2XD54JAnxSiaPE/PXDBh3mjTRbuYQfu2zG6NV0QR9kDoTRxGmey/edPK/ps3zatt03/zJlYQSuykbyUAmuajAOQTnn5lU99LLgEwVYtRtupbiQBY1Sjl7T9uSD5/U7/+Yzb16z8nrARz2jfnVAVjrX7FekOkBeF0HNKzcmxf7jr37Qp/vHFC1y9vj6SyCgC52Zlbv739th5Wg2cMgHUAntKYUH3WY/fcG66g1a5odwfUAvQGcLfG6IRg8ZBjASDVVvjsgY0ct9YUlsUrpxoU+BSRLf3xW+ErWSbzQfqTAFC4qk9tBRYOpz1wHgDNVzbwmU39+ptMm22roVHGriGmfSRoytbU+BlNtHzK4eTvAKAIxs4AGaYVpI5ZuEyav0usNF5JIB8AlYEpgk9It38X9x6AHwE8AGApV1rbL7MWTiWAzQawvcjb6Z1Iy8PpGFz13AwTwN5RmWGkxsTzF173wvxIy1TLpgcu+AXAxBFJP19nNvhCf5UcMxfAnwPvfucM/XppH3CF9QAkiW0F0PkW+dWdaX67PWh2e6bdf/OGg7XtdI1vKYHOE1Wk999kOdkYpF51t8syiZ3HbrRAr20NgBTwCiycdsB7z1xOorniOsFYvWqCPLMUwCvGPdYU34iqBRWh6GRbortw9uIl3qb0HXabeRAARPOojwRDKqC/8RkBSGEleCKAuwk0zjOpvLtm1JZCv58JDMwM/mLYbvEq9ukAHdPDueX93OzMw+a05HCay6yFU6nEm7oaoDMFUmftyj7jo0jLdCC52Znsw1seXFDo6RIFYCqAaE8o+rM1JceU9pjz2b9TtLRBuMJ6ECSJlaQYqh7prApAIPqZehu73N+VJijPx5cbMeQv24GpdzKTh+yaG9s7r7aPh7kPK6etkJ6VMyY9K2dOODH2P/gpJNygBmLjvZ1WVChJgVcBTN3u7LTgtpg5QTVgivIUxbpq22a8ljEm47WMORmvZTTY6hnbK88OALYENT88O6EB2F9ys64rwagnSnKFkHA3A/MxPWJXYMR+bcahc1oxvxaMu8gs+kKDEv58ItKycDoGn+6Ycufa0pEDRiT9vHLnvDPr1wkiTG52ppabnfk2gH5jUpe/V+DpbNaY+Gt6Vs7SgXe/+/zB7udtBZ4loA6yTP8FMO7ldTddZ648aaQAgkmvzlMviTd4b/BlR8U6POKU4vm21zYO9E2TJKYB+BzABF+p80cQ+68jtWz0ET8IDqcF6H3HR5cC5lcAGAAN/e9cXOZTHUVGU6E1KnF5+hBPGmnQULb758mGYjO+GmplC8drM4buWgIGA94/sfzR114deke0wdcZMBoBYgACGa9lTFx3+brDvrRpihgAgJA3NU1fQ28DeO5QBQTCAVsTVWfov6LbeD4YMgEsa6nvg9M6SM/K6QnESgCyn57+ZkmExeF0APre+cF0wHo/gDdWFY+9PNLyNJTc7MwgkHlhelZOFIAnAHaVJ+SYQNCuSs/KObEtli/mCus/0QCoP+RNPuusoAkwV2oIxDSoooTVL1zmN2u9E0sMl6XlGR2yTOeHldblkgQ8e43kUwOmfkdUeg6nGaRn5ZgI2tldonY9F9J6xgOAYM2F0fknBLHaYrcUdhJMFc4QgB47T4Oibcel37uxsYuIV47r5tOCFlvXYg+KogC32j0G1YipMBcywVRCIBBjMEF1nA7gsDdKd26KAgBKgF1g0D3DzwXwXH37hF0FVm7q1/8FADdvHNTXTorwGs8g0H5Is+95JN/TRQHoX3EFHE5LM23+9XeH1FPusxo8P/kU+1W52ZltLq1SbnZmdXpWzg7ouWJFprtWTUUD7sOtDe4SUAdJYk9JEjvPyDC9e0hgFlvRspkLJjTsBHW5VVHFBI9dQ4+dlv84qoXdskxn1G4OuB0f+8qi+QsCp9Ux84UrRmb+3/2fAdjNICwu9SUJfWLW/yBYtwds3RbAFPsbKGqTXTBVbO9nqXl5oj/1lThfCgZuXw0GoN9eNXDxl4k3G3af6U/0aNhlHKlqBede7s+bepXB02tVnaFEf8mkO4bd85qSMfetb9Kzcm4dde9Lp9y08NLk2gbzZywb8/S0Z14E6B4AULxfC5qSD4T9Vxt4SB8yMAEKXcvAeABWO2H689d2LvMnnjMg7q/c3OxMXqyFc0RJz8oZJe89dU6Crch9UrfPz8/NzmzLZdhlgIIAFH22i025+Kn/jYq0UI2FK6xhZJl6AsA1z0+/oKsijDCCyF/R95HG9GG8q7qmLF4ZLWioyFhnS0oqMtRN4rsOQOfHLjw9tiXl5nCawqyFU6l71ucT07NyPvxi17m/biwbeoZZ9G0AcJpXiUr4Juv2cdZO731P4fhSIigAPnz/wl1XZ+w+WwTTkFi6GgRAAMT/7PwhYXLxsmcBQIV4ydaHzn09NzvzFS1u5Ue6NwAAQItxrv8pxZ6XVxOM7g3gkRJf6pef7zi/sOecTzdNuuXLzzVoP6jKvukAC9+bNGihvf/wX20AI6DnaAUAE3gAVrvg291nTgmoViTYimZHWhZO+2b8Q09kAMhhEAqLvWn9npn+RkGkZWoO4en/iQDmAphiFgO27ZX9f7zwqdu6HGbXVgW3+AGQZUoDsEWW6ba1JQvGDlUIDJqHIDS6Tm+3K/2/5b9gnZlcZHyn227zh7mLLD3Tp/ndUZ1Lyqv3JSKh/57zAbzY8kfB4dRP2Nn+lBhzaTejMP5iBsEEoMws+p+e0PWLj567dtEPtW0zXssYIxgxCHrdQRV1FMZAaa9jnVU7YA5WaQDtVya7aHse0WDY+vHzd75bZ9i1+n+MEVEgYNt265fXfbQyLE/C8KSVFxBp/1lVNDaUoAkTtOAuUQvqSTmY/sfcMbS+TFPv+9Qe/GVmww5VJt2aYCaemaNdkJ6VYwRwE4Clr9/w9OeRlofTfpmx4Kp+VcHjVhmFQDCkmY/Pzc4sjLRMLUFYaV0JANOfvzZ+6e7MJ0t8Ke+kZ+VMys3O9EVYvAbBFVadKgA37ajss7zI0+nuvgqDI+mvsivumx1sbEeyTBegL76rila39dti7a2VYRlczpG2hLQ11fsSEay2ZhwB+TmcetGVVSYDZKoMJCDBWlg9LOmXx1YXH3vf5gfP9wPn72+rR/PrbQGmAPQSgNfXXb5u5Yuz3x7MhJS+SSWrGYHOA9APgPznNG0fWyMe7+xW/PMBQ2foUf54AsAHdQOucrMzS4HM5x678PRF46y/X2CwmMf6PX/vyABsjOqL5daMwUDwAwBlx96/oCTFlp+7pmT0MwB+z83O/FfgTf/Nm1Zu7N/vdmL0JBPYfwds3NzmfLU4/2Rs2tKHf86f2MlhdPNCAZwjRnpWjgM4+02RVGFi1y9mvXjdi1sjLdORYOF1L8xPz8opAbDYLPrem7Vw6tlPTX+r1aeI4worAEliNQCeu+P+529MVcUYk2oG08SnG9uPLFNnAG8DyO53cbCP+3H7y84qw5UA7i5a0/N+ABVV+xKNLSw+h3NYkm37ni7ydjaFF9VSX8q8P+656sA0bLVI0H1GAV3b3FOraNpj1i2orElCXPX6r/tv3vRx7Q5fXzb5UqYJEE3K87XrbvskWXQIcVkKo1W/X7bxH9O4j114upA4KPeG6vz4s4CokYrPHK2FDKpg7MW00BYNYBCAYL/gllOrkk3WVUXHdQNwjKIZz19Tckw/AKcAwJC5b3hiLWU7cqt6vwrAI5CSpjHD15/08fYyb7Ej1MvbvfnfHieSpGflUKxl8EWJ1oLA2LTlnwNTIi0Spx0ya+FUq0AXfKgxwzCVCWe/eN2L7dqSn5ud+d6Qe97o7w7EuXKrev8MoNVnMerwCqss01gAKQA+NYlP3NdXC6gMJs1bOvilxvYlSWyfLNMIAHsAYF2Gb9bADdaxsZWGey8dt8z4xvcT1gHgFlbOUSU9K2c60HkkQQMDKeEqUnI9u8gAqQAMYUf9/W39eQOHOt07gVHb3q67g7FauAQGzTPyo8AuPKCv2x2wTq3RDM4xjvJfatu9csfwEyt2pJ0CYGrJ+vQugkHRAPa6wWr42Gi/8n3BoCz3FG6eC11plm9//fO61tEXAFw18t5Xokt9ycMANjrZnn/D3uruXQE8DgAaE3Hqrp/vMm2xEwAYt9pmberX/2OeKaBNM67Cn5hqEvzXtwUrEKftkZ6VQwPj+63RmKGPSfBfv/Whc9u1slqL1Pmr+7ZV9j/lr5JRx6Zn5czKzc58KtIy1Qcx1uayNLQoskyvA5h447I3J1YHYzbN8oZUC+i3654+a2wj+xEliakHrLMLKv4avNbWM7pKxFtl/deWlsUOSh660zDl1q0d+4vnHBWOvf+FrEJP53kAvgTwMICxAOTD5eDLeC3jKwCjAJxea11dOO2jAUFzzIb0vZ/vzsx5Ir227eoR/U78vnt3OdntweC9xUyND/mFasOOQoeQ5jchxmw2hPYaEoM+s2j1Gc0GYgyxXl91WmV1eUrArVCUklJomlCzLX1KcsauJypiQhtMhiLTVlJJ0RxKrBqtphoKTVtJI0VzKHFqtJpiKDRtJo00NUqJ16LU5PLK5KpKU1SqRQmgS00xCGFHBD1V3V39N286lDWZ08rpNeeTHIUZjwHQta342nHaFulZOfcDuGtE8k/LPvzvQxMjLc/RJD0rRwTwPoCzu0Vvv27FHbNeiLRMh4JnCQCmAZCqgzGXx6nQTMFoMSpt5Z7GdCDLJABYIcuUVXe9JDGPJmKw26n2ZYT8gUJlb00xCDUFcQNa8gA4nINx7uN3Lij0dJ4Xbar4BcB/crMzV+RmZ85rSMLoZKO/i1MM+ev6nEYrWx8DgOiKfXPrtt3exfmwIopw+MMu3xppISOrLoqhWJ/ZXP6Xs6u53GGL8hlMhs6BMu/xvs2Vx+zJ+6Nrac1GkVhZhbNnMDftjBhToNIbW7lpO7NoXhArB1DKDKwyvFwKoJQZmZtZNC+AMgClMOjLZjW0p9pk00Sm7VdWGQANYI8Pu7BrW67u0pGZmP3oLIWJp6XZd//FlVXOkWDIPW/MBnAXgJdXFR13UqTlOdqEyxtPdZrLd+6r7rpg2D2vvtda75cd3sIK6L4rX+WeU3icx1Y4wm/uY0/5ve8Vrtsb7Gwty2QH8BSAFZLE3jhYm92vWDLFzQnvLd491BYTXXXFVQu/f62l5Odw6hK+2dwO4KzOUbu2D0/6ZfjT09+sbkwfk9/uXSyA0VdTticCwO+zE2lD+f9pohrEyN+eEPtv3qQBwGMXnj4GjP0EgATGMHpHQSDW6x//8P01d6zyxpx+yS/x3xnKHbUPAQXA3NmLl+y3ds6fsWwMwJYDZIaebeDEQ1WzashxT9r9+2U3r35vGsCMGgnCs0P+g6/Tx6gAggAmtsXqLh2VcKDg99Bd1/wATeC/H6cluezZm+79Yd9Jcx2m6p+rgzEn5mZnKpGWKVKMuf/5Cws8XcIZXsiHVni/7LA+rLJMJgDfAfi/Et8tgwOqJXqQqlQB5lWNUVYB3ZIK4Op6x+qBhU5zWR52o3d3e/mTcDnfgsvdYS8OzpFBf8hr3wOCAYC6r7r7VT/eeUOjlFUAKAhZ8hD2xQaAqk2Tpnu6dkWa8YNdtcoqAICx8QAIRNAAbUOnhEVPn1f4i8UXNSrF6C+2+EVNAQP0Kiv/8J2dP2OZAaTcBSaaw50RQBKaWIFFv7lmrtzUb/HrAKQnjj9rwnfxx54EQMTfhQda1Q2YUy8SQLXPKAP478dpQdKzcsYCk29LshUUH5u64uynp7/ZoZ/HBZ6uPaCnMBQBmNEKr7eO7BKQBv0hFvo5f8KxToTKzSFrZ7Nz52+N6USW6WRZpl71tZEkFgRwkbuT/3irzQevxxYD4LEmS87hHAKjEDitzkOeATiuiV05oad7AwCUWYbdCQBFvszb6jbqU1imK6+MAUSBKpv5dQAn+pmYXByw3KZ4rQMB+hGguwFMnL14ycr5M5aNWTDro7cAbAQznKbLyf6l0DaV/ps3rey/edO87+KPmwtQIJzRVWiJvjlHD5GU78O/HUPjCkdwOPVy/pNZxwPsc4D2FXvTBj09/c1/pcfrgMgAgvr1xoRuUdtbXf7ZDquwShLLlSQ2Zvo3H60DcNoYNbgZEOBI+eO7hvYhyyQCeB6HqXEeHu97SWLFsIS25AeivABuqnjS/njTj4DD+TchzRgV9uBsbHWof2AmNa2LyZcMAJ9cOWtWSeKwrmAMqsH6uj6Nr7sJpBrL7wARzDE1GxBWSK2kPggw/3G77KkAOhkdqT+njOjXzZ4y7dz5M5Z9CbCf1EDMFID1AjAHoONqFdqmugMcjPB01vhEa+FugIRhSb+0qaouHZ3J6Z/aAUKKfd+faIXTk5y2yZSnZ/fdXtlftog+C4CTD5bLuSNSWw0r2lT5ogCVeRTHOZGW6UA6pEuALFMcAJ8kMV9GwqoFfxaPEfrUxAUAtksw+D4+bAdhJImp4bRYUQ0cl4z2Uaaqcod1Uyh6d79K93/LnrZviL/J83JTj4XDqSU9K8cCCOcD+BOgD9CAbAAHI+O1DCIIJq8m9Mx4LWPMnZjyCGj/u+3+qXXLqqjT92m9owDAaB+62+wcfuIDt7xx0wmWq8dG+xPgKN04D9gMwXDubZU7TQhbytzYH8APFQCFldQjoozkZmeuvGnhJaO+2HXu2tXFxz6cnpXTB8BSrvy0fn7JP7ETAHSJyr3rl7tn8N+L02zSs3KigfGLRVLUk7otufaFGS/tjLRMrYnaaljpWZ/7Sn0pN6Vn5QzIzc7cGGm5aumoFta7Aexc9Glv69aKgSf0dOwsNzMaC9CnF9z4WoOi0MLWVUgSK5Qktq0h+6x6PvPYqn2JXQGBvtg+OC3XH10YX254HC7nwGYcC4cDABiV8sOzANKMQjCrodkADsF4BqIyxZyeUCkuq2Z9TbquyRTUsdoWY5xra4/xAICQ56TTgtVd5jm9KefHelPhMVZAUTYjEG12G8z+/8T3fe/U+H7vRwM4LezQ35B8sC3C09PfLFE00yMA0gF2H4ClrTUKlvM3FYGEfgBCvxeesCzSsnDaPrMWXmI3CsElAA1UmfGsF2a89GakZWq9CA8CzBNjLmtVKa46qsL6EYB59658cmxNKNo5IkQrATI7Un9rjP/q07JM78ky0eGb7kcC29/c+M2+fm8C8GrEvtr9ioWnuuI0mfSsHOPm8oyLu0Ttqjmt+wcNdms5BFPD/wsX/H6COWiOQXzZ+pcBmovwtP2ac7ucVBnTZzhTywCyAGTVBGP10y+NvvXexcMewpqkNzWDqqDQWpI94+mzP7novwu+uujmBTVha+pEAPv7aqasDcWi+0MSAazWSsw5EricY+By3gmXs1kvBQ6je7yBQptzszMbXSKbw6lLelaOsKVi4OqQZjrBYXTfkJud+VWkZWrN5GZnlg5N/E2uDMQfP23+zCsjLU8tHdIlQJLYDwB+MHzz8fuKZqroUR1nZgZv0Bq3+aNGdLMXQJUkNSovmAzdqdkMkIDEmhODRu08g0I/xJcZfoTLmQaX29+YY+FwwkytDsbYrKLvoqemv9WsXHVdjd4Re0JWHLPFqgqWk8WYsvUYsn7BFAATaytGkUIvi/BAU8tAYhyIhIAWino31uS7tEwxaqN223YyYp27Fdn+VTnlSLoA1INMYCEGMkIvJiAf5fHbNy5njNeqnhEysHuiIfYg3evjTricE+FyN/q3nrVwKjGcPrJf/NqtwNktLi6nw/H65vLBvXvFbPzxu6xbW5XVsLXSNXrnVRvKhm5bvvfUK9KzchblZmdGPAdqh7OwyjJdLcuUesOLl/UCo/N6OzetUb0pwzXF9u4FN74aaGg/ksSyJYnNaczYsxcvCVuX6C5zTM0eT1HsyFeKM8qLk0IPOzxiLICX4XI2xmLL4WDWwqlGgnYngDXFvtT3mttfpWZMjheD5ZO3nKaqohm9d3wM/O27ik39+p9r3GLrEnSYyphWBgL9jrC1NEYMnZUghNTECkvP6LSygtmLl7SKZO+52ZkrGYRTAWgAvct9WJuJy3k8c0UvrHzc/lfwwaitAMpsPvH1qBqxJ3QfZWJgphq7enFTus/ZdV5nTyiaqoPO91tUbk6Ho3vW57Ogzxqx7ZUDRnB3oIbx9PQ3S0KaeQ5AJwDIjLQ8QAdTWMPppxYCuOCHfZMuUJgR49TA7wDiAHzawD6GyjKd2FQZZi9esnL24iXzDJbgSWAUAsM3Kdf55kCvtDHFY1OfbWrfnI6JOxD7KIPQq0/s+lea+xac8VpGcpVqTDlpRZ8fyxKON6Xm/6TZvYX7fVc39es/BsC7BKJgyBELFoCm5L1eO7W/O2ANJudFbVODRmKMHmyBw2sxcrMzlwL4QaTQsEjL0qZxOccDWEGgq51V4mBGiAXwAIBxDJAo7KPMCLStt/8cWaZGz+Qpmmk4AOyu6vVFywrP6WhEmyvm6e5AINR58eY0iJcsorcg0Vr49qyFU42RFqZDKaySxLYD6OMJ2V91B+MuBvB7N6ZNIiGIqM4/LG9gN3MAvCfLZG2OLDOe+nlbbM+C7zxFcZ1fnTvkTgAPeWzqCrtXvL54vu3+5vTN6TikZ+UIP+ePPy3GXFbRP27tYdOrHQ4DtElWP0OP6pPOELSQlli27iyE/U3D7gASAzMAgMckCADgSCkvAoCM1zLMCoQu3XbFqAAqavLjD1r1LZIMT1pZqTJjxvUvTBsUaVnaIrmLLLFBo/YJ0/PaAoBiDgqPw+W+By73D+I9VSsQ9lGujlJPd8eoZ0oSU2SZSJbJ1tBxukTtPCucmm3tkTgOTseg/12Lx7kD8VYCU6FX2uP5fBtBbnZmaHTq9++W+FKiVhZI10Vang6lsAKAJLFtr2+4fhKAQcS0l2oKRqUYbcXrLrvrnooGdnEFgFMkiTV7qtNbGn22weovrc6Pf+DzPoa+JYnKGX6ztjOxxHArXM5jm9s/p0NwRlCz9KoMxN/41PS31OZ21svimXvZjz1QETOY4hK+3Xj8zx8u6b9507xa31WEb/YqEfxiCABAhkkGABhgrR4jqiQmVhsHGu3+5bMXL2l1wTIOU9WrALAyXzohwqK0PVxOc6c80+fGEEVDf/grdLBMDy73Srjc85y3eL6UJPZneO0NAFbLMiU3ZCiL6DstyVag5GZnelrwCDgdDJ/iyAJQyiBMQvjFm7sDNQ5vyPE/gP1R7E2bradOjBwdRmGVZbpClukFWSaLR3HcbxL8uAZlO5hmSg3WdH66AfsLskyCJDGfJLHVLSHTzAUrQiaH/6pgtQ35v/Z9IH2av9oSEEYTKI+BfVbzf44r4XLOaW60Lad9MmvhVIoxlz0tQN0FYHFz+8t4LYOMW20pUdo5MKpuP9Iqjz+wTVhxrS5KHbWTaeUAWRHyjHt5/oxlY2LE0Lmdi60gVRRiuhe2yofC9/tO/gxAcUUg4V/HxqkHl9MIYLFRoeOCJjaLQOMQVgAaGFS1FsAKAMUNGW57ZX/Vp9i+abrAnI7OJc/cfCaAUwE8kZudubyZqf46LO//d54GUBaArt2dW7IjKUuHUVgBdAYw8Prv3jGuLx3eJcZc8VUSBS4MJzP/vAH7XwHgD1mmpJYU6rpnf/wsqlPpNk9xzLkv3TZqNFzuUo3Y6aqAOLtHeJmB3Q9gKVdaOQeSX9P1uspAfNexnZatyM3ObHYd7B7u0LDT/zwtqiaqK1RmfvSCGxe5D2yzqV9/IpC1KOGYytoMAdAj76U/PE5f9wIbY2DFBkvwX9kBWgO52ZmaQMq3IimnX/7sjR0yS0pjyV1kMVc6le0AzgJwg/mO6qdrragNzQAgSWyFJLFrJIkxWaZ4WaanZJkOWnAlPSsniUFIqw7GyC14GJwORrE39RmL6MXolBWvRFqWtk5udubSbtHbC4s9aTdd+syslEjJ0WEUVkliDwAY51WiLgDIXuxLvZ9pxqnmmJ01MxdMKGpAF+UAtgNo8TJutkT3fwDmU4MGedl3YmfhnqpNQZP2DQAQSAR3FOccQHpWDv1edPwUkZSCeEvpDS3R53lre3xVkXQqAAbNYJldW4K1Lt4TKpwADDbaXsHUMghiPFDrFxYw9u9SbAOB3pty69ZQS8h0JDi+01K3ygzRZjEwJdKytHpcTrHrHtOiGLeha1FS6DO43PNboNcJAKYD6HWwjcOSfjkbAJJteVtaYCxOByQ9K6f/1oqBXZLt+W8vvvmRwkjL0x7o6dxyg0eJoh/yJrfI86YpdAiFVZYpFgAkiWmJ1oL7LaJ3z38rLXsDVek2MCxqSB+SxD6RJHZBI/OuNohL5mzaYI72zaspiLds/2LUFACw+cX7CaQAANMdxuWWHpfTdiGo4wAcpzLDg09Nf7PZfn6b+vUfYCsZkwgihCunHvQlidm1bgBgTlzVDQjC4qyqQDilVd9S0yRRI7Inl7fqqVyL6HsSYEzee3LPSMvSmsldZBEZ2AsCo4s1YnOTr/ee1RL9ShJ7H0D3WteqcOaV/en8akKOywFAYxTxqGROm+V2gPy7q3rdHGlB2guvzHzuQwDvALglPSsnNRIytHuFVZYpHsA+WaYbJj/88NgSX2rqsKRf1xhAZwJAwN2z3shqWaY4WabLa0uxHin8lY6HjDb/Pl951Ly3HunbKTzVNlkl5gmaGOV2C7Saer6cyJKelTPGaa7IMQl+L4BmT3dt6tdf0ICXFBFgevqXQ0bTWlfEhADAnZf4BwAogajnZy6YsPLWT5KdSflRZtUWRHSX0ladiujF6xZuA2hVULNMjLQsrRaXkxw1wp8Eukoj9pBwT1WLZi6RJFYEALJMIwGsAnANoJ/b2yoGjgYYSnxpb/GcmZzGct0LVx5H0C6LMZe9l5ud2eIzoh2cuwmaeVD8n19GYvB2r7BCT8D2fwDkrRWDzgdYqDIQN9Pk2HcTib69MxdMONy00xUAFgHocySFnL14iRrbK/9uxWcS/OVRObJMMXC5lxekhe41BwVTpzyT60iOz2kb6A9wtrwykGAPaSYzgKHN7dM/omqRAIzZnZqIoOjLRz1lUwWf6ACACrBkAFD8RgYA67Z3GZxWYkWlVflmyq1bm52t4EjjMLp/JGhjbnzx0m6RlqXVoRcv+b+EMuPg0vjQ73u6Bu86gqOtBnAzgLf0RSYBJNRn5edw6uOv4lG3C6TRcWnLeE7zFiY3O3PH4MQ/1m8oGzq4z50f9j3a47d7hVWSWLkkMdd9Kx/dDrDLAPrkYr8WCHqS+zhSVuU3oIsnAYyRJLbpCIuKS+/c+KrJ4f+gMjdpSMmGrlcDQOfpvv8DsMio0I1wOXnCc44EkAkAGASGZj7QNw7q29m8zjF1Xy+NmbV0OJNXl85cMGHewZRVAAj29fStsJnhNQXGA4AaWH3rYxeePqZPsXW6yAilNvXl5shztBibJm9jEITKQPy1kZaltREyaI8CmA3g2YQy4+j0af4jVpJRkpgqSewZSWI1skyGW0a4ziJoFE70znNmchpFelZOar6n62SNCS/Pv/bVPyItT3tke2W/kxkEb1C1HPV88e1aYZVlGizLdLwsE3WJys0GKK53zMZPq/PHTgQzIljd+e7D7G+QJKZJEvv1aMkcrLFeQwR30V/db3n7//rUuiHMZmBlfrP2Ve4iS7MKFnDaPHL4Yc7QzAf6pn79iRRhPoIU/GhcumJgJoiquV4XAyUpOKTMUfcUZEYAUrIfl1bZQljfo+qTpspzNLEaPIsIWs0PeZMSIy1La6LkWdsSoyLcEjJo7wKYBZf7aNYPdwxOXFXTM2YzokyVIfCcmZxG4jSX3wswI4MQ0fRL7ZkN919cCOAxAOdf/NT/zjmaY7drhRXA/6CXXDWvLh49LtpU6R0Qv+ZdAGcDKA5UpS871I6yTEMA7JJlOuboiKoze/GSirg+eR8E3I5UX3nU47JMFrjcFQWpoVctASEprtzw2NGUh9O6OL3HezUAUaK1YCOa+UAPDKiZDeDMGgtle5T+evWqopFv17eP9RfnVmsghPCULaAHBv5lLopGSecq/Hz96lZXLOBgPDX9LR+D8A2Ak9OzcuiwO3QEXM7ZiaXGzEqnsjGvU+gyuNza0RxeklglgMnbK/vnVAdj1r56yukOWSZekYzTIG588bIefsU6vYdzy4bc7MztkZanPZPm2P2Ew1il5Xu6LDya98/2rrBeB+C0K75akloVjB1WFYx5+Di/0UKi71xT1N4/Zy6YcDhfu3UAth0FOf+ByeG7VjCFVlfnx9/kd9vuBoC0a323KyL7IrpavBIu5xH1p+W0Xn7Ol8YCQL+4dXc3R1ndMLzPacbt1keUmFDNjBtFJbWqF/mN7pKZCybUG6RAIcHhsZgABiaaj4HBemI2gHQCYVNiYGfGaxltJkgmxb7vdwBdYsxlr3To4B6Xc0zwgajlAB4F8H6M2zAkfZo/ImnJJIlpf78M4UkAz9fNIMDhHIovd50zLaBa0Stm85H0ueYA+Pmu6yu7Ru9csLuqVxyAyUdr3HatsEoS80gS+zXZlpcVLhCwyFsy6FymWg325D9/O8y+f0kSO02SWENLtrYYU27dqmpB4+Wq36jt+GLU0Nr1BpWuAuBTRPZO7iLLEc1awGmdlPuTjgVQ/kPe5E+b2semfv3HCF7xMwoKJLgN5u4FuD+lugd2xa2LP5zCGeziH1wY44Al1l9qtB0Pe1J8tWIP3FrhCKLUGUoHsLStKK0W0VsOAJWBuMsBLO2QSqvLOYaBfW9SBImBaQCehsvd7CIUzSHRWtjJaapMBDARwKXhYgNmWSZ7JOXitF7Ss3KiFGacCeDTF69b+Fmk5ekIbCwbeguAXQCy07Nyjoou2S4VVlkmUZZpsSzThFkLp5r9qvXqHs6tRbnZmXs9xcNHA/BW7zv+oD4u4RKs18kyOY6y2P9g9uIl6xyp5cv8lfbTXr9/0OWyTASXu7AiRnnWoNJwq49ejaR8nKPPrIVTySAEMwVSl+dmZzZ5upaBTQAgEAhgJA7emyaYVAvyonYAhwniqowzjK6xmGCJD/4CAGbnLycZPOb0XaleQL+ftJnI7tyqPvG6KzAR2pDcLYwEoPblVwNwQuRE0XGay9PspqoESWKFksRyw6sfA/CbLJMtgqJxWilDEn97AUCsQOpDkZalo5CbnRmIMlU+CGDouE7fHJXKhu1SYQXQBcAIAHGf77xgkjsQJzjNFU+898zlBLCzAHx97ZPn+w6x71gAz0H3c40ojrTyywSjWlW1N+FpTRVmAoDbqc71WbQtScXGs+Fydo20jJyjR0gzTVY0U+LYtGWHOncPiywTVd6wL5MJTAGgMIJaHqt7mBRE7wziMEFcBeWpATAGf/kYFwDs2Y1oANidWsNQT/7WVoocnn7W0LbkbklkAvkR/u2qotQ/Iy3Q9soBv+fXdDswK8vHAN6SJOaNhEyc1kt6Vo51e2W/87o7t5TvnHdmvTOnnJZlQpcvXk2x7fP+UTR2SnpWjulIj9cuFdbwW3kfAB9rzHAVgOLVxcc+qSn2SwDqZE/5Y309+/7Z20AMAAEAAElEQVQIYCT0ig4RJTvZlL66W82SgNsRvXv54OMBIH2an1n9wqkEEhjY87mLLNy/q4OwbM9p/QCAgOaUx7QFB3n2VF9Y9ASAuU+eLeQYqZcWMLprPObKCesuX3dQv9iM1zLGZLw6aE5ptLVfjNfvAU7eBwDMXzTaa1LU3vuibkA4f+uh+mhtvHrK6b8AGos2lW9AR41I1wuUTAQwd/0g309/jvA8IMutr8KUJLGlksQeAgBZpv6yTC9wFwFOmGmeULSRMeGqSAvS0Xhq+ltqiS/lPK/iiANwxFMEGo70AEeb8JSRX5KYdsOLl2cQtDOtBu9zGx+4MLjw1tLjAY1Z47a8foh9jZLEQpLEVgFAxmsZBCAzSghNiTeEcnODtqUAjENt7gEimGOVN2YLAONga9UQgFnX+pwbARgHWqtHaQyGTf6ojQCMfS01xyiMaEfAvgmAsafZMyrEiO0J2rYBMHY1eYcHmRAqDFn2ADCkGv2DalQRgDFhdW83S6w0a9iVfP5b2f0enJq1eR1c7l2Bh6IeMgeFB0xBegZAxGr7co4eftV2IoDcH/ImNTnNmiQxD4CLZBB9MMRk+csdXzn1j+5CTPyWwvqUVYDJsdVGU8BgRFplhemz1NvXDt89HdaAQgyiOHBn9OODdjrHz168pM0ofR9vm2ICBOoZs2Xvx7c80GbkbnF0pXVlmUwbASRCt7ZGjERrQeegZo6rp8k4AGcCuBdAs8sSc9ou1zw/3QKcdRtAP+dW9W6yXz+n6ajM8BWA5QIp99648NIPnpn+RsGRGqvdKawA7gBwoSzT4D3V99zJIAjjOn+zBLgQweouYwB8f+FNL/8r5cW9n8UPSDbal776fpdvylVTN58m9AMsVgDR1ZoR1UEjAMwBgDVe5z/2XeuL/sfyBl/UP5a3+e1M0AMajgEQKgiZo0h/KMQBCNWohgQGBAC4AaY4BCWpWjVUAiAQhF8Glqn/+SFNrNqX8Kos012SxL4sSA09klhi+F9KofEyuJz3wuXmJejaMbMWTjUa6PxTTGLg440PXNik3JiyTKcBWCtJbJ8kMfbM4u4XWb1pJmMoCgF3en0+SBIA0/CtdoAxdC/y0o0fmZJ+GLIHgH6SaoCpxJRwGYA2o/h9umOKAQBWF49ZEWlZWgOSxPY/8GWZBD1i/+gTba5M9oXsUYfaLknsBVmmdySJVYUzCIyTJMZ/ww6IT7E9C1C37s6tc5fP+e/RzBnMCZObnckueDLrmd8KT/gov6bLm9BnbI4I7VFh/RUArvhqiV+07TjOmrRk70/W36peu3feEGB0RlD0ZV36ftezzaSd/qsnpgqgQRZSx/hZWm2Q1WUGaP5kYyAIsM0AjQQgAEwD6CUAr46wVSZZBI1+qonbBiA02l7hNAta6Pvq+AIAobGOctEqqIGlVYmedZeva1SZSlmmgQDW/FQd+9q75Z2uAWCssquhSrvyLpXETKvclTwPEr5Mn+YPweU8Hnppw6cATGmpL5DT+thUNvhuhRmtfaLXN+malWUyQy8x/AOA8wBgq99x4kB3by8Am+JLqK829F9ghLRSG+JrfLAoKkJM00hMFYE10MCgkkgr4o+7Oj0r5w8A345JXV76zqxHW7u/Ya3PVZvIHXu0kGU6AcALskwnSxLbe7TH31HZfxWAlPraSBKrCn88C8DHskxnSRLj0eEdiPSsHNEsnjA5wVpUPjjhjzciLU9H5r2bsz8efd+Lv64qGntselbOAwByjoSLVbtTWCWJfQ7gc9OfM68zxf7cGaQwgP3why1X7IfReH/w/2VX77eQMj+ADTZB/XGguVrZ5He86NUMqxUIeV9N2c7C6XmWAjACFALw6pHyz5Nl6iJJbK8ksQ2yTMOOi6rY8G55p8XQrVtybLVpDQnaSbny4JS3S/rYp9y21QOXewNzRT9AoHvzX7BuSrvWd9RLpXGOPHq6pYFZALCxfOiZ6Vk5Yxp7M5AkFpBlOhbhMlnnLe5uA+z/6Vvdxy8YfCFNse481L6xYhBUYYeomZBSWakBEATGgoIhxQoAO6JTscY+BoWWFAOAlwBgZcF49L3zg0BAte4AUNA7dkMnxoSd2yv7LwNQ2Ctm44Adlf08DMLySPmOjuv8ddL3+07GwPjV3YDMSIjQWikEUAmgLVTV+xzAlQCWAHqGGElijTIScNos5wRUa5eAz3rhU9Pf4tbVCFPk7fQ4gMXQZ7lvSc/KafG4gHalsMoynQFguSSxmgRz2X1VpIAIBECMLRkGj60gWG0puy/JENgzxFaV59HE7184N0+RZboUgHygNWHd5etWZryWMRFhpfEIKqvnAnhHlmmcJLFfJImtB4B1+vSqPublwGuuwQtKN3V90FMSs1CWaY4ksd37OgcfjS8z3JFYYrgDLudTcLmr6hmK0zaRAApfq2TQlxs+9V7HN3tX7boEQ3DuFuaITqzpolriNu+bdt/sQ97we1k809SCJIA0xFkrPwLE894ZcfzqFNBYAMg19VcLLckAmALQnQDcI5J/OrfEm0J7qnt6AKSW+pJ6VAViewE4DQC2Vw5AWHf2HYkbW0MwkBIFAA5Tlfloj92akSS2TZbpOEliEVECkmz5XYJqvT6s+wkrp4sAQJYpBsD3skz3SRL74AiKyIkwsxZOJYcx81FPKGorg/BhpOXhAAB6/p0mkBkBktDCLmLtRmGVZeoB4DMAd6Rn5Sww2o6Ltdg3MUDV7CGrkFTVCwThkXWXr3vwgP1iATwP4BUANx3Yb1hJPdIP028BPA69stYhudy19qGnrpg0uTov/oKA23aMLNMA6WrmLXvafq7VJ3wG4GHo1b047Qs5XPiCwpZ+ucE76j5+ObJMGyWJ3Vy7foMv6pjEYGyQAnEmb0n0I/X1sd1nx4QCGxNE7cdVvXrtlPJ2YbuYPjY1nGTk+Cg5ZzP6/QJA/lvxzHzpwH7CJfyiATYXwC3hlFJmNFIBbymW7c2sAoBfC0786WiP3doJJ+s3AXgQwDeSxL49WmNHGasSvWQ7pA9rPZgBFAHIa2GROK2MEl/K7JqQs+vxnb5d+OaNT3KLeutAJjCF6UYVDUcgTWB7Smu1C8Bx0Kckp4S8PcRg5chpAO6+1N9rG0EgkPqvKMJwJauBAO47msLKMp0qy/R+eAqrSpJYVjiCu14Un/lypgmhbTmj3JLEggAQf5Mnh0BPAphR8qxt6pGWnXN0yc3OXJlsy/PGmMv9aHz6JRHAKgD781pmvJbhqFSNx6YXjfkRAMAM9QasGMocg6O8RspzKj++Zr4wAABdqwrD+fYB6y62JDc7c97h5MrNzmS52ZlugD4AyAf9dVxItuVFql4892GtHwN0i/i4oznoDne/Pws8Xbc0dj9JYkUAJksSWwkAskyXyzL1b3EBORElPSuHfs6f8B+DECyKt5TMirQ8HJ3c7MyVRjE4WXe1pKVHYtas3SisksSYJLGfP942pVSk0PUA/txy88uvrbt8/Txb0WiHwVKmJg54c5Us0zGyTCIAhC0IkCS2W5JY6VEWORlAbwAJjdlp9uIlu61x1S8G3I7hr983yFVn09yASfM5asRFpc/YIlqli9PyFHk77a0JRX3bBN9VRZLYHEliL9Su62zyXQnAOiSY1I0MPj/qKLMHkvFaxpguRdY+GjHIw4pvrui+cm+xNQbdqwpQ5/bRqJma8DFMBHB3rKVka7E3dcqZj7rubkwfLcGYtGU9AWB40srOR3vstkA4Sf9oSWJH+7eJAZDSlFK5tW4M4RytDyGc2YXTrhgHYKyime5/avpbTS6iwml5tj547nKA3gbYCWPuf77F8yS3C4VVluk/skz3yzJZ/Kp1qsqMA4Yl/fIbAMyfsczqLcmIITH4SVLG630B/ATgtvBU6TeyTE8cRTm7yzKdGF58DcAxYatAo4hJL7zDaPdXlm9Pu2npN4YvZZkEuNyesngly+oXjAllxrtaVnJO5KE4RTM1Kr+dLNN5skwjD1xvIm1OtBBSzVXdEyzOXYUzF0w4dPoiBim90I6CeD8CJmY0xf2UsM+ZgN6e3WAgBgCO1LLejT2a3OzMlbnZmQ+e0Om7Y2MtZdvWlo6cm56Vc3Jj+2kOIqnRAGA31rSL++CRQJJYDQDIMvWUZbr8SI+nK6lsLMA6AVjaFKUV2J9veBSAGwFAlimel3VtH3SL3v6uSfRXQ3fj47Qy+sau+wYgR5/YjQ+0dN/t5UY9GnqqnsD3+yadJJIS6uzIzQ5vmwiQLeRJfVGS2GYA06FXCjIA+BmH8RttYV4B8LIskyFsEW7SVOSU27Z6Qh7LOWrAFJv3a7/+AGIBIO1a39PQXSL+p90b/S9FhdM2mbVwKhG0xDTHbktD95FlEgA8AOAfmSMyXsuI3RmwJaQF479TAzFOX9mAp+vrZ/iWmIJorxG7Uj0M4fKlO6M6sVR3BQRBJQAw2v1NLhH89PQ3K8r9iaMA2gCwj66cf/1lTe2rsfyYN2kvAPyQNyni5UjbAFkAHpVlch62ZfOQ9P8IADP9vdyEjiSWL0nMHTZOvA1gefi64LRRhsx9Y+zuql4pwxJ//T43O5NbV1sh/eLWfWQ3VvnXloxs0stmfbSLi1eSWBaA4Vd8tcTmUxz/UZnhnWeueWM3AFjiNt8OUrwIOwBLEnu1Tg6/QgBHNH+bLJMlnAMT0JXlSZLEml1JZvbiJctJVN8v2dC1y75f+g6vs+lWVWA1fou2IneRpS2kpeEcBo0JnRkEoVvUzpiG7hNO+n4M9HOuLmcDZOi5dcoP4eXv6+tn8M6okzQwhAzaJgATqzdlr94VlUaixsA0YwAAKrZ3+qXBB3MQdL9WnBJjLqdfCk5cNOye1wY3p79GUHtdBo7SeG2Z2QBGShJzH+FxZOz/PahFAjfCbgKPA3g6UsUQOC2DOxh3K4CKdaXDL460LJyD89T0t0KeUPT8ikDCiPSsnPiW7LvNK6x1/FB9gxP+uANANEF9CQDmz1gmhmrSjrUnriuduWBCsM4+pwC4C3rC/VOOoGxW6NHPD4dl3F43tVBzSR6y8wHBoFLlzpRnli+jGbJMBJe7sjAl9LzNJ9o65Zm4/1Y74POdF5kA4M/iMQ1KjC7LFC3LROFgvn11t8WJwVtEaHv6WasvItGvAvjrUP08ccnJJwI0lQCMW5PY94ovukHq/GXX3Gg9pzsx1KY9EptyXHXJzc4sPDZVPi2gWiorAgk56Vk5XZrb5+EYlfLDYAAYnbqiUX7kHZHwubQbAGSZJoatli2O7t9MEwDsBdiulgrckCT2tSSxtwBAlulkWaYXw/dnThvhoqduPQnA2QCe3vjARdURFodTP28BMKTY981oyU7btMIqy+QAsFeWaToAVATirk+0FobO7Ln4x3CT0Wow2hCo7nJfnX0IeqqWydAtBp8fKfkkifmgp9o6Iilhpt6+ZS0J7PaA29G3YmfqfAAZANDpGt8cAO8bFbodLufjcDlb3DTPOarEA0BAtTTU33kxgE8OXDn9g849K1XjoAxb9V5/ed94kyN/98wFEw5p7dcUMUsvvEoQGEQAkigoXfZGJUEjQBBCZgCwp5T3a/wh/ZsFM16RVWaYACDaInp/umnhJY32jW0MAjQ7ANgMnmbPeHQUZJlOAvAdgCNm4crNzlzZJ3b9RwD1ue6FaWccgSGGQp994LQhqoIxL5pEP/rFrX3h8K05EWZNorXAZxICt7Vkp21aYQVgA/AhgLXpWTn99lb3iDGJgafrVL04C4Ci+BL2JxYOTw9JAC6RJLYKAGSZ+skyvVJn6r7JyDLZZZmel2XqEx7vHkliOc3t91CoAdMTAFu9e/lgd95vfUrqbHqVgZkY2H8Z2FKutLZdhiT+NgIA+sWtPex0ZviF7GOEK//U5RdP7MkaCPaygY+oQWdqwN3jX7lSa3nswtNTwYRxADQNDIygApCX7jmjOiQa4XOKftL0RKpGayCtqcd2ILnZmX+lR2+7RGGGLr8UnPhDelbOEct48WvhidsAYPne07YfqTHaIUsBXArgvSM5SN+49S8RNPxZNLbFFVZJYg8DOFaSmE+WySTLxMuctXLSs3J6biwb0q2zI/ezr26b06jgU87RJzc7k8VZSj/YU90zOj0rp1tL9dumFVZJYsWSxK6XJPYrgKsAKHk13f6vdrvBWny90Va0eeaCCZWAXk89PFVaLUlsR52ujgVwKoCWePDGAjgXzQgWaAyzFy9RoruUztUUMdZXGv2xLFNtDe4hABj9Mzk7pw3iMFYNBID06O2H9bUMB/O9KEls4UE2XwRgw7DNV9amGzmk/6otqXKJXq0EF/3V2+3/fmjph7MXL1kJPeUQ/H77StIEDQAqd6X+2rgjqh/5jps/H5H0y5xib2oigA/Ts3JMh92paXAf1kYSPr/elCSmyDI5ZJmij8Q4z0x/Yz2D8E2RN+2kcMGJFkWSmD/88VoAS2SZRrT0GJwW5XaAQjvd/Vp0iplz5NhSkTE3/HFKS/XZZhVWWaYeskx9AWDWwkvsVoPnphhz6c+52ZlFALBg1oeXK74kh9FeUPdt7EEAsiyTsW5fksReBdC31r+0Nk9rI2QhWabx4b72AegjSezFJh9cI5n+6K9LrAlVy927k0Z5y6L2yDKNgx6s4GdgCCut8tGSh9Oy/JR/kgIA3+w+s97zUpZpiizTuQfzL7zl45SRAE5IMAS+M9oLXSAFJAQOmj/1uetPONVbHDM8pkfhb7MXL3l/be/KYHGnqioAGJb0yygA8DmEXQJTBeiprVq8Yt7imx/OBmg6gMldonb9PGvh1Gb7yR5IevTWTABItBYc29J9t3fC99CVAI7k9OzbALr3i1t7JC2gzwM4q85sGy/T28q44cXLRgqkXmU3VC/Ozc7k1tU2Qm52Zq5BCP5uN1bdMGvh1BZ56WyzCiuAOwH8Ictk3Vg+eJpPsZuGJ//yHQDMn7FsjBqIfQkAvCVDT5g/Y1ntdPgGACsliYUO7Kw2c4As080Avm5kzr5zASyTZTot3FdlUw+qqfhKnecDqNj59fBiNSRugsu9kkATCfQNAEGj/ZkROG2IcB7KmQCgMcMnh8pLGVZSpwO4/mDbdwWsVwPAhLxTdvjKBvQGE8E085d1rg0AwGMXnm7wlTmzAZZnjvaeDQAW0qJ6mL0jAcAkBLsAgNLH4wfTAALZkyuOSDWh3OzMVzIS/nhrb3X3Eb8XHv9BS1ra0rNyxuyu6nUWAJT4Ul5tar7Pjkr4HjofR1BhHZH8c45RCMIs+h86UmOEC2t8BgCyTL0A7AgH5XJaCetLh98DQDixy9cHmzXitCI29es/ZlO//nM29es/BgBGp/yw3ROKTqsMxJ3ZEv23ZYX1DgAXSBLzbasYmAmwfapmmAcAgqnqYoDVWn0MCE+HSxJbFE6BVR/lAErRgHKNdSy1HwO4HMBXjT+MlmH24iVlBmvwnoDb0WnvjwMfBAC43CtVgU3ViKkVseriSMnGaRYSwMLWRWbEIVw7wr7ZkwBcVFvtpy7bA47hAFsVt/Ps3npNVd399MD+zDE1dwIYDNDNl8zZVAoAQSZ484OWjQDwa+G47QCgWPAFMQ0EgmgOJbfEgR6MHs6tlybb8t7K93Q9G3pmj5ZCYhDC9z/af4/oSOy585txe+csm7sv64emJudfIElMBgBZpha3sn/43wdLE6xFv60rHd45PSvHePg9mo0fwJ+op/Ib5+iSnpWTmFvVe6JA6tvPXbvox8PvwYkUm/r1H8vAfmBgDzKwpZv69R9jEgN3AkxZse+U41tijDarsEoSK5Ik9uX4eU/0BtjJAL3y2g3PKABgsheco7diKoBQTPev98gynd+QVCySxF4HcHHYRytKlinqYO1kma4AsEaWKVqSmCpJ7PVI5/hLHLh7gTWuqrJie+qUb3IsObJMg8S5VaVup7ohtkLsC5ezRXOicY4KMunnMQAcNC+lLFOSLJM5bC0qOXD7iNcH9AIwCqB3DdbiEdCzUSkIFwKobffmvP79Fa/Z9f/snXd4FdXWh989c2p6I3SI1ASIICqKCo5gD/aC14Zd7AVL7LESC3otXFFsXMUr31UvKrEDo6iIYg0QpIYeQhLST5/9/XEmEJCSckISmJeHJ5kze/asOZmyZu+1fsuVUFVIOJkRgBAiUBZy1JUujgeM2j+6fy6klBhCBpcnrIvIke6C56+eLjfXdr0U+DfwyAXP3/lWJPpVRXAeSEH4y9jhe9jfWZ89b/jae798X4Sc3yBtDwOzm+q0Aui6uBz4xVRtiSibaro/YUhbInB8pPveGU2T6zVNnl5Pvuu+uuRZi31PWnbecFUEPgBcQcPx6F43sGhtjgVUgRCYgyHjBv6rEMTnwD/SsvOaHdbV7hxWM170eV0XwwBS3JtfEUjRK/6v/wBMHj/nEO/Wfl2ccat/APEAMLrrEU8dTXjqqkFVWjRNStO5/QT4ZDeO7grgLyKgQRkpLrxzWcizNUYzgqp744L+I4AMgMRy28WKFDb+LiJv0cYpzM2ab1MCZ4aXxFu70aV8Dfhxd1V8BrmrJgMc6+v4Xcgfe5Qrcdla4EFg9A1TRm3rb/Mfve4K+W1GfFrx9RNmzNo2SiuQarQSjAHok1Aw3KF4AweXrhomMIRAiJQqz9l1U0AtQWFulgFc1Sv+rw0LNo0cN+iBdy9qbp/H9fh0CAjinWWfAaMjpffZ1jEd07nCcJ1TJ1kGuGjeCHOh+b8lRkE/F4Qqu0Sv3aea0rouugC30YLyXRa7xyzROyckbSPC7+nhao4WbRodCJl5M4FQXPAHYOEJPT/aDHTVun+2y3C1xtDuHFagJ3ARMCAtO0/9o3jYoM4x61bPuef2pZPHzxHA0yDKfJW9sm6YMmqi+UC+CRjRmNhSc1r1JeCluilWXRdH6bq4wlz/nabJszVNbo30ATaHCe99+geIF0r/6hazdt6AcAJBTkU+MNsQ8jar+lX7Y/kTZ+cBvwG70zt9Cfjn7kb4l3pjMjravEUZv957qAy5ccRuvKXetQHApLFjhiPFZSAmXXxPwWf1t3cJI+YgZ+1QAIHsGGWvAdCQRvgTEdZobe5x7onC3KzAoJRfB9uUwMLqQPwbadl5o5vT36KSoYcpIiRHdv3ymgPFWQWQInCSRDrFdmdVAsIXs7LJ1cU0Tc7VNHlGS9wLC3OzfINSfttY6k0dcc5z97aIIsGu0DS5ETiYcKIuui7SdF00uDSyRbPRzlN0xy3qhwwVy+ukKC3aMBlLC+YLxPMCgRTygpKnVqwCyk5Km/mZU/VI5/pht/7r+s/mTB4/p8kDZ+3OYdU0WQh0A/4DHO83nB02Vve8GyCxz8f3AqMVe3XuDVNGleu6UMyp0pCmycVN2Nf7mibfB9B1cQTwMHBnXXWttkpy/3UTbW6/rFyX+sLsr2wn6broVtTR/5UiRarDLya2tn0Wjadn3IoVigiOuP6VyzrtvE7T5JeaJqftarvMaZkDaw1b980B92PAdcAvl9z76Mz6bd59up/dGVfzqVBDpcDfpt58UqnZ4HctBlhePmBVuS95KaDXxbBKZd+oULxw9TulAcN5IvCXKgJ517x89SVN7auoptuhhlTnvnjN2xsiaGKbx5P459ECgQyHmfiAV/zu9ZscNd0vWPb0c6c0p29dF8m6Lt7TdRGRQhJ1+EPOB30hF79sPvrUSPa7NzRNbjRDw+zAZ9QLk7FoWR61vVH2lH2qcovtA6Y7JioP2qaV7H0ri9bGO7TyWwDPMeUjNU2u0zR5wrmnFH9wWHXMgsytXXsZhuM4iXy1qU5ru3JY6+SmNE16NU36klxb7gVZCnw8efwcW+W6ETfZo4oCyf0+fNnc5DygQNfFQc3YZ6qui17Ap4QTsY7UNLnXhKzW5LJH/ih2JVTf5auITixd2u0TINvrks8EbLK4U5H9qNa2z6Lx9I7/60dD2sTK8vRtQuq6Li7RdXHnnmTYEtTAeJDGNaVHRwEDbe4tb+/cpmxZ1wm+yuiE5H4bpk+YMetvJQ8NRHBryFFqLnYH4k458xkM1VEJgpJo96cZSwv2yShlYW7W1sM6fn9uvLNc/Wb9Sa+mZec1OsZwzNOPZgCDgBYr6NEWWZ89z+4qH5QZcG4uBR4AjuuWO+K6mk7fjJDC2BxVetgb67PnPdqMeFYXcAxwSMSMBv7amvkBsIEI6jk2BlMR4Q7MEtsWLc950V+eKQQoApzCz5jOs85qbZss9k6ws/9rqUrDsSJqh9La6QFbIlA3q0OtkFc2pf925bACd+i6WKDrImr8lCvTK3wJIw9JXbC6MDfLB1wW8iV2DAVixp1/01s1ZvtNhLUC1zZlZ+ZI6o/AM8BY4EpNkxWROJCWpnpT8rPA1+u+H+BfPz/95bTLvSF7UDymSHE4OfFHtLZ9Fo1jzrqsfwHev7ZmDqr38SjgNMwgr525a2ZHoSCv7e7wlriLh56n2GpkQs/Z0+u3mTR2TIqvMvoukN/Yo7237qofBanGKsE4M67sEJAHAbMDQg2CwGu3lUfkIBvI+7c9sSw9Kf9YX8hVBXyTlp03sTGyVPHOrQ8AHNvt819bzMi2yQWK4exo93W8rHvuyIndckfMB8i8dspKxXBlA50k8j6amISlaXID0FfT5H8iaXRhbpbRwV30tUJozI2vXtonkn03FE2TeZomvwXQdXGTrot/7aznbRE5QoocIpFIZBCk3+UVLwDouug+8vEXTk7LzrvHkqJrexw+aUuNCIkfbZuc3ep/vjqq3Acgwwm/LLUHNzal//bmsK4H/tQ0Wft54VlZIWkn1lFxz/+9dEkqIvg4MN8IxLxX11jT5LeaJi/StG1Z1g2iLsnKHEm9F8jRNPm1pskiM+nrLl0XHSJ5YJFmwoxZ0uby3wJE1ZbEfazrwr6um+//DCFrq2JCVi3mdkZhbpYX+BbkCXWfaZq8HDh1VzJWAF9VpBxaFnLYU73J7/sqeg8xQs5/jb311R2m1lwJ1dNAxoG48cI7l+2yH6cwYno6a4ewLY4sLIllOHzxoBCdXDGk+UfYON69edIPIO4E2QlkNhjfNPQB9nvxsC7RtqqyBGfZNy1tZ1vhz6lXqCF7xZOS0GJ2PbLcWSKlQAi5B/m0vaFp0gOg6+JYXRcR0V4EGNpx/ucGqlhRnnFNpPpsBh0Jh6UFW9uQ/ZKc+M5RHqVD0Cb/JxAPKggtbkLN5wDz1o9+f21Vr89APg7MsZzWNsl8iTz0t3903Rbz/VfC5t++dAcotIXkl+6Af3ZU8Ok9dbA72pXDqmlyuqbJq8MC4uIq4Id/3/jC176KXu8ibakxnX98+oYpo6QpR3VrU4LkdV2kArN1XRxv7vM9TZN/1mvSH8gBLo3EMbUkt0z7cklc95KvqtZ36FWxpkP+yj6+R8uSggXRNcrg6qdjerW2fRaNY2DyrxtAZDw+ffSYuhcmTZPVu2sfRBkLBAb/dlc5YEfaJtdf/+b9Q87ylkefGte95McJM2Yt2l0/PqnUrPe78wEdRN3LX8Bm86oCgSKMBqlvtABdACPsQCt2YGpadl7vPW2Qlp3nrgnGDqsJxk5//urpu3TQ90fsNT2y1UB858pun87tljtiV8ets10+LUgzYpLNF/7HgfsbIiXYEFyqZwbIgqVlB7d6VTJNk/cDZ5lqMsm6Lqzp6sgyTiBUe1C5m5yKieRUbAs3mrniQlMjVwjAFWsv/2zs83c92oLlmy0aiWdYRa1AOENJwbF1n22oTgv86QzJ92MCU/90hrSmJrq2G4dV18WRdeLUx3X/9AogPc6xdfrk8XM6Va4bOdwRt+bXcQ/d+z+z+VnAc4Tj1BpLDRDDbmQ0NE0uBYYAzzah731O5drUs4DCwrmDE4M+25dqSFwmJEZMjXpVa9tm0Tg6RW/4CKAmEPMi8Nuekv/umtlRdYrQFQ6YG6UG7nLErF9zw5RR2wTRJ40do5Qt75YtVGNrVGr52N31A+EY1vKQfat5k/k34czyE/EkLQeBd3P8X5E5wkajg/CBrNOU7aUQ+uvsZ+//6ZCctxJ2tcGA5N8vBNwC44CJX12fPU/EFo0+w1B8G0LOkjt21aZb7oj5AuVmAIG4uy5coCmYI/7nA6N3N/rfWMIvF+JdYMSgB95Ni0SfzaHerN1dwHu6Lrrvqb1Fwyh80yV8DuMBn8MoIKdi+c7rS70dXwHhAYIggwhiFmw69n5gfa97Pp503StXnLjvrT4wScvOG76r0Ix1qUlzAQpXZo5Ky877xxGPvPI+yKtM3esmJ8pCO3FYdV10A74H7gEorOx9jUutRev+xQfAwyAc/sqe2x66pvj/IE2TCxvYv8OMS7JrmqwhnFj139211zS5zHy77qLr4hNTs69NMmHGrFqQNwc9ztQ1+sEXJt5as0ggPpLIa8qej95lUQSLtsnstad9DGz+eOXYxcDte0r+qwrZLvNJNenk8oNl0JNqc6cs2TGuUBhXAMNkSL35orv+2mOmvIJU49RAPMDA5F/LAHFiz5leKRQ/CBQpW6X+uulAjwbxIGHR6j7pyfnLfi0+8vCt3g7L0rLzxqdl5+1Qgcmu+G9xKF5O6z3jx9awuZUYDRyuGM5HDr76Dd8e2n0CYCj+v5Wubixmhn2VrgtbpEqd9o5f+j+AGHvV521oKvgBwo75OgBdF/tMemt/JLnUdprTr0SVJQW/3dX67dc8D4IYOar7p263reY0YJ6U4pbPVp/zxcAH/vNbWnbehWnZeZYMWRPZucTqzpjX31zgcZDfDX/05cpe93y0LC07r+IW25NzSlzxFAdTLwXe3Vzb7ZzwVruurtgYIl5Or4UoAs4Bfk3LzouH/oPsiu/No2qihpViXKM6K98Y//zZKwB0Xbg1TXoaKWN1PPACsA6Y2YiKVT2AoYQzp5sURLwvmDAj75NXbjmqqGJN6umfTE++o29/jy/9L3eyz2lMph2ENliEKczNkmnZeV/XBGJP/t/yC8/QtN23/a46aQhIX6e/LlaAzRWFJz5Ut276k/17qY6eU4QiC4Ie5/Td9xLGKYyYHg7PYIAkV2kxwFZfcm9bdEkq1QquxOohzTuypmM+wOqNBmYN6H/f+4f5Qu5ngJdTozY+e/4/777j/2598l9p2XlC4dD4OGf5/BeufqddJE82l//e//rVDkfgpS6hDp7OodS/SZ/l5OQMJ/wA0S/oqCyILj6G2pQFl8Hol3du20RuBJ7TdXGIpsnfm9PRyor0OJAU1XbtD8xOy85r9YIP5kvjdwC6LjTgQ10XWZomDxht30gSW62eC1Qml9pu312bHa/5LIBZwKzrX7l80BZPx9yfi47JAKbbFH/Nmc8+sGxVef/L/nzk4j936CQnftt5Xz/kwAL+OL3HGXYR9T4SRSB8BekZo+urwNw89eLkjlEj/7u5tovTdEJFTSDG4VK9K2uDMZ93jNro9yZw1vDi/DhgpE3xdw8a9pmEndVmVRVsFw6rpskgMBNAfP7xeIkaFTCcL1eu1V5WbF6Z2DvvSTgbXRf9gR90XfxD0+SXe+tX10UnTZNFmiY/1XVxeENHZOvZ9aOui96aJr1mf05Nk3sawWg9hBwtQ8rCjT/1vyn2zPnLeq5xbu2wxX4sOfGCnIoDJpavPaPr4tLLB5445s3FN8d7Q+5zgRm7apc5LdMGnN/R0/E7xXAcD/KJG6aM3jYau2Vxz4dCPruaOnj1Q5fcu2Svf3ufVGrW+t1/AszbcMJnwJM/F42QpzpXxwoE0th1ha3W4q/Hz12Ylp133NDU+XcVVvZ55KeikZPTsvNOBWOegdqj3Jf83t57af/89/7Xr16irn9VIvnNVoTNpvypTvxQGoYaCARiSoE4kIPNeEDvexXG6Mtt1SXOqj7NHmGtxxSgsLnOqokGwiA8M+gML9OWnI3VhBPa8lvbkPbI5n9FdUrFdq5ATHPcV1Xb2O3/de2bi4Axadl5CjCqR+zqF//cctgQQ9r+SMvO+35A0u9f9UkseOmFDZ/0I+w0qYCfnPjRB5rTquvCCYRMneEjgDuBGzRNbjZcxjgkNrHjiOh8gLTsPE1w/hsStavAMCTCABGo9Cft8PL46/KH+rqK4k9/33uZctg/t3xpFnrRAL05L5lt6kGzK3RdjNJ1caP5BdM5esPTCc7SzRPKXTGB2o6HGiH7vWNvfn2Z2TwAfA383oB+bwWW6rroCdBYZ7WOes7q+cDithrLdO0/5y8B8Wh1UVKPFZ8f+qHbq9xmC4kehKdXLNoHvQal/FYCsGDTyN3GZw+PKbsRSD2p9IiDEIZI6ve/mXXrJo0dc0jI57gYxIuX3Ltkt2Ev9TEQwcqQvdxcXGf+7O6t6PszKAS2Rq3bzaatRmFulvzw9seeFMg4wjdjDZTc8Fp5cxuaUm4xPMJznkSagyCgoHRwOqt6OBw1qWaTBMLPgG21v9VA4s92T+eoSNlgambPBNB10bUuD6GJ6IAPpASpZCT93jcSNkYKTZNrNE1eommy2gyFmKzrYo9JgBbbkUI+KxDukuTArOb0U5ibZRTmZn09557bMxKcWzsDd4LsuKRsSM7nq8/aNDd08FQpcQBqcxQx2gu6LhJ0XVxY55voujiOcK5OXQKjm3BVt04ASo36GtulEgOAftOrl3QfnfvM98BciWp0iV57mkQ5BrPE985OqAiKdwFcP8ZnQnhUvDA3a2JzZ0TavMMKnAHcDYQOfvCdwzbW9Ijpn7Bojs1W+zKwFmn/Z11DTZOrNE2O1TRZ3IB+PwJeJqzVGglWEX6zLotQfy3BJEdMrcdTEv/8nOQo3RCy3OcwHmttoywahqbJnGT3lnRgcbkvebfZ0hv9rvPdEuleNyrO5ipd8I/bX1oI8O7T/VRHjOd/IMsI32gahIK0xauBuiTEClUEQsmuzTd5FCXFUOwYqqvNxkL/knO5rzA36xmB8TzUDSYLG/v5QwrALd3/VVEQElQU+oY63z106Ouphx8+JS0nJ0cjXOLaTGAJP5gkcqVE9vlz6hURye6vw4zzzwfua2ofdfGLNiXwWIp7s3fZ1oGXpmXnHR4xIyNLOuFCB62uatBeSCmxD/E5jOLqGOPTSPX5a85lmwtzs545o/d/+h3f4+NbEu1b5/QRGwdKIIggKFTbolR3W35mNwhdF1F18dNmsaOZui7qKtd1BKYT1u0GKAAmEg61RNOkrmmyn6bJPwAG5635VCCmABgO47xTznwm6cs1Z/y5qrzfUalRG98GDv7hgetm7ckJdf0W9zEQVMvtgyN5nG3eYdU0eQswVNNksNKfOA7wjfa4qo1gdP/YrvOm3zBllNfURr1d10XHPfVlvmVMMvtdrWnynkhVrdI0uVDT5FmaJmvMJK4ekeg3kkyYMcsf2630Ln+12762tMMna3v4E5x+5Yi1r7usUdY2jK6L7rouBkA4PEYVwdkC49ibp178NyWLzGmZjjX+qIx+m7TvBUpK0JP6cN266k1JD/ir3T2T+6+fOWHGrPKG7t8pjOjuDk+muXhkSNpUZ3WnnnaUDKk4CDhTu0weP6dNj1hKlFnbs4ubF0fVXjjvsSunniQPCgwmtTY91PWa8x67cqqmyeo6rdScnJz5IMwEFkbn5OTMr+48u4tAxArDEVHZO02TG4GnCT84m0xhbtb8FU+c9WD/xEWZIWlbB8xKy85rciXDlkLT5CKgj6bJ6QC6LgbXzRJa7IKc+MG2kMhw+pXH0i73RjxE7fmrp8vXrn/lhfnK7T91V0rIcw8qmKqcyFjvg5y2duqkzAenv3vtlKtapZJaYzFLzl+q62KEuRwNVBGOFweoBHoDdXKDK4BM4D0AMwzyAU2TK3a3D8+wip8B3jzy+BeBWb6Qa/2x3b686KcHr760MDdrr+EaGUsLPFKV+UZ08KQmHuYuadMOaz0B/y03T704UWBcapf8L7D22JNU59Y1roRVD5hNBwJPAWfvpcuDgWFN0WdtJC8TjqVtcyNPlz38x0vAf0oLuvdfVp00QSKD3dc5zmxtuyz2yCPAj3Vv0Md2/7xEothrAzHX7txQIE8EEg4vOyRdqN4i4AuASWPHJFRtSLlOsQV/d8R6xjdm5z6pVK/xuX83FzUQsntQNWealbrqJVrTDm3fsGN28d+nsPZHvvnafWnnQFf7gOigft5jV07dVZucnJz5OTk5E8POKyiB6G8BokoOj/gLt6bJiXUPyT1JsjWE6Tc/twLEqWA4E50lv9306qVpETEygmiaLIXwlCwwB/hXqxrUhqmODj0skT6a+UKzR3LiMxUp7gHeOS37+wFLO9uVPzlohER5vzYQc/4XhWdN73XPx7+lZeddO+D+Ga2q9mBqyXert/yuroscADMp/GngMnO5hnDY02xz2atpMlPTZJ2DGtI0uaih+TVp2Xni5g4P24JCIbbIOEgQegTEoW/d+NK7jTkG/4BqVQSUQ36e0CFiL2pt1mE130YX67q4GKDcl/SYRIm7xCh3gOgR8iVefv5N00Kw7W02A3htF/0MrBudAu4HjquLO21BngMe1jT5t7rsbYQJQjHkymUHZUvJu8Dl5MQntLZRFrvlTuAfmiYrAVyq92WBEfx2/Ymddm7Yx1nzz46e1ICtKi0ltusPv90wZZQBoDoCTwIdjKDtygvvXNaoym8GIlRl2CvNRR0IrLMZZpCTwAx30pt2aPuOSMVRtRdc5ZndhbTjLhv8YUO3iS4ZPhvAWdUvdW9tm4qui6eBWbrevGS9wtysglHdP7uvyh8fP3fdyTPTsvPa5Aimpsly4ArgCdg+EGMRZtMUd4zTp5xenhDaTE5Fi0zPF77pcta6Q3MNIauA2yA86rpi4pnfFeZmXXbfEXeed3HGFKJjF3d1JM+dEnQUlZ381MTf0rLzhoULFbUsui7O1HVxRf2PgNfrLQeA+vftw4BtAw+aJp/VNLmguXZc/8rlQwTGR+vtXaauj+3gydrw/aLVuac/VJib1eiZaFGjvi38ClFfJw1srl11tFmHlbBw/xLMGNMfNh43OEWtKk+pTThDdVR8d8OUUXMhHLsBoGlyuabJHbJbzQD/T4CXzDZBU3GgRTHfZqaaNmTquojYHywSTJgxa1Ni76K82uLEDm8WZx62qTYuenNq4K3WtstiR+rNMJRomtwmdP+va98skSh/+g3n+fWThzKnZUat8kV1P2KTVg7SH/ImXgPwzsSMs0MB9Rp3cuWXE2bM+rWxdgikwylCIzOnZQ4vzM2a71C8p22yBfglZfU6Kf2IwNaQd2u7qKNxQNHpjwf/ABAofxNg3wOrAYKOrQe3iFFh/iIcz6o2t6M3bvjX5BhH5dXVgfjBwOv7wrloCpomP9I0udJcfEnXxT8txzVM5yLHafagEIYiH9h766aRWmx7KMqjJhd1CvybnIqSndf3Slg+UyTMf4iu0+McHb7A2eMNZaU3ZhCwAORv5//z7n/f9OolPRuzz8xpmcMzp2Xekzktc7iui3hdF9viOXVd5Oi6qK9kdCEwod7yw8CkugVNk+M0TT5ab3ndzv5Oc0jLzhPDHpk6Ye66U34TwjgFuLN7ZfHrUTX+3k0dIXWsivoAQPEpwyJlZ5t1WM04i3M1Tc5Oy87rGzQcR59Y41orQ041odfnT0FYcxVYouui/h8aXRfRui6E6ZxeQPhk2OeYN6S3gbfb2s2pbHnX5wBZXpYw4P/WZeJZn3gSOfHNfoBYRJSLdF18qutih1jVsJMqDwY6g6xfT/tUEXI5Om0+MgrE+5c9MmH9pLFjRPGfB92hqIY3vufm6xtrQOa0zOESonxSGQLMzpyWOXzZE+d82Tlm/Yo1td4oGdqEoQRUYPaksWPadBzrgUZNhx8vASjv+X5pQ7fpljuiJujYavjilp3TUnZpmnxN0+SESD1wf3/40tcIJ3NdNDR1/txI9NlSmM+BABCIVBWw/YArgdXJZfZ3WqT3nPg+UR71VkPIPL9D3rarJpom5czyzgHALgQgQoaz27THgfFO1ev8qWjkJXmrz1uWlp33Vp97Zh59UPYnu6zyVMeQaQNPE8jvQD4KzP6lJm4K4TDBOp+rGFhXzy+4mnDIYp09HzdEmjMSHPnIK+nAV8W1XZ6JsVeuPilt5kmFuVnP+IdvDQiEW3iVpt4LCqUqtwZT/edGytY2qcOq66ITYNRl+/dLXPzMlpKBRhdv7ADg1QtufeUTs6mdsD7rz/W27QJ8Q7h06suaJn/ap8bXw6yGdX7d761lx24YEZaHESJkKMbmygRXWkr16cD/9rqlxb7CQfgc31nkXmP76NQ2nTynCF3er+Qwj4Ia7U5e/J6ZFHqhNJTh0lCuuejuv1Y1wQYt/GNHTb6N1T0nHVr768vbM+931OuzaF10XYgU+83nG6pHGraqJY3b2ljpquhf0zKWbUfXRTrhUaRL6+I9m8HEQSm/XPJr8fBj+9/3/vi/Hj93SgRMjDjmc+DWOkdF10UG0L9O+utAY+3rrhE9cI72Oo1nXfdUNbRgT4NZ/H92pY/DNdPhFwFFimv3ktClC7bd0fxC9X1hhg+9cu2Uqy6avTbrOEOq5welfVw4DEpKEIFhj0ydeEjqgsVfFJ71HVBSmJsVcCvGKdWGrc45tX9ekVq8ftOpD3208oJ7jM/z5hTmyh3imTVN7tNCJqajfVzP2OXDy7w9ssCoAWX8Fk/nqS9f+6YBIG3yXeA216+xTYpnz1haIP/I6ulTKmwjImV3m3RYgXuBy3RddL533r/8Vf5up54lq4XA5QOxrWKPGdN3607bFhF2WBftO3N3j6bJOo3YOu3XbzVNNnpatgXQCV91ChDsHFW5tSYq9PLPuvhsH8T4WjQATZNv6Lp4cxcvOzrhbPdtlUPumNmxa8hIOfWQ4uEBe9Tm8phOC2e9eNWo04TqfFNKVmCor+/cfwPRQQQJ3yuCbI9V/XiDq8vLSOp0PkO0gzjWAwiXsyJ9i1R8tQdf/UajXpZt/uQFQMQeMnsgGhhMOKO5WQ5rYW6WvGXqu0OXlA752Bdyv5SWnbe6MDfri4hY2QLUu6bvAU7SdTG7Dec8tBjxFepNEsnmjoEZjZpvbyCpxfbnnX5lYHGHwMupN9TusQR1/rj8+cPfTp9dY6jHSZTR+ePyt718vzL+tenA9LTsvFuTXMWfl3k7HG0W3HAU13Z56IvCs7b10+/eDzwx8eerdPow7NKiKN5Np43+35bR/QAVjIeOz33qPyvKB34KMDR1frpd8TsWFB37J8ChHb/PUEVI/alo5CKAwzp+N0AIKX4uGrEYYFinbwcZUjUWbj56CcARnb45OCjt/l82H7UU4MjO+mBfyOX5rfjIZQDDO88d4glG1fy+5YjlAH0TFo+BjLGg2NdU9aVL9JrSQSm/nfzqdVN30KKPmpf4C7BJ3WrPpImo5ba31VLHnQXpGckZSwua+1KKkG1u4G/bm/fhmibfTsvOO6NLUJl5UbWT2C4/5F364P1jzDaXAb9omszXdZEEPA7cq2lyayuavlvMDO98IE/TZKOnZluCl67RrvdVxEy2uXxPnnfUd4d32eQYVZDumZhxgf/e1rbtQMbMDh2oaXK3D9y07LxcwvrEpxfmZn1y5NsZV0VX9J569qLbAW7wbn32N5DzqKvmgtAmzJjVpNHPzGmDzgXx3+6O2jmf/mPlNgm0ox+bXHneb99GhWw1quocMu3Wfz92WVP6t2gZ1t0zdzVS/al77sixjdlu7b1fPS4MZ3Zlt1kxA298ytNS9kHkqwOmZefFgfzOrgTSR/XIu+iV8a81qDhGa2EmF/fRNLnYHHXt0EAd8fZPOAStUCIXi5zKk1ug/64SuSRgl4UbuwSGNEQuK3Na5gdARv64/AG7a2OOTs4mPGAQ7B67amKP2FW27zcevxFI7RX/10ghjJ6bO77TK+Tr5GXLiTZPTf9mqWK0IAZwf2Fu1sRdrVwyMP0jFHn4gPy/ujSl84L0DA2YC5yasbTgs6abGaZNxrBqmlyqafJtACRXjfLYAkL1bXUlrrwctsWuTsTM9iP8hn4JcHRr2NsQzNHgI4GboW1kivoqYt4CCHqd1UGbvDykyFDvlc7+rWyWRfi8/sgMjdklPWJX1gIMSv51CUCNYTvr4KKRHpA1wDvAiSDU8PCnUGiG7FT+uEXvd3d4KipD9iMyp2VuO2/dttr/Kw+F456jUqvahYbhgcKfU69wg0ir6fhtox801Z1ndxAIxbBVH9USttVH06TP1NG+StfFYc3trzA3q/LEnh9dFmWvVr5Zd9LUtOy8bnvfqvXQNOnTNLnYXLwC+MsME9jvCSnyZKCbQOxScq05FL7pEoaQUwXC7ggoZzdU29UujF4qxuY99r2jRN6oeffd9Mj0m597sDA3a0phbtYjc+65/fjZ2Xf0tauBopSYwm8LHrjdqYrgSMJFOkIgfT3jVtwCDAAGHN3l61Fa989OqFs+putXo4/t9vnxdcsju355/MiuX25bPrbb58cf0/Wr0XXLWvfPTji6y9ej6paP6/7piUd1mXNc3fKoHrNOOrLzXK1uOS1u2W2EJcSCgI89zIx5h1YKEVA6L7y1Q1NHWRdKpPT3rh3XxO13oM2FBOi6uAeYqWmy4IZXLju0f+D8MZ1DKhL1zvNvenMLgKZJj66LQZgOqqbJn3VdpGma/Fv2X1tC0+QmAF0X8cD7ui4e0jT5Q2vZM2HGrNpJF5y62eYKHNrjSu9j5MS/rBri2uqnY6ZF1SqvKA9Vtppt+zPmG7rG7usq30v4GijaXR894lb3XVvVm57xK+Ju+1+n3q5Aj5N6lR2sxnRamD8u5+7K5y5+spMRsEN4qr7ZQvlbg/a7qg3bK4Snir8FWFE+4NnBatGVsYC3LEGdPH6OuGHKqLY3ZXMA4k1Y/KCQKiLk+qax29q8HT4Hro7ZfOy+0qKMBh4AvgKuam5nr1439dfjJj43cnVFv8+BvLTsvBGFuVmVe92w9ZkLvAks21vD/YGq2NArMdWqzxYSn+y9deNw+MVzihSn1ESFcqPvql659y3CRCmhzE52X+He2pn37T3OWKXa/HF2YRwOsHLiGfPSsvNGE9ax1r+595Z622YV7Lhlyy+nZectYM/PIAAUj/omcJr7m8QMwjPEjSJjaUF1vtbLJwLiuMZuuyvalMOq66In8BDhqg0FBVuGXjfK6wBHxRb88W+ZbaJNodwrgFxdFwdrmlzc1p3VnYgBOgPJrW2IO7nKxfaSbfOAG6NrlEuBC8iJ18ipsJJoIkRadp4KnA7yP4Bdca8JDphy8huqe8O/88flzzdH3VVzinTenvpasOmYYoAvVp/V/dik2Wf323KEqhgObO6Se999up9TdXS/SnUESgI1Uc8CelPDAeqoNmzTgWdAXoHpsAIFQVUtsYeUlFDAo6gO+hGWLLJoZdylhykA0SVHNLrMZVTpsB8B7J4uux3hjySaJqt1XYwE1keqz7n33PZDWnbeuSA/TXVvXNHrno9eNKTt67aswatpchVwO2wrNvAKcLemycJWNKtlyIlPjUftvDUxNC/plpqIVJus13dKJ2G/pNYd2rKxS+Chvg3cLHNapgI23Ero+0iYUR6y/eI3lA51yw1xcvcVDbXFuSjmM8CveNTDgP9ryr6Urfb3hE+cXZCeoWQsLWhWYl2bclg1Ta7RddEV8KVl5ylH+Pqek2goJPbQX7zwjufrRHNn6rooBa4BNhPWam1XaJrcoOtiSJ0mrK6LGE2T1a1hS8hn/z5Q46rTSestkQgEElk3jdwmLrD2Qlp23jGqCJzdL3FRVIU/qWhjdc94p+oZFO8oHynoqAxAsQ1V/eTHLGJF5w8cYIyXUhmv/fP66rjgQyt6JSzrNHFBbm7PuJVlxbWdv/l9yxHrCnOzZL3+hwuMcRLnVQCGa8N/164/suLk9ScaErn4orufnvXcxfkXGgGbLan/+pcuf2TOLmOTGkv+uPyak97tO39L0HHpHTM73vfMmZs3FOZmycevebciepM/pcJRhlA9o7Ec1jZBTNFxNQCG6mmMBmsdRRLDF3QVDyNcta/F0TS5BrbNPg3TNPlVc/sszM368uSnnvhsadngMSAfAe5Py847sTA3q9Gjzq3AQMLTzp2BwtY1pUW4RCCUpK2261qg7+cUKWKjPOrQvhdXN8YZTgWhFgVcEVEWqjVsK4E+keirtchYWuBdcnD/JYbTGAPc1ZQ+FJ+iE67KlU4z/bU2F8OqabJU02T1QOemCw/3OhIqhZFvc5Y/BqDrIhs4HvhG02Slpsl/t0G5qAZRz1kdARTqumiV+Ft/VdQP0lBSJo0dE0142jhkOq2BoCrntYVY2/ZCWnZeFvCtdG28baUov3Yz1Q+pMQXjHSmzD7d3et9xVsfPgi8RxVWhZJ6pPJoMT0+EACEMShPnxayM/W7wZ5WJnVb43P/8cm3Wv3/fcsQaoLrffR+sPj73meKM+2d8AXwrEdeCUBX3Gg5K+Mpx2l/XdnCFohWQGS9d+/VwI2C7BVhR9le3xyJ5fH1d1e8FpCJ+r4m/uO6zrs71C+Jqa5BGGe7kJXdGcn8WTccfu/K8kK2a8rT3Gj3z1C13hBGI2kDQXXRiS9i2F54FPtxZe7ipLC0b/ANIw5SycNgU/5xTnnpidlp2XkMH3loFTZPfA2maJucD6LrQmlvOtq1Q+KZLhBR5o0TOJ6eiYO9bNJwNr7ofAC42hHyKnIpGKQX1cNT2A4hSglsiYUui6g8KZKe7ZnZs189QX3pNSPEoGT9P6BDdlO0DXb2/A3iHVF3dXFvajMOq6+I6XRef6LqIBhjkV95ySVCEcdX5N02rc0qLgH8Db7WWnS3AMuBrWmlkyubyrQOI7bZlKDkV8wXiLoHA4ww9/t2IqslAiwmI70/c9OqlaS61ZobiXiWier6CO+UrhqbM45KoDa6HagbFv7b2Fm7f/A+XHRsqCnZpk4Nr+gdBBkH6Y5XAu4pr8zeO5G+DUT1fIz79ARnT++m/3J3+90tS3CJfTSAq2hOMGgnYwg9fiTP+J3n02tNR5bZ6D4pi++52YBhC/nPCjFmNKsG6N76pSnkLWLw56Nym4TJw47oZ0b4ASD/ezT1TJo+f065vzvsDui4UYdgHBV1bahoraVWHEoz6xVmR3hoyS/cAJ0ZQ7UUHYSaYSF+X6HUlS8syjwWWHZT9ydfjXrop95apF7XVkq7VALouDiIc39tilaD2JWqIq1VDpG3uGIis9GROfFxqsf2OWnfIt7aH/8nGbt7D4T0eYFh0eVQkzOntqu0kEaoBTdIxbSuoW+2viaBC9GfJTarY6RtSvchwh6RSpTZ7UK7NOKyYer2aJmsefHjSsV229lTLEtbII84/KUnXxcm6Lk4mXB3iMk2TLSq1si/RNLlZ0+QFmiZLdF0oui5asiTi30jqt0ECOONqs8yPXpXIoN8pDwXWAC0uIN7e+Sn7m+N6FZ7/85hQbPQ1jkpy197EB8ue5bnCu7iq+GwOrx64KjYU84Y3dtnb0szOVBDe+FDM9SAe7OusOeeJ7n99+2LPRSeMiCntfExM6cMuJfimcJRiS1wwoqbT+/29PSfXRPd+6mtb3O9+NSY/FNf9VeOMTYeLjjVpGIQwwmWmA9L48RjV6ZddDls2I9LHmT8uXwJvAEdc+H89RwLELHbao33hgkXBkC8mqqbo7cnj51gVr1oXp7Oyb5Uw7Av33nTX2PzJCxXD1XV99rx9+gKiabK43qhis6dTd8zoFsd9e9/NHSVKd+ABu+If/M36k+/OW33uhrTsvJy07Lyuzd1fS6BpcjVwLvAMbCs53m7pusFxlCGk1+uKeCnWifagiBVSnJR2ubfRL1uLPTFVAGVBR0TC4Fb7or4A+LYq2RWJ/loL+zrXJwDCEE26rx8+aUtIeJQvHCuj3M21pc2c+JompwBTAGTx4EkSKIouuwR4AignnOncGficeuV19jPuAh42E8n2yYhr0OOcDbB1ZeewY5pTUV39TEyNLShO1DQZsy9saM/8mf3NyFTE7HONOCEQhCqOYbVzA58nfC+XRK0IxLrKrnjy6lnTw61HsD573su+mNUXbBn4zOWZifml+Zqcaoa6PAJ89a9zNq4Ccur6v/r9bodJuPnnmoQYxVE+yt31PUe0L4FTl15LoqcjBak/TC+KXV01qGgkiaVb5gQ96gxnnG/qP+5Y3iJJiIOjKj7Ir42bRHjq9jCgX7QvHCZmhLZSGzXwQuDsyePnjL5hyigr/rkVSFlyq00JxMcIw97k7z/oKNts8yfFVHWa3RNGFEbQvAah6+IYYO79H3XI+ai8kwHo9YXcG8POCSaFuVmbgMdumXrR0+W+pHu/WX/SMOBBgfHAiU8+WbShqufVNcHYzwtzsyJeeampaJr8CEDXhQp8qutiwWWfz/qUBmR6tyly4mMVxLnA9LTLvXuUj2oMm6a4r+yM43rgOXd2VZNilLeGHHGA8acnrsGqAnuiNOhYCeAx1BTacWx/xtKCDUsy+28JJQcuBJ5vSh8CMR/IKUjPiMtYWtBkxY424bCab9IrNU3Kl8Z/fWgnlEN/d/o3T33gjum6fuc3hKughIAumibbzE2kBXgVqGQfyppc/thvGyeNHVMW8jm2jS44/GKqwy8mkBOfomuVZYQVGZZqmvxuX9nVHuh77/+OuUtVZ58cSgg7qxh8kzhvydOdZlyF+SDZ+SHbLXfEfF0f+SthKZ/fzY+fBGaZWcI7MPXc9QuBSwEyp2Xa+lf2mTVs2aUn2QwHeelTjA0Jyxbnj8ufCDBp7JjJIAK+yuiHdu4nUrxz3to1o6f3+2WxJ/agzGmZjv8D3e0P+oTEKUNlIITAKtPaqkjVqwmEqOw8Jw6apsde0/EbV/y6swg5S0YRHlXf1/w4ryrxnY/KOz5sLvszp2WObqrTuiuev3q6j7AqDWnZeb0GJv8+dWVF/2M8weg8YMUJTz71Vf/ERc++dM2/V0RqnxFABZa9ueiGLmxXEvGnZeeNbg9O65aUwKMdSuzRIUW+qe69eYPwPRHrThS2l7xOI6AYPNDUQN94NTCoKmQr+WPcomAk7Ops91ZvCrjo5awZDEREeaC1CBzk8aibHUObur2/b+1qx/IoUXtM+eU00emFNhASoOsiBVgM3Pt/L44TStKKn2uFpMvgV2LNJiVAQNOkf7+U96iHpskyTZP/0jQpdV300HWRtfetmo9iD260ub11SgE4/coHIlx2bhTgwiyVuy9saS+kZecNtxt2/dBQvA0gRAhDBOWIiiOvyR+XPz9/XP7E3T1cTbHwq4DVui5iCUtZ7TWe654to3O0JdeNMkRIzhz0z+CGhGXbRJ+nP9m/j1BD4x2xtbMnzJi1W/3WSFAcdD5oIJKAMRlLC+Z/1GvETcKwI0NlAEikpJm6rxZNJ2QvHweg+uO/bGof9pqenwLEbjglonHQDeWTrand3i/rYha/QGX7S1CLUJibtWrWnQ+M9gSj44CLBUbx8q0Dr/ts9Tl/pWXnTUvLzjsyLTuv1eOzH//xycG5Pz1x+jfrT7mC8PfS4t9NJImqVS7yuAzfuu7+iGl8O/3Kgy6f4qqID93kuK+qySFsiWrgmI52X8RmFQe5q7wAHWz+dh8ipRY5X1Er7LaC9IwmFeLw96n9FsC22XF4c+xodYcVqAVuAt4vW37mWbKsn/gpqpZuiUuPN9ffC/xZl4x1AJELvGk6NC1KdGp5rFBk/UoWCw0hPRVxwVs1TdYCI1Ov7/96QXrGvQXpGS1e/aY9IGDc3apUk4EXO/6H9xK+K/Eo/mMPeuL4xrxJn014RP3XvakxTB4/++atK8bc54pd55t/0Aenb40qehDYNuJUvqrzLTKkKom9il5t8kE1nC8VZHG84n8qc1rmPW+M6Dp0eWxXKXzrEKEAG4RXfTrBc1ladt6DZpEEi31IVMmRWwFiikd+u7e2u+2jbOgfAGowrnuk7GoomdMyO/9aG58PsjNIP+GKPM0uftEQCnOzfIW5WdNX55529MlpH54bY6+cQfg6nd85el31SU/mTkzLztvnoVJHPvJKelp23rTl5QN+XFXer2ta3LL5hCsn7bPvptnkxA+IrlVTFIOJDa08tTeqn445BrgTeL3j9bWvNKevDQHX1uqQrclx3zuzMeBaAvBrbXxEQgxaE7XS9rX5a9PiWJ/bsgYocCyPSmiOHa0eEqBpslbXxdfSUN8MBd3dyxRD/mpT3vrvWQV1o1M/AXazWMCBxHjgIE2TEc3ULUjPUHyDqlOCnX3prp/jAmq5PVoZ3HFrAFfPz7VD3+xZVFscTE5Jj0oIuJUa9ciNr6b/2sHeLw2DOpkZb0F6xqiMpQVtfvqpJbnIXTR2tKcfb3b4iE8TvydQfljO3dn371Hsvz6Tx88Z7ox77djOhz9LVErB7Nrig5XJ4+cYHQZOA2DL4nAlO6F6RsiQ80lQjhRKIC+u+3fjPrrpP6XArLq+Jo0d44KY80B+cfG9S2ZG9kj/Tv64/OAZ7/UqWuWLOhjko67OHwQr1h1rBGqDatfNPyI7DVfcIf81HhUJIru9TFfuL9g9nVOkCJZ3n3hckzPtu+WO8Ky9d3ZJ0FW8T+X2Mqdl9gK+Kg061BGxZdnfViXPYzfhNS3NlPGvfwB8kJadF9s3Ycm9VYG4W//ampkNXH/wg+98lBq16c8V5QPstGAMaVp2Xre+CYv/r9jTfzhIL4hnheBJ/d7bShpQMa+tcSUQcPqVf0Wis8I3Xe4O0vZlUJVeW0jc0dz+AlJJCUil2fq/dbx3fqEnc1pmRUAqSZHqsxX5XSoyGOjluRr4bxP7mA+cUZCeITKWFjTphaVVHVZdF4cDvYAFW1edMhLDwbdRPmJcZdPq2mianEW9h/OBgqbJSuAPAF0X44CgpsnpAD9P6CAQsqvzz9ho+1pXVLCDv5s/vWak46/oYluxQ4TiA2nBbr5j7Wtc65Rqm2I4Q91ktNFXKbd5BCLGuShGOBeFBwm2RjmpNKJBERR06HhZXOXGQEKFUeWXhNwKqmKT5YYii2GbLqKNAzw+8Z0XJzx0uee0hF+jCvhv8pcIZMiR+HODy1iaWfTf+CoPshfOfhHgVvP/Nke1DhmqS6yUQWk4Jp5/05ulO/fnTq641VMa3xHEpKYdUePZ6HfNAw4GoQohZXTK4qVKadTAYOpPa1FG9Dhry1re7dRZgHSA0DiAz5d9TcixdZRhq9nl7Nnk8XOOA44C5uwtKS4QXeiQQu6zEfJb/tf5TIdIetMvFUMijpt89sYF5qpWPXcKc7OqIOuetOy8ewmPMF1X5Y+9qNKfeInZRGY+OL04xb05sLqi/1dAcXrSn4mJzlLP/E3HfQ4UH9lZ93WLWbPumSv/r0EJJze+Om7g54VnjgfH1SvKM9SDOyzMd9tqz33vlqe35Te0pcpJe6PwTVd0V5vj5qBNLnRnV0VE57THWscERQr3xs7+J7pc6ylvTl/XfNA1DpIS49RAREv4OkWoNlYNDolkn61BxtIC/58nHFSjVKmHNLUP34DqMueSmOSaE0pHAbOb0kerOay6LqIIByJXbPrlpoEVazWjxFmtVMRv9mpd9G91/dJ+hIsETNU0GWgtO5tDQXrGtjfgnUckf57QQTj+iopzrIiKN9yhFO+RFSNthW6PY7U7YLhCnfwZtafa1juL1S12X2KfHmNEQMQsvqXf04pPdUSTnCDCsV0A2LY4sG3ZHmquVNiC9pBQCShxwHoExcFUv9smma9uta8IJQSC/gE1Peyr3d8uiel6tFS4GhCGIkLz+3R9aML/5U0kJ76uzOb/FbzX5Q/CJ5id9jL9FAly4ocDFwPv1JWoXZ89L2Ygp99aTZCnu76FFFICfhr3nWhsC8eR0h61uQBhzI7t8uOYoCdlVSgYVVlTdNgfwDEgRxMuLwAwkp2C9999up8wgl1znHE11b7K6K/ZR3ilOp1wMp5dIINxjvL/g6iHyx0V90dXFL58kD0hOslTQZk7TiEch26xD9B1ofb0vR9Xa9+yefL4OfcAujt50YhATefzgt7kOJD9zKaevSk52Lyps5VA7LDdrY8UmdMyhwOX2Ei6yq2ElA4235GfX7giYlOzkcKsOPcD8MOA+98rrg3G3Ba+NkFKYa/2xzmBk4AOS8sOtpub3QLw4yYNgPez8yqBLalRG6PcttraNZV95gJbDu7wcyen4iv+efMxm+yKb6yUZwwPSZsBvClRHv1owsNr9u3RRpbOm+z324PCVh0T+qPZ2kYAOfHpCuIB4L9drvXc19zuopXQoQADXNUd9ta2MaTY/DGqkIMi2WdrYdvgfFUY4taC9AxXxtICb2O3D3X0z2MJd9hXuYfRnhzWgvSM4fFDumbXnlhqD/Ty3li2/MwbAOWLqFpqq+IeGj/pV1fxM+q1qPI214/xXxWMzyjzDC+Pky7DHTU3qRxQPcPLU6VNOqLmJZYAiufIim6o0u7+PmEToHiOqDgIgc39Y/w6c31/Qgj3z/GF5vqBIiik65e4VYDiGVYxRPiVkOv32OWA6jm84lDFo/qci2KWA6r3sMojRI1a4yyIDi8PrTxKqVYrHcvM5UOqjlEq1TLHyqiVgOrvVTvGjvtggVAk0vjzuF6VSq2yVa2wByUyMVpJ7iCMcNii4lGJmrt91kDxqjj/iAFVVgvEJvtq1/JAT2+aERtaJnzKYhyy2jO4MsNW7FhgX+NebEQHqz3DK+Jtm5yLnYtj1gtEzYCFyxs05P7l2DHLQV5JOHg/iBC6uWp5wCYrPe7QHRlLC/oUpGeMZjfO935JTvxwifxWIGwSeZXIidfIqZhfIwJvJUtbwhNxC5eU26oGKMi3DMTURk5X6oSdXDuIQKC201UDLxhdCYwB7tM0uQDqRmLF0ezhRWHTL31PQgpnfFrR8zdOnbvP5N7yx+XPz5yWOXqgu+r2k+KLz0lWon9ent+F2tKElFgRvKcmNumFa1d+ysSBxwqEeD4tO29RO5m2bNekFNwUZ/emsrE8sQPIx0EIT2nd87KuKqAApAt4aPL4OQ/vzmlVAwl/AGeuz57n7JY7wtcS9prO6lzAGUTIeDU4/rM26KzuTG0w9n3gOsxrszoQP2bRoxfOB0jLzhMnp33YrSYQ03PehhMl0OHQjj+c6A26kheXDi0COtgV/4gqf3w84Ws+5c8th297FgcMJ2DI3vFLb5t9z50v7PujizA58cOdKHcBJJbbLiUnflrdAEBT+Otdh61blOMbt0fxKlLcFAkTF1QnqgDr/K4vItFfHcVB57ygFD0j2WdrIQzxA+F44aGEX9waRdTcpDygyrEyqkmJW9AKDmtBesY1wCvO32Nw/h6DzxE/XTnCp6aULuL1JW9AWOLnydQ7tlXOWwbgnp+wQz9/W/4xfsflBfGNW//TTss/77jsWrjjjK/r152Wf9shN0raV7u3JdEIhKpUqVHSbRQBfwrEVm9m1SClWl3sWBn1M7C1VivrqWy1L3L9EbvMiAqV1R63tfrwSVt2cEB0XTiBD4GPNE3eTQSYMGPW/GcvPPlfMmS7SbGFzrlt+ufhG0lOhaz+Z/TauEq1HznxasbSinYz/RQJJPJ6tl8fNkBb8mL25XEy65w38LK2x9sOt2HIY+NKb3j6zM2NKmRxw5RR8yePn7PtBSDsMEh0XfSrK9m7+3bbmTR2zHAQLwIlFYWd9nkVnPxx+fPNcJXv6O75EmSZYg8Nrojpc5WQlS/ERaVxzMZ8vut6sBUWsI+w13YZAlAdErsICZDSCG4KGYH1NsXeTSi2ricAI3c30uqPXlvqqOkhqjrNPgxGtIgsT7QSPL/GUJ1hJ1qE1gfcyS2xn0hTmJs1Py07b9u1Wf9lLDwSm7UOWLd9i6yZu+srLTtPOfWg//bU1518V20w9mpABSW0smLAfpFoLJEaoIjwLFGzJe+6r3PcG+VRUzd29r/S5VpPRLRcqwxbB4ANAffiSPRXR0AqG4BDI9lnaxHs7PvZtsmJd3DVLTTBYc1YWhAqSM/4SSKPbKoNrTHC2kcipUAIiWTFoNN8UlHdBUqRKDo0IzD6lyU50mXYgj28PYzoULzrt7jvgZAvo7qfjDKiXL/ELQBCvszqftJpOFwL434BQt4hVf2kw1DdP8X/DoS8h1b2karE/VP8IsDwDKvohSDkXhD/F2B4hpf3RIqA+8f4VYBRe0x5VxEUXveP8RuAUO2xWzsKv/C65ycUA6Ha48oShU/xun9IKAdCNceXRguv6o36LqEGMKqzSgQQjMlLCWYsLZBmOMC2aXS12jY6Y2GzRybDNTkholq0MmTbBGAEbTsM0yeW2x4H/kP4gvspkvtsy6x7zXVBF+G4UJFIiTQAf1XwnNWxG0558A/h5fv4hUUbQyS6BDMb66zWYToIO5wPmiaDplrANUClpsn/7Kod1DmrUgfhCJd3FYfuql1LY6pIPA+w5P9GuIQiz7zupVGXPXv/8z+Wicwjr/4ll97lG6QzFCiBfaLSdkATiNpwNkCNEZJ109VACEKqEdqAv+qD8GdeFUfseYpi62zf3ctEbcoCv6OmByFHxShaSEfSjnF0eHJHhkC0q3CjSMWQhgsUZK1Oy877NzCO/Sz0qjrG2BhbrWI+95t3XDnxPaNQ7zKE/MrvkNdFysauds9hGwJuEtTAxkj1CdDR5lU3B52pd83sqD515uZWkYiLFJlzV21YdGQfr1piz2hqH76Mar9jafTQJZn9HxUB5dPGzta2hsP6P+AmKaSzOrpLsDjuSPfmhHWb/504qlP/xPwpmVf/Lx94EzhO02R+C9qx8w34t52WdxbvX7/TctkuezXTXjKWFsyP9DS6pkmvrovTNC08tafrIkXTZLPjA11JVf28ZTHSrLldn9kAEnmiOFAc1pz4zl0Ux4tBuwwF7PLymBq1R8Do9ENF8PKXfMjggzKAz718okA875Xqf1rAAgW4iHAZ4j31fxZQF7gsaOVEOF0XcVEpB0dVrE0NAThLMs+S0thY3nGYGLv8A5uA5wvSMxYdEOEkrYhSNuA4ADuqsLm2eIUSuDHoTS5wxq++tLZETwLOC7cM4a/+BNWZoUQlr3H/+9GbrzUC6kWKIzjt0vsXv67rQnSteOkLgPi1Zx22Pnve8G65IyL6t8uclnkYOA5TMWaEUP6gFZQA2hJ7GrVtz0hBNYDPIWe6/OLppoYDFL7pEp2c9plOn5CKFFdHShoLIMkW0LYEnQyP2VoRqT4Beji98ZuDLhGS9GYfFgRqKdRy+wdquf3kgvSMe2iCXyM86kohBTLAvcCEgvSM0Y3pY587rKYjNwqJ9vvBt5xuIAb+n5GaigJ/bc286vX8m3+6MvOFj4Cl+9q2SGP+ISJ606nnrPYFftR1cbemydea06cztnaIv8olbnvnix1vADkVWzy5saVBm7w9Fh5rzj7aBTnxbmCmagi3DHGk896qX3VdDOuw6JoF8evhYWo2lyIXHdpp7jkrvNEhA/F5pE3QNBnSdXEahG/yu2LS2DGdgAvDSzIEorFJXxFH02Tlm18fMifocY6aNHZM7IQZs4pevmTahqJOR3brveoTVMNvVb9qQd577rqo2Mr+embt0IESyfAY1S+VDsf3nHhc3Yv5D5PG5g0HxoTjVxWh2BVC3oVUbeCBqg1mmJ2QR/zrupFrB4wlUNrvlVldf3oJgTgNOGF99rzRkXJa75rZUThF8ms+qW4JoVybPy4/oo5Ce6U9Zf43lLgqNRXA5VduIqdiQ1P7ia5RnnT5lCFbUgJvdrixNqJJaEu9MWulJPmpMzdHNA9gUW3sx8A5X1amRqqwV2tTBCQDjwL+xjqcjkJ3NYBAKDQhPGSfFw7QdZGwecrSP3697PSqgCP2yEVRVYVeZZsd9nkbTuyuafLK9qoMsA8pBN6lidl29alcn/KnEbTtsjqS12X8GlOtxJMTv1/EU+0OmRM33Os0Nkjk4cBFtgcqfwVI/mv8zfHrT2dJh2/98zA6Dkj+5b8b/a5Dejg8Jfnj8iOqkVuHpskK03FN0HWRrevb4xGnP9m/pyO2tgBkEoirCWfKjp4wY1arP+TKVnR+GcCdUnGIrgu1NG75yqAtisUZ4yiP6xViP5nibGtMHj9neOlf5/5kLxtyuBDh6riKEIoqbSPrtzPPkdEg7nPEnl/tiL76hb6n/agl9qnzIQRIYXPEeq4F5kYXjygiHIIkpJSONdVLcsKhKM1na9D+gk+qgwe4qt6ynNX9m5AiD5bIaqDp0+058R1TSmxX+e1GQU20cXXkrAsTkEpKEGV1pPv1SLXu4kqNdN+tgeEOJZi/NrXCWt2srUETwl5ao9LVXdJQ1taWDsi1uYuDf8SVpIXviTKoiiA9Ylf90go2tTs0TQY0Td6kaXI1gK6LY5ralwypTqTYpf5cYrntGfNtaERT+2/zhOWrvnH5lETCJ2MxwPrseX0TVv/jDIkx/7bS/ktj7RXlRR0+nFtt2GIL/e4H94Fl5xB+kx0KMGnsmKjiRWkzAzWuhJSBa3MmzJj12oQZsya2BWcVoOPBhUGAlIx1/wLmFXeJCiIlJSmD+fWQ25ijTW5lC/cvXr3j7dNfvX36epDfg4gTttr7BGKP1Y8mzJg135V4e65i6+oGquO6ldampK//HfCYKgIKiiwrW97lsfUbqn+XMmQYMkRIBtXllQtPAGY312nNnJYZ82NNwjlxamBdT6fn3ub0ZdH28TpD/wjYpQNocrKNIeTLAhHlCChnpV3ujXgsqFOE+sergSblI+yJXs4aL0CsErjbVMRo1wiv8rok/I8mOJw1J5T+BBDq6F8JNGp0FlonhvXjot+uS/NXdf/HuoS1U4u8na/uGLX+nQTn1tB5/aZd2idxqTdcqdWioei6OAv40IxvbXSRBUeMp08ooO7uXJgnkb6gjTPsEPEp8DaCJhB1x28A2p9Tr1wU6zr5e5s3NfgovmdqDPcHGO4bYkUwC4QE8TFAvWozFUACMDeCsWdvAN9rmlw6aeyYY4Cpht/eX3X5Lx33YP7bEdpHxFBsobkgZeXaDutSB63xO7YMdErCI36Ev1+N/Wy6s7WYPH7OUdBlJuFh0RCIy06YdOqc9dnz5mLGQO5u+r7DwLfjtiy+RI3p/GOf3984oU/I51gErLFHeY4P1LqjK1Z3urpidSeglM2ud42OrrTazZ7CqFLfJkEEsryBbBCdK0P2o9t7IorFXsiJHx6FGkc4zn42OfGjGxvDuuFV95NdpeOsWnfon1F3V/8VaRPvmtlRhGRKh54OT0qk+/YYam+AKsN2MqBlTssc3Z7jtAcULJ1fkJ4xAzgXOK2xDqd0hCuWSof8vin5DPt8hHXNt48tKlt+1giJ/Pk92WEQsG5zbbervrg7+7I+iUt7a5pscv3rA5iPgauAT5uysc3t7+OM9exaTianwlMdY1QE7MZlTTevzaMDIYC6LNaYTce/bvd26lDZ/ZMX1yf9/IZD9XqAtzrafXcn2/wb88flF6Vl5w0XGPNAPgFMJhznO9t0YpuNpklpOqtHgfwWSAeCIa9jRST6jzQX3vVXBYg1FWs6bgXOXCGcf2wXtJD7TdZzG+Ha7QUlFAkcAdAtd8T8brkjJu4p1tRX1TURwFv+5xEhn/09wsUxzjBCimqP3q4Hntx/3amuwXPjl5TPP77Utykideuz/tP7OoFxr1OEvssfl99oaRyLdocmENKUtHLS2CnknPjEzpvsV3hcRllxarBFRuNnV6YkB1Eo9LtnRrrvTQHXYeHfRP2XvfbOS4AaTPH3buyGh0/aEgIC9nWuXYYg7o196rDqurjC5ir7CkS3Dd1/LEAwPMVd9NJbJ49xAtRNb1s0Dk2TIU2Tr2uaNHRdJOm6uN6UR2oQtSVxKz1lMbtVAQja5GdRHtUVeiSuU2QsbmPkVMyvjAkVhhTDAEav987q5Kjtdl7IVjXl8tL+65aUDYkf1ulbd+eBd3TYHHDFdLF7zZKRUpMI1axCBeHRLgcRvikJNTSW7TupUwRokwg1tFqxBw/RNCm9nX8jWL4IgI6eOS/vrRSoRcMRqmco4fCVRjuRlWtHCWlUUb2pur6AdzDkcz5y8xtfC+BmANUVeLrT0JVzDr0ubwMwGniQZsRLZ07LHL7W735JIoRfKsOu/aDrtjrEui7izOqHFvsXOuCTSCmRytb4YGNzIZ5WpEh0e5UT0i73RnzKHsAvlS4AlSF7S2Tx1+nEhth/pMp+MGKCQSMx2KSwOIn0SUU2qeDZPgsJ0HXRPehNeK1i7SjpSlpaOMt70FHxzjLfnYc9MAtYr+viGk2T7+0re/ZjrgUeAr6moTIaUkRJqa7c3erEctuLwDjVEKOB6ZEwsq2hSIoMhQ5LOv5DTSgM/ltI28Kzg7xbGuwyByTfbTjB67atuskWVUi+J84sBbitKpgBsq7Uqlrv8z1SL5ygrv3ffi/MzZovQ+p7IK8hfL226ZteXLeSxKqNyenvPt1PjCgZfMzAohiWJQ4m7c9vry9Iz/ivJWvVfN57bvzZMnT+IHdSwRxPWcbX7KKoxJ6QhjfOX/MpyG0P0Z3Pq5diupTeVfxn2sC4biX58T22FE+YMWutrosf61RKmsi5UJdAKO0xSvApYJq57h2gO3AIgK6L/wBuTZNnmstPAYamyWxz+UagVtPkG+byGKBK0+Q35vIAc3mduWwHgnuzf0/ltC2aQE7FfHLiRwdVzpJC3hZXpV5LTvw/yanYqxzj+qnuO7vhuNIQ8hnloXASbEuQ7qoattQbSzeHZ5d5HM2hn6s6fZk3BoF8VCK+bM/hAHVkLC0w/jwp7Rv7CvcxBekZ0RlLC2oas72MNqIDB3lGN2Xf+2yEVdPkuhWfvfaODLrk/zy9cqsC8X0qfAk3dIzeVErYCWoRYeoDkCeBYZomG/y2qNiDnZxxNbF7aPK7RG71Oo0Lmm9e2ySmRt1kCzg3RW8+9kOp+GJqUuZfVYo8BrCZVXhsNlvlOcBf+ePyl8I2CZoK4CcQ18TYK+eal1T3ve3PdFbnAo+D/A7kD2ZowXcg54HcFl4QHtESo2jmCNe+wF/jyjMCNor/PKhLl19CZT6zcFF1dPe6GFaLZlK2/MzTEMFATOefr7lhyqiJjR25tkW99ZEMbsCV2Hvurs6rCTNmyagOFUcixcoVecOSfnk5K1bXhQ2Yp+vi8maY/j7gBYISfH6p1K/O9jrwTL3lheyo/ZwA1C8/OBY4o97yROCWessfAk/XW/4LeKtuQdfFN7oucuotv77gwaRH2XZNMtt0Xi2aS07FfPsDlXcpUhytGiIWeJec+D3LPOXEH9d5k/1hn8MIrO3hf6IlzYtXg8cApLuqdysl2FQMKQbHKEHjz3GLHt4fnNU67GvcjwspnMDJjd44KCrVYvvOuvYNYp+NsL733PiTQr5zL5Tw6sroygkEo1aB8m9TvipiFSsOdDRNGsCfALouTgGOA+7e08iCEDLelVjdebed5lSEyv8ZXR1Vq5xS+KZLRFKwuQ3hKg9ek+TwdetQkzI/u/8dd/1Bdl6UmTktbGqVUBylaemuar3+RjH2ClvH6I3O2dl3TE3LznsDWAjymcteuvHLt258qXwP+9NAmiUp66b7t/2umEXNtlUhMp2JNn/D85TE68B9Ib89p7Bjhs0TcywABRnj1IpNvUqaXCLFAoDJ4+ekgOMC4I3zb3prt7Miu+OFK++8MVDt6ak4MoCTj3MliodvmDJq4s7tLrl3yYZJY8ecD3K+Pcr70x9vHj89bdQfIr7nlgoAXReisaOt+ePy52dOyxwFaCD0F8/etO181jT5Uf22miYn7bR8zU7LO6uW7PzgvAGoLzv3T6C+dudf7CizNMixyt2NcJyhkEiHQGi0g2uuvWB7oPIncuJvBKZWxAZ/jM+J/xDQtyVh5cTbijsEhtgC4qpE1KtUQ6iKH1/aGmc6Lfh3+KkmoRCgJOiI+CjuCl90eXgwYr9jnhSy1EgK3AB80JgNFZ9SphQ7m1TwaJ+MsOq6uMBf3eVzxeZRl2V8oniC0X2P6PRt3lsnj7nDFMC3aBmOIxx7ttu4oUljx4iQ3xaqXJ/y5Z46UgymOf2K2mOtIz3SRrY267PnDV9v3HFqTeiU1A0YH/a/464nITyCmuwq9iQ6S6pGDnosaCCoNlS9/rYO1R8MGnan2T6U4i7KBtG9Jhg7cy+71QVShsMQ8ZlVxoKAHwiY8pfQhqf/d4kwYsK/yCtjQ/knBkPhEC5DsYXWdxsV8SzcA43oTj9PBlzAC43ddtLYMYmBmpWPCiUOe9QozOl5bXftJ8yY9WtUx61fBmrdaUGv494Vnw475Jcpp2wyV1+t6+IjXRd7mpn5G/nj8ufnj8ufGOnRJk2TGzRNbqi3PFvT5E/1ll+o7xRrmrxG0+Sr9ZaPcC2My5FChlULBAbt7dprD+RUvFYZE1obX2U7TCIfl8h51U9FlxkPx60CPKlb7D8nlduuFQgVwPyptaRJEtEZKH77vLXevTZuPH1AtMkk2eaQsbQg6B9QUyKqbcf9fHuH+L1vsR0ppF+qskm67vvEYS1bcdqIqg3HoLpLXvp40/FHum01m8emv/EicB9w+r6w4QDlbuBYTZPVui7U+gL09XCAsMmQWr6njuIrbW8AKFIc3wJ2thrrs+cNN5C69B+rSgxy8WTVz/Iv9XZcWmkr/fNnv2IDWOuP2kFPr8zbYdmayj5r65YXPnTlF73il/61sOio4WnZeT12t9/C3Kz53WILnwWBgnE/4ZeLB8M/xbEgfiLssZZH/qhbDiE4eNtvGCIYXB8WiRatX42rvTN5/By7d2vfM93JS0pvmDJqSWO2nTQ2a7hiD/yK9Mfao0+VQjglDYiHrt2c+IP58hTOcpaKZq6yERYPr4bwiGsjD6fNkbG0YH4oOfAPACM69I4Vw9oyRNcqb0kkInxOqY6AEhO0yZXA016ncUtZQuAZifQSAVWKhpBs8x8RpQRrI93vHTM7dgA693DU7p9FkCRPKT6F6M+SR+698XZCHf09A2meJoXbtLjDOnn818M3LbzldJBbXhQdfwAx2BOMvvPsk0uWA70JywFZtACmLFK16ai+Bryy84Mlqd/6DgBRHcoT9thZTsVqQ8h1Htd+J2+lCXCYsisMQv2b9IgtZnky27P0d15fw04j2Ksq0k+UYamhWXuSuFpX1eteoNxAzSzMzZpfmJs10fw5HxhjEwFfz7gV+i1TL2pHzoBcaP40JCI4J64TtYrxFDDaUgloNueGfAkOI+i8uTEbmUL/3xoBexpIAVLYo4p+pEF/E6GDqNNK3eY8aJr8F3Capkmp6yIe+EnX2//LbOZ3Kz8AitVqm7HXxhZNQjXE53UFLgTC4wgoxzruqzqBnIp7XfdUvZB0a+2dol5sdWN1WxuLDdm3o90XcYWKsqD9MICuDm+LVERsbZxLYt4ByoUU5zZmO1GjblBL7Zv23vLvtKjDOnn8nOHhBBLRDUjobt861aXWrn9o+K2fAmia3KxpsiWG4S12RAIbgHU7x53Zo3xdAdxJVR321snWxGCVPSCGFr3sdraMma3CTwASA0mI3wnu8Eaf4CzpFOfv4ADqpux3WN8tdnW3Du5NA3fqs2tYLYBMkHN357QW5mb53baaz20icP7NUy+O3WndlmGd5326prJP6tx1p4yNwHHuE6ShmsLe4oP8nv3/syg6ld/TP3/Lclabh3kvfRJY66vo3Vg1FY3waCgghBFca8SnfX1hQ/4mE2bMmm+Prl0olJCfnRL+6t1LUgm/0G2F9j/aKoXcKFV5qpV01UKEHdBtMmm7dEhzKuaTUzGxpZ1VgM1BR806n7vRBXf2xs81iVEA86uT9ktlnYylBX4jNqhLuzH25wkdGjzFr1bZNqrl9iaVY25Rh1Wx15wEigogQY2tSYke3kX/5KD4FT+ZMiUW+wDzwfKApslHAHRddNb1cIzQ5t97VwGUreiyxxhWAKdP+actJOi02XFYixq8D6nqNOccgUBVZ8u/1HfJxzi7fqUql80bG2skOql3g60ff2cXAa/fcO6c8aqx/drao1j0UV3mLg5Ku6vUk/q38m7+kONCkIsq/YnPpmXnPRCpggQtSXSnsp4Azvjqj+P6FPcBiLFX2lvXqvZN2Fk1dBDdQXbBLBLQCHQQ5oihilBSvxt78xuFDd3YEetxSkNxCMXYZWa3psnlwOGaJuvKaj+q6+Kl3YQgtWlMJ3UwITpLpKUU0FLsQ4d0T2ROy3SA6BBEWbP31o2mj/lzv4thrcN7SFW+CChOW5HjsoZuIxUZbJMxrHZ38XeYiSUhEBvV0OrhXebeRbjk5FctuW+LHakbDTGn735ke9JGDIAMqXvVoIupUd8nPFp7QguZuc9xVvY7yx+13hfreNlXJrbQI3blqvrri2q6LV9V0f+33SWLrK7s91OFL2lnHTqd8EgshEdl9d3tP9lV/KzAqPh+4+i/JdC/f9vEAIgpQGeQOUSwilZLEZVSOQQgrntJ8lZv8moAu+rfs4SNxd7QQNh3XG44E2bMmq/YgqWKXZQ4Ys8TqiPtxYZuO2nsmOE1RUkDQSAN5SszvODvBu44c+MEXKZiSXtDQ4IZIrS/VCay2A1HRm8dBNDd4Ym48k0vZ83ZThHy5I/Lj7i+a5tB8LREVrt+iRvS0E0CaZ6BoVT/zrOSDaJFHdarnrrya1B+CgijfEaMX6yzy+xrzlpSrWnycU2TlsPaCmiarCAs8fIaQHzPzekAsV1L9l55Iqdia8BmLPe4jCta0sZ9xfrseQMctd062XzJOXZp4MPOgOQ/+jWym1ggqb4jGR6hFZeFl8Tj9Udsd+apKz6olSgfAGekZee5dtEkzkx6UWgHD9CtKzsXAVRvTPr556Jj5gPMXXvKlta1qt2jb48jFY1OQnn36X6qlCLVlZiYYnMl0GHg9NmN2FzDzNimgeefpsk7gasBdF2k6bqYr+siszE2tyK6ML9r0YTv2qJ9oQo5GCDNEfGcK6pDti6JtkDkO25DHPpKUZVAfAKcWZCe0SCZVLXcvkKpsJU2ZX8t5rDquhig60JzJS/pU27zJ/hjN1a9duIZsboutJbap0XD0DT5nKbJ3wBiu5WcC+BOrtwWlzpp7Jjhk8aOuWdXoynlCaEtLq/oXvpCVPK+s7hlkBhXAEEl5H7DhiF82MkvGbrD23Cso7xnjL3y8F2NbKZl5w0XGOeAdIHcYfSzb8LiXwB6xy/d6zXWKXr9Z0BsB/emT3axHx0ImfJX+/QBmpadNzwtO++enW3a3ecAQY/TCZA6eHX3k9JmXgxQG4zdH3V79xlmrOlHQC1NSF4r+rV3NxlS8VcP9qnOyk/Pv+nNrQ3fWurhKm4SwpJrekO2qjfi2pWw4H8j9tl6ZCwtmB9yhxZKIcuB0ZZSwP7N99VJ1QA/1SR8Eum+i4NOURRw5UW637ZGoLv3GyClduTWGxvSXi2zr1FqVV9T9tWSI6y3AB+X1Xb2BQwnfRMKnrUpoTuA8S24T4tGoOtiYMhnGwNQ/OdBQajLKJbfAY8Bs3d2WuMr1EcFguQy+1H73uLI8efUK9yGvepWf3ThohUnj9yiYDgHikKu5MsjdF3coeuiW1p23vAqf3xSdSC2I7uejtckwhT5FzuMPqUnLQoBpEZv3OvIUrk3aQtItng6Hb/zfszR2ntNkYI79jRaG0lMG+YAjwmMedoTz32flp2Xk5ad95rAmAfy8Z2ddAB3UmV/gOjU8uQkV8mRAEM6LLBqxDeT6E4L0xR7lbMpyWvSUE8HkBJnoKbTc43Z1pVYnQoCZ3zNAppQZU3T5PfAQE2T6yFcUUrXxYTG9LGvMZIDA4M9vNJyVg8IugD4pLoukp1mTsuMIvyytt/Gr9bhO6TqA2k3pH2V+6SGtJeqkSSRqU2JD29Jh/XW6kDMySWBuASbpHb+puMeAYYCf0susWgdfnk5K27Twn51kjVvmc7qGeb08y6noB0BRSc80tOu41hjNp1wrhqIVz2Jf34w8pvYYxTgSGUJ44LfPBpXoT4NDCN87JLdx7P9Zq4z2Gn088+SQzcBLCw6+ve92eINRR1lOr27288UkKGecSuObdxRNovjCAvUKxJFLazsdxTwEHClRFFNXU7nzrY6E2qOANiyuOdrKyvS3wXoGrsmZh/avV8S8sWWSsPWaD1H85p+FiDk+Qbv1hc8jdneuzX2EqDUCKpaU0sC14uftxMusdqoYgP7Gtsmp1epslmlwg8ADnLWjlaQIaAskv2OjC0dBTDAVdUe47gbxeFPlZSIgPKhfb1rSEF6xh59yoL0jOEY4kQgjiaUP24xh1XTpGf6kmsvCkFULMamt04eg6ZJj6ZJK56t7aCZjgeAK6HXpmeFsu36CrGrKeicCp/HZaz0Otu3Hqujttv5wKb49afnKlIcK0EqAgRSHbTI/bimyXDZwO0VqP72XSS5ttQFjk8GRtcf/VxT2ccLGAHD2RAJsLp+dynmXpibVZkWt7LaH3Ke1tjjbCr9E/84xjTJADzAUYW5WQI4ylzGzDzfwdbKdSlLQdZe+sAi/4+bRn4H8GXhGcX7yu79Fe/W/stlyL1zcl9D0Nh2nzeAYIM1XN+4b2gGyDOB129+Y3az5Qc1TQY0TZ4D1KmVHK3r4jNdF12a23ekKEjPcIiQSFHL7Atb2xaLlkcg+8WpASN/XH5Ew5ZKg/b+AEk2f6PLJ7dTPgA6GTHBvQ2qNCupMeIOq64LoeviP3lfxWQtKj3kEpetlqSEZb2Bue1dn28/RAf8plNC9aakI20u/xVg1AJT2c0UYFVsaKXLp8RWPBvdZ+d17YHFL901UCJPBd7qljsiCMyW4AtKBQMl5AgoeVA3Hb9dzmrn6fg4R/l9Sa5iD3DLzusKc7OkKgL+rjGFf8v+35nC3Kz5gqCR4Chduqv9AHiCUa9tqunuTsvO69TkA28gadl5HVdVpB/XKWpdFXB/fZu2fydyhUJw/c62GgG7U6hGra6LBanuoiSAgLE/yfa2O3RQgubovQTOf/GqUV9Pf7J/971t6K92TgdUe0zt4kgaVE89oCvQHWgzWdS+QdUZgAjFBZtU69yifbHKF72pPGRfEOl+F3viFIDvqpO/iHTfbZFQUuBTqRrS38szaS9NdbPCWYMq7e1MS4ywdgaGvlNw7VlV/oTYJEMW+Ws6e8uWn7ZgZ9F6i9bFdEZHg7gfxOVBj31roNbdAUQUMG5326VusT8EEF9pO2Zf2RpJlKD7GYFQKrvmfQpATsX870ODzn82eB6PBC6dVF8bsH4Fqvp9pGXndS6s7JOQGlX0aWFu1i7P62h7tSPJVbJXh/Xc5+6xS2xKWvyKVbuLUd1c26VOfPrEhh5nM3g2YDiV6kDckYW5Y/527IW5WfMP7Th/uURJu2XqRb3rr7NHe/rZnAEBeOKc5fEAh6b+0CTNPYvtxHT6abhir0ps7HYTZsyab485a5HqGlYCYqTqCDzhr3aNLinosdhMrtyWYDlp7Ji4aQ9n3vfyjce8P2nsmMU1RUmHAASqo6bsTs6qOWia/D/g4LpqfLouZuq6OC/S+2kMoRT/KADf0ErrLevAoCuIDS3Qbx+gNH9cfrtINmwug35YURHs5F/uWBrdoyA9Y7cDk95DKl0AEvk/mpDUGHGHVdPkxrxV5x7648ZjT+oZUJY4/LGpIV+ia9Mvt94YFsC2aEtMmDFr/oQZsyZOmDHrLVBeNSWUAOlSbMHdxakuAoolst3Fsa7PnidiNmv9g87iZQNuyv2u7vMJ9st++FfoDGZwzLAGap2eC0IsLTv4wd01qPLHr11ccsjve+to4eZjXAC/bzlC30OzP+yKr6JH7MpbGmBbk7nwhdtvAi4Echc9euFu69XbRPBdicK8DSfsIGJvj/INsLn9Dk2TWrKruAtAp5j1lsPaTIK+hC3SsDU6s3bG81cdptp7DI3tkvLxhBmffHfr21/cl5pZeG3Qay8H5oH8NpxAx3fA1pIlPR+rLYk7G4gGsaf47YhQb7Q1CegI7F1erwVx/RznAVA3Oxsj/WXRDrlrZkehYhzUze6J+MtJV7vnjBSbr9Ex5+0Z+wbXE4pfSQZe2l1sqnTImwFqTyp7uilJjRF1WHVduHVdqBuru02RqN2OlbVL6mq00w40JC34CIQHpCFUg+hOW3/bZaucCqMqJrQuaJNjC990tbcwj2OEtB1k86U+Uf/DmkDMEABfyH0cDRDoj3WUX6+I0OLC3KzdOnUSJWSgDm6AA1yXRb9bzb7C3Cyjb+KS0hJPx8Fp2XktIsR/yEPTXEvLMp9OcW/2JzpLJu6p7YKikf8FvGXeDofX/9xTGrfOVxn1C8APG4+zYlgjhHdrv2oZcsvGvvSXF46+HRSECG27li+5b8mrSCUT5CIQtnAcuxSAHtu15MJOQ1d2AP4BeNlN/Hak0TRZAhwNvAOg6+IfpqLAPn3ZUWpsqQDOguil+3K/Fvue8pCtcwjFlmpvksLSHikLOaJilNDmiHfcttkkkUjk9RL5za6cVtcvsVGGM7ThsOeLf2zKDiI9wnpbIGRfuWDTsSekuIvWp9bGP8tuarBbtD3qhwiojqB2zaQFn5gxyX8TtK+NMubbg4qaXGprbJnIVmN99rzhQXvZ25KQF3i//rqaQOwwc3RZsJeXq/FTrjyyyp+QfnjH73Y7lRR2UmUvkAPYiwN8XPdP0wAGd/ipx57sX1vZ67HaYIxKWG0j4mz1pdxb5k11HhS/7KbfHh63xySbwtwsnyKCP7vU2lPrfy4Uo0N8j+KjdF0Mkqhh8VgrhrVZmE7qGSCjQM5uqNM6efyc4UFPxwsAPGUDnqq/3YQZsypAXAfSBzIIwgvcf82zP/7norv+Kt1+LwjHbzdVIaAxaJo06o24dgfS2Zbgt28IpviHSZtRmrG0IPJejEWbYn51UgLAr7UJMyLZb+a0TLfHUGML/VH/i2S/7YBDAUMgEGGZxw8XD+l32c8TOrgBCtIz7CKoHK341I+auoNIO6y/zPjrimVBaU8t8XS6/MYpx+9w02uKhqDFvqUuROCWt7761vzoEWDOziMdHYvtTwLEVqvtQo91ffa84RI5Ww0k9gThBA7esYXQt1cT2vPL1eeFZ40AcNq8uw0HIOzwCjO8Yo8OcMBwxAO4bbV7nEKqDsTPIuxVn7yndk1Be+KfQ4Fs4J3/3pr7akO2OTT1x5Av5Op306uX9Nz2oSBRqEYVsKJvwuKe4XZWDGsz0UCq5vS8CxjVkI1s7i2Pw7Yprr+dg2EnVBwHYpdOab1woX1+39Y0+RQwUtOkoesiStfF57oujm7p/cro0PBgR7/1hnVg0NX8GekY1oPMn/u9ButO6ALhk8igRPoBr+JV33R/H1+1+LC+9wY6+x4Bog1n00eeI+qwfrj8oh+/3zhquE3x/wTMhnCVlhumjJpoOavtll+BX9h5pCOnYj2w1BDylNYwqgloAuEMh6gIg50e3oW5WfPtiu8+gF7xS1/fs0C/uAD4+d83vrCn7FKd8OwC4VjA3TvA3204vhzgx03aHqdJCnOztsQ7y9Z1jl7XoIoiDeWWqRcJEHOcqkcCDRZ194Zcr0kUvlpz+iEA7z7dTxhBxVWzOaHml5ezDkmN2tQDrBjWCKADXpDSnAEYM3n8nLg9bfDmA88NCPljtbCU1e5nuFrTKd0bmibrXiB7Ar2BFgmFqY9tnatCLbd9u/eWFu2dg92VJwEMdFdVR7Lfo2LKLgAYFr3VH8l+2zpmTOpogXhQIDSgt+eo8vulQxYp1bbH7Zuc2RKJ8Cn3NKVoAETQYdV1kVVY2ecZTzA6Ruv2xXu7y5y2aF9omvyfpsmbzJGOVF0XSXXryhKDFVJwfOGbrjYtBG6iY4anCMQuS0yeetAHL0Tbq6Qidp9Mdu2Uq0YBQxOcpXssuWdWqDoOWA9ywxm9392TM7rXGNY6esf/tbqopkuHIx55NWlvbRvKrFXnX1ZY2Sf+0I7zpxfmZjU43jS/5LAPgYA3FHV7Wnbe8E2/9D0WqeCriO4OzK5c2mkDQN6q860Y1mYQftkXo0HcB+SCPNwetXn1jOevHrar9pPHz1Frtwx+WRp2jzvpr/G08xkuTZMFQIamyW8BzEp0j+i6iOiAS0F6hiIM0UWpsUVUxsuibRKQoidAd4enMJL9LvNEpwOs9kWF9tZ2fyNjacH8jKUFE82fxtA3Nj2e+e3KbsAUiZRmuICNJuYzReSC13XR1RdyfrKsbOAFdsX3w2vXT2lU+T+Lto/5cMgDPq7T0w3a5AeqIehUZG/z8lbdckfsEJ5iLu/A81dP90gp3lpRnt4zLTtvlyNY66t6jgc4usucvdaILszNmp8Wt/wlEGk1gdjbdtdueOe5hwIc2VlP3lufvxYPv1+iis21XY/bW9uGkJadlxKStqeB73/YOOqqRm4+JDxVLUcAs7fYUy4AjLo44B6edf0iYaPFDjNV98R1/+bGkD8mqXTZWZ9NHj/nkJ3bClvNFGAkUp10xRM3vLI/zHBpmgzWW+wPDKgX7xoRPMMqegPOYAd/m9GFtWg5CryxxUDZ02dujpj0VOa0zOElIedZAFuCzncyp2Vaykhh/i3CcfLNymeK1BvqxkkLH57iDUXFBAznPRHq06INYT4cHgAeqtPTTd1ifwUIuXxKm3dYIey0dssdMXFXzmodtcGYV0G4gHN2tX5x6dBDwViTt/o8e0P2eXCHhVPctprAj5tGXpKWnXfPzslXadl5YkN1j4EAm2q67lXMHfgRqAAZkTjWvomLvwKZAIwvzM1qrAOgAUqd9NEfcQdL6iVZFqUkOwESXVvaxfnRXrjkvkemuJP/OkaGXDXA91Nu/vDzl2/635OTx8958V/X562WwairwqHO3LE/SglqmryasIoBui4667qYpeuib3P7NWJCIwD8A2ocze3Lol3QlcjHr2ogbebvljKSSV24AOaAUVMkrSBCDuuHyy9K2Vjd49pU96blhblZVvzPfoqmyc81Tc4G0HVxoq5VuiTyp6Aqz2ht2yLIgihbVWn32FVP7LzikIfeehzoBUp3GiB9BfDC1e9UeILR71UH4oeAfAKM79Oy835Jy87LH3D/e15BKLS2qvflAGsq+z6xtz4Lc7OC3WNXrYt3br0sHHvadA5/+LWTlm8dOGRo6vyfC3OzFjWhCx0Imc5RoCA2/d+YN6Xf4zJv+UU97ESArd6UfzdQ29aigVz28B3fA9eDdIX8CScZgfi7gCvlNkWGltVPbW00TdYlKGYAh2AG6zaHqG8TagHsK9yzmtuXRdsn2eY/KtXmi2iCXUeb1yzFKptUyWl/pn64QFP7aLbDquvi1Cp//EfVgTjl4A4Ln2lufxZtH10XCcAM4OktHYI+NcTANW+40lrXqshQmJslM5L//GNd1UGdemV//GSdo3XZ5BvPrPQn3Gs6ZwqNcwY2hn8IzOnyJGB5p+iNPye7tqxg+8O2QbE9naI3fFfhS7LlrTr3haY6gmnZeY4tns7PgVzTKXpjVlP6MON0vwFRjFm+tS6JZ17yMV1AMZNkmh6zZLFHMtl27sgQ8BgoF4a1lA8MKUFNk3OAgzRNrgTQdfGUrosrm9KXCCrdAOwbXH9F0ESLNkp1SIkPSBEbyWn7IEoSCOLV4HvA6Pxx+e06FKet0WyHtdyXeMyCTSOOAPnFa9dPaZAcjkX7RtNkOXAKcLOQTBEIum5wHNnKZkWMXzYfPQUEBsqdAuPbQQ9Mf0Ffd/Jbigh5aZqY+keEVRaCpjNxYWFu1tlz7rl9RIm30zgaqVX8c9GILwCC0n4DyAaN9O5M99hVzwMZIK7717VvljV2+zoSnCWKy1bj3VlVwaF466RdQhwAjlMroRNOIAyaP+easaoHlJSgpkk/gK4LO3AYYf3WRhPo6h0pVVmbsbSgIpL2WbQ9MqdlDvdJm2NryNEZ5JxIOa2lQcdIYEtFyH6x5axGnmY7rK/+MaFHbTBWAfFQJAyyaB9omvxR02SF12V8ZCADwuAucuL3l2nfPoAEISSKrTqQcBOI+IDhEiBuxnQG9ix9tR2z3TYnov52e1q3BzLq7APcUbbqqxtzcEc/NvmaDdU9xneOXrumMDfrs8ZsuzMdozb1iXdUdKz/2fWvXNZbEcalya7NKwnHPTf4u7JoOLtzTg9UKUEzTGA0cB+Aroshui7e0XXRoSHbS5dxeCjFH/Fy5RZtEo3tM1uuJNX/r8xpmbY9tN8rd83saFeQWSA/yx+XH9GEQIswzfoDXfD8nR1WVx7+jz4JBcVfZ9+xJ01Ki/0Uh1+cKcAuJIcAs8mJH01ORXt/UOqEdS/t4ZKVQjGdQxVIKczN2mPZ0l1hOmy7/F72tG4v9rkAURuMviwtO88vMP4nUYYCemFu1vxbpl7k/mHjqB5bPJ26dolee2jXmLWn/bllqOEzeo4E2FTTvVNadt7w5jiThZV9fg8atv71P5u9dsyNvpBLaN0/v2PK+NdnNrVvi71jOqXt/XqLGGZCaJ3+5RBgJOER/r1iX+kuxi7/aCHTLNoWOuAD6RCgloUcQ4CfMqdlXpM/Ln9hUzqsNZQrDUTc8JiykkgaarGdJr9N6rpwpUYVrfQEo5V459YmxQxZtH86FjsOwizHxn6S5LF91FM8CMp1RECOI5LUs+8+ECeAeB7kVRLxOcjHge96ZX9U8vHKsbVbPJ2WArM31vR4auHm4SOC0n5o2PkWgFBp5t/LF3J7Q9K+zSFIy87r4gu5x4N423JWLVoTTZNvAX01TZabJaZf13Vx0u7aC0QPEVAOtOpEByTmdP1oEA9IxFHAeUAnkD/94/96/nbSu33jG9vngurEPiCNODX4QsQNtgCaMcL6+eozu36++kxHvLPs+w9ue9zKqjxw0QXCR9hZbRMOXSSoP+qZlp23iLBjp7eVqe2dRmW/HvjAf2JqArFXmSPBgFh/WMf5i0q9Hb5aVdH/+xh75drRPWZt+mjlhUMIV6GLyN8r0bWlgzcYta1wRJ+Egv+sKE+3g8hpTr8WFpFA06RZbY4OwFGEq/b9jYU3duwcTVJCoIvXt6v1FvsfptO67X6eOS3zqwxX9TeLPLFDQCzKnJZ5Y/64/AbVvQ/HwKoXAn8+c+bmNS1k8gFPkx3WleXpr/kNlzOKmtsjaZBFOyOnYj458aMxHbr9IBzgbzRhyn6fUxOIewO4CNMRNVCv++9tE3ey+R88D/PTsvO2/b2a64DH2Coz/CFnUlp23vDusavKN1T3HXlwh4WLP56Qs6o5/VpYRBJNk8W6Lg7GjFvUdTEGGAHkaJr0iBCHAwR6ea0Y1gOU/HH5FcCQIdMGDg8hXgFmnv5er/UHOT1nPn/Wpl2+6ABkTss8CqQOwg6yQ+a0zOFWwlXLIKRsfAXVx6aPzpy2+IaF3WNXb5hzz4ReLWCXhYVFIzHVAjT20UhweH9yHqCa6gc6yONGdP3q0Ldven5JS+/fwqKp6Lp4BDgLGKppMlCQnjEG+MSIDo4Y+Mvy71rZPItWJnNapr2fq3rqal/UuKAUNRJxLzA5f1x+CODOmR3ja0LqLfOrE3sEUc4HzFkmGQLxQP64/EbnOVjsnSY5rKc89fiSgrIhGbGO8mvyH7loagvYZWFh0cZJy867B3gcEKY+rQTxbmFu1sWta5mFxd7RdRGlabJW14Uj7rXOv7sXxmcAp2UsLbBC3CwAOO0/vQcW+qMmASfFKMHikCTfI22qQB4hEW4F6TUQ80EeTfjF3Y+lv9piNNphTcvOGwXhakfmqIolWWNhcQBijujOBulkewKnB4R1T7BoN/x6eeeLXAvi38EAYT7TmlONx2L/InNapnCL0GMeqdxrVpCTID86Jqbslxg19OLTZ26uMHVcNUC3nNWWoykxrEeACBGW+KnLCrf+QBYWBxiFuVlmPKx4COQJYfkv655g0b5wz0/oIZEhEVbNsM5fix3IH5cvM6dlVpvV5FQgBOKnl8/ZOLFemzaf57A/0JQAc52wzl2bkfmxsLBoHcyR1IcJK0VY9wSL9ogutlUMs85fi12iY50jrU6TYlj3dXKHhYVF28a6J1i0ZwrSM7adv1Y4gMWusKb9W58mOawWFhYWFhYWFhYW+wpLc87CwsLCwsLCwqJNYzmsFhYWFhYWFhYWbRrLYbWwsLCwsLCwsGjTWA6rhYWFhYWFhYVFm8ZyWC0sLCwsLCwsLNo0lsNqYWFhYWFhYWHRprEcVgsLCwsLCwsLizaN5bBaWFhYWFhYWFi0aSyH1cLCwsLCwsLCok1jOawWFhYWFhYWFhZtGsthtbCwsLCwsLCwaNNYDquFhYWFhYWFhUWbxnJYLSwsLCwsLCws2jSWw2phYWFhYWFhYdGmsRxWCwsLCwsLCwuLNo3lsFpYWFhYWFhYWLRpLIfVwsLCwsLCwsKiTWM5rBYWFhYWFhYWFm0ay2G1sLCwsLCwsLBo01gOKyCE0IUQL7W2HRYWkUAIIYUQ57bV/iws6tMS918hxGHmeZsWyX4tLFoSIcQZQojlQoigEOItIYRmnscprW1bW8ByWC0sLCwsLCwsWp/XgA+AnsAtrWxLm8PW2gbsrwgh7FLKQGvbYWFhYWFhYdG2EUIkACnAF1LKDeZnrWpTW8MaYd2OIoR4QghRIoQoFkI8I4RQAIQQFwshfhZCVJnr/iuE6Fq3Yb1h+1OFED8JIfzASUKIHCHEIiHEVUKItUIIjxBipjW8b9FcRJgJ5vSRTwixXggxcTdtM4UQX5vnX5k51RS/U5txQoh8s6/NQoi39rDvu83r5IgIH5bFgYtNCPG8EGKr+f/pevdfhxDiSfMcrzHvxSfV31gIcbIQYqkQwiuEmAf0a5WjsGh19nRvFELkCiH+Mu+FhUKIp4QQrnrb1j2zx5nrq4UQb5rn4PVCiHVCiFIhxLN156e5XaIQYpp57nrM++3AeusvE0JU72Tntul+IYQGbDVXzTE/13ZxbMlCiP+Yx+QRQiwWQly+U5toIcS/Tds3CyHuEULMqn9Pb8g11RaxHNbtXAQEgaOAG4FbgbHmOgfwEDAYGEP4Leg/u+jjSeB+IB1YYH6WBlwMnAEcD/QF3mgB+y0OLJ4AHgAmAgOB84B1OzcSQkQBnwPVwDDgLMLn+Bv12lwLvAK8CRwMnAos3kVfQgjxDHATcKyUcsHObSwsmshFhJ9Hw4FrgWsI34MhfF4eC1wIZALTgE+EEIMBhBDdgZnAV8AQ4EXgqX1muUVbY0/3xhrgCiADuB64ALhvp+3TCD+vxwDnmNt/BBwOnAhcRfgeeFa9bd4CjjC3GwbUAp8LIdwNtPkH01bMfXY2P9sZF/CradtA4HngFSHE6HptJhG+Xs4CRhH2W0bs1M8er6k2i5TygP8P6MD8nT77CnhtN+3TAQl0M5c1c/mcndrlACGgR73PjjHb9m3t47b+t8//QAzgBcbvZr0EzjV/vxqoAGLrra87X/uYy+uB3D3sTxJ+eXsTWAaktfZ3YP3ff/6b999lgKj32f3medkbMOrfQ831M4F/mb8/sZvtpXWuHlj/93Zv3EX78cCKess5gAeIr/fZ+8AWwFHvMx14yfy9r3mujay3Pt68715lLl8GVO+077r7cIq5nGIua7trs5tjeK/OVzGP3w9cUG99NOHR27fM5b1eU231vxXDup0/d1reCKQCCCGGEh5hHQIkAXWBJT0I31TrWLiLfjdIKdfWW15A+GTJAJY322qLA5EBgBOY3YC2GcCfUsqqep/9QPgcHCCEqAS6NqCvZwjPQBwhpSxuvMkWFnvkR2k+NU3mA48SfsEXwBKxYzyfE5hj/p6xm+0tDjz2eG8UYbWTW4E+hJ071fxfn7VSyop6y5uBZVJK/06fpZq/ZxC+n24756SUFUKIfNOeiCGEUIFswgMIXQkfq4OwAw1hZ9QO/FTPlhohxKJ63Qxl79dUm8RyWLezc4KUJBzXGg18AXwNXAIUE34Tmkf4RKlPTUsbaWHB9hemhraVu1knG9HXV8A/CIcLvNWI/VtYNBdJeDp253u0x/xpZaZY1LHbc0EIcSTh0ciHgduAcuB0wi/j9dmVL7Crz+oc3T2df3X3XmMX7ex72G533AFMIKwgkE841OsJtjvPdfvY3T0fwqE3e7um2iRWDOveSSfsoN4rpfxWSrmU7SdHQ+hqxljVMYzw914QQRstDiyWAD5g9N4amm0HCyFi6312FOY5KKXcDGxoQF+fEo7lelkIMa7xJltY7JEjxI7DPUcSnuWaT/gh3ElKuWKn/xvMtkt2s73Fgcee7o1HE57xfFRK+bOUcjlh+ahI7LMu/hoAIUQc4djQJeZHW4Ao8/M6hjRhX8cAn0gp35ZS/g6sZMcEwxWEndBh9WyJAgbVa/Mbe7+m2iSWw7p31hK+AG4UQvQSQmQRnqpqKB5gmhBiiBBiODAFyDMvFguLRmNO7z8PTBRCXC6E6C2EGCaEuG4XzacTHvn/twirBYwknGD1oZRyhdnmceBWIcRtQoh+5rk6YRf7nUXYaZ0ihLi0RQ7O4kClC/BPIUR/c9r2TuA5KeUywufwW0KIc8178GFCiDuEEGeb204hnChTf/vxrXEQFq3LXu6NywgPIF1knkfXEZ41au4+lxNOynpFCDFCCJEJvANUAu+azRYQvg9PFEL0EUKcQzjpq7EsA0YLIY4RQqQDLwEH1bOlmnBC7ZNCiNFCiAGEtV3rRlVp4DXVJrEc1r0gpdwCjAPOJPy29BBweyO6KCQ8DfEJ4fiQVcDle9rAwqIB3ENYleIBwqP1HwDddm4kpawFTgLiCMc1fUR41OqKem1eBm4gnKC1iLCqwMCd+zLbzgLOJ3xztpxWi0gxnfAU6wJgKvA68Jy57nLCCX9PAUuBWcBIYA2AmSNwNnAy8Afh6d7sfWi7Rdtil/dGKeUnwNPAPwnnrJwAPBihfV5O+P76sfkzCjhZSukBkFKWEVbCOIHwVP41pn2N5TGz/8+Abwk7wdN3anMH4ZDFj4G5hI91IeFktPr27vaaaquIHePULSKJECKHcLb2oL21tbCwsLCwsLCIJEIIJ2FH9Gkp5aTWtqc5WElXFhYWFhYWFhb7AUKIQwgrF/wExAJ3mz9ntKZdkcByWC0sLCwsLCws9h9uB/oTliL8nbBG7Po9btEOsEICLCwsLCwsLCws2jRW0pWFhYWFhYWFhUWbxnJYLSwsLCwsLCws2jSWw2phYWFhYWFhYdGmsRxWCwsLCwsLCwuLNo3lsFpYWFhYWFhYWLRpLIfVwsLCwsLCwsKiTWM5rBYWFhYWFhYWFm2aA7JwQFp23vGKCJ1kSPXDwtys+a1tj4VFHWnZeUcDp9uE/+fusatTNtb0SPeF3O8X5mZ919q2WVhYRJ70+/57QdCwDwhK+2fW86jtM2nsmKsRxkVIZfqEGbOmNnS7TnN/Hw4cD3xddNwQ6+/cBA64wgFp2XnDAR1wgAR4F8RrwPeFuVn+1rTN4sDmpCcnPvLX1sz7QYidVnmBUdbDzMJi/yLr6cdOW1I6+GOJAIQHGG1d522XSWPHTASZDeFbtOrwvx7yO66bMGNWYE/bhZ1V+S0IG+ABRltOa+M5EEdYNUDdvijGAhc6FG9Qe+Kfqwor+z4FfFaYm7WxdcyzONBIy86LU0RooiEHXb/907o3SSEIX6caYN3gLCzaObounMBATZO/Li4dclj4UwFgx7rO2yyTxo4ZDtxd56wChPyOK4Ern73wlMLYLmUBf7Xrv96tsV8q9sAfRsCeQfjvqUeNv+v2WuLq/C3r79xEDkSHVQf8gB1EADhNYMT0T1r8+PKtGV2B1wCOfOSVKoT8vaimW1AgH1ide9r3rWizxX7ILVMvEptrOz8M2pWGVDvHOrZ+VeVPGAHYQITMZioQIHzetjvMGQ0N0K2RI4v9mbTsvGOAC1URWHxcj8/E+qq0TUvLDt7ittWoR3edPXBd5UEb/9qaWXL9kKMfiHeUH//Cs/ddBEcNCm8tJWCAKD/koWknHNrph/4ry/uvXV3RvzzFXeQekvpT3+VbB6xZU9mnIspWNdRt8xxW6k2dbF1T+w5HXM09/spo01utm5kOL8qQmla5rgPAvcC9RsBe18aojIn3hwzVGc4YktL0O/RI22eGHGiAvr+O3h5wIQGw+4doWnaeAAbFOsrPMwzl7ppgnKNuXd+ExVVV/rjpRbXdS4BPrRuFRXNIy85LS3CWzCj3pQyLsVeurg7EjS3Mzfq5/rlpNtVoJ85eWnaeenjH7/omuEpHfLfh+FpPMPpIkNcRdrpDIN7uEr12c++EpUl/lhz2VYUvaUPfhCXe/kn5tUU1XVe+f9vEv02rWQ6vRVsmLTtPxDvKjk12b359VUV6r/qjby2P9IE4zrouWp5JY8dcAPIdwvcyA8CZUP3Oja98M+7txwZeX12UOLl2SwIg16qO4HtSyjFGwD7AECrvnX4lGzr3rOvqX8A7kXYozZAD3Qw58LGfhhwckA7r3rh88g0Tv1l/4gRD2uzhTwzsip+A4aLural3fMFts++584VWNNOiHXLL1IvcC4pG5hTVdLsRpDwkdcH/esSuuur5q6f7Wtu2vZGWnRffJ6FgYI/YVcf/WnxkTbkvOTnRWXJInLN8+PqqntUhae/I32ZtJOGHuASEwZ6VSSrcthp/kmtL1Kaa7j8YUpUgR5vb+EBYcbwWrUb9l6dT0j5IWLo18+LVFf2OBHopIigNqQrzXA+lujd9keQueXtp2cHFh3X8vueoHnlvlHpSP3x90a2To+2V9uGdvxm4uqLvppUV6e/G2Ctqj+z87QOrK/quXVmRXpboLHEd2nF++ory9DWFlX23JruKXYekLkhfXp5RuKayzykgrwyHCskQiAcKc7MmtuoXsx/z7tP9RNmyro/7KqPvAeYptmCuEbQNBvQJM2bNB9B10UMazFz99SHfbF3Z+QIQncyRVPHtsONZMFTDFvQbQdVejBBdi44bYkTazu5zF7wawHG1+cIUBB4sOm7IfndeWA5rPdKy8xzAk8CtKe4iT4mnozDfWAJgTANxNQg1/PCV2JXAzJC0Pbxq4um/t6rhFm0e82F3Sbyj7OIKf1KsKoJ5IWm7vjA3a20bsEsD5gHrO0ZtSO+ftOj0gtKDa7d4Ose4bdUZ8Y7yI4o9nYOGVKN32jxoE4HirrFrosu9Sd9V+JP+SHZtLh/cYaF7dWXfL1b/P3vnGRhF1YXh586W9J6QAAFCb4YiiAREJ4CgBhV7QQXxo6uoWGJfeyyoWBBBRewVG7GgsEMTFIFA6DVAAgkhvW22zP1+7AYjphIklDx/yM7cuXNm2Z09c+457ynoFAB8jztnywEMHdhi0Z5gr9zOv+y9vNSpm0M6h6T2CvPJ7rvygLpJooQ299vfy9dY0mVXQec0EO1BhlZyeDWzwXbt9meuyj5x71ATTRz5niwCvHB/IIVARyJ+BfGxQTgzXNJ45LN+eftPHr6i4ycGVZUvAWiaOBdYrapSrzTnIGCpIlzX7n7usi/rYYfVY4cdUJse4v4bpl83wuDfIkcrPhB2nsHL/qOr3HzVtM8X2Koaq2nuQtn0lV0iijODD5Rkhhn2RHfgqxFj6LZ7rX1ndDdzt8Nriy/8/sfgaZ8vcFU1x7Ey2To5ZAE3b7HjEwlSB9EUYT3dmTRr7Hm/7rv0dadu7mVU7DMvaft14ve7bjiLfy7PLgJpEki9uV/6ygMlrXqDCOwWllLWwm//Xe9MnjW70S6giZMWz4/MUsAIkm6h6z+4v98jY1S18b58MYnJQcAjIO/hSNTzX8uZhw3CeaB98NaIgvKQ5VmlLf/0NxVkDWihmbPLIpeuO9R/d1pSQo0334Ys6f/tJEizx2lVjIpDdgrZtGJzTu/rmwojmzhRnG2Z+2muLeL6iu+Ij7FYG9z6x7veHD9vfcWYyp/19y8acTMwGOihqrJK9ZmYxOQXgLuA8LSkhMK62tL+wW+vdEnT177Gwlc2P33DPcd8UU1Uy/TrRvgAnwAjA1sdWu4Xma/eeN/2Ojmab98VNyKzoM0P719zO35lxQx2zl/8RbPJg6/88UPa79v2FXDTtM8XHLcVtYusr69KYdC5Co7dOqZ3aMphPb3p/PBXVytC/1yXil7u8rkuLSlhflXjjv7xnTjrtlYO3fzTnwcHdS9yBKHgWp7Q/suV8dE/P3blxdlVPok1cebR/8m3t2WWRnfyvHQCjzXGMl5MYrIwCkdc59CN72/NjY1xSaOp0pK9BDHfpNhnX9jme+HQTX/OmTQ770TbWIXNR75zrQN22wLM+V9uyunVFhSnQJ97UdtvPnxrwntNBZFN/CfEJCYbgPtAPs2R/EV3BOvIA5gl6DybWb9pW5eyPnmhrltUVW7RNBEIlKmqrFbuqO8T75YahCvjj8fGd6yPTXe9c2OLb3eOyujfXFvw2dQXLz32q2uiKj5+vkunnO0tf3UUe7cCcde0zxfUK/UvyppiaJ69Lzc7OCrwvDW/jSrvb3h2NWr0xLkvPeRTXva8X2ReoaPEa5S92DeWSqkFx0KUNeUCkFaPmsy4zPhe7xzrXKcCZ7TDOvz5JK9tebHPA1N9jUXb1Va/jJ85Ye6S+s5z55ybIhbvSxhr18332V3eYW0Cd+JjLJ0aYCp848u7nzvu+SpNnDq0TfxhrER5V6BLiXB5KkRPqNbi5LfHtN1b2OG+TTm9zwe6m5RyZ4fgralbcnu+hrsIoGLJ/pTQgIxJTG4LPCDQb1OEbgw05/+QVx7+EdCepuKsJo4TU94e02/VwQs+yLE16wx8ZRT2d53S3JvKnzFLUBywRCJNUiD3tbZPi7nV9kptc5/75OyuWaUtN/eNXP7JV3c/N6o+dk2dM0p8t+t6Z5h39uw1lrGTjuXamqia6deNuFoYnO9LKfwCmufdNf7lVTPqO8dl1pesfzJUvXjx1wyUP454YsibcyXKn+nx/UZ8+HT3jw+ltrkRhPTk9NuBIcfitCZYXw1dwwVrQMT4UCw7siFoYfzkovrOcypxJspaAXDT63efU+zoYAX8gNdKnQH3z5ww95jC9K+N+ygbeL7fk3Ne6RXx5+drsgZcvLeww4wAc/6jj36QUO5vKuz2wA3L6rzk08TpQdvEHy6TKHNALjQZ7M/aXd4DOAEOlTsqKVUQecBARVxxgy6NBkW41ujSMM6he3320/0PFXvGbuMUq8JPS0rYA0yc9Pat7+wrbD9jU06vYcCluKt3y2MSk08Jx7uJkxNPVP92o7jsaoMizeE+mVMPl0W9vvO5KyTwc+WxupCXKlKYBAKkdMXs9fKuyzmySlsOA/gr67zH6mvfjHEfy+8Sk3NybJH1PbSJGph+3YhLgC+lywBgL8oI/7O+czS3rhksGazGOlbuO2v7utabup9zowPvCJVvs6Afrc7b/Gjp4cBexQdDuwEGkOaQ9gcf0zRxnarKevkILozLQcQANGdv8unurMIZ6rDGJCZfAUPmehlsXhdE/5w07/bXHzwe8/752Dg7jLvCs4x0FTD9w82To4PMuYfeSkye9op6S06Id+4qVZVpx+N8TZy8jHtrwhSDctHrQIpTN1+1/ZmrioF6R+/ri8dZ1YAKSbYSP1PxJwNaWJPfnvjO50eP9zh2p6Rz99aEuX8BA2MSk58G+TAIBaQJhMopek1NNC5tE3+IA7EUhNEpzXpr/+13LH7wnjeqG1/sp98UUKwAuEQ99DUNwjHSJU1b0pISdh2LnQbhKPI2lrWpfWQTdcXka0tylFbU1KFQT3H/KGtKJBg+BrlVMelxwJJtwT3iQEpfil/QNGECfojqvStn58EwG2BESNksNk3F44tpmvBVVVlah3NdBOd1VXDpOgZlN92n1fuCT0Fqkpg57Zg65ya/S158ZjkwH8QOp27sfLyc1cqkJSW40pISviiyB7ce0nqBRSLSgDce+/21T5J3X7Xnjtk3twTQNHFGvf9nCjGJybGL9iU8H+yVV35J269vSEtKKD6Bp1dxNx7AI0b+QuqTo26pylk9jUgWSKfnb51TtMlCE41PpG/GOx5lGEDouws6B1Q3VloC4wKLDa0KA1ypAvEoMARLQa0Ojuf+r3YPW5t5rHa28E9v1sz34LnHenwT/+TNCRf4uezG7riT+p3Us1nLFOskU0t2rwIZDOLaX+Kn5PuEFWzLiGrd1qA7V78X/9I2Tz7zc0FtshNxF+Q9hlQu8G+eF6OqMtcz1ZeaJr6q6VxR1pQQ4F2Q20yU27wpWZ4Z32v7MVz2KccZEWH1LPFcYVZGXmvXfdrEBO74KTvysyTFWHJd7LxHtdTRqf9JNCYtKUFCwhMxiclPAoNMiuO1L7ff2tMgHNtXWObOfTwu6HJNE6NUVS79L87fxImn5+MftofQX3RpyM+3hQ58bdxHe0+wCZqnKKSik9uvJ/j8J5y0pISVbRN/UIEFIHY2pQM0cSzEJCYPgeguR+Wba1UOtgQZBOIN4EBQkXEgloI6L8euODBkiEuaCPbK/fhYbS0oD95od3kFH+vxTfwTW37AGEDxCip+sLzAX1DPYqhVDH05g3Yx5/PD+1/EP5oKUNLVOzsrIpohOfNDNa2fqqpSU1X5EYCqAkdFbz3SWAtxC/9XvJ4CfKWq8sjDTWfWLd9Gz8iWpP2UQbvbhvLlUhjYgKs/dTjtHda/l0iF2a770Nx3/6s5Ld/9QkEuBxQQZbHzYof8V04rVDiuLAV6jX9r3Khf9152Za4tYvJ9S98VvSP+fOfZP56/5KFzE32BKOC3ylp9TZw63D77li4m5YL1BuFwuKSp/87nRp5oZ5W0pISV7h9eVAWXtjvpsjPCeduTdOmKmMTkF4FnRrz0ZL8F9z5W7/yzJs5cujz8ZVvw/RzEVom4E+hHDXnd2eGOtyIOm84GbqiPswqQa4sYDOStODB03rHaW2gP2cmZ4qX8x7x9d5wBwu4BVpUX+D8/7fMF9apEj7KmnA/tJ/tQ/F0EGWMrtq/sMsQfoPe+3zsQzm3UErH1yBxWLvI6C3gdsAHvaJpQpsifRuXQu1t/FlpXMayNwJURRO6T9bH3VOa0d1ib+WS8eKisZUU+n+tgaatDAe5lU8WTq2KinrkqDWH2pDkfAx/HJCZ3bR2w+9PVmQN76iibp/9l2T2q6+y2UX4HgoEyTRNKk+N66hCTmBygiKs/UdCNg1v/OHXOpNkbG8uWtKSElZomPgbCQJ4RDitAp5CNH+3K7/KMUXHMAs5ubHuaODW4c85NYcHeg1KzS03CJU0j05ISduBuElAlricDw0OEcWxhgCs/N9T5eUw9zjV1ziiTQVxzuS4NP+1JutRZ+xFV42cqLC9z+kUc6/FN/I0Q+gdAO6NP+WdT3/+1Xs7qROvtXUzcPN+B164y/G9+M36WBNA0Efi7cW1EQHG+jT/N+zibMfW1S1VlqqaJTkAGwE551jgbvm+YKE/dTN97gHUSwyNvxr910ndJPF6ctjmUMYnJcTGJyXMPlbXoD7rEneNmx/2UowG6p81qvXJVjhdpSQlbfku8r1eId05HELNTD/eJeXDZW+bHf391VUxick/gN00Tz55ou5qoP1Pn3OQH+je6NPRwStPlcybNntXYNuEWvT5jnFWAhQ88sK+F/741G7LP6RiTmHx0V64mmvgXMYnJ4uc9V76dWdLC74JWvyR5nNUaMejiOYMLafPWr4y51VYvB6fU6T/aJU3Bg6J/PXzsVkO30A3tdWnwnzpnlKkh85zpTL9uRFxRRvgNIHGWme+eft2IuLoeG2VNUdYx6CcgrBfLJ2XG9yoC0DQRUCr9/lBwDWtduHOnkEqnjFWdex+Lfaoqd6iqLJ1inSg+4J5HbPgoAnljB1LfNeDgJqb/XPsspw+npcP6dxqAHOOuHFamgngMGPL+RSM2vN5m49PeQt8GYh/wn6YD1MYay60705ISbu8buaL72c3+WLW/qG0HIOWJ31/u+FdmXA8ATRMGTRPjNU0EN5adTVTNNa88qGzP67YZlCEKrnFpSQkLGtsmAFWVj6iq/Lqx7TjR7C9qd7cuDf7A9Y1tSxOnBNPsutdVIB56b/JbT9U2OO9Vv4sk8jaBeK3ZlFJrfU+2ZP+wTiB1f1Ph9GMz1016cZtlACsODAluyDxnMlHWlLgFQ655IiOytfB0261Yba0r9+6lc0wn1r/yc/ztRyLyqiqLVjPYqGM0tJHbvwPI3tTmqfo4w0ezm+5Pbqd3dG+Wf2XHe08q/budy2+MEB816HN0qnFaOqy4P3QV7RxdgH9aUsJznnykNkCLIIPD7Kc4SxvTWa3MV3c/t+vre56J06UhGng0vbhNyBspDyd0efjLP+duvP0uKXkbGApHHNh/9dFs4sQSk5gsVmedN2NLbs/W5zZf8uPupMvmNrZNldE04dXYNjQCyw3CuTXQnPf41Dmjmr4jTVRJTGJyXL8n5/wE+gsG4fgGRFJtxxx428dotouvnEbswBPHcl677j0cxLKZE95vUH77wZJW2wEOl0U+4CkqbqIeRFlT4oAlWzr0GPrFiFvJiGylU4/V1sutL14L8lngq030mwagaeImTRNtAX7hulxfivSOi7b/CkiX3TQcWHQsTmuUNeWydQy615vi3W3YfhNwowMv71ICrgKmes7tr2lihaaJIfWd/1TidHVYtUoyNwBHll9UVW4GuvsoenCQwRF94k2rmbSkhLy0pISnL247v23PiD/ft7l8WyxJv+il+5e+c/iDTZPOjUlMVoDxwF+aJkIb294zlZjE5DiDcCwCbgde/uPgBSMa26bKaJq4Hyg905zWtKQE2b+5llJoD2mVXRZ1TWPb08TJh8fBW3yotPlFgAjyynvHUxhbI80Pmsb6lRr8csIcM7EU1LsRzG0zJ54D9PAzFVabH1tXfI1FHg1WeTewqMlprR/BZI8GaUII4TIY2NOp/UHq2HHqUuvLLbbT85MgcmzA/zLje0lNE2HAa8B9UdYU4266ty/D71NzqXOA5zDB3/UydcbtWMv5gLcN/xbzGdfXTNk9wIYUzvtGVeV6z9CWgDdQCrDzuVkJaY/Pn52euOy0+lyclg5rWlLCSonyiOelUaC/fcGzr742/fMBHTVNGFVV6hkO79Qsh9e2RjW0Bl4b91H2d9OeuBVoL3CNd0lDwOL9CfcCG99eP62rw2XaDuQBaJq4TNNEz0Y1+AwiJjE5TqAvc0lTvCeC/3VdfvBOMCuAxzkDCiuPJsgr726BXvL7gcGXNLYtTZyUqBxZgROuXFuz2u+dlqAwgXgOWBqVZT4mkfZiR+AdABdEL1x9LMdXJtCc73kYEwrH4Aid6cSw5Qbc3cl0g8tFS3var3VxVqOsKWI1g9/KJ1wO5OdJn4nepQCqKnOAQbgjnnFAmET5FtDctTLHVi8TTsadIAyel8YIMu6z49OlPwtXZcb3OvKbo6pyG9AXWJWeuCzOq7Dz98byiHESqZ1OTutp6bB6UAAdBBIh9hZ2vGNmygPbnln1fO6Nr02br7u8fF0ojsY2sjbSkhLK9yRdNmdQy1+DQr2z/wc4Vx6Mv+P+pXOuTvrz2ennPf2mL+4nuyPSFpp25APexH/DUPn3TUQCFzSmMVWhqnKFqsqnVVWWNLYtJ5qZE97PlCgfANfHJCaHNbY9TZx0aCCFu7GGqCjErZG8YOdCiQwGbsdScEwPp38cPD/cKBx7TYr9l2M5vjJZpS3K3PbLeovcn+lEWVMiNtLfrw1by0MKDs+4dsFc2v6RVqfiJR+K7wcukyj33iKm/wKs1jQxBkBV5SZVlY4+aC8acOgRZCyc9vmClSb/svVC0cuoYwS3MoWEdvY4vC7AcZioACN2W3PS/tXSV1Wl9EhjqUhDRTpURceu04LT2WHVcAvwOoEys2K7Ozog7dvDZZGu3w8MvqK8NKafbmveJ/axj9+7bebEhye9PTawcc2tmRnjPi5faxnzLtCzZ8Tq2/3NRaVbc3vcnV4cs/vBZW99tS23+/MAmibCgf2aJq5sXItPazydpKhZXLyR0TThpWnijKyWDzDnzwG8zola9k5j29LEycWIdp87QYhmvge2AkNqazTheDrw3OB8w9k5Yc71WApSj+WcbtUKMdgpTd/MGPdxg1ZjYhKT/SWG3iC+qCgmbmqWUXcE+h1OzIZ8Im7+32czPmyZtR/cWqc1MtZ67xg7XkkhHFqOO0iUB+wC/tGxbBu92kWzOyM1PqEQwFHsu0zqBlt9ndUoa8p5dnx6g3gTdye1q3VM5zsxz34rfmZWDYf+KRACkPVpF3wqcNouF1YWUAehbX/2qpXAqwCT3751UKo546cSp493gcP/pkX7LjWBfDgmMXlRS/+9q3s3+2PRG+PnrWhM+6vD0z3rzZjE5JnA+cBDB0taTXt17WP3PL/6u2dv7nrR1/Gtf14GbAfQNNEBtyblt6oq7Y1o+mlDiNfhG/LLgw9IjG9Qg7h4Y+LJXS0DHgOebmRzTjipT45aN+iZ1/M25/S8ICYxWUlLSmjSNG4CAG3/xYMAzgpfd/t7k8fX/N21BCkmxAyJzAKGH+s5B7RYfNfvBwZ7RfmmLz7WOSo4J3L5HauzzvMKNOfN3fDkTQ2O1p4OeNK0BkuUxUffjz35vSqgXTw8ebcPNzzswnC4gLD5EbF7xmSntiW8675ONc0fZU0JVrj+SX8KSx5m4kfRYo+fqspi4KqjxnWG4Ihigqf8vVUWAYGfvNhJ3Hjf9jo9rEyxThThXP5+DpGHJMr9mfG9SodZ3/pkA3Fm4K2aji2Kso4MyIxHCudsIY3zopMGnXS/T8fKaeuwgttpBVZqmmijadwFvKOqsnjmhLnLes/r/qc0lwQktPtyWE5ZxNgVB4a2ARIyituMyChu88SCxAWbQfzYJXT9X51DNi+YMe6jk2pp1ZMzuQRYMv6tcTevzz5nalZpy4fnbb797lUH1d87BG/x8rR/Gw3cD0QD2ZomDKoqXY1m+CnOza/fNSSv/MKO/ZtrCz6b+uJzjW1PdaiqLNc08QDuXNYzkvSimMkS5VNgGHBG6RU2UT3FjsCLgK3vTX6rVucxL9j5ZEi+8VyBGB1+R2n2sZ4zq7T5CG9DqTy3+bLFMOFYpwGg0B50vY+xhPhWPy2Fmxo016lOTGKyP/AgyAcligBJTGLy3kBzXlEL//1BO/O7rAFzAu7VZPuaovN+KQ0IUAby0+qv4x90zfnRzwbgKDMfqO4cza1r40CZo2Ns0YmUa6LFni9w/54+evRYf/KvKyYY4IeKba3aZMTv3xttuLA4byh1bJW9h27/O0zz9oP44Ysv4x8tjbKmGILoeGU7NuX9Hj9qa03HehW1v8Lhc8Be1OKXST3GvXey1VY0iNPaYa3ESOBF4CugGMDpzl91vjbuozxgOkBMYvLU4THfXLi/qO1Vm3N6tQOmbs3tadqd39n1XWLyd0By72arlq071D8czxPbyRBdmz1pzofAhzGJyd18jcVP7MjvevX2vK5/xCQmz/U1fvrizKE3fK2qsuJm+4WmiWJVlaMb0+ZTlWUZF14K0u5vKrq7sW2pDVWVLza2DY2JRJkPHDIrtrtoclibACa/Paa14KrBRsUxo7axOa/5Ng8sNjxU4uvK8Ss1fHis53Qru3SNEbjmNzTwEZOYbIDY5l6Gsvkzxn1c1pC5TmUufemJoQL5qqBPjESpnPYkgUKDcJlzyppFOXXTRbiL0pBCeqf7dBpqwOGKIONOgMJ9zXIBCtKidlZ1nihrSpyAZYABpOMvBmcCF+Pe9i/CyZzmT0FhSvzl+wGwBMV1tEX13w/4uPSfcl/1/ca3zPCgd7myq7pc6ChrioDzJxhwpDfjQEWr14QCwr38KZhc0/uSnrisrZnWLXVDmeV0c1bhDHFYVVXO0DTxg6rK9Iptfoozxq4robHzYuMqtFg9y+0LgYXgfnpTW/2YuD33rD4HSlr3A65cd6g/LUSebGEoYp8rxB6TmBx/MjitAGlJCZuBaya/fet5v+0dMdquG24udfqPff7PZ9Kn//Xk6Gl9H18CpOBeKsaj5ToR+E5VZbVPmE24iUlM9gFuATH/ncmzqrzBnUx40gKaqarc39i2NAZpSQn2i194ZvXW3NiEyW+PGTBzwvu/N7ZNTTQuxY7A+ySKIb7Vz5uh5jT/sFzTIxIpsyKd4/3uL27Ij//ZQJTE8F0D5qigHxBR7vL56jjMdUpx55ybI//KHDDmQEnrq6DvOSbFTnRA2or9Re0+APEqYPLUFExY98TolfC3hBlIb1dzP6Ebjf6ixPnLrBFvVNy/vT3/VpfDenmlAlsFUFVVVrmyFmVNiYDOAd34a37FtjJv/Uqzwb2gadcNhtB809XA1UBm6fP+GcX++oFm2aYXgTVAT0BN6G4RyeHxfVyYxrwZ/5bnAUdOAZGRQfsPanqPJPJmgZCKy+ek0gQ/Xpz2DqumCeGpnttdsS12XmycwNDJcwdaFDsvtspuV2lJCcWQ8Ai4ReKj/NL7hkrbV31c+a0NQtLFcMhrrRL8/tQ5N519MqUMzJwwdzmwPCYx+dHOIRvf21XQ+SK7y9s65ucFC1r6752x4pHJv3mGdgJm4q4gmulRF5CqKpvy/apgYItFz684MCQk3CfzmKMtJ5jngds0TQR6qkfPONoG7Xh2S26PS7T9F18NNDmsZzjL0i+MMgpHro+x5P2axrmeDDzbgJgoEG9GjyubX9PY2ji72e/PrT0UR5h3doPzTWPD/3pq4+GzdS+D7bRfMaiUe3oAZJzZMHKc3eWtAJuAOzuHbPxiwX2PZnnGplLFqqenlmWwFMT7dnE9UwiY1ucOv3DjC3vbB2+7pn/XffE5W1rTrMfuyGrMOAtA4AJwSQxaDSZfAkJs5pwjLdV3t7O1NB12CQC7y2gr8it5NKDEWALEGVxiZLNsUx/gUvfcUnGhiO0+bQlzZefnGCI+AhhnvWsojBnWmm2z/4y/zlnlmYENc8aKAO9LHkI4d7Z9/Pp9Ndh5ynI6qwSgacIEpGiaGHvUruvcv94C6qhhl5aUIFc9OmF1O2f5j4pbUw0FicHu22nB7qt3xCQmj49JTDYfT/sbSlpSQuYvDyReEuyVGwE8BnJARnGbXwc+PfNATGLyhWN+XrAd6ABUOGCXAzs0TbRrNKNPYrblnZUQ5n2o/NpO758qPxafAXfg+aCfibijqsoPpU7/UTGJyWdUE4Um/klMYrK3RLnIKU1fzhj3cbV5/PoTgQOdBrnCJaQNd9Fig9hV0KVLC7/9h9dYbj3U0Ln2F7Xt1Tpwd+7WZ67Ja+hcJzOeIqqlnm5S74O4Ncw7e8mFbb6bAMSmJSW8XuGsgtsxrdTN8h+kJSWstA9rsaXQFE57map3Ma77MK2wQ+tf0kZqKw6r3QDezZs04ujmC09aL30E5CUgPgHxsMSgZsb3qnY1NZjsWwX6AWBdxbbsZs7R+yLkNwA/5rb/a/Zf8SuwFLyFpeAWr4eKAvOCna2Ay3CnGIhvml3IDr8YpmR8sC0zvpcL4E8G36rglL1ZPrOm98z/4IVDTbZIr7KQ1IW1vsGnKKe1wwoE466WPyI7cd+3kSECOdLzG15vDbvuzVcuFUIikQgojwpIm+6Spn3A2z7G4qwbX5v2/snmuP752LictKSEpzqFbGoX19z63aHSKC9gIcg/5268Y+w3O24s9QzNw700sRdA08RFmibObyy7TyZiEpO7Hi6LbJdrC3/s/huWnRIRaFWVq1RVvn+mR8wF+kygWa+IPxIb25YmGo+45tYpgH9oTZFOS1CckFi9HIq3IvECujbknDGJyS0LykOjD5S0frkh83jmap9fHha2t7D9Mw2d62QmJjE5CJgjUTzygVIHklY+OnHwnEmzZ9e3SUuUNUVIlEQAX1H82MIHHrilffC2bhLl54N6yyEAWSJyCpU6hmma6LuCi57yo1AM5Mf7Dsaf/WxNzupk6+SgMvwu6MWKvKME/R1bdrZdBpBXGDiAo9qzhtxVko6l4AfgIYcwlb0Ycys9irYxYc/3XdPneI+Psqb4ZtH6Eh3jF2/Hv77+32f+G3Np9LVASeCBi07b+9xp7bCqqsxWVXmNqsofK7bts/toEtHGV3Em4n56rjIdoDq6dv02TVEcLoE8IAR3zEl85l4gziCcl4R6H1Z+PzB4NLAjJjF5/PDnk06qiM7CBx4o+HTqSyMdulcLYLy3oazVkvThD/2SNnJ3TGLyE2N+XjBwzM8LXqmkIvA47mVl4EjE+ozEy1A2BXBIlPcb25a6omnCoGminadt4BnLZe0/+y3MO8t52NZsamPb0kTjsb+ozW1GYafc5VVTW1VV4L7PCYRbhL0B+BhLRnr+/KGmcXVBoF/m+avBc52sTJj1vyvNBtsmoAvgcDdGEOU0oGhyOJ/dCfQT6NmpxL0E8PP9D25JS0q4MsSZ9xeASxgVkGY8/983yL+C1zOQ1uyY/XX8Q7XWd3zPmPPK8UXCDABNE5GaJtbuf8d7QpjdNco9qoauZJaClVN6T03e59OC8/LXJjnNurHFAfPbN2V/9T7uwFuN0dXUtycFS/TrgK+jkwYV1+V9OR5EWVPioqwpD7pbyP73nLYOq6aJDpommlfeFjsv9rLNZQE9OnkXW/+4ecvzqaNTn6uPswqwevXEC3XdbAAlCphhsVji0pIS5K7nLv+pb+TvwQGmgsuBg8DbWaXNiy964bmkky3impaUUJ6WlDBneMy3bQa2WPSyzeXjxJ0y8JRA/z0m8YcZMYnJsQXlwUOAmwE0TfgAuzVNTGxU4xuBO+fcFGQUzsltAnduTUtKaPCy3gmkGW5h6+sa25DGZMa4j11eRtur6UVtQ2ISk2Mb254mTjwxickD0ovbdXVKkyxxBP5w9PJvBWXergLPnzrHoYNUtP/eR4LMeTbceZcNok3grodDvA7npSUl7GroXCcjbRN/uHnRvoQvvQy2SJNSPgS44Hg0RthMn6kAoWR9kRnfq7zyvrOCUlwATnddlTK553PDFlgDW0mUF4C9W+hbp4dcJ+ZLgeIUBn2AJci37W6vAa3TzB2i080zo3wKz3aPcneroorPVCfrIt8lAeeNjGFrwcxWNzyUGeXo6VT4a4N37DUx9jTHi+mPLK/p/Ioj4AmBElDY4ucTVgDudlLlItw634tOhNN6OhddTQf6aJpoo6rSdf5HnVuD+T1g3Xab/8XHMuHcuYMHl5X1t7iVM/7xtLQSwNPB5PuYxOQf+kSumJRZ0vK5rbk9HgBuONvy/muDWv4262Qqzpox7uNyYFpMYnIO8BQIxZPbeydw5wNLZ5e1Ctizb8zPyS/Etbhn7YQeLycDmwE0TUQBl/f7w3+Hb5lyLqBhKTgp1BKON9b9F19d4gwQfQN/P9W6JmUBt3IGa7FWcKC4TRLufN5JQI3SME2cllzu/kcIjrpvV6YoQL/Cx2bAYdRfMzmVLxpyT4tJTPZRROfQdkHbfl//5E0NKnrs8vCXIeWu9qHdw9f9VvvoU4tJb48N/CXt8pckxnEKcuUF0QsnvDF+XkVHsQb9pkRZU3pDx7YKTgbwy/tuRaq/CSgt2VpG0Lk6yjsg/reroIuaGdXhUxC9wzkwcWP8JX+rB1iCKorAlgLppT6uswqCXFcF5JttoWd/O7Zn8VbbvC33l4KitNn39+KqLg2YhJN2/rm/bStq9kRVHa8KCZsMGDuTMmlV/PWSeNvOrgu1u/JMwcuTtr9surTUujd9jneP6HG2KnOXAw4OjXUZi/OdPgfnNOT9qicq4OP+U5pBqDTw/6s2TmeHdRrQSVWl6/5vI00BBv+UQpfJ34W4IXV0anmtRx+FxWIJMpt7fSWEFLhbvhrwPC3tf9B6uW4ou9zgDHgvOmnQco881syYxOS3cHdHseTaIl5akj7subaJ398pMbyXlpRwMnWdsuK+pgpZkBuAkNaBuxP3FbZrBby78sBgtuT0LAn3yYod83PyK8+c1yqmq+vAiz5loiI/shxL0JDT0WktsgffAuxckj78jca2pT54clffb2w7TgbSkhJy+ljmLiqyB42/Y/bNz7w+/sOMxrapiRNHtP+ezPTitrjzIatvVxmWY4ywm/Rd5oePi85yvC4N5p353ZIaOpHN5XsRIDYe7vP4cbDrpCHuqVmdFNF3rS6NfsDzdt3rkTfGz6u2Er6+eFPyuA0/BHwzJ/7VvzRNdASKVVUeBBCKHoiQ9rTnLx136UtP9P9l3+VnKR0C+0YZ9hbeyYMfaFrCp8AXqhaYKZFL8fhMAoFvmQHfMgPr/DvJXFOIGJq/PLfYXz+oK67NwfnGb4SOjyJ5Ndfu4x3uXUpC9Na9I9j2Lxu7W38KguYPAj//EH/PpxXb80zBE5CyKE4uXBZUYLgkqMCwEEvQ5VgK/pGikJ64rLmCzwVAUo9x753IpkAemVAJCDsnoAXsaZsSoKpyZ0Xu6q8F4ffvs/uGnOOX/1Hq6NR/f2JqYe7ceC9FsX9rtwcEtmmz5BUQ8XjyX/9nGwJSzDc4A26VyIXpicuOhMXTkhJkWlLCz0Dc4FbJj0gp9ksMbwE7rnz5kZlT59x0UvR59yy3DMFzTWlJCd+lJSW8v/CBB7rYXL7+wFkG4bwn3CereE9Bxz7Alw8vn/nChvWX6MIdaVZ0iVeq3vaWxryO/4LRb9wxGDgf5JxTsb2npomWmiZ6N7YdJwN9In//0q57GVIPn90UYT3DiAnaWQwQ4ZP5E9UtMVuCmht00dPsUI6LhmWwV84tIEtwdyRsEN7GkmtBZgN/Ntyyk4OYxOSLD5a0WnmotLmhS+j6DwH9rLC1l2iaaF0xRtOEqmliYKXXEzRNXFPp9SuaJu6o9HqhpomnAMZZ7xpcjvflAC6MFY0i/gIeqBjv5V92hVB08ycvdbw3JmjnMHM7QakhyCuzPPr6dmKLHegDROKOJirCXawtgW90IYfta1WuXt77jSSQ+s9tu/Tb0LO098bYsvOWDyoaani88G2BGHy43NcZai4D+B+wyBOpPUJHNn4HhAaSa6nYNtF6eycF140+ouSLzhMzE6RgpEB0lcjV6XO8/5HiVRq67gncvlyNGq3HkyhrivCi7E4QmLEtBobUVJR2vDjtIqyaJiKAZ4BnVVWmxc6L7QeKBfhiVUnIbccyZ1FRi2W6bj7Hyyv/vltu+f0lz+aVAOmJyx4ERQB4kvVVjgqLeyKuz8QkJj8LDPM2lL609lDcpM05Pa+LSUx+CJjb2BHXija2VWyXuPOvNgGvxCQmm4Bzgsx5I8uE6R4AlxTYMSkWxy23rklM/uBkaaRwPCgoD0kyCAcXt/1mAYxobHOOheeAC4A2jW1IY+NjLJ0H8o60wk6XxyQmP1LfauMmTl2WZ1x4CCC7rPljaUkJa6sakxfsvDMk34hLkQsMVQ2oB1PnjBIw/OqOIZuzfn3g/upE6es6l4/g8pFdQjds+vn+h075ttpT54wypRe3WQgDLgCR6tDNT23N7fkZYNiad5a+IfvsNaq7QQK4O1RmA5d4Xk8G9gBfel53w51vXMEe3KlQLOTamyUGotkp0+mw1LN/LLAbYPp1I+IQzUHCwdWdngroKPcUx0falGybd8iGPZPHOBf0AkanJSWsRAuKE+7iL5NwR+hfVB4vXNkasFtTZgDLv4x/dJ+mPSaA64HDAPP292hV5jIbDcKFqCKNMMqaEm5APbcTKXuWxo/5o+Ii0uhi0TEYBvPNd3AeyuOF32EJGug0yhXND5o/czwV0MXkUuxSGjSj4c1R5QE7i9s/fGu9g3HHygB+fuF3Luor0LmYT+99O/61dbUf1XBOxwhrP2AU4HPvt5EtAxTHYgWZBUxIHZ1a7x8oi8UyITe34zlRUSkH4uJmfFLFEM1TTSqpJUnfE3H9ZXjMtz2GtF7wcLnLexcwy6SU7xv12t0fTZj1P9/62neiSUtKcKQlJfxeYA+1NFdy9wO87hzJKPtDrJGdDTSwqvZkIiYx2Tslu1+7IK987Y3x8zY3tj3HyKvAmEa24aTAnWMuZgLdo/33XFLrAU2cTgR7/s2vboCiM9rmpbv2t7JvaOjJftxzVc/88jCDSXG839C5Fu+/ZFCZ0w8/U/Gp0rCkWmISk8N/3HP1wjVZA9WOwZvXA3FARzy+iFM3ye923lhZvukm3HnnFZwDXFHxQlXlcFWV0yq9nqCq8o0oa0pUOT43ALRi53sVUlOqKr8G0jRNvCoMrqFIdI/Epde6LnEvScXgHX1g854SZ8AIkE9TIXXlTnU7sgpZkfo23jp1ANCzBXtWeuaXqioXqapcP/26EXG5JQGfAmzMjyKjNKCqoqsHXJjM2+l1JBoSZU0xpHBenBnbynfjp/+tCGEpWH+ghSNOIveZXIoFeNoh2y42l0b7IpUT1oY7ypoSkMq5dwIIdO1EOatwGjqsqiqTgShVlVv+KA55p1g3+g0KyHk6dXRqfn3nmj593FXAG0K4fu3c+ftw4P6jx2T0nbZe4pAuU8FGYEh00qBao4szxn0s35381rMS5VzgohDvHLHiwNBRv6SN3BKTmDzhZFMVOJqbX586DeRGPxsxGTLU9qrratta2anemranAFeCCMu1RZyyuoeqKteqqrQ2th0nC4Hm/E/Nis1lc/p8VF2leBOnHz3C/xoI0DdyRdUrWZYg38BCQzDwecyttgZH3h261wiAzTm9Xm/oXEX24IuB8jVZA99s6FyNRUxiclyPxz76CORGh26Oi/A5eG+3sPVnpyUllAKaQHcBCKRrV0GX9yqOU1W5TVXl3kqv7XXp2teVNbNBeAEFK7norqN2nwtMaNZjT65HMksvCAgR66P6t4mQB34uyA78zD3sKBkqS8FKLAXPVa7T2EPXGwD6sOQ3TRPXa5p4sEL+MSbq4LO6FAqAjtDX5bX4jUrO7jjrXWcLXHeC/CgzvteRgIhAvxiIseP9ytHX1WasLdWoK+9IpASUEle8F7hcXsXtTmR9xaNFhJgBdIzzTuB5Ty+HVdOEL4CqyqLYebE35btMF5mEfPqNKw/Oqu9cs2dfEl9WFvqlyVRyWErD1ULIWOBf4s+K02+swGTIj/nCVhdntTIVEde45lpUTOCOG0EcBGYFmvMKrnrloVknk+Mak5gcF5OY/PRZj36yalnGsJcGGdcGxisppS1FrhXEYP7Ofz1t0gGa++1/wctQlgksbmxbjhVNE36ePLBmjW3LyUChPbinXTeLw7bIYCoJhTdxeiPdEm+09N+bXc2QIQLh411+fHSWA815Y0xK+Ya0pITM2kdXz9Q5o4SXoex6g3AucbcKP/Vwf8fk0kJ78Cjc+aATVz/+v+keVR3SkhJWtvDfNwkgwJz/bkN/Q862fhOSRudL3a/k3Mz4XsUAmiZCAFRV/gy0uylx65u4o6aPLFQv3adIXYxa9aaz3OXzA4iK1IsagzCp9O8Mcuuc+Fd/w516dQXgxBIU3lYUeXJvpQRRvq2w2ROVnd00uryjoJuH8/k//JN2bJrjQ3Ex8G01p/0NsOlSocx1gZDmfRuikwbl1uMtOmYutr7WH+TdAAYcui+FDWpbXF9OG4dV04QC/Klp4qV7volSFeRsYLldKk/Udy6LxRJy4MA5s3TdYGvefO11FoulUFXldlWV/+rPG7L7RhuAT07fY27hN2Pcx1J76K5Pgbg2gTtvCDTnO9dkDZwA7Ojw0DeTGrs4y3PDWQI8XOwIPPcqv5/XfmCc7m8Uuq9EXpjmfSPVtcU7VRny3PSzD5a0atkr4s+UU7HYqhJtcKtADG5sQ04SVPdtTwAcEQpv4vQm9XDf3UCxR8rvXxQEOhN1dyvWBhdI/W/mhC5F9qD2vZv9WZ1zXGfKXd4jyl0+Uf2ba4cbOlcjogIGz3fOBTQ/ekBGccy7QEGhPbTBbaQP0HZ8Gf4AXMSn3wNomhgJ7NE00ROgQiVg2ucLVm6a2HlvWsvOrfulaWXG9crFd+x5y9fbUPoFSOlnKry0ut+1KGtKkPvaxPeeOScB8aoqpU1X3k7JiTYZDK4iEE8AQyrLWUVZU9qlcm5sMzK+nRefdGR7G+vvHXZxVtRZ/PFHZnwvR5UXaClYKRBDipQB+3SCsYesWJGeuCwuPXHZg5WLvo83U6wTRSGhyWbKFZCyHZt37Y4/v6YmHMed08ZhxR26/6JMV1atKw383Evo3n398qekjk6tl0TG3LnxPkK45oNoq+vmYe3aLd6raWKmpokqi1a8C7tEAfjm9l7W0AtIS0qQSx6a+lmfyJWBAv0i4KBTN89cmn5hQd8n3r2/sSKuzXwzHsX9/gLCpdq3Z3u6goD7LqQ2hl3/JbsKutwI0nmorPmExralgewGhuJ+Km8CNJCeHwLp4vRKYWmieoKpLn/VEqT4lip9C4Jch7EUNLj49bd9l8VJFEodfs81dK6Fey+LBTApjudrG3sSo4GwAc7q5I/SkhKkQF9vVmwNcrj6Wz/1qYgAhnBozfvxL1SkQ60CvgbSKo+PsqaIpVx2tw9Fjhhlax8QW4Fvrs3/onuULUsMavlbtcGiwXz9OGDqxurfNU2EAqiqLDn8uu/9q7LbXJln9yW0a/qT0z5fUIX2qrSAcBwk5h+KJeX4TgDhWs2QmhV3LAUri8umpirkE5mbFS3RNYl8Clj0Xzmt8xl/xS7OCg0iZyMIsYOe9/4X56mJ08ZhVVVZrqryyfv3dzv7sNOrWSuvsnvnXr2/XsnzFotFFBW1+FNKg2ow2KZYLJblQG9gNNW8V6Whaya4TPn50UmDjltDgBnjPpZ7ki79BYg7P/qX+0wGe87hsqjngZ2Dn3v5qRMZcY1JTI7KLo0c4H4lnYA9VuwuFgghkbo4QfprJ5IbZtzrC3IMiG+tD979r6j6qYSqSpunCOBUjtAcN9KSElY290u/CaBLSOqq02lVoInqaR2wq3+wV453Nbv7mJyKOaDIcLw0TkcAGRtzzm5wKpEujQnA2vdvf6PBhWCNRRWyiVV+53pGrPYH0XPqnFHH3AK8DTveAREJoKA/r2niLk0TQlVlpqrK21RVFhx1yPBigvqWEXDvy7e9uwWwgAwIOlza44qD35G7IbpHdefaTN+zfSlyPMAdCrBP00Sf/Ff8Wuzd0zJpTW5LQH57y6MbXzr6uP9Z775MIG9uRvrnmfG9DlZs72z9bRjotwNLMuN7VdsOdv+Diy/Y88TnCyU+CTrB5DumjhQoZoEwAD5SON7c9MZ90ze9cV/r4xV5jbKm+EqUV4DUYoL2g8ylAe1yj5XTwmHVNNFJ08T5N3/ZeizIROCdr6/b86980zpwe25ux7PCwrYte/TRpDkAqiq/BSJUVe6p4rxeBntodFnIxuAGXUA1pCUlyA9uf+2lQ6UtooCLBPrB3QWdH1m075JDJ6I4KyYx2QB8LDGaQYwC8dgbEU982EbJuhL4TSAeoVIS+emC2VCeBCKsS+iG7xrbluOBpok+mibiG9uOk4V+Ucu+NgpHWVZpi/TGtqWJE4NTGgN9jSXVpfZcCuhGl2jw9/3OOTcFGBX7pSHe2SsbKps2+e1bu4KMCzTnnfJFk2lJCStrSxuzuXy+t+teLE0f1vVYzhFlTTH+wZAhAF6UZb7KZeHAS7iDTv9iinWSKYC8OSB3AxV5pB3BrRxgRKdH7sa7Z9/T/4qjj42yppgyadOzFP+Pi7eHGw781WHFmlkXj/9sbf80LaOzJ61BDJ9+3Yh/OYrLueQeM+WuAfz8TKX54goJTQbFG/Tzqmtzmp64LA5pWGwqa3FhxTYfZQXuVFsdkDpSdAtKv+yewPRL04DlEvm0RDYo8no2S74FWoeS9aQLY0J3/tyTGd/rhEtxni46rPcUuwy37S73NYQYHCV5LvNd9Z3g2WfvGQmBrwLf5eR0vhLA82QmVVWWVnVM6I6xZnNxG5fiMr9X1f7jhefG98vUOaMWFtmDEn8/EH89MEugPzrqtXus4T6HJv4XLV/PiVz+y+qs8wYruG7bnXTZJ/oTgZ31UjaW+uo2IbnC94HiU7IIoDbWZMUNCjTnF3cO2fhp7aNPCSxAK6BX45pxcjBj3Mfyu8TkLXnl4WGNbUsTJ4YDxW0OAVV2Nyvz1qcKyR7vB4tyGn6eVqOcutnUO+LPzQ1Vkztc1mwiCBHXQlvrVnc6vdma2+MbwJJXHn4WcCwR5ats+EUC9EVbbRKOWcByVZWpVQ3eR4ekIkKi4/lm+qfxT1Q4X5pHOcDkQhgNwhlYlBE+/43x6u7yAv8XEDLcLzLPNTRqeKvf+l8ePHLxx9embe81BkBBLzNJafJ0fiIjspV5bWzc4y9aU56oENWPsqacAxEXAI/Pin9jZyVzVOmOkOJRJ1Cpus2p6skFRiIJMHyVEWya17Jc70K5HqsbyJ29q03wXYozYHTQ3quulcghAoFE+kj0C6uZs0airX+2kwwY0p0/9+6hS5AdbyI42GD1i2PhtIiwFrqM9zx7oMOqIpfR2dO38H+po1Pr5by9886wES6X13yjsWwvcJPFYql4Ek/SNPGDp6DrX4TuGhMjUAymspYnpIp8xriP5XtTZj5nc/n2Ai4K8sqzrzgw5KYFu6/eebwjrm0Tv1f/yhowuFtYyp5L238+F0tQsCLF9wYXeXkhzvNPV2c1JjG5U7EjqFehPfjZGeM+PuVFuj3cC1zd2EacTJiU8n0mxd6tse1o4oQRTBU5rKXP+7f3sSmBhYGuKp2a+vJX1nndQNoK7MHTGzrXn5nntxK4Dnobyk6XB+fa2ALSHu6TeWHtQ//JFOtE4UvhMwAmymV3Vj/sCTZV+f8aZU3xWc2Q63wo2hJK1n0V2z25pkOAx/7o0Lvw565DHKEdM74rL/ANA2YhebokM/S5PN/wyQaXg+7lf+VGxO75rV27tGsmn7XMa3Cr7ZlAWUZkK9fnl441bG0fOxRYVBExDeHQ2yBzcOtjV2YpCAHImloH49Z9t4NbAszbsKqlREovZasz0PhluZ9x0Qc9xr1XftakGbMF4lGgzCOBhUC5Oj1xWXh931sn5ldcGMsE+tBSAq8B0jRGnrCuWpU5LRzWZw50mFCkm86TiAdev/Lg5/U51mKxhKen939dCL28RYs1N1oslsqOWCaw19OT/V/ktn//SYCSiBUHq9r/X1Ehh3VB9C/t+0Yun+ySpjRglo+x5NCNr93zQUMd15jE5GYSwycSZbtTN/a+2/i1sdTHtVwi2wnEVdHjbH8dnys5+YjyS3/Mk6t7XNozngx4tAx31j7yzKFHxF/NdKm0mjpnlFdj29LEf4+3oTS6Q/Dmlkdv9y0zXATQLNuU2NBzxCQmC2AEiN++vvvZBlVPxyQmewPDJYZvK+SfTnfSkhIcLf33OQPMhZfV99gCwu4tJbA9QA9+3z9YfFNlNL0CBefdQMsyAia9GT/rH+/vtM8XrJz2+YLnths6z99b2s71hPPpK0B5GU+qgETKbZ3OKm1l2JkWe8mSyNbnbV54mc++G8wugbH94SkghvzeJ/53l8EIQhjwaLneYH18fB7NevfnVy0zvtc/Ph/nsLgFgMD1OTW0OY1OGrTSaSxYA1IGGN5TvJStAE7gHY5Kz4tOGrRSIIYIxMMC8TDQSQrHX6lvT6qzYszF1tcmAZeBeDKG7V4gLzRi/6yiEcOJ5pR2WDVN+H+00CfLIZWXgwyOtcCMWg+qxDvvDPcF+TUozZ1OH3Xs2N9WVd6vqvIVVZW3VzuBNIyUwkl54I4T6sBNv25E3PTrRjzY+reC/l/d/dxbwACDcF4c5p0tfj8w5GZgZ0xi8oThzyfV+8d46pxRhpb+aX+ADAWuXfjAAwVhOcaPfcsM3Q+HO9/FUtBgNYSTlYmzbvMvtgfe2Clkc2ZD9RNPJjRNRGqauKlJi/VvcssifnJJI9b9F7eufXQTpzLXvPKgUu7yNvkYS/8laSWRlwHbsRQ0uK3l8JhvRgBt2wZtb3Dnn/Ojf5kK+LYK2H3a3m+rosgesC6toINvffSRNU34/YV6pKq+gLCbVVVWq0s60Xp7JzPlT4dzYHVmfK9qZcyK7MGrQfgDLYBfgXLAeTg0srzYO8g3ja7PAR0GrPA/YNDFlQLxWKv/2eZP+3zByrTWndKOBEw9Wq5WRt5iojynBWnjjj6XQE5VcDKS9xKrc1YB9j9oHWhwBg4ERLHrZmHXuyLcJ9qnqYUBntb0R4hOGrQyOmnQc9FJg56VuIboBlvLwP0jFu5/cNGA6s5RwXnWD7z302FGOAfLgFd30u01EEo7NjVaAe8p7bAesHt1mXc4OtwsdNe5fvm3pI5OrbNe5ty5qigpiUgBcb4QrrEWi+WPyvs1TbTVNFGjJlzQvpFWKZy7eox797jnj1bH9OsSBoBcikfCYvp1I+LSkhLkrucu/7lP5O/BAeb8y3Dnas3KKm1RctELzz0fk5g8KCYx+cG63AT+OHj+ixnFMTEDWyz6Ii0pYQOWoBsDig3XlHnr8yNuL534n19gI/JL2siEYkegCDDnn1SdrWLnxQ6MnRf7YOy82GNNmu8IfEg1xQdnInsKOy0HKLSHxDSyKU38x6zOOs9fopB6uO8/pN3S5no3l4JhecHOvdUdWx925HVNAOgWuv77hs61v6jtcLNik72b/fFjwy07NYhJTI4rtIf2kyjewOK6Oq0r5PDX84k4CyCKvQeXx9+ytKbxi7nygXJ8RH9+faqmcS3892YA9G62cljlVIGVQy6oaJe6oO1uL19FF+/qQqYCzwNMsU7yM+BIAJnvyTdNBEJADHTg9cjM+Jl5R59rNWqALyXr34p/s8bPojTvmSQQuCO9Bsr1WB1wlPi6VgOfA9WmorRKUlcURidfInTvg0KaF6UnLvtXMVlldtLj7sO0MHVn9UNAn630UUGynd5PVVcU9l9zSjuszx3sMCbT4a2U6MaE6VdkbqrPsXv3XjAtL69Dx4iIzUsef/ypTyrv83TM2gAk1TSHwRkQo+jeq+tv+bHjE1r0Gggj/L3UULFvxriPZeqTo34ABvSJXDHJ31RUsjW3x/3AEpDPCvQVbRO/nxmTmHz9xS88e9mUt8f0u+DZGUcK72ISkydklkZPNSrlS8N9Do1On+N9g0S+Byz1sSk3nMjrbAwkynggbU3WwNmNbUsFsfNiLwGWVfS1PkandQ3QhdNMfqwh+BhLdgG09E/r39i2NPGfE+z+Rx9Y2QlqccA0RZECobP2eJxkd0GX7sC6Nye836AVt5jEZLGnoFMnu+717WvjPjpahul0RuWITyK9qUXfuyKg9BM3HlFAyaTNPTUdE2VNaV9I6M0SZc478a/8UNPY3s3+2AfgbbBdCH+nCpSF+Vzcno18Jno/HpllmqXoeGW0tFuwFDgB8gl/0oUpdCA/TQdyjdjVKPZ+5kPxIeBfBdpR1pSWEkOPYoJqzlW2BA0Mk3OvdL+QEpRyA7mzgSF+9xf/BgwH7q5pitiJb/6q6OazgfUS+fXm1x75uqpx0dY/WgGPAN98Hv/Yq8AN7mIwAUf5HSeSU9ZhnfZN5JsgppiF643U0am/1OfYJ5549H4QLwCLs7O7VZXPoQN34n5iqZLff2g/FGhbGvanoV6GN4Dp143wKsv1b+leZpBOqmkbl5aUIL+++9lZ6cUxwRz5gggkQkgMk4BPt+T2/C55zzV/7C3sYItJTN4b+9hHGSBnAYpT9zqnbE+Hi5sdMs2zm6XiMOrXHg9B7ZOZibNuGwIMDjAVfHySdbaKAyncN4vab+JVoaqyzJPHWmWXnzORYW2+O2BU7ET6Hry0sW1p4r+lpX/aRe6/xBXAkpjE5EtKnw8YbHYoiQDBhcY7sQQ1KGI04Km3moEcACxoqL2KcPUGWlZ0UDqD0AC7p5UpwV7Vrzxrmrga+Hmg9aM+O+kR494qs4AaW4W2ZPcnnsYhltqMMQpnCsjilQfVI+oRUdaUqH109OvCur1t0swh3uXKBVLwRKv/2Y6cV+Oys70pyYli//OdWL/WifmKTNoExLFwflVSUGezdBpAILnV+jH2ZwImAIt9xPp0iS51Q9mfoMT7PT1/UkXeqqrKP1VV5miaUDRNzNM0cW1Vc0UnDcp2mnMH20I2HAg8MPzK/YlLPktPXPZQZdmrjmxcpuA0A/cARLMjwZPeUK3fUVeirClxUdaUB48lSntKOqyx82JbrigOnRxtLmNwYM5D9Tl2+vT/TZRSed7tBBAHnHv0GI/Y+lxVldU+eRvLIu8HcHof3lhf+xvAJFCiQEwF8RhHtXs7Go8c1jtARZeRMtxdj846J3L5nedELZuNO4q8RNcNvhXHmXGYHjV+NNPkEK7sCMeNpkeKsv7by2p89hR0vFcRLs5v9cuXjW3LUfwIlHmkUgQQEzsvtt7tCzVNXK5posk58zBj3Mcugcxcn903uD75ck2cOlSkQmUUx/SucIIAE+jffy/PXSShItjQ4IhRh+CtFhBKr4g/GrzidnazldNBJ9p/T70CMac6FQ0GjIrjSdAP5peHj4pJTK5OetMA+KXT/khE8VwWba5JGzTB+uqlGbTr149Fq2sS5q/AXewmtoDoUnkaEGLgnoyZbdK8LgW2GnTxdMXOKGtKBxcm1Ybfq2/Gv+Vow7YKfVcO0rrKephCgq8I4ZDrQr5Y/6+dliBDzmu+S8wOZZYu5EpFiP66sVSUha71ik4aVN1vvx/QHqg2Pz/myctLy0LXtpU4vxIo11XWam1j/X3IFvq0OQfrssz4XmmdrYtaHaBd245s2I6n+UNNebY14XFSFwNPU0k9oa6ccjqssfNiDSA/KNMN5VcFHrz/voT8oroea7FYhBBRHgf3H6HtI2++polwYBjwbXX6qwCRGx79BrgwMOOSj4/lOurLx893bqOY2j7vF5lHp0v/LFFV+VpdjktLSlgZk5g8BPd1an8LNyf8I4XC86O9CHTTU8b3RCvlcBsQ10WPs311fK/k5CMmMdkLYvuaFPuCN8fP+/dNoxFJHZ268orP2l3T2bv4+7WlgWkHHT7jW5vLYu7/NnLECyOzqu41XTX34y4aqHEZ7EzB/Xn3igCigEUxicnVduBp4tTD/f8rlwDC3YJXOEAaQDj8TUXLvi0eeuHlhvWYcABCzzAHrK2y93Yd2ZjTu7OPsaSsTeCuBuecbss7q22U74Gs5Y/cfkLVZ04GPN/BlTGJySnAN1F++x8FHgfQNOENdFdVuUZV5efXWJ/eVI63J6gkXWFk3lXdvFHWFAHqvQqu3JbsqXN6W4RPZn6xw/9IUCuanfcU6BGFY/b9mCRASGRbgTgHjw/Rjb9mbOZsHZT3ANJpH1tx7Bb6/mvlLsqa4gWx4d6UfHS0WgGWoADg47Bc0/k5oY7UogD94phbbWXioUWHvPNjd1Rns6rKIk+jGCe463GA/aoq/9Gmvse49xzpicvWSuSVAqFIpHeZwuByfG8A0rbRKwGggLApgMyl2YjM+F7VnrcuCPTBnhxlqML/qo1TLsLaw6fwSxCDdcSU+xLy6+S0VeJ/UhpbAXaqD21fAXwMtKtpIsXp1wkoBf7VAeu/oHBfsxd0h8Hcou+ODcD2+hxbly4jFU+3z/u/vvY64xJDQaDzSywFXzTU7lMBgX45EO7QzW82ti1V8c31u5MvCs6+cHR4Rmy0qeyrfXafYX+VBC2NnRdbHxWIq3F39GnCjQqy4v7XaDlZTfxnxCs+ezGHaSg++w0C3dTcb7/sGpry+ZDWP14R0WZTi2ddN7w8y3VZ1rX2x8wXl734U8/HP5wTk5jcvr4niklMPi/XFjGgzOm3qKHazTGJydFF9uA2maXRrzRkntOA71r47dtbUB7y6OS3x3T0bHsNWKRpIhSgDL/3QXjauIqv34t/qdpmA96UjATO1zE8+lb8m3V+EGgbtF2WOf0DR79xR8Q11qeDDtGy20XFvwQKEAKBpx2qCtDT+oN5Hx2GdSElKzO+14GLra/7ZBH9SMVccfxyZRWnOA+Evw3/f+SS7nvX+zyHUW4CLgFuD7uztEfMrbYyAEU3HzY4gmpcZVNV6VBVKTVNBAErgJnVDNWAcule7hdP9cuIA7oDd22Nv7DsFuuD4SAnAF9vir+4Qc4qQDgH7nT/9bd6Qn2OP6UirP0/7DqgTA+4ordvAVeHHqyXmPJ77w3tJ0T/16VUrKA8jCfiaLFYjnbi3gU2qKqsdqlf00SLFmHT7zKUhxe3f+SW/zzfcfp1I1pB0OXC4PpsxA25/1nxU5r3jV7SKfuUect1eSGuG4L+qxOdZET6ZrydY2tW7tC96hytP9GoqlwMMAquueKzdrN3lvuNA5bHzotNBn5JHZ1a41OqqsozLlpTC5pAetaJaxTqbuIUI3ZerNKiXfNWheYsATpmacSQdfn6/OJuXQ+WtB69NbfH5RLli+Z++7/pF7Xsfl/b3rHNi/X7dhV0HgPc1scyN6WZ78E1W3J7ZgBrhrX51pZdFmVed6h/KRBwXsvfhmSXRpZvy4vNBroK9DESRQDDYhKT4xoSqQ/xOnx9Xnk4nOErIWlJCXLirNvu/CVt5Dc/7bnqHmAS8CTwo6rK3ChrSqjg/CONP/womFXdXFOsk7yCuORTI46cYoLn1MeO9dnnvAsMW5J+UWtb95YtAAbmbFgjEH0AF5WcrixajQSMRQTfDbCOQbcBhv788thazn+yFP+ngX84pmex6rHN9HXpGP9uPmQJmtBSmN+QAkOZt36FT2LRP1oG64YSXSr2Osnxqaos0DTxGLCqqv3RSYNWpicuGwKMOWwW45cHtE3oQOqhncR+D1CG3ywQwbGs/LChjRLbWH8PKye6QlrxYcBa39SCU8ZhjZ0XGwDGD3wUV8H1YRlBvooegjvCWSsWi0X4+HSZJ4TuFR39x2O33fbrSqoJQ3uaBPxR1b5K9DUXtaM8cOcJ0eo0eNlfdpWbCe144MX/6hzpc7wHtMT8tUBs97EJNeZW2+nS5alG2iV+d4VOq2B3jhu/nsxLw5omLgaunRrF2Dv2nnUQ5GNAX+D+2HmxQ2pyWjVNdAauBGapqvyXrMqZRlpSwspuj3z2Wakz4EZg2Mn6f95E3bh9fosgl+Tuv0qC24NhaJHXwSjhaZEpcbr05l9/Mcy+49Ws0haTVh1U+wA3HSxpNX5J+nBHfnnodBBXArnA+DKH78NbcnsekYBbuHfkP861PGNo5ZdSUiF/KBUQKsfQ/rKCUJ/s+4WQ5bm2iC3HOsfpwqyJ734/6JnXf0wvipnQ7sHvZu1+Tq4H0j27p0gMPgJdRrGvfAA/a3BBlfP8zA3jSgj0GszXr34S/1R90qgod/lUBK7uE2VOH+ltKLzk0Ip2TkVPN+rKTED7W6xfjgexN4N2X0VZU/xwV9kvWcXwpyPZN3A9AwZFWVMeBxZWOGrptO/Rlq05K+JvKtn7nne/FhmmJ00owxUJSMqNNuXQ0TbZ/fe2ELq5zs2BVFW+U/G3ponbgSWVO4B5cmFX3vX56gQ7xpZqSeqdy0fcLKOsKQYjF/ZvRnr6r/GTGvwAVY7PfoAW7JmxNv6KZ49ljlMmJSDSWP4DyLY2XUnwVfSOqipr7GRxFLeUlYV3MZuLH7/ttl+XVzdI08QETRMP16a/2uHnpSuN9jB8c/q8XQ8bjomPnu16tavcdHVAy8PLYuI3/Klp4t7jfY6ypICA0Fzjby4DQbqQl2MpaFCXllMJHaOnSbcQnPxLw62AgUAE7kK6ikISL2q3uxPwLLWkupxJlDoDUjx/ptQwrImTlGnfRHYa/HGnqbHzYucvKQo9uLw47HGHVK4BlhnQn8JTbCoEdkCbMe7jss+mvvhyWlLCKCByYIvfXvMylO8AcR+QGuZ9aGOviD8623SfGXCku6Ee4XNwaZ/IFdOAeKDv4NYLBl8Q/Us3IAD3km4Z7qLWBkXqYxKT/Xfndw4J8cpZ7CmYPeOZevZT2/1MRaKl/77fps4ZJQAmWydHmClLBL1Aoohcmt3zr/xPD1HWFL8SAh8GVi7mqgePwYQwkEjktShc1qlsc3GgTQ85HOFchqXguQpndZz1rsEghrRh28+Z8b1c5/LrZ0CkGdujmfG9ZBat54PwxV20tMhTKd8+n4hgR1nom9ISOKvVfvMfBpcYBsij0w0qYyptucZU0qreK2ae9IBEYPLR+2KtyYOXNzO1vCnNzk3bQ271bB7pxKvlIaKn1vdcR3OF9fnhIHwA1sZfcdexznNKRFiv/6LNE1nOwAu6ehd9/8V1aSvqc+y77w7rCf1ngLLcZgt9upbhcUBLVZU1Csfriu0GRfdGSGO9ntaOhawNbccLg14W1jn9HtzCxdpxPYElSPFBmSuRXgdaOB5qOb6swXkqpxIG4Qh2SZPkqOWdk5T3gHdUVerMi9UAm1vqSijA5lqOXQj4q6o8YU0uTnYifTN8s0pbEhu+JgQSims/oonG5uJPOpyV7vAZLpAjIeI86X5gywDx/gD/3D2BBuesF0dmFQHEzov9CU/q19GrD2lJCcWQMBXcrai9DGU3+RhLnkjJPvd6QLpXXKQE7NllzRNXP/6/SscnVJ7q96qLWo+JCyWKcVdBl/9sJe1UQNOEee+SZy4rOdSrF/KDr8/u9mPrpenDry53eY8F3t1N16ft+PiaKM924JVfjm+1fe278+e7m+gXBVx9LO1EDcIx1CVNyCCTkF5Ghu1c6SuRNr8Swx2Vx/2FOlrBRS9WvB1l7Rxs5ryhHVmftSx+dEWnsjDciZsKnsBIrC01LNU7ls9S731EICj1cSW7FPltYLHxNc+YKn+PDI6gDNy62vXCkx7QD8gB0DThpaqyfIp1ksnMhQt8KSwelZGT4lc6cGB64rLw0OGlL+YTtlfH+F0tU9fKSob/DNCVNbc1JLXgpHdYY+fFtoPAu/0V55YJzfa20zRxs6rKD+tyrMViEYGBrZIVxRXk43N40n33zawx31RV5RhNEzWG2vcnanFCGGYASGRSeuKyP2uQl2gQ068bMRSUC6WLe6+akJ4KpNZ6UD0pN+vPe9mVqwRiWsvxZS8f7/lPZqbOGSX8TBerAeb8fRnFbd+m4T84/ykVVZ6aJgyvt2H9HXvPGoK7SPCOAMV53/3fRn7/wsisKm/KHg3WJh3WSnQM2dI2q7Ql0QFpLYD9jW1PE/8mdl6sglt68LIQg/32PJePP4BEbOjoXfxtlKn8s2VFYV+kjk791+fe46TW+n1OS0o4BLwMvNz54a87lbu8bzAK+2Sn9GoGugnEvd0f+ezLIW0W/FSVkH9FZXtDrzXcJ2vc4bKIAlCqXQU83Xlz4uLzvYJmf11e0C7cvUUknrPp0oeXB5Z3MhdGP/3ilEWtUq847zKzwXbAhbFFB1KTl8ffXOVDeB/r1y0Pc9a1XVh7QIsfW69AVwUuadoB4GrmLYWui0mZ3/kKhDXg3uLK2qxmiLkY+PY7xnoD8+34eO+nw8BKU2mK1O0STAKpz978xDkfhI24IsY7nZA92VaiGOd3f/E+ACxBm/A8AP2dbvA3Tq9DJoM9JPRYrkdV5QE40hxpsaaJBd+zKteBl4/Kt6+GlA6ZDWz8rWXJ3Fyi2g5iwVdfxj/SoPTAKGvKET1Ya/xt/2qcUB9Oaof1vm8jfQyEf+VC0Xv4Ft5sEDwKZNdjiusLC1u1DA3dMe/OOz+uUS9V04SiqlJXVVmjQL5uKr5EcQQCIBBG6inLUFc+ebGTwRwQ/Zmj1OugdBne1DQRB6Soqiw7Xuc4OMvnieZ2871l3vqvPjbljKtKXZo+LLbQHqK0Ddoxf8Ujtz/X2PbUBU0TfrgfXOaljk59Alh5zecxYVttAWMPO03P45avqu7Yu4B0VZWnvVRZXdic0/N3YPTvB+KboqsnEbHzYn2AoW3MpYm+ivmcUt1oAlwCdvTxzd+wpjT4gdTRqWn/xbm3PXPVduCJqXNGPVnm9Lt50b5LznFJ5doSZ8CVv+69jG6PfP5pqdN/DrDkeDYYmTpnlMnmTLioa2jqvp/uf+g/X7k7GXlz4mIVWFxe0F54dKcBDIo0JN1TjNRdZrGxjfkxl0EIs8Ow024y0IW1L8PNVc6XQfuHQOqR7G9IoXIpgLm5oejsgpSAMFehWSLjhSUorsKZDCXzmVyiIoC9IBcD3iBcNvyOqLhkLrmAPwO7i5VBPZUBBSnm1rv2Xzbp8ke4bOlvZGrhaia07GrB47AW1PgAZAve3MYva5DfhjljRY9x7x1r6ogD2LBLdktz4DUDWKIx8p7opF5yj+XLXxZGtB5hkM6SEJE95RjnB2CKdaKAiRUNmOodFT6akzqH9YDde6ELpXeUyXbf21dlrFFVOVJV5c91Ofb55+9oDrwO/JGb2/G2msZqmjABOzRNTKxtXoMjaBmAdOc4/WdLyPlpkXfYi3zDQjtlfNNnUrIf8Dsw7bidwBJ0VlSm6Z4ybz0zK9JxDZaCMy5nKq88fBDA+ux+bzS2LXXFs6T/GfBnxba2XmUTAxRH2uqS4DGx82LDajh8PHDZf23jqUKuLeIwQEF5qKmxbTnTiZ0XG3HlZ22fvPyzdhkgDwPf77f7nN3SZMv0U5xjgYglN23r+v41+6/7r5zVyswY97GcPWn2B7ueG3kH0DKuuXVqdEDaplKn32XAYm9Dae7Ilx/9vd2D3/WMSUyudyOPCmLnxcbFzot98Me86GdsPrvEQd+UA8fYfvl0IA6P3pHHWdWBMpPfgedMXoVFAljZ1UeEFTpxYowC8eM78a8srmqiXtbvYoEJIGZ/Hv/40mM1qGfEn9fpPgbKfPwCh+csr/h/VvDklkZZU+LyaHavx+zJgJfbdgn/zD8ddk7hRvPU/Z/QefMuuSDnPMVhMhO3cR2A2Rlm/371PRHN62KTd373JQIDgfsv9znW6/LIXo3/kGmTQQbdwIz3PxO9gwG+6pz+vtbMzPCs0n2z42f8q+irPuygxyIAM2X5mfG9tjVkLjiJI6yx82IHQ8DAtl4lq++J2mPVNBGhqrLO0VUvr6I/bLbgECkNYy0WS20h7UDcjufu2ua1BW3u4V3QDWAW8NF/kQ4w/boRXhB0F0KuN/vZ7sT9/3QJ9dRfrY6M2T5tWmD6TiCKfGzinJhbbWdSv+oj+JsKRxY7AvaBOCFauscLVZX/6O72wsgsR+y82MuBNQL5CnBLNYf2qm0F4UyidcAu731F7ekUsrE5JKQ0tj1nGtd/0aaft9AfTS0LjALl7B3l/kqgweEKMTi+znOZ39UR2vzr9zT65zUtKcEJCa8Br8UkJvsBl0X5ZSRtOHROfx1DCrDpkhefSYkJ3DHzxz3XSGrJZ9U00Qzwv2PvWZGAFfDyavYjQoBTEocU1th5sfG1SdWdhmi405ZMuGsK5gIfjJ9+08o3Jy7+YUdz44rsIKPokGEnJ9DoD1QbaAjm8E85REoBTzTEoFKHX1tTc4kdGJbzuw4o4p/Fdao7j1rAkQCgBIS9Ysz+d7y9ozFf7ChTyFoTLIvTfcTvt/Qt9y63ecXu3OqUQiqGHFO4349hq7f82PU74KOuW7dU+39vLI/IADDaQwOpo1JSVfS2fjsgk15x/Vi0+XLx/iu4u2DetDjKeJ+QkilbRcf0xGXtopMG1eoXVYW7KcKAeIDzWdDN/TzSME5Kh3XoJx2bgfeHILbvKfeLB74AumuaaOeRnaqRJ5549GopY1pFRGz6ecqUL2srRkFVZQ5QYxS2Aqd31otOWzNswal3dLn7sf9Eg9UruPjx8nz/Nkhx2433bXfh/vL+dDzmPvSmrynAZlgrBcFIOVBYCuujtnDaMHXOKIOUlw45K2zdzgX3PXrKRZc1TQQAwyuW91NHp24Y9FHnt/Nd5imT57fYOvPKA/+SDWlyVv9Jp5BNzfYVtadVwJ7OHKfvVxPVM+Hrlkaz0MemlgWem+M0D4DALgD+inO/XSpPG9G/H+ift7a6POyTgbSkhBLgU+DT2Mc+jiiyB1+j4Lp5c06vUZtzeo0CdJBCIGUfy3vv59girZe1/zQ+2n9v7G/7Rjy+Pe+s/UmDWnzpbSwrV6ThGxcu0xFRLOnWKpFS1rsD0OnAlFmDV745cfGRArYpswavrLyv17cri4KKXYH7fSHIle3sYkj5paoCnhbWNQN0+rTsy+KfFsTf06C24jvyu5eWdwkrAPa3sR0QIMzA6Eq5pcsrRYMdILyB74GkzPheK9Pmeguv7b4709cEtiw+ZAaXoptDHLNX9o8d365k20Gz0/k6CE33cvVVyg0zgMkSOXZLl66Dq3Na7X5pRnNJDCXhf7SEQcckrRllTVEg5iWQ2aEcGg60BbZHWVOCjZzbo7u+YXez8nbN7b7pc3AXex8DchEIAsn97aP4Z46LDvhJ57De/22k8FP8UgQyUiJGpI5OLdE0MQ1oXxdn1WKxhIHhTWBtdnb3Wpc/PTmB4aoq99Y2Nj1xmZevob9eHGUt7XbHc/+Js/rx851jnKUxiT5hhWmTZy5d5LHxFmCZqsoGRwKbZZteAEIPRtnfaT6xrEox4TOBX/de1qvU6S90lDoV8J2EjAOma5roqqpyK0B///yH/ygOHrOqOOTO2Hmxr6WOTv1HbqamiYHAKOAeVZW2RrD5pGLdoXPXAfxx8Py0RjbltOW+byPDttv8rtpd7ncuhIwA0Uy4q+8XATPP889Z+dZVB/5qbDuPhdQnR2UDMzVNrN2e1/WGl1Y/1cuue5/v1n4VIscWORYY+/2uIymUPwIkLpsNgOKzt6dv63eQOBFCIqXnnQEHSO2EX9BJgMdJ/ZejdoU1aVRm0EWBvXbbSGnnTcCeIkOMK8VAPP/4HXa3YDW8CGT+xeBrGmKLpokLTV5f97IFmgKB723e8r5yL1d68N0lR+zrRErWdnqh4Pwhkv1+B4kZDGJ8ZnyvLIDgpUHvH1wV0hIpkEjpaFt296X3f7CkmKBJMf7bPu+6dctzAFu6dFUlUvdIWVXIFFbpsJaFros0l8Rg90/rAqw5lmtrw7Zpe+kcB+LW9+NfSIcX3Pq21nX3OzGbzzb88nppRM+rfbPjBm9644Fh3W9/fmF95v+f9Z7ucMtAgEJCLz4WG6vipMthXVgQMXl3uV/zs30LfkgdnboOQFXlVlWVyXU5PiAgfTHIUGCsxWKpS/L61UCaponYWkfCYMXlowRmXHJt7UOPjcx1Haa47EYCWh6eBqBpIgqYB1zV0LmdTwWOA+4CXm0+sWxcQ+c7lSl1+l8AsDmnV4OqFhuRuUB/4Ehe0IsjswryXOaLHVKJBJ6q4pgOwHVAsyr2nXHk2CLzAYodQYZGNuW04prP27aOnRc7NnZe7He/FYQf2l3u9zZwNYjF3X0KHx8WlN02dXTqhamjU18/FZxVTRMRnt7sFa8na5pYV0mv+/pOIVv+59RNiUAZ6LoinE5fY9GVQKcWfvsGXtjm+9uj/fdcD1wT7pN154AWi7802SOWlu67TeqOYHSnL+XpN/yl21rMEkKeiekANXKY5tP99QLpMAgUXdeLdnsLbf9F/yoIOo/kR4EBwGOZ8b0aJOFX6vCdYgsNDkIIMYCf15ntwmFwiX/kYbZn0wUAQ5i/xoH3+e3ZlF/hrLqeDLzblmO+Ben+mAiEy7zH17+YoIsA1nL+9EpTaQJhr2iRSg21Mb6Hz/0dIDDjomPKLx1vnRqdS0RSFPuygCOSYLdZp/kacUzrwIbCi8Rn/uUBu8aALAtKH/FyeuKyeq3nL+DmjQAd2DAzM76X81jsrIqTKsIaOy/2LBAvAb+sKQ2+0pPr8ziQpKqyVtmZF16YMqq0NLpHRMSmJVOmfLm+jqddjNuJq1FFAKA8YMc0c1G7MoGhykTvhjL9uhFtQNwBfHDzw5vnezZnAe2BBlUy73/H+7aWunm2wyj/NDnFfQ219VQnxDv7+qLy4N07nxt5SqZEeLpV/asjW+ro1GU95p01S8LU2+c33/DGlQfnVtr9garKeSfOypObDsFblJ35XWkbtL3tUdqaTdST2HmxXYDLwoz223Odfq08m/dHmOzJ7b1Kli0vDpuROjr1pE1J8fSnL1RV6dQ0cT5wB3CbqspC3DnhL2maCFNVmYu7I9Z2wBsoA54BntiddFmeW5NVUXWpaJufvr7C6dyBu2i2Mq/HJCbHGRS71WDO87JlXupwFPe4c8cjD54xjuqbExfHUcXy/9FEWVN6QM/IdmLTD9uiu13aIaskbZ9TphcQ+nhMYnII8HNaUsLKs75dY5KBfR6IdGU6x35jaPHm54vjapq3NuZuvPMNV6T35T6uYn1QXsq3Bl34BBQbVlces5bzHQDrGFR0mObm2K3bvtoyqavF5+Lsjm2CuLGk1GCXSDPgrMh99adgZgn+qQfj+1R07aLr1i0rt3TpOkS4m1hcQQ0ShKayFlkABkfQMRVdfc+YewBxHj9Omxv/0pEIdSl+LzoxN2tB2gPAi6G7b+mfIXLMB5X87q30MCuJy+LrUrMTZU3p50mToCe/3159SUX9OWkc1gEfdhnmLcR35dJQLhGjU0en6h4pp7HAa7Udb7FYLoSImaDv8fU9XOdfH48jPKO2cVtfeVLxtvcYUhK5lMzej+vRHP80K/+o3AXFWSEKUjxayT5JHYrBasQS1DIa83N2syzNjHLc0Gas7bg98ZyKjH9rnHepY/g53cJSNsHIxjbnmNE0YcDdX3u3qsp3K7YPC8p+emVxyLiU0qAXY+fFflzhKHg+S0146Byy0bQzvyst/PbVZXWlCdxV7bidjKWAaGkqu9MmDZeDu1Vkqcuws5dvoXW/3fvhw06vVQtv3HHSfeY0TbQGbsL9AJeuaeJq4EugJ7ABCPH83QwoxN3/fS1QAqCq8jPcSh14Xh8pBq6PJmtA1wfwQYhy3Wh3Fnc9o9oDvzlx8XnAYpBGkPKt23/4QXf6ZZh8s1qaA9Jjy3K6bNKdfrrRO6d57LkhvbaGh+kRaa0G7O4guGCDq11ogTm4HBFsQDxmlDz2xsRFznPaext/6hvFdSuLMOr2x4AHPn/ttgcie7wXCTyjqrJM04QXYD/6Xljpc62ljk5dqWnC9GdOcqje3Zsyu/795B3JgaAI3A8rAGia6NCW5y/MohWHad5bkS79rnc/HA8S2y/hZF+QU1Se7u3jjLT/Zcrymg9or701OL0Uv17noP0Off7xnnic1v9J5Ag9wDURt6rLv7AFbXZ5F3TDFrS5Ewyq1/seZU3pDuJOYM7c+Jc+rrRdGLjsvADysrqsKXlfK378ljVeS58swmEASGWf10Bn51ui6/bZrgikXFRdB7Jj5aRwWN0fFuOPIAwCacDdPjJLVeV3miaiVFXWWMVusVjiQP4EGEDx2rv3gh7U4Y3VNDEc94fXWttY/6z4cwBKw9akq6o87jp5r982pJ+9OOSs4LZZq25L+utINFnTxFPAAlWV/4qm1YWil/x9AjB8IxA+XnbRr81YW8Oc39OA3/Ze2kvHQJEj6K3GtqUhqKp0aZoYBPhX3v7SyKyMiz/pcFu6w+d94AE86QGeJczXgeWeH90zmjWH+u8FWJM1YENj23IqEDsv9jx3IQWe5iqCDIe3s425rMDLpM884PB+589bNu9rVCM5Iop+AbBFVWWaponuuIvqJqiq/AmIwh0VTcHdm341bsnAwwCqKr8DjnT3UVWZBqQdTxs9DpJWBmahOFz+HV6wV6cnerrx+Wu3RsIN74PRxFmTFwABAABJREFU5InECd3pcwlQ6LQFAwRJ3SSAohw/c+imZmHmnvuKDm1q6R/Q+pCDqHwXh4yurExFCXUCupAoRnnwt54hoc3zyl0dD9gDPN3/TPbi5gnAebhbooJ7xXaipolwVZX6rJ/8b07Ob3YL+A0GqQDld85vfueVoTweHp2TlWFqgU923oasSEev1vu92NKl7JUsTXyiqvIQMLwZGTeC7vKn8Jq2WfvyA4pLQkEgdUmOFpYqEP1NWV7Xdt26ZQ9AsnXV9TpGZDVBsq5bt+RuuCjmoJJrum31tIgp50zP/pevURq2Wvcu6Ibdb9/Z9Xnfp1gnitYMXnSAtmVOTA9X3hede+j69NBmPfrtTS1Wir0zAVGMw51SIUCXOpsM6Qyu5RwjrK+86O5gDJnxvX6pj3114aRwWIFLcScbI9093VVNE+tUVdpqc1YBTKai0Q6Hv6FCaJi6V1g+iltC49w6jL0ccDXbfG/POoytN/Zin6dA5lIp5KdpIhL3jTSLKpZ/ayNtrrcINBk2Au0kcqSwFG46XvaeyugYBgPsKej0RWPbchwYUtUD1E837pwXOy/2YpCPTPi65e9vX5WxSFWl1DQxGM8P85lOZkmrEgCby7cph7UG7vkmqufa0qCxYB7jqZLG07b0MxCTFtyw64TK4nkevCIBqaoyS9NEIPAh8JGqyi+BINwFTnfglj46CCwB8jxTrAUCVFUWA3gKbk90l79hFe+lRFRIYZ32EdaZU36MNPmdvxOEP0i727EUDhBDqlq+72f94geBMzonJvONYjo92eGg4yXg3n0G5WWrj+M1kGYQODoEtHKZFLodSv1E0O4KPK1NC/cNfoIBz6yuKNhOzm92KNPhtS6lNOixFp90vPWgI6a1PKKbKgDpleUwv70mq++yLO+YQbh02Fzy4G8+w3PHouEyyANAxVL8Zxm0fRyUiGKCfc4p/WK1gPM9GqzlUpHnSIP8rvuGbUeKpe14DwfyVjNkPtXgCnG+Z0rzsfguClGBX4/e73u43x6AgINDw9ITl8XVVVpzKZfemk3LyPP54dMv4h89bLFYbvLyyn9ISkO0odOFAd72cjofTC8NCdv/R05O5wekwKxIsUxKaZBQnqMUVdsCFyDKmmKA+HsBRjBvaENasFbHSeGw+inOXiW6ARAuwGFAXwKs0TTx3dGak1XhcPhFuf+SLv6pkVYbw4CWdRno9MqeiFQ2xTw5Mrf20fVj9j39R0P4MBB335b01xEZDs/NOIRj/H9qs9d8j0C0OxThWNRsSmmD+wGfLkT4HLylyB60a+sz19Sna9pJSYWzqmkiQFVlUeV9vorzLl2Ka/aW+3wdOy82NHV0qq6qslvjWHry0TkktWxbXiytAvZ0bGxbTjZi58UK3D++UxTCr9HdwYA/gN7uSJRwAK+njk79z5xVTRPGSu2IHwG2eRxSBdiH28lMxJ3fH83fKw2ZuKNqmwA8eadHwpeeORu1u1kzo23EIacXFb95/EcNaE4m3py4uBN4/2wvijaFdFjwRN7Oy3+hhhzWKGtKM+g0VMH1nhnbnf4U2OK2yjeBe89xSD+rD0NAqK5In416O7+vvQ/lmVakRd2Y7Vv+9UWl5o1eiF/c87pXpft+0O1Gu4x4xbNGPTjHaSwZFpiNXSpzrUXh14P0EqBstgWy0eHdx9XShCEvH1PwEtNqp3noWCdIwXrgduA+VZU5t1t/OgxEGHWn897d33bIIgi9VVm2XmrYYcwxD7C3LU2puJ4p1okGM6OvMuLUdscPqjYtz3tdwIvAvYrNcB1VOKzehV3PAhDSeCEwKD1x2ZDanNYoa4o/tHwCZMqAPSmPWpY8/iOIi8vLg8jz8WNvWBTn2q1/PPbgC/0rH7fiofm/HVYK+60zpiVYLJYaz2HA8boLE0bsGe/Ev7KoprHHSqM7rPd8E9WzXIZd3Nxk237QvYSpvdpmcwrwLVBrBanFYmkNyiW484zWAFptb2wFqipLcSfE18j2F6f39i3vF5LdZUZImnZFL1WVKXWZvy68+2AfxVES8JbJ12ZzlHr/a4n6mHvAW4KGC8QLuN+X/0zV4FTj8ukWn/zynp27h69dBw1SPTlp0DRxJfCRpomzVFUeSfn44+YtmTd/2frVlNKge4CJwMxGM/Ik5JcHEl3tEr/D7jIPi0lMjjuTcgirI3ZebGAPn8LpIQbva/Nc5kAQec1NZV939il5a8YVBxe5l7KFiifX73idV9PEhYBJVeWPntd/4r43j/IMuRm3FNaXnlSY2/AUynqiZ0cSAj35icfUO/5EMPKzdpdmO337tjGXbdtr953HcX4vTzbenLg4zuR3cBoi4mKksRRpOP/Ge2dUdOqr9roDyXmwkDAviZi/kx5je7Hs+/Ci7nsN5gKHd8jOO9OeuK89sDLKmjIbIMo7Iy7P4D1mu9ln/E6vkoEXRP9ihL8dYQHnyYq/wCVRXhwRcmg3YLUWhc8BoY4IztR/3HXdufawnCuktzc+xR9hjljK78iLUg6akcaSfDy5zAAGXe+EApccXmo0ZjlbANja2Fb7Lg+5WCLx2umbuKVL11+7bt2ysoCwq+34BAzkm/Sack+7bt1Suvmszj+gi1Gbu3feL1zKwqM0WVWJRLhXo+uk2RvDltlpdI0ett/6VcnBdhUNiCQIsSG6ky6krpvMJdcffVxz77JWLV1BJZfX4lNNsk6OdDF+EoAT81k1jW0Ije6wLioMv1UHvatP8aSFN+6sXH3/cLUHVSI4OO2L/PzWCij3WCyWOuVPaZpQcIs/v6uqslZ9Md+cfoMBSsP/WoT76f24kb+7+SjAJ6T9gefGPrv2iGPqWfb6DPcy1w/1mXPfu95DWxjMCxSdbYoUY5pNKf1PNGNPRdZnnzMGYGde128b15LjyirgPeBfVdgppUH3ArHA8+d80G3Bi623nAPcCFx9phdhxSQmx4GBrNIWrYBFMYnJQ85Up/XO+c2vXFIUNhzEqA1lgX5RJltpEI47Clymd3++cWdZxTiPY1Xv90jTRAsgSlXlWs/rF4AWqipv8gx5CLf+5I+e158DlWV7uldEWwFUVZ6S+smx82K9wO8FAzKji0/xBQtu2NUgYfuTHbcSgFzsKInyBhCKfezkmRf9Wdtxt1sntHBy09S2bN66h25DAUcKgyb8PKuXfOf+93aU5XYKAbjNes8IuPl/Cq43V11+0youZ1VMYvL7Qea8ZOv+Sx7u+ND8WIfuNTEtKeGgTRo+BMbgSRewS2WhqsqVAKmQrmli//e7rt2ff+hifCKdB5B6C3PZOo9GrjT85e3N0DzjE71HOo9IW2UpLQ0AIw8tpizbLDFIYUz3igSEcDvGRxzK37imM0jpwPRCbddvb19W4LXNz1u6c24f2NKl65BKTqsGUpfulQanQGg1zXWlNan/fjnkhs75O4va7S68y+BdftjXN/vVgoKYh8tMJtP2yFZGf1vZD19d8kja0cdKxRXlNObU6j8s4uqVAK3YsWp1/DX5tY0/VhpVhzV2XmyUjpgA4sMZV2QuBtA00dmjDlArzzxzb+uCglb9QkN3ba+rs+qhBe4Ei5r6rldmJLB+4Ii0oaoqj5vDOv26Ed7A08CavF0tHjlqdxjQHXeuVt2xBAW2zDC/IwVKerR9ApaCRl36OplwOyhuxYliR1Ci5/Upj6rKA6oqb1dVmX70vtTRqRKYYEB6NTfb/tAlYbhl0vxOuKEnH0Pc0ZZ/RCrOGGLnxZpj58Xe0O/DbinWovCvJdwKfGlEP/fXG3f4Lb9p6xupo1PLap3Ig6aJ4Ep/X6tponJEP4lKhUxAEVA5nWAMlbTFVFVOr+yUVnZWT2UCDY7ngS4uxP9eGpl1WjurHlR3rq4nqqmb29XloO8Zc3MpAaIjqW8ZcIwT6F9nxvfKBCgvjPlMdwQ0f3Pi4qCNnPuyDyViBB8eadOalpSw6vzohdGtAnbPdOhew4Etl7705MuD7T3+xN216TFgSOWodtvEHwaO+XnBe/N33EK3sJQ9vs2dgVFyZ6lBFrhAYgC9r80GlYrvJlmnNK/4Oz53FaXZXggf13Zzmu8dgA1w8s90jwQQf3wV/2/H8GjMO3wzqoiiAhCdNGily5w7SSAQiDcq0gEsFkucxWJ50F2E7jnh3M/ELluvzxQX9Nu63Qw8YLOFNr/77vefAYZs6RK+12Uw4OeT8xhV4FXc9pB3YWetqn0VRFlTYgoJbQvQj8VDa7u2htCoEdZO3sWfbrf5eYF4ptLm+4BrNU20qEiKrw6Hw/9ekC6n06teovoeKZMu1MFh3zB7fJcQRp1nC978aX0lJGojuN3Bj/N3N28tFP3Wez798R9PMaoqDwNnVRKnrh1L0ADgXYMuokEOa32bbdlxNfjUR3XLqPzzybcxDTqeaJroBgSrqvyH5mPq6NQ9t37VKvmvkuCR9+3vVrLmlk29GsfCk4so3/0HMktbAVKvZ+77KU3/D7vGdPAu+cgkAno4pBJQpiu7evsWzI8wlj8w/YqsnXWZQ9NED2AE8Lxnif5x4BFNE76evOpOuItnDaoqXcCruFcBAFBV+Y/GFnXpNHiqc+f85lcUu8KmNjfZfl94446fG9ueE4SGu7W4AsJOHb5j7h70PncCi0vx6+vC5HcRn1jhSFH8aoAlfRyT99K5YzPSX5odP+Mfgv4zxn1cBkyJSUx+1c9U9Gnq4T53pxe3HlFku9ESYM5v28znYJuYxOTBQLdAc16CJDjIc6gr1RR3t0OEfhsh0l/s6FXi2lHunxjjLC/UEaaYW21HVkEXyaubI8CoOzGUO18pyzfdXd6zOLv3p+krt3TpOhhPfm7XrVtWjrdO7Qpj+kWx/7W6FCMJXSwCnsD9Y/Wve5PRHj4HuBN38xgsFstQINn9+0a5xWIZAmQGRraan+Xdpc356Stt7UJWXzhp0jfLK+aYdcHIdSZsETFsSVsVf0N1Sikh/F2sWB0VRWXT3ox/q0HNGmqj0SKs537YNWq3zff8zt4le1JHp1bOI70LSKjNWX3zzas7gxwPYt4997y3pa7n1TRh0DShqKqUnhtpjfgePnekQOFw11dv0DQxua7nqY3p140ILdwXMcIvMi/7nk9/rLYRQZ2XbS1BcRK5FOgC6AZdlB4nU08nNHfzQwmnWaFDpRSS6VXt/6sk+GpgtV0qr8TOi63rysJpTbewDYEAzXwP/gyc1ukA938babjm85ixsfNivyvRjbs2lAYObG6yHQYuAtHpg2v2XVXZWdU0Eapp4hJNEwGe15drmtinaaKiSLUfbmmoitcLcUuomQBUVT6tqrJbxT1WVeVaVT0z240CxM6LNWhFYQ8ZhSzt7lM0prHtOVFMmTV4pVfIjj9BB/ShdRHyP4dFzwMtBK7nl5Nwti9Fu/wonFOxP7Tjt1slsK2FdyKQcYjox6ubKy0pYcfQ1j+cE9fc+naeLTwK+LjIHjxuV0HXCbhXNwc6dVMZf+uqSz3EPAYgm+j3d5T7fQ9S7jSaQ8ZFRfh55MgAOLtk/QcAAwrW/bprfvNkoQuMmebXwK2p2nXrlucqlvHTaX8TCM5mSa3pEBXHu/ydS6SiO6UihxyVw0p00iBp89u59JAoOG/mq2MyQf8JMHvkvHwUpXyxU7DzrzadewU4CgsygpsFVXZWPdzkwDswja5jq7Jhw5yxQgpnhC1wS2h1dg6zzqyc9/pKXa6tITSaw1qqG6c5Edh15erK21VVFquqrDUyqOumT0F6+fllVvkDXQMjgT2aJtrXZbB3Yaf+Ej29PHDHi7hFpY8XD+lOo9Fe4j386B2aJhRNE2s1TVT5QaqGwbglvcD9VKYeBxtPK9KSElZKlGUgDnKaOSieB5vRwGVV7U8dneoC/iekDB2iFx7e9YHX0SkoZxyL9ycUAkgp7j6dPguViZ0XGxo7L/aeZUWhh7faAt4FGQc8H2JwdLiv+e6Br7fZ+LunSUtXTRPfaZqokO3rByTjFtAHOID7Aa9iVe5TwF9V5T4AVZUrVVW+7ClkbeLf3CkRfe1S+d8rV2TWWuh7OmEw2KRiKnVMmTX06G5f/yLKmmLYTbf/tWRXKWAHcVYpAc9VFqC/YdpraStipSvLNyiwbUH2n5nxvWr8zM0Y97H8dOpLE0G8jttzBqRuUEqfGXj2pKGy+edvezf/Shp89kjAEdC8ZICR8mIgyF1gKCRC4BTi799VS1Cg5q92B8gIDHgI9/KrbjzoVWXkfC3ntweZ6UNJnfWv7d1KCoWumEqH5v5DhvCZZ+4b+vTT9y/+xLXn0u+9/iKnoHWkj0/uZvf7JSUIdN3Le32rzkqRjz/nFS75cMWlV/2jvuE56zDFh+LHQKZQTeDGUB4aJKRRcfpkmavaH2VNERsY8CnAMD57MDO+139eE9EoKQFjvmzVFoKmgPjk+xt2rQO3LA/wBWCpTSTfYrFEQcfuAQEHVk+b9k6do6sesnFXkKbVNnDza48EBTBsmEB5T43X76/neapl3hOx50DrO0DMu/PdReuqGBKEO8yeX49pDQKBRLrEGbS8eQyUAvtPRwdFVWVVn6UjpO7Z5/daSKBhTnAwVx8se6q9JagL8CaWgtPuvagjMYCeXdZ8T20DTxW2dOkaB6hLhtgdi853jQf/1iC8dEi9ITTD1s2naNTIoY7FHjH9nbgL8D7FnW/XDqiIpqzELQ2VAqCqcjWVeiyqqvxPl/5OJ+7+JmqQkbCXjEJqNmk44xp2lB6OzaDujRcuz6G5XwxbJ7djy6y9dCpxYv608oBL5qyatLZrqAEp2e8XfsVls1aN+35i/zmx82LjzEIfaZdKKnCwt2/BkHKpRGwuC8gEmrXrZrg4s6SlEIZShLFEEYayhzeUBT1s9Hc/PxiDUpzFxgkz801x0zynWlQcPGqqf/5HEglGpLR7CpxyjYFPV9jTw7B0v7OZ/WalxLC3+5rthUdfUJQ1xQgMB/HNm/Gzal3VrcC83fcj4HK/hWEReNSM3PmpPgvdXbek7OxsceAcZ/ucj+SyiaAv8+TjU+jlI9e27iTaHUonZmt5Dlf/c+6N9Essw7/VBXz33efxj1fpaAalX+4P4J+lJle135/8acUEA/BBfFJSXa+rITSKw+qQymcCfJqbbC9V2twB6MqRJ6AauRcUY1FR9Kjah/4TVZVLcbcVrBVpKLtPIHwKWn2zd6d2vjheVdXlBX6fC4Nu9g0vfLYaG/OAOuflps31Fm0wXyoQ+wTibcB6BjshNRLhc7CjLpW65wWfYnjyWJ8BJquqPHjUbnV8foH+q6+f8lRYGN9kHBzlK+WVWIKGnImfl2j/tMGHy5rlb33mmuPeue5EUtFW8uZljtIEwXSkMPRfYsbaEs7uWHBwbWnwxc+32roLd5FTd2AxsAu3sP5qAFWVO3CrSeB5XcBJLA11qhA7L1b4KyGvKEKKQQG5D7x8ReaZqMwRCuTUNmiKdaKACYkgdhYQ+ksBYTPPZunqBfF3/yOCuifSNM3jl+FSJCXe4qrYebEbBXK5XYojq8brSivSUtGBHIdiM4b7pR8+XBaViUtu7+p3SDnk8GqZ6zL3BRQhdJzhEfGeGgcAU1ngReGdS95Jyys3t0/Kzv0t/v7MlYfe9B2+PGT4lIpBd0xe3BFhbOtoY6sycj6cz8b9wvXBnVm3tj5i+oZ803rPn52Aiuj0FRVOKeAqF4413pgv9VVcL5bqhooVVtfK9mcpAknc7k2YTKXnHz33Iq4abMaWE05mYg0mhHj+/Zf2/GTrpIBiJrzoedmlzhfVQE54SkDsvNiI1LKAHq3MZet/uXFHxX9IRXSovedJvlree29INyFcdwrh/MJisdRraUXTRCdPV5Q64Zc1qKuulNsPd3njZv5Z4XrMTL9uRO+ijPC2fs0Kvp342ooqCxw0TVQZgq8Oo5P/CUTfgkDn51gKnj0TnY+6YjLYQ/3NRf61jzxlcQBxuB/+jkbzlqL8icO5HDAZeT0kCIk0c4amjwihd430O3BKd7nyOKuLQD5ToiivCikMCmByot+1u2DNrRHpt6WOTl3vqQnwVVX5OoCni+AbqirrVGTVxDEzulg39nFK5Y6Xr8isU/7i6YbB+/C5Bq+8jm6Jq+opIegeEOe0Yeu8PJrdqmOQ++j4j361t1nvuTLPX7QTukToEoMOfjb5NfC4dHfNAneR15xevgUXDA3M7gSYU0enNlt209bQpbesb7Z5wi89No3Trv7yurQrc13mu3DrnDsBh24IrygwOlLhn+Hw2R3jcLrOt5XuOfSmr+Jbqnz5TdRgBcDLXr5XSPGb0BVh2uMT41nh+Afb6XmBglN246/6+hB7pJC6vV1p5TSvrp5rdIJw2E15czOUw5TqhgHu4lHp3BcS4doT0VL0yV+zI8iR/7XdHhhvsViOiI5HWVN6ghhix/vFmoqkipr/djZAScTv/1KU0Rj5EUAw2bmZ8b22Hb3/v6IxclinSYTXPrvvkWRdTRNRnkKoWsPlhYWtpkupmKKj/5h3DOd+B7DWZWB64jKD0R42SNG95kuDYzrw/jGc7x9Mv26EAF4EcooPho6paoymCRNwUNNEnVMQmh0yXeVSpCMvxFXffN4zjgPFbfbsLexQ40PRqYwnUhatqvLfhXzuB5khPRxlrusKi/g4MIANXmaFRm7VunpahN+mPp2itnTpev2WLl1fr+qm/1+wv6hdyf7CtgtOxLn+Q1TAG4Qo8vE0l0TqCpQHLw+6Q1XlT0cGupuQNHGCmPZNVHcD+hsgl+uIfzWFORN4c+LiOJctLNBVHhwGLKrJaf2d4df7U1B+FqvfdRdUk7whfsQRZyjKmmJYyfBX/Cnk+mWF+sAdBQfO3lU+Ptd/TDtgOG5H1Ylbj3ruh9fsW/rKFZk7PPn7VeKRtjoidRVitMWFkLm74nVmfK+VIFu1cDoNOWHOLs2yTbc6y4MCrCHuhlDN8zMNeFaqhbu9vHr0OfbQtZuOcclb8W/ur89713XrFqcrzOFEuOUR3n33wnjQExTFMb/CPqXFMn41byBI+riQYrjdYHxiYfdzDxpw7G0b9mdfXfe6AVglhGveu+9eOBigM+s+NOAsB2bXbIFsCeDwOWirvDXKmhKRS+RlAOezoH9VR/5XnNCUgGnfRHYyEHE3yK9SRm/aCkeqm7/D/aOZUNPxFoslHGIGGY1l399226/HIgtyP+780Fqx++6731zaOkKib1JVeSzO8b+IOCvtweyNMUMM3vbEu+YtrK6loTcwizp0+QLAEtTajDIUeCXmVtuZoOvXULw4ls5hpxCqKp3SEniBy8BlRpf46h8Rd0vByvzXfQ2TCnPQfH2whIeJzzMyZ5gtQRuri8xX5EXikWipaszGAR28DLmmEHv70laONrbe3msDcg35Jm9Hi/LOrublA8yb/XYoZQZvV5Cjox7o6m484HVQuESAVGSEvx5+9IrCbUcJZR93YhKTTUBLHcPuWgef3GjuQgtERAFOiVQwyudwiuT/8v1rona22vy+BPwG+Oc9/vZVGWdq8xa18hI71UgJRllT+kBoX+CBUvwfAdEsllXzj1pCvyOXyNZnZeU81yFTPNghkykrBl93y56ywCv8FWdysW5Mwl38VK/OYRXNMM61ft51L8194/jlz2/iL3oO4P5vI4WR8A5RThf+Zco24IVPoy7Z7hSmTgBh3hlCIh0CYZBIebSI/9nWb9pB21jccp31xpBrWmg8bG5rsVjiTKYec4XQRXT0qifHjl203mKxXHrgQJ8vDIpDv7h0gNEf7yvH9ZYmp8HYBhjxavy7hcTDa6/deFthYauN2dndvjz3h+/P2e8fe1ZvVmxIjp9ao1xVwMELDwAE77vqHysDAeSlFrmzBd6fHT/jhBYQnlCHdU+57ys6mAcH5hztAL5CFV16jkYI1zQpDb5Op8+Dx3J+VZWr6jIuPXFZnInop6Vb6uKRHUkz/8/eecdHUXUN+LmzNb0SQg89AQIBRURFN4mKCvaCHbsglk/x1aCCsb1iQUVFUWyoqLw2VGInu4oKCmogQOiEHgjpZbNt7vfHTjDEEJIQSGGe32/Jzp1775xdZmfOnHvKX33Tbvv6UOPqY8a4sQZjQKdJpmCnJ7r/9pcP1k+rB9+gKl8A5UG+p4MqFCEQB51T5x9CzMVdwszF7TtgJD1sJOAw+EAiJ4paPqpRBcanBOL+qfsKuT02hieiIiyVivLwt3MTH6l9oc+JTxgphfwJiVEgfKuT+v3m7eLqb9xp2aVUGczSqHZEEG3wmAAwbwrEvClw/3jTLgumXRakkCcCBcKluBE+KU3qNuEz7FQjPIonrqqzeUWwV/Eqo/Gv+hzxHLmndf126E87zlJ6h631HOI5uVWTPT57yUnvxasmIUtH/6XsEYi9CavWHvMZIFqaxLmJ50NgQmeT89XXLt550LSFxwAO/EvrJpBeDlKVKZrdz+0jtgTE7KWc/ksY+0r6kfVu9f4b7PeeLLjyvxLl63ErNqpu+vJh0uP/V+IMPS3OXLm6u8V50ayLdrmB2qmbGsxW+tsAljB6f5qsIq+pqxfF2Mnrw+xWrpZIy/M9xq8DckF23RjabwEKH0opf/F0dWUN+WHLAdesvmQ/souenMCiPxrjv1qNUMXafdFRZyJlpscTYgXp3bZtVKBWHGCBqpoUifCUiyql0myduC4omF7u3Zt/G332/kCpO+/8YM1LL11+d0FB/AvGSuVjNdgot9N7XAMOXy1wH2AzwHD7x8eX0be6mNHERn+gw+SouQQkzk2M2uAKPtWqqBkvXJi3/8vU8qF+ZLPJz+ob/9ZbKb0UxXt/QMC+penp6Wsac2yHQwiHQ9zT0FRWwFgQilZazVzZ4ffPtXKuh8PVXqels9dpvu7K+9YfVGFyOESvhh5r9+yACGuVcllJmG8n6SXtPvF2cyCQAcHm0vZe5ckGSO38tVBrmUoK1gKc6nQyotIpPwsJVr4NCjwDWFQzz2BOfMJJ0qDOF1KYtIorRuFSkpRyQygGCbBeWmSma0DFMm8H9/PAJF+U+9bK04oe8nStOh3o741xd6pIKQwYkLM2KGFtTveBWev7DP5+S8TArPWjE9bm3DDo103XDZ2380zFqzxGDV8yjnCWC1UajgPoGbahTT+8JM5NNJWpRtGt1JcZ4Ka/t7NrxaFH6RxJ7vqsUxeQrwIrd3kC7mppeVqSSbNTlpgC99wGEBiT9UtdeVjH2++3FRBz6nE4VgJ9nYQklhD9cHVEfaw9S+Qw7FMzVdberPq/KkvRtU5jGSXW/NMAX6478FZNWT0sBL6z8Wfn2W81XFoREQkQ6/Vi9ImAVZ3D15cZA08MY99yEMYSotcOWLP2VyHFLvN2q6m2O9MKRvYMoaisGxuaVMTH3afSvbdDjBn/yiuatdoG6liQCgikxJCnFMmX+lnxKIK0Ne5Ftee5446PZlaZlVnbI2KGxTj3rqnpalEXO9IWj5Sod0gkErlgR9rikQDb6bsM4CS++TQvOamqvjmOBEfNwqog71URQU7VcH91m8MheuH3H3nPZpP1fvjdu4fd4fNZRFTUn4esw1sHffD7jpbhj46tF4kcLv5x3vZKxfVfm002eUnng6f7Rwil91NSVZZJ38HTmjgcwgKsxl8+9P6D9aumU575ckC4zfKQfXX8lLojSkoLI5r8FN5GcAhEFWAVCEUiq2qmRagMUG8JrvTHGg1yudTfA6wGhNhv2Vw+qWN/a1bw3QbMg4VPKZJC+pBIgfAIKc5K/Glzs1s+E9bmLMmJT0jlEK4HzcXinWdUAdi3n7XgSB7nKNADhGHUX8IA4BpQ3qBVJJ0jR57H8r2ATpFG92WOq9a16QwUzYGnsuObRmvhs+7S7hF17f+Oy68QSE83Nk/cTdwLu4irBFFzFfaaLQzoOIRfX/0uedKGpxd8HFwQvL3a00ACp3KYGS0m2ScGmbnm3DjW/vpT8g01Mzl0A4j1+VCRRWm97rNLlPh+rNi0jFS6sKkyJ/6KkUAs/pLvi6rdmfwVuzoMBd6pmUe2ITgcQthsUkqDtMbs3YvB58OnKCCEDyEc4eG59xcX9wKkD4Q3P6yj+KazyXzjJhfD9kT+UNecm040dHQLM6eszh702J+ZL/t81nnp6ekHu86Oq2G0MwG2Efb5faA/AJ3Y2hALbbNzVCyskz/v2Mco1PtjjK6l2eOzV9fYdTnwMmjJvA5Cenp6uMcTfAPw6U03fb+gscevDkTBn2+wXla9cveDAnGGz1D+ITBVoCQnXf/Ro409Zk2qSoLek6rSMSwu76XJ8xfWp/gqwK3A/ENOmh6m4C/Ntjwm33TM5fY7DNq9D2t1cBXwsFeRO71G+czWt6xJ/n1hJwVVKkkAAoHNWYXBb9X09syT3tdnes8JWhT5tnAaBklFTgG6CSlGCcQ04Ij6ldauDnOEiQNUnzTtOArHOmL0tlScDDAg2xAskfmGQtMhr3E6R47EuYmnrakKGdDXWuFwXLWuvT8YN4hJs1OktypyjrcqavCsCZkHxJDE2rM6gbhOorxRQmR5Pp1PT+LXLXnJScUAI+0fdMHvMvjbCk6+fdaEzIBAV0RYftB2/Mpa86zGLOHMZBeBxLDrANe/M2TJDQCdvF4EBG1Uh5wEcnU4BVUAg/1eSzaJrNalqt2Z6MXqC4FAoFHuhA6HOBf4w+EQgeZ1gdboggJsdgeJq1apJ/zxx9vp6elLnM6oCIPBVQVM9VrU0TOHGqrCPN6K6za7y1SDM33lnBtDas4Za88yLBWnj+zk2V4aU1KKz2edBCzSXAsOYEfaYiswVsvr7gU85SbXL1vpX+2icXZj8sk2J0fFwrqkPPIOtzSIQYFFta2jTwKf2mwyr77xoaHbXy4t7RYKPFZfv/qoIyflv9iRtjgw1HDWHR7rbmdZl+9uLez7lhmI3+jAeigL8MGYMW5sFHQaZQmtWHHTU8vfO4SMTuDd+vpUs6uT+77Ou83xLrN6i+WBsmMxt1+TMAhPcM+wjT3bst9ig/ArrUt2v2H9u8tO8xddd5jfdT8RUmBCnKYt71Oxz+Trssck/2up+FQpMZzdY4MpFBjkC/VOd55S/OLw5/KrfzNLOIL+pC1BXOiGs/dUdirPeXzcYS8ltiSRRveYzVWBRJYxTCAyhn5wzAb3tDiJcxMDgDnAlvVVwWNbWp5WxhfAvYqxfO6sCZlPVbsGJPHLh1mcZALlWTsXjgMIpuSe6kEqynIgUqC+tDt5mPrur4+cXbZjlJIfvB0Q/wW+aUyA1cHYRc9TAO9ixr5Us93gEQONJkmUT2WnJUYpMYUMAaZmcuE+gFWM+AkyYhD4kBgk0lsdeBXBvvtNuDiVr349lP+qFnxusNmkFyjCH9MTIxBbAaILCnzRBQVu4N309HQLhA3T3j95gv1/j+URHXo6Hz8rQrqvU0oGzLGUxH+PP71hNed5sHTpvLNiHogr8BvHqlMaHvD9VUYt/zqw4PjewL0CYQYc56Uo+2+YeclJTQl4bxaOuIU1cW5iZJlqvB74ZOaFuxdUt1ebvG02Wa8vxWOPpZ1VVhZ7ZVBQ3r709PRG+2c5HCLF4RAfOBwitgHdH1Z8gR2NVTFnD775zTLgDPxO3P0be9waPAgi2FUadMgiBw6HON3hEB0aMml4seFat0n17e7k+eAwZDumiEvLEKo0GIJMZdaWluVo0e2mqoVCMt2gikSzR7GhLaRV7jP5tmVGK/nZoca45ZZx3bYqIe5ezg+AuEF/bJhSQ1ltl7hVc7fogL3elpbjcFlZGVrQZ7f0KKqIcPevaGzVP51mJDGg9Hugr0Dekj0+u037Rjc/qgSJ6g06Hy29Vaw9K3wNx588kOXbgK3AbcBPnyQ/+D1ArP2ve7cSHwsgUd6OtWeNVIzOcQDFQduKs8dnT2sOZRXAhOt8kL/kJSeV1Wz/WwncEuP1SQW8C2JSBUAvVn3hwxQLyO303ZawNmeJkOJeAIG4p3qFaCUnRoSzb8W85MeL6zu2wyGs+K3EDwLYbPIX4BSbTea6Est7AEiT+jzaCldw8K4LgGDgq1h7Vodt9LvdgMceRsF9fabc+oYzfNWioH0nnrgjbfG51ceIZM/TCr6tQ3ZsfNUf/Ab+vK0HWqe3PPLR2ICCYckV0UtXdZ0+akbX6aOePH50yKpSIh8EGMN7dZb+PloccYU1zlz5MhAC7F9W13w1/3Q4xOUHHYi/DJnPZ/1SSpOoqOgYWpf5ugF0w18Xu7i+TqteveNiiXqvRL7VbbrtJ635B+BcoFFBXtW8/2TCKIT6f8YA1yeT5y9cXV9fh0MEAd8A99TXD4D0sAGBTkOC0Ssejbu+Sr8wNhyjRGFF/gkNqnTWXhCIcg6sIKdW7LGoqAiBQCBU4RNPDvk696qEtTkHS7fWrthV3sO9vaxXnSUH2xIuaeg6YoNaKpG4ezs/b2l5jlWGzB00dJUz5OR4a9mGleNX/djS8rQ+lFMBSQ2fSGCiG6txG30vSebzqUCPKPLeAoi1Z4WC8kyNCYwCNbkk9/Qgr1JFD19QsxX8mGiflOTBEn8iP5TX3rfHaAwoV5QVwLTXu1+0tyPbCn5Lvjq7C5tGmqgqzUtOqvZR/kT7KzT5+3qw9Miny5yDHdfhEGHgL+IBrMKvtKO1+VdNVeKkkFScWfhQtSJssZQ/oCgeYmKyf4pi9+sgg32YJlX7yQYUDxoLZEnk22ufe6L/JfYnLi2kY5+T+Wb5f6c+9GtwcN5EgNDQ7Rk1fVi3PbDobJOzy/sgd7rC1qVUt/dgXfX9MuvN5BlfNea7bW6OqMJ66fy4jrs9lst7Wyp2ZI/Pzq6xKwrIo46SX7Ww4T+5AaHQhIo8Wg7VvvUt6e9IW2wIzB/5imoqFSXdP3+0xtgCm00utNlkkxznizZ1ekQokuj47Q2ps1uFv3b3G4fq6FPkvYBLkcdmMurDwKL9bd8+rP/GgRaBLxAu4HWfS5mE/70XcAmf0tYT6DcYLQdrVxpe37zVEiB8w5I2YhSI5cOfy9ctrC1A4txEo4p4QyL2OlXDyS0tTyvFoV1vACiLLFkuUO8Gvt2QnLx8DcddHs4+n40vPgboRO6f/wyVPiNuMXHvO6kScY5BtXDCysmBh6qc1VAWcfEIACuVr9XeF6x4jwuxutyxp/30yV5jx0576P4kQBDlQ2PYaarRdac0qR5X/4rrAfqyYiKAEfc3tecEcDjEdcA2h0N0BrDZ5CSbTb5Tu59ldfBuIUXe8Bn5LoD09HRRWNgr2mwuy1qa0O/8QjpeMIDlP+UlJ+3/7XedPqoKuFwq7jBTedzy/NLR04yqWhnNrkkAKQXnZoCUEc4enXekLX52R9rijNyHMiqEavoaCBMYoiM3je8D0NP+S9xW+idpU5/T8G/1yHBEFda1VSG3uaRBRBvdt9Rst9nkLptNnmOzye/rGx8SsrPU/06qNMG5WjO1//O0cnAmmCu7xXgCd9436Lbnt2pjhcMhrnE4RI/GHLOaGePGHucuC0yWqnjyqrS1fx+qv80mfTab/N1mk/VmMdj6lrUPcH1piO9P0kvymyLbsYqt2zdRAAOj/u7V0rIcVf4JwpoGJJNeMjH2y+1zgGSt7YgGU7U2Urt/dTygJESuaIlKf83GfQs6mkyVdO6aL8O2dSD70CN0jgT9rOVvAMOA2xdesUm/JteB5rOagvDmgJecvlUvSZQOQ/j1nVh7VvweuvcvI+zRWcmvOpPsX9yym7g+2tArQEy9jakfd8/pMkoghECgSEXQTCWlS4m0AXkOLjhgxeWaj7srlaohMMzorYgk71ateT7Aegbv2kPX/amqEtbmSF+kp8hQYIoGUFGu7ch2947kE/YXJnE4RLDDIaK0zZ+B9zl0/vlOwK4a2wOlNHaucEXN/p7L7jThKulP1vjag7pOH7WuKnzVwgK1R/CGEMOgK7Z6Av7z86nrdqQtzo+RYXkB0iIszk4nAJOALkLIAvwZFwD2V+yqIuAngIH8kZ2XnNTibmJH7II9/N0B4cBdwOdvXLJj/1OGwyF6OxwisiFzGAyuRACzufxNILWeFAwH4zOHQ3xcX4c1L6UNlMgngR+sJQNrljbtjj8A6uxGHpMPnuknDFb36yD3IZWnGjLG4RC3OBxi8KH6ddlhmmJQBaqQXzZWrmMdg/CFAASaytt0/fgmkV6yhPSSJ2sWEDjKUfmthjJ3WAJAbNDOFi1Je7h8W9JhbMJWgSIFb4xWrqqZQ1fn6DD2w95DNrsCx/e0VGwHPm1peVozk2anLAmIWjN3W7TV+FOn/v2jS7xyzMf9tplx/h/g8WF67UL7U/3z6PEaQAR7RuclJ32Ul5z0ZPgnd91ZsXcIEhUVHzRTdoBJ9okmI+6xJqoy85KTDjBsZVWGdVQRYrUz5BMT7tu7s74gLzlJyyoiOnux5Nbsb9xjWWDcZw7t99Xi4E0MCpE1sv1obpCrgGcBbDa5WbOq1nsN8kV6TvB2dFWvDBISsut2gPnDU4NADHcTcPurybN21jU2sPC4Pz7sYUJIGLfVLRSfxSqF7wtgsmIuLckLXbnHGfF3cNfpo5IMnrBxWirE/Xmwx9hfOF9i6A7Qg/WpDfpCjzBHTGGNDyj/FAgLEL4nau2aBfyuRcXVS3Fxr74g1zzwwIxbmqCsAnwP1FtlxFTZ5XupeIK95sLbu04fVfOE3Q7E04SLkKfSMsVXZR4W3nPPl5PnLyw9VH+HQ4Tg/14urK+f+/GQGUZVuQGQ4aXGh7WKRjoNZNG2sRUAy/JG/dbSsui0HH/knSoB7NvPadMPfRKRlLRZUmGB9V1oksuUTtNJnJsotroDX/BJUdbbUnle9vhsPVvLIVgSfHzc+7YQqiwKRcEGsbKX4S4Dvlt6smYlMHAJo9cC9GDdBznJo/evwEqfdTaq2VDY/eu8Zd2/xhn7+zV1FSFoLE4Cr/ZiDh5FRl2KY3cAV/Dphj10t4Sz70OAm+x3BwMdurGxdv/VQGR0ceHFIMz5dH7H4RDDAWw26QL+C7zeGPlElRKqhns94I/pqaoKuY6gcrc3QH0qiJKVwLyDjc0KV5Z/0dXMmXkeYl04je7o5G5P2m7qOn3Uc4p1X6lbNVj73n+nD6Dr9FE1V+FSnxw9b+mf2Bb4Z1LveSv52VaxcnBE0lolzk0MNxJyUk9LxY4vL9/8Z63d/wF6HGqZPj09PQw4FcSM+vrVh80mX6hv/460xecFkNS5osOvn/WfnLa+1lgVqDeDQV3MGDfWAN2vMJg9ewIiS+9soJxlWhaDuh8g0sOCS0K9v4R5jUMkEi0t0REvX9kOOVZ9WHUOJA5/EFqbzsGq+OS3QzbLadlxoCrKEa8OpnMgYQbP/5X4TDaJuOX5C/OyWlqetsCyvlZ82l1OFbChs/kyJ8HCQqUD5CJ/zJJkK/33lxp/e9qMTyDpIhAyfPvomJLEFxg+4Nu/G1HB/KB8yxU9QEojnudr7zs+qHjs8opwvGFnnAuoKznpG4BsRowDCKWgW83+VcNKy61/hRIbuPm/W+ninINtIPCiwyGSbDa5wmaTjVJWc+ITTAoGk3ld0BdawPkijyfYsrjHYOmUweIcMe+/bybPOKgeddOIoCEAp+71vgR8qCmlAJSVdV0IHJD8X9u/BOAru7GGm4FyQKqvluRIWVjv9KJYt7oC/5UCwWaT2TabPGSAR6dOfz4MGMPDm1ZVx+EQpzgc4qAK+Y60xdVWzVVB+Sf/K1uBwyHGOxzi9CYc+loQg3xu0+31lWCtjRbgdeBTTHrYSNLDZgKrQksNg4vDvH8BTo5S+cr2xildfugNMCzmtyb5Jeu0D/qErzk/yFTmzJ0+pk3nYJ2bUWKILoMVvQSBwntRc6X40Tk0d38em+RSlRmRBvcGGhAoq+MnL9LozzMuJQLpzQu10LHIq67l+MnVpavwV5i0zZqQKV6ZlPFI5d6hF2vtQkhF6Zg/bIvNJv9l3mwKKsYzQSx7N3l6bu19ZT5jR7e5L06l0xkgBfBJrD3r5q3EzwJYzQmnx9qz9q9y+qI9SySwPnBg536sKAoUFe8CN+O3vDaFjvi/lF34jVOWfUFhrOncS3QqLlj6ZvKMgxYYmmSfGGDAOxmwX3/3SXfWVFY1dgKR6enpAbXHxtqzrG4C3gE4jS8eyktOajXp/5rdwnrvgo7dFDrcqyK+XDF+1f5gI82COAV4ymaTuw4+g5/i4h5DDYYqT1jYtkZVidCO1R9YjN+H9sW6+lREL10UuG9EF4G4rOv0UXVlAXgU+AlocIqSeU/3jzJau78qVSXH5zY12JXA4RBP9VlvKY7ZaxrjM0jXd+bgLqtNlm7nWEwBSS63EAgpEHeG313xsuYGYAMcNf0RdQ7NjrK4oQCl7vCuLS2LTstR5g6LCDMXtfl0cGqg7z6ArF4KlVKYDtVfp3lInJsoFKIfBXwnBRVNnHnhbt0VoOHsRQgCKbXHiJ1LcoMSHigJ+kdTRUpVgDfIW/UryNelL+AmxVj5s+oNGC6RJlXxGUvDN6zXXApvARbYbHJPUwSZaL89Dm44MZyCmXXtX1cVHFoVlaxqZaurVzUv5p/MRdXBSUsAyi/K37hr82B1nzVG8aJMt9lkCYfxMOOOc15nzg3A06UqHvh4d2iELzP+eMXk9XDc1nUP+9PE100RHZ7xYYwdwQ9P1VW0ICJik7WoqDedOy87Dn+u+f0M5rcvVnISAD9x/n+bKv+RoFkV1sS5iSM7GMPeVREhw4OK3qy1+xT8ZUdfrmPoAaSnpxshejDw0fXXO5qSUioXuIiDLJdve2DR8ED1hOGVHZau7j/5voMpff3x549tMEUbO03xVlksMYlbZl3z0OoGXcQcDhEcVmy4qcsuc4RAiCyDmfSoaHzA5yHBvJG3lyEul08g/LJoFYwaI5cOxKVljIS+DwFsLB5wU1xaxrzc6WP07/EYZE9lF4nfv71NY1kREuEL8u0qCDVG4L97tWiOxGOIi1XEuUDazAt3L2ppYdoYowEqCb3Vx57FNXeMX1TKtg4GpcderyGufN93PiKswOOqN3AacKIrdPO133T/YkKP2L/34XfreQG/FbJJpdPz6XQTKOIkvsuprfz5AxjlpV5jZwW/96IPITzApyCTQZhB+jqy/XeHY+gtwBybTXquXj6zEIguJjq3KTJVkxOfMNKEdRqAcadlUr7XnPNV0ilGVRhQpE9+lXRK2cHGxtqzhIFzR4VQtLcrm+pczrdaSwoBvF5rb2oorLH2rBg46Uxt87jagWgtTbO5BGgRqovyveY+IOWyiogDlrdtNvkJ0MlmkxsONZfVWpgCRNLEC7DNJl02m/y8rpKvO9IWGxXV/JpAyVO8gafVM0fVv5bo62HGuLHRrpLgm0F+ec1Dq2c1QtbypKzAZ9ESuy+zWqQPQAi8QrDMapUCoS//Hz429j+gyf31nnWOLeLSMoy0gxysOfEJQYpbOcFQYfgwwuBeH27wXNvSMh0LTP68Y1yA4nvfJNQcoMnxFccqXdg80YIzD+iynb4d/a1Sjv29fHb3fR71lBwX3Qp8Rp8r3AqqD/h60uwUOWl2ypJ3Bs78ck9ILltdAe/ZbHIL/oJATS7X/gtjOgnU4gAq5tbeF2FwT/Kauio+S28s5XbVUrn0RyA1LzlpzgCWvwIwgOWvzhTn9wReA06ItWeNXDRsVDRSgpTza7oLNAGbwO/SKBBKQVjEJSqKAFBRVOq/f53qwzS4jIips5Jn++rqsHv3sO8A9u5NrOUWpb4F0ImthXnJSX8dhvxHhOb0YbUBFr/lXBzwhWopHbDZZFFDJgoO3vOoED4iIzfUG+FfFw6HGOJwiNu0ylH/ojLyz1eAocCdfe+/veAgc1zocIj7G5LJoBprePmrIINBpDVWZoFwCIQb8PZxuz0IgZASo5TEeTwLgFR9+f+wcQBuf6o5qQhUR8uKo9MSnBX32QmAYUiHP/7lu9WWcA0qvwYwqxbfD70slVuLfaawS+b37HPIgTqHxbKK8BddqmI5Objwkezx2a3Gt68tkGx/07KP2IEJLC/An/+zGt/yvla0wgJaRT4BKJIDFbOBAHu81mWwPx5GOhwiyuEQiY2RJdaeJYCzJMoPs5Jf/VcQbqVq6OYMPhNUN8Eln7hCC155JC85aYnDIUQSv+YBrGH4d8BcYLjNJn8XqKdLBP6YaMwchlFECumQ/rSoEvBs7xi7FSHQrL1e6jFgdWXjqwY8RcB79RyiOhVWl+qGK+wPnwnKGIBYto1qquxHkuZUWB0gNW1e7v9CHQ6hAH87HCK9oRMVFfXqZLUWb7zzznl1KpSH4Hz8uc7+9dk2PPVyvLV44M1VYWt28U8ptboYDdzYgIIDAMx9JPFkV2ngJSFdClZMnr+wUdVmHA7xmcNW2hctpURmrOkbgBFVVcsvLSu/5Yz78i7SldXDR1v+T40J2P0nKIRbm3Jq6bR18iq69AQINZfktrAoh4dggjSrVKYWLf27MmwawLqqYL3K0hEkcW5iapHPfK5APvvSRbsPGvCiUzc5HDfSRaDYRdxWkBfiV069IDxaMFYq/rRP1RX4DlhZ7GyqOtck1OLs8dm1K2R+BnzqcIgG59c+m3nnAZ27s752FiMS5yZ2dYqQk9zBJ8tB6m8VF4cW3JU9PnvJoszeN/jUnlMGsPJ2ravVZpNem00uB5AoOxACoaooUtarVB6KytMLwwVC+MI9v1YEm0eXdLNcHeQtLTthyxpO3f3bw3nJSXXqBMn2N4/bQZ+E4dhX5iUnOes5RKmieL3h4ZvPrW5YRnIGgILvzW+S72hSOfojTbMprNnjs5f0s1R8D9Dd7LyjRsSqFf/S/iGrPQGkp6f39vks3Z3OqEP6utaFzSYfBfrbbPIAH48daYtFQNGQZ4VqdjojVl5cK+dq7TkmAIdM4l/NvjXd75BSuIJiiq9vjKwOhwgEooGQ6sTuvxiDIgMVb1VCt/wR99+59aB1iHUaT+70MUv2OjufDlQVVXW4uqXl0Tn6ZOWPMAEs3nlGnSUT2wrmVUFB0qT+Ovy5/BIVkQ3sBZqS1USnAfxnQccoi/DNA7nBhzKtpeVpo4wG2Eu3c6LZnYffcXQa/qX2JZNmpyyZNDtlIjUq8NXMtVqliuMDFa+5jgIZ9wCX22yyzuXvuthOn/MBhvLLv4Kqu5mdLwSE2QyqsIirDAuCTgvxvLwos0c28CaIxywyKAZgML8NrDXUCHDpogzu/fDVuQdTKhuCeXXQKICqE0qnXPfMkwP30Tng7IrP1w7bvoEzKheWH2xcDsfdBNJlwnVDffOnp6dLk6myyusNiADoZP/zrHLCjQAWKic3Ve4jTbMGXW1xBy4CxpT7jAuq22w2WQnc39A5goL23FRR0REOI4DAZpPba7d5LfuuMbqixwiUyYkTZi1twBxVDTnWjHFjh4MYh+TRq9LWrmiknJXAqdXbiXMTjWBJBD68Z0yJ2pi5dBpG7vQxxXFpGZ8LfFffOefqB168+f2SlpZJ56hyCv5lts5AvWWQWys58Qm9BaKPqDC+CJA9Plsd/UHfrSU+4+X3Leh47dMX7GlVgRLtgc2uwI9d0tBxeFDRg29dsqM+y5XOQQgnf2IxHbBSvu8UvrbNTn55I3UU9tGU1AOUPb+Sag7E/9tdlDg3MbXaKGazyf1WUodDxNhscu+hZFnFiO4gs19LfvEAC+uIdxPOcsmAiytizmCAzKY72/EHWBkHaV0UMy4TQEd2DVqU2WskCBvgGCTuu3U9gz03/fieULtUHVZlKNMu61Bg3dgLv18KvA2siF4VMA34Ji9vSJ1psgbZv46BzteBeO/j5Kmb6+pTE5crdJnLFWqJtWcZwfANQBK/vP9t8u2t9p7YrHlYPVKxAhT6zKUADoeIdzjE8Y0SSPHeGhBQ4EpPTz/kF14bh0O86HCIf2UTXvn6Td2Qyttey74dHCTNVY05hjsc4i2HQxwy9dEHz/QTAVGlXwuDrxSt5Foj5T3ARzbG6EoBwoFGp/LSaTgnd/7xN4khtNgV2aToUp22SVxaxkiBeoOWU/E7f+aItodrUPk9AGqw94fqts7mquUVqtH4Y2n0LL1Ea/OSODfxhvVVQbZQxfPrW5fsqJ39RqcB9LL/PKaYDmEgqSI4eAE3dWjkFDYQ0u8gWnfQrMMhLge2HKrEeaw9KxgYBeLbmu2JcxNPrZTGheFhx1GmRDNaLsSvH4PfeVSqIDHhEQBdZOE44DeQTwCL9tG5Wwy7CoTFt8G0zdrg+Jfa/HlrbIhEngZ8N4BlU4E+wMN4zR4An89apyW5D9kfANaObGvo6vROoMvJfL0/6CyLU25sqtxHg2ZVWLuYnAP8/6lUR55NARYdLACqNunp6WFlZZ1DDAbP5409tqb8RePPLnAA4bmXTzW4w0VZp0VpXaePOpSjfBwwFjikhXVfTreLnQWh0RG9d38zef7Cg6aZqEfeLIdD/Ke6rZO56mEFyaCA0p8aM5dO44gO2Puq1VBZuGRX8pCWlkXnqGKTCKElKG+zmSKUMsMYX6THW3la8f5KfMsrwr8H8EjlVvwWKF1pbQZOfj9+NMg3QIhS1TRM/16bRiWhQwGp/faMNP635wDpBhB+vcVRR59F+POe1mvsOp2P7wXMA/kjq7rtzs86jbMIX0ac2WtQQ0fTQe5hKH+iyTvbn3NVnALigWIixwKUEKKt5AqhogQUyI5RO2Sv+cZ887dKhaFTTnxCg31qD0Bwm0AEFJ1ctTuPbg90ZnM58GV4+JYYgPDwLf9S9mPtWdY/OW14T3K2rUg+r0ErvWFhuZEeo+j+K+dcCWDCdVleclKrLqbSrAprhNEzyCpUpUZN5TuB82w22dAk3aNBGMvLYxucFqoam01Km01eCdxbs31H2uKRimq5SaDMTJzw8kHr7taY52Ogo80m66otvJ8Z48YaPRUBjwAbKvPDrmmsvPh9e/8AtlU3rKkM7m4RatEqZ6ge7XsEmXnzPF+VL/Blj2o+NS4to3tLy6Nz1Fih3YBU2miluJz4BLNpa0C0Um54Z/iM/P1L/wbUE7W3Cm1YGW9NJM5NNArJ//inBJP+vTadRfiNQE2q0uhf/hfJoYqnVPErrv9aFrfZZL7NJu+y2WS5FuxdJ39zcqqCV26l357EuYnGxLmJDzrKoj4wIAPjw7qr60UCo/kaBRVwL0tN2TQxNWWTTE3ZtCQ1ZdOT74krfwTYITqvAuEEfLvpJD3CbLiO2Zc4E3173T3VgD2PumYsyuzd6Accy98hfaQifbdc/LqrkFhjNzY9mJecJIOC8rsABAXt7VTHsCs9WEO3kFCv72pNjMaqPb/HJQoAAx55Hm/XF4jeKmhWhXW1M+RPl1R2V2/bbLLEZpMNthYGBubfLoSvhCYkxnc4RLB2zP0X8ZVzbgjwWPdkSOHZA0xt6FwNyQ4Q0mXfI8AAIG3S7J8aXdzAZpNOm03ebLPJ+QCJcxMv9GDo6pSGMHQLydHgHUDER66c3tKC6Bwdwi0FvbW3s4DUNlo44mQgSLiVL2s29rZWxPvfSR9tVBlvTSTOTRTArBLVFCr8pUL1ctiHgRaAlEqNIKvGzpE9PntJqWo63YdiBW4/WD+HQ0QCDodD/Cs3caw9a2QBnU9WMVIuQzKktf9a4HHgkzs6Vo7bYj1LsUgnp5KJEHjAfFftOQawzC3woSIt2mea+hvDFwD0Y0NE0QTv4/vu8eKL4k5gUWOVVkOJMcWtmHNLjOH3Ab//zhkvAezenbQCIC8v6QBlfZJ9ggigfBrIFdThE3ww1pkHbFjVpRcA0ew+fVby7Fbv+96sCqtEBEpEucMhwhwO8ZXDIY5r6Nhnn73F6HYHnxIenluQnp7e4Gg/AM3fNN/hEFfUbA/aY5tuquoYUdr16ze6Th910Mi6GvMEORziZ4dDnF1fvzn3jghxFgbfb40sKwYa7b6gHSv0AFkVz9Oav4xuITkK5E4fs6Vn6PqiPRWdL4pLy2jW34FO6yQmcPeUMHOhG7irjSqruAaUPyQVqapBPnvN9j0ea4AZXxWaQlAjS4tOE4gyul/AX/rzSYkYhf69HjZ5yUlL8pKTnjyc6Pns8dnLgIUK8v57F3TscpBupdrrX4YkgXoeWrJ4wOIx9+0JXLFy/KpxPlOPE5ZyCqfiIIhKFcSbqSmb/iXrrOTZUmKo/BPbX9VW17/ECK8Bj2qiciCSHAyAENXlXG0N/XwrU3veCvT65qTTenlMpthzfv/x4+pqU6pqVgF8PssB+lEJUWlOgnucysLFjalM9XuvQfcDhFeW7rvwp7/aRCBhs96oo4zu/kGK1wz0pa4CtvVQXt75RK83QLjdQc804dAq8AqwrLphR9ri3pbynrdI4fly4KRnG2pd7QAY+MfTuk5Kt3e4w+u0GoI6FP/f5PkLG/1UovmvbnA4xLMAV3/cPdGpGvsI/3H1J/mjhEu1pBe5oi3UyNSg0z6JS8uwbixOiIwKyP81d/qYVm9JOBjGXZbB3i6uooF/rt//AJ44N9FQ4jMd58bwv+zxq/6rK1WHxzUfd59V4DXfGWV0fwc8mD0+e0n2+Own9e+1dTAyuPBdFRH6V0VYnSuRNpv0AufabPLD2vsSvd8mANpChE/tEBByQ/b47I8Avmbs6V5h4kwywJ8L9t16xKjC79YHwDb6Rfow/X1NytJcFHELKtVaRIPv5TnxCWal2DjDZTQy76wLxKBNa7ln7pvm6v3h4Zs7AkREbI6pOe5HLk4xU1XYgV0NLloUa88aud3YKwzg7OylUcCi9PT0Vr+q26wKa5Di7Rlh8ERoiXR71kw30QDOBbwVFbH/OskOhc0md9lscrLNJjcCrJxzg/CaC+dLpEdI022NmCfXZpMn22zy24P1mTFubAcgDVhw3aMr/lXSrYGYgaeB7wBWVIbdroKnk6nqevQn+aPGrvIeb+B/Em+w349OmyVZlQbL5pL+TXkgbhXkxCd0NhSboo3bLU/XbO9jKT8DiAIOet3SaRiJcxPPzaoMndDRVLVheFDxhTXiMXRaCUvKI3eAVPO95v7AT4PnDvqXwaHarc/hEOc/szD8ncS5iVNOfb//K9vKCs8HCKxa8T0YTvnlrAfmAsTasyxZDB86RP5FZ3bOAlLrsq5WE0CZuSc5Q8C/JA9yKFqu+dSUTUtCPldWal0/r2+eWjxpqDAGfTXqdN++iCjGL/zEZZD/KLtBQfs6AwQG5sdWt8XaswaDcrob6zOzkl9tUKyQJu93APG7cwmrqmy0JbilaNY8rNvcAevNQlY5HEJoTzkNxmwuu1lKkf3gg882KgeYwyG6ARE2m6w+QTBVdnnW6I48rqLDr6/1n5y2s57hjSa0+97vSrd1CBaKnNLUOWw26UKrQ500d2AcKDeAeO27Kzc2VQHWaQK508dUjnh0jqOgKvqqO16/ZspLt7zXrOeKTuuhQ0DeDfnOjhUg7Ifu3TqRyNECgaiVjifE4PuPQHJaSMEfLSVbe+CGT7peDuFvgfhrj8ea/MwFG9rEMukxiM2f4goAk0Womed82HvOdnfgNsCRPT57SeLcRCvQ4dyw6Ie+KYk5HqQs8pmF19LDqUiPc/M5N4yuOeEZfPzqD+JSzpIvk5qy5aD+sdUEUGG04IwB8GAeASLyBH4U1QvLpgJnZcDvVpwj1MsyM6NmpaQU/FbffFkXd7vTQvA9pSHWN+ZcdPklnfPzCo9fu/rqhLU5+5XdXbuOy9L+Zle3dWXDJzvp5ZUY/mrA9wZAER1eABECMGLzGvD7aLeJVd3m9t0L7mWpGIK/VFqDefHFq5Pc7pCIyMjNW5pwzNuBvxwOEQWwI21xZPDuM67xmgs3uULX39GYiRwO8a3DIR472P7nrjinT+n2DkNCu+evvufDr9c2Qdbq4wxyOIQVoK+14msFqRhRn2zqfDpNZ0iHP77wqmYlc/s577TVvJw69XPXnKuERzVd2C9idWnu9DENKgjSGvH0dT6sBvqcQHbN9tXOkIhgxbflpYt2t8lCCK2Biz7qefxqZ8gHIYrPA4zJHp99yJgHnRbDgT91phek2yhUdbs7cALwX5C/DZ07QAJOYNtXJbHHe1Hw529FdZoTClVhOqDqZqw9S2yQQ8d3ljtIZPn/GiJAIbGb1jJsFcBKTkoAsOLcH/CklBkWhH5lBBWjKAms1xD19+VdB5s2B7zgi3Lve+a/l3Z0Gy3hXTusnlZTWQWQ0iD9f40SoKv9j3N30KevRDECC2LtWYe8f8XaswIyufhOgH75ud8HeN0ATwKp6enprX5Vt1kV1gChdhZQQv2+H/+isLDPaQAlJd3+lfS/ATwDXGizyQIAifqsQEQY3ZEXDb75rQZH72t+pdvwlzisE6kq/0UKZ9nOqDOaIGf1cQzAL8DMpLkDe66rCu4fby1f8ff41bp1rwX4Yet5OSBlhSf0dGCRrrS2P77afNngYleUAX+d8jZJTnyCwZRrjfF2cq1NWJuzf5k6cW5ipFsqQ8pU4/stKV9bJnFuYqcNruBP3FIpOzG46MLs8dmHrJSk03Jo7nJaxgFhK1eNj+CPYwGQEUbvLgPqNOCWaKPraX/+VukT4DMYgroksTis5nxnyq9vzhV9FH8qK2dDy6sbgIGx9qyRucT3AOTPnPtF9U7zpsDdhiJB0CKDVEPMfX7/T9/xdU2SE59gtmaFzBFuxbnx1LBrfjWeNbIDO3O+TJ78rxScERGbOvn/buwI4MV8wz/xYw1e0r+n+s35exb0MRorPenp6VPbgrIKzewSoAgZpgh22WyysZHz5wI5aWkzG2211PKlfgWw6pW77gznkus91rw5PdMvXXmIobXnkfijQuvknWlDLodulwLp93zwTV5j5ayBAK4BdvlQHgQ8a6pCzj2M+XQOA4liw+8eL0BatDJ7beLHq9MwVGk8F2B90aBXW1qWw+B64VECzJsCP63Z2N9afuO6qmDFJNTvW0qwtsy9Czp2MYnoHz1SifZKxfbchXnLW1omnUOjKa1LABLnJgI8CJhAePK9lktqxoAkzk1c0MdSMWFUBNc+LQJQMTqq9y3K7D2ymMmvBspyTsGBJGQIh7j++y2Zsj8gQCwy4l7pxbQuL3loTR/S7hJJyHcGUXmyinOYOhU4wNKaE58wUhrU54VPOUH4xKUTznxrMBCdT5fz6zqulGKE/6/hROATkDGaa0SDlvQn2O8YCDc+DmCl4gZXWdRUk6lyR31jWhvNZmF1OEQfp2rwrnMG/XDo3v/w9tsp3YTwpQYH71rVhGNOdDjEOQA70hZbQneMney17HOWdfm20f6l9SUanjFurKjcF/qK0epSgzsVvNDYuWtis0mvzSa/+riwkxXkeOD17PHZunW15XAAruqUYiGm4kY96Oi0fsItBTdaDM7s3Olj9rS0LE0hJz5hJPCqRCKRD2nbAAjkTQHCJ1ND9y2rZwqdOkicm2heVRmy3CdFfITBfXX2+GxdWW2DHGhx/XfAcvb47CWfX755/I/m/7sDYCUj97ss7qDz5OWMUJJZhNVf3PJfuVvrwIZfWQUwGXEPH8Byc60+ixB4FKcg+BtF+jrSOzMzen8Uf058wkgp5M/Cp4yQSN/GgTFVVioeC6RscV5y0r/8XdPT00cWF/e8GaC4OO72+56fdpYRz8hYtiylgblt1zJ0PoBALe+cXzzX7Q7p4HRGZzTg87Yamk1h9UpxtYowWxW1UUn0i4p6XiilgbCw7Q1OeAv7Fcz/Ay7TmqYoqrW70RV94eCb3yxozFwaLzoc4mAXrLHOgrCIgKiy5299YUmjgsJq43CIsQ6H6LXHY3nDiDQeH1T8yuHMp3N4aPk4U6Os+R8BapknfGxLy6TTfFz78p39i11RcUM6LGuTyqqGTSIV4b9BmtGW/hLnJoq1VcGRXsmmb0tihrWkgG2NxLmJCvDOTk9A7NDAkhd/vnrdgpaWSafpNCT12GYGxAKkcZvX4RCxAAu4rI8EzuCbxhzOgT/9JCC9VQQrKoYfa3ZIWJuzREhxmjSqfwX9rCDcvipJyPWLMnsrOfEJAnhcSFG9wi0/PWXs1CqCzKfx5ZsHOaYN9vc3bw7vcaMXsxjE8v81JLdtrD0rcS3DBgIMY/Ft523+Pg4Ipo6KYa2ZZlNYPy7sNAsgyugOaMy40tJuw4GCnTtHzGnMOJtNqsBA4J7s2bedLfE9JPF91HX6qO8aM08N/gC+rt044/Ixp+CvT7y1bGd0kzMDADgcwgzM3+oKeHhdVVDfjibXl29fsr3JwVs6zUPu9DFL/ky//goQLwIT+kxZcHJLy6TTPPy8Y/QpACWuiIMGU7YBHALhkkgVf35Ih9Z+MYhoD4Ze6NXxGkzi3MSRgYo3C7gCmPLOpdv/Vc1Ip/3RlY1XRrJHTRJLvgZmxtqzAn/npF7Hs4wO5MOhc68C1VW7hKYLiPcA1jLs49r9EtbmLBFeZZTiVTaEzje5QOmHW97g6Vr1C5CCVkGtIiDI831iSoKCN+Pt5GcOFqDlANwgVRAiLyLsOKD0Ry49pMHLn8ZKfQcggr2bM5Lvei8ycuNVALGxfzW6SmdL0iwKq8MhhFVRYwA6mlxRDR339ts2E8hzgK8bW90K/Mvrfb79uSho76hXVWOlUtzzo8cbO0eNud612eS0mm0zxo0diT8PWgzITsDxTZ1fwwMkvbq3RyAIz05PwITDnE+neZlqMTgLIwPyf7hrztVBLS2MTrNwLrB9XVHi4pYWpKlo0cKpAvGQQKTumb32D4dD9LMI3+laF706XgPxK/VycaVqTPTf/Glw6XCdts0mBvkUfCuB64C7j8P+lCoMIaOpXhUXyQ3NmdqXFZ8ABFB2udb0d139EtbmVLriK+4K+EMJM+RJj1Ip5hjzLCd5ejjfAkYB06bce/cXqsEQomI8aIEjLSgqFeQ0k7mkdFdAlzhF9WXmJSe5DyVrGREPgTIMoIiYcwH27evXH6C4uEdxQz5va+GwFVYtPdPyOHPlaQB/VEQ02Lbu9VpvAhEZHZ2zoZHHjHI4xB8Oh7AB15sru/bwmYvuT7x1dpPM2w6HsDocwlLHrmT80YDg/65sTZm/GptNyi+KOnatVA0Xhxo8H2WPz959OPPpNC+508eUj+zseHlvZeeARdvGNLhqiE7r5M45V4cZFffYDgG7f2/L1a3Ar7QmrM15UlNenwWW9LOWa65PUqWN5FFsSYa/OyAMeBVE9TVdRVfyjwli7VkGJ8Hd9tH5R5tNZlwu/969jX7ju7HBE88awJ/wv6HzLU4enxtKoctJSEgEe315yUkHdUNMWrDtW18Hz7fhH5lMajgU3OqVlcNNSxPW5ix58dXUDzd1jrs8jpy1eclJdSq91aSnpy9JT3/0idw+oU9XmgPEKTv/6NGAz236gUsfBgih8LO85KQ16enpI93usMsBqqqi3msLFa6qaQ4LawegqMBrrjYtN6jaAsC+ffHHgaoGBeW/08hjdgJkQMGwaIk6A1hsruw+o5Fz1OQSoMzhEH1qtbs0x2ofiMO+ITgc4o4trsAXDEhGBBW/cDhz6RwZ3pn08sPAJ+We0P/EpWX0bWl5dJrO1tLeV3pVsyGxw59ZLS1LMzMLmLLJFfQxgID56NXx6mXip51vMSvqHpCD8Cv33ua4puu0DQbxexJgMVOVozWl5NMl5BzmGUQT5ywl8lsAA95DVvQ05Vl+ER4kKrgHSFFxmvrKoszeI7/i2lucBDOA5Q1O6flLh5OjkZKe2wqT3nhj9JWH6H6zRDEApPB5OoAQ3jNBVj+0tamVmcNWWG02ud1mk6fnugOKAeKtZWGHGLIflyv8JFDs11+fub2Rx1xls8kREZuueQrhC3cFb7mr6/RR6qFHHpRV+K0WuTUbDWbPeSD3AQ8DqZPnL2zyDcHhEKa9HvMTm12BiT7EzOcuzFtxGPLqHFnuAumOCdz1zV1zrmrq9UynhVmRf8JgkBV5FV2fb2lZmhObTW602eTrlaqx2o3qU11ZrZvEuYmmxLmJj/1SHvmqAamMCCq+GjgNvQT2MUVHtl8GcDqfaIY1eZcBb9EJZD5S3WdRZu/GWhpXA+yjc71VrDQyXf216p8CUFDy6HSOF/MdwMdvJc9ocLGlImJGGaX3z1BRLPfti382PT29Tj3uFvtd3fE/3GLA8+hryS9lA4SE7LT5hWh7KzOHpbA6HKKXwyHCAIIUX3eAjiZ37fQOdfLyy+OOAxLQcqg24pjBDocw70hbfEZg4XG9nBErv+j90LX1mtIPhc0ms2w2+UDNcrLzpsfbfG7jqWE99i6bPH/hE4ejrGrH8Ly4p+dPEqok4qnDmUvnyJI7fcyukzrbv9pb2bl3TuHgB1paHp3GE5eWIYCxIL7/+j8PVra0PEeCM0P3JgBcEJGn+8LXwd2fxyaHGjxrgYdAvCcg+o1LdnzUkIhynfbFMpIFSCkRX99qvzNFIM/tzJYvrLJDzexEixqjtPYhuxtANzbEHapvwtqcJWqwnITUsgsIKT8Sl54JMgh4pP7R/3C5PX0AcJxPMXxmMlX+X1VVRCfgprr6biRxfyC7D9MzAOnp6dGlpd2Hmkzl60E8RBupcFXN4VpYXwOWOhxC/FYeuRngp7Ko3xsy0GDwPADQpcvSBtfA1fg/4bPslKivAesDC4+7/JAj6sHhEMLhEH1r52Hds7Ln+YAaEFl2UEfoxvB/n8eeXuozju1nrfg9e3z24RQe0DkKdAjIu9asVP29vmjQ3XFpGdEtLY9O4+gbvupBoGts4I6mpLhrE/gQXoAqVclvaVlaE4lzE0Xi3MTrHKVR33lUpWeYwXND9vjs6366el1pS8um0zKUEtUDxOa3k58p+I3RNwpUmcSvM/HHqVTTqOXxDuzqBGDEE9iQ/ic+vmEOBnkqqLKQ4FVZjDh+EH9szUtOanDsjUSkAYzh/TWVlR1eBn4C+dSbb57Zr2a/WHtWrzUcfybAcDJfyktO0koNy4dBBHs8wRemp6c/2ZaUVTh8hfV+4D9alajqqOoG+bDm58fHGI3O3Tff/G1jo3d/jth0bbRA6SmFZ2LX6aMOtzZ4L2A9sL8k24xxYwOkz3AtiM+vSlt7SP+UhrDNFfCSAan2tFTe0Rzz6RxZZt48z+dWrdcCYRZD5f/i0jKm6GVb2wZxaRkjNxQPTAdJXmWXq9vr/9svZZGbAH4s7bAAwOEQx3xmi8mfd4yzCN8C4G0V8cdJIYUjf7l67dstLZdOy2KlYoSFyk2x9qzQfLqcq2L8cE7yC1nAj/6iMRIauTz+N6fsBthCQoMfhFJTNi8BZcV8bgj1YEEgLzv0qH/4jbM6WKjMt1D5RXp6ugwM3HuPEGp4eXnHhTX7GfDMBDDirujOhskAb755xtkgbzebS/+Xnp6+pjHHbS0clsJqs8m/bDa5ECDeWjYUYHBAySGjcdPT08NU1Xyi1xvwXmOP2efbn4siNl+pVkYt29DtyZRGFRs4CEXAjcCi6obwnrsfASKFojZLKceR7yUkbHQFxfcPKP/j2Qv2NLqil07LkDt9zKqOgTt+cvkCk0E+Dixqr8pPO2OsPxJcoCXbtrWwPEcElzSoAB6p+BwO8QCwzOEQoS0sVosx7N2ByUsrItZ7pHIu8ICKOO2FC/MatOKn036ZZJ8Y5MHSYwi/BfVg7RQgBJgJ+zMDLAd2AqmNyRRQRdAA7e3wxsizh5jdSzkpDsT7PyRPaHCFulh7VoAHy2kuAufPSp4tAe6775W/wsK2fVNU1Ltvenr6KQDX2e+b6MM0FsCL+bJZya96APbsGTLVYPCosbErHm2MvK2JJimsDofo7HCIZxwO0bG6zaKo3QA6mV3OQ42PjNwwATAaDK5/Jeqvj58WmZNVxf2WwFBoLR7YLIqDzSYLbTb5ls0mc6vbqopCbrSEVrhjh21sDoWYaKP7Q8C9wx1wUXPMp3P0KKzq8Kv/6Vso1KgypNN6ibDkD9csJg2qsd1WGWAtiwToY6noAvwG2IHDXXFqc1w2P86cODfxvx6pLHKpSv5pIQXXaz6qjc7trdP+yOCq3j6M5NP580pCJndlY0lectIf//QQlSA2NkZZnWSfGCDwDdHG95hgvz2+oWO/5czTVQwigb8aFQw6nEU3AwHBFB9QHKm4uOelwHbg1RtefMWcyUVpAEGUrAF/Ca/09PQz3O7gkT6fOe2GGxa12WJFTVJYQ96LnRL8v5i7w2d2vWb5XTEnrTqhb5c9O0I3B1RJUn8V7pVn9jRq5cfqRFUNNxuNTtm169KlDTleTnzCyDUJ8Q+Erzg/U1HNxwP3dH9idLP4pjkc4oSaiveMcWOPqyoOjpTwxJX/WX/YuRtT5vVL3OoOGJIYULbil6vX6nlX2xge1fItCE0JkIbe4WsG1D9CpyW54ZWJCRWe0DO6hWzOBaYCqVr53XZHrNlfpKWjydXNZpMOm01Ostmk2+HYn2e03XP9J91GFvtMhcAU4C2XNPR/8aLdB6sWpHMMUkXwAIAtJFjy6WLqyI7nDuzh7QLeBmc38s8ZcI7EYBzE0hUAf3NKg0ojx9qzuiwSY42jcPCQfPTGxgR5uQi4wUIlY3nv55rt6enpFYrivhsY5I5wrXBj7Q7QjY0f5SUnybfftpmMRucbILeAeKkRH7PVYTx0lwPJiU8YGUj47drmM5acYABefK36YTZib3XfNQnxPmmSBuEWxQLhUS0+sy9QBlUkX6rE7s0rH/7Fjo3Z7/UKN+6yrATcvih3jC/UF2neErAU8Hg7ubpKo9rZREAXQ8fBSsjuW3EFbPRY3H3eP8zPDfgDroCF2usGrXkiUOkuDZrZHMfI91ruM6L6xobv+fHQvXVaG7nTxyyJS8tIAUZHWPbduql4wNUnPDpnyx/Tbp52yME6R53MbWNvAakOiFp53eIH72zXVYwWl0VuBFhaHr7fWuRwiE7AQodDPGazyQUtJduRJnFuogBugLAXLUI1jwwunP76xTsPq3S2TvukO+vP2kZfFcRZwM4/sT15YA+1M6iNCsj7hqtCAMoIvwf4cSvxvRs49AFVGuQFfCLAcBtw46LM3od0RYi1ZwkYGRVI+fcvJL/5L1m7dfvts92FicU/dr3Ab+mVkvUyaVrKR5/knlPQ5xKvN6B7aOjWd++55+02vQLTFAurDX+FECRS9XZ0/SlN6u3fn+Zb/0EqqvP40m+kQaYDj3m7uP7nTqhYDrwHfKpGepfl9Y7c4zGblQ579q2RVjVfmtVKwAkoqCJIcSpB+AOhBimlhnjDXnNXJaKXMfCE2xQUE+aq7iZXzheTc+ITGpQ+qwFcjObPMu+p/nHC4LvBElZunzx/YcnhTnzZ/LgTQF45LKhkcyeza89hS6rTIuROH7Mkd/qY9FFdf4yPtOb/srey89S4tIzpWuoknVZCXFpGZ2AiiLmvTXijXSurAB6paH4Pyvn+kqOA3yd/H+3YNSB1Xr+LQxXPXuANEL/7pOipK6s6ByOQ8jONeBRgVDAlb+clJ3kO7GHaCpaG5FLdj4ohCajcSvxPINeZqTrlUGNusd95osB362D+Xh/DXmhcSeUhILpWEvJRXTuvv94h7d1P/CdbiBBIhDG4wvVueXnX80BSWtr90rZU1aouGm1hxe8P5gJMAuEx7rHckbA2Z8kDH/WakO9VvI9dvfOc+gb/+Px1X1Oidvr7uGGjz0//8pBKYU58wkhjj/ifEMIkhEBKA6i+Z4ApK87tsc4b454T+Gv4Owlrcxq9fK9lN9ifpaB4S+yt0mcQYT32vtvYuerCh/jIJKRYXxV8qs0m9VRWbZwXb36/JC4twwa8DNw/ICrrgrvmfDBk5s3zXC0smg4wKPrPBav3DTVJlMdbWpajQZTRdUqB1wLIK0BclDg3MTV7vFzicIiztGsbDocQ1e/bOiPeS0isVI2TwTze3yK9IB76e/zqHS0rmU5rZh1DnBIDJlyczsfv+etG1ESYgUblao4i75wqAnI3JZ/mS7W/bthO79Mn2SeI6mCouuUY+rwBn+FaXtb6yAZXWxvCr9NWcBJm6o77ibVnxRI9sC+AovqQCATSG1lZZgdStRiMauW4zbpINdrCqtWyTkWrFKJts8kVtLbUZ9pY39j09PSR5eUdUwICCirS09MbZMFMWJuzRFiCJyGlR0rpQyhOFOO90qQ6TLnWkYG/hr8FbFqTEP/E8jtizm7MZ3E4xAiHQ5wCMGPcWKWqKORi4LdrHlzzv8bMUxeJcxPj11cF9ehpqfxx8dVrdWW1nZA7fYwPuG1YzG/frylI6v/1lku+jEvLaFAePp0jR58HPu+aUzDkuEHRf2/InT5mc0vLczQo9Zm61AgI3G+pqaGsXgl82pZ9WhPnJnYZMnfQvafP61dRqRpXAteCkFoGCPi39qGjs59Ye1aAxNATQEF9f3byy+v/3UuNAneDc22fb39GqSS4Tz9WSgCJ+K6UKOVHLu1ajxw915F0fDCl78dS4ARvBYhpNDAzQR7dT+7GxrJtySfWuVIrUHMAotz7/jp1/YrZURWls1XFcGpcQd7D+A2MXtpBAGqTgq4S1uYsSVib82S1sqoRTD05WDVTdKbPF2BxOqOtjTFN9/r4kTlCMZwmhJgqhEjt/cUzMwZkr7u44ozCzr4Q7wRgA5K0oB+ivl49rN+GnPiEu3PiEzo1YOopwBsAQbGF44C+wCsNlesQTAPhvDZqR2eHQzzdTHPqtAJyp4+Rn93zxOhAY/n/eVTzGSB/uPGViT1aWq5jGa9qnuKTRnVbWc8xLS3L0cIjlQz8mRCg7ptRMBCp/W0zJM5NDBv/cbdZKfP6bQK2q4hnPFKUDgksmQeci9/doV3cgHWOLCP5LgXtycZFwDN195Kh4Dmoslmb3zmjp5NgsYX4OQBrGP4BQAlRxx1sjIJ3GgifWwZMAVMPMM5PTdn0ZEOU1Vh7VuweusXspOezde2/yv5QukQJBygwR4/8aOINE1edZ5uYl5y0RCsMsN/A2NYKBdSmKS4BdRJtdA0AvPV0seFPC4RmEbDRCNN01+mjltTuP/y5/N34q2299ufEjgNFheEx67LQHsBzEjlj5VlxhUqB6UFDmfGDhLU5ZXVMOwGIBRBCzjBY3D6DyftJQ2U6GHd91ukciLrcJOTzYUavF1hxuHPqtD7WPD5uZlxaxg5FqPNX7Ru27uLnHxj66d3/zWlpuY41rnv59iQ46yYQb6545JpNLS3P0SJ7fPaSxLmJtwJvgJyZPX7VAddHm02+7nCIN2022erTO/1nQceQQq/pnj8qIgYB5/5VGW6JMLjdAvm4RLz/09Xr9lvGEucmpuK/fzj08qo69WGl8nyArmzatTz54pV191LKILAxKSyHAhTT4VdtOwukL4q8MyBpQe3Op9jfvV0y6LoodjleZEIkmKKAX2v3q4dzAFSMX9TeEWvPMsIlDwMksHy0Pfkmd+0+mpLaLn4nzaawAiGBiq/84Lulg/0WXeGmmZ+Mj3t1z2rgIoCc+IR4d//Kp4y7LWcYyoyzgeezT+v1t7tf5Q+BiyOeyLTNSgYuCe91z69dTnju7xnjxnaHyNguVUVbhqwrGsZh/uducAU9aRZS2EL2vWazyTqWIHTaC7nTx3x60yu33vvTjrOe2lPZ6bu4tIzRudPH6ErrUaTQFT3PIHzmfhGrX4BjxsBazVshiue/QQbfbfhXjA7AZpM+rQLWK8BzNptsNQ/P9y3oaPixNPpUj1SuMBJ9lRclUEEWqojXIw3uT0YEFy9++oI9//IJ1JTUdnED1jmy/MLZoQChFHx/8F7Cgj/wu0HE89dV60hSJcoqgLzkJOcw++eeQMrHAZNq9o21Z50EiTMBCuh04nKGPXk82QjK6nWfrElfVjy8i7iyCsLqUriXAARTvMGefFM9n7F9cLilWfezz2vJ3+YOPGikXWDgvkgQBAQULOUIm6YT1uasTfpi2/mGUmMQcDLwjlJqHBG4OOLh4rDee5HqN8DNxZvPfqfgsztWdKkqWYpE9N1c2gtYlBOf0ORIusS5iQO2uwMSLcL3yrkRe0u11Fk67Zg3bnvtBY9qHgHCLFB/u+mVW29saZmOFeLSMnqszD++b/eQzZnf3PdAm02I3VSyx2fLPtZKe57HGnrye/EHywUZAtj2ZI+/YdaEzPRZEzJbJFI4cW7iyMS5iVMS5yZeder7/V/7rTzC5ZFKJnCVIvh6VHDBtDPD8rtmj8++86er1/1cl7Kqo9NQYu1ZIz1YLwFYwwnjYu1Z/zrvMzMjBWAB3+kNzYnqwnp8LNvceclJ+zNxSIRjMwkmf/opP5PsEwTIGf4VZX/VvQ0MHgiqRxLsqXPyf38G6xYSOvVk7bq85KQDfg/H2z85DzgeoJzwgQ2Zr63TnBbWIOrxYa2s7HAZUOp0Rqemp6c3KiKvqWiZA34Dfls2ucN/LCuCL95jPW4yyMEASMFu17m4AnZ3CvSYwBgFnr2HFUmnINNVREWZanoYWAb8DIxvlg+k02rJnT4mKy4t46QwS9HKn3aMfmPQ1A8KVz125ectLVd7RiuTOxMEW0r7HbO/sb8rwyYBF5WqppcS5ybeW71Mft+CjgIwflMyqOj6Nbffai7p87VWAey+B+577bK9Jzy2zSxU6+LyqELAOCKoqKsiZMCS8shdgGF4UFFfwLysIiIXMB4XWDxQguGvyvBNgHFYYMkQrxRipTN0A2AYElgy3CMV3xpnyDrAODig9MQqqbjWVwWvB3oI5A0SFBAU+Uy+Hmbn3m5m55xVztCn/7x29UHvHTo6TcRW432d93VJ2Mn+d8pQYFFDcqJuYYBRwXeA6+Bu4hYAZwFPxdqzPs9LTlqynT6LQZyoZQNASJ/veJb1AEU29FiAzYvZtIoRD9dsTLJ/cWEefT4DOJmvZ3ya/ECDFOC2TrMprGahxnQ2VXWra9+cOWfHwgmXgnj3aCmrtRk+I78CeHfxhMwNSLkI6QtQVB/R299jW5gTb+gZLB3Rh4iiNUYzRUrmhEzDpNkpjfL9uuvzTudJoi7tYnJ+kNZ5UyHwKKCnXDlGyJ0+ZvNtr10/InPbOZ+We8I+jkvLuCF3+phmSZGmcyB+ZVXaAQvgA9GNY/e31g9QQJ4E/JY4N9ENGCBmf3aArLC1nFDSB4FAxRewI3ztV39XRBwwye+1tpfV2v6zMvyA7b8qDywOtKLW9kpn6AHbfvOQAFBBTF94xaaHGvbxdHSahANw41dWDxKgp4wCKUEIGpD2KdaeFQvEqhj+PGAWPG4VEyDvBXF7rD3rLTj95CR+yVnBSTcGyIrR9/L4f/qynoYeC8CE60IPlkpgv4+t31LcXVOYJb9x1qf1zdGeaDaF1SuFMVDxHeBioGUCsIWHdxgFIiAmZlWL+1hMmp2yZNaEzNSQsp3X9t3w8fU5HarMAS4jQzd/fN+ugcOvz48e3sfnG/A4cNNbD770TVDHrOfG3flmg/xNlpaH32oQ0jswoOxhm02qwNtH9tPotDZeufXt1XFpGcOBz4G542bed+n8u54+t6XlaofcAFj8CpCENp5f8DCx+f8I/DdflgK/9LJU9A5SfKHZztBfKk1lnYFJ0l/zxeM2OJ8fYC0zWBWf+a/K8GWAd3BAaW+zohqWV4T/DXiHBRb3NAop/6iIWAN4hwcVdVXA93tFxEbAOzK4sKOUwrW0ImIn4DsluCBUgHtxeVQB4E0O2WdSEe6fyqIqgeEgfuQf5SHjqH5DOscceclJS2LtWfsD9PKSk+q6PjhAuAArSAHCUd+cfVg5ZSODiWanFZL2t0uUzlqKOQHSAmIS8KEL6zXvy0tV8D4MxkD+CUw/ZIaLSfYJIoQLbwyjYOuS5CtrFAKR92uB64DwSYSNY+TaJ2Qz5JROnJtoxp/r66Hs8dlPwD9prAALSGEwOAu7dv0j+vrrHS3ul+RwiFDggYo5gwrXens8FVZZ9fJNX/14B8CsCZkm4HxQ7wDlVKF4fFI1zQVenjQ75e+DzZk4N3EQsBJ4Mnt89oMOhxgObLLZZOHR+Ew6rYu4tAxL/4jsteuKEuME6kcSJRuwt9e69keLu+ZcFfBH3qiXd1d0u97fIlUtiDP1WP1utSpXi/hHGUytK3p+1sTvnAaTc5PPHXrzpNkpR/270uS0oUf367Qi/L6r3rfB0F9QMjYlpaDOh6lYe9ZIgbpYohhAVoFIqVaC/VZP6dCKEGCmcrmbwJPykpM8izJ7TwMeAd9jYPgG7TdwKHeAfvbMoaVE/nU89hcXJt99F8BN9rvPXcj4L/09pARRBaQeRBlvdzSXhbU6z1/NLAE2kGb/E4fA5wtc0hqUVY2+wD17exnKxUbVVxJoTa/eMWl2igf4BPjko+cnXFSyLWWc1xl9OXDDG2lzSo3Wwqcq8oY/O2l2ygHpIzoaXW/u8ZorQDynBVp9if8J6oqj9ql0Wg2508e47przQZ+NxfEf+6TpcpCXC6Q7Li3DdqwqVodLXFpGXEyg7be9lZ07WY0VH1Z5g94AMQJwHMvfqZbe6tCpnqRJ+NymhS2hrIIe3a/TOklN2bQkMzPyAknYCknonRzc+m+TKFpQlThgSV+z5k4FngKIJ+s/3yff5snM7PAChN4FvAuGh1NTNkka+BsoJfJsgOUkTwd/ABaashrFrs0FdHqDg1uO2yXNkiXg5ODC7gADrGU1fVgd/JPUGmBWcxyrObDZ5J8bMoZ3KtrYKTi4U+GGyfMXFtTV7/K7Z3926/OXjQO6BETlPK96ggIq8oY/AWx77f8+ee6jF24ZBnDNx92T93gtJwwJLP07e3x2Af61uUsAvWDAMczMm+f5fNK0DL/PHhLFrOB9My4to09Ly9bW6PPA51cAK/IrY4NP7frdC2sfv+zK3OljMnOnj3nyWFZWq8ken70ke3z2kwdTVt974mEFsAhDVavPyaqjc7RJSSlcC0o6KGcuyux9sOppDvwrGOBf2ndU7zjF/t6lwGNArsAnKwj55PvMviMkIXeAqwSqbtWU1QYTQPnloP6Zl5y0G8CC84/qfQV0TshLHvrksaSsQjMprD6IAAhQfPsvhv60VXIOgKK43Onp6d80x7Gai9JtMZdL1WAq2xl97aH6TpqdUnzDE5PuCYhcZwXOBpZ7qyLuLlh36Z+zJn7/acn2UdOElBUdjO7xADabVG02+avNJg/qQqBzzOAAXP5IUdWnYowDcpKffP67218fP6BlRWv9DJr6QdCYZx5b61XNH4BcI1GGvHv7i3e3tFxtDUvotgiAkC6/DW1pWXR0WikvgMwDz4eZmZH/Kmecl5y0JJat9wL0YeV71criOPujV22n9/+CKdoLHHciP364icSo3xn5LbBV4Dw+NWVnVe356uMW+10JVQQmjmBRCcC59hmzXQQkartj8pKT/lUg4FigWRTWpeWRcQB/VobnV7f5fViVmwBU1SwaU4r1SGO3ixeMAa6pwPLJ8xcua+i4ax58RJ00O+XbSbNTxkbF/y85IHLdQlUqZ4xef6Nt/IoHxLCcmx6YNSEz6ONXrpjyxv1vvthS+Q51Wg+a9S/VXzdaGQX0CjCWz9ta2vvMb7dc+HdcWsZDcWkZQS0tZ2skLi1jaLkn7M/VBUP7Hd/xl18To/86LXf6mC0tLVdbpDxvmAnAXdY1+1B9Z03IHDlrQuYU/fqlcyyRmrLJKSj7CkydJNZ76upzIj98D1BMdFKsPWtkrD3rmp849w0D3rJUPjsnLzmp8FL53v1d5VbvB4wP20C/S1JSChpcJKCa77nsZImCEc8LsfasPstIvRXgbOZdlZeclH+o8e2Vww660hzptfQy0gPitOzx2UvS09On4DeRG/Cbz6elp6c/edgSHyYOhzCU7Yr0rv9iJOE98567cfryyYcz38Xz4rebdp0Sm7z3FK+3rLsVZDnCF4xUJChVQGpL+YzptF4mvnbDWT9uPXeSRzWPNQhv/omdHN9GB+y9eebN81wtLVtLc9ecq8Teyk6fLtl92lhQ8oGrc6ePsbe0XG2ZWRMyu+BP+3XLpNkpc+rpNxJkphY84kK/fukcQ2RmRpok4X+BCAbiU1M2HXA91ooP/ObPCCDRCgIAVAEp8+TFf4Dn93UMOu5R8V+G8Oui75Innd5YOWLtWZ8AI7uwOW4nvdwA4eQ/sjb5jPTD+4Rtm+awsNpAmvxvhQnkR4lzE+8oDty9Cn8ONC8NSOFwtLDZpG9jxvAvhMHntIRVPHE4cw19d2DSeq+pq6HH9z9HdLcHGsylNhCbkQbwO2dXO2br6BzAq7e+9e2G/154LnByVMBe96+7Tr/my02Xr4xLyzg/Li3jmK2OFpeW0WHh5su+XbI7+cK40E07gCG6snr4mILyQgEUU7n3EF1vBaz47w369UvnmCIlpdAD4m4gDrxpdXSx+f/sV1SrMWr7ngbTcf3JnjaYJRtXMSKlr93eKNevSfaJQQY8YwMoX7SXLk4AE66tx7qyCs2jsDr8ecykz/8SbuDFzI6/frmq6w+luwJ2fVlsLr7gSJZibQwzxo0dq3qN50qfYcHVU3IOK+WUVypTgZKVzrBLLrtjrpzw4gU/ARO0VBOtSlHXaZ3kTh/z28hOjm69w9beKv0VUBZEWPL3Hv/Im59plZyOGa58cfJtIFf6pPG0KOueB4d0WNY7d/qYfS0tV3sgtOvPCQBh3eu+ef7vpfHi3cce+wTktSAk/oBZ/fqlc8yRmrLpR3CvB/Hwosy4p2uVbHUATsDr13uEC+1ef698+BzgHuDj1JTtj4Wxb7QPQ2kZES/ULNl6KIqJnuDDZDHgPd2DxQBwHm/3bL5P2HZprjysB+TXG/7ugEHxAeWvrHUG96+ShhiQ7jizc2+wwTtnlTN0Rvb47BYpwzdj3NiRCPVXpCLQTPiT5y9skiJ98yddz1taEfEF8Ej2+Oz0mvs03y8b4NCX03QaSlxahjHYVDyz3BN2m/b0Lg3C893JXTI3AS+9e/uL61pYxCNCXFqGqVPQ9jfyKrpcG2gq313hCT0rd/qYlS0tV3virQdfPt1ZMOCHwOjs669//K53au6bNSEzwGgt/NRbFXm2JXzTX67i3pOBkejXL51jlEWZndPA+iSwP9dpdd5UzS3AhvYwFyn3nX8js09J4i+tzKtwVvePtWfdDrzUiS0zd9NzDw1IQxVr/3smiDurt0/ly77/S57WaD/Y9kizKKwHI3FuogCODzN4JkrJ+FLVpAAVJqF+NyKoaPWfFeF2pzScyFFKJD1j3NgpIP+rKQNeYNrk+Qub5Fd7/ke9tu9yW7sMCCjrPPfS7XnNKqjOMUtcWsYUkI+BMABS4PNIDGZt96pQc9Efx3f8bXuVz/ryB3c+16atj3FpGSMFvkskhrOAAb3C1i0eFP3XhS/e/H6daeZ0ms6sCZmn4b/Bpk6anbK/zOPr974f5ynv/DFwnDV8w+yQLr9NuuyOua0lX7aOTouwKLP3FOAJQGjV46ampmw+wIUwMzOyl8TyDgScAMIIUtHKrnqBaakpm56MtWcZw9lTWExMCP4S0m7qSfTvt8TKMhDVgbgX5SUnfX7EPmgbo9lKs9ZF9vhsCSwDlt23oOOtP5RGj/JK5TIpufqX8qiLQE7195Ty9Hl9S/O9ll9UREUHoyu6g9Edm1MV/KNEOLuZnTExRlfsn5Vh34Ko6m2piOlocoX/Vh75E+AcYC0L72ByW34qi8oCqoYFFhujjW7P96UxeUBV9vhsVRPJoT39/Ku2cGOqsCTOTUyCoK7dzZVzdWVVp5lxaBc1E+AxKr4zU7p/Gbdo69juXmlKLveEXpu5fYwR5INxaRm/xwbuyB7c4c/s3RVd3/jq3mmtPtXJf966NPiLTZcPcvusl4L8P4miaMELD2ROuafFgzLbK8bAvZHeyhgMlqL9PqwfPHPPNarn5LfB5wLD+TdOv/Urvwurjs4xjwOoAmn1K6Gu2xdl9p6ZmrKpfFFm7wDgDgifCgSD93swzQYxj1q6RV5ykneQ/evvgYs1I8QBBQdqY2PBeQ4uCALoyqa/lydfrCurNTiiFtaD8Z8FHQOWVYR9XuC1nIn/CYYQxesuU41rQARYhS/GKGRYuWooB2EFzIeasz4UpGoSKi5pyO9YYJHdi0yhxR0q5IYwuRKoilDcvYpUU/dqy2tHY9WjiYFl856/MK/OFDqJcxM/B5KBuOzx2cWHI5uOTm0031UbdVRwunPO1WElrohrf9pxVifgdJDDtRryFSB+6h22doMQvryNxQOtwI+508f8cvQ/gZ+75lwlPKr51F93pfQucUUODjKVneHyWgd4q2M090fZSh+IqbnTx+gK6xHinWnPvFux97hrAjusmHr9Y3c/PmtC5nUgXzMG7POFdbdffvnds79saRl1dFoTmu+qDSqTISAF2AQeJxh7gRICMkNQ9mpKSn7Ggf0PLLuquRA4ADNI4vlriiP5xum1j9fJ/tdIifJb9fbFvGaelfyqp3a/Y5kWUVih4fWvAe5b0NEgIfzbkhgJBAwLLO4cZvDG2suidwPWxIDS/sEGb+cl5ZFrgYB4a9ngAEXt9Hdl2ErA2stSMcws1A5rq0JWAgFdTM7BBiHDtrkDNwLWAOEd6pSG4FpRfwC7gFW9LRWEGrw5f1eGvRdnrjg/1x00NVB4P/r92hy97KpOi3LH69fG7aroNu7PPSd1B04H+tXcL/BKk8Hrdfus+4DK6IC8KIF05js75QCVvcLW9lWloSi3tO9fQOWQDn8Mcvsse3IKhywHKk/qnBnv9Abu+nvviauAytTuC2PLPSF5v+8+bRtQcV7vD70CWf7FpitPNAjPOf0iVkfsc3b05Ds79VGE7yRVGiI1UZxGxb1ycPSfSok7/N1NxQnbgQ+p8fvXK1YdGbRUVT9pWVw8irk0T3WHdcN//b1s0uyUwwo+1dFp7yzK7P1/wPP+LQmI21JTNr3a0PGx9qyRAt9VgZRP8GDGTcB/ginp1Z11oWsYvhNECsgRNXQQN2A71ipZHYoWU1ihccvwR0GOauXZ29tS/pYAy0ZXsAlINKAm+fbXEAb/CUsViJSWlFtHpzaDp70/q9QdPgGEAqhR1j2bI6wFWzcWD9gCBPYMW3+i0xug5lV0ywMCI617+7t8AWqFJ8QNBAIBjT+qKv1p3KotpgCsFah/nNQ50+hRLfP+yBv1Q+70MQdYC+qzJOs0H7MmZNbMia0hfSBsk2antJgFXkenraD5tGq/IekFMS01ZVOjV4Rutv/f8RlcPV/F2OufVukDsRdkpxrXTxV4KC85SV91qsER9WE9FJqy1+I3quzx2UsS5yamot08F1y+5QCZ/rOgo2VTVWDiBlfw/wFXaMpAdd61FpdfR6eaUnfE+8D1aJbLgqqO1/6ZfkONc3RMvePvmnOVYUd5j6A/95xsBgJHx30+YE9FZ5GVP6IcCDyt67en7a3sVJ5TOCQfCDwh9uez1hQMji33hA/x+3pJ1WpwPrP2iUu1HIbnHvRYmpKq/36OPA78FhuLFhiClrpqFKArrDo6h8aB/zdkAtHkdG9zkl9YHmvPeheYBiggVQPex3yYvgehFWAC9JRyddKiFta2RmPcGHR0WoqjbbnUjnfA70K3mLYutFR71+J/mDGg/T/paat0dBrGwXxUG4vm03rA9TIvOWmJ1n6t1u1d3R3g3+gKayNpLW4MOjqtCX15v22g54jW0Wl5auZy1RXThqMrrDo6Ojo6Ojo6Oq2a5ijNqqOjo6Ojo6Ojo3PE0BVWHR0dHR0dHR2dVo2usOro6Ojo6Ojo6LRqdIVVR0dHR0dHR0enVaMrrDo6Ojo6Ojo6Oq0aXWHV0dHR0dHR0dFp1egKq46Ojo6Ojo6OTqtGV1h1dHR0dHR0dHRaNbrCqqOjo6Ojo6Oj06rRFVYdHR0dHR0dHZ1Wja6w6ujo6Ojo6OjotGp0hVVHR0dHR0dHR6dVoyusOjo6Ojo6Ojo6rRpdYdXR0dHR0dHR0WnV6Aqrjo6Ojo6Ojo5Oq0ZXWHV0dHR0dHR0dFo1usKqo6Ojo6Ojo6PTqtEVVh0dHR0dHR0dnVaNrrDq6Ojo6Ojo6Oi0anSFtQ6EEFIIcYn2Pk7bPr6l5dLRaS6EENcJIcqP4PwOIcTLR2p+HZ1q9HNNp70ihCgXQlxXY3u/blLXdnvH2NIC6OjotAjzga9bWggdHR0dnQbTCShqaSFaCl1h1dE5BpFSOgHnwfYLIYyAT0opa7WbpZTuIy2fjs6hqD5Hj9S8tc99nWMTIYRJSulpaTkApJR5LS1DS3JMugQIP/cJITYJIZxCiGwhxNWHGNZPCPGLEKJKCLFWCHFmrTlPFUL8ru3fI4R4Xghh1vadLYQo0y6ECCH6aqb8V2uMf0II8UOzf1idNol2Pi3VloRKtHNrkLbvWiHEViFEpRBioRBikhBC1hibLoRYVWu+A1wA6thOF0Ks0to3AS4gSDtPJwkhPhNCVAD/1fqfK4T4Uzvft2jnr/kIfy06bQRtmf5VIcQMIUShECJfCHGXEMIihJglhCgWQmwTQlxTY8x0IcQ67ZqcK4R4WghhrbG/znO0jmOnavPfqm13EUJ8JIQo0l4ZQoi+jZ1Xp/2g6QCThRAbhBAuIcQOIcSTNVwArxBCZAohnMCtQghFCDFVCLFd658thDi/1pydhRDzhBAF2rU5SwiRXGP/rUKIjUIIt/b35lrj+2i/myrtdzC2DrnrdQE41Lne1jkmFVbgceBGYBIwAHgSeE0IMaaeMU8DLwJJwA/AF0KILuA/SYBvgL+BodrcV2jzAiwGrEC1H6wN2AfsP5m1NsfhfCid9oH2YPMF8AswBBgBzAR8QogRwDvA6/jPxa+AR5vp0D2BK4FLteNWae0P43cfSARmCSFGA/OAl4GBwA3AJWjKrI6OxlVAGf7zdzrwArAAWI//WjgXeEMI0VnrX4H/XEoAbgMuBx6sNefBzlEAhBAXA58Dt0gpXxNCBAJ2rd9pwEhgN/Cjtq9B8+q0O/4LTMV/jx6I//99e439TwKv4NcPFgB3Af8B7sd/Hfwc+EwIkQQghAgCfgLigAu1Pvuvy0KIC/FfL18ABuG/nr8ihDhX269ocyr4z9EbgHTA0tAP1Ihzve0ipTymXvifnJ3AqFrtLwBfa+8lcIn2Pk7bfrBGXwX/RfdxbfsJYCOg1OhzHf4n9UBt+3dgivZ+Hn4lwInfJyUQcAMnt/T3o79a/gVEaufcaXXs+wD4oVbbG/6f8v7tdGBVrT7XAeX1bKcDHqBjrXESeKlW28/A1FptFwDlgNC2HcDLLf1d6q+WeWn//0tqbAsgH/iyRptJu+5dcpA5JgAba2wf7Bx14FcGbgFKgDNr7LsB2FB9XmptBqAAuKy+efVX+3wBwfiVugl17Ku+30+u1b4TmFarzQG8r72/Gf/DWfRBjvkr8FattneAX7T3Z+J3b+leY/8pmizX1Wjbr5vU3m7Iud7WX8eihXUAfmvnt9pya7m2NDoR6F3PuCXVb6SUKn4FdIDWlID/4qzW6P8LYAb6aNsO/FZU8D/9fAP8obWdjP+C+UdTP5RO+0FKWYj/YvadtqRzjxCim7Y7gRrnokbt7aayQ0q5p4725bW2jwMerPX7+QD/w2BsM8mi0/ZZWf1G+u+ee4HsGm0e/AEkMQBCiEuE3+0qTzunnge615rzYOfo+cAs4Cwp5fc12o/Dbz0tq3GulgARHHi9P9i8Ou2PAfgtl4vq6bP/mieECAU641c6a/IL/+gAQ4GVUsp9B5kv4RDjE4CdUsptNfb/Dqg0nIae622WYzHoqlpJPxfYVmtfUx2rBf4nnbqobncAk4QQA4AQ4E+tLRm/5eE32Uocu3VaHinl9UKIF4CzgPOAJ4QQF+A/1w6FWkc/UwPGVTSwXQEeAT6uo29+A46jc2xQ+3omD9KmCCFOBD7Cf17dDRTjP++frdX/YOfoSm2uG4UQSzUFGfznahZ+94LaFDZgXp32R0OuoXWdD3Xd46vbGjLn4Y4/FA0919ssx6KFdQ3+pfoeUsqNtV5b6xl3YvUbIYQATgByasw5UvNDqeYU/Mtdm7Ttxfif6u7Dvwzg4x+F1Ybuv6pTCynlCinlU1JKG/7zYzz+c+3EWl1rb+cDHbXztJqkZhTtLyC+jt/PRimltxmPo3PscDJ+C9NjUsplUsoNQI9GjN+C/zp6JvB6jXP/L/yrXPvqOFfbxU1cp9FU6wCpDekspSwFduG/p9fkFG0u8J9ng4UQ0QeZJucQ49cAXWqspIFfx2iMjtbuz/VjTmGVUpbhf2p/VghxgxaZlySEmCCEuKWeoRO1Jav++P1dewDVUf6v4F8yeEUIkaAFb03H78NXqR23HP8JdTV+x2jwL+V2wx+U4GjOz6nTdhFC9BT+iOmThBA9tEjTwfgvai8Cpwshpgh/tomb8Tv518SB3w/2ASFEbyHEjfiDopqLR4ErhRCPCiEGCSHitd/G0814DJ1ji/X4b9hXCSF6CSEm4g9cbTBSys34DQBn8Y/SOg/Ygz9I9jTtt3Wq8GcvaDfR0zoNR9MBZgJPCiGu166RJ2jn3MF4BrhXyx7QTwjxKDAKmKHt/wC/y8sCIcQo7Tw7r0aWgGeAa4Q/40pfIcQd+IMSq6+ZPwJrgXc1fWQkfpeYxhgA2v25fswprBpT8Tva3wusxh/1fzH+p/SDkQbcA6zAf0G8UEq5A0BKuRM4G78fSxbwFvAh8ECtOez4naAd2rgqYCn+pz3df1WnmkqgH/4l9/X4o6nnAU9JKZfiz0IxEf8y6EX4z+X9SClztP23aH3OoBkj+KWU3wFj8CsHf2ivNP7tYqOj0yCklF/hv6m/wD/n7LQmzLMJv6X1LOA1/IGtpwKb8f+e1uL/PUVwDCdg12EK8BR+XSAH+BToWk//F/Gfn08Dq/AbCS6WUmYBSCkr8Mem7MSfuWU1fvcWqe1fANyB391lDf6sA7dp5311XMyF+HWy34F38WczcjX0A2nGsXZ9rldH9Oro6LRRtLx8H0spm8MPSkdHR0dHp9VxrFpYdXR0dHR0dHR02gi6wqqjo6Ojo6Ojo9Oq0V0CdHR0dHR0dHR0WjW6hVVHR0dHR0dHR6dVoyusOjo6Ojo6Ojo6rRpdYdXR0dHR0dHR0WnV6Aqrjo6Ojo6Ojo5Oq0ZXWHV0dHR0dHR0dFo1usKqo6Ojo6Ojo6PTqtEVVh0dHR0dHR0dnVaNsaUF0GldxKVljMRfi9uRO33MkhYWR6edoJ1XKUCmfl7ptAdmjBu7/1o5ef5C/ZzWaVPE2rP2n795yUlt4vzVCwfo7EdTKn4CTCDVfhGr/9pa2numyxewJjpgz8Z9zo4D0ZXZY47DfYjRxmcCVsAFJOvnj05b5pWJp97uLAx50b8lqoBUXWnVORSx9qyTgYs6sGPT8ThKfuCyzV7MxkSWdOvE1u4/cFm2RDEN5PfeMeyKs3PhcsCUwJ/9I9jb/TfO/gMw9SMrIYzCLstI+QMw9WbVwEDKOmYz8k/A1J31CVYqo9aTlA2YOpHbz4wrZCv9NwCmMPb1KyEyChQJeMxUXbQt+cSMlvtmGoausOrsZ8Sjr6/ZU9klwb8lAVGrh9T+8V+gdaWjfROXlhHaI2Tju1vLep0PQoJw0wRlMy4tYwrIJ0AIgDBzwT6nN+g1t2rN0M8hnbbEjHFjQ4CpICeDqHap8wFTJ89f+GQLiqbTirnK/lDqNvo8t4EhidXXwWbCA3hMVBnMuIwVhO0FvMEUh1iptOyj8ybAE83uGCsV1h30yQY8IRQllRHe4Z97vEo3Nu/cTp8ngM/ykpP2NKOMzYausOoAEP/gx1OrfIGPClQpUXyAJ8hUen6FJzQP6Bdh2fdgkStqqHaCe4FpudPH6BfodkS1JbV3eE7l9rKeCW6f9SoguObDS4CxfNepXX944LUJb8xt6LyXPD/lkpX5wz92qyZVm0dBf/DRaUPMGDdWRPXf/nRxbsfbfC5zIPAVyDNAWAEpjN6z7pn37fctLadO6+EW+109MrnwwnLCxwEnCnxIFPzXQKnGsvWnImKecxFYNYjfI7qxMeIHLsnyYnEP4+eQrmwK/JqrNngxe47HburKJmUBN+0FPCP4wduVTd5ZybObpMBp7gCL8K+mevvz99od9I6tICwWpNqD9QXh7PvfCk5+Ii85aXfzfSuHh66w6hCXlnE/MN1icH4uES+4fdaTqbX8qykz2gmOB13RaFdo/792kBb/BdXnA8M8UB2gzMJ/YZMWg9Pg8gUqwLfAY7nTx/zWkPkvfSHt0qy9J8R7VEtnkLdqVgb9wUen1TNj3NgE4GUgxRpR5lRMvgsmvvTL934fVjkeuCWkS8HWsp3RvSbPX6jfUI9hYu1ZBuAMC5UTVAzne7AArDLgfbcLm3dto98catxDW9J3tLYPa6w9SwADw8m/wYrztjy6WwBpwLP0JL7bZcKV/kHyY6taSl7QFdZjnnEv3Pf173mnnQ3yIxDX5E4f4z1YXz0gq/0Sl5bxMjDJvyVlkKls5urHrrhb27f///3c3h/lLt5xxqRiV9QtQIe40A0FMYG77/7f/z31Xl3zOhwi0GaTlTWOMxL4GX/ApxP9wUenlfLuo4OiPZXWjOItHY8DUYZQH+x03MY5V/5nvadmv7ceGPZD0abOpyPkdZM/ymjwyoNO+yHWnpVwHI7X13D8ECfBIUDhQP7I6cKWF79n3Md5yUlS69dmAp2625cOdGO9OIjSGysI7a41/xZJ3nen8PW3rye/+MfRlklXWI9h4tIW3g9iekLkim2dg7f1ffO22e6WlkmnZTj1iZmrt5X1HgDCSwMs6HFpGUH9IlY9s7ui661l7nAF+CnUXDS9zB1WIlFsgOOds8ZmAWuAV202+XT12JQnn/10c0nCRT1CN9700wN3vXlkP5mOTuPQov/vAHk6iA7BnQqyyndHnTl5/sL8g/Q34A8qPA4YOnn+wg1HU16dlmGi/fa4rfS97y9OGwaMEPhkb9bs3EjiXUBGXnKSq6VlbC5usE8+62uuPh7EJcAQAAXvMhXj/Gh2LViVfM6moyGHrrAeo/R74NMH3ar1cZAfnd/7w+tm3jyv3fy4dBpHXFqGxWJwlnYM3LVvW1nvl2mEBf3Mp54KWl806EbgfqCzQEUifCDcsYE7zp1+6oQxwBc2m/ypesylL6TduSxv1MxBUX+dv/A/U788Mp9KR6dxzBg3trM1suTlqsLQCzVfa6mYPJPufv+7VxswthtCrrKEVHoj++7sfuV96yuOvMQ6R5tu9t9P8WC+EUQ3Ba9NxWgw4M3xYZxjpuqDbckntspgpebkevt/UncRd/MKTu4HDAXozJbiXfT8L/AJEMsRsiLrCusxyGUv3L/wj7xTx5gU12ce1TKuPjcAnfZPXFrGxcAnBuE9e9OT53/bxDmssYE7luZVdhlyqMC8uLSMRGAlcFnu9DEfH47sOjqHw7uPDeqlegyPFW7s3FP6DCcCokaQoReY1tDo/7mPJD65b02PNHOw86073lx04xEUW6cFGGGff882+s6QWr0lKxVfpfLph1YqP2pq8FNbJ9ae1ftEvn9uHUlDi4jp5m9V0bLKVNHMfrp64YBjDH+A1alj+kdkb46PzL5y5s3zdGX1GEfBd72KYbdPGn9o6hy508dUxaVlTEQLzFOETz2586LtMKau7jv8f2TXph5PR6epzHuqf7fCDV0ucJcFngM9zgBhMFjcu30+QzrIdSDe5p/AGEdD5x3/cPaU5648O8pdHnDzjHFj/zd5/sLvjtBH0DmKxNqzrMBU6JdWo9lbRdCSN5Of+7Cl5GoN5CUnbYKk8wFi7VlxCp7XVIxnakG1AcCVQLMprHpp1mOIEx6d8zQwHfhoXVFif90NQOf218cPQMgxfcPX/Jk7fYzvcObS3AhSLQbnY/cPf6D8xsQXTzlI12KT4pJDY36/8nCOp6PTUGaOPyNoxrix42ZcPuaLPVm9t7nLAl8E+oN4usOg3AtiEnO7TJ6/8NHJ8zPmA6nANJpQDED6DHeBXC0Mvv/Neyp+4JH4LDpHj/H2tInh5OcBD4D4Fn+gaLWfv6MlZWtt5CUn5aqY0kE48ecmlqBOvMD+9KLr7f+xNscxdJeAY4TzZzz80Yr8E8aFWwq+L3ZFjdHdAHQAhqW/PbWwKubR0XGfn/fahDe+aq55HQ4RASg2myyoa3/itHkFgcaKtb9Pu+Xk5jqmjk41WuBUKuAO6lh0feW+0L7SZzAAu4NiC7MDo0rn5a+Oe+9IpKF6e2rSGUWbOn1vCa3cWFUU0n/y/IVqcx9Dp35y4hP2R+MnrM1ptIUv1p4Vit+4MzGKPG8ke8YvTh7/QVuK8m8panxHf/bnrxfXMay/QF0uUa7OS05adzhz6wprO0dLIzQNOKtn2PpVg6OXH69bVnWqiUvL+AtQc6ePOb455nM4RBhQarPVf2GJS8vIBCy508foCqtOszJj3JiRwC+AAgIUX1Vol4KNpTs63I4Uv0yev/CwVhIawqt3nPx45d6IB4HJk+cvfO5IH0/nH9YkxJ8ipFgEGAA3kNoYpfVq+4PpP3HuJA/WKJAzz+OdJ19Pnrn3iAnczom3/zC+mA7PgQw8kR8+7cLm8bOSZzfpN6j7sLZj/Mqq/AmECfBtKek30T7lbl1Z1QFg5GOv3gHdhwLNckN1OIQAvgE2AdccovsOkKc1x3F1dGpiCqp6yVMR8E/ZVNXw+M3P/vHE0ZShcm/EVGAgyOnvPDxk63WPrPj0aB7/WCQnPuEsX6jncWFUhgqPofr/34Tf2ndIhTXWnhUjUF+UXDquAzvL8+kyMi956O9aILwOTcsjuzb5jLmx9qzvO7Lj+6WceZWV8mGf2rO+BL5orJVaV1jbMQHG8oud3iCTtimBUfgtDzrHOHFpGSMFXV/wnxbcFpeW8UkzJPBXgI+AfYfqmBSztEd2/vHd75pzlWHmzfOOuMVL59hgxrixl0DAcSBVQAXhwZ8j9agyef5C+fzVZ92oGH27y3ZGffDKpFEdbpu1uPRoy3GskBOfcBLwtaHUJCQSifQBBgSKkMJR39hJ9gliL11nwpgrJUpoJHueO5WF02Ylv6qnJtOItWcZOrL9RkGXWRJhAOHrb//xu96s7r6WYasrCSGCvd0j2Ru/jb6bPViMAZTHWKnsWEx0GSgBe+hmAagiOAFIAO6MtWc1KouArrC2Y5zeoL7+d9KnXbgdLSmPTqvCJhGKlr7HSAOtEPVOaJM+4MWG9HV5rX/5pPHUNQVJXYGth3NcHR2AuY8kXg3d54BYAmIKcBLgaGzgVHNx9/vfFs59NPHufau7v0RZ4Ezg+paQ41hAKnKcUIUAEP7iJ294Y1znGPdauntjXV3qGqNZCy8I4KqznYQkRrB3SxExp61JHr0aRh9N8VsVsfasIGBwZ7akxrDzyhyGeSGwzx66BdToZiwh8qx1JCkurDFASRUBBi8mk4KvCigMoGJfVzaVuwhYXElIQWe2hEhI3k1cPxAKjbB+V6P7sLZT4tIyTgCWAh8CqziS5VTTw/YvE5BeojuitwE03+Zf8GusVRxmiVSHQ1wOlAMZh/Jf1Y5/HvAFMAuYp5dn1TkcXroxpY/qNa4TiuryVFp7HKwqVUswY9zYR4BppsCqm+98+8c3Wlqe9kjW+d2+sawLPksifQLhBlLLz9m3JujbqGVCFWHAq8B31b6snex/jZSIn0EYAbqz/rPh2C+flfyqp57DtDtutd+R+DejBmyjX88AykeGUHzWXrqYtLRUBFEqjbizS4heZKayyo11sl/ZFB6akGNVe0hYxD9p4xo1h66wtkPumnOV4Y+8Ufv2OWPwqJYeudPHHLGlKJkeOhL4Wfh/+E4gVVda2wb9H/gk2ycNHbzSfOFhKqsCv/JbBZzeQIV1PPCOf+lWuDhMhVnn2GXGuLHhwK8ItVvHIVsuv3pKztctLVNNZowbazQFVq32eYz9YgblJl+VttbR0jK1N1ad1OdrUaakCI/yiEDszwyQE59wo0S+AUihJbJPfvXD7HDyNxbToaM23AdMzUtOalCBiLZIrD3LYMDT5zS+nLiBwVHb6dsB5FAQMf/0klvi+dvixfTDRhI/M+LOOp+3ttcsitAcWRIOZw7dJaAdsnjnGbcXVnUIP7Xrd7Pfvf3FI+o3lRfreSo2z1R9HjXaxK/TcnQP3Rxd7gkJXTJ14uG6AkiHQ9iAqIYoqwARlvzUIlcHmro0pKMD8PzVo08TBmWe9BlikcoZV0/Jsbe0TLWZPH+h9/3p8dfnZ8fZ87J6PTtj3NiRk+cvPKYseUcaQ6GpL/Btwtqc2kpnDH5lVQCmXdExFwGvFxPdQaD6pL8iU7twl6tWBA14lvowVQJJiSy9dRdxkRDbwYcpMJOLUfCqwEoQX4/gB7MB7w+/cfaCvOShxf8OMDvhgC1NwTys6/ThzKErrO2MuLSMCOjwIMhfIywFtx3p47nM8jNglERK0U5++McKuyu6/e3yWeMPZw6HQ4QDFTab9AB5DR0nhFzlfyfV9nLD0Dm6+HOtGjP9Dz3So5WCbJVcnbb2txnjxl4FfAzyEeCBlpapvZB1SbceFoL7AK/XsduhWVZNPkXwzHU33QWyDMRZElFOO8mpGmvPSgG+A2n01VDr1jPYE83uvfi/m6xRLNwbw86f/wkoS2oBaZuOrrC2M7qFbH53e1nPKBC3z7x53hHx93A4hAIMstnkSgGLBIKKAN/qIKfhlvbgDvDG/XOucpd3SZA+a8ak2Slt/vMcjHJPaD4w4DCneREY7HCI42022eBiFIVVMTn+d+JVdB9WnaZhY3+1RiFo5Vb6yfMXfvL81We9p3oMU959bFDhtVNXPdvSMrVFEucm7l9Szh6fvcQX6bkFoPLUoqLafRPW5ixZMSjx9J+HnpD+ue3M04t7maoGs+S075Nv0x6YW+/50hAm2ScYdtD7OTj9er8/rgCkBOYBU10Ebv0z+eIaekBSywjaTOgKazvikucfOH1H2YljB0X9/dfC/0zNOoKHuhd4zOEQSadtC+kEIBUeaIvK6qwJmdUXvyVAV8Vc/Ijq7t1LS/d0/6yJ39846dUz321JGY8U4ZaCgHJPSOhhTvMxsLwxyipAkLGsY4U3BIPwPL/pyQs2HaYMOscmOVqWC5U2UiozZvCWuws3dL40f023aZrvbUZLZTFoC9RUTocFFjtLfcaZEHQKCAm4E+cmpn64IiRaCulTg30f1x4/0T6p23cvvfJoJSGpIN8/l7l3zUl+ofBof44jQaw9yxbM5W+VE97TSvnWKoLNgEFbsXolLzkpt4VFbHaUQ3fRaQvEpWWI5XtOniaELOkZtuHSI3y4OcBkYK1ADAYIrjD8doSP2ez4lVVpB/lf/1/eU92hkX5lVUv3JI1z30ibU/rKbd9cP2tCZkD9M7Yt4kI39jUpnojDmcNmk1/ZbLJBqaxqMiRm2VkAo+MWHM7hdY5hQrrmp/rfyReA1Lag+F1137oCd1nAraiGEPxuAYu0MrI6tfArq3IRyCeAX/+qDP97oyv4VPx6iwEwAzZDiXGgkOKP4c/ll9QcH2vPSviZsWurCEg14Pk/ENe2B2X1Zvv/nR5v//EnwF5OmOFUvnpuDO/3BJLxV7VsdPR+W0G3sLYTTIrrKo9qGaVK460v3fLu5uaeX3MDuBZ4z2aTRcDLAOXLgs8PcCqFhmmlddaMb+XYALO2jAIwB5R3gB/R0m4ERK36xV3R+XipWt4CZrz14Mu/B3bIfrFg7bhibbyjrboNbC7pt8TpDRzYlLEOh0jF704wW/NfbRS5JX3yAUyKZ0dTjq+j43OZLjOHVrjvmGOf3NKyNAqpdNF8txWQFhA22vjS9BHCBlj97h5Sgvimi8n5xU5PwAsgrYAh3uvMk8I0HIN8tebAWHvWRcDcYqKrzuR/97+T/PTLLSB/sxJrzzoT5DTB1SeZ8UiQD4B44X/JU50As/znULs+j3QLazvgtteuiw0wVr4Tai7KBd48Qoc5G3gbuKBmo6IyrDzY11YrFWVpF0MVhBN4e9LslN+AVLQn1RueuPNMX1VkFJCM8C5yFvY9q2DtuK/xp3F6DFikuRW0OUrdEXtBmOLSMppyHbgYuBPNFN1YdlV0jwBcX2y6clhTxusc28wYNzasMj8sQvUYj9T17kjiAFzaQ7JCG3BlaCEWA0Jb8aoCHvv2yo2vASkRBs+nBiR9V5pmCinMuQM8/QEm2SeazrPP+BX4FFjtwzSkPSircfZfRwPfgjhZYlA7sv3avOShT+YlJzlbWrajia6wtgMc28/+f/bOO76KKv3Dz5lb0xMSegugQtSIBQvWQ1BXBbsrdkR/aJS1sirWvVZYXXTVRbGLHXsBO+FYsRcihE7oJUB6cuuc3x8zwYCEtJsG9/Hjh8zMmXPOJPfOvPOe9/2+t5QF0xyHdf/ynsJJI1rEeJRSz8Racnh7605fiiuu2nAlVDpebokxW5q4TgXS+kn8Dxhe4ykdNzVnzripORNrbetxU3PUuMeP/3tG1uv7CMM/m63LUtqN5QnocHSJXxsPcGj3LxKacPo44AgpdbCxJ1pFC/RZlneJWXYRgxgxGsOJIFzhas9LbT2RxmKFLojhhis8237fa9JL325AN+tXI14EhuePzp8DkD86f86XFyw8K+cP88lzPxNJAD3neU64c+zh17zFZR/8wPDD9+Pb+RmsPWb9sP13iRWcFDa/CNr+nAi9kr36tO2M2oZYSEAHJ3PCzEGQmAs89+QVT0bV22CHAdwLPC2lXiqlVts1GSgQLmeEH6M5bmthRjxXupNW+sc+cPE1DT1n1NXPzJ+Sm3erHfPqAe0A0eHidwEGpC4YsLGqB+nejRlAeUPOUUrEA24pdQmwsSnjxjkrzq4OJzjs53RMgzVGo4nvUnJr9ZakCh12fN/Wc2kK46fPmDN51MiTgZWgb2S7lasYEG+Eb68yHctAjMkfnf8XR8zeS0Rfw7QS4B0mBLw9/g1COAlc8emwK6e2+oRbiO6zfz5e06ezwDQ1osMkGLYEMQ9rB+aap84X3eJXvy8w/cDNLTBEH2AsddxMizJCowDKkiIdLst7Sm7ewEBp/0TDVfVUY8+1PK9imCtxzWw7W/XKKbl5He67VLB58DcA3687pjEZ/uOBJUqJzk0dtzqcaGu/6gi78c03RtOYPGqky78lcVBS9y1rx0+f0VHDkRg/fUalN638LRCnvjQx68S2nk974rTX+t9RZTr36++uKtyRsQpQksBbISdEBIQd8OPeQz3AuNXDDt1ljNVus39L1jieBhZojBx28aSq+oh5WDswC7ZkX7G+qteeQ3vkvf3q1ZM3RKtfpYSQUmspdaFSYl9gh30bpjjcFJotncJzm6uN1AbcBGj/lkGfNeVkO1wgZ0pu3g3A/a6EdZuBFi/UEE1KAumbATb7u7gacdr7gCmlblKt9v4T3h8KjhNATAMWAiqmwRqjkRxthp3O8jXpE9p6Is0ltd+GBzeUxV9avKTHFcBHbT2f9oClDhB/B2iWBeMPz56WPbQmHKA2/3xp/lNnPXDzBQNWLzv6l0GHkD8oJwI0+UW6PZLFz58XcGBPEEesH7b/d8AXbT2ntqTDeYViWGROmBm3sDj7RqcILeybtOz8aPWrlHAAzyglLgeQUq+vq9xm+hZnQGh+zxzj71CB31Ou+PQI0GPsmKDpzUya+o87adXHocruV7x43+0PRmuOrUGaZ9M+1r818kD1I6X+XUp9b1PGu+ap8x1dE9Z84nb4S4B/FE4aMTFmrMZoPPpUoFqbxidtPZPmcv5NCxboiOPxYEXcCZNHjezR1vNpJ0gQdsiQcFJHjsCls8eP+mbImQdPO+1mnT9oeBhEkF1otWa/2TNOKeCggw9m9k+2sbrbEzNYOyjJ7uJ7gL5h7cqdNOadaJYkdGDVX+7agLaDBWJuFMduFZzeksvsmyH8GUPZJMZNzdEpfWaf5U5cvbRspfzHlNy8o6M0zRYlc8LMoSWBTtcBFAfS/1df4pNSYpBSYrJdirVJqFUnXLGusk/SYd2/eKVw0oiKpvYTY/fllQf2Eg5PMNfhDZQBg9t6PlHiQdAOb2rFpLaeSDtBWeFCGqvk7l+N0G6zfxugOOWFVLa43FSfxS62VN5t9m/JG+n1qMBc3I2Vf2vr+bQXYgZrB+SKqZccXRVOuL5X4vKfCieNUNHoUynhUErE2Vnfp0mp79pZ+5XPePcEepQlRUp31q49Eq7OyLd+ik4M5dlXPV8ZrOh1MIhloN955YHrj2z2JFseqRE1ZS3r9GLUIge4BMvAbzSZE2amlAY73Q58m+bZ/I+m9BEjxsa5mZdEAh5XxO/uwi4iuj9++oxlid23LA9Wei58adKgXm09n7Ymf3T+nL08lW+CoI+7+oHtwwG6zf6tG/BpJUkVh/HZyJXDhr69ftj+E3cVYxWgO4Uvg+6tMUY/Ney/JW09n/ZCzGDtgHy64tQbtBahwZ1/uiKK3T4DfKCUcDakzKbXbxwJUJ4UWRPFObQWdka8+A+15Kyaw7ipOcXASMNZlVix/qBZz93+UJfm9tnCKBAB60chgC931lhK/RjQvymxq5kTZg5NdhfPAd0ZuPrhsS/vMMQkRoz6iATd3QHT/sw2a3WkPeFNq7jRDLnY8OuA89p6Lu2BREf4WtCRlcH4bfJsrpg9rncqRb+A7grGic8Ne6DDh4Vsgy9l6MzH//ZFj9KKkX1Z+POuZIRHg5jB2sHInDDzhIh2joxo1x1TLn/+pyh2PQvIa2hN+C5FrmSAnmvdz0dxDq1CfOe5w0HjSV5xezSrVI2bmrMktd+n14Uquzqqiga/NiU3zx2tvqONHTs63GkEXwfE0T0/PWtH7ZQShlIiE8CucNZgjrnvYWfmhJmXgv6yLJiaJSyh9Hb7O4nRvlFKOJN7b8wHAkCYXUhhYvS/8t8GPgNx7eRRIz1tPZ+2ZtrfV60HkQ96zNAXs44G6Db7N+83nPhlOandh/Lpja+JA35USvRTSnSCrfeqfZUSXexth1LiUKVED3vbrZTIUUr0tre9SolTau5vSolEpcR5Son+9naKUmKsUmIPeztDKXGtUmJPe7u7UuJWpcRe9nZfpcR9tY7vqZR4pNb2PkqJZ2r1d5BS4rWa8VY97b0sAt+cuOG7o9+cez1dSoPZ3Wb/1uFXEKJJzGDtQOROvTQx1bP5dZcRXAk81Nz+lBJOpcRAACn1i1Lq+xpx+n5AEXUoCLRrhDnQ4SmJ/N/9YxpdUrQ+zh3/6GNgjAGGGe6yF15/dHS7FQUvnDRizoh+b57XOW6d/9eiQ0btqOJVn0L3HX1WuJeseTLukvr6y5wwU2ROmLln5oSZVxx+z2O/bajsEQCetkIOBLaGoMSXMhRfys34UmI34xiN4bg9R/74Ttf9l47Hjlm0RPh3DQxXeDLQPW2PNQ+39VzaGkspQO8LonuV6cjb54WDjwReLaJH5vn896d3ht30mN10GVCjo+0E8rGkGAHigO+AmqTkJCzHzOn2dhrwHnCCvZ0BvAwcY293AZ4EDrW3u2E9d2tip7sD9wCDam3/E+hX6/wL7fMA0oG/2eMCJAMHAAkAyWWOQ4RVrxe3GWRoye+7zApCtIjJWnUg5hYNuaskkJ6U02fGv5+98vFAFLq8D7hcKTFISr2uMSdWxZmngi6Ov6miwy3vVm3cfx00vkJTQxk3NefFJ8e/MjRU2e2Kig0H9JiSm/cRoKLpzY0WD499OdL/5vfHmtrxIjAtc8LMx7Zm7vtSDu+H5w676f/wpRTgK93mGjInzMwAcronrBqT5ok7tjiQ4QTYVNV148BO8xYvKR70xj7mihtOcXznMhH6VNfXF2mt7wNMgQjgSxm+fZ8xYtRBPnBbr6ELnr3g5oJo3P/aFV0HL/u0eGn3qvK16aMmjxp55fjpM8y2nlMbIrGzYk0gIWnf6Zuhx+F8PP0k8cp/4WWk1FopcTHwu31OGPg7MM/ergZOwpLPAyjDMkZrdMM3AUOAFfb2Gizjc729XQj0BrbY2wuATkClvf0b4LHHRUr9HbVWkKTU3/CncYqU+kugV63t2cDAmm1XyHjFNMQlwtTCQLM4vk+YXWQFIVoIvWPFohjtjMwJM3sCCw0RVssmnjoyGn3aSyMjpNSNE1r2pThMoYMlqZHvOl1TeUQ05tKaTMnNyweWjpuac1pLjfHivf8y/CX9FgfL+/QHIkCQKMXLRpvMCTOPBL4ELQRaa4zJwFPLPeddKwQ1cdJh4I5M/ysPAUdkxG04x20Ezltb2TsOhBBEyvdMKyivDCU9uaai7yvAksJJIzS+lKEavq1xM2t0ucAqp1jTJ77Sia16wTFitFP+e9HxF0YC7heA08dPn/FuW8+nrbA8rMwCXBoHJV1vdQ72rJk1c9i1x7b13FoKpURm2hbHW54VA4r6lxUdvznRXeHwlqV2GVe1O7+4bEMsJKCD0Mlb9Dxop6mdVzenHzsM4Dy7OMCqRhurFnsYWhidip2NrhLVHhCO6j09qUtbNJbywlvvNIPlfV6wNx207wSRo7ASWdBWMss/gYUzGZKrAVNjBrTTuNzIvcUgUgZ8vqm6y8UuRzDUL3nxc8BQjaPTpzfd1POb2668s3DSiMWFk0ZoAI2WsPWtOCwQL2Pr1bALxSDGaFmUEocrJY5WSrTbEJtoEAm4XwWWI8xbXnlgr136WneGrQwwPBB38CclXW91ejxdX8xkwXFtPa+WREpdOPiM8EGDrlt4wpYu1U93L69O6lLkur6t59WeiIUEdABG/++q3C3+E47dN+PnGTP+eceyZnZ3IfAssJp6MsN3wn72vx1Og/Wl+25L0pEcjydpdWsM9yno27EM1jAI1RqDNgGF5QF2gQgBF4GZfoBjydT8cCYfRw41vjOz+EXvmdg9fvX366p63w3iiy9uuaZeLVVhXbPf6psQ8AIwWKP7CcQZsXCAGA3kFqzl2j3beiItyfjpM8JPXDf0nYq16ddHAq4rgSltPae2Yt8+Z1w4m9NHAG+FYcyUYVN3ieVgW/NaUqvKn1LiKGCulLoUoNsG9+VYMbX3mXcmf2b8q+z3uvrbnYh5WNs5mRNmOr9Y/bdxHkf1pv4piy6OQpfTgOPteJomsSk9lKvRlCdGCqIwn1aldGVOV4CyVcdMb+mxxk3NmROX8cetIHAnF37cHsMB4E/FAOxElsJJI94s9F7wRU+zhHlG788fi5wa+UXvBYjwuqre7xVOGjGzocL/SpbN1eitfeMrnbO5U7gM6FbYNzC/xS4qxq7GKOD0uqru7Uokdt9yn+EK+zct6HVmW8+lreg++5eTvuCU3P7MK96DuResH7Z/pK3nFA0yJ8w8GvgK9D3Hip/UH3fs97h/YpLESv56fGtDX6kGLosYuiLk0t9H7kq+M5akGjNYOwD6ShD7BiJxlz0y9qXNTelBKeFSStyvlOgipTal1J81Z0bxVUZ6wKNLk/5Z0aFKstr0tP9tFf3YS+655t+IyJxgWb99puTmtdvvW+GkEXO2K5V6GsB3wexHsbyvTZUReuELWf4gvtKJNd7UiEN/JRCkb3YeFJ3Zx9jVkVJXSqnz23oercH5Ny7cbIac95kh17DJo0bu29bzaW26zf5tqMZ400T8lsUv+3w97KJoVnJsa44GHAeJRcaT7ofc+4gVud6A8fFeC73XAdsW6/GVbipLjkz3BA2PYXI7MGt3N1rb7QM0BvzjydF7ex3VDyW5S34E3m1GV/sA44ATozGv+GpHijdgfBSNvlqbpF5fHg+Q2GNOVasNqh2PA3sKh394q43ZTKq95tUhp7n44fsmvs+23tfGeonfxvLqb6VLkesVgKQKxx5RmWyMXRalhFBKPKWUiMq9qwPxGOjquE5lj9ffdNfh/2Zfd4qHKiUw14JxwjPDJjdKvaYDMAuoPtSYj8YufwGe9M3Oe/st83i3b5xW4lyp0VrsYoUymkrMYG3HfLX6uLuDpkcc2WPWv2qSWJqClPo3YC8p9bT62tZH+O7kFCCTDhi/CqAj7kwAb+rSFfU0jSZvGs6qYFz6gmdaccwmU/JQwoA4v9F9S6fIctih97XBSKlf3kFiX6FGl4Qderf2FsRoEOnAMP7UttwtGD99xuaUvhsXVhcnHvnMhCF7t/V8WoNus3/r+ylnP+el2nESL128ftj+G9t6TtGmJvxqvTN5RhAnYQQmaFdQ9Oy9yv0dvpQJ+FJqG64KWzZLo3f7JNWYwdpOyZww89DSYNoZpjb+83jus432ZtpVPV5TSpwGIKWOyhL4uu7B8wA2dAl1SB3EinWHFQEVo65+ttVKyo6bmlMdlzH/+6qN+/WckpvXrf4z2pbUUufxACmljhua049SorNSIvUvB3yluiLRjPi95t+b03+MXR8p9SasRKsOqUjSHFzxgf9Di0jJ8m7/19ZzaWm6zf6tM/BpkDgjgbKhzwx78Ou2nlNLUThpxJwH73zw5Gnm8Vc9FDpLX+O4tHhBD9exQvMJMDFi6GVrnoy7t/A5r8BXOqckJfIjQNCtT9/dk1RjBms75Jqnznclu4ung14H4u4mduMB+mIJH0eNlFJnT4Cg22xy0lYb0wtLIaFVqVw/ZCwYBjCmtcduAqcBi7wBo7kxg+OB9UqJv0iIacE3CZWGG1+Kq5ljxNhFsUttCim1llJHvSpde2e0b+7PIF4FLps8amRavSd0UK6YPa57D5YvEZiZwMm/DDv9x7aeU2uQe/cr/5sSOf2SDyqHd7qx7JpHr+158mnA8SGXTuy51n1L3xXuT/Gl7O0Kix8AypIju7WxCjGDtV1SWLbH/WXBtL5H9Jj1RuGkEeWNOdf2rDql1OXA0VLqR6M5t+Ryx96Av/dqT4c0NNyJq490J65u9bmPm5qzEPRs4Qhc9fbTI9utnNzKZ7x9TKGPL0+MzLUzVZvDG8A4Kf9aVSy53DFdIFz8WdYwxq5EdMrvHgssU0pkRWtaHQ2nN/AQkJA2YO2rbT2XlqDb7N+Ofo+Lv11Hn+RjefPf64ftv8t6VmujlEhXSmQWThrx/EFdv/nmj00HZX2w9Oz/ZfpfGZJT+dDJVXGROwViiEbP9fjFxQCdN7kObONptzkxg7WdkTlhZqffiw65MN5Z8XtG3MZrG3OuUsLAMhJesD0T0fVK+FKGavRpgJcOmrEYCSUmOeO2tIm6QUrmpz/piKd7oLT/hLYYvyGkljjPMLSgNCX8SXP7klL/LKWuK273V4CquMiw5o4To5WxjNFb8aWctPop74hNj8afhy/lTHwplxf9L/7DqkmJXwNfAffSvPtEFVb5y+VRmnmH45ppn/0S37lkXemKLkdMHjUyrq3nE026zf5tKJBn4srUGMHPOLtDJvI2kZuAAqVE516JK44BM8/EeSVw99pw94/2Lp7+CbBnwG3OcUZEqkYDfNgRn7nRJGawtjNcRnAikFYVThz98NiXG+XhklKbwDfANy2hV+j3mFcKtlaa6XAZi1Ny84xIINVdVbTfB20xvjthw53CCJRtWXLyIW0xfkNILnccDqzvtcbzbHP6seNXD1ZK7NCbXdg3sCRiaKrizY4QIhGjBuul9SvgHmBmrzWeGRmbXS8DbwJTO29ynegNGIdhFcsQGh0XcJsXN2UoKfXXUurTpdS7kqxRo6kqSj3PDDsTgdFtPZcoI2t+ENp0eyu/udMuybo78AiQK6UuenjsyxEBP9n7/6yK6Cvd5A06PgRMgYAO+MyNNjGDtR1x2eNjzw6bzst6JKx8v3DSiAZXtlBKeJQSmQBS6vul1C1SHcUVEskajUZH6JhlNU/Equ7WomVZ6+Lsq56v1KbnMbRjxJTcvF5tMYedsW5qXKJGnwi8h6+0ufWrTwF+oI7s7swx/lDEoRenljhjdbI7ENXeyLUC4bA3Tb/HnL2hSygXGAz0XNMjmGhocRRQrdEmgDsozmmsZ0gp0V8pkRTd2XdYvgB+FI7Ira88sFeHDMWqAwUE0aapdRhv+Wc5oGftDkarlHp1bdUepxH+4M+K1ds8W5VABGi6DvYuRcxgbSdkTpgp1KoTb/A4/IGDus65rpGnPwF83aI3eF9KnMMURwvEZwJxO3bVohYbL8pMyc0bCubb1pZ5tbXdJjwFGAndfnqkjcavE9PgeoFI3Ng5FA2B9g+As4DFdTVwh4xPnRGxJ76U2H2og+AOGJ1rvbQGvAHj1q5XVj2Br3QuvtK1PS+rrrTvC8MF4jZTcJ5AFAGzK/+d+Ggj4lqnAh3m/tKSjJ8+Q6ftsXaGjjh6hao8k9p6PtFi/bD956Ajw+PKP16eunESruBSh4A40BLAXqHZv21nGV1OvP/eky957IpfT5t8x+m19y++7/SvnUZwvUNEFlJb79r+LlGrUmCrT7od0W6TP3ZDzg+aniHA2Ecve6Gwkec+AHxhJ1q1CJs7hW5J3+JK1eiJwlc2u6XGaUEkCPvzLhzWdus/EMdNzVn27K3/2+wv3uOkKbl5znFTc8KtPYe6yNjkzI4YOlgVb77Q3L6k1BuBt3bWJuzQ+c6ISNqUHjooA6KeGTx51MitNbvHT5+xW9/oo4IvpbcDcRTwKpAPqDofoNb+OQ7rvM9CDvPHhGrHP2wRdD++lPoevj6sWuoxAG9qxUSHJzhuU0HvYZNHjRTjp8/o8CVqb3y3q+uYQNyT8/1JA4AIaJxCO87utLZG2eYeoAtwAIBS4kqgWErdoRLQbI+x9K8fuSlcfPiUBVuyXRrjlcwJM3Nqa1uHTc8vQM+/6F3b36XWnXX7JObZaAdc9eSFPeOclVMdIvQr0KDYQaWEt5bG6jwp9XMtOUdPwBhX7TVDK/oGVUuO04IoEHa2ugjThksrYX/adZFAqgc4qa3m8Bd8KQ5P0DjaYYp3Msf4m/Xio5RIUEqcr5TosrN267oHSwGCbn1+c8bbEZaxqr/AeujNso3XGM2gNDn8mEYbwM21S+3Wi690k8MUz2s0dgy8m3pi8aTU30qp32/2pHcRzrthUSgScN+ONg7AKqTQocmelu3+pLTzK/P9Sftmx5V9Cxwl4I6LM1Z9fFhiySK7WS5wWeaEmcdlTpg5derv432/bjzk0po+lBJvKSXG19qOb+XLqJf9p+17DHbMtzACUzTCpa3wbifbfQeS3cVFhggPvOap88WO+ooRM1jbBXM3DXmkOpyQMLzPzEcKJ41oaEzfdcDbSomWr4LiS8lKrHSkmYZ+JHOMv0O+2Y+bmjMHuMDe/Le93SaEKru/BqwFndtWc9ieLWnhk7G8Ge9GobshwEv2v3UScfCBRoe7bGyRsDyJlaRgEEtWaDbVk5KSEyodJ5WkRtbgK210lbiAx1xo/6iBIDt5YVRKXKWU6N+0me7SvCAMs9ibVt6hiyhc9063LgI9w0Sc5RLmLa+cveKI/NH5c+aO/uO+/eLLT5JS/9duuuryz14/AvSnwOXfrZOdH/7l9iMzJ8wcqpQQ1LJflBIOYINS4g57WygljlVKtKl+7Z7eilvsFT3DmbjQAG3asaoRtvsO7JPxa5Kpnd6Idu62Mm71ETNY25jMCTOzVpTtcYrXUfXyk1c89XwjTp0MnCClnt9CU6vN/wGhhCrH/a0wVouR2n/mzwBJvb7s05bzGDc1J+RNW/wZ6BOnPzz2yLacSw0Rh77FFJqVvQPRKAjxDVYSzk77yhzjrxSIuc5Ii7x0KeufvyQxxGgCcX7jYmdEGFrQpJesgEc/oEFr9IPsJBZPKdEPeJj2tPrQThg/fYY/td/6H/3FSf2nXnVEu7hvNJYTX92j6/zqpKVYGruX/HLRvIm1j9eo2ygl9pu3aXBhIBL3ENQ4HAWA2+3wH2cXkzhdSj3ZPugBJvLnPacn8Blwnt1filLiDqXEni16gdvRyRGyJdl0xBG/MuhK/nW8Q4R1n6RlJdsv/a8sG/A2wOcrRnZqzTl2JGIGaxtyzVPnC6+j6mmg0h+Jv76+9kqJOKXEJKVEopQ6KKX+tKXnuGyaJzns0Ff5Pea3+Eo7dG1nV9zmzQBmKLHNM20Tu/30GEDZqqMvauu54EsR6ZudXYJu/WufS/1rm9udlDospZ4rpa6or23IaS6OGPqwwue80V4G+x6IgCC+S/GNsRjWpqN9yUdgxZTO7XRN5YeN7sCXMiK11NlrS3r4feEr++fOQgmk1MuxqvO92NT57spoLS4GXVG5Me2Ktp5LY8ielj00e1r2xNXBuO/WhzzewxOL/50/Or/OMLZAxLPx5YLLkv40Vrdm0IvDuis/gO1BnaGU6CmlrgKeAzYrJZzAJqxkpffsDvbG+gz3t88drJT4SCmxj73ttL22USWI8SNAohF+Cxi++JY7/rtX2rwPV5b375I5YeY+tduuqej7C4A/Ep8Z7XnsKsQM1jakJNBpkj8Sf/igTnOnFU4a0RBjcChwPa0Yw5S+2XmpMyJcmzLCHV7U+eyrni8HgpUbDlzV1nMZdc1TP4DxQbCi55lTcvNubUPVAoC9DS36egPGE9HoTClxk1LigIa03ZwexmGKJKE5OBpj1+BOqkq3l+JwesK7tY5ns7Ay+hWQptGDGi1c7ktJAKYA8zM2u85uyClS6jVS6tLGTnV34NKJP68D8SToUY9fdUSHqBJnJR3pPNATgEwTcc3UM9fcXFf7zAkzh9729f9mra3sm4wl5xQBwkmu0l8MIvxRdNCozAkzb/5g6dkHYZXarrRPPReYCyTb2r0ZwP1KCa+Ueg5WVb1ltmGaBvTAKk4B8HdgS00oilKip1JioFLCaErVNqXEQUqJU7W2SqMflFD6Wv7o/DkABVv2Hw2iErh9u9OWg9Z9k5fkNHSc3Y2YwdpGZE6YKb9Y/bfLE5xlmwem/XFjQ86RUucBe0qpW034PqXMebJGL3cHxQOtNWYLUw60F33HL4BOoO8CZrWV0VqSEq75/DU7ycVOtLoPOLoh7eOqjWkAvVe5ezR37Nqk9V93WM3PZas6J0Sz790MiSVmDtbzQjbm5M2dQh8DfYFcfKV/KdFbG6XEMUqJl5QS3Zowz90GV0L1IwjtEOj3J48aeXMHSCiUgMfyluoIkFJXw8wJM4eC/qKouvveAlMD4w7p9uVnNwy5bfGjwy84xhDmy1sCnQ8E7n5r8UX/uvjjGVdIqUvs098GzgaK7e0uQDYQsLevwKqchpRaAY8CV9nHlmPdj8vs7UuBgkO+T5TAbI2+R6OV9iVbv+v6jdhrgcfnVSdtBviiPOP7mgOFk0ZsdhuBqaDPzp166cm19vsTXWVmZSjhVOv3EGN7YgZrG2B/GD8FkVIZTk58b+l5ddYIVkrEKyXeVkocCSClbnTCQ1Mpm5wwGBgmEE93GVe1Swi8O72b4+Iz8o9p63lYaI+1zCXaNDHI4xdnBVxmEMhsbl+2nFUK1vJcvaSUOb8ETENHV2+xYn2n2sUhWjVubRdDCUtVA4FoVCxw5K7kwZ22OI/YkhZeiK/0qwackgkcCcS8qzvh6mdnrfCmVC6q3Ji2J3A37V8FQ2F5SaGehDss+UEXgEZEgPQr979/yj4Zv88BAmG9NZrrz4pQNSdKXSilfqMmDlZK/T8pdXatqo/PA2NqbQ8EDrXbfoflzf3aPvYy8G3AYz4GeIR1j3ZXe/X72pd8l0Z/pdH3afQsfCljd2C8XgIM92tHjXNkc+2LPD7z3ac8Dr8o2LLf3TX7MifMHFoRShabqrt1AmbFjNa/EjNY2wQtYes3r0YTtC6SsJYyMlt2Tn8l4NFPaDTliZGXW3vslkIY4apIKLGtp2EjZgNmmyYG+VJOiQs44t0h4aJ5dd+3IqWukFKX1d8S8JVWhh16VbXXPKW549amckOaC0A4IuH4ziV/j2bfuxVWvKldcIObGi5llWI4TPEEsEkL3aAQJrvyT38pdXWT5rob4S9JWm3Hd/7FcGtvWEvhYgZQAWJ4zdJ4HSj7XxP7BUlKPUNKfamUOjSo09xsO5610ZWfpNS/S6lfr7V9g5T6iFpNHgNus48tzShyklhuDLQLZVhV20IiQyBuFwiHQCAQccDj2C8OVf9OylFKuKXUISl1wR6eymFOzHD+6PxArXH432UvLHIZwUdWlO2xX+aEmTVJp9JyXsTKsNZFzGBtA7rGrw3ZyyOaOr50drlVIaXeAOwvpX6pVSfpS3Gnb3YOrEwwC5L+WdFqXt2WJlTVdUGgtF+7SB6zpLXErfYNanwbSW2dC9ToYzb7Jmln4o5qzDnlSRHTMNmvOeNuj8Md6gPgTqxeFiiLb/Mku45C5oSZQzMnzLx5q3fHlzJUo88C0Oj7G/pCU5wa/g9wqEBcn3511br62islPABS6l1iJaclsTWGpf2iC5b3UrXZhBqAR0RSDPSyeoxVCieNmOMQIZ0et76Q2hWfAKVEYoKrYr9OniJA3LH98eYipc6TUr8JgC9l6L7z4g9xRQyAsEA8uax/4PZvjig/HUseMVTrVIf9v6s0JXwP8JtSwgsQQaTHGZEIO6AilHI34BdEXsucMHNomrfI9qTUbRfs7sQqXbUBG6p69gMddBqhB8Kme+b2Xzr7w/4h8AvwTyn1TmO/WohTDC1SEysdURd1b2PKsGKb2guPg77bk7LsCMh5vLUHr4iP9EmoMrCXfZt1k7STGUYBecD0hp6XUGk85w4Zd+FL6RItJYqknptOLSnsSqA0YTqIWyePGukZP31GoP4zd1/2vm36MEH8LI0QIMKZE2a+OCVp8IEnhX53AGgt3D+5+9z00CPjX/p2bc48oOK4vu/reGdF0cNjXw7YRq48zZu38D8Ox7XliZENSRWOhq7OvKOUKJNSn9NiF7gLMHnUSC/C/A96qyfOBJ5r7yoYqY7w0HhHuEGhHgLMTp4t83/+16XbX1PlouJ9SjwO/7zCSSMm7vDk6CGx7SNh/Z5XDrgoMHEAQA7gS1kGXKzRYwVC2EUxIgGPfh2Is5O+WB6IX7OTMfYE7dYY2aC/LvZn1KgURIBrommM7yrEPKytzEG+5zzAuSDeWnLf6bfV8aEMYAWH/9qqk6s9Abd5i0avBj5pqzm0BHHp8/u74je0fLGFBjJuak6pN21xpdbOM9pkAoIB1V6zmijUqra1EffBUrJoMO6QURM3NikaIQkAFevTtBA6AMIEDNCT2nmcX5sTMl1jNIawDSEnMOaZitMH+7WLsDYI4DYmVlxy6rdrc94A5gMrP1txyqr3lp7nz5wwMwB8A/re4yL5rxsRI1ySGj4fX2lDC43Moh7d3t2dp28aMgL4GW0cjlXKNIz1rGh2KeWWZlPYFayMOBtUfjmsXcHFJXsXbL//vu8nJZcHU1I2VXf7BCxt1WjPsxZKo7WuK1zLuk8W1tpjAs9ljvH/V0pd25jOYLv41VpI6x8BYECNrJaoOS/GdsQM1lZm34xf7gHS+qcsnLH9MbukZVf7wX+9lLpNYkdXP+U93BM0DijqHF6Mr3SHyxkdFi02t58YVgsdcT8XLOsbNyU3r3urDuxLEYmVDm+c33ixUaU260FKHaq/1Z9otNP+92KiEEc7edTIoeFq72HadHhA32Lvvpb2n5zSpoRMT83fLQxUA0ccN+S5/X+N63n+at35wbcjR12c3HPplft3/v4fWKEkYw/u9tUbe6TOfwn4DjTHGHPFCMf3jtfCw+YfteStvIaOLaWeLKV+LPpX1fGZPGqk+/GrjnyldEWXGcIR6QKcAOKommXx9u5dzZ6W7YlgJG8Me35oTj+ZyUvOBCGO7PmZQykxDChUShxR74lNwVc6pzI+Uhp06SB1v8grYSWGAYQX7lUdsDVgt5LsCO3T01WdXscoyi4XHgYRwEpIa/ZK165MLCSglfllw2Ej3IY/vKq838odHJ4OZColDmjsQz+a9FzjPkmjzaBb/7Ot5tBSVG/J+h7Yv63nUZtAWeY0LIPqb1iZrK3FACBFIBrk+agPpcQtWBqIExpznkAMqVVnviaOtskPYYcneHYk4HL8mZSisX/2Yi3otesHfFvhdVTt4494F4HxPKAKJ42Yo9TI94PpZBbC4PPlIv3X+KART4MV+3q4+GP2w87/eVab6fjCowfHOSu/vmLqJfc8nvvsTjWcbaPjOyn1rvVyHAUeuuCEA8D5XNXG1MGJ3TfnJ3bfcvL5Ny2sySnoEJ/jfu6qAcuD8XhFpKgh7R0i5O3k3XxW5oSZ79Regfxh/ZFDAJaX7rkaS291BrCoRSYNxPkdvwhNep0v8r7SOfhSZgGHzNun+ttNncNHUCuwGCBgGt5ursgOQ5EKJ42Ykzlh5nCs+52yd0vs7150rmLXYpc2WG98t6urLOJM+KaikwA8RyRu6b0sED9kXcjbA/iwvgDwaJM5YaaE1CysD/WnmRNmbh80Pgno2ZbGKr4Up0BcAnzUa2z1L202j5ajDEiYkpvnGDc1p708IH8XRnCLO2nNP2hFg3VDl9CYrhtdlKSEl6RGp8s+WILcjUXx542+Wd6FyaNGGu7E8DmRgAtL89GSZMIyhA1nfPWFr9w/8LHzblxYvJNudjuueeqCBFOfcejgzj/99t74O2svaT4KpNeSAtohhd7zMMFpAMlUhs9yfPnIW/rwqz9dceqH/Se8/4CJ467CSSP+UvnMrjT0NXAlVrZ1DGDyqJGulMz175rhLieC3gDilMv/O6fV9LejSR9P1THLg/EcnFhSb8lRKw7aKYqqu2ZiSTsNtw27oZA+FmBNReYjF388Y17hpBEXAiglDCBNSl3X0nuTcJgiyLbJVX/B747s54wYYp95cfd+IcsLar90ZU/LdoDDucifWGdFSvv5X9sGiBmqO6FVDFar0gVnd3X61w6Mq6z4sjx9CeDJ8pYPSnKEe/9QmfY74NnTU5Ed74j0/L0q5RfAk+mu2t9jmJ0X+hN/B7w9XP59ncJMXRmMXwh4053BPQQ6flPYsx7wxBvhrqYWbr92BAAPdNnm+r6p2Ob7cutxL+/5Xaan+u3vKtMezx+dX0nLc6L971ZPklLiD+AwKfVnUuqv6z61dVjXLXhr9/Xu7gG3+aKnrSfTAiT1+mpQ+eqjyNj7pR6Q0+YVrwDGTc3Rz/v+vbl6894HPHPzVOelE3PD9Z/VfDwBcaApNCWpkR9To9CflLpJdebxlc4RvpQfsOp/n93M0ISbgxXx3Typ5S8ESpIWUMtz4U6q3CtYHn/x5kU9f5w8auRB46fPiOl92sxaOeKAoOnB1NsmSUmpP6vvXKWEOMpIOs5hippgPO5zPbOprMfm/eesPeb+zf6uN4A+b9R/b5zWLWHNbQ+Pfbm28bsUq8rQF9G8no6KHbJyNnBCaWG3QUk9N61wJ1Udc/GdczusUssf1ckhgE0hd0O0eCWImiURFyD7TXjf1cm7+f0t/s41z/PtV2GmAEcrJQ6RUkftOR5wm50Nk9QdSYxUPJDYLbHScYEHozuAQMySKnk4chuDM82+jqga0rszLW6w2saqAtwbwl42lHu3Hivwb1twaHFga2zhKUBoddCLy9AG0B0IlEccKV5DuIBkIOBAV3iNSBDIB/ydncH+HsN0LPInfgME9vJW7OkWpv6jOvlbIJDmCJ5XHHEdaQU3azaE3UPXh71Dgfuyp2V/mx1XVh5vRF77vjJtev7o/KgbDQPT8qsWFmcDeqvGHHAXcIVSor+Uutl13JtLcpnjvIDbjKzrHno3s60n0wLoiHsNQLCsd3Jbz6U2gbK+E81QwrP+4r0OAb5tjTFTS50u4KfMMf7WeFnbKZXxkQpPwEh13l7WZGP12VsPvAi63wXi1UBJ0sXjp8+obRjNAXj6piErSwu73gLMnjxq5Anjp89oFxJnbU1FyKrgk7/poBdhq+JDLvC2La23Myb9sW/VyP3mxgeEJfoeAtT/Lps2DxiROWHm0ARXxUvfrz/mlhTPlpGZE2aeWzhpxHwAO5v6zRa7sA6ELVf1FVATznLLZQ9+19LZ8C3O5rA7GaDAn5TfgOYKCID2Yv0ertA47isPpgQF2tRWEuX2qzCvYyVAVW3fWXMIOc0BrpCRYN6ZfMSmjLDRpcg1EDjc7zH/nhhwbDVWBAKNdgmEpJaH9KjEzft9VZHOvnFlsQSqKNEaHlYJ2mnrjpoZzuAnm8Ke+4DAvnFliV1dAdesss4LgcCB8SV0cQUDH5d2Kc0fnR91Pb7sadm/Y2WjukCEkhzh01McgdRVwbgDDfTf/qhOOkYjRgKP7Tdt3y+HJJQGNEz5qTJV5Y/Ob2i2a50YwiwESHaXvF4WTHvEihEjH/iwPRir+FL6JODYI2Lo+zPH+HdJCaCKdYf+CFC2+phm/z2jSbiqy7vA01he+JY3WH0pAjgQeCMa3SklxgGnAyc1RYatKt50xVcZiRunxLu6jKtqdEjMk9cf1qt6S6dnXQmBqlCl9/LtjNWt/N+/f/rX5FEjvwP9lsMbXP7wxce9EK72vNDeE1damlTP5tPKgynLl048tcY4HYwlpO6n/qplXxd3ijiAt6iJx6vlJS+cNGLONU+dP2hNRZ8nftpwxOnA7wff+cwrVx9492u9k1b0AV6IFQsA0Jfzp7HaKqssrUGqI7RvacRZrRH1rmjYy/9XA0/YjqVeICaGTM89WJ9JyXYxnlLq2cBsAKVEV2BTs+OhfSlDE3CkYC0YfN2laKufdbNp6OVFGaHlnTe5PgYe0mjnjqrAVZqOLgDxRqSkWXOJsZXWMFiVgIgGQ0BkU9hzd32xoy1VtD5/dP6c7GnZW4Ocv7lgQc08pgM3jX+n614/VaYesSXiPtQp9MgfK1N7AmcC6w5+Ye9v948v2xLQxn9f+PvK+U0Zv2DL4BBAl/h1/3kk58JTleInKXUFUO+yW2tgCv1/hhbCrlCzq1JTgaldeVjHTc0pfuLaN5YIRyAXuL2lx1vZO3BUn1WetOLUcElTgk53QACoaKpmcMYm56sCcXSXIlcXYGfahX9h8qiRh0PG86B1l/2WX3rhrfPLd9Z+/PQZH029+vAHKzek3YrlRRw9edTIdp9t3VJc89T5jlDk5KFZneYugVMBkFL/ppQYBKze0Tm2B7aflHqZlPoD4ANbpGeHv8OHx74cAi7JnDDzJkFkUlF1t0sm/3TXRX/f6/nqfTN+fbEFLqtDMXnUyGwQf7dE43WERpbBbc90dgaGO4R2qvMXNtRJkIElE+XA0iQtL5w0ogrrs1Xnd1Qp0Qn4CXgNuKF5s0ba+qtotK6Mi/wc5zcuMLRYFH9ThY63Gwlfym/s4CUN4Jeq1EqAHyrTYnJtUaJJBusfh+yRa1Q6e4uImJG1oGCnN/n80flzjn5p4EXFEferBvrnCGJnzVsc21je4Zwnn75hEVbW4XMA17/T7civyjtl+7Xj6AhixHeVaUnA2Oxp2QtTHaFf9o0rW7El4n5o+tmFDVpWNEQkw9QOzst66gDgZiyN02+icmHNpPA5r6u7y3VzxGEuir+porCt59NSpA34oEfx0pNJ2+P9oyDnu7aeT23iO+evKFsl93r21kd7XXLvVTs0FKJFYoXjEIDKhMhv0TBYpdRPY3mIm4RA1BipPWmEwfrguScdDuILEE4QoY1z+zcoLrlyQ6dKOzTHANw0U5mgIzNj2dmDItopKkJJ23hSpdQLd3LaFcBkpcTBUuo/GjpW4aQRRcClYx+/7OuvVh93w1P547ME5kczl42d/OmK04rYDbOkX540KNvh6fNNJOAqAXEOsC+gdpUXqMJAnB9EUfa07KENTHRWttyTqzGGu5R6i1LicWBm02dbew4EAJdAhBKqHVfjK936fVBK3AGkI7lOSl3XNdXIWcViWKNEo3VYCwZlHWuUOR8nwi0aPatgUFa9uobFEfdKgAjiUAP9xfmv9z2zKZNtbR48ff3XP140//H80fnnHpu8KS0nadNZoMcDy8ojjrO+rkifML86cV32tOzvj39lz+fHvd3j+iNfGuStq789UgsuBpj4/b8XAgOl1O3CWAXoudp1gydoOANu3a6MuGhjhuNWAwTLe7QXhYCtlK0+6maA6s37NKj2enPoVOzMAEK91njerrdxPdjetmaxJS3sB9jYOZTTmPNSB6zzBVI7OwMZPYjEJRg0vLSssh+G2ALsqjHj7kpEtPMogMKyPd8AUEqMUko8ppSI38lpbwD3YRUQaDRPXfHkc/5IfDaQ6zRCQz5bcfJ7dvzm3VjZ4buFXu7kUSPjNy3o/a6OGEmd91lx9fjpMz4YP33GxF3FWM2elj00hGPPkJWcNMvOadkp9svKcOxiJo15eZFS3yel/h1AKZHZxGnXFAbYOocdJIKmAZ12Vkp4v7iyEwEOii/5izpGjKbRlMIBBwNaIBAIT7hr4GylRH1K7McApl3JwRXWVq1xpYRre6Hd9sr9p22IPHzGurfyR//xYP7o/JOOS9mUdnBC8RgQ9wCh9SHPRV+Wp08ujbiKs6dlf3raa/2fHvd2j3MsaQtLrmNR8T77gSZkuj+5+OMZXdv4kv7ElzLUFTHuBkgrdZ4drWpD7ZHSFccuBKjcMKT9yRppx6/ARv5Uk2hJDgLy8ZVGI1b5NKXEKqXEnk3toCIxshZAaPZqzHlFwQM+D3brSzCjO1V9BzkqMrP6+Xy+hPrOGz99xpyErlvuAkjquemNXcVAaArdE1ad7xShLVgZ+2Dp8w7FKh6wDUqJ45UShpS6SEp9984e2DtDKfHk8yeMvL5w0ogn/pb57uAkd2khiK012Wn4i0eHZfKokQYwLVzt6edJqbr4ojv+eKut59QCSFuxTtiJVLIhJxVOGjGncNKIiU31tCsl/g4salZhAV/pnLoKqkiprwNG7+z0jSF3d4HWP1el7NHkOcTYhqYYrEog/FifQsN/UPmlWMH2Oz0Hy70eNqF6dcg7xd5/Pla1it5NmEeb8sBpGyqfPWv18/mj8/+VPzr/yONTinrv7S0fB0wFui8NJFz6ZXn6q8DG7GnZb3bOfOwpd5eZhhG3AtrZDTngNq/hz89Cu5pbC1AT35i001ZtwLipOaY3dckyw1V+9uuPXrwjNZWoUPicV4QdOqc0ORytxLoirLKaTZYJ67PKUwCEOm9y1ZeRjlKiq1LibqWEERDp/YCtVQ11XMJYYOPkyWPzH3/8jNt9Pl+dKx7lnbKWBtK7UVrZd+/duQJWdTj+sD3SCqoKJ43QYHmpgCHba68qJY7CCmMa05zxbN3MDOw48v9d9sKSylBSTczhjrLAd0mS+2z8DDgLGH/lY19Oa+v5tBAK8P9ptNJaqhyfYKXD/BTNTpUShyklBgLs7GUte1r20PVh7+EaIUA0yLMco34abbDaMavDgTtMb2R5wuedkrw/JH8LoJRwKiX+ksxix63Y7nUx/JsLFtRo7i0DPsQO7FdKnKmUGN7Ea2lT/nPahjXTRxU+lj86/7r80fnZxyUX7Zfprvon8B7oo/xxK/dxd/paxPd5BiOuMEI7uiGHHfp4jUZbS6O79MMifeAb1QDJvb8Y0dZz2RGe1OVfm6EkR/naoce01BidtjgGOiPCCLr13Gj0J6X+Wkp9vi1R1DR8pSawDiuGtT5OBa4H9nYXb7RCUbUGbeIs3viuYYRerq5O22fDhv3uAjb4fP96/sknR9783HPD4rYO5/MNrdS9Xgh27kll10EHRuISZu+ORmvmhJl9SgLpzqKqrk8AKCXiAOrIsv4aOAdolnElpTal1GdgLbcCMKzPR90AMuLWf0Qjl4E7Io+MOXZc2couOcm9i+YC/23r+bQU1rNfDHeiJ2LFqd+TPS27V0uPK6Uuk1LfKqUOKCXilBJ9mtunHfr0KPBm/WFQOge0w97Y1Z1ArUZTPKxkLSiYk7Wg4J5qWXK6dmp/8vPdLy4YlJUG/BP4QynRZftz8kfnz8kfnT+xdtC1lPpLKfVltd7kbwNuqjmulHA3ZX7tgQdPX5//wblLJ+ePzr8E+C9oS1ZbhExv1w+eazc3ZF/K4QnVjrRqr/mWsGtTR6umfHvknOser0KEI8GK7u1SNL608LhJgPYX79kyNbKB5HLnPgCdN7meaW5fSglDKREVb7XfY+rK+MjROxnLCSClfhLIklL/4Srd/EL8yoW4i9YQv3JRIG79yvvvuOPey3r2/DHO4yk9FXhLCH3m2rVD7lu58ogNPp9v6t13TxgO5hWA23KACMLxSbvrQ+UogM3+rjPt3+9ipcQ2KhVKiQuVEn2k1FpKPV1K3SzJpZrPS20P7tKSgR6AvdLm399u7o0txORRI4eFqrz/FY6ISuhSfFhdEmy7Cvmj8+f8OnreLcDfQCdmOAO/3fBu1/R6T4werwKfKyWaVQvH/ryOBC6sr/LbXp6KzjVSnuziTqDWpEkGaw1D/rvxd6PKkSNM0VOjXxF+4yvgNSn1RmhSMsZQ4P/sc1OA1UqJi5szx/aBUCACQFgIHRia8UdDKn60Fj6gKN7vGF1XvM4uh3Zu8Rfv1S4zN8dNzdkM/IAIj2ypMUyhD8bSeWyIkHd97AOUKCVObW5HAY8ZcUTEDss3KiVygHk1iRRS6pVgxaK6IyWkOQqIcxadWBOLOmbM7MDNNz/0vs/nu6RPn6969Ojx473Ax8CFkYj3cxAXArZnVuOsKt8tHyr9UxZe5hChaqza7F6s0sBbEy+VEunAI8CEaIxnS2UVKSVOrr1/eelAJ8C3a3N2xXLQgFUY4JFLhj+LEfkQ9CIdcZx23o2Ldhv92fzR+fOOSCyevDnsTv+2PO3l7GnZrSUZNBG4RUrd5BCoGmNXSr1BSv1bfe03hL29HZhhl9D3AcNbuwz8rkqzDFawvK3aoa8WiBOSp3W/X0p9I4BSojsw1457ahBSan/NgwiIA97BfqgqJTKVEmNqlqw6ErVDIq7ssmL+hRlr/qWUcNR3Xkuz+ilvLnCc32M+ga+0zasdtSLloNtdDGsNid2/K0IbQ6Y/PLbJSUw7oyIx8n9VcWYVvtKmL+H/SQlWZvevze0opcz5gTdgGHZRg+3ZgBUy8Bed10jItbp6U8pLVz2dN3tH/Y4ZM7v8sstm3vavf91zNtDF4yn9HKiJe9VGdeX3jurKYbtj4lVZMPXAzOSllYWTRkSk1BVS6ttql2O167MfDlwXpSGrseL8f6y902kEM0GXFE4asUtmVNvhJrNCld4xmIbXk1J5/+5YGnjqmWt8XsP0lZmuvwG3tMaYUurvpdRvAigl9lZKNCU/YJpS4rWGOOGyp2V7SiOunAjGq79cNO/2mLEaPZptsALsPW/B1MA+FQXeX5MOLxiUdZa9OxXr5lRvEsWOkFKvl1JfLqX+2d51NvAU0An+XB7sKNSERGTFVVwNXNTsShxRoHOR64qQ0wyv7xZ6pK3n0pq4k1Z1jcuY125jpZ1xW14Gg9KVMvryVr4UkVDp8IadOhreVaTUq6TUvlovms1hDZBAraIOSokh9jjzgGE7rAinRVVcetlgpcTL9Q3g8/kqw+XO+zE1aK0Bv5mQdN3uaKxmTpiZvqm6a+LK8n6PKiXS7YQSAaCUuEgpMRpASl3QHO9UbaTUK6TU10qp19fe3z9l8Wld49fWmSC3CyABr13FKhIoTezRttNpO6pNx13AS8A9l7/Vs9VKzyolegA/APc28jwB/Az8XF8oAMAAT+UYLPvnlSZMM8ZOiIrBCuBc5zkAS3j7+YJBWftKqQuAQ6XUiwCUEncpJU5rxhAPAIOl1DWi4tOUElEpK9maSKm/lVJ/D1uzZdsGX8qRnqCxnzMsJmSO8Re12TzagEgwodhf0s8xJTevXSbZlCw76Q1gc6iy+5Et0H0fhykSkssd9Rp3DUEpMShaL4+bO4U9AGt6BA+z+z4b+FEpcSxsG/NYG4cn6HUn+rOB8xoyTvfI7PviVy7ACFQ9hhDDfT7fbmes2hwJEDI9s7EkeuYAe9kP6POA86N5j1JK7KGU2GdHx9ZW9KoytbE4WmO1NzwpFRtAC0DboviqjafUZuSPztcDvRWXd3f5K3+oTL1h8LR992uNce2X3WuBhxp5npZSPyClblARTr8pfC4R0U7MqiZMM8ZOiNrNaN9vlwSAs7RDV0dSQz/8eF3nzJoHjFLCC4wA6kyoqA/7QzOv1q5fga3xTkqJ/1NKNCTDuF2glBgPzGorozXkNB/S6A0C8XhbjN9WTMnNGxoJdOquwwmdgVnt0WgdNzUnAuaniPDI1x8dHdXQEb/HrAnR+XmnDRuArb88DytZstkEPGYRgCsk+tm73gX+gV0nvC7cCf50M2wAzK4v1GbyqJHnlBZ2PSgxYe3yOyY98I/d2Fhl7/RfrzZEJIK1PP8UVhnqRfZ9+3TgtKbqrNbBTcB3OwrrqgilJBRVd99li5Z4kqpvxjARRuQ/wG5bBriGN0ctr9rDU3loWIsNJuL97GnZf0nUbgmk1E9LqdcpJYRS4tD62islzmuMclH2tOzj1oTiuoa0QRjj45icVXSJqrGUtaBgbdUxxbcZ5c64eJX2QsGgLAdYsanAYdgxK0qJfZQSZzenQo6U+j9S6ol2f5nAk8C59rYRjeo7LUwR1hLozqrJtAirn4ob5wobQzZlhD/HV7q7vQVKtn7udbvNDE/t/3EJ2plmhuPPiWa/5UmRXI1mbffggih0ZwIXYlU9ajY91rk/B6iOM09RSiRIqYNS6in1hc9UFyf+Wraq8xdS6pydtbXjCF8GIao3pXbbHWWsalNU1W3vHgkrywonjfBLqcux1qvfU0p4pdTVUupo3xtuBc6UUm+TaHTqZF8c0FVgtmg54rZi8qiRe5Wtzuif0Ln04+tf/ejG3d1YreGxM9fOA3Eq6K7JjtDv+0/b545WNPAuB+YoJQ6pq4HtTPqn/X+9XPdOtwzQT1pfI6tIEu30+dJRibp3b8hjG55A6CuNasdRwJ01+6XUoVo6jdcCU6gVq9YcpNSFwJ78Wcv8b8CC5lTeaWmk1C9IqS+QUrd6kkHPNa6zIoYuq0wwr2ntsdsBCswar1G7LclpOKseBiheOmJgNPtNKXU4Qi69tsfl1WXN7UtKXSWlfmW7lY/msBbANPTxWNXxGoY2qkB4lBKfKCXqXu4T+gR2nwIZOyVzwsyEouruGasr+j1xzwedJp85vd9LX5R1OggrR6BFilZIqTdKqT/dfn+vpOUHAxzZc1bflhi3HfAvEP7KDZ0ubuuJtDfyR+f/1N9T9WZZxNUtgvDRwPKtUWAakMt2yX+1sVcXDgcurq+z41/ZM36RP2EhkAk6iPVs2S2VR1qSFlmO3vuPhY9r9FPArT+P7Xb/DppcARwjpS61XfPDm+sRlVIvlVKX2Jt+YCGwAkApIZUSBzen/5ZCKdFHKdGgN7io4Es5RiCkwxT/yhzjb5fSTi3JuKk5czwpyycDOL1bbh83NaddejvOvf6xhcBPZjg+eslhvhThDhkD3CHjk2h0p5Q4XCkRFRFwpYQTX2l12KGDyWWOBVLqDxt6rjupqpMzLtATOB7rZXiHOOMC31o/aU3sYXIo4HRnfFb05pYe1y3yJ5z/ZnH3665fufdNtrc1qiglbqyJRd6e/KKDkgBKAmntSe4vKrx0X9bJoM9zuENPj58+o0kJyLs6ywIJ861KWK3nlbRXEJ6UUmulRDelxN61jysleiglnLZy0U7/btnTsj3rQt43Vwbj0oYmFj8BQmIVxYjJWUWZFoufrDpuy/Whnv6KuDkp1xUMytom0F5KHZZSz7c3RwCfY8VMRQUp9Wwp9SlS6hoJnHuAp2plwLancIHzgDtr9CVbmsr4yCum0MXAE60xXnskUDrgSYCwP724reeyMwxX+WzQQ6c/PDYqnqfNncIDgc4aHS2ty+nAjl5IG4X9sChQShwWduoqT8Bo1H3JnVTdzeEKd8WqfvW/utp13nvl5wCGKzKH3TyO8MAuc24CE2+nr9MiIOzsdW9IG69kT8u+48q3epx/47tdoxI/bWtYXoP1QvEXVpYPSAHI3zRkl4thLV3Z5V+GM0LGPivq/FzGQNmJaACtWgXStgVeB96pSR614+A/wIqh3yk3vNs1zisiM4ATQVz+5JlrcndUJClGdGgxg3XIoxsrIl2CBxEWm4B3CwZlpdbR9COsOLj3wNJvbQGD8iTgfPttyg3MV0pcGuUxmsqDwN52WEOLUvFA4skJVY4eG7uEZuMr3W0Eq3fACtAhh7tscFtPZGek9vt0CQgRDqRcHY3+/F5zNMDqXsFm66/a39HTgUnN7QvYhFWeudwbML5LrHQ0KnayYl3aF4Gy+DVS6oeAq+vSWTzvhkURIGCGnF/vzsYqwMryfn0y4jaW4PB/CFTbFXnCQCVo31cV6S99XpZRkj0t+8UhL+x90fh3uu7R1LFsSaxMLMfBX4hzVNR4XncpqafJo0bu5y9OOgjB/RdMWLDLKiA0F9uwO9HAjPRyVa9vTUPPTjD8B1b1qpoKbiZWsYGdOnWyp2UfOac8bVV8dedjj9g45OMzl5/5RwtPd7enRbVMD3h1zaKCQVlnafTscI/Ajz+O77z3wZOLQrXb2EkSLwEoJRKAb4EPgXHRmoeUugwrmxkgBUthYLU9ZjrWEsT7UurQDjtoQWwvcE3owgAp9dKWGiux0jFeo9cJvStUD2s646bmhJ8c/5J2xRedAUTFGGwJHK7K5xCRB0qWnbjD6k+NpXOR06vRZsil325uX/aN/qfm9GGH6fxkV8azNGdVyhpg/0Z1pI0qwKuU6IwVCnQ3dUnXCB10eoNdmzzpXYDMCTNd0K13srv4rUf6znv+rS3drlXlGemAyh+dP+eSN3tnOoV546+VKd1CcGJAOy74rKwzB7+w9zy/dryR4gjNKo84tYk4uuac+sa0761/ub9mTpg5VBB/sb0kPCNzwszhu0ppVsMZnmSGnaVmyBmNl7pdmvzR+XlnTu83f4k/fu/sadk+4JPWMlyl1HNrfrYVAb6tKTSwI258t6v4vCz9RnBMdFR1FcesOwaB+BtwjM/n251l8lqcFpdUylpQ8I3/kLJXXWu9e3h/SppST/NqYDJW7V+UEo5oe1ul1EVS6vOk1DVxfOcAbwKD7DHbJFxAKXERsFApcWBL9F/yUMLfgWMEYlLXK6uiHqPW8RB/+Ev2+EvVpPbE2Vc9H0I7PgJxwpTcvGZ/Lt0hYy+BmN9/dGBLc/tSSuQoJZpc2MAuCPA9Vjz7VopTw+ka3a3wOW+DK9p5O5V1EY5IKpanNg3LO7JDnN5gQnxGab1yNrsycc7Kg4CE3kmF84G1Z3Za/2HtJcxnz1pV+OSZa6788aL5ZwBdD4gvPWP/+LLZAW1UAv8qjbi+MuFr0PdST5KMUmIvpcRPSomD6mhykkbUhCTsMolwL9679/lm2HliYvctM8dPn9GuQ4/aC4v8iQ+bGA7gdlov+WorSon+WOGJi+pqc8C0fQ7Nr07aHNKOSYDo7O+MsP6LqQK0Aq2iARrpHLrYjI9Md27wjC0YlHVGXe2k1KaU+n9S6q/tXTcCnyklWlL6aSpWAlhN5Z8HlBKvtoHh+j7wL6Ag2h0XPucVjoh4Kugyg1jyX7s9ocruX5ihhO5TcvParnhDA3AnrpkDdEvb4/3TmtNP4XNeYQo9NOzQ0Vq2uh34dzPO/xnLWH2+9s6wU68VCOKrjP4N7cibUtUDiLO9vpexkzKikZBzY9WmlN16eXb/zj/cDBDnrHpHSj1MSl2nnFT+6PzIC39f+c4Lf1+ZM3f0H4cCXVIdQVsXVwggLk6Eb73x3a513S/TsZZY19VxPKWm+hO7UCJc0by+o4Uz4k/ssfnGtp5LB6JGi9WgbYy/mmp9H21/4KI3+hySPS379TDGdxtDHvcenorPgepSV0lEINCxRM5WoVUe1gdPLtJGlWM08L029Es/XdXl5AaeuhFY2QJ6gFuRUkek1F/W2rUF2FSr6MEpSomoLMnWM48SKfW922sURoO+K9zDkiocKWXJkReiVD++wyOMwFLAG9/ltybH5rUGyb2/UAChyi7N0mMVmgMNLdI2ZYSiFQZ0OlbseYNRSjiVEvcqJXrahUCe2P673XmT60OALkWupIb2W7K86x864tCTR40cKqV+CnjTjlX/Czrs2BKu9rRrz3pLs7B434wU95bKfxwwsdG6p/mj8zeVRNy3gqgGIqB1tXaO+KUyZVn2tOy/SLBJqedIqQ/ZUUnda54635HoKrvAaQQLsF6AdolwgMmjRh6mI47jdNhx1/k3LlxT/xkxbJQVGqKhDYw/O4bVAK5SSnjyZqfd+O5nA+654s0B3/xelfy9QI8E7gpqo/s75yw/7ojELVfs5QnkAwjEM0AsHKCFaTXvUtaCgkBwz6rzdXzE4/0h+ZWdJGFtRUr9jJT6EtgqM/Ge7bZvMaTU90mpr7LH7Ay8jeXpbRWUEnsrJb6KmmqAL0UIxJ3AmozNrqui0ucuQNqAD+MAvCnLR7b1XHbGqGue/h3MuRXrDuvWnH56rnH3BfAEjBejMS/7BWthI0/rD1zFzhVBah7wDapaZ4n/iwuw3HSzXr5/4DVYL7o7HMNwhoXDE2yVqjrtkcwJM8UWf+e9+iQvKwLym7KSZIcODAdud6KPPiSh+LWNYXc6MHfIC3vff8O7XdMAlBJpdSXAAawuzxxbEUpOO6JH3meFk0ZM3BWMVQBPasVLCLMYeLSt59KRyB+dP8eJ6U8wIotpZUkopcTBSolkKbW+asW+B35c0vvbsJn27wSDW09J5fBhSRVLj03edGj+6Px/5Y/OLwc4J31tj0NdkWy7i5tjxmrL06rLoYM/WLE0kFU52ih1eoGXCgZlNWb8vYFDaOFEsdpIqYuAA4FHwIq7U0r8vL1mW5SpALoCvaPR2druwWuBIyOGfiDmXf2TcCDlE4DyNUOjWvq0ZTBmAkdMyc1LaWoPzogYDJhpJc7PmzsbpcQxSolxdXkxd9DeBSClXoSliFGnxM/6rsESgCpv5A58KQ2JYZOg7b+hdm+a1yfD3n/Tjhp7Uip7epKr9m3IvHdF+iYvORDIMLXjNeD2mpWkxlIj3fPr6HlfP3PW6nM1Yk9gekA7bviuInXDIS/sfSqWgsSiusrl/rzx8BMFZlGqp/iWJl9QO+OJ64aeHihJHJA2YN3X46fPaPWiMB2dMI6NlaZzTisbqx4slaIXrbhZPTtgxh1oIDAEuASRk1Mdzzx4+vr82udJqSeWlGSuc7kqIj6fb1NrzXd3ptXj9w58ce1LAnENMCLYv+rlhp4npf4cyLQfeiglrlFKRLUKUB3jzq21nJWEtVSxxp7DYKXEoCiPtxIYJKVuvoi2L0WkljjHB9xmZFXv4LPNn92uQ9nKnHmAP1TVrd1njMd1KpgDOFL7fXRDU/vwe8wREUMXRqkU7+lYmfj1qmooJboBPyslzgHYWbwkQNcNru4aTZzfyAZmNcBoVbXnEfZ7PgTOpo5VkWBF3AJ/SeKq+ua9q9I7qfAagK4Jaz6VUr8SrX7zR+dvyB+df9ExSZuvC2ljS7V2vHv76r32WR6Im76jcrl73PxuX2Ckxnjq4bEvVUZrHm1Nxdr0q0FvcCf6L27ruXRQqoEGJ1xGA1t27TSssBQJwr0k4CCsrRIjQmgBWtW0t5PBuwOUlfUOOhyhaJS5jtEA2irh5PFg/6qf3Mviz/nttD7/aOhJ9gerRorqduD/WmqCdYw/W0p9mJS61N41EfjUrjkczXFMuwLYRUqJ1GZ0dWx8tdETuCVzjD+mDFCLcVNzTGGEVjo8Je2yAlptErv/+Llw+M3ytYedOyU3r0mZs4bJAaUpf7Ebmsp1wMAGeudKsGTbNjakY4GQjcm6tfRUxTDQG0H8YuurzrTH/QuRgHuDGXKaOzq2OzC36KDURFepec7AZ1pEPu9/Z6z9b6Xp7ANMKI24Dnp0Q7+bjn15z/eyp2XfWjvre7/OP74oMI1EV+nTO+muQ/HQBX+7DsvgeeWCmwuarcSxO9LFGejVz1N5VGuNVxMSI6X+wZa3UgCFQYd+rMgTqDDNn0EY4L9lVt6Am2flDRgKnA8s/eSTpAPC4bhefn9ag6vyxWgebWKwZi0o0MFBVceaCZGFngUJEwsGZWU15nwp9WZgX6ysepQSg5QS++z8rBZhDHBuLQPzc6XEJVHqexDwHDC2KSfbWeH3AKs8QePhKM1plyIuvSDRcFUd1tbzqI+ieRftryNeHQmk9QdmNdpo9aV0d4cMI67aeCEa87ETpop21kYpsb9SwmuXNjxZSp3XwO6V/W+Ds25to/UFYP/Jo0YmYhnUPyol/vJ7cniDbsMZbvEkyvZKZSjpgIGd/jDcjtCIlhojf3R+8NG+fwRu67F4cTeXv3xD2HsKlkd+Vva07KGZE2a6/9h84AH9Uhav/OPu85a31Dxak8mjRg41Q87JdsJQrhVbHaOxBLWxsSTsahVj3zZWZyoltoYPHZO0uQ8g3CLy8fKgY1iyo/RQCK8H70jsz3DE7FoBPDh//lluwA1/6rjGaFnaTNLn4AeLSo1Kx7FAlXaaM3/8Z0afxpwvpV5fK8P4IeDjhsbURQsp9QYp9Tf2ZgoQwKoWg1LCq5Q4rqneVyl1AXA4li5to3GFxE2GFoeUJodfwlcaaEofuzrh6k6fhSq6iSm5ee09jlX++aP2Uo/XcQecDxDnN9Y3dyJKiQOVEg/XLInV0aYr8DVNqYLlK50TdpiRaq+5DhiOr7RBsWyJ3bb8ALgyslZOAN6wd/8lLMCdVLUvQvfaHQ2Kv/93wt4R7ey1ujzzHqDB4Vg7o1a56+5KiY+VEiPtVaGHuriC2R6h38aStartMT8jGPEmLisdeFk05tBOkCDMXU1PtrUpibiWF0fcJa00nBdLu7msZseqoPcCA41M2ny1FUcrDgYH9t/VAbggYaCU+rb4+E3nA/TqNWd3rhrZqrSpBmXWgoLV4S7BizBFP88fid80MgmrNqOBc6TUQdvTOSCa82wIdtb0CCl1jRfrTOBToMnLG1Lq723vbXKjjHFfiui23nVOyGlWFqdF6hRR390JVvT6GgwX0KiXpTZAAcGaiCpvp4KGf759KUM1usZwfKiBiUw7Iwu4lJ3Er0qpN2CtDNzXtCFEIOTSCxpqrAIk9dw0w3CGIxUbUg+x49xzgPG120weNXJodVFKNzPkNIBZu5vRGuesygXYv8sPC+zqf43CliWrUQDwKCXmAxPsw5uBDCw93BIgG+i3JJDwBH++yIcA5XFU/xNYCnzWzEtqTyggSK3rbMvJdGCqQbdKDKuUulpKfZGU+nGA7GnZYlkgYT8NH08+fcOSWXn9TtAkfQO6M9b9N2x50KvmAWzevJcDzIjDEfq4NeYbo40NVoDsL5d+Etiv4hlXYVwv7CX+xiKl3ljL03kusEAp0dZLvW9iGa1fAiglrldKPKeUaJTKgVIiA5gPNCbh5hqHKQa7wsaUWOxq3Ti9m1cAxGfkH97Wc9kZ46bmWDJCIvIvw1W+xr9l0FlTcvP6NvB0ieUZgCh4fqTULwMpUuptsmLtF8Ubaiq1SalftUuuNhpnRFQklzvqrDazI867cVG1GXa+69+SvPfkUSMFVmLkNr8jV0L1jYBjd/WCrSnvu5/HUc0RPfI+bUh7pUTX7UKtFmCXvLXzCb4AltjbQSn1ECn1G/b2H1LqwloSWHcAw4+sPrh7IBJ30AFd5vxUOGnELhNLbMdOb71OeztGIxngqdwvwxls8fA+pcQ5Solt7g8CfVimO9JnbEagYlbegCfB+BDECkHZiYAE/8uGWBt2GOsLAYLBpL5gzB8zZvYukzTY3mk1iaid4f0taSyW8XzH7ydmrh78UeFTzejuE6xYkx/BWpqXUre6nJN9Q69dsz0RSLPFiVFKHAH8JqXe6YddSr1JKfE8Vsm4egndkyyd8CCAQFyFL+XdxniqdidS+32ycVPBebgS151KlJZIWwrbaJ0zJTfvFeA3RPi11x+9+Oizr3q+vkx9BUQ02iEQUfH87CjrGysk5h9AL+CX5o7RRGYCZ2KYj5YUdsnqltI5Z+m9zz4WLu7yxmdl/7kyVJl4muWlxmQ39IJtrO62Z9/kpRV9kpdv3tFxpUQ20F9K/Z696w0sw77GE30/f+rkIqW+gu2wV7euBh6oUYSwjdY5AHve8vZTBpFwz8SVt0XpstoNtpEau9c2gwrTsbwi4kxoyTGUEknAY8C7wNack2OTK549LsmBS+iz7Jfaj8E4Kydnc80zeo5S4jopdTGAYYQOxnZIxWgd2tzDClYSFnBlJDW02rnW/eTPY7sNb2pfUurNUuq7pNQRpUQiljh2g5UIWgop9V3YYub2F+ZjbMOyAefeJqX+fqeNfClx+FL+4QzznkAIsZt6kRqDMEJzEZHq8tVHdpiM3nFTc5a6EtZOQDsPC5T1+UsJwb/gK50jEF8JxEYaERO6I+ziHR/VXr1QSriUEsJeBj6MnZRFbSghp5m+JS3c6BUSpzdgqXeYYlxJ3qlH9vj+f7jL9rjSY8TnJfr3+nti982znfGBE7GrKu1OXrDcqZf2LQ+mdF9T0fdRKbVZMCjrjHzZ/+XvJqY8UavZNcCztYoJ3E6tv6eU+kkp9cx6hhpCHYmimRNmJodMzzkmjpf/d9kLS5pzPTF2TTaEvAv82hFuyTGk1OXAYODmmn3Z07IdTtz9nEIjhMB+sf1yeM7SSgClRB/73GKAZ5/NyTRNV5eMjAUtalzH2JZ2YbACZC0o8PsPLTsTLSrivkqdUjAoq8ki6bVwAF8Bv0ahr2ZTSwaoAjgRe3lNKZGplJhlezh2iG0Y3KmUuGCbA76U5I1T4t8NO3QR8KhAFGp0SKNjsVT1cPZV0zTasdAMx7f3GNZtSM387LG49HnzylYdI6fk5tUbzuD3mF2CLrM0Cp72rlgVqEwApUQ81orG7QBS6nVS6mYv8wotAq6QaLQQd9jvGWjFmAm6ePu4hTYQQmAIQwxMOeSDy/87J+ea5z7/ZPz0GRN3J2MVQCOuBCGGdp+9sWBQ1lDgTcd693nJr3S7LH9Y/2PtZvcAg2vuU1LqL6TU3zVmHCn1dKDzjvR2B3f+YRKQaIjIY828nBi7LLpFY1iVEskAUupVdqx9DUcW+J0eEHbZZhHBfnYqJQYDy5US59U0XrfuoP4AgUDSG8RoNdpFSEANQx7e+EPBoKwRwCxt6I/mDxo0QyBmZy0oaNLDxdZL3eryt+UrMoAJdSxrtgr2A+HrWrv6YiX+lAAoJfoBYSl1bYHzCDC880ZnFr6U3gG3WeAJGgcAV3cpcqWWJUU2JVYYIw0tvhCIw7A8qyoWDrBzHJ6SDTriOrCt59EYzr5qmp6Sm3cE8Bvw8uNXvb//FY+eUlpX+4hD9w26dXVzJTSk1L8C+9XaVY2VPBNVaSJnRFQkVTia4oFTdo1790b/SkA7tAZTa9ZWLdlta7orJQxTj73CEGHtcgSfB64AEAh0iLBznedg4HMpdWEzxxG25NlfwpwyJ8wUneP6XNgzcUXVkK7f/AinNGeoGLso+8WVHfJHdXJSS/StlPACvyglpkupb619LMEIX1oYdFRvDouRnV36EdBdBSU1L2uFWGGGW1e0QqGELIDS0swGxYPHiA7txsNaQ9aCgi9Nb+QJYYqhWG/8s2yPQDToCfRpS2N1R0ipvwD2qmWg3g38XlsZQEptDv028dZ95sefrNH3uoPiHawAfxV26KHJ4ys6G/8qU/hKNb7SOfhKJ8aM1fpJ6Dw3wYx4u77+6MWtWl2luYybmlMKnAdmn7i0xTtdQYivMtYmVjhUtMZWSuyhlOhiGydjpdQvRqvv5lAr8eX2NHe3B2r2CyDV3aWt4mrbA+5fNhxWHO+sXPD45c+VAEqjtUYjanmSosDDSonXa4UU1ObIoupuiRHtuOPhsS83qRxsjF2fkohrgYngpFf3aCln2svANprQN7zb1QNc0M9Ttfacvy3JE1R8BSIDxN/BcnxJqX014QAAXu+W44WIlAJridFqtDuDFUD4jTX2zVQAHqIUhymlvho4D7bG4/1bKdEuYlC2qxp0GzBaSh0EUEo8r5QY7QkahwNu+/dCwGU+h6/0dOftZY1atovxJ9Ule7yBdlA0/9zebT2XxjJuas6c5N5fzq7ceEC/x678aHRd7QQi2dCiuK7jDcEuR/i7UmIsVgLgtOb0tzPsGNYmvaSOnz5jzvjpMyYelHFcGULYIQGOyMCUgzOiPc+OwtuLz4/b4s/o6XYE/1zVEbaHFb0j47KprAdW11EB7UqgZH1lr8ejOF6MXYyVwfgCgFXBuKg7EOwiJv+SUs+qvV+VpedUmk6R4gjb5cvD/wPQJB2glHhcKTHkr73pY12uSg9W3H6MVqJ9GqwIJaylPQ0YkdTQkB/Hd47KjbWWd/UkrKzmHtHoN5pIqQul1B8AKCXigP5Y8YOqssgVKpqfYBYvjg+undElEEXv825JqKLHTwBo155tPJUmEfan/Q34SpueR6fk5u1Qn9VEZwSd5qHN1GBNARZjlVi9DCtBp0UQWvhdIdEkSaxa1NxDwkKIILtpLLdSIjXFU3yfxuHYv/MP6+zdUmihAQTCbbrMqCSlSqnvk1Jfv/3+K58Ys69DhEd1T1j1WeGkEVU7OjdGDAADS9EnwQjHR7NfpcTdSolDd3TMrx1nAhW/VaU8BJCTs3ke8AOIE4AzsKpObsXn8+X4/Z3ig8EkDzDL5/PFnsGtRLs0WO2Y1eHAbZHE8DeOEtcZ7kXxMwsGZUXNGyClfhoYIKVeDFt12RKj1X+0sMWNjwb+U/BaD1bMznBtmptsbPg51e0vdl9GdEMmdjuc8RuXAsRl/HF8W8+lKYy5+7oIcAGY2pW45uvtQxvMO5OPEOBwhUU2MKsZRuuJwItS6vek1J/a4vwtgjMiKpMqHM2qdd9r0lHb6GLa27sj51aGknIBNvm7TLX3KSyR+4hGayNknPf7SZn5BYOyOjd1EKVEvzpCAfht4yGXRbRTDO784zNN7T/G7sHBCSUHAgxNLI5a8R9by/wS4Ljtj93wbtcEB+Y5TsyZ+aPza1WsMj8CMdjUKScBr2x32jVWoJGoXb0tRivQLg1WsIzWrAUF91UfU3JMcEDVV+7F8ScCjzSjGtZfkFKvh63agS8Df/EOtBfs7OuzMDHsLwtYfz83sS9Mk0nr99FGw1WhHa6KnLaeS1MZNzVnZWr/j54OVfTsVrpSPlr7mKHF0UBNeE2Tbq5KCQeWtubldRkl7ZFek46a02vSURN3Y2MV4PlPCk9ZBHrD3KKDM2Ebh8DtOiFynP/Asi9cy7yDgIL5+wy6sLGrWXb1qwXArdsfy5ww07m2ss9pwOdTc5/5pLkXE2PXpijsng+wIhBXn750g7GLnAwC/rP9sfKI8/oIRsJhicULa+8XYkspCKF10tSI2X+rZ/a556TL4ag61pa9iinxtDLt1mCt4eDJRRH30vhjsD5s/whlVn/74/jOrmiOIaVeChxhj1HjLYiGrFa0yQbQaFOjwVIO2G2XO6PB2VdN02bYs7hi3aHeKbl5HdZTff6Nk8cbzqpXguV9LpmSm3dMrUNKIGp0DRt1c1VKGEoJlx1Gk0Hd8YlRJegyMzZ3Ch/R0uPsDuR+9vohlaHkvYAuwKzMCTOHwlaHwMR9fl4864BX1kiB2B9YLCLiBff8hI1zj+23VyOGCWK90Ly9/YHM5MWjgd5YQu0xYuyUZYGEJQCLA4lR0R7U27cAANrGSURBVGJVSmQpJQwpdfmOCgh9U5G2p4EuT3RE7q91Tgo66LMiEl0HAbNm5Q0YClBS0u+SSCQ+PjV1+WvYqzc+n293fiFuVdq9wQpbCwvcGNyr8i1XYdyhcXNSPi4YlBVto/U7KXWV7UF6FchrT96kn8Z1PQs4DsELAnGbQFyGLYDeVNmvGDAlN28o2jUAxB7ArI5stJrh+MuBJRjBdx+/6v37p+TmDcVXOsfvMe8GKEkOP9VQ5Qj7s/8c8LxSwsBaFvt652dFB0dEVHsCIpZ920yUEuN6JK56rCHLl1kLCuYBR1YfXDrdtcqT6lrt/aVgUNY1BYOyHDtqXxspdaWU+gkp9fztjzlEZFKyuzjUN3nJB828nBi7AS5hBgDijXCzpa2UEl2BH4D7dnQ8e1q2F8RpJuKNB07bsFWKzTTTBmu6uHb0vSkt7Xse6BUJCZsu9vl8E2PGauvSIQxWsIzWwe+vPCvUy/+wY4srB3ijYFCWJ9rj2B6kq4FbpdTarpGeHO1xGot7YfxEMy6iK0/YfEfWgoKJWQsKnrL/jX1hmodka6a09tKBwyvGTc2pcCetmIrpSjVDCTcAakpu3pHru4UeN4VGQL+G9mV/Dwrs/7WU+nYp9QstNffaOEwRTKx0pDYzSWy3xn7hOLc0kNrDWr6sv5BI1oKCyIEvrj1HhI0BWCUn/xvuHtj8+wmZ/ywYlHXzjmLllRK9lRJ/tzUutyFzwsw9lpYOyuiRuOrtL265pkWrF8XYNaiJXT0oofTgKHRXBFwFPL2jg0MSSm4EklIdoZpSxMzKG3CqJuVzMLygg9Ra9r///iuPAo4G8cjYsR8GozC/GI2kXRUOaAj7fb782oJBWUuAR0N9qpf/eH3n7IMfLNphbeymIqX+odbmBcC/lRJH2aEDrU7BoKyhLrx7RNKDDxz8UNGK2scmjxo5FLtIgDftemp+tmvPx6gfBQTs6iqCKIvgtzbB8r4ey0ARAnAjwp99ueq2BcMDM37rYRZ0r+98pURnIF1KvUBKPcnel6qUKItGFat68aUM1eg0gTgEK0msWeVkd1ek1Hro3VMnbPZ3/Qp4GNgAqMJJI+r9XWYtKFhZMChrhH//8jvdC+JvdfiNB7CqmwUKBmVtv6JzDnA/VvGTldt1lQuEF2zZr93mBsRoX2wIeZYArAzENbtctn2/er6u4xtD7r8nGGF9WGLxJ3l5nRI0KfeBcTWYqwQVF2lSA9jP0+E5S+fkz71omd+fagphxpIH24gOZ7ACZC0o+N8vo3vs5/0heaxznWdGwaCs47MWFJS30HDzgBlY1S62VnNpobF2iDb0RGGKjY7N7jtr77eNVYX1dwyZ4bWG4exhAMEpuXnDY0Zr/YybmjNnSm7ecETkFLQjF7hpSm7eO+Om5gTaem5NRIHwYy1jma74DWsr1h88+F3zcNHJuYLq8c++GwynrowEUl+t4/PxBtBDKbG3lLrGK/YMlrTaAS09+bBDn+KMCLBeHmqW4mKf40ailBCdvHc9v6m6i+k0wv8quOfsOiuh7Qg7DOuO+XsPcgjEzYCh0R6BkGz793gQ+EJKvY2xevVTF6S5jDOuFOgPF913Ziy8I0aDWOhPXA2wIhhf0dQ+7CTR94AnauQhtyd7WnYCxPd3Yj5zQnL8SI35MhgeQfkmITa9M2yYqeymcwB8Pl9P6NcnNbXwq2uvndao71KM6NFhQgK258Bpay/TcebFImQcrNGf/jFkz5F1LVs1Byn1L1Lqy6TUEaVEEjBHKfG3aI6xM37O7fZPYYpjQn2qn89aULB9yUMJ2o2tFmCGVrsABzGpjUYxbmrOnHGPH3czcBGwf0LXnz9s6zk1FdsIrZFzkpdNvnCAO2lll95J3zyN1lRXZp4aCaRcBTqvjnjdq4ExtYxVsBQ0Ht1B26gTMXQRWImFxDJwm4RSoldpILVwwZb9MvunLPquscZqbYQpZgB+O8nTCPat3kavWEod2W5FCoA1FX1vC5meuKN7fTq7qWPH2P2IMyI1MaypzeimK5a++s5CBkcC8SekhH8F4w1weECHNQmnCaFv3kH7f4AQJSX9xjRjXjGaSYc1WAH2+WXRNOAs4GCjwvGBRt9Ny+qSpmMZhC3lzd2GgkFZQ+O+Sv2n6Q37A/tW3rODJgqIgAZhCMPVCyuzUcce9E1g3NScDxK7f59fueGgnKf++cKpbT2fpjJuas6ccVNzJtZ4UP/v32M3nZhy/2t7xn2FJSwhoNZLjVJCKiWuApBSz5VSf1O7Pyn121LqZ1tj7p6QEQEQiElALBygaSTPXHZWIKKdjoXF2f/XnI62SmC59D2RlPA61wrvRQWDsk4FUErcqJS4dkfn/bzh8KOcIrQkwVXxcHPGj7F7cUTilkSAfePKj6mvbV1IqdcCBwNv1dWmn6fyfq+IVOYk1RjGNfnVxtFS6m2KWzz33LDOQoSvAvM9n8/XoUPGOjod2mAFyFpQ8G6kc2gWgEA4AK92mKe0xFhS6kLgECn1twBKiauUEue0xFgFg7KGarQSEdHV8DuNxA8z9t2+zfjpM+Y4PKHbQeBKODjiSnKFQOBJXfZRLBygacR1WjQMEV4crOj12JTcvPS2nk+0cIWNQ3q6/9BOwgjCCCJmr6H37K2UuBxLVPvyHSXOKCW6KyXqjX2NFiGnPlKj1+MrvTVmrDaNdxaft1ytOiFdYM4qnDSioLn9ZS0omLN3/sLbnaWugQLxk0a//svoHtdiSQH+pTRl5oSZQ4CDw9r18MNjX27V8KkYHZu1Ie86gFXBuFVNOV8pcYpSIs72/O/ws5c9LTt5RSC+Z6an6g9DMBt0xHb0ONiBo6eqKv0/WjsTevb8MaYj3MZ0eIMVwFnk9gF+QGu0QHDT7yP7vlUwKCs12mPVfAlsqZ+/A6dHe4yCQVmOcOfAs1hFAcD6O8kdte2874qnERozFHEkdvl9snBW/xgoGXDYlNy8vxgfMern7Kue24x2jgLd2XAX503JnXVzR5a6qoXq7l7kP6XTHRyS+Kru4cn/b/WWgYeVrjz6WGAscNSOdAqxSrCuUEpEXZFjR4Rc5siy5MgucV9qC5QSPStCyf8Omt5OsvfH30azbztP4ESzU7jC+0vSQ53uznwSuHD7dnt3+m2aQ4TCwIvRHD/Grs/86qQSgHUhb1ljz1VK9AfeBW6sp+mpJsKxwJ90/fCcpXPA/6DlYa3Ms7b/xOfzGUVF+wx1OPwFTmf1k42dU4zosks8GLIWFMwRiBzg1nCPwJWh/tWr3EvizwCWzztorzt/vL5zk0sO1oWdgZgD/B9YDwqlxIXN1W4tGJTVH/jCWeQZhEDreuRozr9xYZEw0taa4ZW6+5CHJ3TZd9oPQA9hBJq1FLg7M25qzq+e1KWfmsG0/YB76eD6rAC2t3J4SnLB173c88TawH43bF545h6rv71jxLzXZh0IROr47L6EFdPa8klovpS4uGrDLbT4vMXH2nW5r7BsQK7b8K9PdpfcHe3OsxYUFPuHlB2pHXq1a433ta65gw6sfTxzwsy0hcX7DhzUKb+gcNKIWHJKjMbiB4g3wp0ae6KUehnWM/mhnbVzCvNCLEWL7+xdd4CuhKQFO2g+AsSekYj3rjFjVGy1oI3ZJQxW+LNyy355yx8f/P7KvlgZzV8blY474r9MXT8/e+B10dZtlVKHpdQ18azjgCeAno3tp2BQ1tD5gwbd/NupfT7Qhv4D2FcLfQFwhEDcwU6KA0zJzROu+F5ddWSj8Jc4z0/s/sN1rvgNhQ5P+UOvP3pxQlOvbXcnUNL/W2uZSAggznBVXPf6o6PbTSGJJuErnbOxa/jopaGDNmgM7K+/y3BV/A0rG/YvBo6U+g8p9cutNMNzBcJILnfkt9J4uxyvLxz9ydKSLFfQ9P7n4bEvR628ZW0qzihat/mO5W7TE6nShv7s95F9b6uV8HpxRDsd8zYfeFFLjB1j1yZ/dL52CpM9PFWNimFVSrgApNRKSl2nd3b8O137a81xA70VS/JH55tKiTEOY921QD7w95qKVjUkJGx40uEIFrOTeNgYrUeHlLVqCFkLCn4DTv7pyq6XeX9L+qdRYTwIXPvbWb1fdS2K/9AIGkcAKhrC+wWDskTyYd3vrBq+5VPPL0needft1bP8zI1DPXMT10S6hHrFq9SVImy4A1mVmZHOwQHxX6bNBTzBvSoHas0hHhKOBZyehQkinBEodm7y7L93wYIamZidzs/h3bKvWbGPA/6gKD9z0MV3/R56dem457csOtO3ZcnJl9BK2d27HsZsoBpwgzbMUOLfy1Ydc9CU3LzTxk3N6bAGVeYYv15+3YSbgOctaU0iOuL+FEgCtvFs2pViBgHf1xEuED0s/dUnBAKN/pfwpXwRi2H9K1Ny847EUoH4tCZO3faMJwOBpSWTbnCIcPCy/SbnKTUyRUpdascm7w8sk1JvVEokAsOAX6XUq5USnYDTgDwpdaEds3wR8JaUeolSIhP4B/CklHoRcLDZKdyl9LK11yc/2/0B15K4uzU6AiI4eNOi4t8z9vq2cNKI31r1FxNjl0FrKlcHvQ1OblJKpAK/KCVulVK/urO231WkjYhgkOEM1izvH6113H7AYMABOm9W3oCc4TlL50yadM2hfn/Xbl265M+88sq3WuTlL0bj2GUN1hqGPLbhyYJBWU8Bx2qXOdnzR+JNGn0TYGq0+fuIvgXO9e45RqUzHOkU6hXuEsx2LffOMwIOM5Ic7mGmhvZwrvUsFWFDmHGRzjo+0s3Y4tootHBph5mEQRwIHfddioj7LmXruCkv/TVPxVOQAAV/Oj3di/782X5Qm45N7v9kLSjYXoC7TiL+TicJRwThMHV1ceLhSomMbgdwbtmqo1eFqztfNyU3b+q4qTmxL1sj2arPCtJwVXyX1OP7q0pXDhsO/PbYuA9fSN/r7QdHXfN0hzRc94xX6+dXH09f908clPims7t7kUbq8TXHlRKHY5U0PBl4CtgLWNySczKFvlrorfcjJzH91b9gh6XkgXYJI+R755mTHj390g+vxlIvKSoNpC5dWrpX//27/LDi0O5f/YIl3P8E0A3rd3kJVrndHsD7WEVRXra3nwHOxtKb7gFMwqpytgRLJugK4GNgEZZKyorgPpXf4dTPA5cKhEODZ+CWVT2c+2yaBiNa41cSYxckglG6JeJujA6rF/gV2NGS/jaUma6TgaXfVHR6HUBKPWZWXr87+FNjeuu9x+9PuxKoLCnp+5c47Rhtwy5vsMJWEezPfhzfebD3x6TZjo3uYwBDIAzXsrhsYABQbZQ5cGp3iogIDZSLsPCghcCgGijVHrMikhEyRYVzjgiI0kh6OC3cPZDpXhj/hfA7ykI9/enhXoHenrmJXwQOKB/s2OxaEu4STHMtj8t3rvNsCO1RlRTqFUiO/zL1NxEy/IHsCrdR7DzAudrzuEC4BCIENEq3UDiqzyHi/UVHjI1VG9Mygc1CMCux+4/rSpaddHdi9+/vhJxbovwr3S2wPVi20XTq7Cm5eZ2A23XEdfWWxaddPPXqd++JBJPvGzc1p7ot59lY/C7jPICBcV/S3b3IAbyIL+VYfKWFSokBwBfAvZPWDvjWa5jPLwvEZ8xtSYPVl5JjIM7UaK3REft7oFpsvI6LBAwQaNPNpgVnX/Hag1c+3+1A5gMPfbXm2OvCppuNVd3OBrL4M0ZvA3ASMNfeXgkM4c+qbouATKxSlgC/AQlAAEBK/b29jVIiHVglpc4EKCjNAjgPcIUNh7Ggcy9/ZuIvE1vg2mPsJhjokFuYGQ1tL6VeD5xZX7ur3u4+ENKHC/j3I33npdtFgIrA+Ay4HXBi33sef/z0gbDfuSCeuOWWB4ubfjUxoonQrVu0qc2x46xmYelQhthJfGg0UEo4sR4cS6TUO5TAsuckaWSIwvSHL91nU8G5fyT1+ubTovwfPwMeAHqNnz5jzZTcPOFOXlGhwx6Hw1OWeOnE3Fgt7yjx2kO5x5WvPez+YHmf/YFVCV1/eSI+I3/S2VdNi7T13BrCrFvG3bpgy5n3nJp2m9nLMy+s0WHTwL0pI/x6142uC5UsG3XPmj02bgh7Z2K91AaB4fmj86P7PfGlDK32Rq73+I1TDMQiYDxwEKBi4QB/xfaw2vcuU2CEHZjOSjBuWTPg06embxm6FFi0dOKpsqXmoJS4BbgL6Cml3gDW/WuTN+WU+w658MaCTpkPFE4aMaGlxo+x65Pz8l7VSY5w8XvnLOuxs3Z2KMwE4DnbaN0pl77Z65UfKtPOHZa06cwzOq0/HkvDPVNKXTErb8DvQD9g/FdfXvhHXNymV6qr0zNTU5cfcO21L/wWhcuKEQV2maSrhrJVCNuqBNSixqpNBJgKvAbWl8yWxNpmTlkLCiY2di5blpwiwcDhqng0uffG3wDSB626FWCfc4aLTgNmfBOq6ubxF+81KhoXEsPinOumfjb2gYsPAKQwgqWVGw68p3j5iSvs+MJ2z4ItZ64AMHH9F5AlqZGDKhMipV03us4D8qRKDg0ujUzAqhTjAB3VymmFz3mFeWfyaYDy+o2zBLiDTtOHr/RTfKUTY8bqjtm2iplxlDd55d5gfAU83G394JKMkKt7Vvrvb7fwNKYDV9QYq2Ddv+4+9/QBBZ36CqwQhBgxmkyl6VixMeRpiA7rvsCdQIN013+sTO3lEZFVXsN8B/gvcKNtrA4FvR/oJK15NDl54+zq6vRMQJeU9I9r6nXEiD67nYe1rVFKXISle3malHpzc/qakpv3AZAN9EsbkGts+L1/tSvB/9U/nlDDlRKG1kIt/uCl7FBVt/XAvuOm5nQID2BH4vVHRztC1RlTSpafcAra0d1wVn6UtscHD5xz7ZPttiTl4/+YcYsZjr8XSBk3NacMLCOy7wr3JQLxsEYnzI6L45puXRBoBARNhGyKh3Xx0AHH6rRwbkrP6qKuPQPhiKEPNg0OcYX/lNCywwBux1caW0puJFNy80SnPd+ZsnbZiCvcERcC/ajAeA84BFCtUUDkkLuecleHEiq7JqzZ8vmEG7q29Hgxdm2yp2UrwMgfnX90fW1t7dUVUuqdPtuyp2WfDLwHPJM/On9szf5ZeQO6Ap9hPUfRGrOwcH+xelW2wHI23e7z+WL3pXbCbhHD2s4IAsX2/03m9UfHdEac9zdhBJ+5csoIDYsik0eNfD9QknjI5FEjxfjp2lRKjEToM4Fn0wbM+A/kXBeVK4ixFTsMIHdKbt71wHhtuu7YvPDMEx+78uOHtem+c9zUnHYX/5TQ9dczKtYfRMag6eWWbKGlHgA8gy9lD2BC94h1/z+pvJKzKyocg0T1R9qX/L5AzN/cKVRVFW/m917t+RLLMJLAl8AmjR5c1Dk8Lqnc4TVXentGStN76mIXxSu8JMktVXGdA7+XpEYWeKvFrwnVjjMBRyxmtemMm5qj73vl7o3TNpzA6VXiu95h1z9AXwWYIAJTcvOGR8toVUqcjRW/uk1/G6t6nAY4u7C2PsH2GDHqxS0iaETaztooJbpJqdfb2qs7JXta9lDQ74AQAn3RQzNTOu0fX/5/Wqf/G5LOAeG1y5kLMCgt6eoErUEEid2X2hW7XUhAWyOlfk1KfYqU2lRKJCklXldKDGpsP2F/2vVohyut/8e1k2FmAb09qRV722OVZWS9+qI7cU2gfO2hF03JzYv9vVuIcVNzqsZNzbk7feCbQ9xJaz/VpvtqYMm0Oyc+8fqjF7erZSV/8YBSYYQ2nX3VtB0tr7wvENWbHYYJcES1/6V+3qpvwk4CIZceBUxM3+J6uPdqTx5QBXyj0fdp9NfAAoGY3rnIebRhskf5Ku8WbQIIdESYK2al3yt8ZYenX125d8JNFedjSSvdAQyPhQE0nZnLzjo8YGj/a4nhEaCnWnuFEc1QDjtecBJw/Q4OXwksX1qS9VI0xoqxe9Pb7d8z1RHas67jSomBQKFSYjTA6glfjV094auPV0/4amwdpwwDHAAanMXhuGNNnfmWJnkshKqB/UAcE4k475o/76jS6uqEiMMReAAY7vP5YveldkTMgGlb9sZ6oDS6qkfx0hHdEZFyh7v88Zp9nfZcMxcgsWvJVlWAM/5vRrjTXm8vCld37iQc/nozKWM0j1HXPP372PvH/A04wHCVL6lYd+hlWxafVjglN++UKbl57aLwQKiqW6oZSqrcYfUuuyLWj4nuzwGm9Ey4P+3aymN+OajylG+PqFg+N7tqyJoewYu3pIXvA74HS5INq8rCm8BBm9PDSZ5bytPXpkbu0y6N9R8miNl/GSsWs9osJjx3+qCNVd2Py874ZUXhpBFbQLxoeYu2Fr1Q0RjHLkm9H9sZrMdNuv8G4JhUz6Y5hZNGxEKOYjSbTWF3fknEtWVHxyaPGjn012eOP3fL4h6vA18unjTlXo1+Evgb8GQdRquw7lKmOSwxpI9KTHCDOBhCtwoqewzPWbpgeM7SOd9+c17Cli190w3DPOP22yfdFDNW2x8xg7UNseViMqXU3wIoJUYrJfat77wpuXlOECPRjvfPvur5rZJKnpTKbx3uUHnZqoxtRGBTMz+7SBjBQjSTp+TOurnDlxntAIybmvN7+l5vH5Y24P1/RYKJxcB7hqv8h9ceumKHShGtxZQrPj0C9AFAH+oqOesrnfN7FxEE2De+fAts/azus9+ZoZ97XlY9be7gqoeAm7BKKYYFwg88iK/0l4yrqioADnxx7WvB/tWnmEkRfyQjGGyFBMfdCqWE8EfivgyZHuJdFVdDTWKWcQyIzwCHJ7lQRms8KXWFlHprMkzmhJlDF5fsPRE0JYH0MzInzIzdV2I0m9KIa3VI/9U0mTxq5FDQX5lB5x3LPz/grHW/DDjbNAK32C/MNWzjlLnx3a6OPT3hS/+eFii7s3t15alpYYchQvOBfYbnrLwvJ2dLBODJJ0eMBn0D8NQtt0x+vwUvL0YziBmsbYyUugpAKREH3APcXN85qf0+uhhId8Wvn1V7/3k3LNKRoOudUJV3v8mjRm792w4/vuI3b9ri77Tp7Q3cS12GSoyocvZV0/R5N/z3LjCygX+AMXjzwjNfnZL7+XNTcvN2KtnSUrgS1k+2PW8CS9pN7qjd71XJi0EHDVhbs68msUEpMRZYqGTZZmopbtT2lColDgTY/72VH0Q6B2c4Nrm9BYOyklvqunZHvlo93P1J4amOZHfxH9Ovuf/Tmv12zOoJrsQ1BcGKHve98p9rT2/OOEqJZKXEDKXEodsdOhuEw/ooiRrB9RgxmkWCEXYY6MTt9wtH5FjAYd+/XBvn9kvSDv/2qhTblFBNMdwv5nYO9js8IZyc7CQJKj4SVAwZnrN0a3Een88Xt3nzno+73eVmfPzGWBx2OyZmsLYTpNTVwIHANQBKiZ5Kif131DZU1fVcYYRIyfzs4x0cngWkJ/bYvE2GZfWWQfNrLRNGVaYoxs4ZNzUnNG5qzpROe76zpztx7QtgnAd68bS77p3xxHXTT5ySm9cqXu8puXnDQxU9s62EAh3G0iFWO2obxkgHsf7+0zbsKM71c+AlYNmOlvWVEicAPyslTgNwL4t/TCAMoFH1wWPsnCUlWbdWhxM7uR2B/2x/bNzUHDO1b96ZwgiVFy85+f4puXnNeVkYgBW+tNWVdc1T54sEZ9lJ1j2FnX6WYsRoDAM8VXsb6KTt93faY6398qwBInCiY97yQw+s1SQI/FGzkT0t2xB4RzqElW4FmJDwVU7Olu3vaXcHAqlxqakr/3HjjY+VRPdqYkSTmEpAO8KqurGV+4DTlBK9pdRlNTutOMgD+yBCn426+rl12/fRZb9lczfO7Y87wX89tR8g2vE5lve2pmCC2v7cGC3LqKufXQGMnpKbd6czvuiZirVDR4AeAZigI8/d8cD7VUX7v4N26Pguv/VxJ67tWbLspDkACV1+6etK2NC9ZPmJ3wEkdP25nyu+qEvJ8hO+B0jo9mN/l3dLeknh334ESOz2wwCHtySttPD4nwA8KUuGwYAxlkeMIPAs8EJdGeRpjuB+AW0Ed3RMSr2cP1+skoH9pdRf1moy2z4+096eo9F+Mz10DvBB03+DMWpQSiQWlv33ilTP5vARPfJeg0v/0ubsq54rmJKbNwKYjQg/9/qjo8+qI9Fup0ipf7UroG1lY3W32yrDyXsNSCn4aGlp1leAKpw0IhbyEaPZLAvErQpjHJI9Lfvw/NH539bs37ywt11iXGvAbTg7T0hyGGitawxSg21LOp82p9KZdEhCwHLTIAJs99x78MFLRkLv60E8fuWVb8Y0hNs5MYO1/XId8EqNsaqU6CulXoFVcnEPtOvBHZ104a3zf/vvRcevLynsso1HZdzUnDlTcvOGY1fUag19xhg7ZtzUnGXAsCevf/XNUFWXM7HKbRpVGw86EzsGq2rj/lRt3B/gHwCVG7c6Eq4CqNxw0DZ9Vq4/eJvtivWHbLMdKN2j9qYBrNzZZ8BjmHulGuHKBlzOv4GLlBKZUuoipYQhpQ4Aj9Q0yFpQ4J97QmaVqHKcCZzfgD5j1MPzf1z5wIqyPTK6xK995+GxLwfqajduas5XT1z75sSwv9NtwcrurwKNiqFWSriBkJ10BUDmhJleGDYm3lmxat+MX0+fdfM/6xw/RozGYElQuWoKAXyePS17+OsTw/tGkkKXdercZ9OWpHjTUsAAM7SaTeFeRABDa22IP+Xxbny3qyPJ6PTIqqCxXIhKDYn9gYuG5yzdes+7777xfzPNzu86HP7qSCQuFgrQAYiFBLRTpNRbpNSfACglcoClSomT4tL/eAJAGIG/eFdriATc75gh15DJo0a6a+8fNzVnzripORNjxmr7IFTVdTKIaiACOhCXPu9aRGggMDCp5zeHpQ+a/jfA2u711WHpA18/vmY7ufcXQ9MHvnHcn9uzD++015vH1myn9Jl1RKe93h5es+1OWnE56EB9oQA1rA95itcEvZ/urI3NzcAZtrF6DPCrLea9LSbTnRvdnoJBWTFh+WaSOWHmULX6pFyAjVXdT6gv2SltwAc+b9rC1aWFx54xJTdvSCOHuw5YrJTYukQrMP8Jol9VOHHMzozlGDGagATtsH7U7ks+idyg0U8a5c4he63fcoLQOgzaRGAarl4UR0y+rQiz3iiZDQzvNemoOQDrQp5/lpvOniemFq02xOYU0CYETqsZxOfzDQ0GE2eEw3GOSMTrwi4cEKN9E/Owdgx+Af698L3XKsPVGUeARpueV+oSBTec4S/MsPOKlMz1pwJvtP50YzSEbb3eQl1y71W1/pY527Vu9Pai7XYsmpKbl08DPOzZ07IFiC5BLVbv/ApASl0CfGJvHoslffSXut6ulXHPAVfYE321vn5j1I3TCN4ZNmveRUVNPHqdf8+zr5oWmZKbtz/wK/DelNxZT4P4uIEvrvOAGVLqcoB/PHnRwU7jtLsSXOVf/nbn6Fn1nBsjRmNRWC/UHgEcXqB7gCVKlVbl56Dl6379qX+P99Aow9lzX2EEzov0mLOw6oi7r+0ltR9q7l8po5yYK8NaHCdEBHRgFTjPmZXXvwBEnhDn+rR22vaPENTzHYrRPogZrB0A2yi4dd5reXfwZ+JDnQ+qLvst/3H9L3tgOMwriBms7RrbaGiVG2VDxzoycXOPryvSXT1c1Y5GDjEAmA+YOzj2izZ0eaRLcAwxg7XJDLvvwSvD5sDjrC1t0sAqYeOm5myekpt3N5Zm5R2gb5qSmzesPqNVSj0DmFGz/cWqE/6ltaEP76FuhdHNuZQYMf5C/uj8OdnTsocZmJ8CvyZX8yJY6hQCQZfy6mfGT5/xlN18DvAUnAjctbUPA32KiTigr6f6jhGpG4MRsz8Q+QUcfwPuNE1xZ2JisaO8PMMEYRLL6egwxEICOhafAdXUk5V7/k0Llxmu8KLiZd3cOzoeI8bOcAm9D0BfT3VCQ9orJQ5QSlwOXAxIKbVfKWHY1ZEAyFpQEAn1r64QAWNYi0x6NyBzwsyhy8v2etTa0hrEk8DwRiQ7ZWAVcADwADftrJiFUuIgpcRWeaHMCTOPKg+ljAhr1z2PXf7c1029jhgxdkb+6Pw5JsbbJkbW2Tc7nwYuw1rFuSxrQcFTtdsqJY5TSmTWbN/47v+zd97xUVRdA37ubE8vJKEECJ0Ai71gHcAeVCzfi4qKqCiKit3Y1x4LdhRFX429vfbYwbFiRTBI6ISeBEJ6tu/9/tgNRgSSbDbZLMzjL2Zn5s69Z8LsnTPnnpIlMozuV5IM3vrLs1bfKaX5LnCvDimrkmDFK0OPnos3K4p3W6U9vUhAbKArrDFEyBqyLe/lrqwjAa/pA6Ry4IwJ41qldOjoNPF1XTcnwMLGpI9bahvifOAOIC7kyyqAJ4BHmiutSq3hGUOVyVgyNPffPq46rUFtCjgh+PBd28bIfC0UKe0LWZZOtqYuXf3mY1Ny/9VQE0aCWR6eB5g+e6IpyVz1OgTWEwy009HpMFIM3t+BbqMSto7NXVIyO3dJyXE7UFYNBLOOXNa07/u61FPLfdaE4ba6d4RMfSYge10Opr7geSMQEIFAQADC363bhlNuu+3ebx0Ox326sho76AprjNHawClTvPNHwJQ6YOO5nSSazu5DJkBjwLihle2vAA4Oua404Q39bMNYYXkr9HFsewXcQ9GaPgiknzYuY273wnt4fOb8me6afn0rl57+/cypc4/brrkf+D/gAYBVNUMeqPWk9joi+8u3SgvyGttxDTo6LXJAfPUiAE9A2dXzSwKHALMg6LtaFzDl51p8Zf9JMY2SpF4MYiXSddjCBcfE/bnwWENFRd9lwBHHHL3sh46/Cp1Io/uw7qakD13/Q/kfAwj4DGcCT0dbHp3YobvRdVqZz0q84usPLNxZO00T2UB9SFEtbdqvqlJqmriq2efuQGUWQ5dIU6DKl+mZCszeUZ86u6Sq6UOqZYt7qzvzp7Z28E8/5jE/vui4/62GsgOeAj597voX/pfU+9sL/nP5CzWhNFbfAeTkF6XBfufYjA2/p1oqr43Ilejo7AKjkF8ryPLfG1N26tamqjJAMCAZgJG22mmNgbj9L8pwI4TSHaRPSjH9++8uPh04KTFxw9cet//oo49a7u+Ma9CJPLqFdTdl4vVLNyPkzzVrMuOiLYtO7GAvtI8q91kmADQEDK8G8yLulBeAH0NLc/9AVaUMKas24Fvg+dwlJdIzwFltqDKNLBmaq889becywN0zfu3DW92ZCcCJ7e3wPMcN3wIHGMy1/3XX9j2tatVxK56+4r3zX7nv5i9evP2hEwHMiuteINXpiz//sSmvtrnwgI5OW3lgfLkMIOYCRwSj/v+NpokDNU2cqGlC2AvtosJnvjfX6gsAEgRSCjZvzn4ZuBJ4rK6u19jJkzVdWY1h9IfGboz0Gz4Fse+MCePSoi2LTsygSpr8TkVLJXxvAG5SVbnTh0Co5PAMQlZ+0zrr/UqjwQiMiJC8ewQH3PHcyYrwXZpoqpq/saHPDcBKkHdMnz1xp0FTrWXarDHOqY+PvyB1wIe3+ZzphoAn6fmaNaOPbijf++1b75iR75Omi3slrPmktCDvzwhcio5Oq+hucv0F9DgycYu6kyYXA7NDqwFXlnmtidU++bkQwiUlPikVsXHDiL4pKau/Aq5yOBz6y1aMoyusuzG2tNpfAJE2aMNlLTbW0QmiESzdCsH0VNq/GoQCqVRVzldV+X5LHaqqfEZV5TyAmkmbmhLN31syNHeXCe91guTkF43a7Oz+TkAaRZ03eT/ggB7x6x4HsXeNJ+W+SI1z1nWP3gXK0yAkKEiEYX1V7lST4nHvk/nTVZEaR0enNQy31S0AqPKZx++kyTXA2H0Khx8G8iGA7xps6je15ivLNg1e+OfCYwxer/GZ5OQ1x+jK6u6BrrDuxqT0K/tWMfrx1Nn0IBedVlE8qXgeMMZAwJ1ldJWFtrcRUlbf1DRxW1v71jTRXcb7n5FIJDJPIufoSmurUKHJ7UJRAPXA7t89k2bd3PDzpiMn5OQXRXIe/xhwAT4JgaVG0dftt1395EUvrYjgGDo6LWIW8hOQFX86k3a4QqiqsvryNSMWpxi9bzdlzxASk2flwfetWHHQfnV1Gbfn5z82dfJkTVdWdxN0hXU35qzrlzUEfMpn9WVpmdGWRSd2KJ5U/ONga8PyrX5zz8NeGWrd7rAJaCCYD7hNqKosS3wr80VAir9zgartFHdPQCMYtQ+h/MuPTXnVvdWVcZHTF58DnBapgZoyCfgNroL3U6p85Sb3YuDZSPWvo9NaHhhfLkEsAsZt70uvaSJN08T0dKPHscVn6S6QASGF78CKg4S1rm9aRsZfnzocjjt30rVOjKIrrLs9Yg4wdMaEcb2iLYlO7LDElXCtVyrGGr/pqOb7VVV6VFVOBh4Kp1/TGtuLgEsiJaAErP7DdSvrriktyJuXYdu4RhG+ADC9We7VN0GW2Iz1D0+fPdEUqfGmzRoz771eS3uvxBY3uvenz5QW5Pki1beOTmsJKqnyCCBFIL/dTmm1/9mY+Gilz3Qr8G5SwHT0mI1jlmU3ZhsUxZM/bdrbJ0RJbJ0ORFdYd3MSemz9DSBt8Pr8aMuiEztIxNdAjUBus95pmriiqapMKNChzeQuKZknEGMDCb73AIRLOR7QXQN2QciHtV9AGhTgsZz8olEApQV5/sN7fVXk9CVkb3Z2vyeC4/VdXTt4gtng+uC5S595PFL96ui0EZVQWTaJMAJ32wvtCsC7W7v3KdzSG6sIlBzkzrjo1Kp9XkvxpAwDrrjttnv1wha7KbrCupuT2GvLd4rZ62vckrRXtGXRiR2KJxV7ss3OFTbFf+5172dZQrlU7wamtLfv3CUl8wz1pt+AQMg1oKVsBHs6anCq/vffKs26Od9mbCj9cePok3Lyi/6VXiwc4oz1TwPS47deEYn+dHTCRAPhAekj6BIzJs3g+emQl4dO0erSnzaKgEc1ck72xsNfqa3tk5WVteA1h8PxRJRl1ulAdIV1N+es65b5Ax7TB66tSTkzJoxrdwocnT2HnibXp40Bo/J7Q/JRqirLgOEEldZIoIltZUKDfpkR6nd3RAN2+Ld6bMqrfqcv/loQQ4DXmqyv4XLBU1OvbPQlHD8kddF7pQV5a9vTl45OewgFfI4FcRtweJrBc3OV33RAXcD0rIR4j88szKvG/RfEscAFl1zy/sQoi6zTwQgZ3sqeTgwxY8K4S4CnQD4M4p1r3vxYr52s0yL2Qns8sNUk/H95pWHa9hkD2kvIDUAFtNwlJfo9uQtCiqgKaM18WJuOHQLye4ImWA+I6w7o/l15gqmu8et1JywGGo7o9YU31bql+rEpr+40Z25OftFhIN+xGJxxx+Z80PfxKa9U7aytjk40OPKVIe9v9ZtOznBmst+WfYnzxWFQfOffdtu9L0RbNp2OR1dY9wCemDL6Ak9t/HMgJQgXMFZXWnVaIhT08D3BXEqeAEKNtNKq035y8otuBHl3U2qfFmgEGpLM1XFGxevZ6spYBtRn2TYMKXf27EWwaIQHULdXjHV0oo290D4qszHz68PKD7ME90i/QDnc4XDo9+oegO4SsAfgqY3LBEnoYaT7C+q0FhUQIAiAAf2+6apoINwg/QRzqF58cA9t+oHdv70VmARculfGL68PS//jfeAp4H+ZcZtWxpvqNgE1gK3Om9SNkJMsweeC2tkXoaPTEsWTiuftXbn3uwACgUCR6PfqHoMx2gLodAZCI5g304TuL6jTerSQRd4EQr9vuiilBXnzcvKLxoJQ2eYykLddq7ynt9v+x1bI5WAO+hyh08VJ9CU+AYxHv1f3OHSXgD2EGRPGbfOB090BdFpLKPehCmi6O8Duza78ZHV0uhIOh2Pbvaq7A+w56Aqrjo6Ojo6Ojo5Ol0b3YdXR0dHR0dHR0enS6Aqrjo6Ojo6Ojo5Ol0ZXWHV0dHR0dHR0dLo0usKqo6Ojo6Ojo6PTpdEVVh0dHR0dHR0dnS6NrrDq6Ojo6Ojo6Oh0aXSFVUdHR0dHR0dHp0ujK6w6Ojo6Ojo6OjpdGl1h1dHR0dHR0dHR6dLoCquOjo6Ojo6Ojk6XRldYdXR0dHR0dHR0ujS6wqqjo6Ojo6Ojo9Ol0RVWHR0dHR0dHR2dLo2usOro6Ojo6Ojo6HRpdIVVR0dHR0dHR0enS6MrrDo6Ojo6Ojo6Ol0aXWHV0dHR0dHR0dHp0ugKq46Ojo6Ojo6OTpdGV1h1dHR0dHR0dHS6NLrCqqMTowghcoQQUgix/540tk70EUJoQognI9lHa/oUQiwSQjjaM66OTlsRQrwohPh4Z9sdOO7JQojlQgifEOLFjh6vq2OMtgB7OkIIDVgkpbws2rLo6Ojo6Ojo/IvpgIjCuM8BzwNPAPVRGL9LoSusEUAIYZJSerfbZ5ZSeqIlk45Oe9jRPa2js6cjhDACfimljLYsOp2HlLKms8cUQqQA3YDPpZQbOnv8rsge5xIQWnaaJYR4TAhRFfp5UAihhI6fLYT4VQhRJ4SoEEK8LYTo1ex8NbQUeoIQ4hchhAc4NtTv00KIh4QQm4EfQu2PEEL8LIRwCSHKhRCPCCHMoWMvAkcC00J9SiFETmf/TXS6NiLINaGlIbcQYr0Q4r5mTfoKIb4UQjQKIRYLIY5udm7T/dqt2b5/LOfv4p5uadxdjq2z22PcxTxaKoS4tnnjtroRCCEyhRAfCCGcQog1Qojzd9CmjxDivdB8XSeEeFcIkd3suNzRT7PjvYQQbzS7hiIhxKBmxx0hN4TzhBArATcQ37Y/k05nEnrm/iSEqBdC1ISevyNCx84L7T9eCLEkNG99KIRIFkKcHprraoQQLwshbM363KULQGiuvF4IsTJ0vxYLIc5udnzu9ve+ECIpNP6pO+hPBapCm3ND960qhEgXQrwemoudQoi/hBCTdyDLTuftlu75rswep7CGmEjw2kcBFwMXAVeGjpmB24G9gHEE33Be30Ef9wO3AEOBn0P7zia4bHA4cK4IKrqfAn8A+wAXAGcCTTfPdGAe8ALQI/SzLjKXqLMbcS9wK8H7Zjjwf/zzPrkHeJzgPfsr8IYQIiGMcba/p1saN5Jj68Qeu5pHI8GLwEDgKGA8cC6Q03RQCCGA94EsYAwwGugJvB86Bn/Pqz2A3sDvwLeh8+OArwEXQcPBKGAT8FXoWBP9gLMI3v97hdrrdEFE0AL+AfA9wX+rg4DHAH+zZhbgGoL371hgf+AdYBJwGsF7bRxwaRuGvpvg830aMIzgnPmMECIvdHw2cJYQwtLsnDMJLvN/tIP+fiQ45xKSqUdonxWYH5JveOjanhFCjG127k7n7Tbc810TKeUe9QNowDJANNt3C7B+J+2HAhLIDm2roe3TdtDvn9vtuwdYASjN9p1H8C09rtl5T0b776L/dM0fIIHg5DJ1B8dyQvfixc329QrtOyy03XS/dtvBeftv1+a01ozb2rH1n933p6V5FCgFrt3BOU+2ZhsYHLqXDm12vC9BxcMR2j46tJ3TrE1/IAActQOZnwrNx+mh7fOB5dtdgwGoBP4T2nYAXiAr2n9z/adV92Va6L45cifHzwsdH9Js30Oh+6j5HPki8HFrtgla3J3A4duN9SjwSeizBdgCnNHs+M/AQ7u4lm4hWdUWrvkN4LnQ55bm7Rbv+a78s6daWH+SoX+pEPOAXiET/b6hZag1Qog64LdQmz7b9fEb/+b37bZzgXlSykCzfd8TtOIObIf8OnsOwwhOdnN20ebPZp83hn5nhjFW83u6NeNGcmyd2GOn82gE+s4lqHj+0rRDSrmGv++xpjYbpZSlzdqsCrUZ1rwzIcQ0glbSE6WUlaHd+xG0ntaFlonrgRogFRjQ7PT1UsryCFyTTgcjpdxKUJn8PLTUfbUQovd2zdxSyqXNtsuBMinllu32tXYeG0bQ8vlZ030UupcuIXQfSSndwMsEFUaEEMOAA4H/tuX6hBAGIcTNQog/hRCVoXFO5W/9pKV5u7X3fJdED7r6JwL4HPgKOAeoIPiW8x1BJbM5DTs4f/t9guAb0o7QnfZ1WkNrIlO3BUdJKWVoNbTpZbTpZal5P6ad9NP8/m1tROyuxtbZcwnw73toZ/fdjmjN/deq+TW0XDoDOFlKWdKsjQIsAM7Ywflbm33e0Vyv00WRUk4WQjwKHAecBNwjhBgvpfw81MS3/Sk0m8ea7WvtPNbU7kRg7XbHmvf7HPCnEKIPQfeBeVLKxa0co4lrCbozTAeKCboU3MvfynVL35vW3vNdkj31wXJQMx8ngIMJvpUPJKig3iSl/FZKuYT2WYsWA6NEKBAhxGGAB1gZ2vYQNMnr6OyIxQRdSMa21HAnbA797tFs396dMK7O7s8O51EpZS3B+27bPSeEsBJ0r2otJQSfTwc066MPQR/VJhYTtOjmNGvTP9RmcWh7EPA2cF0zhaWJ+QTn/C1SyhXb/XT5h7fOzpFSLpRS3i+lVAm6mkzqwOGa5sq+O7iP1jST6S+CbgBTCMa7tMm6GuIw4CMp5ctSygUE9YjBO5BlZ/N2TN/ze6rC2hN4VAgxRAhxOnAd8AjBtyM3cJkQon/IYfqudozzVGisp4QQuaH+Cgj6aTWG2pQCB4pg5Ha37ZRbnT0cKWUdQcf6+4QQk4UQA4QQBwohLmllFysIOtw7hBCDhRDHEPQ17OhxdXZ/djaPAswFJoYim4cTfDi32sIaWrL9jGBAySghxN4El3qdzZp9BSwEXhVC7CeCWS9eJfhQnhuK8v4w1O5tIUT3pp/Q+a8SXPr9QAhxpBCinwhGmM+IlahpnX8S+jcsEEIcIoToK4QYDYwk9ALTEYTmyoeAh4QQ5wshBgoh9hZCTBVCXLRd89nA9QT9Xt8MY7hlwFghxGFCiKHAkwSX+JvLsqt5O6bv+T3VJeBVglbNnwma/p8HHpFS+oUQkwia2KcR9M+7muDE2WaklBuEEMcDDxI0w1cDrwE3NWv2EFBI8AtlI3jzlYYzns5uy40EU5zcCmQTnHBeas2JUkqvEOIMgi9PCwnehzcBranSEva4OnsEO5xHQ8fuIxiY9wHBZct7+Kd1tDWcR/ABP5dgwModNFvxCrmgjCeYpUIL7f4KuDx0LIugVXcowUjp5ggpZaMQ4giCRoS3gWSCK21f83dKIZ3YopGgxfFtgqul5QTv0/s7eNxbQ2NdCzwN1BKcax/Yrt2bBO/Xt0PKZVu5m6CO8CnBl7cXCV5fc5/tnc7bsX7Pi3/6zO/+CL2ylI6Ojo6Ojk4nI4ToSXAl90gp5Q/RlifW2FMtrDo6Ojo6Ojo6HY4QwkTQp/se4A9dWQ0P3V9SR0dHR0dHR6fjOBRYQ7CQwZQoyxKz7HEuATo6Ojo6Ojo6OrGFbmHV0dHR0dHR0dHp0ugKq46Ojo6Ojo6OTpdGV1h1dHR0dHR0dHS6NLrCqqOjo6Ojo6Oj06XRFVYdHR0dHR0dHZ0uja6w6ujo6Ojo6OjodGl0hVVHR0dHR0dHR6dLo1e6CpOc/KJRgApopQV583bXMXV2jL3Qvu3fonhSsf5vobPb43A4tt3zDodDv+d19nj0Z3LnohcOCIPgTRrQQJhB+ICXc5KWm9NtFb1/Lz/0W4B+yUsHpFoqe86vOOQ7gAHJSwYlW6oy51eM+gFgYErJ4ERzTbc/Kg7+EWBQyl9D4031KQs2H/QTwODURbk2Y2Piws0H/gLQK7708I0NfQ6XQaO4Gxirf0GiQ0hZ1QAD4AHG6kqrzu6Mw+E4AeT7gAGEGxirK606eyo5+UVWYCLIpwka/rwgxpQW5OklVzsQXWFtIzn5RaOB50H2A9G0W0IAgRQSQwBAEBCAkCgR2YaAACGaxkw2b11+UI9vb3n2ktlvdcqF62zDXjjicRCXhzZ9wG3Fk4rvi6ZMOi2jW8XbxpNP/ifJZHLes2XL0P283viD2OZCJn0gbnM4HPo9r7Nbk5NfNEoRvqNSLZVbK11ZHpAH9IhfP7GsoZdVomzvUukSBL4+sPt3widNL/xefsgHpQV57qgIvpuiK6xtYMx9M6atqhnyRFBxlAB+EB46wdoZWnqYA5hBYsBv8Ac9OhYCLxyZ/dlHhZc9saojZdAJYi8c8QSIy4L3gHCiW1i7PCFldS5gQreK75QXXlBNVVUDTq2t7X0CyFNBJBiNjfU+X9y7IM8CYQTpBXGkbmHV2V3JyS8yA7cAN4NUmhmnqrITVtcnmmv+LNm693eAA6QJCIAoMinukd6ApX+orcukuBfslfGrt8aT+szyquEflhbk1XX+1ew+6AprK8nJLzInmGpq671JltDN6we+Au6Ihg/rif3fLP9xo3pGpSvrFGB/g/CSZq38ebOz+73Ap6UFed7OkGlPZNzrA8rXeOIyFWRpAHGWrvh0ffZ/adjTbqlMDX13dat4MxwOhwD2As42Ghsv8/niLEAN8HZa2rK5iYkb35o8WfOHfFhfBroBOQ6Hozp6UuvoRJ6c/KK0kRm/PrOyesiJDd4ky99HZADEw8D1pQV5sln7f/mwXjH77CFfrzt+7zpPykHxprpxTl/coIA0APithsbluel/Nm6qz368rDH7k9KCvM26H2zr0RXWVpKTX3Q/cL0g4JUoAvDSRfxIT3/kxrF+abxvQcWB/SRKN4PwVo3M+G1Vgzfxii9uuOHHaMu3O2EvtJsNyHo/wgSsLZ5U3DfaMum0zImv919W6okfFHrwuNEtrDgcjt4pKavvcrmST3e50uIBr8VSPT8tbcX3lZWDb7nppoddOzhnH5C/Jyev/fSqq17Ii4LYO2TGhHHbHvrXvPnxHv3vqtN2Ln1m8ujPSsefHpDG84C4/slLKysau8+o9ybfSnBVJuzn/eWzz+nxyarT7X5pPCzNunlCnSdpsDcQ1IXNhsYtXr81XSJk07zUFXSKroqusLaCQ++eedqG+px3gFnAS3TRt6Gc/CITcFyvhDV3b2roNTIgjQC/90lc+dk+mT+/8NiUV1dGWcSYx15oPwL4xkjgLx9i2HHJm1MfHF9eE225dHaOvdBuU5AVAURCkuLdUBsw/d+epqw2RfhbLNWLUlNXn1Jebh8kpfFQQMTHl9X5/eYClyvtGYfDUdlSX489ds6K6uq+A+LjK4Zee+2zSzte+l0zY8K4UUipAWbAjRCjdaVVpyVCls1JNmP9fi5f3P6AX6K8ogjfw6vuO/nPZm1UIvi8P/Oxa+PmbRq9N3B4gqnmmnpvUkbzlZ/Sgjx95Wcn6GmtWuCyZ88dWuc55q0kc3VFrSflmtKCvEagS06GITeAj4CPjn/g3uySrXudCkxeWzfg5g31fW76IL/oHeBF4IvSgjxfNGWNVeIU/7jGgBKwx9X9+kdj8nCPFEcQ/JvrdF1OCyASTCLgizP4lR/OWdIlv78dRVBZlV+DMLvdyaKsbB+MRme5z2d0AK9ed92sNr3I2mxb/6+qqv+P9fU9bwMmdojQbSDJ6Tq31moxB0MLpCWp0X0uXXSO1ukajL1vxuUw5DEQwumLp1/yst+GpS+8aOZFhX80bxdSUiN6L70+/aFG4Efgx5z8om9BzuFvK64WybF2N3QL6y7IyS8SgkCREPKYY/u+/5+np/733WjLFA4XPT3lP4sq9/nPxvq+RwLdEk013p4J675cWjXi2tKCvJJoyxdLHPfawFofImBEnrrBa5tjFIFT/zj3r/eiLZfOzjnslaEldX6jJYD4CRhVPKm4X7Rl6iweeeQ8g8eTWOp0pmeHdkmLpeat7t3/OHPyZC3syd/hcNwD3GSzbTnihhue/C4y0obHVwfv/+qfvTPPkoqCEgiw19qK98b8/Nup0ZRJp+uSk190tEF4P/NLo9IVLJu6D2vr0RXWXZCT//F0EI8Cl5cW5D0ZbXnaS05+kbl73PozE801Bcurh2WCUBTh+21UD23Zsqrhb2929shF/9LsFHuhPQlkVX9L4wer3PEXApXAtcWTimdEWzadHTP1f71G/1CfNne/uOpPf29MWQhcC1iLJxX7oy1bR+NwOFKA14HjICBB+EF4iUAOVYfDkWQwuMpttq3u9PRlqe1RfttLydDcD9alJpxU3CeLwRs3M3BzrRsYnbukRJ/HdLYxffZE8dGqCZcFpOERBd/6AIbuIAx0oXgUnV2jl2bdCRfPunCCQfgfsRkb5gIzoy1PJCgtyPP8dNvFhV/mX98DRE/gGpvRmfXDxqPO2uzs/h5wDzAn9Man82+OAKGscsc/WTypeKuBQH0Pk2tstIXS2Tk/1KedANKXYPBfPchabwKMRyZuGRltuTqa558/5mghfL8DR0HgElAOBXEbEUr473A4atPTl79VX98zee3aw05uv8RtR9OE6bvXLD9JRZ6U7qpfDWAMZq02ErRY6egAcOCds82ragb/FZCGx0F+EsBoBzEauA1dWY0ZdB/WHZCTXxRvMRz3QJyp3ndk9ueXPHnRS7udGbq0IK8ceHj67ImPfLf+6Fe3urudAQiQtu5x6x/LyS86qHn6Dh1IM3gmbPWbXCB+BMg0eYRJBA6Ktlw6O8ZeaDcDk0B8+OSpG5dc9L9eW5YD9X7jEOCPFk6PWe6886bjhNi3yGDw+X0+41iH485vQ4ci+lCuqLBfCBwopbHA4XAUORyOzk6lNzj+q7SDUCTGDNedSiDwgtNsRCKlQGidLItOFyUnv6gb9HynorFn7n5ZP85LMNWeWnjZEz6C3wddUY0hdAvrjnnU7bf1rvckHvfkRS8ti7YwHcljU16VW90ZT4BwgfQLJGWNvQ8Avs3JL9rtLVFtwSjk6X3NzsbiScUugK0+0+drPTY9EXQX5aD4qjuBjFSD52WAefVpHwH83pgidnlijOJwOITD4bgyEDAXgVjVo8dvYxwOx7ctnxn2eF4IXA8M6dat5OmOGmdnZE0dmmv9MTlAQPxvry9KXwTWN8YZ/P5kn6zP2/JTZ8uj0/W4eNaFJxuE9w/gYEHgnP9ddc8hIWVVJwbRFdbtmPTk5Q8CF4K8f3XBSXOjLU9nEFoOGQviVkUEDos31V0KDAU5/+QZt/9++bPn9I62jNHGXmjPqvBZrBK2lcJ1S0MxiD72Qrs1mrLp7JhV7rhTkw1e38EJ1U1ZHNaGfveJlkwdxQsvjE5MTV2xFHgE+MDvt+xzwQVffd/R4/bt++3HCQkbq6urcybddVd+ckePB6BpIvmXm9Nuk8g3BEIRAZFXMjR3lDSysi7RXGWsMZniv0jbqzNk0em6DLrp3ZO1dce/ZzM6M4EjVxec+Eq0ZWqJnPyiUTn5RTfqbnk7RldYm5GTX9T3p01HTs9OKG04ecDrd0Zbns6ktCBvXmlB3n0r7zv5h7/uOuNpYEi/5GXf/bl5/32LVv3f7zn5RRNz8ot2S8tUKxkDsNYT99+mHT1NzmpAHBBfdXC0hNLZMfZCe//NPsugOr/x7gfGl/sBiicV15mF3zPIUn9KtOWLJA6Ho/uaNUd8XlU1cFC3bou/Bk53OBz1nTH25MmaNJsbz/D5bEa/33pDZ4wJXIJPuX1L2jBlRb/x1CT1MwFqYs/KXl4raYBPeJUzOkkWnS7G9NkTRU5+0fXegOU9kEuPzP780NKCvJ+jLVdLjLj19cMFgW9B3gt8a7/11Vt1Y9E/0RXWEDn5RUbgVbff6sqM23T4Y1NedUZbpmhSWpC39esbrx49KHXx0QEMpcAr3WxlKy6edWFUAiyiTabRPVlB1gHzm/YNtjbUAhiEPDJqgunsECOBi4FAAPF88/2JBn9jXcCYEh2pIs/s2cdPAPkbiL2E8E247LK3xjgcjkBnynDFFa98DrwK8qonnjhzeCcM+WBF7XEPLhpxiVjb5yj+2OsKw7KBp23xOi3fep0W/ObAtwGr/8Jfr8nYk1+w90gueeb8pOXVuSuA+4G33X7bfjMvfvG3aMvVGnonrr4IMIZSbRnrvCl3frzq/9b2y/9wfk5+0UNj7nt48uXPnrNHV1bUg64ImuFTLFueqXZ3s4M4+92r7469gAxHsgAOI5jIWwIv4ahpt0P5Fzfc8FVOftHcFEvldKc3fsYXpSe/l5Nf9DBwR2lB3h7hv2kvtItkgzK6n6Wx4v0zVm1Lh1TiSvgY4Kf6tD3i7xArXPd+lsWmpF2TYPAs/+Ks5eubH6v0mb8F+kdJtIhSUDD9Ao9n3+eMRme9zxd36O23370gWrKYTI23+nzmswIB44fAgI4YQ9NEd6BRVWXtzDfm1iCkRAgRUEz+9dljurkqF8wDzq/cx1uW+bNljFJrOBco7AhZdLoeOflFPeDU90D0PyDr+69+LT/sjK4eOKxpoj+Qo6py7tKtI54C/g8wAN5+yUsfTzTV2v/cckA8cPmqmiHm1TWD+Ci/aD7wzYj0+Sv7JS8veuKil0qjeAmdyh6vsAZ9RaRW7U43CwJSoqyKtkxhcg7NJmeJvLj60bj3kmuM1ylSrMZRE/YXt7QgLwA8ctmz5xZ9tvrUfJ9UrjEI77nnPnnF66mWyisfm/Jql54UIsCAGr/JaFX8zzTfWe61bgaqgYFRkUpnh/xQlzq+LmA0DLfVvbaDw2uJ8ZRHDodDAe6A1FtMpvolPXv+fvrkyV//FU2Zbr75gdWPPXbOnKqqAUc5HI59HQ7H/JbPajMvA1maJvaBORpCBAADQngAzWDxpPndZlbHdfs0g9rT475L3RddYd0jmPL0RWcITnxIoqQqwv9/b1913zvRlqmVPA/01jQxZFWBnJeTXzSaUBGBr2+8epvBKSe/yHZk9meTyxp6HbG0yp4FXLqocl/Losq9n/wov2gBoO2f9X1Zj/gNbz9x0UuxqsO0yB5fOCAnv+hm4O7glvSBiMlavtKR9LBAXEloPWF7nBb/MinwxLkMHwL1gBauBTYnv+igDFtZ0WZn93RF+L8JSMMsoB+7adEBe6H9YmAWMLR4UvE/aqcf8nLuSqvi98+duGxwdKTT2R57of1jYB+gb/Gk4n9EBP/fmzkvLnElTjo2uSLnofHla6IjYfi88MKYHlVVOb/W1vbpRfBhd6nD4fBEWy4Ah8ORDKwEioExDocjog8XTROjgF6qKt8BeO6G2eU+Z0aq35N05LRZY+a9cl/u8eULBnySPnTtUwe96e0OHAJk5y4p2e2LROzJ7H37S5MavAkvWgzuhnpv0mGlBXkLoi3TztA0IYBTgC9UVdZrmhgC1Kuq3NCWfnLyi6xj+3x0wYrq3H3X1A7MAXkICGtwcVUsBL4ZklqcWFo7sMztt320uzyX93gfVqPizgx9bKoCo0VRnLDQNDF24V6Np0qkV7LtP7/k77cRm9swOM5lGAHcRFBBn4MjOaxIxNKCvJ8P6Tm3R3ZCqSMgDfuCfB3kblt0oIfJdbFJBCqBf6U462F2GTxS2aP9iroS097tuTfI40G+sL2yChCn+NcBbPJYY84q7nA4Tl2z5vAFtbXZvTIzF70OTOkqyiqAw+GoEcJ/J6D26DH/lkj1q2nCBKCqcl6TsgoQ8MVVCINr07RZY+YB+L3GnwFq12XU+Lp5PgK6Nx5WfWmk5NDpWuTkFyk5+UV3VLvTX7QYXEvU3p8d1JWV1RAjgP8BFwGoqlzaVmUVoLQgz/X8pbNmfnPT9AtKC/LG7pXxW9rRfT+4tHv8hieALSCnLq2yT3b7rTcC34QstzHPHq2wXvncWX0sBs/lSeata4Fbid2KF77qVP8Sv8KVwG8+gywTCINA7CzoQAFMtGNp9LEpr3q/v2XaHcDjwT1CtLfProi90K5U+00jB1gaq4snFf/LYrTcFf9Sjd9ktBfaLdGQT+ef1PmNM0AoamLlpzs6Pr8x5WOAP51JcZ0rWftwOByHA++AyAThrqgY8USkLZiRoE+f72dbrVXeysqBVzscjna7nGmaiAN+0zRxyfbHvA09qnzOzJVN25NuK94KbPU22FJch9R8GLAEpGm9ZUJ7ZdDpWuTkF40afNP/7s5OWLWRYKWqF+u9yXs/eVFhVN1idoamiWRNE8cBqKosBo5m23MzMnxwjcM5+5Jnn/7p1ouvKC3IO0oR/ntABkILriaBv+jMx659/8KnLu6U1HMdxR7tw/rZ6lOudvlt4ric9/JnTX3+9WjLEy6qKr/BkewhaB02m/z/1FPr4/xfxDcqRwiEiaBDt59g/WQtAsMXAfkgDbFqoW6BvZwBg2G9x3r/jg5KxHKCLwD9gCWdKlknYi+0CyAvXvGd0cPk2rDCnfARgN1W2zPF4E35rj59McBIW22vJIM3+fvg9nADgRF+xGvFkxZ1+IugvdBuECQNSjZ4Fzxx6qYfdtIsJnOxGgzuE/1+S+iLLQwEXwy73Mv15MlfOx94YNoUlyv1ReBCgq407cEElAArdnAsHtjYfIcw+MsNJt/IAx7YsnXxx0NfN5Xaji8ZmmvOXVLSZSzROuETWsGb6wlYrOvr+zEo5S9tefXw87t4cNX9wDmaJrJVVVapqvyqowcMSOOXQD7B748/1bqlZt6m0SeDLMnJL7oHeK60IM/d0XJEmj1WYc3JL8qBuKnAS7GqrGqaMANnA6+oJKkElVEkUnpN8inzzXWXASQAoeV/FdgCdKMdPqzNKS3Im5eTX/QxwTylx8aohXpXHAVQHzAW7ejgQEvD1hXuePaNqx7HbqCwXv9+lnBLZcTc2m6ZwPBeJudJEvYDqwFEYkPAyAp3AsD1AMXOpH+c/+d2234UQF5mLxxxFYjHdmSljiBHS0TvGr/pmp012Duupry4MUnm2urOBGZ2oCwRxWKp+auxMROQsqu/GDY2ZrwEXADyzueeO/aDCy/8fFO4famqrAF2mFPVlLBxhMm2OS2UIhmA+IyaVK/T3A9ABMRrwFlSyGOAj8OVQafrIPAfJTFYg5ZD6V9ePfyLrqisaprYHyhTVbkeuAt4VlVlVWeNH3oujyUUwDXfcf680fc9fMrqmiFXA08mmqsf+M+j+S/9Unb4FaUFeZ1dUjls9liFtU/iyv+tresHKDdHW5Z2cBLBwIt1BB9gHsAkEF6zV7z6j5ZB5bRDlEmrobHWE7A4V9130u6mrNLT5Lq0xm8s++mcko07Op5jaVy2wh2PRyoxVcbWXmgfBYzLMLo9ORan/Y+GpGofyhAj3fb1oWxbLi/3Whq6m9x+BZYFgoFMSmip6QXgjeG22uxUgy/9+/q0hQB2W22fRIMv+cf6tOHAZLa5HYlHgLPPfrvP2z1N7oeakvlHkl4m54wyr6XGj/LBztq8/H9rA4e8nFu3xWc2RXr8jqSxMfPH4CfxNvCow+Host81h8MhH3roojvq63t+5XIlvwUc3tY+NE1kEKzadZ2qyh0qvH5XcqNicJU23+dpsGqeetu40OaXAUvA48txPoausO4W9E9ZeubK6mGA9INoWlXsUmiaSAW+AV4BLg75qLbZT7W9hIxH2+aJr2+8+r2c/KL3eyWsOU0gX/yl7PCpwNH98z+868QBb7722JRXu7ziukcqrEcVPHT02rrcfffP+uH7d666d33LZ3RZ/kcw9+qPOGokjuRtb1SRsJ62lkGpiw9YUzugW2eN11kc8coQS53f3HuwraF4Z22+qs1YAdQscibFRC7W697Pil/linsD4vNAiM0+C5t9FhRkLfBnvMH/8WBrrWGN2/ZShc/yiw+l/NOzVsiQgjsHMIUsfM8XTyre6T0Wan9Ws/aPGAics7AxuWCl4rvSXmh/GvABX++qn9Zy3GsDe2/yWoeNsNX9+up/1uxy+bcuYPytLmC0tXfMTqbJR/rtrqysNnHttc/OeeihixZs2ZJ7gMPhyHY4HG2dZ/cHTiC4nLpDhTXgiw+4a/r/w2/RUxc3HzhjxoRxSdcsKaldeFKfRaYVcSNKhubG5S4paQzrYnS6BEGL4bDcfknLVq6uHfw8XSgrjaYJIzBGVeUXqiqrNE2cAvwUbbm2J2SNfmf67In/29iQPS4gjXcGMLw4b+PoZw+7e+aV6+tzFgJH0oX+ts3Z4xTWYHnR3NsEgc2ZcRv/L9ryhIumCYOqSj/wt69eB1pRd8Wmht5Lnb64rM4et6Op8psPBgwlzoQ7dtameFKxtBfalwODOk+ytmMvtNuA8w1k3ORH9AymPwGQ/njFP/OIxK1XPjC+fKdLa8WTiufZC+3bXohaUjJ31P6697PurPEbZ/xUnzoOuCO4vI3LXmgf216ldYPXNhGg2m+8uBXN1wLHtGe8ziYz88+BFRUjSU9f0ivasrSW+vqepwBLCWYlOa8t56qq/FTTRF9Vlbt4EZRxIBqa7zHFO7d6G2wk9d5sB34wL4u/FpgL5AFvt+0KdLoKOflFaQRz6i6tdGXuW1qQ19VePq4AZmia2EtV5Z+qKr+ItkC74rEpr8rH4KOc/KKiQ3rOdSzdOmL6+vqcpwAZmpfdOflFXS4IfY/LEtDNVnYOcJhEufWpi18si7Y84RCq+LJS00RetGUB2OLMqvAGLK5oy9EBjAUCEqHtqlF3k8ufoPi6ZDove6E9YdLbvd+3CH8F8KQfsTrb5JwBOAEfCE9DwPjGrpTVJoonFc8rnlR8X2uVy+3bPzi+3P3saRsuk4hnQ76YArAB7Uq5cs7bfRSQFwLfFp25ssUqdcNsdRkC2fO697Pi2zNuZ6Io/mQAs7kxZuZsh8NRqiiep0FOeu65Y1sVra9pYrCmiWMAdqWsvvXEeSYQ1qTe3+zffH9q/zIDgCWpocmx9VuJLAtY/ReEeRk6UWb67Imif/LSeSC7AxP/vHNil1BWNU301jQxNLT5LDCeYA7imKG0IC/w2hUzbqt0ZaYBb4AUIBSC83KXe6mPmckvEkyffXY8iOdSLJVbCfp+xipxwGJ2kBc0GtiMDTZF+A3RliPSdDe5LkszeMqKJxVX76pdhtFT3xAwJJzyRv8uk9pq0tu9u9sL7bcCa+Y3ppycZXK7BFIFDv/0rBXXghhLMCVMu62bYfA1CFdIaQU4zF5oD/v+STL4rgQxIMfcuMPAuO1RkCUSwSp3XIeUEO0Iysr2WQ+wadO+v0dblraQnf3TI0ajS27ZMuQuh8OxszR7zbkNeE3TROKuGjm3Do0H8DZ2W/LP/YlfA2xd0bMGIHdJid+T21gqfOLYX6/K6B3eVehEkx83jrlsVc2QwQd1//bL0oK8LnH/a5owAF8DTwOoqqxXVfmBqsZmJabSgjw/wVRbTv7O3z45J79oRBTF+hd7lMJatPq0i7c4s0x7Z/4yo7Qg719JxWMFVZWrVFWeoKpyebRlARiYUrJ/gql2t/JhPfClYUnlXktKd5N7cUtti51JL0kEK9zxOZ0g2i6xF9ozTnh94Ot/ORM3AXcCP9gU/6FFZ67M+HPSom+aovTbai2NJKExx4K4maBl4vhkg/fj697PCkvhL25MPMEi/L6htvrZrWm/yJn0GcAyV0JaOONFCWvod0ytZJx//tw1IPNdrrRBwPGtOGUKcMyuXQGgftOBFgBn5fB/+LDWbei2CvD73eamgjAEUrxPCJ9C3Depx7X9CnSiSU5+Uf/Nzu73GoTvh+7xG06KtjyaJo7QNCFC7nhTCAaW7hYEl/9FaF4WlwNWRfjmn/PE9Oenz57YmpfNDmePUVhz8otSfQHzzcBX2rrjY670ahOaJs7VNNGlHrSrawZW1HsT3btTlSunNBwhEWKxK7E190pTjsioVU+6+r3u+x36ytD/AmvWeawTeptdaw+KrxpXPKn4pF/OWfxjtOTaGc0U5ovTjZ6Havym4xY7E36zF9rb5FdvL7QfV+U3q25peO/B8eWtTRuzFkAgc9oqd7TIyFi8F0BmZnGX+u63Bp8v7lFghRC+R194YfQOX0o0TQzQNGFWVelUVTm/pT4N5tqE4KfAP3xYr3nzY78w+LeYExsPbNpnm5fyOlCqNBpObcdl6HQy02dPtCSbt34G0u+XxonRjmLXNHECwej/UwBUVX6tqrI0mjJFmtKCvHmlBXn3lRbkPRlvqtunT+Lquu82HHP+ByvPfDEnvyjqLlR7jMKam7bwHZCpwLVdMW9ba9A0kQO8AEzbVbuc/KJROflFN3aUApmTX5Sek1902tEFD3wz8rZX6uu9KUcEpNHGblSa1UDgWILWrBaVvVxr3TqAvWw1Z3a0XNtjL7T3G1k44pm5tem/1fmN5wFvgRj23hmr+j53+vpWLZFHG23i0utG2GrfWuuJGwG82lqlNZiJQH5IMP/wiaHMBC1yUHzVJoB94mrPCVvoTkcmAZhMzi6femZ7HA6HJzV11ZNSGge53Un/soJrmrACXxFMA9QqUvp9ZgdIHVD0r3Ry1tR6m9Hq3aaw5i4pkdIYeEcij/ntiswh4V2FTmezvHrYKzWetEEHdP/+6dKCvDXRkEHTRIKmiaZ77HOCFtU9IkXaX3edsWmvjF+7mxX3vSDOMQjfH1NnXRBVK/cekSVgX8eLg2vcw0aPSP9jxcfX3bow2vKEi6rKUk0TewOlO2sTUhi/AWkEfMc/cO83tZ6ULzfU992Qbq0wjMz4rf+K6qHF6+r6l3ePW6/snflLt5KtI1euqR1Y1SthjW+vjF+UDfU5lQs3H+AqLciTof6OA+pzkpYd6fLFqZAdD7CqZognyVzlDeXlbF7utUtFFoZDmtF7oUkEKj8/a0WLS7A5Fuf6le54f43f1KMzZAOY/m6P41a54+6FuJES4c8wuT8ZYasreOSUsu86S4ZI8vp/1kywF9p/BR7sYXINuu79rEMfHF/ubOE0leA9B8G5TKUV995zp6+v3/+lYQ3rPdaYUf42bx6+FGDDhgN3VPGpy5OUtPZxpzP1qrKyvcY5HI7bgS+a0nOpqnRpmriG7apW7Qpn1WAXgKe+57+KdXjqbJrfY9y7+b5GtfqX+K/SFKXGeAsQQy8qeyY5+UUHw16ndLOVz3n7yoIboyjKW8AwTRODVFV6gRejKEun89iUV72Pwc05+UVzzQZX0Zy1eR8Muul/93sD1hqikPpqj1BYt7oy7gLpjDfVnRxtWcJF04RRVaUvVIt4VxwL0tRUQ7hk615HEarWVOnK5Ot1J2xrWNaYzWel2du2N9T3ZUN9323bOfkf+UCE7hFBae0Ab7+klfXJ5q1P1HjSPvJL469V7oz92ZafM2LlXqPKyMIReRKLtZepsVW1qR8YXy7thfYFpZ64DveLthfa9wZugvTTzUKKRMX7fF3AdPuXZy3v9MTUkaZ4UvFDp73Zb/AyV8IUT4My115oP6J4UvGulEot+Kvt1Z/c0vBXhc8QSytMTT6sMVdOEWDyZE06HI67gOeA24EbHA7HWFW94zdVlV5Vle+2pb/Gir3dAA3l+/0r8NTvNlcDvWZMGHfINW9+/COAtATeCZgDpdafk2KqJO+eyKXPnNdd4dTXAxg2bHFmnd7Z42uaGAGsUFXpAhyAMaSs7rGUFuTNmfbspIPmrj3hHacv4QYgQBRSX8XShB0Wx95fkAf8B8RDb175QEm05QmHUETiT5ombmhF888Bd1OeTQXf4lTLlsOAodkJpQcf3feD83rErzseOKZn/NqJR2Z/9lA3W9klwIVZcRtuG9Xj6w+TzVsLgDutBteCYJcCwA+Gu76+6aq0hXeec2NpQd6PpQV53tDNui3ivKvlbWsr9kL7KIl4F2CDN+7I1i4zE/Rj7TAf1sNfGTL98FeG1AF/AMcakQ+qiVtyfzxnyYXFk4pjXllt4n8TVl/Ux9z4cKXPfDDwlb3Qfssu/g22BO9N8QFtz3awlhjyYU1LW34gQI8e82N5zs4MzUsCMFksNScDyzVNtCYY6x8opvokAKF4/mGFnzFh3CiQZwIGkHOC23DAjM1S8SgvCMThJUNzs3fQpU4XYW3tgK8lIifDtumi0oK86s4cW9PEIGABwbyqqKr8RVVll4sBiAYzLypc6PQlvEDwS6yANBNc1eo0dmsL6/TZE0Wjb9Qb8aZaT4M36cFoy9MObMDvwKqWGoZqCI8mmNuyRwDDFJff9vVhvb6c8crlj94I/LzdKa/trK+c/KLP+Kf19Kudjclu4AYQQg1+EQUEfSNVWnFtAy311pXu+P7XvZ8V/+D48oaW2rcFe6H9QTBdCyCQfok4/Y9Jf325o7YhFw6VLlqppDUUnbnyGnuhHeBqkEcAN+2ouEBvs/PUdR4bCvLWhZMWLWrLGCNstdlLXAmDrn8/S7QmB20XwAZgNDq7RA7KMNGE8AekVBRQvPHxFT8BexFGer7kPppatXIcaYPfywp6LG1DJfi9BWh6oM4DkObAm8Kj3OEaWXcfultAlyQnv+gU2Hfo8PT5nxddd+vnnTFmyCA0TFVlsarK5ZomLiFYRVLn33wN0g1YQSq0kKM80sTy23qLfLjyjNPX1fVLGJ6+4LnSgrz6aMsTLqEcbxerqmxVpZZQpN+9pQV5lx+Q9cMxqdYt3u83HJ2fk1/0WqhiSKvY3aynraGHybU2+ElK2uDikGjwr5II1rptwyIly/XvZ4n/e7Pfh8C1ICQIJEISLFv5L3Lyi/4DfA/cRewHwG1plqfVwg7e5BMU33k24ZfHJm9u88qJK2D41ScVFjkTe7Zf1I5n69ZBSwDWrTu0NtqyhIvD4ZhntVYfoyj+24CxV1zx6vuqKo9XVbmyrX05qwZWAHjqem0fjKOxbYVJSJp9f4f9uXSpr4e70bjJcmzYF6HTYex12yvZBF1Gfv+rct+OD+5xJI/CkXxLRoXxJeBHTROZAKoqZ6uq3Nrh43cA9kL7KHuh/cY2rAy2iVDqqzEJptrvQRFARkeMszN2W4U1J7/IIlHuB4p/KTviimjLEy6aJsZpmgg7svXtq+77tl/SijSCSuf/mRT3ivNnXupo7fnN0lzs9soqQIXX3B0EiYrvv7RhmfmPxuT/ASx2JUbkC2wvtBt/rk95d4kr4cQMo+tPghkLfOxCie5mK/sPwe+0gb8D4GIVDXCFFA/BDq55mSveYFICvz4wvtzf1s5XuOPnAKzz2DotUK6d9AP8wEHRFqQ93HDDk3NOS/Os/b9uDY+tuvP1MS2fsWNcW4fWAtRtOGxT8/3XvPlxUy7Jb0K7/hGkZqg03WXcbM4oGZobtRR0Ov9m+uyJhjRbxQKD8CUBE0sL8jwdOV71w/E3SOR3wF3DFttOzV5nfhDY3JFjdiQhRfVZgmm37gLmdKTSWu9NHgP8BfKxC5+6OLkjxtkRu63Cun/WD4VAP0Hg2lAVh5hD04QRmAk83J5+Xr3iYXdpQd5divAfmGqtNM9dl3d7Tv7Hz+fkFyVFRtLdBz/KROD3kG9oW5T0piIOg9org73QbgPe2eo3j+9hcr24f3zt3jSzdO9MLoPwhcqSygAxHgAXvEYxFsQ7gMgwuns1P24vtKf5UQbV+k0fhjnEWoBExdfl0xw5HI5RIM8GaQDmBLdjk8WP33xb0oYTXkxan3eAqbHXx+vzvwvrWhRjQxqAwVL9LxeJa978eJ4pwXkVYEgdsPEfc6fwKK8BSGSrSsXqdDw5+UWjPlw54cPVNUPSD+7xzVulBXlLO2wwR/J+/juTPk6pNRYQch0RCOPAlVZvZ1ep0jQhNE1YNE2YQ9smTRN7aZrICG3Ha5r4j6aJ/qHtdE0Tt2iasIe2e3/5tfLmWW/1fQPkdyCnEDRUdLjBorQgz9vNVnY9iJwaT+p7HTXO9uyWCmtOflF68ZZ9Tx2QvGTL6oITv4i2POGiqtIHHAhcHon+Vt130h8H9/imR4Kp5nEQ5wkCi86feenVkeh7d+DS//XMA/axKf43wzh9s1kE/LnWunPbI8P172f162lybgB5EnD5F2ctn/zA+HLZmspU5Y3ZPwU/iefYDVw4Qtc6MV7xuWyK/9nmx4ZZ6yYAJCi+X8Pp+6ikzdUAQ2z1/9deOTsBFVCaMn8Qw5ZzgzvtdCGNCAwIRNjXktDjt7EAaQM/2GHauSuen/OHJbm+saE8dXTz/blLStb607yr/d28N4Uzrk5kCbktzZUYTgD8P2wc+2RHjLN+tvXChgcSFgO/GQLi0Aab/0t2tGrlSB4lHUl34UgeBaBpIrvJVSC0PVrTxPBm25domjii2fbjmiZODn02aJr4QtPEuaHtOE0TazRNNOVRTwnJcEloO41gwFfTnJQKvAk0rUQkA3cFJPvYC+0H3rxuyN23rR/yn2Jn0gTAEJwftuncHW6w+O32Cz4ZkLxkyW9lhx6ak1/UryPHamK3VFiBmW6/1bjFmRnN/G3tImRdRVVluarKFoOtWsvjU16pW3TXWdOBQxLMtXFz1+XNsN/2amFXqGIRbTb7zFcrSA5PqGxzwv3iScUyXvFVVvgsYZUXBbAX2nt9UZPxSbnXknJwfPWM4knFbZq8BYGmnKQvxrqy2kTxpGJPf0vje2s9cal7FY44oGm/SQTOVpAclrg1rNriJiFLDUjPandcLAQxaaG0XRDjlnNb1V7PhD76ace1uKr7r0P4vP+5vHCnq2fumvjbPfW2XjMmjBvcfL+3v/MH4xZzXPERA/YLZ2ydiKKCbJozJZF8GXMkCxzJKo7kOdkbLLPNHjHUZ5AOoG/8DfXHCMQYQqtWOGrm4UgeFXITuEUi54SU1p+Be5r1+hZwabPt+4DmFdROA+yhzwEgnr9zRbuBr/k7j3o9cBN/F6epCp3/aWi7/OUtvSZevy63t73QPuratbnM2NT/xTs3Dp4N/FwbME7IMrnXDLbUvQA4QfoAP0iyTc5pnVF2e2XN0KMlio92rgK3lt1OYd3X8cLZICeAoMaT9ngMB548o2niLU0THVLDt7Qg7+fRvT8d0idx5Qd1npRzgIXH3l8Q9VrN0cJeaDcscSUOMYnA3BmnlC8Op48qv1mr9JmtLbf8N5Pf7n04yB/9iF5mIY+bffr669rah9r7s8MAjs15r384MnRVip1JU4GaAGLb3+RPZ5LfKAKLHhxfXhlOnw+ML5d+xIpw/706k1CC/SaL4BVNCfdjkbqen3sAvLZNnwBjswsOD+taPHW9a5HGml23Eq8BUhj8/1j1sP6WdA0QMFaY9VKtUcYgfD8CImQZbP/LWDCQ6sbG+xPurkvwVxNUEHO9RnnThl7eLOOttXfgqAkGLjpq5uGouQ9HTdM9qAJC/DPQ80rgv81GOAFonnFoAJDftKGqspeqyrtDn6WqykNVVT4f2varqjxPVWVRaNurqvI+VZW/hrY9qirfVVW5GuDyNSP2/6Uh5TlnQLkV5A9uaVhZ6ok7L07xO3PMjbc7ei275cruq3td3n3NoyH3qdv6mp1XgMCsBI6gEygtyFuv4L8bGH/ezMvyWzyhnex2CqtJ8dwd+iiI7eWzpUBJR/rVPD7llcpvb75iPDDaKLyWZVXDPziq4MGPc/KLuvxDvANQgV5uaXimpYa7YAXInKNfG2RquenfnPVW31MWuxK+MQuZChz5y7mLw3Jj2dSQXQFQ0dhjU0ttY4niScW1CvIZkKdf8W6P0fZCu1kiDvBIww7TrLUWBbneSKDdPsedQUbGot8BsrIWDo22LO3BG7ehD4ArpfiTcJVVAMXYmI7w77IK3TVvfrzRmlK3xmTzXP/ag4O3vfjnLimpAOZIRU789ZqMDjEI6LQOvzSmgMBmaHyT9roxBS2ic4F745yGmy0uEVeZ5p0J9DfdUntfzmRXS0FVGuCWSCmCgZ4/qqp8W1XlNplUVf6qqrK02XZlqMBAR3AMYAsFnQrg82yTc/D1PVYe+NGZK+9MN3ofBvZWVflnk8vYx2eufArkt6vc8YfbC+2dcm+PG/DWk91sZd4/yg/Kz8kvCnuFsTXsVgprTn6RcXNj95RQSqJdRlR3dVRVPqCq8vbOGKu0IO+b4/v/78Bh6QsWrqgelgfMH3jTewe2eOJuxABLw2NGAm7go3D72CeuJgGEYbit7sjWnmMvtJ9Q7Ex8VUD1EYmVJxZPKv4j3PGXbB1ZAfBHxcG7lcIKMDZpy2sGpNjgtT5wYHzVKYA1w+huqerbLhlqrc+2KIHhLbeMPlZrdTGAy5XSqWlkIo00eOIATA192hWRbU1bdqg5viyzpXa2bnUfeOptpi2L+/zD4uTap+4vERB9hUuZ1B45dNrNmUCl0x9/TnvdmCRytEQ2GVsCJp+4I/2Kxstw1LROoXTUzBOIsSIYAyDqEvzj2iNPezjq1UHxwEkhv9QA4ATuuKHnygeAzzVNWFRVBlRV7qAao3geGGAVfrUzZH18yit1NmPjuTWetGSCFukOY7dSWIG8AMZkUK4nRnOHaprYT9PE6JZbRpYnpry8qei6W/cGjgOZ5A8Yfzr14Vvm5uQXmTtbls7GXmiPX+O2DRlobVhZPKm4pfr1O8VAcGlntTuuV0ttAc5/p/dMkB+CWNwQMA595JSyb1o+a+cYhdcCYBDeDk0JEw0ePqVsYYLB/+4yV/yIKp/pXIC942rD8l9tojZg/LYhYBQHv5zb5f23L7jgqy1AeU1N35guEdltyaUfAFhrh1a3px9Pbe8Nfk/CupbaVa3oeRvg9DZa/9N8v6+7+1GpSL/tp6RD2iOHTvhcMfucLKPwnp5h2/RtaUFeu+/rRltguEAggwYrt0DMaXMnQTeBi+rj/RUWt7h67fPWVuctjxTXvZ+VbFUCa0DuA9wu4FaTkEeHfFILgGmqKndaojle8f3PJAL+vhbnsztrE2m+u/nyN4APQN46eeale3XUOLuVwtrNVna7wF8GPBrDuUNvBF7RNBGVZfnSgrzPR3b7bd9h6QtXza8YNRr4OSe/aGQ0ZOlExvtQjEtdCZe03HTn/NaY8iXAKnf8LvPS2Qvt4tBXht71a0PKpT1M7g3A6OJJxRXtGRvg4J6aCnBczvsxbYXbGTV+000gLMvd8ccI5JqHTylb2J7+1nts3wM0BIy9IyNhh7OaYD7WmKU2+5OhADXZH45oTz8+V7rT70lusSTxNW9+XAvyA0Tg7NceGLztxeSARzavEQHxsdJgzCsZmmvYVR86HcPSrcPP80mTYe/MX9uuWG6PI7l/vNNwsk+RfwI30xRIFSZ1if4bzV5F6b3OPLndsrUBe6Hd8nlNxhtrPLb0g+Orn3ui76KHHu/719iH+yw+AkBV5c+qKj/ZVR8/nVPS0Mfs/GO5K76PvdCe2DmSQ/f4dTcYhS9+ZfWQz3Lyi27siPih3UZhPe/Jy0ZWOjP22S/rpxWlBXm+aMvTDs4Gjt+VX0xOftEhOfkf3zbgxg8O7QgBPrzWUVF03S0DBYHxQE8I/D7h0es/nz57Yof6p0QLBTkZWCMR37ezqwqQ9QYCO83taS+0K8AjtX7TLUkG7+d7xdUOK55UXNfOcQHYWN9nA0BZQ68tkeivq1E8qXhpqsHzEwgjUNPexNhm4d8A0N3ksrfUtiuQmLg+wWyu7ZDvfGfhN1enAEiDq10v5EJxpwqDu1XzfLfcdYuQSpLXZflH1hipyDeBnq596s5qjyw64bG0yn44yPXVrrSn29NP6QtWg88gXwP8xoAYJxy197VHWQXoMdX5X+ArgbgBR3KnrMBc8W6POAX5P4k4Dpgy+/T1FxF0BVgNlLWlr5Xu+CsCCDPwnxYbR4ifbp26tEfC2m/X1g3sTgdVWzRGsrNooq0/fjyA1eiMybyioXrGMqSo/rmzdjn5RWOBL0EIvzTe0S//Q7/EUCcIONNtm7s5fbayBm/SRoPwefolLx9a5UpbUunKKjUbXL7h6Qv2KmvotXBTQ++V8ca6wN6ZP49YX5/zx5ragaUplkq5f9aPfVbVDFq8qmbopm62cu/x/b5b91v5IaPjjA0f/lx25DGCwHcf5Bc9TNDKE7O16ptz9Xvd95J0GzvIUv/Bu2esDrSnr+JJxXLsq4OJU/z/B0zb/vjNH2QkDLIkFC93J+QAj9b6Tdc8OL68XWM2Z1XNkHKA3ysOqY5Un12NDKPnuyq/eZQMpo6ZYy+0t7oa2fYcnrjVOac2g4DkRnuhfX1npIFpDwaDt9TjSRj+0EMXGa+99tmYfCkXfrMn+Lt96cRMcZuHGm2VW+D4VrR1PSwM/hsqS7L/UTa54bjKr+K/SkN4xA3Ay+2RR6dtHHLX05nQ+1gQj7591X3tmgNtTvGy0S8OqknyOZKvbmjRTaS1BIR0KFJ8v7mb9+WMf6auijgnvD7QaBa2pQFEdqLivf7e3kv31zTxiarKjcCFYXT5E8glNhGYDjwfYXF3yrq6AV8BR/DP4gURm1d3CwtrTn6RAbgA+PKVyx8JK5F4F+B8YH5TlYsdMX32REO8qfZlkKHoPynjjI1/Ai8bFe8XGbZNGywG9zqgWoiAyemLi2/0JeQAh/v8phNLKkfuu6mh1yTg7gZf4r0/bDzqrDW1Ax8E3q52p7/z1doTH15VM/QzYOEWZ9biT1af/ntFY8+/SmsHDQCQKAeAfJ3do1Y9AL80pJwiEfSxOJ+KRH+KkEvKvJZ/TcD2Qnvix9VZHyx3J+TsG1f9MXB18aTiiCmrACbFYwOIM9bvdj6sTSxzJ1QHgxBEu7OAfFeXbgFJhc+yNx1YyjBSVFf3+wAUUV/fMzvasoRLaumZvwMkrx8XVuq4JrzObtXexqxFrWl71vXLnNJveFEGDCfMmDBum7vOAQ9v3hyI839l/iu+e8nQ3DZl9tBpH/1Tls0AYcxNW/BZuzpyJPfPrDCd3BDnX1qV6r8zQuIBoNxe+0Ntom9LapXxBBzJHba0bi+0G9Z5bC+tdMdn7x9f/f69vZd+SDAYrdXBu9tTPKlY7hNXu9QpDfYr3+t+XOSkbZGvQPqDacqkjwgHve8WFlY1+9PrtPXH9+lmK3NEW5Z2UAH8Bex0OffPzfs/1+BN6iEI+CVCgvA2+BKntcXSmZNfJABTTtLyhOHd/ui9pHKkb2XNUJEVtyHd3u33vUq27lWxob6vN9O2KWtw2l+jlmwdsXKLs7s7zbq5l0nxjC9v7NmTDnp7igY1ftMpwC+PnlIWkYpoZV7rl8B19kK7qXhSsRdg+ns9hkL6qwHEXiYRuKDw/9b9t4VuwmLfzHmjfy47kqP6fmSA3bbypAbCTfD+a1cWEI9UmpbXmyu/Xfl+DhUQCfTn7+TjMUVN7/eHJa8bT03vD+zZHB6276L0W4W3ofvq1rZXjL7XAj7j5ck5ZbcB1zTtN1SbngA+AI7i74TtOh3Mws37j0yxVNYMTl08N9w+KmbGKRkY/ysQvvhGw1Hxk+sjngLS4lZONfrFt8BlBIsERJS9CkccakQ+40MZPsRa/+ILp6+bDKBpIkdVZVV7+k41em8GeaJWmz4WaN+LQSspLcibd9z9992/pGrkTTlJy97XbroqovPpbqGwLqsaPiHBVBsY3fuzt4OG1thDVeUHBCfOHZKTX3QSDD4v1bLlk2p32t0EH65tXpYvLciTgAfYGvppzvZR6v+wOubkF70KzCECykJX4Ly3ex8DKSNBXhbBbpcDxiyjaxCw+MTXBwyv9Sf9YUAqfsTJ88/9q81VtFrLxobeawEavAkNHTVGtCmeVDzPXmgfS+j+b+cyvhZKWC5DlaS0dgvYgfTo8Xv9pk370b37n+cQzDcZs/gsW7La10MgUTE1tHqFImvvVT9XLs32eurizqaZwgp8Lg2ywZftuhNdYe0UcvKLekGKHbjjsSmvhq1kBhT5hkAc6TXKS0231K6PoIjbsNxU9x2O5E8k8vp1z1sL+1zg2hipvu2F9lECvvGhGAQykJdSfp6miYdUVf7VXmUV4LFTNv1lL7QX+RGT7YX2amBuZ7g9DUlbdMuyquFnldYOjnjwb8y7BOTkF2VtbOgzotEb/8iD579dH2152oqmiW6aJiaHfFh3yFEFD14NgbeBkip3t9NXF5w4LxpZEELjjSVGU4Ztj1cqdytIxiRVfh6pPg9PrLQCDLY2nGIvtO9T6ombUxsweg9P3Hpx8aTi9iuroUouTbWum7Ourn85IOesPXHXKWJ20Ucs0JQku72T7/HJFT+BIMPoKQXC9oXtLMzm+oUQkPX1WTFraDA1NgUEirAVlbeemCQAW0L3+a3ONHDWdcuk9CuPOyuTMmdMGNenaX/ukhK3Z0jDRsMmy76LDhxkC1cmndbTPX7dZQRXNV4PuxNH8oDMCtPJtYn+8g29PLMiJtwO2Jrqe1wgUqwupTCyPcsxMrhaiYTA+1Xd/7vjvKrhEyd8fwLpIO+kk9yeHpvyqgxgeAkYk5Nf1DOSfcfsxNeE2eC60OO3GgMYnou2LGEyCXiA4FLkku0P9sv/aJRk6IxQAuF+IPYmisuWISW1Sz/YW4O90G4QJPZOMXh/euyUTSsi1W9Aiq8B5jcmTwV5M4gtPqns/8Spm0ra3XlQwfwWMEqkrH8wPmBzGeYb/aLRbQ5kfJGUOWyrq5s8WFnytfveQKbTFsi1OZXFJq/Y6jHLDJc1MMToxROPwRiq5OLCkdyu9C+xTLEzsSlS/b2urqwCTJ78tdvhcKypr+8Rs4aGuMoDKgDSV5wftjtA7frDbaDgrunbpjy83kbrUwStq2cC9zftN26yXKN4lA/xKMcD74Yrl07rMIjA5T3i1zXMu3XqsrA6cCQfAryiSOFNqFf2T7rG1WHVIAHSpjd83vBAwl8Zm40H4khOwVFTHYl+j0jcevq3demEfPK9q9zxEddhbAb/CY0+IyAUOtHtKcNW9vZmZ/fbDuz+7eOQd3qk+o3ZiQ9g+uyJIslcfXtW3Ib1pQV5/1L2YoSHgYNUVe5QfonIC/4zCULpfNROlG13ZqxEdK/ymx+KZKc/1KelgqQhYMwGbMBlxZOK26+sBlElsuklU1jcSoMUGAJCGgx+4ZRSIJDCa5SJSkA4lYCod9oCw3xGmWTwi0YlIGqNPgX+vqFiuXRxu1nvsVkANvssLebz7EKsDr64xibVfd4dAVDT+/2wczu7a/rHAbhrc1rtwwpwzZsfrzLFuZabExtvbl6q1VBl+pRgDMGZ4cqk0zpy8osGbajvG59krn41rA4cyaMk8luCmWpMihSdkkM5vtFwjkAkAdMj1ecqd1w/i/A1EFqx7IiX5kqfxRWNyp+/3n7Bou7x62uWVQ0/KJL9xrTCOnfdCUdvcXY39Ute/k60ZQkHTRMmVZVSVeVvO28lVoY++NkN/Ea7Cr3NznsMyHrg4wh3rTZb7vQD7Sr9qWnCrGkiHqAhzv9rQIEAEoFwVqf6L/jhsLp9vz2y7nnjrbX7X6Jc+sXkwDX8cFjdLaZbavebv19D9oJ9Gk/+8dD6MaZbavdNuqY+2epRVIFwEuOliyNBX3NjIkCywRszK00pKasyTKaGiD4EOhOTM3MrgCd+3U5zFbeENWV5KoDRWtlmy1pi9pZfPXVxidWlWduWRnOXlPi8vVy/SmPgtF+vzugRrlw6reI6QC6tsofrHqUSWkYnqL+oEZCpZRw1f/gV+ZlfyJt9dyXdH447laYJm6aJFzVNTDrrrb4nrPfYku1x9XOKJy26pyOUVXuh3QbsA+ItOlAp3hllDdl3VLvTs3Pyi4ZGqs+YVljrPCmTgOqfNqk3RVuWtqJpYh+gVNPELh8+w9IWJAOYFPdz7AZ+o12B418bmFTmtew3xFq/rnhS8U5L3IWJBrgAHwgPrVAINU0ood9C08S1miaOC21bgAbgaoBfD2z4buFejY2V3XwfAmMXD3d+AFwC/ACwqmbI6kZfQoWqyk8BVFXWqKr8UFVl5bbBgsv/2/yQ91R3AIBB1obeALnW+ohNqB2NlMoCrzdBueeea+OiLUs4xG8+LBi0Ivxhp5GK7z5/MEBiz58GtfXc6lXdrwB8zi3JpzTf7x3c+JHwKcJSnLDbpteINv3yPxoFckooLeMbYaZF/BFoKr/aqS/cdQn+7wxSmAx+rgPmhKG0eoA+QI9iZ9IVID0rXXEd5sp4cHzV5YC1p8n5biR8/sPgDSBgNTRGrFpYzCqslz5zXj9B4HSQr5QW5IVd/z2K+IE/gKW7apRsqVIBju774YO6shoZ1ntt471SEVV+01WR7js0KWxTCLefJDRNnKJp4oRm238CswBUVUqCPnbjQttu4Bbg66bt2mR/QsZljSfjqJmnqtKrqnKWqsrlAGbFFS8I+FsUMlgvu93VYGKdRc7EeoDVHlubfCGjSU1NzqcAXm9CTpRFaRcZJVe+Fu659RsPrAVwVg2a39Zzr3r1s0rgE5ATX3tw8DalOe7rtNnAOtM661HhyqWzaxLNNZNCrm0QvjuSEAgE4iU6+YU7pdYoZXB1q9XuVKEVshs0TSSqqvQDR1++ZsRCkMcCpiq/+c2OCoQq81qONYmAHBlXF7Gg4rZQWpC3KTuhdGO8qf7q6bMnipbPaJmYVVirXN0elCjmY/p+8HW0ZQkHVZV/qqocp6qyelftftp05BqQjSbFu6qTRNsTOAdYtclrjUju1eZomtj/ib6LEpveaDVNvKJp4s1mTW4Ermy2/SYhhTTEQFX9O82Wqsr7VVU2Lxlr1TTxhaaJf1U/GZhackiqtTLiqUR2V8q8wZircq+1TWUPo8xqAJOpMewl9WhS3ed/I4K/39sr3D7ctf0EgKtqcFipjJL7lv8IoofPZb6yaV/ukpIA8IZEHvvHxF69wpVNZ+fUepJD7m0ybPe2ram+yyVS+gzyyii8cGsi6O7VFuvuXsC9hCplhZTWA4KHhABpoQPcGuyFdlHqicvxSvHJg+PLayLdf2vpHr/+7UpXpnHO2nERKSkdkwprTn6R+GnTkUMTTDXLnr1kdkxFdWqaUDRNTNM00arKGRKlD4jS9uSr0/mba97L2h/kUb1MTq14UnGb/6aaJrI1TRzebPtmTRPvN2tyI/BYs+2/gOJm2+OBk5s2VFXeo6ry9Wbbu8yhqqrSSXDC/FcOyvKGXqVOX9zm1l2JTi+TsxtAhtEdMz6s2dnzagHS0pbHZICQydmzEsCTuCxsq5I5aU0WgCl+Y8urCTsgrlvtLGHwe6pW9vjHQ9S1b60mEEZpDkQ8QbwOgBLKyiHuIkz3NrNHHNwYF3Aab62tjqxsLVPa1z0/gMRtDixmF9bdkGvXPgCqKn8FhquqbJ4S60vAFZzGhQKMsBfad5rWMkwGAf1BfBLhftvEb+WHOQBPvTfpgUhUxoxJhRU4SKIMr/cmRzTCu5MYBTxJM6VlVySZq/ZPsVTutongO5tFzsSzQZBrq9/hkqSmiXhNEyObbZ+haeIjTRNNSxrXAp8223YCzfP/3kCzAueqKu9TVXl3s+2NIaUzbFRVHquq8l/VsipdmdVOX/z2xSB0dsJAa+MwgFxbfadEGkcCg8G9WAi/t7Y2OybL78ZvHrUJQCp+a0ttt2fm1LmjZk6de6PJumU8QFL2D2nhyHDW9UtrpN/wss9pGTtjwrhtvsC+Hp5PAwm+SsuCxJi0Xnd1esSvO8lqaCwrLci7Iyz3Nkfy4QkNhoy4RqXDiq/sirhGZS8FIapTfN+1YN29AfhZ08RggO0zAAXdxMQYELcA/wPO6mNuXHrt+1kRWx3bL676HoABlobtiwF1NsNBGkCOAtnucu4xqbAOSCl5TBF+F0Gn3phCVeUPwL60MmmyL2Ds1SdxVUwGWHQ17IX2URu91jMUAotPTi3/BkDTxKGaJl7SNJEUajYVWKhpIjW0nQBkAE3/BrOAYwk5YqmqfFhV5dlNY6iqXKGqsrQTLudfmBVXgkH4dEt8K/nLmbAOYIUrPqLJujuSyZM1KaVhudOZHtNzQlbxTY+2pf3MqXOPB74D7mmo2Pf/ABorc5e3Q4RXgISEHpWXNu04YMZmqdQbZypOwwElQ3P1bAERxhsw2/smrWx1dbJ/EAxw+pKg7+j4aBQ9ydxs6gaQVWF+ZUfHNU2YQx9nA9MIVj3cIaHiJ/cUTyo+fbit9vl1HtsArTb9G3uhPSKJ9pe54vexCp97pTs+qeXWHYoKKKHHpZl2uj/EnMK6n+OF5LW1/fcfnr5gTWlBXl205WkLTTe0qso/Qr4suyQnvyih0ZcollUNf6vjpdu9CTm2zwWRJWDYK1t6NUUDZwKjgaZSkR8B/wHcAKoqn1NVeXDTUr2qyiWqKn9QVRnexBsBNE0cqGlitaaJg5vv751Yum/3+PUxm6Ozs9niswQANnqtMeZGESgVwheTVsDqvu+MBKju8799WtP+rScmiVcfuOYRCLxDMJ2RCP3GuWXElnDlSOm/6VtTnMsvA8r12x16AxCefs5rdnSeTnjk5BfFbXFmmtfU9Q+3WpTK34WOTF5j4F8+/J1A03fuX4HSmiaeBN7TNCFUVVaqqpwdCqJtkTf+s+bCnibXuW5p6AP8sd9Lw2aFG4h13ftZ6SMLh79eFzANcEmjmU6qbrULNIL+vhBMpai1p7OYU1grXZlneAMWZYszc2q0ZWkLIQveMk0TbUnx0BfA5Y9rjyVBJ4hK8O0cPyJQ4koYDqCq8j1Vlb2bIu1VVS5TVfm2qsrG6InaIhuBnwkp1U1UOLuvr/WkrI2OSLFHD5OrZ+h3RCJYO4v09BXZiuIb9sILakzJDWBqyK4AcKUsymup7cypc7tvWfqfoupVeVcarFVOkE0PPgXAklQatmvNBff9HjDaPG82lKekzZgwLrNpf+6SkhJfltspPOLicPvW2SEjQAiXL/7XMM/XAI8MBmxh9IkJOJKPiJh0raAu3j/FL6SfoH/o9iwGFvB3jtg28dlZK14GpoHM9EjDxSB/tBfa/zzo5dz3z3m7j3bUq4OushfaDzvilSG9r38/6x9j2Avto+yF9hsPfDn3up/rU8okyhmEHGSJcnGYoOuHmBLcEuG5gjQjZoIN/kZOAfHnpobe0fbNaCtW4HuCQTitYp/Mn9Q/Kg5mYEpJLbQ4v+vsGo1gHjwTCG+t3/RRlOUJG1WV64Eztt9f50mpA6o7XaAYJcfSuNcmr5VcW320l83ahNcb943fbx1ZXj4yHQjbyhgN4rccHMzIIAI79GGdOXXuKJCqMa78IOh+tPTZjNbU5U8k9px33ea/zt0XeA1EDkBS72+dcH7Ysjgrk+4FzgImAE807Zcm+V/Teuu0kqG5/XKXlLSpmpbOjtk74+czF2w+iL5JK8Isx1ozD0fyWIFQCT5D75fILzY9Y7un58XOuyIn6c7GTz49ASU3tDXHe3fSMT8cVncM8K2qyq9UVT4VgVF6Ekx3aSCocMb7pDJqYWNSpkQcCVDlN/NlbTf2KRy+0odSkqB4zQLjWAmKM2AUUvhqB1nqn1/uTphKUFmNenEYq6HxI5c/jp7xa5Pb21dMWVgvnnXhGSD2G5C85PPSgryY8tVTVVmhqvJsVZW/tPYcs8F9IMCQ1EWxlHanS9JSftRYpJnPFAAmxZ1gUtwx9Z2OJoudicsAlrni10RblrZQW5v9NYDLldY32rK0FUnQEypr4W23bH9s5tS5U4DvQNzra+x+MhAH0uiqGrR281/nNr1UbKsK+J/LX2xX0Y9r3vz4L8XkW2ZOcN7QfL9pvbUpmFcvIhAhPH7LgRaDk70zfgm/hPrf+aM/BA532mRD9zLTnZ57EiOWmH57Sl+wWqofiX8OeD2U/xXApAQYA/wfcHQEh9NCxWZ8IFzA2b+f+1fWiSnliTbFPxQ4rq+58b5ca/2vEvEX0LshYBgjEYZgiiwCLml86N0zVl9NF3rWHZvzfrXV0Ehm3Kbj2ttXTFlYfy8/5DSj8AaGpS+MxNtMp6Fp4hyCb2JtejD+vOnIjSB9K6qHLugYyfYsQl/cmFdUATRNXA3crWkiNVRggMy4siE2Y0N9C6fqhKjxm3wA6z22qOUpDAdF8a4OBEzYbJV7ATFT9ACgpu97I1PWnE5Nn/f36Y06p2l/0LLKU/xrSVUowIPBHwkgQwEczJw6d9S0WWPa9X1OySlfunV5rxOfz9/voAsKfv8ZIHdJSelf+wxeJC2BK4GC9vSvE2Tx1r29IOc9NuXVsFKR/QtHzZaKF6wjs9ebPzB7ledxJOcCVYAWsfysjuR9e5hNH1o8Si+fEvjNEBAjCAYOeQ0B8SXwmKrKiM0dxZOK59kL7WMJLuFrTYrmPSdvrr8n6De7FPgc2FbZ0144YhTIuSCMBK2pXzX1RRd51j025VU55OZ3Vi3Zai9vb18xY40JOm1nHeOTpteeuOil0mjL01o0TaQQnIivDeP0viDWfX5DfmS+5Dq7E78CMwBL046trm7lW5xZ4S257YFkGt29AfpZGr0tte1K9O49bzNAYuLGU6MtS1sx1/ctA3Cm/769VUwNpr+BoGLatIDWfCFNELIkNTEnpOiGjc9tuhqkrF7d44Tm+90j65caqk1Zf5yRfVh7+tcJ5k0H9gLxZ0T7nezaYPSLwwmWpr5OIu+VyG9wJI9tT7+lL1jTPfckPgP8avYIw6bunvuMt9UdsK635+rV/dzKioHuh0OVBiP+ohvKHtDqMqrFkxaFUmR1DWvqznD7bYtd/risllvumthRWJOWXwYkEUwZETOEKlkNA+5s67ndbOWHplk3R7rWvc5ugKrK71RV3qqqsrZpn9MX7652p2+KplyxRLbZuQ9AjrkxpnKaTp48d4MQvobq6pyYypICEFd5QEXwkzRvd0gL1ZgHCEBgMcgqEIfEZS7YmY9iu6sETXnwlxUg5gBnz5gwbpsyrNQYr5fIgHVBYiSXfPdIjst5dz8gZUBKSXXEO3fUOIHPJFKGluxNwKcNDyTM2/iMLR9HcptWkaUj6agem0wbzF7lIol8XiBylw51PQ7Q5wLX02v7eo7bkO25LeLX0Q7aquRGgyRzdZVBeAe2t5+YUVgDUrm5m63MRTAXX0zQLI3VOlWVbU6d4/FbuveIXx/pChg6uwmaJgyaJrZFOBuEN85qaIwpN59ostSVUAxSWpVAuwo5RAMpjUs8nsTUllt2LQKKSwHIWui4dLtDP/39OJI3CoM3F0Qq8Hpjxd637qCwGyEFV2uvTHHdar4A+mfaV09p2rf3+2tXCYQGnFkyNDfmsjF0JTY7sw4F6Je0orSDhpgrgj6fPsAtkR9Z3MqBPTeZ7wPW4UieUfdQ/E3+O5MexZF8qvvexIFrn7ceXvVo/Agcyf1c9yUOqnk4/krpSPpNIL40+MWW9b08VwlH7UWaWjsZWKJpojeAqsrPo5nSMFYZlr4gzS9N8Vc+d1Z2e/qJCYU1J79o2Nq6AUndbBUvx0qwVagS0meaJh4P5/yc/CJzrSfF9Ffl3q0qMKCzR/IJ8GHTRqK5tteAlCX2KMoTUzQEjAEQrgfGl8fEnNIcRfFsVBRvbsstuxa1vT8eAVCb/fFeTftCmQG2VYNDBO6VfmuTkrjI1m3Rrd2GvdaPYInjUkvSqu9DDUXqwA/bHXmc1LfiFWHwy9r13U5qvt/bx/kNMKjhqMqz2jvGnszv5YfGAXy19sSOeZYFfVabgoxGC0ftaeuzPSkNcf7zgZ8k8orEeuM9hoCYDvzP4lGW91ln+Ta12lgMrLK6lWXJtcZHgP0An9EvJq4Y5Goqr/0+MBOo6BDZ9xDW1Pb/EOCL0pO6taefmFBYgQsB75KtI2+OtiBtwEDQtyZcv51sQICIqQhmnU7laeDRpo16b2Ltpobs4uiJE1ukGz29DcSmtSQtbWWWlKLPCy+oMbUCY67PKQNo7PbrpZom0mZOnXsoBL4DsS2QRDE2hlL/+V+ZNmvMuPPvvuLuCVf8t9Sauny9MLh6J/X+ThWK93uAqhUntvuZMPH6pZuk3/CGqypx1IwJ47a5KriHN7wiFYm5JP6kXZ2v0yJjCAZEDeuwEf7OIDAPIGeyqy7++voXcNSc4jfwsGRbEv9AQMj3NnX3zK5L8N8AnBcQ8v0mlwKA8kzvzQSVVFRVrlZVeXNTYKtOeGxq6LMAoNGX2K4y2F1eYb1i9tmJZsV1sdXQ+HlpQV7MVKRRVekL+Rg+F875B/fQxgAMS1+gf1F0doiqyvdVVW4rT+wLmANbXZm6D2sryTS6R8Ypflu05QgHlyvlUymNbNy4f0RKOXYWcZX7VwAIKXwEfVAvA6WZ0i0JeBNDidmVf+SstiSXrpd+q8FVPWA/GTCFlEhx2FOXFd3f3uArgqVa0yxJDac37Tjgkc2rREAUmTZYR5UMze3yz8quSLB2vDwKZCrQ7lry4WD0i/ebuwwoUjzYY6rzosRr6x/AUVOoSPFAs+PeynRvGZCoaUJ3r4oQKZYt6wD6JS89tD39dPkv4Yb6Ptd5Ata4Q3vN/SHasrQWTRPHbl82s634AqZhAH0SV+kKiM4O0TQhNE301jSRDSDwWxJMtaZoyxUrrHLHLWoMGGLy+1Vf32MegNebEFO5WAOGRgNA1p+3XPbXG3MqgFGAZJsFbFvNcVL6f/qPMsM1pUc/BVC34bB+02aNqTIlrJ8LIH3W62l/xoAvDRaPz5Tgun+7/a8DvX1Z7qPa0feejBr8FcxfSjSqLv3TZWDs9mmvNLX2p+UDnY82xPmfAsZWZPnOU1V5jqpKX6fLuptyZPYXZSbFTapl65j29NPlFdbfyw89VBH+dQmm2gejLUtrCPmu3gk8EfocFr+VH1oD8FnpqTGjqMca9kK7yV5oP8teaL8jyvWWw0UBlhBKmWZUfAmDU//aa9en6DThlgbpR8Rk3lqTqWEtgNHovMnhcMTMvVub/clwgNpen42My5z/BtBXGJwvgqgMtpDb/te4Zdj2foOLCVar2xfAW99jbnB3+5Wha9782GtNrf+mflNa1owJ41Ka9nt7uT6WxoD0Z3of2sXpOjtHA9GUpyx6VZe2cxnYjuQN2d7zfz2wwRRKVxWTbkJdmcemvCqlVFb/uXn/9e3pp0srrDn5RQOAMQFpeDZiCYc7GFWVkuDb3Jmhz+HSFygrLcjTXQI6juOAV4FbgDmxprSqqvQD5wHPAXgD5sC6un4LoilTLJFs8GbbhD8mLdJSip4g8fmsxwFzYkVpNdcN2AhQadx8bWPFPqeDRPqtZ4Hs9nf58+BzyVObc21zq+m0WWM8priyamvK8nODewxz/7bMygDtVIYaytJuRAoTcFrTvpFzVtf4unv+NJfE9S4ZmqsvEbeRUO34lUAJMLa9teQjiaaJAzVNiFDqyUOAy6Is0m6NT5pW+KRp980SsE/mT/8VBKTNWP9itGVpDZomzKEvQL2qyhXt6atn/NoxadaKmEpoHoM0+dMoRGu5qp2oqnxbVeWinPwiBYSy2dk9Jpe4o0GKwTsk1ejNbLll18Pnizsw+EkIYujejdu6zxaAhs12Y6gQAATlb/pMqLoVoVytavPzTfEV69z12Skzp84V02aNmWe0Vl4JgOKV7a16BfyGkCuMNvf0f4y53nqn8CkpwOh29r9Hkhm3MTE7oTS+iymro4GfgTMBVFWu0i2rHUuataLerLiGtqePLquw5uQXmUoqR+7bL3nZhpK7J7TLjNyJ3Al8r2nC0mLLFmjwJaSnWbfo1tUOJF7xLQh+kgGiuVzVDjRNxGmaGJN/YH5PgBRLpTXaMsUKGzzWZZt95kXRliNMtC6x1NpG/KZaI8CAmoN/SjUIgt894eXv8lahlTTJ9nlWZ06dO6px88j10mezAr0BLn70P8G0gQGzZebUr55ujx/rNW9+LFP7b1rjc1rsr9w77MBmhz6RyDpfN89V4fa9J2MQfp8vYOwS2Sw0TTTNj98AlwDvRlGcPYqBKUsSPQFr4hWzzw47f3SXVViBPJc/LmFVzdDtE0x3ZRYD89qbAiMnv0ipcaeZV1QPey9CcunsgFEJVZsAMo3u3+nCZe1aYDAwJ8NWdhLA0LTiEVGWJ2bwoSheqdS23LLr4XA45imKp1RRPOuAsQ6HIybuXXfiijyAOEU5/tAEhYy4GjcwGsT3wGZzUul1AELx+EARwFaAmVO/PAIC34I8MdhT4Mzg/uYKqpgKfN0epVUx+W4GKF/Yb5s1NXdJicsztLFCqTcc/+vVGYnh9r2nsqmhd3FZY3bUV340TVwI/KVpIlVVZUBV5SxVla5oy9UZlAzNHVUyNPfGkqG5UXMdWlY1/G2AD1eeGfaqVpdVWM0G12XARuDTaMvSWlRVvqSq8toIdJVFMFJWz8HagfzekLwZwCUNz8WosgrBl6Rjv99w1GcAq2oGz4+yPDFDnOLLSjZ4E6ItR7jEx29OjourTIkVZRXAUjcgC0AgFCEEaTJRTJs1Zp4lZeVahD8jufe3zxosVVuA9YAbuBLAnLDxLlCMQXcBidG69bZ3Z5/0gDC4jgrFaBGJ4Kvz7vjzZ+AHEOc0L9WKUd6vuAzEf5rerijnPRQX0BXSxy0E5vH3DbNHEFJSNeAuYE60lNZqd3pJ6GNOuH10SYV12jPnHej1m8YOT5+/oLQgr8unltA0katpYoKmiYj8PY/M/mwswN4ZP3fJf5/dhSq/2Q9Q6zfFXE32JlRVelRVfvHeirPrASoae5ZFW6ZYIU7x98w0utuVyDqaOJ1pvzc2ZkTdctUWDN7kjwEkAUD6KzxG68ypcx0Gc7UVaRDehqxRfnfqYzJgyVGMjb+ieKe89cTkIZ76XsaQm4AfwOdKjytbMPU6KZWKZoFXgGy3e4QpzvUeMDxjxOpTm/ZZFiW8CFQKKc5oT997Iv2Tlw5MsVT2a7ll5NE0cZ6miWsBVFX+qqry7FCQ1R6DP8V7IUEDmIEo+rv3SVxZBjA07c+wfcG7pEL09brjT5EY6JO4+r5oy9JKpgLPAimR6KzGnZoDkG6rKI1Efzo7ZqClIRkg2+xMj7Ys7UHTRP+bD7r2IoButvKuYMmICSp95rI1nriYsU5uj89n2xgIGGPKZzlgaPwKQCreLxY2Bp6u8ktA3tJYsW8eQHXpsWkEc58iDK7eBEyGqlXHPgfKKBCfgvi2KVhL+i0+AuY0xVw/F8CSshIQo6fNGjNP08Q0TROTwpExfei6D4QSwLk16eKmfblLSryBBN9n0iBP+/XqjIz2/RX2LASy0Rswh53isZ0cBRynaaJL+NBGA6XekCqRyODLXtT83ffJ/HmtQfiIM9YfEm4fXU5hzckvMjT6Es4Cvnx66n+/j7Y8reRq4FBVlVsj0dmCzQd5AOasPfGbSPSns2N6m509APqYnVF5+48gx6RYqu4CyE1bGHP15aOFRJg9UqmJthzhYrHUGIXwxdTLVnXOm9USP40Z8+I2UB3aKwwgjARNpMOBTAjgd6f2BYnPmXkYIECOMZir9g+t6PpDwVpawJNUDqAovveaZQo4AzixaVxNE/drmtiWrmpXTLxh6QqgqH5j+ogZE8ZtU3Rc+9f+LPzCZNxkvrx9f4U9i5U1Q39r8CY6O2s8TRPHNBVTAS4Cjg2lANzjKBmamyR8ylEC8alA3AqMzV1SEpWX9MemvOoOSGXN/IpD1obbR5dTWA/I+n4q0EcR/rBKmnYmoUpDFlWVflWVkYw27gvUlBbkxWRASKzwe0PyOoDixqTfoy1LO3n7m/XHHA+wvGrYH9EWJlYwEkjKMLrDjliNNomJG/pKqSS88IIaLetVmxk55b9+qfjqAsb6AzJHPu+FQFMqIamY6uqsqcv+D1CDGRC2pb1qwuz3JCfGZSx4AbgVGDtt1ph5BnNtTwDn1qHbUgmqqjwcOBcgVGLzFEIFBzRNKJomXtM0cfTO5JQB5UWgB81SWQXiA09JZKX1j6TToxm8EoM46SQfVk0T6cD/CN4fqKps3FOVVQD38PqHgESpyNtzl5TcFy1ltQmJUsru5MNa7U67PsFUI08b9PIn0ZalFYwHlmqaGBjJTvsmrchLs1Z0ed/dWKc2YAoA1AWMjdGWpT2oqqz8eFUw9VtZY/b21YF0doIQxHU3uWOqtGlzamuzNVDYuHH/mHIDUQKWdabG7Mq0gUVLQTmcYFJ5RQZMcZ66Xv2ALQRru/sJVrYKIYRibJw5+a5rzp82a8x9TdZUU/ymvQGE4v5HYn9VlY2h3z5VlYMBR+hQd+DA0G80TWRpmvhQ08QBzU7/WBj9nsReW2Y27Ugo6nagQCQDuRIZteCVWGNEt9+HCQJx02dP7LAXqyaLqqrKSuAYQsF6ezIlQ3MV40bL2d5sV92wxUt+jbY8AJlxG702Y7093PO7lMKak1+Utbw6t6fN2PjSg+e/HQslEysIRh2WRrLTGndqXIKpriqSfer8m4GWhnSAvubGtGjL0l7OHTYzD6B7/PqYUl6ihb3QLrxSyKWu+K+jLUu4eDxJGwC83oSkaMvSFgKKp8ZSO2Sjqspnps0a8yNwsGKsq5V+qzHgi7cCTwDTCVrJLoNAU25Wf8CX8Or2/Xnqem8EMMVVnL6rlFaqKr2h3xtVVQ4EXgkd6g0MJfQ81DRx8H6XFL2TlL1lY93G1H4zJoy7bcaEcaMIBqsElS6BlRgp1hBtAlKplShUu9M7xN86VARglaaJ4wFUVc5TVdlpLghdmOMMVSYbkB9tQZrom7jK5PLFJV309JSw7oUupbAC54Ewbnb2iIlgK1WVP6iqPFNVZUStodXudMvaugGfRbJPnX/T2+zMDv3uE21Z2kuvhLUXA0gpzs3JL9ItPy1jAiE80hCzbjdxcRVGgNTUFe0qd9jZuJMX9/FZKkc2bU+bNaZWMbne/7uFtCim2iHTZo25D+j292NKSHagJAZ8cRkAnvrsbGBOa/OwNpXOVlX5m6rKwaoqfw4dSgcGNJQnz0QaTMDtwJzFPdO3AB6JDCDwS0VqbbnucJk+++z4/Rz/PT0nv+jOWPxuL67c5xeAb9YfG9EyyJommiy2PwKPAr9Esv9YRyKvADaa1ltnR1uWJuZXHPSKROGLNeN7hHN+l6mNPH32RJFiOfYWvzT8VXznxKXRlmdXaJqIJ+jMPSvSb3I5+UUpQBIwICe/aFRXKme3u/FLQ8oKgD8ak2Pe7/P54iueAQrKG3uOBubk5Bd1qbrdXY194moS/2hMppfJGbPW9ZSUNRmNjZnEx2/OBX6LtjytxejK+EXxJYzXNPGYqsrpAD5nxmzgLMACAoOl7pyZU+feQDCi2UMwHc/OIpxDUfv/KFMb9r2vqrIIKPr96XE3AQFCpZtLM1K6DdtYOVYgVAJorfUHnD57osXtt/b6rPRUAaTsl/XjPhaDs9+PG8euBlKGpC46xKD4ei2u3HsFkJJh2zQyIA3Jla7MOiAFzoxr1t21MfjdbkrObwMi8oKoaeJ04HJNE8eECvVcH4l+dxd+uzzz+HjSj/X1dM+0z13VZUq8+6VpdehjDrB6F013SJdRWBdV7nNqtTs94Yjsz7+HidEWpyVOAh4mWIv4x0h2PCC55MKVNbmAPA6EGoOTU8zQEDDK0O+Yr3ZS4ewV8qMWChF4aO/uZBjdGQA9za6YzcO6devAHwHKyvaKKb9lk7PXIok8hYBxS9O+abPGzJs5de5ooXjukQHzaG99r0zgjmmzxtwyc+rcsQTvZ61ZFgAA3npikoBt2asinbbna4LFC0wB8H+RMXb4E+Mv2Tii2+9rutnKT6548J5x/oAhzeO3JCRZqkcs3HxgMZCSZq3INSm+XuWNPSuBFDjrH8Upfi//Z1afZVXDpM3YGAC6AdVCSGeKpdJT6cr8GqhOsVSOrXan7RVSyM3E2Hd7QHKJurImlz6JK08CImXtcxF0z0gByiPU526DZUHihdIgpWvvupktt+48hqb9Wblk60j2zvj5OMhrsztWl1FYV1bnngayelX1kKujLUtLqKp8XdPEIlWVxZHuu6KxR6i0ZmSsBTo7Z6ClIWOFO57+loaYjRRvxkvA2QS/0zFTWz5azK3t1gCwsDFpbrRlCReXK7UcwOeLiym/Zb+ppsHgTabXrw8/T7O6UdNmjZn31hOTxtaX77fSuWVEP+DmFx33l0+bdcMT7GQOrN1wyOPBTxIQAWD69kptuFzz5sfzrj53yul1iXGzik323mXWHhOBiYu27LddSyltxgZAJoOollLxJFu2VpU39vgSRHVO0vKUHvHrE+dtGv0RUGXv9pu1Z8I63+elp/wGVEuU+sV3T9hp9aWQG8AckDaQAhQtEtfXGQRlHzIeYG1d/ydy8osWhWuA0TQxFuimqvJNVZUfa5ooanLr0PmbkqG5KUbMxwKFBzy8uaTFEzqRwal/rVyydSQSMTyc87uEwjruoTt7wr6ngXj2+1umdemIbU0TVlWVro5QVgHqvCnfEjQZRDXJ755AL7Or9wp3PNlmV89oy9JeSgvyvsvJLxpDyBKlW+V3jQ/FAuCRhlgI7twhSUnrvbW12SQlrR8abVnaQn3Wt9nJ60/ElVyyD8Hy29v4z+WFcubUuSOB+cCghrIDHn/5ntt+OefmO3/eUV/u6kGXBT+Jpv91i4SMlz97bs7cdSdc2dBz/BSQzQNE/DZjw+tHZH/xYbK5eutWV3rJV2tPKiu5e0Jgp539i7w2yVJakDcvJ79obIqlco5ABv6447xY+m6roISckEVYBpiSobmjJFI1Xx5/qmd4g9Q08baqyoCurO4YXw/3DcZNlniCwYtdisenvFL3Yf7HGxduPjCsVaEuEXSVaK55AoR5WNqCt6Mty67QNNEPWKdpom0zTtto8t8tBHR3gA7kp/qUJQC/NqT8GW1ZIkFpQd680oK8+/R7pmVG2Gp7AfSzNMSwD+tqP4DNVrlvtGVpC5a6/t8DONMW3Luj49NmjakHjmvarl135Gczp879VznHZ65686Jmmz4i8IKfk1+UMOimd2/7au24VQ3ehOnAByDOAOEMjeFx+uKfembqc28/cP47c5679JmNLx43Tmqa6FArd2lB3rxGb8IjVe4MW05+USxlhdDYlppMStr471MyNHesRP4A3JPyRPaIbjcNuF5VZRteDvYsfr0mwyTcyrXenq7K3CUl86Mtz44RlcCR4QQQRl1hzckvEn+UH7xvhq2s7JPrb/422vK0gATmAgs6agA1+9ORAEdkf/67rnh0LG5pkADOgMEdbVl0OpduRk9vgF4mV0QsctGgqqpfKcDmzbl/RVmUNmGtGb4UwNzQd93O2kybNWZVfOb8J4NbIgWYO3PqV3Lm1K8CM6fO9c2cOtfnc2Y8EzwufcBzhAoJhCPTFbPPTj7hwbufBlZ6A5Y7kszVC4/Lee/00oK8s0oL8t4GxgK3sZ0RIVSU4FvgwXDGbQuegHUuwWd22KUtO5vQ32psimXLlkRTDWE8044DhAi6yFkNW02XlwzNjWi2gd2J+E/SjzNsNRn9WZ5Hoy3LjggqqXI4yP4Eg4PbpLR2BZeAg13+uByXM25KtAXZGaE/qgofa6UFeRNabhf+kmytJ9kD4PTGx2zJyFhhoKWh5wp3PIMs9TFrZdMJj2/q0lcD/NyQ+kO0ZQmXa655zuVwODyBgDmmfFi91vKtJlcWSevG7fJv31Cx70aQgVAgIRCQBmvNX35X+m/AAQTLuBJyB1gbjrKak190GHCV2TD+WI/fFm8xOH90+20n/3zbRT8FE8EECc3n/+pfVaVP08Qcwoh4bivxptqfG70Jcnj6gumQFzNpD0sL8uad9JDj3T+3HHDR3re/1H/BHeeuasPp7wLTJNIS2j41YAmsnX9Bjw+k4LL9ntukF9hphpDiCmC99Y+kgmjLshNUQAl9Z9vsIhJ1hTUzbuPtFY09GkC8GW1ZdkQzh3erQPrH3Ddj9qqaoZ8BHNT9m1yAn8uOLAGGQOCeUF1sd7jR/fMrDtkA8Gv5YW35UuuEQXeTq0/IhzUj2rLodC4SYQXwSiWmE4writdttVYPi7YcbaGu16dVaSvPw520fDSwq5zbGgg3SBNIAxiE35U+AmRTYGpTOz9huAIMu+XN0RA/B4Tw+K2B3LSFj396/U3T29qPqkpHW88Jh7/uOrP+kLuertvizBzRGeNFkj+3HPAUcFG1O/1QoNXPttwlJfNKhuZuyxIBdAsk+l62/ZBysUQeUTI01wGsB46E1qca2x35bVrWifGkHRWw+h3DFyzrqoq8FsqnDGG48ETVJeDiWRf2qHalHTui2/x1pQV5ddGUZReoQad7ISSKcVXN0EuAD4APfi47suDnsiMLQtsPgGIKWgNk05tDODQtd3SZ3Gm7Kz83pC4EmFefGlNLqjrtZ6i1biDAEGt9fLRlaQ8mU4PNbK6LKQVm5JTn6wKKy+e3VI3dVbuQxXQsiNtA+W+zB13zYJsA8EI41tUkc9WToWwsgAiUbN2rrK19NKFpQmiaOEPTxOHh9tEaNjb0ea6sMTsjJ7/I0nLrLkUxyOoEU22b4z9yl5TMy11Scl/o90eug2rTfVnuC0XwfnhTIn+QyLuBPbpcrqnUeqM0BWhUq16Ptiy74C+Cb5pfEUaMTlQV1s9LTznZE7ASb6y/OZpy7IrMuA1LABF0GJeenKTl+cB+wH6H9frylMN6fXlKaPs8CISUTBEgTOf/w3p9eQDAmN5FMV99qavjlYoAcEmD/nKwh5Fu9PYH6GVyxbXUtivj8SQuqanp26VS17QKEag01/Vfo2lil8+gabPGzAtVvHqeYO5NHwhP0PKKj2Ce1JfaOnxOflF6eWOPHAhIIhOwZQEKgIvb0Udr+C401v4dPE5EKS3ICwxMWeK0GRtPbW9fB8zY7Ld/s+p5YKQ/3vcpgAi6jVjYQ8vllgzNTTWvjNtbGuRrBzy6eVm05dkZo3sXnQkwPH3+2+GsQEfNJSC01H4LsOLnsiPfi5YcLdEncfU1FY29SDJXvVTrSX1Gu+nKZn/kvOZRePNz8ouWAe+BrCotGBfW0kSNO7UBoNEXX90OsXVawUBLQ/YKdzxDrXXJ0ZZFp3P5oT5tIcA3dekdkp6us5DSsBWIRSvxZktd/8bWRnyHCgs0XxqGnRQTaCW3SoxW4BygD6G4g3DjEFRVukI17deGIUur6Ze07JfVtYPZP+v7GyDvpI4cK9Iowv/BZmf3qYNuerfH8ntP3dTe/nKXlPhLhubeJZGjCSqrij/Re9pvV2S+sP/jFWFby2MRKeSFQgqb4jLcH21ZdsWmht52gP7Jy3aYpq4loqKwBieFgAaKGaQXxMF0weT4R9zzeHZZ4/6H7JXxy9YPrrnjvJbalxbkzTvynsf/u6ZuwI0Xz7pw4jNTn3u1rWMWb9l/HcBPm9QNYYis0wayTO6+K9zx9DS59aCrPQ8rgD9oqYtZLJYaayBg7B5tOdqKO3FlpsGbmNiWc0KKafPnRFjPjKmzLjhaMP5yRfhfWHnf+G1zdCiC+TuCQSGutsYhqKpcDcFc3YCIdNlugK9vumrjvo4X69bV9cuJdN8dzbKqEf8FpnoDlsOBtyLRZ8jHdQwwOmD1D1bqjZOsPyWXlAzNPSJ3SUlMv4y2lr9GDjkcs7wvYJZrR/y6vEunaFyydWQisOmJi14OS85ouQSoIMzNZFCjJMcu2dSQfZPXb2a/rHnXtfac4d3mzzIqnsD88oN3mk2gBZpeIvRl6g7mp/qU+QDf1actbamtzu7FQEtDLsAIW23UU/u1B5utMlNRvD2iLUcYbBD+OJumib6dPfCiLfs+Yja4leP7vffIdodUwLBdlcE2oWkiGSgBbmivnDtjqyvjjfLGXr1z8oti7d79QxBoyLBt+r9Idhrybb13+IJl5zmPrL5SqTO4gZ//GjnkwkiO0xUpGZo7SnjEV4rbYFDqDT1jwId3X4JFQcIiWje8DPrdykDQH6nrVXO69JnzDglIw9RkS9W7t539xX9be95TF7+41hcwF2529hgTToLnQ3rOPRzgmL7vp7f1XJ224Q/d/l6pdNWISp0OItkQ9GHtbXb6oy1Le6it7f2V251cHW052orBm7TY6E71C7+lUy3cOflFR66vzxkeZ2y4/8mLCrcPttQAGYrpCsunVVVlDfBKOOe2ge+AFKuhcWQHjhFxSgvyfP2TlzkNwn9iR42x36yyx4QUe0vkT4pHmb1gfJ8lJUNzY9pPfVdI5KUiZPwTUkAXNf4BXPrM5DRBYMTQtD894fbR6Qrr5c+e09cgfFcDy4LRn12zmtOa2gHPCxEQh/ac+0AYpz8DxPeMX3tFW0/c6upWBVDrSe6qWRN2GwZa6vsCDLfVxlLlGJ0I8Htjym8An/5/e3ce33R9/wH89fl+c6dpeh/QQkoLbSnl9iiHRlCHRsXNc6JDp+KYU+Y8fsGzOpVMh043L9jcOpnD6fBaxAsJiBQ55CiQchRCC7Sld9rc+X4/vz+SYkVKrzRH+TwfDx9p2m++n7chbd75fD+f97stvV8tAqOFKEqbARJzr18iyKsJlfJpux/s95tXXy1aPo/nif9lADUtnpQnT/154H2I7AZIFQbwvqTX08f0emoZYLjdmpK+sQIAJqeXLx6sMQaLR5C/U+fMkuuM5kFr2FFYaa1zGJp+4p5sXy+rVI0B8K21oDB/sMaLlG13ZC4FwTwKKiJEnd4GU1Vr/nkUHJIUjTv6e46wJ6xVbfkfi5Skjk3e8RubyfBMNCarEx5/a9zepokFU9LL979y1z829+MUm9NVxzooyMOLls8jPR/+vcrm8UcAYFPtRU39GJfpg1SpVwcAGVJPzL3hMwPW2R8+ptewxsXVxQOQL1tmiKmNV67kbekA4Fc0FIVrzP0tY98TqGR8mvL4xzaT4bTrS3nib+eJr3ag70sWC1FYLGSxxUImDuQ8p5MVZ9upkrQ79rcUpYX63IPtaEdOZ8mlGYM5zjlLG3yT3j52IQG5DEAGJXT7tjsyXxrMMcPJWlB4i3KD9rf+4Z42Idl3NYJd2KK5Du2+lmIdAGw8Pusf/T1HWBNWndGs39s0qXiU9sDHnzz4yBfhHLs7OqO5RGc0L+7aIowQ+hIF6ciKO9KvEhw2k4GmqWr/XuvIVn586Ia+lh/prMPKLlMPsvKOpE0AYLEnV0U6Fia8RsqcRRyoUDG/gvZ8dPRSq+tTAIDnPcMiHUtfUCIeAQDViZKHjhq/HvR1dzqjWW9tnjAXoDjhyrytu5aQ2ZrDhVmaI6G41K4AcD+AuSE41w+8dOe/qNOv+bjRlVF06ntXDNhKIHpHaA7dGo7BCiutnwGYJGR4naoNCffuHVvwurWgUNHjA6NYxQW5DwEoIyBr+VZJVvE3VR931qmNdGxnQiBOAdAEoNuWzD0JW8J69dLH4wC6DMChqraCG8M17pnojOaZCPSB/j2CfW3vfuPWX7R6kmeNT926Yent7/S7oHxF49RHAThEyvepLt+5Gev1AHBV7kpZD4cyA8cBgACuV6V1mKFDzQkjpESMtU0rP9LQMHY1ANTUzIiptbjK5vEeAJA5ci4HsCYMSevcwGYqAoB0u6Gq1ZNU3exOGXDJJb2etgIo0uvpj5YehMgxAKkAPfneNUjjhJTNZPCMjK9y+kXJJeEas7DSetQ9uT1b0PhfJyK5i4J+s21h+qDO8A6W7TdkvSk5IfuDGOcvB3Bl0dYDjkjH1FuZcTU3ZmsOuW0mQ78nCcL2B5snwucAGa2UdPzaZjI4wzXumWikrTcisCufR3BXqLV5/HNqqR0jNVULzvzoM7OZDHY571rFE/8v7ll2S3ZvH9fkTm0AAIcvLiqeo6EsT+7IBYBipT0u0rEw4bXXrfnOQ/mGSMcxUKIobQl+GVPLWmTOkcnAyYLvA+kM2Fv/AagLEEUCodvGLq2e5Lp2b0JbKAbU62k9AFgsJN1iIdKeju+LFEX96MBX5OR7VyjPP5js3oSy445shc5oDlv963OWNrjGbTmwEMBcSOlYRbn2612X5MRUFQFrQeFDip2a23wjXPudF7TOKay0xkxbaZ3RLKvryFKoJI4dAzlPWBJWndE88bsT559XmLRjr/XpGz4Lx5i9oZW3HA98RUUAPkBsOdSWnz4uecfHf17wVr+nrTtdmPXZFwKVSI91jHi8t4+pai2sBoA11VfEzIsxViVJvNkAkCH1xFqbQ2bg5Ah0ToppCQmHFQCQnFxZEOlY+uh9AC6EabOIzWQoV/CuS68Y9e6JhROe/6C7NapSzkt44gvZJWOLheQCOIgQd8DiOCG4t6LzvSt6N9ucqtmd+lGghTmmh3vswkrrR86LWi6hCvGotEax3FpQ+IK1oDCqr2ZuuT+V7Lxy5EoAfwCwUlqtHHfOCw2xtil7rAie39dS3OeudF0NesKqM5olAP5KwTVYmycOap/lvjrakVMZ+Iq8AtBFGpn9jzzxtn9bd0FIlizcVPjXFVLOs+e7E9PO1RnNvd181VmHNaYu8cWizY7EcgD4wp56PNKxMOGVKXWPVXP+mC93ExdXJwMAmaxjdKRj6Yss08xyALMR3CwSvD+oKp+5bsO1Y94a89DPv+62RrYu/sD4NFXdmBAOewjAUgCfh/CcOOEctiHwFXkTUVpp5ww2EYjCmMTdCyMx+NSXT2zgW6V5AP4M4D5/pqd+66K08yMRS0+sBYUlSkvCdtkB1Q2+LPcGADcXVlpjrkZ7nLRtWvDLftdgBcKQsE5OK/8XgCkA7rGZDM2DPV4fdRbc/hTAK+3eBLVIJSoAE0Jxcr2eUp8ofxnAeADn9eYxk9PKZ3HEj4Gs82B6jQ/esjWsZxk5EdNVnBDzCevx41M2A0Bt7dSDkY6lr7JMM8uzTDOXhCNZ7aTX03YAsFhIpsVCfrRUq8mdVtXmSQxZqTO9nlK9npbq9TSk/d3lvIsP3LpXxliyCpvJ4MzS2Jzt3vhpPR89OAorrZ7CSuu9rqn233PNUq3q86TV1oLCyyMVz+nsLSy4AMB63iGZQEFFyXG5sbDSGpMTWWmq47+TEC8lEAdU2WJQE9b8R97Lq2iccu3ohD11AN4bzLH6Y3zK1qs5IlCATkTwuaAgFKFdD/RvCfF5C5J2/a03Bze5U+sIqxAQFrlyRx4ATFa1xvSuUabvbF7V3ga/vN+bKqOFKMo611vG1BrWSLJYiAzAVgB/OvVnze7UWqc/LuQbWSwWkmqxkNctFjIqFOebOfyLccHbmGoe0KnOMXxZrWNEvM5ojmg5tskrjj0uxvvHEUqOADDvukz37pb7UyO6RMxaUEi235j1OyoXv0LwiisBEYlILohkXP2lM5pLDrUVjPJTKaHgvhzIBsFBS1h1RjPxCMrXfaLUka6uvSQaZwzrnJlpEuLzA6Qh2HHLD5CQrgeymQzt+UkV+w60FObrjOaEno4/Ys87KlAJW78aBom8bzgApEi8kp6OZYYcBYbAGlat9ogjeDsl0rHECr2eegHcjdO0T5Xzbp4n/sH4ACsDcCNCtG7zaIfuOADUtOuOheJ84eYT5V8ikIxFvLpB8ddVewGUCIm+VdLDymuV5drd1oLCiJSJ21tUUAjgU8UOzVJRLgoU1IcYaArQgyu/r9AxsA2Cg5awjknc8xiA2QB5aMU9L+4erHH6S2c0l5xwDi/yigopgJcALEJwPVWoL7HsaZp8q0ClPIBbej6aSsBmWMNiqzNhEwB8bk9jTRrOMkm8NzdF4om5wuunSkg4bAcopFJXXqRjiSV6Pf1Ar6cHAcBiISf3F+QmVE5MkDf3uqpLH8Y7BmCEXk/fCsX5KpvHNwDAvpbimKx0oZJ0bCQQaXHK1vsiHQsAFFZaXePKD17jnmpfyjVLhgHYvmfSmJ+Ea3xrQWHCjmuyN0PEHgSWD94HpRhHQC5EDDQFOJM05fGLgu2OBQww8R6UhHXey/flHW0fWZqprqkHsGwwxhgoBe+8FqCd//9SACk2k2HJYKwHspkM3wHYykG4X2f83xkLPY9P3TpLI20LW7mPs1znv39Mrgti+k9CaIKaE2K+nNltt1koQDoaGwvkpaWlEZ+tiiUWC5FYLOSvAE62OK13DNvX7otvOcPD+k2vp/bguPldk+T+UEnaJYHbjpi8OrT36RvsGeqjHSecmcWRjqWrSSuOPUBAzqGENhEX9+n2G7JWWwsK+Z4f2T87rxzJWwsKFwA4INujnuod66gUEn35hZXWPxVbDvkKK63lsdAUoDtzlz4xrsmden5O/IHDAB7DACcEByVh/eb4xc+4/CphYurm22wmQ1RuaBked+SKwFd0wFl/b4zUHKgSwY8E8DTOUOi50Zl+zCdKOwYzFiYgV+4YAwBT1a0x+Uef6b8TfvnRI15VTL4JdBVMUtUIXFpdw5LW3tPrqR+B5+7kEoAmd9pxr6AYtHa9FguZDmAvgOsHcp5pw9YWBW/HhSKuSKh1ZC+vdw5P1xnNj0VT44PCSutex2VNF3oLnFWKnZo5AFZbCwpDfjVmx/VZN3DtfDuANwBYwWHKxP/WjB1XfrA+1GNFys6GcxcJVOLNS6y8LhQTgiFPWPMWf3A1gOspuNLXfvXm6lCfPxR0RnP2obb8nExVzR6ADDjr741aR/bBwLT4mQtlH3eMOO4WVIPyCZ/5IQ3vzwSAFIk36tZXM4NOAWDQEpMw0iPYvgkxVkA+Styk19OTdbKVEoeMI8JgbrrZBOBhAANqTV7TPuoYAFS35xwNRVCRQeoByABaiijr1nXOCw0N8kr1aAB3AJhJefFgxYzcD60FhQOOce+4/GxrQeFK+S7NSuLkefdU+7MALhy7t3L7gAOPIrmLP8gFcBtA3li+8I1toThnSGeWfv3GrVkq6cXv+kXpEac/7vlQnjvEHqXgUOscYbCZDEfCMaBXVHwB4BEESih1O6NLIMooCFvDGgY7nNpNAK76tC3NGc0vVib0lJyQnhxsHBHjLAhsHpMgtjdmRIReTykAWCxkIgD56IQnJh1qG5MyiOMJCBSAH5B9LeMaAWB/8DZGqU4ziRM1Vz0KK60UwN/2ji3wQyD/4BulVwEwWAsK7yystP69r+ezFhQqPePb35VBfRkF9RKQp0Dxh0krjg3Jrpb5Sbs/3dc8jgpUuiRU5wzpDOu6mjnP2L1ayYzhX5baTAZvKM8dKr96/Zd6AvEOGed+M1zJKgBkaw7VAgAH4SOcYUY3P2n3jDRl3VB4I40FrA7r2YpCHjcEGgeUlpaWA5iF4MaM4H2mDywWwgF4B8Dzxx3Zu11+1aAvybJYyBiLhayyWEhqfx4fJ7VLAUAdvI1Rn5HAkjwEl+ZZIhlMd4hIhgEQSGCXOw/gzV2X6pq235h1p7WgsMe1yFvuTyV7CwuuA1Ap36Ux+Ea5jnuLHFMLK61PjNtyYEgmq7mLPyywNk3IHZeyfYvNZKgN1XlDNsOqM5pnAJpfAPjTsoXL/xGq84aatXnCHyScj7tE99FrwDVhG7cwade0mvZR0Gd/uuvNu1/t9k2lyZV2zOVXDtoib+Z7o+SOgkMeNS7TnmAJ61nGRXlPpVuzLtJxhEIwSWWJaj/p9VS0WMj1AKobXRlPILileZB1tiYdB2BtXx98fqZl7JfVV6Ekc10R8POQdtEKF5vJUK4zmmcBeB8grQC2RDik7lhIoOylFIDPl+b5hGuVXi2tVi4DsHDPpDGfUpmYwrdJ/11YaT35b2ktKCwRFcKtinjNzwklGgC7AMyf8FG1JTL/G+EjUEkpAOfOhnPnhvK8IZlhvXf5zVqNrPUDArEawKOhOOdg0BnNY4/Y886R8d5XX1lQtjOcY1c0TvEDwAln5sYzHdfgymjo8GlD1mmF6Z6aEzoX0rOE9ewzVNawMiGg19Odej1tiZPaFQTioM9a6vW0EoEyV31OVgHAZs+rCdzm1oQ0sDCzmQzrASwAMGpK+saXIx3P6QR36J9sIzx+/aFr/SPcGgTWtyZxLn4x3ya9E8BX1oJCx56po5srpo9qBbCBuLkF/AmZxjvK+T8AUworrZZI/X+Ey62v/OZKADcA+JPNZAhp2bWQJKwVjVNebfcmJF+Uvfp1m8kQ8i4hoSLhvM8AcDh8mifCPXatI1sFALubJp+xuw5HBBmByNawhkGFK/5bAPS5q+vZpquzyN2rhskA8Hlyhy7SsTDRw2IhZGbWF3dJOJ8yHOPp9dRjsRBisZBete3u6mDr2ObgbczXkJ6b+/aqEZoqe2XzuDvHPvpOVHZsO7W81MT3alyFlda/AVhGQTsnPEQA24Uk/xHOwxMAHAEBAfHLDqk2FlZah/z7us5oLtl5YupbMt5Fz8+0vBrq8w84YdUZzcWH28Zcr5K0r3rz7ldDtrg21O56/Y4b/aLs6hztvg9tJkPYF6onyhvzg1+ecfZ0ZPzBc7I0tvwzHcOEDAdWg/Wsw4FqAEDF+WWRjoWJHno9pW2exN0CldCB1kntg58D2GSxEH1fHqSVN8sAgCe+W6Jpd31/vHTnv2iSovEmhy9e4vTHGSMdTx+tJSAeBJr9eAA8OP7zw5O4DskcAC7EfpeqXgu+Dte2eFK1XkEhbqrVjwz1GANKWBctnyeV8e5/AWhx+jULQhTToLDUzLlDxrs945K3PxKJ8UfEH7pULWmnPW1Ga3Gn1LZ7tTHZbi/W5MgdY7nvm0cwZwlLe2AT+C6X9usIh8JEmY3HZ30gUv5k9YAwWIXAJfFvAGDKP4sumL6iYNmksqLrisuKR133jm7CFf/OXTi+bNzzxWXFJ9u6DlNXXwUAApXMR5SVhOqPD+5/ygxgBUB/d+UfnyyKdDy9depygc4Z2O6+P5SppfYbARosCUcoBqHE3oA2XdU5h7/tFRTFBUm7jJ8+tDhqL03ojObzAeVsAA//ecFbYasM0FVVa36dCK7Hyx2tnuQWAFFZYWGoURIxiQMN10wKEz0662y6IxoFE3W0smZVmzeJfPmV9GoJ51fr9fRfgzmeXk/dAJYDQHFZcQkBsXgFKQFwJwBUujVdD7+7uKx4dsX8ivKq1nxd4FvRWRKqP5QSxyM+QXaTX5SaAegiHU9vBZPRHz333X1/KLrgmZezpES7MHh30Jox9Xt2SWc0676tveDyDPXRvfmJu58LZVChlqY6/hYHoRHAnyMVQ4dPq3L51Qd7Oo4jfgVH/GxNZRjsdWu2+MENybIiTPdK4gK94ouU9pBfsmJiW37S7vEAQIHfAlgYrqUBFguZeZGm8S0aaAABgIopEk95usS9BTg523uyMYRXVNYFvzdkLjlbn76+emzyji+szRNGBiaZmFigM5pTq9tzP7X7EmlB0q6lCEEL1u70K2FdtHweAegbABHrHFmXvXTnv6I2wbrij0/ddMI5LO+8Yes22EyGiLU8lXKekUqJo62n4zLVx8aO0u6Pqv7KQxgHViHgrEOAeABQciJbDsL8wOG20TsA4GDL2PkALgrj0gB/Au9TB/NVEYDnpuRjI+cm1rcBxI1TElOlpGM0IDoB/BVh6NQYLrsaz7kWQB2AF3RGM7v6FeXuWfaLUTLO/TWAXJHyl3360MMPhKIFa3f69Qd7f8vY/wLkUjnv/IfNZKgOdVChojOaye7GKXdzEGpTlfW3RjIWjojDC5IqepzRafUkNba4Uw6HI6aznU7mLJIScTDbMDJRaGNHUiMAbHUkbIp0LEx0aXBlNgDAH7Y826jXU5/FQmQWCxn0Ri56PS3f7dJsBygloE8DZPZohXNmsar9cnRZC1kxv6JcZzTf5PKrLwSICsD8wY4tnGwmQweB8BiAkunDvjRFOh6mezqjOWFz3YxtAuXztbKW620mw1eDPWafE1ad0VxibZ7wU4DCIyhvj+bF3mqp/UoA00TwT71854oeZzcHS9Fj/47zCErUOYb3WHPP4dN0NLnTYrq2XqyQc6KWB2VNGs4+iuAtW8PK/ECiokEFAKO0+zorSHwKYFWwG9agavDLLkmReMmC1OoLK+ZXlOv19JBeT30V8yvKK+ZXLJnlHb9JZ/z4dgD/CDyCAF2WCQwVV+W+U5aprnFXNE65W2c0K3p+BBNuOqM5HsDqeucw9YzhXz2686mbPw7HuP35JdQHflEIABK1vyyLls8jWlnrv+OkbW0A3oxkLA5ffAYA1Dqyd/V0LIGgJRAKovmDwFCxzx23zU35lkjHwYTXVHVrEQBMVrVmRjoWJroUJO4uBoCi5B2JwW+9AOAJvZ4O2tIhi4XIi8uKr2wVZJJGvwxvNmZfeOu72Td2Pabw0f9c+s3xWU0A91cAOwEyZEsmvXTnv3xy3n2z3ZuoBrAo0vEwP3Tv8lvSE+WNWwE6FSDXlf3m5WfCNXZ/qgRYgrcUUfzL8pnt6uvcgko1bdia196+94WI7rpPUdT9rNGdAaWkI6O7Y3RGM0cgGim44QCGA/hKZzTPGiprk6IUD7aG9exDoQYAOSf6Ih0KE10OthZsB/Cz3Y2T3ACg19P/DeZ4Fgu5AcDzGs73drsoBUDgoxC2ObU5v1n2izGNrrRfbqq9qAhQXeHyq0AgihTcbxH4u6UHYBmK7xGWh3/7X53R/DFAHy945N0Ut6BaNRT/P2ONzmhWpSr1G1o9iXljk3c+8MmDj3wYzvH7nLDaTIbyMY+8J2plbccbXBnXR+OLSGc084DqcQCVG4/PvieCccQBeBpIXwRQuPzqp3RG89d5CdYDB1sLCwGML0reftfxjmwNkJxOwXXtsKLgiW/F7a/+6rU4afvSaN7YFqtGypxFJ3zyuEjHwYTXVmfCEQAo70g6Y9c55uzT4MpsAoDD9jE/+CBrsZC7AWTp9XRxiIesALA5Repd3+6RPAAQHpSHs/q2W/7nzHsGIAQQ3QBHARAKIgK4wGYyLMEQL5mkknT8x+lXX+kWlA8AuFtnNA+ZzWWxKLg848MGV3puccq2xz9+4Iml4Y6hf3VYKeeLk9ortjxxe1S+eKamf/PU1vrpRQBusJkMYetkFLyMr1dL2q2Fybvu58m5EwUqjTtZqQSQyXnX+oOthSef96rWfJ+cd3cARBmYtD55rMATYdia6iuf54l//odGswnAfwBMxRD+ZB1OXkrSBEBWXFZcUjG/gj2XZw+2hpU5rVRlrbrBlQld/AH1KT8qAJBrsRBer6cDek+xWMi1AIoAPPXOvlszNhy9pLzdp71Lqt4ryLNW8IIjj4sTkrmZo/5jFyn34BdH5lp9ouxzBNarRu1VzVBz+uOyAyW9CEHgd/YiDPEkPVrdu/xmTbbmvF017TkjAXLbxw88URaJOPq1kNwryl2H7WMOhDqYUNAZzdJDbWN+l6mucZ+TvuG9MI5bAmANQJ9x+OPe31o/fUYgWf2heFnrgclp5R8AMADInpn1ZUmbN7EJgBOB1m6dRXcXzsl5P6Mo+bs/CJRTAlih4J2tBOLXAP09hkB3k0gqLisuqfUpc72UlwBYU1xWzJ7Ls8QEVdtUACiJa9b0dCxzdslP2l0IAGOTd6Sf8qP7ARj0lvgSlGoXo1Tbr78X9yy7Jfur6st++/rOB359x+erqlcfvnZNu0/7RwDFxDVqhVbUfieJ2++7+/yFT1875q2t1+eXfXTg2Z9uQJdKAWfRRIUlWNJLBEDiZS3X3bv8ZvY7G2Y6o1m2tvry/9W0j9Kdm/H1cpvJEJFkFRhgp6so9Ytmd6qiMGnnr969b0k41yfqAcgDnwYpALEK4D4cnbinBZTSA63jCIA1Da5MNLgy9QBaRifsSdhwbPYWgBCe+J8WqISPk7ZdkqqsSz3SnnftR1U/v0fKefMQXCrgFlSqLrOwQ6K7SQTp8f0HNvZcnkUEShQAICOUNY1gfmBfc/EOANjZcG5z1+/r9dTrezr+Igq6BgAIiBul2tkobTvj34xFy+dJ9zRN0vtE6Q31jmGTvOJ1k0XKA6AdADaVZK79WiFxvbq25vJv9j97DS0uK80D6P7/tmTOXqw8eElnHdhgknpW/X2ymQzlOqN5NgB9gryxoNWT8ovNdTO/0xnNkyJZU/1sojOaJQDebvdpL0hWnHj4P7/9w5JIxtOvhFUpccSPTrBOC0wSRo+5S0uVwNTHAbLZ2jxhWZiHtwDwAFQKEB9Abgn8kfn+OdIZzRcB9AsAPEBwoPX7lskClTwKAB2+eEoIpRwR7CLlDyXIm/blaA9o9jZNfK/DF68A8DwC/25nzaWhQWIBqAAQCUD9ALFEOiAmPHa74g8AwLr25OORjoWJLg2ujGYAONYx8keTHT6puFTq5zvXbHX7Iffy55/O39s0aQaAS5WSude4/GqeQESaqrY5RXlidbKi4f31xy4ts5kMXuCKHzy2Yn7FwbkrRx2r88nnv9ec8TtYCADM0OtpWMoGRZuuifq1Ly5u2lo/fRGAL3RGs8FmMjSf+dHMQCxaPk+an1i8b19LcQ6A320rve3FSMfUr4TVL0p8bd6E+lAHMxA6o7kkQ53xBkBGpKuOLfr28QVh3aT0/adBokf360tnIZisno5S4hA4Imxq9yZ8l6RoaC1O2aax2fPMm+su2AMgB8CFALkXQMoZxmB6oWJ+RfnVK3OWV3niFg6Tup/57KaD7Lk8e4wJ3k4A+9DHdJGprtHUOrKRo92v+cGETKlWrgQ3nAbapAoE5OSEwTUvPhy/rX76dACXJsgbb231TEoAAA5CfYryxMYRmqrN52V+/dn41G3lej3tcWYwifc9csijLlvXnnLjtUl1RQBut1hIll5Pm0L/fxw73rtvye90RvN6gL6TpGg8cPey+Re/sqBse6TjGop0RjMv4a79p1+U5ZyXue6TdxY9F/FkFehnwuoT5a4j9ryqUAfTX53rR+scWUpAxAlnZkSS6V5ctvkEwIMAlQeS1s7afkTQSFu+TlfXjrPZ81IQWNagXXd0DhDoaY3AUgAAgBcgepasDlyVJ+5lAAuP+5S2SMfChEdxWXEJAb2LBn7/PikuK57NNtwxncYk7hld68hGfuLubADbuvzodgKSBmARBdTvCBce/T/fXTNSn/zb31vc5+YHj3EToLIkc211hvrYyqtyV/6dELyq19OVfYlhqzPhLQC/AbD44Zr8FeNU7QuWXXPsrE5WO9lMhg9uevn+e7fVl7z+5ZErV+uM5uk2kyFqcpGhYNHyeTzBjcv8ouxGCectfWfRc09GOqZO/e3ewQOYGi2bfgjESwAoAkkgJ1Bw+giH1B0/QLwENLg7mXCB/0DafYlffml8MP3gsz8tsJkMCTOHf545R7fqGqWk42oAHwKgwZlZGYA3dEZzabQ8/zHMFrwdFckgmLDS05N/96K38QkTGXubJu4AgO0nzqvr/J7t7wqtR4IX6kh8zblYesUE8ZWn/8931z8BPGf3aqXjU7duzVTXXAsg6cWLbp3870V/nDs3b+W7hOBP6McMfsX8CiojwqcAsttFibG8I+mN4rLiEouFsK58AN6+d+kbWXFHLvEISgmADRMef2typGMaKhYtn0cO20fvpOB+SSA+c/DZn0ZNsgoAhNK+XTkPJEl0Y/DhLkR41+I9y2/J3FI7fV+dM0uDQI06T6RjOp07X1vwqzVHDC+JkMh++BMqAMSLM8TcpQKBNFjigw+W+3Cf6XFMz857q9CRKfVUfXDjofGRjoUZfMFqEBsQSFpdCPZnj2xUTLTQGc0PAngOwAIABxPkTdffyn96129FM7nJ+zDKxcLmgqSKdregeuNw25gym8lwch20xUIMAB4DcHFvLv2fyYSycY+KwO+DkxS0SGlf96u0ah6AfjC7bsUSndFcyBOfRcZ7U0uGrb3zzV+/9rdIxxTLgnnG8wCmT07b+G22xlYSbfXf+9maFegy26cPVTB9pTOak/5Xdf2H9c5hcYVJO98D8CiiMIHTGc0XfVV9+V+6JqvxsuZvCcRpAHkMPcQc/NlsgDyu4J2rAt8lBEOwj3S4aTi/vU2QaCMdBxM2mwDYAWwFS1aZLoKTMU8H7tFlAL5ye+LuuFlchyMkpX4rHT2Vgk9d/dAjurWL71vSNVkN6kxSEzFAIsgaAK7gsjFS6Yqb9nFL2rT7q8c+ykrwBdhMButlOe//TCFxur6qNvxFZzTPiXRMsSp38YfTAboewHQA/u0nzr8v2pJVoN+tWYkbgUK+hEDcENqQeufXb9xWRPCzlRTcGALxp6sfCm+LsN7KMX48hwP9SKDSrpdzBLs36cO+lCrpPDbH+NFTge9QAV0W/jP9U+9XfAbg4kjHwYTHJfENE7+wpyaMVbR/984NNpasMl3pEVjuBgQ2DaxYn3hXfYrL+0AK7fj5/iU/2/aDo0u1JXaNcGt9urdx9M3eR/R6us5iISWdpagGomJ+RXlxWfHsYEwH43nf65/b05IAWgpgcXFZ8Sz2YQv4y4Kyb3RGcw6AzwD60fSnX/nrsQ5dDdim5F7TGc3ZGmnHJ+2+hJP5YHBZZdQ9f32eYQ2+CGYB9G0A3PjUra+EPqwzu+CZl0dvrpuxnef8hQAMh01XRmWyetlzz/wdoJ+I4KWZ6mp74LuUAvCin4kmBT8SQCtAzrYi0oOlCsDw4rJiRY9HMjHvkEc1AQDief+WSMfCRB1LcHmWHyBuk/y1rUke9/1OhdCM0ra1Pzgy0DhgvaadWzCqSrHY93T8DAAIRbLaqWJ+RXnF/IolFfMr3m0RZEsDs62EIDDRpA/VOLHOZjKcAKCPk9prj3WMXAjQZ8Aa6/RKjvHjGwDsavfFywlEIVDiMXpLZvZr05XNZCi3ma6YNymtfOvOhnOLRy3+6OZQB9YdndGcV92e+2WrO9k/K/uTu20mw5fhGrsvdEbzTGvzhFspOAJQb50jaw4AO0A2oZ+J5qLl84iMc18r5Tz1ANayZHXgxivbFAAwS9Ooj3AoTBhUedQZALDJkRi2LnhMbPh+6RUef1zyz0U3kPV/lIgcUbo5zWk6W+kBSAgIOApB6iczBzc6shYgHgBRnVBEis1kaPMIimAHJkIAKNVS++u/WTa/OKKBRSn9s39Kuvz5p6souJUA9gHcOApuZrRPhPW3SgAAgCfCNADrRcov0xnNg/7C+NXrt1/NE385AJWfSqcvW7j8jcEecwBmAEQIrPUlHAWnlxAfl6qsrenvi+GzI3NNXlGh8omyMWCfIENCzQuVAHDcJx8R6ViYcKCTABypmF/RGulImOgTmIwxLPml5NMUEqgiARJIgPSnHGqhoKCglIRhaVbw8v/J9qxsOcCP+UT56uBGcAGggsMXN3714Z/t0BnNrwaXDTAAdEbzDJt99HfWpgk5U9M3rAUw02YyHOx87UdrsgoMMGF9774lPgA3chA6EuRN39yz7JbsEMX1I6MWf3TOuqM/eU8l7dDKOPeFNpMh2gsGWxC49H/yE7Gcd6uHxdUU9PVE1724mNMZzb93+9UPBVuzsg1XIVLekfQ5AFS6NbKejmViX7LEN3eEzMl2WTNnREFPJqQ43YxmaVu5n6eiSyE2AOixRWsodFkiELUJRSR1mSF/DCAzL8tZNTtOZv8vgDsAeuCy5545MP8v91wS4TAjZtHyecqfvfDoeoCuAyAQ0Onv3bdkls1k8EU6tt4aUMIKADaToXb2SPOTdm+CZk214QOd0bw41DN/uYs/uFuk/Ncev7xx5vAvL9n/7DV7Q3n+wdD18hKCU+xOv7ptf0vR5r6cZ8FrdybbvQnVCFRA+F/wEyS7LBQ6JwA4wWqxDnnTVxQom/xSmZyI30U6Fia6VY/w2gkInEpxL7pJSDlK7ARkYziSVaZ3us4SvnbX37/a+eQt1wMYla2xfVjVWpC37uicz3VG86rCR/9zfqRjDSed0Xz9x1U3HPruRMnMUdr9WwFMPGS6KuZet32uw9qdvMWrXvVT+UKAUgLqj5PZb6h4at77fT3Pb5bNL6q258zY1XhOCoDJcdK2Kzp82s7ZLzeAWdE8ZX0mOqO5CcDbNpPhnl4ePwKgHxLQiedlrv9gU63+ZwDOR2Bmle2CDJELV+TbtRKf/aMbD2VFOhZm8BSXFZ8DYDOAayrmV6yKdDxM9BKfjJ/NUfJlh1q4Nu7Bjv+e9qBSbS2Aj1Dadld4o2P6Y97L94385vjFvwRwL4CEHO3+xmp7zvUClVpsJkPUlXAaKJ3RnD0x9dsnjnaMnNvoykgJfJfGdKfMfrVmPR0/ldcg0I2JUBBpuzdhlc5obtBI22pyE63kUGv+X+3exM1aWfOeNm/SRASSrr3nZ1qK7F7tuXubJvEAJgPXD+ty2gMcEZoAmnHK7sjYfLI5ryxJ0ZjRm2Nvf3XhL4HLlwCcgiOCYeWi5z8J/qjXpbCY3pFz4tFGnzwh0nGcSXFZMZFAnCUh9FICus5FJeUpEg83WdWmOeRROw961L5hUjc/TmmP6+n+Pnec44hX5R8pc0ryFR3qU+/vdsV3HPcphDy5QzpK7lCdev87p7a90S8XCxTtshEyl7Kn+5sciXa7IKXjlHb5MKlbcer9de3JbR7KY6KqTZEm8chPvf+5Pa0NwI/uT1W1KpMkXlnX+wkSn/RLe6odAM5Tt6g0vF/SeV9F/Lc7qQQIwZUlZmjjKLkcAOIcvKe7YyionBKcw5VqS9gsa/T7170vHgHwhM5oXnpOxtf/rGiYcrFApV8B2PTTFx5dOUJz+OVorD3aWzqjmcwc/sUst6B4aEvdjBSATN7RcB7UUrs/2GiIBDtr6hGjOUTIZli7dGOSkUCx41cpOI1W3jzb6VOP9Iny4JGUAiDBxgOBICCCguwByHdjEne3ZWts1jXVV6ywmQz2788LKQKXwaN2B1tPih5dKeYlWis+vP/JCd0dozOaS6Sc5/9EkZ+rlnXY7d6E820mgzWccZ5tisuKXwRwJwBNxfyKsP7BeuCD9NT9bnXGYY9ao+L8I8Yp26864lHa6/0KyIg4IkXimdnolzm8lE8AIO/pfExPKAC4AMI2rjCnV6otoaAbAHAk2M3xRwlp4JiNANDtMUxU0xnNCgC38cT/sEAlWfGyljq7N/E1AlEO4H+HTVdG/b/nouXzeJdffeuGY7PHO/1xcwCMAQClxLHH5Ve/pZJ0fOj0xyViiORQIZthtZkM5TqjeTZA9BTkB5er5//lHsm6o3NyAIxPkDc90epJ7qwoICp4xz8v1X30wMt3rmgKfMvQzXlj/zK4069uq2wu/vZ0P7vr9TuGV9tzngQm3OoT5TxAqVrafvuup+axZHXwHQKgVnP+NAD1Az3Z1StHqas86jQA6dPimq+s9clx2KP2ADQjV+6c2+CXOeyClAtcOUhTdz7OKUqw2ZGI4Ie6Rh8lDVJCvfG839ro53mATg98QqYiQD5Rc/5vxio7zqnxKirrfIoTGs6nLlA6phzxKPee8MsbtbxPM0bhmGTzKHc3+OXNibw3Pk/hnHjIo9rV5Je1JvHehFyFc3yVW7WzWZC1pUg8iTlyV/EBt3pHqyC1p0o8yTq5q2ifW/2dXZB2pEs8KSPkrrGVLvW2dlHqyJC607Jl7oK9rrgtDlHiGiZ1ZwyXucfsdmm+dYm8Z7jUlTlM5hm9y6nZ5KG8N0vmGp4p9eTucMZv9FHOP0LmzEqXekdtd8R/4wcnjJQ5R6RJvbptDu3XIgjVyZwjU6XekVscCesBYJTckZMk8WVtdSR8DQC5ckduAu/L2OZM+AYA8uSOvHjel/adM2EjAIyWd4yJ44Wk7U7tJgAXA9RwyobFmP1bwgwqPQLJKgAoAdyLUu0WlLb5uxxzIwAEj2GvpxhkMxncAF5btHzeP1o8yS9sOHrx5QCepOAA0IfzFr9/2E9lm1OUdS1jk3ZJ9rUU/afeOXwngIZILCEITt7pVZKOTRpZW2K9c/jFHLn+GpFK0ghEEcAaGe/+yyUjP9rwyoKy7ac8dkjkUCGbYe2toTRj2lc6o7kNwB4A91868oP9flG6oLz2wnSXP24aQKcG3kyDE9CBjVWP20yGJZGM+Wxwx3tZxm8diUuSec+qJkH+x9PNvAUbC6TPiGua0SpIk3e74l0A0gsU7XNbBSlX51M4AaTLiJDnpTz50SABTckSrwpATZNftg1A3SRV2xinyG/b544rB1D3E+0JqDih8qmrGt2njP+j3xs2Q9h77Pljei0we7oGgDxY0op4ZKLXoRbfTGqRPEBBJxOQVQBS8P0GWDbDGuN0RvPDAH4PgAMoCMQqCh4EYg4Fd3IZEU/87nT1MXrCMWy1n0ordfEH2kcn7m3bePyi9x2++PquyWxnkoleJoo6o1ly6cgPs9u98SnltRf5ASRMH7ZmZrVdl1vTkftzgErw/RVqJ0BXTxv2VU2CvPlPr971jyMhfkqiTtgTVqDv/4hDQbBP9cbAPSIG15TwBKJAwW1SSTrKR8ZXyazN4+9EoP7fWZXMR9Kct/PuOeZTvhzYMAgxXerZWedTHASQkcD7JjlFXuGlnPR0j5UTwS/nxA67IN0BoD5f0ZEFwLbPHbcGQP2MuGYVQPdt6EiurJhfMaDyIcGkSw/AwpKtvmPPH9NrgUYBegDrWrX+8RI/eS7OwWsAtFPQOAJCKKiPgPwNwD9Zshr7uptMW7R8ntIjKKZ9ZrtaRsGNHhl/8Cc8EaYeahtjB0gOvm/nCwDtWllLW4b6qLivpXgtgJ8DVEpABQpuOQD76IS9MwTKaw+15dcA0CYqGsb6BLm8wxcvAlCfGtePUaQo679odGXMtZkMrlA/D9EsIgnr2UhnNC8G6LPfr92l62dlf/KpQuL626t3/f1El+POumQ+0orLih8D8FTnfR6iKIA7CKAuS+pKVHKC/YAnbjWAuomqtnglJxwt70jaBOBExfyKbjdlMAwzhJRqpwFYTkHHki5XwVDaxq6CDRH9mBGVXpD12bmCyJd8c/xiD4C8YerqOS6/KqvFk6LAjzd4+hS8U1BKnGKLJ2UvgLZszaF0pcTl299StBZAW3HK1myFxNW+pW7megCt04d9GX/Enpt+tCPnJZyFV6a7YglrmARnWL8CIA32qz4rX3DRKDjzFvy3oV62IYdhmNMKLBf4CoG2rGwpANMtndE8A8AXAA0mmWQOgPX9Xf/KJrNYwhpW7AUXvdjlYoZheuX75QIWlqwyZ8Le80OLJawMwzAMwzBMVGMFtBmGYRiGYZioxhJWhmEYhmEYJqqxhJVhGIZhGIaJaixhZRiGYRiGYaIaS1gZhmEYhmGYqMYSVoZhGIZhGCaqsYSVYRiGYRiGiWosYWUYhmEYhmGiGktYGYZhGIZhmKjGElaGYRiGYRgmqrGElWEYhmEYholq/w9aGAjJjCxjUAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def draw_sketch(sketch, label=None):\n", - " origin = np.array([[0., 0., 0.]])\n", - " sketch = np.r_[origin, sketch]\n", - " stroke_end_indices = np.argwhere(sketch[:, -1]==1.)[:, 0]\n", - " coordinates = sketch[:, :2].cumsum(axis=0)\n", - " strokes = np.split(coordinates, stroke_end_indices + 1)\n", - " title = class_names[label.numpy()] if label is not None else \"Try to guess\"\n", - " plt.title(title)\n", - " plt.plot(coordinates[:, 0], -coordinates[:, 1], \"y:\")\n", - " for stroke in strokes:\n", - " plt.plot(stroke[:, 0], -stroke[:, 1], \".-\")\n", - " plt.axis(\"off\")\n", - "\n", - "def draw_sketches(sketches, lengths, labels):\n", - " n_sketches = len(sketches)\n", - " n_cols = 4\n", - " n_rows = (n_sketches - 1) // n_cols + 1\n", - " plt.figure(figsize=(n_cols * 3, n_rows * 3.5))\n", - " for index, sketch, length, label in zip(range(n_sketches), sketches, lengths, labels):\n", - " plt.subplot(n_rows, n_cols, index + 1)\n", - " draw_sketch(sketch[:length], label)\n", - " plt.show()\n", - "\n", - "for sketches, lengths, labels in train_set.take(1):\n", - " draw_sketches(sketches, lengths, labels)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Most sketches are composed of less than 100 points:" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEOCAYAAAC976FxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZiklEQVR4nO3df7RlZX3f8ffHATVRW0BHMxlIBnWqGe0K0inS2lirks5AdTSpLkiq+KMdSSDGX0kmpjbk1yr+XtJQJoNMhFZFE3U51TFoqYbaFGVARBCREUcZmcCoKWpQceTbP/YePB7uvXPO3HOfc+fO+7XWWefsZz/Pvd+972E+7H32eXaqCkmSFtoDpl2AJOnwYOBIkpowcCRJTRg4kqQmDBxJUhMGjiSpiaaBk2RdkpuT7EyyaYb1SXJ+v/76JCf27Q9O8ukkn01yY5I/GBhzTJKPJbmlfz665TZJkkbTLHCSLAMuANYDa4AzkqwZ6rYeWN0/NgIX9u3fB55eVT8PnACsS3Jyv24TcEVVrQau6JclSYtMyyOck4CdVXVrVd0DXAZsGOqzAbi0OlcBRyVZ0S9/p+9zZP+ogTGX9K8vAZ6zkBshSTo4RzT8XSuB2waWdwNPHqHPSmBPf4R0DfBY4IKq+lTf51FVtQegqvYkeeRMvzzJRrqjJh7ykIf8k8c//vHz3BxJOrxcc801X6+q5Qc7vmXgZIa24Xl1Zu1TVT8ETkhyFPCBJE+sqhtG/eVVtQXYArB27drasWPHqEMlSUCSr8xnfMtTaruB4waWjwVuH7dPVf0/4BPAur7pjiQrAPrnOydWsSRpYloGztXA6iTHJ3kgcDqwbajPNuCF/dVqJwN39afJlvdHNiT5CeCZwBcGxpzZvz4T+OACb4ck6SA0O6VWVfuSnANcDiwDtlbVjUnO6tdvBrYDpwI7gbuBF/fDVwCX9J/jPAB4b1V9qF93HvDeJC8Fvgo8r9U2SZJGl8Px9gR+hiNJ40tyTVWtPdjxzjQgSWrCwJEkNWHgSJKaMHAkSU0YOJKkJgwcSVITBo4kqQkDR5LUhIEjSWrCwJEkNWHgSJKaMHAkSU0YOJKkJgwcSVITBo4kqQkDR5LUhIEjSWrCwJEkNWHgSJKaMHAkSU0YOJKkJgwcSVITBo4kqQkDR5LUhIEjSWrCwJEkNWHgSJKaaBo4SdYluTnJziSbZlifJOf3669PcmLfflySjye5KcmNSX5zYMy5Sb6W5Lr+cWrLbZIkjeaIVr8oyTLgAuAUYDdwdZJtVfX5gW7rgdX948nAhf3zPuDVVXVtkocB1yT52MDYt1bVm1ptiyRpfC2PcE4CdlbVrVV1D3AZsGGozwbg0upcBRyVZEVV7amqawGq6tvATcDKhrVLkuapZeCsBG4bWN7N/UPjgH2SrAKeBHxqoPmc/hTc1iRHT6xiSdLEtAyczNBW4/RJ8lDgfcArqupbffOFwGOAE4A9wJtn/OXJxiQ7kuzYu3fvmKVLkuarZeDsBo4bWD4WuH3UPkmOpAubd1bV+/d3qKo7quqHVXUvcBHdqbv7qaotVbW2qtYuX7583hsjSRpPy8C5Glid5PgkDwROB7YN9dkGvLC/Wu1k4K6q2pMkwMXATVX1lsEBSVYMLD4XuGHhNkGSdLCaXaVWVfuSnANcDiwDtlbVjUnO6tdvBrYDpwI7gbuBF/fDnwK8APhckuv6ttdW1XbgDUlOoDv1tgt4WZMNkiSNJVXDH6MsfWvXrq0dO3ZMuwxJOqQkuaaq1h7seGcakCQ1YeBIkpowcCRJTRg4kqQmDBxJUhMGjiSpCQNHktSEgSNJasLAkSQ1YeBIkpowcCRJTRg4kqQmDBxJUhMGjiSpCQNHktSEgSNJasLAkSQ1YeBIkpowcCRJTRg4kqQmDBxJUhMGjiSpiSOmXYBmt2rTh0fqt+u80xa4EkmaP49wJElNGDiSpCYMHElSEwaOJKkJA0eS1ETTq9SSrAPeBiwD3l5V5w2tT7/+VOBu4EVVdW2S44BLgZ8C7gW2VNXb+jHHAO8BVgG7gOdX1d812aBFwqvZJB0Kmh3hJFkGXACsB9YAZyRZM9RtPbC6f2wELuzb9wGvrqqfA04Gzh4Yuwm4oqpWA1f0y5KkRablKbWTgJ1VdWtV3QNcBmwY6rMBuLQ6VwFHJVlRVXuq6lqAqvo2cBOwcmDMJf3rS4DnLPB2SJIOQsvAWQncNrC8mx+Fxsh9kqwCngR8qm96VFXtAeifHznTL0+yMcmOJDv27t17sNsgSTpILQMnM7TVOH2SPBR4H/CKqvrWOL+8qrZU1dqqWrt8+fJxhkqSJqDlRQO7geMGlo8Fbh+1T5Ij6cLmnVX1/oE+d+w/7ZZkBXDnxCufsFE/5JekpaTlEc7VwOokxyd5IHA6sG2ozzbghemcDNzVB0mAi4GbquotM4w5s399JvDBhdsESdLBanaEU1X7kpwDXE53WfTWqroxyVn9+s3AdrpLonfSXRb94n74U4AXAJ9Lcl3f9tqq2g6cB7w3yUuBrwLPa7RJkqQxNP0eTh8Q24faNg+8LuDsGcZ9kpk/36GqvgE8Y7KVSpImzZkGJElNGDiSpCYMHElSEwaOJKkJA0eS1ISBI0lqwsCRJDUxcuAkafqdHUnS0jLOEc6eJG9K8nMLVo0kacka56jltXRTzbwyyaeBtwPvqarvLEhlmjjvDCppmkY+wqmqi6rqnwNPBD4J/DHdUc/WJE9ZqAIlSUvD2BcNVNVNVfVbdLcOeC3wK8CVSb6Q5KwkXoggSbqfsS8E6G8t8EvAS4Cn0x3tXAz8NPA64Gl0tx6QJOk+IwdOkhPpQuYM4AfApcDZVXXLQJ8rgP896SIlSYe+cY5wPg18DNgIfLCq9s3Q5ybgskkUJklaWsYJnMdU1Vfm6lBVf8+PbpomSdJ9xvmA/+NJHj7cmOSoJLdOsCZJ0hI0TuCsors19LAHASsnUo0kack64Cm1JL80sHhakrsGlpfR3d5514TrkiQtMaN8hvOX/XPRXf486Ad0YfPqCdYkSVqCDhg4VfUAgCRfBv5pVX19wauSJC05I1+lVlXHL2QhkqSlbc7ASfIq4L9W1ff617OqqrdMtDJJ0pJyoCOc3wAuAb7Xv55NAQaOJGlWcwbO4Gk0T6lJkuZjXjM7JzlyUoVIkpa2cW4x/fIkvzywvBX4bpKbkzxuQaqTJC0Z4xzhvBzYC5DkqcDz6O6Fcx3w5lF+QJJ1fUDtTLJphvVJcn6//vp+hur967YmuTPJDUNjzk3ytSTX9Y9Tx9gmSVIj4wTOSn40o8CzgL+oqvcC5wInH2hwkmXABcB6YA1wRpI1Q93WA6v7x0bgwoF17wDWzfLj31pVJ/SP7aNsjCSprXFmi/4WsBz4KnAK8Ma+/QfAg0cYfxKws6puBUhyGbAB+PxAnw3ApVVVwFX9xKArqmpPVV2ZZNUY9eogrdr04ZH67TrvtAWuRNJSMs4RzkeBi5JcDDwW+Ejf/gTgyyOMXwncNrC8m/tP+jlKn5mc05+C25rk6Jk6JNmYZEeSHXv37h3hR0qSJmmcwDkb+D/AI4B/W1Xf7NtPBN49wvjM0FYH0WfYhcBjgBOAPczyeVJVbamqtVW1dvny5Qf4kZKkSRtnaptvMcOXP6vq90f8EbuB4waWjwVuP4g+w7//jv2vk1wEfGjEeiRJDY3zGQ4ASX4aeCRDR0dVde0Bhl4NrE5yPPA14HS6q9wGbaM7PXYZ8GTgrqrac4B6Vgz0eS5ww1z9JUnTMXLgJHkS8N+Bx3P/U1/FzDdn+1GHqn1JzgEu7/turaobk5zVr98MbAdOBXYCdzNwu+ok7waeBjwiyW7g96vqYuANSU7oa9gFvGzUbZIktTPOEc4Wug/0/wPdaa4DfbZyP/0ly9uH2jYPvC66z4pmGnvGLO0vGLcOSVJ74wTOGuBJVfXFhSpGkrR0jXOV2ueAn1qoQiRJS9s4gfNaus9LnpnkUUmOGXwsVIGSpKVhnFNq/7N//ig//vlNGOGiAUnS4W2cwPlXC1aFJGnJG+eLn3+9kIVIkpa2sW7AluQfJ/nTJB9JsqJve07/HR1JkmY1zhc/f5FuJoCPAE8HfqJf9RjgRcBzJlzbIWfUWZYl6XA0zhHOHwGvqqrnAvcMtH+C7tYDkiTNapzAeQJDswT0vgl4WbQkaU7jBM7fMfO9aU6km+VZkqRZjRM47wLemORYuu/dHJHkXwJvAi5diOIkSUvHOIHzH+nu7PkV4KF0t4b+OPBJ4E8mX5okaSkZ53s4PwB+Ncnr6E6jPQD4TFXdslDFaXEb9aq8XeedtsCVSDoUzBk4SbYeYPy6pLs1TlW9ZFJFSZKWngMd4SwfWn4qcC/dzNEAT6Q70rlywnVJkpaYOQOnqp61/3WS3wW+C7y4qv6+b3sIcDE/CiBJkmY0zkUDLwfO3R82AP3rPwJ+Y9KFSZKWlnEC56HAT8/QvgL4ycmUI0laqsYJnPcBf57k9CSr+sfpdKfU3r8w5UmSlopx7ofza8CbgXcAR/Zt++gC5zWTLUuStNSM8z2c7wK/nuS36GaIDrBz8DMdSZJmM84RDnDfhQLXL0AtkqQlbKwbsEmSdLAMHElSEwaOJKkJA0eS1ETTwEmyLsnNSXYm2TTD+iQ5v19/fZITB9ZtTXJnkhuGxhyT5GNJbumfj26xLZKk8TQLnCTLgAuA9cAa4Iwka4a6rQdW94+NwIUD694BrJvhR28Crqiq1cAV/bIkaZFpeYRzEt33dm6tqnuAy4ANQ302AJdW5yrgqCQrAKrqSuCbM/zcDcAl/etLgOcsRPGSpPlpGTgrgdsGlnf3beP2GfaoqtoD0D8/cqZOSTYm2ZFkx969e8cqXJI0fy0DJzO01UH0OShVtaWq1lbV2uXLh2/zI0laaC0DZzdw3MDyscDtB9Fn2B37T7v1z3fOs05J0gIYe2qbebgaWJ3keOBrwOnArwz12Qack+Qy4MnAXftPl81hG3AmcF7//MGJVq15W7XpwyP33XXeaQtYiaRpanaEU1X7gHOAy4GbgPdW1Y1JzkpyVt9tO3ArsBO4CPj1/eOTvBv4v8DjkuxO8tJ+1XnAKUluAU7plyVJi0zLIxyqajtdqAy2bR54XcDZs4w9Y5b2bwDPmGCZkqQF4EwDkqQmDBxJUhMGjiSpCQNHktSEgSNJasLAkSQ1YeBIkpowcCRJTRg4kqQmDBxJUhMGjiSpCQNHktSEgSNJasLAkSQ1YeBIkppoej8c6UBGvTuodwaVDj0e4UiSmjBwJElNGDiSpCYMHElSEwaOJKkJA0eS1ISBI0lqwsCRJDVh4EiSmnCmgRGM+u13SdLsPMKRJDXRNHCSrEtyc5KdSTbNsD5Jzu/XX5/kxAONTXJukq8lua5/nNpqeyRJo2sWOEmWARcA64E1wBlJ1gx1Ww+s7h8bgQtHHPvWqjqhf2xf2C2RJB2Mlp/hnATsrKpbAZJcBmwAPj/QZwNwaVUVcFWSo5KsAFaNMFaHEWeVlg49LU+prQRuG1je3beN0udAY8/pT8FtTXL05EqWJE1Ky8DJDG01Yp+5xl4IPAY4AdgDvHnGX55sTLIjyY69e/eOVLAkaXJaBs5u4LiB5WOB20fsM+vYqrqjqn5YVfcCF9GdurufqtpSVWurau3y5cvntSGSpPG1DJyrgdVJjk/yQOB0YNtQn23AC/ur1U4G7qqqPXON7T/j2e+5wA0LvSGSpPE1u2igqvYlOQe4HFgGbK2qG5Oc1a/fDGwHTgV2AncDL55rbP+j35DkBLpTbLuAl7XaJknS6JrONNBfsrx9qG3zwOsCzh51bN/+ggmXKUlaAM40IElqwsCRJDXh5J1a0vyCqLR4eIQjSWrCwJEkNWHgSJKaMHAkSU0YOJKkJgwcSVITXhYt4eXTUgse4UiSmjBwJElNGDiSpCYMHElSEwaOJKkJA0eS1ISXRUtj8PJp6eB5hCNJasIjHGkBeCQk3Z9HOJKkJgwcSVITh/UptVFPe0iS5u+wDhxp2vysR4cTT6lJkprwCEc6BHgkpKXAIxxJUhMe4UhLiEdCWswMHOkwZDBpGpoGTpJ1wNuAZcDbq+q8ofXp158K3A28qKqunWtskmOA9wCrgF3A86vq71psj7TULcRXBwyxw1ezwEmyDLgAOAXYDVydZFtVfX6g23pgdf94MnAh8OQDjN0EXFFV5yXZ1C//TqvtkjSeaX3/zaCbvpZHOCcBO6vqVoAklwEbgMHA2QBcWlUFXJXkqCQr6I5eZhu7AXhaP/4S4BMYOJKG+EXvmbUM4paBsxK4bWB5N91RzIH6rDzA2EdV1R6AqtqT5JEz/fIkG4GN/eL3k9xwMBvR2COAr0+7iBFY5+QcCjWCdU7a1OrM68fq/rj5/K6WgZMZ2mrEPqOMnVNVbQG2ACTZUVVrxxk/DdY5WYdCnYdCjWCdk3Yo1Tmf8S2/h7MbOG5g+Vjg9hH7zDX2jv60G/3znROsWZI0IS0D52pgdZLjkzwQOB3YNtRnG/DCdE4G7upPl801dhtwZv/6TOCDC70hkqTxNTulVlX7kpwDXE53afPWqroxyVn9+s3AdrpLonfSXRb94rnG9j/6POC9SV4KfBV43gjlbJncli0o65ysQ6HOQ6FGsM5JOyzqTHdBmCRJC8u51CRJTRg4kqQmDqvASbIuyc1JdvazEiwKSY5L8vEkNyW5Mclv9u3nJvlakuv6x6mLoNZdST7X17OjbzsmyceS3NI/Hz3lGh83sM+uS/KtJK9YDPszydYkdw5+D2yu/Zfkd/v3681J/vWU63xjki8kuT7JB5Ic1bevSvLdgf26ecp1zvp3nsb+nKXG9wzUtyvJdX37NPflbP8OTe79WVWHxYPuYoMvAY8GHgh8Flgz7br62lYAJ/avHwZ8EVgDnAu8Ztr1DdW6C3jEUNsbgE39603A66dd59Df/W+Bn10M+xN4KnAicMOB9l//Hvgs8CDg+P79u2yKdf4icET/+vUDda4a7LcI9ueMf+dp7c+Zahxa/2bgPy2CfTnbv0MTe38eTkc4902tU1X3APunx5m6qtpT/SSlVfVt4Ca62RUOFRvophWif37O9Eq5n2cAX6qqr0y7EICquhL45lDzbPtvA3BZVX2/qr5Md/XmSdOqs6o+WlX7+sWr6L4PN1Wz7M/ZTGV/zlVjkgDPB9690HUcyBz/Dk3s/Xk4Bc5s0+YsKklWAU8CPtU3ndOfwtg67VNVvQI+muSadNMFwdD0QsCM0wtNyen8+H/Mi21/wuz7bzG/Z18CfGRg+fgkn0ny10l+YVpFDZjp77wY9+cvAHdU1S0DbVPfl0P/Dk3s/Xk4Bc68p8dZaEkeCrwPeEVVfYtutuzHACcAe+gOvaftKVV1It3M3mcneeq0C5pNui8JPxv4i75pMe7PuSzK92yS3wP2Ae/sm/YAP1NVTwJeBbwryT+YVn3M/ndejPvzDH78f4imvi9n+Hdo1q4ztM25Pw+nwBllap2pSXIk3R/5nVX1foCquqOqflhV9wIX0eh0ylyq6vb++U7gA3Q1LdbphdYD11bVHbA492dvtv236N6zSc4E/g3wq9WfyO9PqXyjf30N3bn8fzStGuf4Oy+q/ZnkCOCX6O7nBUx/X8707xATfH8eToEzytQ6U9Gfx70YuKmq3jLQvmKg23OBqc5wneQhSR62/zXdh8g3sHinF/qx/3tcbPtzwGz7bxtwepIHJTme7j5Rn55CfcB9N0H8HeDZVXX3QPvydPesIsmj6eq8dTpVzvl3XlT7E3gm8IWq2r2/YZr7crZ/h5jk+3MaV0NM60E3bc4X6f6v4femXc9AXf+C7lD0euC6/nEq8N+Az/Xt24AVU67z0XRXpXwWuHH/PgQeDlwB3NI/H7MI9ulPAt8A/uFA29T3J10A7gF+QPd/iC+da/8Bv9e/X28G1k+5zp105+z3v0c3931/uX8/fBa4FnjWlOuc9e88jf05U419+zuAs4b6TnNfzvbv0MTen05tI0lq4nA6pSZJmiIDR5LUhIEjSWrCwJEkNWHgSJKaMHCkg5TkHUk+NO064L5ZvF8z7TqkuRg40iEkyYuSfGfadUgHw8CRJDVh4EgTkM5vJ/lSfwOtzyX5dwPrVyWpJL/c38Tq7iSfT3LK0M85rb+Z1feSXJnk9H7cqiRPA/4ceEjfVknOHRj+4CR/lu6Gc7uT/FaLbZdGZeBIk/HHdNOqnE13Y6r/DPxZktOG+v0JcD7w83Tz+13Wz85Lkp8B3g98uF9/Pt3Nr/b7G+AVwN10N8taAbxpYP0r6aZ0OZHuBmlvSPLPJraF0jwZONI89ROZvgr491X1V1X15ap6F91MxWcPdX9rVf2P6u5/8lrgGLpp9AF+jW6ixldX1c1V9ZfAfbcYru7GgXd1L+tv+8fg5zkfrao/raqdVfVf6OY+e8bkt1g6OEdMuwBpCVgDPBj4qySDkxMeSXdL7kHXD7zeP5X7/htaPR64un58gsNPMbrrh5ZvZ3HdDE+HOQNHmr/9ZwqeBXx1aN0PZluuqupmhL9vfJjfDcGGf1fhWQwtIgaONH+fB74P/GxV/a95/Jyb6O4TP2j4JnH3AMvm8TukqTFwpHmqqm8neRPwpv4mVlcCDwVOBu6tqi0j/qjNwKv6n3UR8ATgZft/Tf+8i+5qtFOAzwB318DN0KTFzMNtaTJeB5wLvIbuBlofo7uZ1pdH/QFV9ZV+zLPpbsD1SuAP+tXf6/v8DV0wvRvYC/z2RKqXGvAGbNIiluQ3gT8Ejq6qe6ddjzQfnlKTFpEkZ9N9P2cv3Sm51wHvMGy0FBg40uLyWLrv5zwc2E13+uwPp1qRNCGeUpMkNeFFA5KkJgwcSVITBo4kqQkDR5LUhIEjSWri/wNWWdbhgFjhIAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "lengths = np.concatenate([lengths for _, lengths, _ in train_set.take(1000)])\n", - "plt.hist(lengths, bins=150, density=True)\n", - "plt.axis([0, 200, 0, 0.03])\n", - "plt.xlabel(\"length\")\n", - "plt.ylabel(\"density\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "metadata": {}, - "outputs": [], - "source": [ - "def crop_long_sketches(dataset, max_length=100):\n", - " return dataset.map(lambda inks, lengths, labels: (inks[:, :max_length], labels))\n", - "\n", - "cropped_train_set = crop_long_sketches(train_set)\n", - "cropped_valid_set = crop_long_sketches(valid_set)\n", - "cropped_test_set = crop_long_sketches(test_set)" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/2\n", - "107813/107813 [==============================] - 2048s 19ms/step - loss: 4.0817 - accuracy: 0.1705 - sparse_top_k_categorical_accuracy: 0.3747 - val_loss: 3.0628 - val_accuracy: 0.3127 - val_sparse_top_k_categorical_accuracy: 0.5969\n", - "Epoch 2/2\n", - "107813/107813 [==============================] - 3975s 37ms/step - loss: 2.7176 - accuracy: 0.3771 - sparse_top_k_categorical_accuracy: 0.6660 - val_loss: 2.4580 - val_accuracy: 0.4253 - val_sparse_top_k_categorical_accuracy: 0.7143\n" - ] - } - ], - "source": [ - "model = tf.keras.Sequential([\n", - " tf.keras.layers.Conv1D(32, kernel_size=5, strides=2, activation=\"relu\"),\n", - " tf.keras.layers.BatchNormalization(),\n", - " tf.keras.layers.Conv1D(64, kernel_size=5, strides=2, activation=\"relu\"),\n", - " tf.keras.layers.BatchNormalization(),\n", - " tf.keras.layers.Conv1D(128, kernel_size=3, strides=2, activation=\"relu\"),\n", - " tf.keras.layers.BatchNormalization(),\n", - " tf.keras.layers.LSTM(128, return_sequences=True),\n", - " tf.keras.layers.LSTM(128),\n", - " tf.keras.layers.Dense(len(class_names), activation=\"softmax\")\n", - "])\n", - "optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2, clipnorm=1.)\n", - "model.compile(loss=\"sparse_categorical_crossentropy\",\n", - " optimizer=optimizer,\n", - " metrics=[\"accuracy\", \"sparse_top_k_categorical_accuracy\"])\n", - "history = model.fit(cropped_train_set, epochs=2,\n", - " validation_data=cropped_valid_set)" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:5 out of the last 18 calls to .predict_function at 0x7fd0e07f7a60> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" - ] - } - ], - "source": [ - "y_test = np.concatenate([labels for _, _, labels in test_set])\n", - "y_probas = model.predict(test_set)" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.60668993" - ] - }, - "execution_count": 97, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.mean(tf.keras.metrics.sparse_top_k_categorical_accuracy(y_test, y_probas))" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwlUlEQVR4nO2deZwb1ZXvv7dKe0ut3lcvso2x8QJ4wdgsptmXJiHJhBcS8pKQxDAwScjCS5rJhOmXTAYnk5kJEJIQZzAMkLzJQth6wk5jwGY1NgbjBdvtrfdN3WrtVff9Idk0Hm8tlVTqdn0/H32kkkrnHkk/3Tp1695zhJQSC4uJhGK2AxYWRmOJ2mLCYYnaYsJhidpiwmGJ2mLCYYnaYsJhidpiwjHuRS2EkMe43WdQO/cJIZ4wwpZFbrGZ7YAB1I56fCWw6pDnIqN3FkLYpZSJfDhmYQ7jvqeWUnYeuAGDo58DXMCgEOKzQojnhRAR4CYhxJAQ4tOj7QghLhZCJIQQ1Ye2IYRoBr4INI46AjSkX5svhHhWCBERQvSne3T/0XwWQpwphFgvhIgKId4WQlxxiM2G9HbFqPcE0s8tHvXcHCFEixBiWAjRLYT4vRCiZtTr84UQz6U/77AQYqMQ4vz0a3YhxJ1CiHYhREwIsVcIsfL4v/nCZdyL+ji5HfglMAf4M/B74MuH7PNl4AkpZddh3v8z4A/As6SOArXAWiGEB3gSCAFLgE8CZwH3HskRIYQXeALYAiwCvgv8y1g/kBCiFlgDvJtu+yLACzwmhDjwu/4O6Ei/vgBoBqLp176R9vcaYCbwGWDrWP0oSKSUE+YGfDr1kQ5uBwAJfOeQ/RYDSaA+vV1KKky58ii27yMl+tHPrQCCgG/Ucw3pNk86gp0bgH7APeq5z6Xf03CIjYrDfJbF6e0fAs8dYrs0vc+S9PYQ8MUj+HEn8BwgzP7djL6dKD31m6M3pJRvAptIhRSQEtUA8Ncx2j0FeEdKOTzqubWATuqocDhmA+9KKUfH+q+NsV1I9fLLhRChAzdgb/q1Gen7fwN+mw69vi+EmD3q/fcBpwPbhBB3CyEaR/Xw45oJ8SGOg5HDPPdb4Lr04y8D90kptTHaFaR6xsNxpOeP9p4D6KP2PYD9kH0UoIWUMEffZpIKb5BSNpP6cz1CKix6Rwjx5fRr60n1/n+ftnU/8MxEEPa4/wBZ8CBQL4T4GrAQWH2M/eOAeshzm4HThBC+Uc+dRep7ff8Idt4H5gsh3KOeW3LIPj3p+9GjOKcfss96YC6wW0r5wSG3g0cOKeV2KeWdUspG4D+Ar456bVhK+Ucp5Y1AI3ABcNIR/B4/mB3/GHnjyDH14iPsfz8QA148Dtt/T+rwPguoINVzeoB24C/AfGA5qZOtPx/FjpeUaB8k1YteRCoUksB56X3swB7gYeBk4BJgIx+NqeuA7vQ+ZwLT07Z+A/gAN3A3qfg8kN5nE/Db9Pu/DXyWVAh1EnAHqfMDj9m/Y9Y6MNsBk0W9PP36F47DdiXwNDDMR0/q5pM64YqQisvvA/zHsLUUeDv9h3ob+Ju0zTNH7XMWsCFtdx2pnvQjn4VUqPGndLuR9B/qLsCRvv0O2J1upz0t+OL0e1eQ6u2HSZ1QvgicZfZvaMRNpD/gCYkQ4jPAPUCdlDJsoh9Xkertq6SUvWb5MVGYCFcUx0x6fDlAKqRYlW9BCyG+COwkFc7MA34OPG4J2hhO1BPF75KKUfuBH5nQfjXwAKlw4W5SQ4mfN8GPCckJHX5YTExO1J7aYgJjidpiwmGJ2mLCYYnaYsJhidpiwmGJ2mLCYYnaYsJhidpiwnFCXiYfbwSaWpaRmm3X2raycZ3J7hQ81hXFAmbm3z9cm9CdnwP9JyBUIAni7im+Hb0B/weVb3Wd9cJIwtd/cum7thklW5V17Q2bB2PlQSDctrLxhP1hLVEXADevulYkpe3cF/deVh9KFM8rcfZdokl14XC8JMPwUEqXGhFRzd0OIlTsGHCWuXr9bUMnvQQiVO9tK6/0dJZs6F76V2B4VummiipPh/ul/Zc8B0xWRHKmLm1/GK9HBUvUeSbQ1KJO929ZONnXdt2GniWOYKxsuiKSZ+jS5k3votmV2I6TS99T+6JVD3WOTGoH/p3UwoEEcNXi6pfbK9zd05/dc2V3Und455RvOKXC3TVvzb6LN4LiCxRvP7XE2X/Khp4z3wZ8Ve6OOS5bZNKe4eltgM+pRmqlVNxx3SkO7yWI1Iqyf5QoK9tWNsZz+60YiyVqgxkd/5JeclVkH1p2UsmWv90xONsWShRPIbViBkVoCV2qbzuU6LtLal92DMX9v3un54wX2lY2Ro9k08jeM9DUogLec+ufnuRQY3XP7fnYVcCNgJJajyAAOueUbXhlesm2//uL6+/fZFTbucQStYEEmloagKdA2kEKkBqoKoBLDUuvY3hHb6T6CYG+/pLAo0MuNfLkHSseipnr9Yek/zzP8eFR4R/sSuyKhO68UKDpEvX/KWh3fWzGf712x4qHClY4lqgNINDUMnt+xVv3be47bZEmbekRJUmps3fLQKzyNmD9GdUv7/rjt27Xj2qoADjcUeHGe7580Yt7L706nPReAxTXe3eH7Ur8/7YNzbzz0KNKIWCJOkNuXvX5oo6R+u+93rn8XKBBQdPrvbs794amladHKhLAheP1ZOtwBJpafHPL1/9Td7huRU+kxg30VHnaHz2j+pV77r7hvjePaSBPWKIeI4GmlqnA9U41+vWY5vKpIrFfk/ZfOJTY6m3//KmuE2FMOdDUIoALga+D/nEFiY7yJxB3AS+ZPZxoifo4CDS1qFOLP/icXYn/7IPBUypBSLsSe+bc+mfX+hzB2+9Y8dAJm0X1pnuuO3djzxk37Q9NvRQorXR3BCf72u5f373sL8AyTPhzW6I+Cjfdc928DT1nXN8emvpxYKrPHkzWefc8tnVg/rfaVjbuMdu/QiLQ1OKp8rTfpAj9R50jk1zpp3VS6RnyGoZZoj6E9KH1POBGRWj/S5cqwPPAr+qK9jy69gc3nrC98vFw86prxaM7rrkHxIp0hjUNxA/aVjbeni8fLFGnCTS1lM6vePOn7aHJn+uLVnuAgdqivc+cXvX66l/dcO+TZvs3nkidV8gXAKdA6hLlHKunzhM3r7pWhJNFX2jde9lFCd35N4B7kndXSJO22zpGJv+6bWVj5JhGLA5LoKllmdsW+k0kWTQHxOltKxvzduHmhBR1oKmlCPicQ4l+M6675qgiGdek7T5FaL/eefvH3zbbv4lCoKmlHNgu0DZ8fMZ/XZivCzYFJ+pcDonNuPXRuXPLNzy4uf/UU5K6wwm8u7j6lddri/bedtf1D+w3si2LFGf96Fc/bB+Z8oNqz74XusKTvp+PMKSgRJ0WdCupy7RRDDhr/saqz/v2DE2/ZUPPmecD5yoiqc8s2bJt68C8rwJrzR5TnejM/v4fz4tq7tbUloiQh5GQQlsk0JCaNyEEKWE3kMr4edyM6um3AUuc6ie+HtPcbkVobbpUv2tXkquf+t73rJx1eSKqec4iNbSnkMrE2sAYf9OxUmiibgWpAyqIRGr7+Bl91p2eYaYpQn/2wilPtHrtQ/9yx4qHxlopwCJ7WtPDegrIBIjWXDdYUOEHQKCp5RFSGe0vHethKtDUcivIf0p/gRLET9pWNt6aE0ctjpvLf/rjx9/vP/3KQPH2Fa1//83f5rq9Qlx4GwJ6Moy7WkHEQCZBRCvcnU+3toqZBvtnMUYiyaJ1AF778Cv5aK/gRH1Syeblle6O/1Gg83hI/xEuBHEbcOHPzvvqF4FXWltFsaFOWoyJtqGZnQDv9i08XEEpwym0mJpgrHRYk4fWCzp+0sJeB9DaShfwVEODHDLIPYsM8NqHXKFEMSXOvsx/2DFQcD11T6S2vz9a9YERthoa5M6GBvl7gNZWcWZrq7jRCLsWY2NB1WuLAc6uez6jI/BYKThRk1q/l4vD1N8C32ltFUU5sG1xFHYPTd8GsDN48mA+2iu48KPC3Tm3zNVbmipGZSgrgMqGBjnS2ioEYGtokNaMuzywZ3hGN8D7/aflpbZOwfXUIwlfNJwo2nvsPcdGQ4NMNjTIjvTmj4GW1lbhOtp7LIzB5xh0A1S4O/PSiRacqCPJIm1faFquZ3RtJ3XFsWBWck9kTq98YxHAmTUvVeWjvYILP0B6QOT0MNXQIFeTLtvc2irqAW9Dg9yayzZPZHYNnbQV4IPB2QP5aK+geuqbV12rgnAtqn5lUR6bXQ082doqHHls8/hp9i+j2X8rzf5l47WNfcPTegC2DszPy/z0guqpdwZP9gEMxUq257HZG4HJDQ2y4FJrDf1r0Q0+1LsEQpVIbeDnnmdtmvJ68bC6P6lKe09lYqk3pH7gC6kdCZt09lYklnhD6nZfSO1M2HRXb0XyDN+wutU7onbH7bqnrzy5yDesbvGOqD0xh17UX5ZcWNZvCzlRvgKoQJxm/4U0Bw2dcOR39HuC8TJqPPvsRto9EgUl6k29ix0A2wfn5m2VREOD3AHsAGhtFZ8BShsa5K/z1f5o2la7Ssv7bJf5QuqZEnlFMbaDl/gFQikbtF8OXA5g0wS1nR8eXOzJQ7eVj2w7Eh/ddsY/ug0gke6kTX7L3ux/leagYZOCTq18a+FL+y9mUfW6Srhhh1F2j0RBidqlhr1RzQO5Gac+KulhvquBqtZW8duGBpnMdZttq12ieEg9s2zAtkwiL5siHBcrUgggKhCtQV/yg+Jh9YJ0T50MefUb4w75Snm/LRy360pHbaLKG1KHRm/7htVg2YAtEnXqald1otIfVAdLgrZo2K3beioTFQe2RzyavbciWV7Xbp9mTyoPSKQTEPakcjUwJ/wT7+reiuSqKV+JZn01dmfw5C0AWwfm9Wdr63goKFE3TH5y3pNtn+K8SU+emoNx6qO33SBla6u4BvA0NMhk/Me+S2xJcYYixfNGHo57fuGpqOy1nwtcVme3f96RUDwAArFl2Jt8MuTVn6/rcNxNczDiB9JxboNAtPpuCR30wwFMTdU2P+y2K7V9MI2DJ7W9+8B2UerWBrxFs3+/QDRI5CvANODbnoj6s9oOsVI2F/9QIH4NnMSBxJdj/D72h6b2AnwweEpeUpQVlKj3DE+PA/RFqraZ0X66dx6SzcXL7Iin0k9Hsokzu+/2KFU99tOAyyIufUV5zDYt/dKwprKpsyy+rarb/gPlH4d2FwP/Y+ZVqt3cLoFKt5HO67uGZv9/7quPf6ei1/Y5e1L8UCL/gZRWpECMOe4udfV4B6KVJ2ZMvbnv9CjAu30LTR1eS/daiNRCg+NagTP/3jlJhFCQUt+0Z38NcEnYrX2lJKk2kB5lsifE9r7y5NqiEeVHnoj6nLtpOOHO6SfJkOagnAQ/A35Gs3+OrvD/FJ35Y/k+RjOvfMPpJ2xM7VQjvpjmRhFaXi6nHoV30z+gTirRY+vRdp5/75wkipKagSaEOn9yXfemve3CHVEGB0u0vbGk/IUvpD5g+8FQV2WuPTea5uBmtdl/Qzo0geP4Pg7lnZ5FIwAv7rt0CvCqsQ7+TwpqnHpZbet5AJcGHqkz0w+JDKUfrgaOfagVQknfp7YVBWCJQFSUfnMk4Lsl9DOag1258jfnNAfXCcQ+4B2O5/sYRaCpZVkwXnY9QChRfH96DWlOKaiees/w9F6AnnDN7mPtm0u6qhNfqely0F4bv7vuhsix84BIqSOEyoGlcVLqNAffyLGbeSVu10tiTtk++mT1OGkAaUunILODaCDH5wgF1VPvDM4KArzZdXa7mX74hlWHLqQWd8h3jmf/TV/ebEPXNaSU6Lq26cubC6qzMAiHpspMJoC1ClLDoyL1r2811KvDUFBfvlONlMQ0Nx7bcN7HqUdTFFZdwObAddHjXn0+QYV8EEdCCTqCypjj4baVjetOu+2Ba4LxsoedavS3W358dc6T2RRUT31q5ZsXAVw89XFTL1lL5CxSs/gsPsRG6iRxzATjZY8AoajmycusyIIS9b7hqfsFmmZmcZ+21S6nFJzcW56oMMuHQkRTZHGwODkrk/e2rWyUDiXaUeLsO8Novw5HQR0yO0amBAFTF8mW99lmKlKg6GKtmX4UGkKiaGrmegn4d/iCsZIpRvp0JAqqp3Yo0RKBbmr6XF9InQJQNmBrMdOPQkORQi8bsGUcD/eEq5/qDtfq6aT2OaWgRD2jZOvyCne3qdcn4nb91PRDK6Y+QLNfkEVMDTAQq3hLoriBnP++BSXqjpH69kjSY+pw3rBPuzapSglYSSTT7J0UcwL0lyZPydRGlbujG+DUijeXGuXXkSgoUQ/GKkZCiWJT80T7htWYpso2I+cTj3dULbVAWVcy/0oW1bwSBih19V5skFtHpKBOFG1KvBQpTD1RdCSUSmCNmT4UGnUdDh2gos/+WqY2grGyNQBr2y/I+RGwoHrqCnf3nOkl22ab1X7XLz0+YIouZM5nko0zDkwZzXjhxO++8a9BoDOhO3I+AlJQou6PVIT2DgdG8jHp5XDEHfpFAJ01iVIz2i9U9tfFqwB6yxNZdThF9qG+UmfviRNTB5palsV1V0UkWTQdeM4MYVf02n0Ajrj4a77bLmSExAEgReY9NcDU4p0eBBldwBkLBSNqty10bfrh6NIY+fUhqtQBVPTZ85JHebxQ1+EYAqjstb+VjZ3dQ9MfHoiWi0BTS05XwBSMqAPFO2akHkmNDCaiG0HMoS+RyG6ag8P5brvAyTqmBhhJFL+XqvJATuPqghH1juCsmE3Eh4EfkOda1geIO+SFIa/uzHe7hU57bXwaQHdl4uRs7Ezx7egDWFC17jwj/DoSBTGkF2hqUcB1NvBIPmtYH0rRiKLFnPJls9ovVBT9oE6ymmg2v2J9957hGbhtkeXAvdl7dngKoqc+q+75S4EKrz1oXizb7L9YkaLUHVVMXXVTiNR0OboAqnrsWSUZCiV8b4JMrG2/oOPYe2dOQYhal8oNAOdNejqrE5GMafYvk8jHASTy+pzmrRufHIips8rnff/X7kqCaAOmZ+3RUSgIUb/acZ7drsR3333DfW+a5EIDqXwwkMop12CSHwVJR018DkBndTxrMZa6esKlzt6zsvfqyJgu6tTwjlie0B3/baIbrYAukQBxTBh5KWRU7eBs0axTV0z2tdljmjOn2QJMF/XZdc9+FvBWe/abufr6dYEIC8RbAmF41s/xTlWPfR9ATZcj6+m47/YueCCc9CmBppaclQE0XdTDcf/fCHSW1r5o2iSizur41YAv5tDvtgR9WAyJqQF0aTtQeW3aUXfMAtNF/U7vGSUgN9yx4iHTJhHZkuKLEklnTeIls3woZDqr4wsB2mvjWYcNp5RtHARYXP3y5dnaOhKmijrQ1OIBlknUZ830o6LPXiIFb0/9ctSQ+o0TDVtSJAEUPfuY+uTS93YA6FI99Vj7Zoqpol4+6akbAfs0/9YNpjnR7C8DlihSPG6aDwVORZ+9DaCmy7HnGLsek0/O/F0byOD67mU5y1VtqqjbQ5OXqyLJ/Ir1T5vlQ1dV4juAMuLRrNDjyBgWUzc0SAliJxM1pv5gcE69Jm0v3bniwR6zfHBHxAVJVcqeyqQl6iPQVZVYBrCvPmbIPPOaor1aibMvZ2PVpok60NRSBiwEnjPLB5r9onjYNkXV+FPguqhVU/EI2BMiAqBqwpB0cNWejvhwvNh/9b/fmhP9mSbq8yY9+V1AzK94812zfADmAnXiw6oBFoehbMC2E6C202HI+sKNPUse1KRdvNF1To0R9g7FNFFvHzxlrl2JadP92580y4fuysSPAIa9WqtZPowTDIup0+xK3+dkDohpom4PTZ2Z0J1P37HiQdMynPqG1dlRpz7suyVkLbQ9Cj0ViXMA9k6KGTJVeUHVqwMAS2rWfNIIe4diiqiX//iuacAszI2ni9xRZborpvzGNB/GCe6w4gKoa3fMM8LeZN+uzQKd4bg/JytgTBF1oPiDJoCz6p7fYkb7AHG7fgmpmXlWPH00mv3LvGH1YgBVF381YlrunSseHJYo+97vPy0nR2lTRL2pb0G9U41EK92dpsXTQ8XaP2qKlMNezVrpcnQaJFJNPzZyQfQuchRT5305VyrrZeVpwBN3rHjouDP1G03JoK0q6tK3+24JmZpldRzQCpAuwWfYguhA8XZHX7TyNCNsHUree+p55esXAZMwN56ebtNEbVFYvds0H8YLzcF1mioHEnbZxRgrcx2NYudgz3Dc77rg9n/NpI7MUcm7qP3OgW8DXDz1MdMKgIbd2mfTD00Lf8YNzX6bTVOKHQlltZHTct/pOeMPINgZnG34yWLeRb2+e2mpSw0PeGyh1ny3fYC4Q34t6tSTwHazfBgvxBz6TFJhqtGd0M70veFxdV5FHWhqUSLJoiVRzfPoHSseMidVbrPf4Q+qxUmbfM5K13tseiuS1wC01xpbW2pp7Qt9AGfWvPg5Qw2TZ1EvrFp7KVDmVCMv5rPdQzhLIDzeEfXXJvowbvAHVQ+ApkpDf7NqT8d2VST07kit4cu68ipqu5q4CeCiqY9vzGe7owkVaV+VqWKVz5vlw3jCO6L6gb7JX43uOubOY+COFQ9pmrRv2xU82fARsLwO6b3RebbLqUZ23339/ccujZwjhORTIa8+4rslZGpy9/GCLuRcIdmao+pDOZlXnbeeOtDU4tCl7ayY5jZvhUmzv6YorLoVnftM82GckbTJpQOlWk5qSs4ue6fEpYYNH6vOm6iX1rZeA3hKXT1jLgVsIJcAFIXV/zTRh3FD4p+Kix0JRVE1cnIOZFfi26KaR7ng9n8ztGJX3kQd05yfF2icU/e8afnyQkXaTbqQg8AGs3wYT9iTYhaAf8iWkyT0m3oXPwawMzjL0LHqvIn67e5lblXoG++6/j/b8tXmaLrv9ijOmLI46Nf6aQ7qZvgw3oi49DMAdCFzdaFsJ4BANzSuzouoA00tXmBpUtpNu4JX1WNfaE8K1R1RfmKWD+ONkFe7RiLZNyme9Sryw3FO/TMdAGfWrrnOSLt5EfXZdc/dANgm+3aZlQAS4DIAV0x5xEQfxhX+oBrWVLqnfCUayoX9B7/+826nGonuHpph6EWwvIi6N1J1qU0kWFD16gv5aO9whN3aTXG73kZzsNssH8YbjoRSY9NETjuimObe1DEy2dAaMHkR9daB+ZVJaWu9c8WDfflo71DCP/GWuSNKbdCv7TOj/fFI22qXKpGzNUW25bipXaDPMNJgzkUdaGqpAE4HYdpUU09EPV8gqOi1/b1ZPow3FJ3FAuHsqUyU5LKd0ytfq1WFNuPmVdca1lvnXNTn1D/zfwBmlW4y7SoicCkwJBBmjpGPK6q77FUAzpjyWC7bieuO1zRp553exQGjbOZc1LuHZixwKFF9avEOU3rqttUuEXPoXxzxaG00B41a4j/hccaVKQClg7acZq7a3LfgKYBdwZMNS8Sec1HvHZ4eiOuuv/7mxlXRXLd1OCp6bQucccUR8upmJnUfd0Rc+rkSGQZyWnSIdA4Qnz04xyiDORX1/NsemgrMxMSlW94R9TyA6m77j8zyYTySsOsXhT06uZ5zfsnUR/YLNGaVbbrGKJs5FfXpla//AGBh1dp3ctnO0dCFvALYQnPQKiU3BrwhNWpLipwnzfzNjauiLlu0f2dwlmFH8pyKekv/qVNdtpHoZF9bay7bORJtq12lUnDRQEnSkBxwJwzNfrciRZ0zruSlVEgkWbSxP1rpM8pezkQdaGoRPZGaudFk0aNmpUKo7rI3qLog7tD/bEb745Xe8sRSQESdel7G9RWR3K0I7STD7Bll6FCm+bctBGoxMZ52R5XlQKy622GlFhsDcYe8EqCnMpGXPIeLq9fW61Kt/Maqz5cbYS9noq4t2vc9gPMmPZlV6d9s0BR5lUSuoTmYda2SE4nqLvsQgCMu8lLhIRgrfRbg9Y5zDZmCmjNRv9OzqNxjCw3c/7W7TLngsec/XMtUXUzrrkqallV1vKLqYgawv/qmSM7qsoxm68D8NQCd4Un1RtjLiagDTS1qKOFfGE56H86F/eOhrt2xCEAK+QuzfBivxO362Qmb3pmv9hxKdCdApbtzgRH2ciLqeRVvXQKUKEIzbVaeTRPnA3truhzWqvEx0LbaJRRdTBsq1gxPB3YkLp/2cI9DiVLv3f0JI+zlRNRF9tDXAa6Y9mdTxqf3/tbl0oW8PKnKF62ENWMjsNtZadOE8IbU3+WrzTtWPCRtSnLP9sFTBo2wlxNRr+9a6nHbQnt/cf39ppwkCim+pEjh7q5K5O0QOoGYBeCMK+vz2Wg46d04kig2ZAGu4aIONLU4E7pzSSTp/YvRto+X+v32SRKpScHPzfJhvNJfmmwECBVphiavORYeW6hDQZt586prs04xYrioF1Wt/QzgLrIPmVaXUCAuFYhX66+P7DfLh/GKrsjlupD0ViR3Hntv4zit6vUKHdWlSXVWtraMDz8EXxFoXDD5v18z3PZxMPJT72ckcnHcpu81o/3xTkWfvVdI3g9cF83rNN2ukfonAF7ef1HWIYjhon6ra5ndocbfuev6B/Ivqmb/Mk9YeVAgsCfFp4yoT3ICcrJAvJ/vRncGZ70BMBgrz3qs2lBRB5paikEsiWnuJ4y0OwYaBOLAZ1Iwrj7JCUHbapdbImeOeLScrB4/BrsA6ry7sy7vbKioz6x58XpArfa0m7VsqhXQAEPrk5woOOJiiUAoQ8Va3ktat61sHPE5BvVyV+8l2doyVNQdI5OuVUSScMJjTnGg5uC6sFt7SSIlBtYnOVGo63AUA1R12+8zo/2Ebn9vS/+8rKcJGybqQFPLsj3DM07TpcpwouSxQFOLKfFsxC39SRtYgs6IWQCqLkypbxlNFm1K6M6s1yoa2VNfAggQYGy9vTFR3m97z54UOUmTNdEZ8iU/pSkyTHMwLxOZDqXU2TsA+tTrf7Uiq0v0hol6iu+D4dQjqZMqzN5qlO0x4gOshOoZoGpiWsStG1vcZQzMq1hfBIqiCm1JNnYME3Vt0X47QIW7+2HgwraVjaYc/iMufV7UqXvNaHu8UxRWhXdENW1m5c7grL8APLvnY85s7BhWHuO1zvMiAL2R6r9rW9loWr46XZFVmko0b1PMJgrNfj9QjfGl5Y6b/aGpGwESuiOQjR0jY+ppQBjoMdDmmCkKqx3Fw+oaM30Yj7TXxq8AGChJmrlKaJ9A16b4djRkY8TAmHrH5X5Hf7htZaPZUz2LsWLqMeOIi3kAIa/2gVk+tK1s1MpcPbrHHjonGzuGhR8jCW9lmavX9KVTmiIrR4r0KsOL801wKvrsOqBN3uc0dVHFULxkXX+00p2NDcN66r5otbpr6OScJhM8Ft13exRVF/aYU/eY6cc4ZRawi+agaaMfAAnduUWiZFUuwxBRB5paSgA/0GaEvUyp6rEXAVT22nNSeGciE3Hpl4x4tKTZftQW7RkBKm6650s1mdowRNTnT/7vCwBOq3w9rxV0D8OBqGPYVC/GG81+xRkVXkUTLrNnNp5culkAJHRHxn4YIsKBaPk0gHJXj6n56jpq4jMB+kuTOSlmOYG5SkGo7pgyBXjOTGFv6F7yB4Bndl+VcQU1Q0S9oedMCfD83sZnjLCXKVJQCxB16TmqOjzxaFvtqk4q8lfpTQUTpzgABONl29IPp2dqw6hwIUDqkD9gkL2MqOtw9KTvrXHq46HZ76/usr+u6lRLZAJIYu4UB4B+m0hEpxVvuyxTA4aIelrxto+Xu7oTBTBGfSBzpjVOfSya/WXAM66oqOutSP5AIM4DbsPkKbttKxtlpadTCiHnZmrDkHHqgVi5p9gxaErlrdH0lieWVvTZ6a5M2KrMdqaA2X2va3aVy/6KKyq8AvGpyq+FH0+/VBDTdTtH6p+SKBkvwM26pw40tYjBWLl7z/AM04fRpKACIOrSrZ76SDT7a+r3O550xEVZZ02iiebg48d+U36RKDuBaYGmlozOjYwIP8oBL+k1ZmZS2WvfATBlr3Pizadu9i+j2X9rNiMT8R/7pgAv2jRREXXpV9X+beTfDfTQMKb7tyYA10VTH8uoDkzW4cfFUx+99JndV3FGzUsuaMzWXLb4gDjNwbyvscsFe/7DNcMVVZZW9djnAbdIpA2Qotn/KLBroCQ5TVdkorzfvgYY6alITNEVQtXd9jeBkY6aeLEUDNZ1ONqGvNo1bl3cKZEJgbio6LuhV0z9cEch4N8+sjM4i2jSvRB4b6zvz1rU+4YDVQAe28jmbG1lS7A4eXbRiCoNm9CSB9pWu0Rgt7MOmNNXlvy0orOwdNA2AsyZgvMjOTAEAokUwEWAKBlUi0RqpdHVAJW9H62vWdvpOPi4OKQikZBamJzxGHA+eHHvZX8Efvjy/oszGnjI+vd/v/80G8CL+y57MVtbBlCsqVIvSFE3+9XO6vgZusLltR32EYGYE3Po50/SHJNJr4Er77eRVKWUyHUC8diQLxkOefXuug7He8BDgD29Sv4SmoPrdq92CUdc+Os6HHbA214bn61qoqi6294PeLuqEmfbkqjl/fZZwBXp9BEHUkcUxEnh4dCkrS398AuBppYdY11wYsTvHwAG2lY2Bg2wlRX+IVsQGEzFn+YMS7Wtdvkm7XNMs2lidqhIuzhhl5eUDKrDAnFSTZdj9IqODiHpDvqTQX/Qdq9NExtDRdoHvRXJfYHrohJS1/wPzjZs9l9ISoytBz5ber/B9B49dYec11TDY+n3LgMuJHVhxexx6ONhAamjysUgzgk0tYxpJVXWop7u3/I3I4lis+d8HPjhzpFIBXhJNPvvAd7prI5PVzWxq7LX/jYwuHdSTJGCvVO+Ej3+hC0p2w2MEhTNfl+wOHlm2KNfXd5nizsSyhRNkYum6o76dEhA0YgiY06pJW28Yk/y17Bb6+gvSw4XjaiPlH5zpMdB6iz7AN707fA+BNeRae/aHFx3uD9FAdOQuvvIIu78ibo7XIvfOVAIow0NgEjHnSpwE0BNl+MjO03el+4sm/1RYDDi0ksUnU5nXNkikYP9Zcn5jrjyni+krpfI4ECJ1lCK+kmBsEmkDP+kKOSKqXEVUekfsuEfAonUgK1SsLG3IrnTFVX+5AupawRim+vWoYMrSTzpmylk86fIP10pQUudDJISZSXq1DiivziU8D+UjR2DaAWifBh3NgLb9k6KLfCEFXt5vz0GlHRWxz/mCavDxcPqoESWRF365e6IMkyq0zzJN6zOsCfEKcD/EgjKBj/6FdmTiifm1Dd4IurTmiK37a+Pj+gKrYHrohEbYEiC5RMcRWhn6FKNg7gdeCqvMXWRfah6JFHsxuR51MARD7GT4SPpfGvgYIZ8AZSOek0ADoBmvwDcUadeHnXqn/EPqf8kEDaBiDsS4kLH91O2VcCQclIWB/nGqs/7XerHbqhwd61f8/1vNGdiIytRn133/BVP7/4E59Y/U1wAY9TGHWJTJTXCrtTtZzT7X2H8xKPjmlf2X/CpcNIrpvtf+n2mNrIS9fbBU3wAmlRez8ZOwTO+4tFxTV+0+mpgb+u+y3+eqY2sRi12BWe5Ada2X2j94BZZs/SH93wO5GXAc20rGzMu/Z2VqO1KbCbI3raVjWbkM7aYQASaWj7WGa5/AIQA+dlsEoxmFX5M9rVdFdVcWaWIsjix+dpvvjh/bXvDd6HqGg52skIli6ueWYm6Y2RS3O8c2JGNDYsTk0BTSyXI79qVT3wnqasCeALERaQ0mdVVz4xFHWhqUaCoPJIsejBTGxYnHl/7zRdO2js8/R5YfCYId7Fj4JkltS//y69uuPfZdMjRALRmk2BUSJnZCqzz/vmOwO6hk3aBfBTET8zKcmoxPkjnhvm2KpK36FJxlzj7nx2IVXy9bWWj4QneM+6p3Wp4Rfrhx4BLxjrpxOLE4LKf3l5W7Aj+QRVLl2nS7tGk+qeLpjz+n7+96Z6crbjJWNS7h6enU0OJ0cvqLVFbADCt6fELJMp3Yf4yEMXT/Nt27Qqe/Mm2lVduhCtz2nbGoo4kveuBz5KadD4epjNa5JCb7rmu7K+7PnmaRD2v2NF/naQ0PYNAaC515IYXbv3Wb/LlS8ai9tmD7cMJPwLtlxL191bocWLx9VX/u/a53VcuDie9y4odg58YSVx1ikQF0MMJ7+iaMTKqFZUfwUxOyFjUC6pfPXvNvku5fNrDj//yhvssQU9wbl517bS17Rcs7YnULHKp4cvj+tVzdKkCJCNJ96bTq954bTBW+qsdg6c8kpSOOcBzmLQoIWNR7wrO3AewLxSwitpPQL6x6n/P3dB9xrl7hmfMUUTyAimvmStT10ZiMc35xqLqdWsSumP1xp4lf9z+z58agU+Nfvu6QFPLwRmT+T6KZzykF2hquQm4G6g2s8aLhTH83T1fWvzB4OwLtw7Mnw5yOYjZ6ZfCwCsLq9bFnWr0j+s6zv+vtpWNUTN9PRYZ99Ree7A0lPBT6uoxNUm3xdgJNLWISwN/OadzpL5xY8+SamA5XH0gIeMQiJfmla9/s9LT+dQLe6/4r7aVjYmCmFp8nGQs6rnlG5a/1nke59Y/q8GXDHTJwmgCTS3i/Mn/fcFIwvuZ1zuXFwHLn2r75KTUq7IPxJqZpe+1TCve/srTuz/xp9QMufEj4kPJWNRtQyftBBBIa4ZegRFoalGW1r5wsSLkV9a1NyignPvC3iuqAAR6l0RpneLbsXVO+ca3+iJVT/zxW7fr41nEh5KxqLvC9UEgdseKh8zOdHrCE2hqsc0rX3+h1zH0d+u7lzrBdcarHeeXAthEoiMplaeq3B0bFtWsfcehxJ6b6L9ZxqIusg+VhxNeK542gUBTi2OSt62h3rv72+/2LfBB8fx3+xb6AFxquAN42GcPvnbupKff++UN96398J1fNcnj/JKxqGf4t521KzizyEhnLA5PoKnF7VSjZ51a+cb3tw3MLYeymftCAfe+UACfY7ATeEAR2kuN0/645a7rH9jw4Ts/Z5bLppKxqPcOB3bENKeVESAHBJpafMBZC6pevXX30PQpUDUpprnsb3aeTamrtxu4B1hz4ZTHN/7HTb/e+eE7P26Sx4VFxqIeiFWM8GHKK4ssCDS1lALnzCl/+5s94dq5UFMBqBu6l8hqT3sf8O/AmvkVb73x2C3No64JTJyTOyPJfOqpLVSW0B0FnT2zUAk0tVQB584oef+G4bh/KdR6QYgt/fO1Sd49QZC3g3ixwt312qu33TCqfJ4l4uMhY1HXefcuiCY9Vkx9HASaWuqB5fXeti8kdMf5UOcE2BWcGQ8U7wgF1dIfxzT3M7q0vb7m+18v6Kt144GMRd05MmkPSMex9zyxuHnVteKptk9Mi2qec8td3Z8GeSlU2wE6RiaPTPdvG9Klem9vpPoRXdrWP3/rt60RJIPJWNQjCV8Mk0vMFQI3r7pWrG2/YG5PpOYsj234cod66ceimkcF6I9WDM4s3dzrdQw/tHvopN/rUt34bNMtGeezsDg+Mha1Q42WKkKbEGUoxsLNq65V3+tbcOYHg6csVITWUGS/4pPD8RIFIJz0dk32vbuvpmj/w1v6T71Xomx++nvfs8478kzGoi519k0vcfYXH3vP8c3J3//zcptIfCmc9A0DU922j18ZSXpTs+Glurfa0775pJItz73dvfSXILY/9b2mCX21bjyQsaj7oxW9Uc39jpHOmEmgqcUBzFxc/fKnY5p7wabeRVFgMThnxHEd2G1ftafj1Zqi/W+92tHwb20rG3dbIxKFRzbzqbuAPcA3xtNSrm+s+nxpOOG94Nk9H3MAc+q8u6+Ma65ZvZFqB6nsvAh0JGIHiDjI2alUWCSB29pWNt5upv8WxyYjUaeSjsi1gAQRBQouPUKgqcULzJ5V+u5lXvtQ49vdZ/bpqLNBTk+LFEDz2ELdk3xtcsfg7Ps1aXv35NJ3988u2/TOnSseHEgnVxm9LKngPqfF/yRTUd8K8p/TNTkk8JdF1Wtv+PO3ftxrtIPH4to7v13rsYeufLXjPOdwvGSa39l/jiK0RQPRSvXAPqpIoAi5LaE7NlR52rvnlG2Mv99/6kNd4fr32lY2HvVk16isQRb5I5ue+nnAke71hF2JUenpfKU9NPU2UgIw9Kx//m0PVQ7HS06pdHcsq/fuuWbbwNxYOOmdDNSN2i3qUKK7Tird4u4NV/+lO1L7UpmrZ/slUx/9YOV1f7EuapwgZBNTH+zB5pa/XaYK7aebehdMlqg+VSQ7FlS9ul1K5dt//vaP3xqDTVHh7qw7vfKNz2zpn1+6LxQotynx011qZGko4T9Yp9qpRnAo8R3DCf/LLjX8wVl1L9iH4iWPvtl19sZs8hpbTAwyFvXhCDS1uIFPVLo7/qE3Uj0nvfp4TW3RnsfimnNrX7R6PtB61Yzfvbp1YN7MLf2nTgM5Z1752yv2habaB2Pl5Xy0DEsQ5HvzKtaXxjXn89sG5j1uU+LvXz//3/Z997MvWeO/FofFUFGP5po7/s/cVzsaPg5cB8xMF3uUIKRNiZHUnQcTvntsw0mvY3h/d7jur8Dmc+ufxmmLPv/s7o9vblvZaI37WoyJnIn6AIGmFlHp7vhzT6TmE+n4W5Y6e3dN92975q3us34HvN+2srEnp05YnFDkXNRwMP62hsYs8kJeRA3W0JhF/sibqC0s8kVW1bksLAoRS9QWEw5L1BYTDkvUFhMOS9QWEw5L1BYTDkvUFhMOS9QWEw5L1BYTDkvUFhMOS9QWEw5L1BYTjv8PqQuTpFiCPn8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top-5 predictions:\n", - " 1. popsicle 13.105%\n", - " 2. computer 7.943%\n", - " 3. television 7.032%\n", - " 4. laptop 6.640%\n", - " 5. cell phone 5.520%\n", - "Answer: picture frame\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmuklEQVR4nO2deXhTVf7G35O9W7qkC12gFyiFsu+lgCwiyBB11HGbAURxKogKqKPEdRjcwuioKCBQF2AA/bmiEkURKYvsUva1wC0t3Zd0z35+fyTMVIatzU1Obrif58nT5ubmfN+0b84959xzvodQSiEhEUzIWAuQkBAaydQSQYdkaomgQzK1RNAhmVoi6JBMLRF0SKaWCDpEb2pCCL3KY7lAcZYTQtYJUZaEb1GwFiAAiS1+vwVAzkXHmlueTAhRUkrt/hAmwQbR19SU0tILDwDmlscAaACYCSF/JoT8QghpBjCDEFJHCLmrZTmEkLGEEDshJOHiGISQuQCmANC3uAKM8rzWixDyMyGkmRBS7anRI6+kmRCSSQjZRwixEELyCCETLipzlOd5bIv3cJ5jA1sc604IMRFC6gkh5YSQTwgh7Vq83osQstHzeesJIQcIIaM9rykJIe8SQooJIVZCSCEhxHjtf/nARfSmvkZeB7AYQHcAXwL4BMDUi86ZCmAdpbTsEu9/E8BnAH6G+yqQCGA7ISQUwHoADQAGA7gDwFAAH11OCCEkHMA6AMcBDADwDIA3WvuBCCGJALYAOOyJfROAcADfEkIu/F/XACjxvN4PwFwAFs9rMz167wPQBcC9AE60VkdAQikNmgeAu9wf6T/POQAUwFMXnTcQgANAsud5NNzNlFuuUPZyuE3f8lg2gFoAES2OjfLETLtMOdMAVAMIaXHsL573jLqojNhLfJaBnufzAGy8qOxozzmDPc/rAEy5jI53AWwEQFj/34R+XC819d6WTyilewEcgrtJAbhNVQPgh1aWmwHgIKW0vsWx7QBccF8VLkU3AIcppS3b+rtaGRdw1/IjCCENFx4ACj2vdfb8fAvAB56m1/OEkG4t3r8cQF8AJwkhiwgh+hY1vKgJig9xDTRe4tgHAB70/D4VwHJKqbOV5RK4a8ZLcbnjV3rPBVwtzr2A8qJzZABMcBuz5aML3M0bUErnwv3lWgt3s+ggIWSq57V9cNf+z3nKWgFgQzAYW/QfwAtWAUgmhDwGoD+Aj69yvg2A/KJjRwH0IYREtDg2FO6/67HLlHMMQC9CSEiLY4MvOqfC87PlKE7fi87ZB6AHgAJKaf5Fj/9cOSilpyil71JK9QA+BPDXFq/VU0o/p5Q+AkAP4EYAaZfRLR5Yt3+EfODybeqBlzl/BQArgM3XUPZzcF/euwKIhbvmDAVQDOBrAL0AjIC7s/XlFcoJh9u0q+CuRW+CuylEAYz0nKMEcA7AVwDSAYwDcAC/b1MnASj3nJMJoJOnrGUAIgCEAFgEd/uc85xzCMAHnvc/CeDPcDeh0gAsgLt/EMr6/+i1D1gLYGzqEZ7X77+GsuMA/ASgHr/v1PWCu8PVDHe7fDmAyKuUNQRAnucLlQfgT54yM1ucMxTAfk+5O+CuSX/3WeBuanzhidvs+UK9B0DleawBUOCJU+wxvNbz3my4a/t6uDuUmwEMZf0/FOJBPB/wuoQQci+ApQCSKKVNDHX8Ee7aPp5SWslKR7AQDHcUW41nfJmDu0mR429DE0KmADgDd3OmJ4B3AHwnGVoYrteO4jNwt1GrAbzMIH4CgH/D3VxYBPdQ4iQGOoKS67r5IRGcXK81tUQQI5laIuiQTC0RdEimlgg6JFNLBB2SqSWCDsnUEkGHZGqJoOO6uE3OGUxZcM9Wy+WN+h2M5Uj4mKC/o+g2NN0EQA1QJyBbBODQ8OSfuzTYIs7sr8g8BKB+XOra0CZHeNG28zeV8Ua9g7FsCS+4Hkz9CkCf//0ikqtBm7SqWo2Tyiob7dpzAK1Pjz7Src4Wdby0MeWInDgaBrb7tU9lU8L+07XdjqjklsYRyT9xJY3tDx+p6seHK+vqb+xgshDQugXZq4P7DxyABLWpZ+VMCvvm9L2/ArI+AJwAtQHkNgAnbua+7nu+oQMOVw6wEri0w5N/1p9vSK05U9vVLCeOqO66/X8obUyuqGhObJARZ3R8SElfszWm0eIMlQFUC5CLV8H8DwQuJ4XMLCeOpvjQkrgGmza/3h5ZoFE02tOjjqWXNCbvrmhOPB2prnb2jt3b+Wxtl11FDR35uJAS28CE7eGnzBnH883dy+FejpYJqQl1TQStqTmDifTU7Tt2uKp/Vzmxz3VSpQ0CGWJWzkRCQaKOV/eKOFnTU63TlMX1S9g15FRNd3NBXZpdq6pJzIg5eOOZ2vSiiuZEa6iiITE5vCCruLF9caNdS5UyW5xG0ZTSYNPaKWTqq0ekFP+51JBmAGMkY1+eYDb1kwD+1T9+x6avnnzlRtZ6LgdnMCm76/brOG1+2r6yIbbSphRVSsTZDp0jT2QerBhYUGONlWnkjXdZnKGZHl9TAM/zRv3rjKUHLEE5+tHzxTW3A5FvAPhyX3nWPaz1XAneqLcD+lIApRe9tObCL5zB9CvcS8Y0AEinyONR7tVdEpci6Grq6Useum1T4R/WyojzdLMjvC9v1F8qPYLo8IzijNWqap6XESojxBWXN/cBM2tdgUhQmZozmMYDrk808ubQm1LXDV/48Mo9rDUJzYOLZkzcVDhhBUBW8Ub9A6z1BCJBc0eRM5iGATABsiiLM4yuO3NvUDatPn508WqAvAZgyuB/fDCZtZ5AJGhMHRdSciHTEOBOOjOKnRqf80qUuqqoyRG6YmbO5B6sxQQaQWNqgCa7BwaoA4AdQC5bPb6DN+ptQxI3P9rkCHOtO3P365zB1Jo7S0FPUJiaM5g0Fc1JHQFqAshLuA7GcZdM//BbF1U846LyW/HfRJcSCBJTK2W2WwFoAdk7vFH/erAbugXvqOXNu1Uyywczlj44nLWYQCEoTN0p8uTboYp6C4BNrLX4E96od43pYHqKEEq2FI17jzOYguL/6S2i/yNwBlPUqZqMdqna07t5o761qXhFz+JpH29zuJTZDXZtXwCzWOsJBERvagB3uiCXH6vu+zfWQljhpIqPAfotgfOf05c8dCtrPawRvalDFA3TAHoKF+0WcD3BG/V0VMr6p8OUjfK9ZcM+5AymixO0X1eI2tSPLpvSz+IIHdw/fkcBb9QHz63RNrD8sYUnk8LPPVbZnBAH4AXWelgialNvKLhtLIUMUZrq11hrCQR+mjNnMYCVAH3+zwv+9ifWelghalPbnJp7AOz9aMb719Wox1WYpVWZHfnmbmvGGN8MZy2GBaI19UOLp48BMECjaPyCtZZAgjfqzf3jdxoqmhNVp80Zr7LWwwLRmrraEvcMgQtjOpjWs9YSaCx/bOE7cO/hMrPni2v+wFiO3xGlqTmDieSVZ3ZSyy07Fj284gBrPQHKs2GK+lK5zPnd48smp7IW409EaWoAAwGSZnGGfsBaSKDCG/XNw5I3GuqsUbL1/B3zWevxJ6I0dXdd3tsy4nTAvc+4xGVY9kjOCgrZPLtLfS9nMF03oyGiMzVnMMnP1qYPSIs6VsYb9bWs9YiAVxXEflAjb1r92LIpvViL8QeiMzWA0c2OME2+OWM2ayFigDfq7WNTv33OQRXqX4tH51wPc69FZ2oC5yQAdS4qX8dai1h4f/pHJqXMPqfGEpeJ/+7HHrSIytQzcyZFq+S2+zntqSO8UW9hrUdMNDvC3gSQKyPOhTOWPngDaz2+RFSm3lk86narM4Skak9/xlqL2OCNele/+B0zVTJryP6KQZ8F89xrUX2w8ubEWwGUbi4a/x5rLWLk6ydfOdQp8uTLxQ2p7QA8wVqPrxCNqacveag9QG8B8On1uBhAKI5W9/07gLUAfe2ut58dzVqPLxCNqRvsEfMAohzd/vudrLWIGc8U3WmhikYUN3Qw3fX2sxrWmoRGNKbeVTIyLVTRUK5VmaX2tJfwRn35oHbb5hc3dgjZWzb8edZ6hEYUacc4gykJQBGAebxRP5exnKCBM5g+BnC/DM5hZ4y3Bc0VUBQ1dUbM/rkAiJw41lztXIlWMVslt1RHa6o2zcyZpGMtRihEYWqzVXdfcnhB0+nX/3iStZZggjfqa0ckb3ityhKv+bngln+y1iMUAW9qzmDqWtLYPsLuUr7FWksw8sGMJW8D9J0mR8RUzmAay1qPEAS8qQH8BQAtb0pazFpI8EKeI3CdDFU0fPX4svs51mq8JaBNPStnIolSVz0Zpa46yBv1Jaz1BCu8Ud98U+p386xOTfjesqErWevxloA29dGqPmPNVl14r9jffmOtJdjJeWTZ6jBl/Rslje1v4Aymu1nr8YaANvUpc48JAKyHq/o9xVrL9UCdLfp5AHtkxLns0WVT+rDW01YCdpx6ysLHFZuLbi4CyK+8UR+UqzYCcXvpcfPnDzxbm74nJYIvOlub3kGMSYICtqZWyBxPASShp27fNtZafAFnMOkBuh2grwE012Nw5vw0Z87e9OjDS87WpqcAeIi1nrYQsKbeV545XCWz2jtFnfiItRah8Uz7fMf9jAAgKgArBv7jozHsVP2XI1X9HwXwC0DfvuWNl0XXDAlIU3MGU0iNJW6kzaVe9W72qqBbh9g7du9KAGkAsbXYziO2sjnh5xGvvlfKGUwjWerjjXoXgAdVMpu63q7dMitnoqgSTgakqTtFHp8KIALAatZahGbYK4tGHa7qO7FL1FEewCjPdh4jw5W17Yck5n5T2pikAZDLGdZtmfzerNmzciYyWVPIG/XnBidu/aCgLk377en7ZrPQ0FYCsqM4bv784pLGlPiksEL1j3MMQTN3mjOYtAD2yYkjdELHL4e+9/BK/hLnhAD4q1Jme8nuUsVGqMwn621RTwCogZ87lZ5Ful/Cvb3uAN6oP+yPuN4ScKbmDKZogJZ1iDjz/ZbnZ97OWo9Q5OYSMnvTinVmq248gJG8UX/FDvDMnEkRlc0JC7cXjx4JkFSAUgAUIFb4caMmzmCKkxP7CV1IhTwrcXPSguxVAb+DcCA2P+4EiPJcfedXWAsRkiUH/vaW2aqbkBZ1bM3VDA0A72avql8z819TANIFoF8CIACRAVDCj3tE8kZ9xYiUDYvLm5K0m4vGiSLTU8CZOjak7GmFzFYAIGjuInIGU5edJSP/qtOU5/fQ5U1tzXt5o94OkH8Rd4cScG8WmSu4yCvw8aOLXiBwfmy26h4JlKHHKxFQpv7zgr91r2qO69ovftcZMQ76X4pZOZPCCFyfAsReZYm/cUH2antry+CN+h0UshEADgEgqdp84YVeBQr5bIAWhinrv52ZMynO7wJaQUCZekfJ6PEUMticagNrLUJRWJ+6iULWP0JlnsEb9YVtLcfThr5RI2+y2ZzqX2blTAoTUOa1xK8blbJ+fpM9LPZQ5YBP/Bm7tQSUqQFMBLD3m6f+sZu1ECHgDKZx+8qHDuquy9t3aN7ET70tjzfqK7OSct8qaWyv+e7MPc8JobE1LH9s4fu6kIqVZ2vTx3AG083+jn+tBIyppy95aDyA/olhhT+x1iIE6c99lQBgJYAjR6v6CbYb7cePLnoRwHIXlRs4gylTqHKvlcrmhGkAjsrgXBGoc68DxtR55YNnAy4oZPbjrLV4y6ycifLkCP6ADM4YAPfxRn2zwCFmK4i9IkZT8fPMnEnRApd9RXij3pIcXjAdhCacMmf87M/Y10pAmJozmLLKmlLGAYQW1ndaKoYe9pXYUHDbM2druyZkJeV+4YsbFrxRXzuy/fp/VVviwredv+ltocu/Gr++MGNrRszBL49X9+7MGUz3+Dv+1QgIUwO4A+5xWAI/j8MKDWcwDWhyhP8DoGtjQ8om+irOhzOWvCEnjverLXH3s5grcqSq/30AdgN4f8jLS9v7O/6VCAhTd4s+wLl/o064J/fkslPTdh7PmZwYoTL/TOAqB8hDC7JX+3RY0kkVTwP0jEbR+OXjOZMTfRnrYnij3gHgfjmxa8OU9b+xmqNyKQLC1PX2SJWc2J0y4poLP94CFpo9JcP/3WCLiBrd4Xsjb9RX+zoeb9Q33pC84WWrI0R3tLLv576Od4n4JwYnbv3qtDkjbt2Zu6f5O/7lCIi5H5zBtBtAE2/Uj2Ktpa1wBtNEAKu0qpq3Ds6b5NflZ5nzlq0oa0q+H8AE3qj/wZ+xPXPDfwSQBaAPb9Sf9mf8S8G8ph43f34YQPsBEGXtDADTl0wdReBcCuDXOlv0HH/HL2tKngbgCIHr4xlLH+joz9ieuddTCZyudmFFvwbC3Gvmpk7Vnp4MEMWQxNw61lraAmcwKfdXZH6pUVhCO0cef8jT1vQrvFFviQ8peZgQV8LZ2nS/D7PxRn3hDSk/ryptTEnYWTKS+UQ05qY+XNm/IwDEaCq/Za2ljcwrbUyJyYg58MLGZ586wUrE7r//dXsP3f5vjlX36cRie7loddWjCmL/pqwpeTZnMPX2d/yWMDd1SWP7zgDOLp728RHWWlrLhH++OgmgcwDkfPXkq6+x1nOocuDdcM9uXNLjxU/a+TP2guzV1EGV2QCtCVPWfzczZ1KEP+O3hLmpZcQ5DKCiSyP74KIZnYsaUldEqavNAGYzlgPgwjRVTJERZ3RSeKHfh9l4o75icLutbzbaIzrkmzP+z5+xW8LU1I8sfXCQi8rbDUnczPzL1Ro4g4lsKpzwboNN68pst/Vh3qhvYq3pArxRf2Rwu60/nKrpkfT92bum+Dv+Z7Pnv5kQev6Ho1V9buYMpqH+jg8wNvWukhE9PL8y+1a3BYXM9gRAJrggf2LpIzlfsNZzMTUW3e0Attldqnc4g8nvd/vKmpLvA8g5AteqmTmTE/wdn6mpqy3xvQBYdpaMMrHUca1wBlPWgLkffeJyyf4VoazdCmARa02XwrNY+QEClyopvGALg2ZIXWxI6XQAHfnazhv9GRtgbOoQRcNYOXHs5416G0sd14JnktXGKkv8fS7IEa6qXRjIq3N4o/700KRNa4sbUrm9ZUNf8Hf8vX9/6MfuugObDlYO6sEZTH/wZ2xmpp6+5KFwu0vVq3fcHgUrDa1kFAC1J6OSs6SxQ2fGeq5KbEjZRKXMtvl8AzeHM5j8rvdIVb8JAI4A+LDr81/E+CsuM1PnFo7v7XCp0OwI+zcrDa0k173mlQKADSKYdLUgezW1u1STATjClXVr/X23z7PV9mQCV0LHyFN+W0jNzNQWZ+ggADhe3ftLVhpaA2/U74hSVbtiNBX1ENGkK96oL+wTt3tRg13bs7C+o98TqvNGfd6gdts2Hq/uzaU//6XPpuK2hJmp40JK75ATexlv1J9npaE1cAZTrNmmU4Qomj8Ui6EvwGnzX4gLKdmzr3zIHZzB1N3f8cuakiYA2GVzat7zbB/oU5iZ2uFSDOsSfazV6QIYkgUA5xtSv2ItpLUsyF5NK5oTbwVIPYHr37NyJob4M/7m52Y5ANwP0BB/jMYwMTVnMCXWWGMVZkuMWNrT4LSnJgEuJ4C9rLW0Bd6oL4vRVDxFIetf3Nh+HYP4J7PcozGd88ozX/JlLFY1dSYAlDalfMcofquhIDenhJ+z+GARrd/YN/eBlWlRR4/tKR0+kjOY+vs7vsOpmqiSWbacq+/8DGcwpV3x3JciHa6/R7ocL0W2etYjE1N3jDwxmbhrvTwW8VsLZzApC+o6q+tskaK683kp8s3dhwGkDMBKzmDS+DP250+87rK5NBMB2EIV9V9fbjTG8VKkQ04gJwCRE8hba2wmpna6FKOT3bWehUX8NtAXIJo6W/R61kK8hTfqawD8FUCPvnG7WMy9LuoVu/etJkdEz8L6jpesJGTE7UtCfv/8WvG7qTmDSXmuvpOm2qITzT7jPWN/ywaACJV5F2stQsAb9T/0it17fH/F4GFpz64d5u/4nSJPvtIurGjXvvIht3AG0/9sv+GicAGe5MUtnl8rLGrqXgAJaXJE/MIgdpuwOEJHR6srnYfmTTzHWotQyIlzGADeQZXLOYPJr3n5FmSvpqWNKbcApApwrbp47rViXq3C6YSTUlAnhVMxr7ZVd539buo+cbuzASA+tFgUqXo5g4nkmzNC62yRX7PWIiRrn5pXDZAHAKR1ijzxjb/j80Z9ZaSq5lFA1vN8fer/pJpLc6zZ3sm2Jre1hgYYmLrRHj5cqzK7shJz/Z+Ptm20B5DkpMrNrIUIDW/Ub+4du2f3mdquY7q/8Okn/s6MdWDepK8yYg7s/608K5MzmH6Xb1BB7EoFsbfptr7fTZ1v7q6pt2m/83WiF6HITNz8CAB0ijxxiLUWX8DXpb0IUNrkiLgPoNvGz399811vP3uDZ78Xn3Osus8IgPAAVnAGU/iF48kRBRkpEXyPy7/z8vjV1JzBFAsgjUK23Z9xvaG6OTZTJbPSXrG/iW7J2bVQZ4seAJALHTHZ8ZreI/aWDd8CgO/90upPHlj0qHHSe7PjfRWfN+rrAUwBaMceLTaCrWhqV1XckGJty9XDr8lsJr33xLPbzt/0Wnr04Tt/mjNHFG1UzmDaC9A63njLjay1+IIL88ThzmFoT9WemlVY31HmooqbFcQ+wUGVavdej2R7Uti5vF5xv+2sbo777PMnXm/ViMTVuPOtF3btK88aHKpo+GOTI7wCoNs8g3oWtHICmV/nMlc0tRskgxNpUce3+jNuW/GMCvQFiJG1Fl/BG/U7OINpDDzb2W1+bvYF8yydlTMxpNoSO3Hr+XGdAIwvbuwwq7ixwyyAvsMZTD92izl4NC3q2NcLH1550lsdkeqaGwG6s8kR9lmUurLZbI290Iq4kDD0mk3t15qaM5g2AojijfoBfgvqBVMXzXj8l0L9u911eQ9///QLOaz1sGbG0gd7FtVz9x6sHNgZwDgAOsAFQLYbwPrB7bYciVDVrv1wxpJWr2TytOHnA3jafYRST7PIhkCtqTmDSQ5gMNzZ9UXBufpOfQGA0+YHZHJxf7N42seHARwG3P/PcalrJ5+o6Tm8oC6tO0Bf2F06QqaSW6ycwfQNgPVjU7/dm/PI0qt2sLPfn3YDp834nK/r0nKRLoX7GzOrtVN9/Wbqm7mvb/uRvyO8p25fuXsD1cAn35yRAODY4mnLz7LWEmjwRr0T0C8HsBwAxs7/Z0JSWOGcQ5UD0qqdmhsA3LOh4Db0fHFNUYM9co1abvlpPPf1zpabi3IGkxLAU8CtczXyZlVP3b7FR6v7lLqobJ5nz0gXgNjWavObqc+Y0wcCQHJEwRZ/xfSGu99+VgYMGwoQ0c2fZsGGOc+UAXgScDcleuj2jYhQ1T2TV54ZA+AJq1PzzHr+dvR6afXWelvUpx0jT6Sr5R2mWp0hEQD5Ojmi4Jl1T7+Y7+m4PgtPxxVtWDbnN1OfMvdIBFD5I39Hrr9ieoMupHw8QKL7xO2uEcuVJVBwr7LXbwawGQA4gymiV+xvUwhc0w5VDugAYNHZ2q7wrPm0AeSNjYa/5Xve+7uOa1tWGflx9INmAWRnIKcVaMmx6t79ACA+tPRH1lrEjnssWr8QwEJPh/BNgM72NDFkuGh0w2PkNi+Z88vNF/fWZKRbr9jfxDLVFAV1aZ0AVG8ouM3vyViCGU+l9gVArAAc8MF2KH4x9cHKAUMAIFJdvckf8YSAwDUcwHaxXFnEhKcmHgPgJfhgZb5fmh8FdWndANBt58eKYk3iY8vuT6O4N71f/I6jUnvaN3jbxLgSfqmpFcR+A4DDnvv8Ac/e0mEDAUAtt4o1Efx1jc9NPStnolwpt47uocsTzWW8tCmlFwDnzpJRol+TeD3ic1P/WjymR7MjnMiI06+7RnmDRt50E+DaH0h5pyWuHZ+burI5YQAAHKocuMLXsYRgVs7EEBeVDe4bt0fOWotE2/C5qbWqmvEANQNgtslPa/ilcEIfm0sDh0spNT1Eis9NHapovK1T5AmHZ7+9gKfeFjUYAA5X9V/NWotE2/CpqTmDKaK0KVntonK/p7lqK9HqyttkxFnMG/WFrLVItA1f19SDAUL4ui6f+jiOYFCQUenRh/2+waeEcPjU1Mnh/B2eX3f7Mo5QpD33dXuzVSdvtEeIJtGOxP/iU1OHKJruig8ttnlSXQU8DpcqCwAK6zuJIhG8xKXxmak5g4mcNndTOlyK/0lUEqi0jzjzFwKXFcAB1lok2o4va+rOFLKYaku8aG41u6jspg7aM82enWMlRIrPTN1dt/8vABCprhZFknLOYAo935CqrrVGS+1pkeMzUyuI/S6NvAmjUtYf9lUMgRkEEIXZqhPN7XyJS+MzUx+sHGinINsXZK8WxaU8I+bAXwFALbcEZSam6wmfmNqdBIb0sTpDRLMowOIMGRkXUmI78eqfKllrkfAOn5h6SGLu3QDkSWHnjviifKHhDCZytjY9zGyNkeZ7BAE+MbXVqb4VAPon7BBFDmoA6QBi7C510KXrvR7xianzyrNkBK7TQuRY8wcDE7Y9AgCp2vz9jKVICIDgpvYsgR8ipnS9NVZdZoiiwdU3bvd+1lokvEdwU49LXTsEQLtUbb5o9kc5bc7QNjvC1i/IXu1krUXCewQ3dUVzu3EAkBFzUCydxGgA3QEimiuLxJUR3NR55UOiAdp8rLr350KX7QtGpqyfBgDddXmnWWuREAZfdBSzALLHs8l6wFNYz/UlcCIt6oRoxtQlroygpp6ZMylSRhyDOkaeqBCyXF9yprZbPIV837vZ/y5jrUVCGAQ19Zna9NEuqiDtwwuOClmurxj52gIFQDMBSO3pIEJQUx+uHNAJALacH7dYyHJ9RbeYQ/cAJLRv3C7RXFkkro7QbeohAHjeqC8VuFyfcLy6V08ASAwvktL1BhGCJoiMVFXfHq2pOiZkmb6koC6NA3D+h7N/EsUaSolrQ7CaOuvlJR1rbTHKGE1lnlBl+hoC1zBI6XqDDsFMXdLYfgAA7CvPEkV7+tGlDwygkHUYkLC91dujSQQ2gplaIbMNB2AFsF+oMn3Jb+VZfQFAI28SzRpKiWtDMFMnhRVOTQovaOCNelHUfKWNKT0AWH4tvmktay0SwiKIqTmDSVVUz4WEKhr3CFGeP1DJLGMAukcsX0KJa0eomrqPC3JFvrn7hwKV51Nm5kyKdlJF7/7xO/26N7uEfxDE1DGainGeX0WxaHVL0bj+TqqAw6X4hLUWCeERxNQJocXZkapqJ2/UFwlRnq8xW3UDAeBg5SDJ1EGIIKbON3dTaRTNokhaAwCRqupbZMRxhjfqpZXjQYjXpuYMpgS7S51Y1pQsivnTs3ImEidVDMuIOSiKJPASrcdrU3eKPHErACiIXRTt6XVn7k5rsGtJoz1iFWstEr7Ba1NHa6qmyokdEzp9IYrppk6qHAoAfF2XL1hrkfANXpv6UMUAolE0n3o3e5UoclAnhZ27T0acDQBEM/FKonV4ZWrOYFLYXOrejXataJIqOql8VEftqWaxbKwk0Xq8MvXAhG1jAISGK2tFMTOPM5iiypqS1GZrjCj2SJdoG16ZWi23TgGAESkb8oWR43OGAIRUWeK/Zy1Ewnd4ZeodJaOccuKoVspsvwolyJekRx+eClAKkWysJNE2vDK1i8oznVSxdUH2alFMsrc4QkYmhRVaeKO+nrUWCd/RZlPPWPpAZwBdYkPKjguox2dwBpPiXH2n0MrmeGl8Oshps6kb7Np7AKBv3K5i4eT4lJ4ACbe5NLmshUj4ljabekvRzaEAddbZolYKKchX9IvfMQMAEsMKRTNHRaJteNOmvhkgZbtLR2QIpsaHmK0xg7Uqs3Nwu62nWGuR8C1tMjVnMGUBdBBAEwFsdD8PbM7WdtXW2SLXiqVTK9F22lpTj3L/IASA8r/PAxPOYEoE0FFK13t90FZT5wIEACgAu/t54DI8ecNjANBdt18U23VIeEebTM0b9TsANMKdWHGM53nAcr6hQy8FsdMOEWdyWWuR8D1t7igqZTYlpz1VE+iGBoCztV07Oqjy3Hr+zl6stUj4njabWk4cSq3KHC+kGF+Q8cL/jQVoTwAdIJJOrYR3tNnUFmdo/cHKQQHf8YpU18z3tP9F0amV8J6gznvBGUxEJYtLcPdn4QBIwHdqJbynzaZWyqyalIiCLoBeSD1Cc4PNpUkC8BqABgC5YugDSHhHm00tJ05FuLIuVkgxQqPTlL1SZYmvAcirvFHfxFqPhH/wpk3dcKhyYMDWetnvT+tTY429oV/8rlOSoa8vgrZNvaHg1jsB0Gh11ROstUj4Fy+G9GwhkarqPwTiEBlnMKkAMg0gpo8eXRzwIzQSwtLmCU1OqlTW2qLTEYBjv0OTNr4GIEGrqslhrUXC/3gzoYkG6oSmUzU97tVpyuyj2/9gYq1Fwv+0tU2dCxAbALV7ISvJFU6Sd3AGU3+gXYpKZn16QfZqJ2s9Ev7HmwlNo0MUjY1R6kr6x85rAmZ1tpzYZwJosrnUH7DWIsGGNncUeaN+R9+43Tlma5xqQ8FtAXEH5rFl96fJCJ3CaU/u5o16M2s9EmzwMu/H6GcAnG9yhM8WRo53bD0/dpLdpUK3mMPvsdYiwQ6vTM0b9XaAvgNg9JSFj98ljKS2wRlM8lprzP0ANi+Z/uFXLLVIsMXrrKcTOn6xRiNvQkljilEIQW2lb9yuGQA6AljIUocEe7w29eJpy4uj1NWrTtb04DiDiRNAU5uos0W9GKmqdg1L2vgdKw0SgYEge76UNqU8BxAKYJYQ5bUWzmC650xt1ziV3Lpu9cy3rCw0SAQOhFJhMgb0n7t8fb1NO3Y8t7bzew+v5AUp9ApwBhMBEJ4czv/lfEPqIoDIATRDBGsmJXyLYBOaBrXb9uGP/B0355VnPgEvauyH38/WAcj4qeB2F4CE7rq8EWq5tXte+ZCzABJ0mrIBTqqIA3QUQMj5Bq7l2y/c3ZRMfR0jWE0NAJxh3U8A6QdgAYCNF2rMR5Y+GLXp3IRoizM0PiPmwABdSEXW9uLRp11UHhcfWjxQI7d0O1ffsQIgCQDCL106rQRIqU5TJo8LLVUdr+7zDYDSxLBzXUobUx6gIMSzskWqqa9zBDa1aRaAdzzLp1wAKZITe5yTKkMu85bqUEVDc3xoSWhRPbfRQZVF7SPOKDhtfsiukpFf21zq4oyYA7XtI84WL3skx3KFuFlw19DSyhYJwedTh7oNTQBQGYDaKHXNts5Rx2NP1vQwma2606na/MaeuryGsqbEw1888fpljfpfrn6z0mNkycwSAIQ3dS5AmgEoPU2Bab/NfVAym4RfEbT5AUhNAQn2CG5qCQnWCHLzRUIikJBMLRF0SKaWCDokU0sEHZKpJYIOydQSQYdkaomgQzK1RNAhmVoi6JBMLRF0SKaWCDokU0sEHf8Php9hTgnND9AAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top-5 predictions:\n", - " 1. garden hose 15.217%\n", - " 2. trumpet 10.083%\n", - " 3. rifle 8.203%\n", - " 4. spoon 5.367%\n", - " 5. moustache 4.533%\n", - "Answer: boomerang\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAi70lEQVR4nO2dd3xb1dnHf0dbsmR5xtuR7exNJg6J44QwgsIKtCmvU1KGgZASE0pBQFNoKERtoZAEaBMDBUKghZaXJSB7koRMMkjiLMt727Is2dY87x+SeY2bKV/pStfn+/noI+nqnuc81/r56Lnnnvs8hFIKBkNIiPh2gMHgGiZqhuBgomYIDiZqhuBgomYIDiZqhuBgomYIjogXNSGEXuLxDkf9vEMI+ZILW4zgIuHbAQ5I6fZ6NoDiHts6uu9MCJFSSl2hcIzBDxE/UlNKa7seACzdtwFQALAQQu4ihGwmhHQAeJgQYiWE3NndDiHkOkKIixCS1LMPQshzAOYD0Hf7Bcj3fzaSELKRENJBCGn2j+jai/lMCJlECDlICOkkhBwihNzUw2a+/31CtzY6/7bx3bYNI4SYCCFthJB6QsiHhJDkbp+PJIRs8h9vGyHkMCFkuv8zKSFkBSGkmhDiIIRUEEKMl/+XD18iXtSXyTIAbwAYBuA/AD4EcG+Pfe4F8CWltO487V8C8BGAjfD9CqQA2EUIUQH4BoANwEQAtwOYDODtCzlCCFED+BLASQDjADwB4C9XekCEkBQA2wEc8/c9E4AawOeEkK7v9QMANf7PrwLwHIBO/2eL/P7+AsBAAHMBlFypH2EJpVQwDwB3+g7px/c6ABTAb3rsNx6AG0Ca/30sfGHK7IvYfgc+0XffVgigFYCm27Z8f58DLmDnQQDNAJTdtv2Pv01+DxsJ5zmW8f73SwFs6mE71r/PRP97K4D5F/BjBYBNAAjf3xvXj74yUu/v/oZSuh/AUfhCCsAnqhYAX1+h3aEAjlBK27pt2wXAC9+vwvkYAuAYpbR7rP/dFfYL+Eb5PEKIresBoML/WY7/+a8A3vSHXs8QQoZ0a/8OgDEAThFCXieE6LuN8BGNIA7iMrCfZ9ubAO7xv74XwDuUUs8V2iXwjYzn40LbL9amC2+3fbuQ9thHBMAEnzC7PwbCF96AUvocfP9cn8IXFh0hhNzr/+wgfKP/035b7wLYIARhR/wB9IL3AaQRQn4NYCyAf1xifycAcY9txwGMJoRoum2bDN/f9cQF7JwAMJIQouy2bWKPfRr8z91nccb02OcggOEAyiilZ3o8fvzloJSeppSuoJTqAbwF4P5un7VRSj+mlC4AoAcwA8CAC/gdOfAd/3D5wIVj6vEX2P9dAA4A2y7D9tPw/bwPBpAA38ipAlAN4H8BjASQB9/J1n8uYkcNn2jfh28UnQlfKEQBTPPvIwVQDuATAIMAXA/gMH4aU6cCqPfvMwlAtt/WagAaAEoAr8MXn+v8+xwF8Ka//WMA7oIvhBoAYDl85wcqvr/HXuuAbwd4FnWe//O7L8N2IoD1ANrw05O6kfCdcHXAF5e/A0B7CVtXAzjk/4c6BOAOv81J3faZDOB7v93d8I2kPzkW+EKNf/v77fD/Q60EIPM/PgBQ5u+n2i/4aH/bQvhG+zb4Tii3AZjM93fIxYP4D7BPQgiZC2AVgFRKaTuPftwK32jfj1LayJcfQkEIVxSvGP/8sg6+kKI41IImhMwHcA6+cGYEgFcBfMEEzQ199UTxCfhi1GYAz/PQfxKANfCFC6/DN5U4jwc/BEmfDj8YwqSvjtQMAcNEzRAcTNQMwcFEzRAcTNQMwcFEzRAcTNQMwcFEzRAcffIyudDRGUy58K3O22o26nfz7E7IYSO1wJi57C+LCbw7Afo8gE1+gfcp2EgtEHQG00gAvwOG/LzbWKVQS1sfhG/pap+Brf2IcOatfHROrT1t+RnLsHQAtihp60a7K3oWQKQAFQEE/VTVx+vbUx8wG/Xf8u1vKGCijlCGPPPxlE6P6ikANyklNpqkqn3PbB3wmNmob+6KqeMVdccGxJx8eG/t1IkUoji5uOO7qWkbP4qStr2yvHCtYL94JuoIY+DTn0xPU5d/bLYOjAfQBOCvuSlb3vqw6KXz5SsBAOgMpigAhSqJ7YV2t1olIu7vvFTyBwDfmI16wQmAiToCKCouIOVt2fceqr96PoCpCnG7fVTi/vV7a/PuNhv1tsu1s6h4nvZk88hnTrWMmAsgM15RVzcs/siqHVXX/cFs1HsvaSBCYKIOY3QGEwFwU6y88fUWR0J/EfHUeqn4RQBvmo36jku1v4hdmUZmKZSJHK80dSZJARwl8L5wS84/P1leuDbi8wwKUtSRPk9bVFwgbnXGvLCrasbNTq9imIh4KnJTtmyPVzYsWFH4ftulLVx2P/J15tvu6vSongAwNFFZ44yS2paYrQP/ajbq3Vz1E2oEI2qdwSTRyCypqVHlC0paRv4GIGL47qK+NlKErTOYxAB+JoJniRfiYdGyFovVGbsYwFqzUR+0EVRnMIkmJu9YYrbm/Ka+PVUDoDRNXVY8LmnXa1z+E4WKiBC1/8tOBpCRl75uTpUtU37WMtQN0Ix0tfnGxo4kb6dHpcZ/JZuhSFJVH5uUsj1vReH7LTy4flnoDCbJ1SlbXj7RPPruVkdcDIDjg2OPvjck7uirywvXOkLoBwEwG6BLADJBI7M42pwxv0Uvw51Qw4uo3b/XukUEIi+F9zcZs5XVtsycfXVTtAAyxid9O6elMz76bOsQO4CMaFnLuDanVkohIj3MdACoyNSc0wL0bHlbzmYAlcmqioLa9oyp/5/Zi0BCXM1uKv0DgNVmo74TYUJR8byoz87OvQsQPQUgOyWqorPDrXrA4ohfy+eJW1FxAbG5op/8rmZqgc2lHQHQugnJO3elRFUtWFG45oKzLOFCyEXt/r3WLSb/P6J6PKAD3B/8RLAS4vK6qfQsgIqcmBNxcrGj8njTGBOAiqlp60mU1HbsG/OcsvNNR01aunpjXXvatV3m4xQNnzV3JsQBJF8u7rCMS9q94UTTqLsP/WE+b+LWGUyKdHXp0zZX9NMWR7wYwH6ZuPPFWbpPPg23+WOdwTRNK2t+tdUZN0ZMXFYPlf4ZwGtmo76Vb98uRMhF7X1W6yUAIQSgFKAA/XnMw2/vr5vyKYDKSSnbmpJVVZWBfrnZhs9WeSF5AKBugLjgj6l1BlN+hqb03xVtWfEAqgC8EK+of/vAc/eE7Od9UfG8+P211zxebc+cDyAlVV3WpIs++8dd1TOWh/t88T2vL/zVlopZdwJELyGujjH9vttXZs25Y9+z94ddrhL+R2oKj2RpK2drUHQG04cApsGXfusnsx9FxQVkR9XMm5o7+z0F4BqtvNmVoSl9/VjjuCfNRr2TKx/O45MGwMMqie35drdaCtAtAHne719Yi7knOoNpbLa25ONzrYOz4Us2/8aAmBMrNxoer+Tbty54j6m5FDQAjFjyYTUh3jNHlxbkXWgfncFERifuvbepI/GVSluWBkCZRmZ5eUbGV28uL1zL2QnRI6t/2b/KlrnqYH3uRIDERsta9l2dsu0fqxcU/42rPvhizLPvjbE44p8A6FypyEn6R5/beMYy9B6zUV/Ft28RMftxuTz09/vU68tubRvbb8/Ofy9+ceql9vef7d8A4A8AJsYpGlxtzuiFLq/8nd5MoekMpgQAj4qIe7GXSlSxioY9LZ2JRWajfm+gNsOVn7/6ZK7dpX7vh6arsgDiUYjbP5iR+dVbX5Xe6QFP1woEJWqdwTQGwKEEZe19+5+974J1V87TjkzP+GrJofpJhRZHfDqAs6MS9v0rS3t66ZVMqY159t2UbO3pTw83TBjjoRIpQP8zI+OrD99e+MYnARxORKEzmLIAPCmCpxCgIi/EHn/OeCdCfK1AaKK+G76c08PMRv2Fkp5frD0BMFsqchhdXvkwtdTaZHNFLwbwgdmov2CVgZnGv+ScsQx7BMADBF7lwNgTJadahs8xG/XHAz6YCGXhql+N31l17QetzriBvi3UA5AlZqN+Wah8EJSor1328uelrQNneSFW9uYyb1FxAbE6Y17cVnn9bC+VjJCKnGW5qVu+iJU3PdZ9bYTOYOqfpT31ToU1K99NJW6ArNHILH8+urTgJDdHFJn4lylsBqgCAHK0JxdveurxV0PVv6BEnf/iqzVOr0y763cPq7iwpzOYRABui5U3Frc4EuIIvCUUorVaeVP/dpc6w+WVzwAoRiXsPx0tb/3l+4+8coCLfoWAzmDKjZU3Fra7lQVOj7KZQpRnNupPh6JvQYlaZzDVSIhr05llt3GaFreouEB8vGn0r09bhhcByPJtpQDIxwAeMxv1YTOdFW7oDKbhALYCtDMvbcOc9x5Zvi/YfQrmxludwZQIINlNpQe5tr28cK1ng+GJ5QDeBGjX5WsPgENM0BfHbNT/AGCmTOxIONp01e47XnlmRLD7FIyoJ6dungMAA2JOBHOedAtAHADcAHEC2BrEvgSD2ag/PD3j6/tsTq3zQN3kz3QGU1ow+xOMqNtdUbkAMCTu6LFg9eGflroWwO8RQUtaw4FVD735gcsryweQKCbu7QtXzx8drL4EE1PrDKa3ADrbbJydxLcvjAsz6OlPpgJ0a7Tc4rA6YnSnXryjnus+BDNSAxgFkCN8O8G4OKdenLMjL33Do00d/YjTq9ioM5jiue5DEKIuKi6QiolrbP/oM+cr18wIM958+O8rKUSzAQyMklr3PbL6bh2X9gUh6ipb5jgPlYrS1WW1fPvCuDzMRv2mLG3J/Q63Mmt3Tf5uncGk5cq2IES9v25KOgB8W33tar59YVw+W556bO3YpN2/bezolwDga/8S3V4jCFEDGAXAC6DPrbWIdD569E8vAWQuQCcmqap+WFQ8L7G3NgUh6ixtyTytvLk1nO4/ZFw+ZqP+k4nJO5bVtydnbK24cYPOYFL2xp4gRN3YnhyXoKjnfGqIETo+evRPS9LUFYutzthRALboDKYlgaYhjnhR6wwmTZtLqz3bOmQN374wesfO3y18FcAyAJMAuhQB5teOeFEDGO5/PsqrFwyusPkXiwGAFL67Z66IiBf15NTNDwHAxOTt5Xz7wuCErQDpWgvvQgDrayJe1OXWrASpyOFOiao8zLcvjN7jX0/zpv/tjYGsr4l4UVfasjQur3xvuCWBYQTO4NijUgDIS1v/QyDtI1rURcUFBKCjALA1HwJCI2tVA4BKalMH0j6iRe32SicAJGZ80resIJOA2F83ZScAfGOeE1AOlogW9e6aaXoAaOpIrOHbFwandN3cLA2kccSKWmcw5TZ39nsaAEqtgx7vi/UChcqIhANZADAlbWNyIO0jVtQAzQdoV9gR0HwmIzxRS9vkACATd/atmHpQ7A9i3wQ9pQhwPpMRnuypyf8OADaXz24IpH3Eirrcmh0PeL0qif1lsPsFhUavYuqInDXwpQdT3Q7gm+N/nPtbvv1hcMvYfrszD9bnIjd1czagv+KLahE5UuembJkLoL9M1Pkx374wuEcpsYsBQELcUYG0j0hR293qx6UiB27QfbqBb18Y3PNt9czvAWBH1fUBreeJuPDDV6lrfJpG1rpx5QNreE/wzQgKfW6eehpAktucMav4doQRHCYmb08BgAnJO4YG0j7iRD0w5odlYuJ2ADDx7QsjOCgkHRQAJMQdUPbaiBK1zmCSVbRlXTU47lh1JBWrZFwZ2ytvKAGA3TXTA0r9G1GiBnBdp0clPWsZ/CjfjjCCSl+KqekvALQ4PMpv+PaEETympG2MBYDxSd+OCaR9xIh6UfG8eLm4syBTc/b7YNY8ZPCPVOR0AQAFkQfSPmJEvb/2mtsdHiXJiSn5nG9fGMFlS8VNVQBwoG5yQLVzIkbU1fbMGwHUbqm4aSXfvjCCjvBj6vvfeCgZoLMBfHSx0m8MYZCXtl4BAGMSv5sQSPuIELXTK3sOIPJrUjd9x7cvjOAjEnk6AcBDxeJL7Xve9ty6Exz21kwdpJTYWhKUdR/y7Qsj+GytmGUFgKON46+4wCsQAWs/fJnmVVMBvMzSIPQZhB1TD407/AQAiYh4/sm3L4yQ4QGAEfEHJwXSOOxF3e6OKuynrHHenP0vloGpj2A26qmIuKmbBhZIhLWodQZTapk1J0Yscr/FQo++hZdKOk42jxLkPPXPAEJq7BnL+XaEEXJcEGJMnaiseVIlsZ01G/UlfPvCCC1KiU01JO6IsGLqG/+8bERDR0rKqMT9TNB9EALqdngU7kvv+d+E7ZTeyeZRswGg3Jr9KM+uMHig3a1pKG3VnAmkbdiO1AC9C8CuXUsWBLRQnBHxCCumXrDqnpsBMion5gRLUNNHiVM0JGVrT44PpG1Yivpw/cRbCLwYGnf0Xb59YfADpaTT4VEGtG4+7EStM5hItT1zGoVo02sPvMuKE/VRWhwJTVW2/hJBVOfKiTkxDcBAAOyyeB/FL+SBAAYhgLJzYSdqrczyZzFxY1TiPpYCoe+SD1ARfGltrzhNc1hN6ekMJpFENC4zUVV77PPfPMeqA/RdtvqeKAByxWmaw22kznV7ZUm19nQj344weOUAQChANiKANM1hJerUqPInAOoAwG6u7dukwxd6fBDRdRTvfOUpaZtTO3tI3NEGs1Hfxrc/DP64NvOLmwFgStrGgNKOhU1Mvb9uSj4AEaWiP/HtC4Nfyq05UQAgIa6A6mOGzUgN4BcA2kpaRrzFtyMMfjltGSYCgK2Vs/YH0j4sRL2oeJ5GJuos0MpatrDEjwwCb38A9YFqISxEXW7Nvs/pVcjHJe3ax7cvDP7J0p66LSWqQhFo+7AQ9fcNkyYCtEkicr3Ety8M/qlrT3MR0HOBtuf9RFFnMEUBuBUga1YvKO7k2x8Gv/gqr2mi7S7NvwK1wftInZe+7o8AVFnaknV8+8Lgn0RlTTyAKAABFTECwkDUJ5pGT1ZLW52jEg58ybcvDP4Zm7TnWgDIS1vfL1AbvIYfOoNJCySPAfDG8sK1rkvtzxA+Jc0jogCgw6PcE6gNXkfqOEXDLwHIwJaZMvyYrQNVALCvdmpkijpW3vRsjLypE8BePv1ghA9KiX2Qf/1PQ6A2eBO1zmBKPNs6OC5JVb3ebNSz7EsMAED/6DO3JijrRWaj3huoDT5H6jsBIippGbmERx8YYUZlW5bdS0W9yiDAm6g1MsvDBJ6TANh9iIwfsbmio5s7E3uVXJ8XUS9Ydc94mzN6xITkXVUs9GB0UbDiMTlAU8XE1aua87yI+uvSO/IoRJCJHc/y0T8jPNHKWyYAhExO3ZLeGzs8hR/kFwAOvP/IK9/y0z8jHPm+fmI0ADR3JmzujZ2Qi/rBv98/HcCEGHkTu1uc8ROq7ZlxAPBD09jIiqmrbJkLACA3detXoe6bEd7EKRpG+l9W9MZOyEV9rHHcMDFx7/nbg2+z8nGMn5CuLputlrbS3t4oElJR6wymEQCGe6jk/VD2y4gMzrYObqYgAa+j7iKkor6q356VBF4aJbX+J5T9MiIDu0sTa3dFB3SzbXdCJmqdwUROtQwflRl9ru6H5++qDVW/jMigqLiAiODJVklsAa/56CKUI/V4u0sTV2Yd8EwI+2RECF4q7u+FWDk6cV9yb22FTNRyccd8+LLDfxKqPhmRw86qaxMAoMae/k1vbYVE1EXFBWKFpOOh/tFnys1GvSUUfTIiixZHQgoAmK0DD/TWVkhEvalcn9/qiBMnqao/CkV/jMgjXW0eDwAx8qbK3toKiahtLu0dANr31ua9EIr+GJFHP1XNDRLiwrT0dXW9tRV0URcVFyjFxPU/BN4vzUa9Pdj9MSKT402jawnxVi0vXOvpra2gi9rmil7soVLttIx1Z4PdFyNy6fSoEl1e+SkubAVd1FsqZg0RE7c9QVHPEqkzLohM1Dk4WmZp5cJWUEWtM5gUXiq+1UMlH79030fWYPbFiFyKiguULq80flDssTgu7AVV1Nnak68AiJaJOn8IZj+MyGad+bYkCjHK27I5qSARNFHrDKbc0tZBDwIUTq98aSD18Bh9g06PKgMA6ttTe73uAwjuSJ1PISK+0h3kisuGMfoOg2J/mAwAqVHlvZ7OA4Ir6mP+Zy98l8e3BrEvRgQTK2+cDgBXp2yr5sJe0ER9dcrWoQCgENvXIICyYYy+w/66yeUieFr+ev8/G7mwFzRR25zRuQReXK/74kkmaMbF8FBpmhfiUq7sBS3r6bGmsSKAnlxRuIaTOIkhXNTS1tESkbvXd7x0EcyYeixADgbRPkMguL3SNF30GQ1X9oIi6of+ft8QAOkDYo5bgmGfIRx0BpO206PCacuwf3NlMyiirrGnTwWADE1pSTDsMwRFJgDYXRpO1n0AQRL14YaJCQCwpUL/XjDsM4TD6MS9UwEgW1ti4cpmsGLqsQDOsbtcGJdCJbHnAsDQ+MP1XNkMyuxHjLxxtkZm5eznhCFcdtdMrwSoq96eyllKZ85H6klLV8dZHAmKeEXDGa5tMwRJJkAqPl68LODKAT3hfKSua08bBQDfN0xazbVthvBIUNblerxiTuvRByGmpmP9Lw5xb5shNNxeSXqqukLOpU3OR+qhcUcWVtr6O44uLeAs8GcIE53BJAHiRa2OWE5LDnI+Ule0Zam0Mgtn1/EZgiYVgJhCVMalUU5FrTOYomyu6KRKmy7gYumMvsPVKVvzAGBI3BEHl3Y5FXWsvHECfHcFsDUfjEtCQUYCQLb2FCdLTrvgVNRD4488DAD56V+bubTLECbf1UzTAMBXpXeG7+xHSfNwlVzc0a6Vt7DaiIyL4r9n9QH/WxOX97ByKuqmzqR0h0e5Y3nhWlYbkXEp8gEq9r/m9B5WzkQ9b+ViNUCHA5TF04xLEi1rLvedflEKju9h5UzUKontdoBIpqWvk3JlkyFcrM64aN8r8ldwfA8rZxdfDtTlJgGAh4o/5somQ8jQG+ErWvRbrkt5czZSN3UmDQDQurPqun1c2WQIk6LieVEykePmbG1JWTBq03MmaoW4fYqYuI4Ew0mGsDhYP2mm06sgqeqKLcGwz4moi4oLlG4qGT4qcb+SC3sMYVPRlp0LwLWzauarwbDPiag3lN082O2VwebUsvIXjEsiIm49gJ1mo74tKPa5MNLu1owGgNOWYV9wYY8hXBaunn+Vl0pGjO23uylYfXAi6mRV5WwCbweA01zYYwiXPdX5UwAgWm5ZE6w+OBG1TOy4PkNT6jIb9b2u18EQNk2d/a4BULu1YlbQftV7LWqdwSQqb8uS2F2aL7lwiCFciooLpGLinkXgWRfMWTIuRuqBgEjV1NlvAwe2GAKmw636pYdKoqelr+ektsuF6LWoh8UfmgMAsfJGtjKPcVG2Vd6QA1CqkHQsD2Y/vRa1XNx5u0TkRF76+uNcOMQQLg6PcgZA9v79obc4y3B6Pnot6kP1V9sI6NHlhWs5XejNEBYPr/pVFkAnRUmt24PdV69ErTOYCECucnnlLKk646LYnNqFACHXpG4JetLQXol6esZXEwHEpERVcHo3MEN4bK+6Lk4Ej1UpsQc9aWivRO3wKPQAMDLhQBU37jCEiP8X/UYvxN8sL1zrCnZ/vRL1ruoZYoB6mjsTOUuYzRAe2dEljwNI0chaakLRH6E08DlwncH0FYA0s1E/mjuXGEJCZzDlEnh3UIjEAHUAZHqwC1sFPFIXFRcQhcSen6SqYoWKGBfjJp+gAYCIEYIisQGLuq49ZXCnO0qZE1MS1KtDjMilqLhAqpTY5vjfehCiIrEB36O4p2b6AADYWzM1qFeHGJHLudbBn3W41cNSVOXv1rRnlgDYGoqamr258XYsAOqm0u858oUhIHQG0y3AuFmZmnPbll6z6J78/F6cvF0hAYcfSaqqQpm4ox3ASA79YQiAu19bNAWgawDsL2/LvjGUggYCnP3wpYiiu/wmHACCfkbLiAyu/9OftK2O2FqrM0bc4Y4aaDbqQ35hLtCROh8gXl+GHciVEvvWW1567h2dwRTPnWuMSENnMJFTLSNW1bWnyianbnmGD0EDgcfUWwE4AEgBSjVSi/tI44T5AH6R89Snn0zP/HrbprLZRyhE+QjRyQGDf6KkVoPdFT0XIE+99fDf/sKXHwFffPFnqcyHX7TZT302ykslD4qJ+14PlSh8OdIIBahncOyxF5o7E15v6EhpYnlBhMn9bzz0yOaKm1ZEyyw7LI74aXx+z726ong+FhX/MmlPTd4X9e0pE/zhSXesGpnFmqyqFp22DP0IIKVD4753ZmjM1evLbttkNurtnDrDCAk6gymNwPu9Vt4im5q2YdjKB9bwuhaIc1EDP47im+ALT7yDYo+tPdUy8hiArJSo8mtdXnlmY0eSCEDP5DcNcYp6R5yiqeOMZegnAEqv6rfHm6CsP7Oh7JZdZqOe0zIKjN4z/7VFym2V12+GryrARLNRz/vNIkERNfDf4cl5PicAEqekbZjhcCuH76ub0g4gK01ddoPNpYltdcQp4Mtb3AUFUJ2kqiJR0rb6c61DPgdQenXKVhIlbTu6qfzmQ+xu9tBz68vPHj3cMHGEiHjmnlt2S1gkMwqaqHuLzmASA0idlv7NrJbOhP5HGse7AGSlq82zWjrjFXa3Ro2fxjduAOUZmnNKMfGcMVsHfgOgND/jKylA9m6tmFXC4nnu8E/rLgbIz67qt2fv/z72/CS+feoibEV9KXQGkwxA5vQM0+1VNl3MqZbhIoDq0tVl+oaOZOLwKNQ9mnQA1JyjLYlzeWUHy9uyNxF4zdfrPpO7PLIdby98o4KP44hEJi5dfXt9e+pHAJEA8AKYZjbqd/LtVxcRK+pLoTOYoqKkbTmTkrffcdYyRFrWliOXENfARFXtzPr2ZHiotGc83yoi7vIBMSfjbc7oHdX2zG+jJG2VU9M3eBwexc5/LHy9mZcDCSN0BtM4AAtExH2Pl0q6rnG4AfzebNQv49G1nyBYUV8KncEUm6yqHDok/uitx5tGe+rbU6OVEvsIjaw1t6E9iVKIe5YWrpeJO2tytCWxDR1J6xo7kvcnKGvrJiTvbGt3aXa/++sVgrzxWGcwKYfGHTZYndrHqmw6NYB2laRtT7s7agogEsG38o7TSgC9pc+K+mL4T2L7ZWtPjsnQmGcfqp/UZnXGJqqlrVfJxY7RTZ2J8P/0+qFegFSpJG3NWdoz6oo23adWZ+zRdHVp4+jE/Q02l+bgu79e6ebreAJhwap7Z35bNWOu1Rl7B4DYRGWNM1rW+trZ1iHPm416y6UmAviEiToA/CexaUPjDk9MUNbduLc2r97hUaRrZc3jCaGDLI44EUC6ncRSF0DKYuRN9gxNqfxk88gPXF756UGxxyxD4o5VEHiPh0NFM1+tcNwsIp5fe6l4BoGHUog/BvC3W3M+2BYOPl4OTNRBQGcwyQFkjkrcl6eRWvO/rZ5RCZCsWHljrssrS7e5onusuaHtADEnKmtcKVFV3iON498HUDoqYb+1f/SZMysfWBPUNRQ6gyl1dOLe1WcsQ6fbXRoVgIpBsce2DYw9/tLrD7x7OJh9BwMmah7QGUxqALpxSbuuExHP2H21UxsAZMUqGq5pd6njHB6luEcTC4DSNLVZHKtoshxrHPcRgNKJydvtyVFVx1YUvn/FuZ6LiguIxRG3aFvlDVMBchsAcbb2ZGOlTfeg06P43GzUR1S41B0m6jDDH8/HAtBNSt42u8MdNfBI43grgKxYeeM1VqdW7aHSnqsr6wCUZmlLopTijvLjzWM+A1Cal77OHitv+r4re5Y/Dr4RgFYpsf+swx2VKiZuq4dKVouJa9XZZbedCeWxBgsm6gjDL/okAFmTUzff2djRL/FUywgnfKKfbHHEyinEP8bzBF5KIaoA0ETgHUNBiO+alfd4XvqGHYnKOsPL9/3Lws/RBAcmaoEx7cXlkjLrgDQAWVPSNhZUtOnkZdYBAOhUADr/RVgPgCXhNLfMJUzUfYSfLjILv7llLmGi7kOE89wylzBRMwQHZxVvGYxwgYmaITiYqBmCg4maITiYqBmCg4maITiYqBmCg4maITiYqBmCg4maITiYqBmCg4maITj+D1IkONmepTSlAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top-5 predictions:\n", - " 1. wine bottle 24.326%\n", - " 2. hexagon 22.632%\n", - " 3. octagon 13.903%\n", - " 4. lipstick 2.759%\n", - " 5. blackberry 2.112%\n", - "Answer: square\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu9klEQVR4nO2dd3hUVfrHP++dkkmddCChjCIsKii6WFCUCPa46rqWVWyAqKDCuqvuiIJjj66uYtdY1/6zrjrqquhYVtxVFNvakJ0AoYYkkzqZcs/vj5loZCnJlEwyuZ/nmQfmzj3veW/mO+e+95T3iFIKA4N0Qku1AwYGicYQtUHaYYjaIO0wRG2QdhiiNkg7DFEbpB2GqA3Sjn4vahFR23k9nKB6HhaRVxJhyyC5mFPtQAIY0uX/RwHVmx1r73qyiFiUUsHecMwgNfT7llopta7zBTR2PQbYgEYROVlE3haRdmCOiDSJyPFd7YjIISISFJFBm9chIi7gDKCyyx2gIvrZOBF5S0TaRaQ+2qLbt+WziOwjIp+KiF9EPhORIzezWRF9X9yljCN6bEKXY7uIiFtEmkVkg4g8KSKDu3w+TkQWR6+3WUQ+F5GDop9ZROQ2EVkjIh0iskpEqrr/l++79HtRd5PrgbuAXYDngCeBGZudMwN4RSm1fgvlbwL+D3iLyF1gCPChiGQBrwMtwN7Ab4H9gAe35oiI5ACvAN8CvwYuAf7S0wsSkSHAe8BX0boPBnKAl0Sk83t9Algb/XwPwAX4o5/Njfr7e2AUcBLwXU/96JMopdLmBRwfuaSf3jsABfxps/MmACGgPPq+gEiYctQ2bD9MRPRdj80CfEBul2MV0Tp32oqdc4B6ILPLsVOiZSo2s1G8hWuZEH1/FbB4M9sF0XP2jr5vAs7Yih+3AYsBSfX3lujXQGmpP+n6Rin1CfAlkZACIqJqAF7rod2dgS+UUs1djn0I6ETuCltiDPCVUqprrP+vHtYLkVb+QBFp6XwBq6KfjYz++1fg/mjodZmIjOlS/mFgPPC9iNwpIpVdWvh+TVpcRDdo3cKx+4Hp0f/PAB5WSoV7aFeItIxbYmvHt1WmE73LuZ1YNjtHA9xEhNn1NYpIeINSykXkx/UikbDoCxGZEf3sUyKt//yorUeAN9NB2P3+AuLgMaBcRM4H9gQe2s75AcC02bH/ALuLSG6XY/sR+bt+sxU73wDjRCSzy7G9NztnY/Tfrr044zc751NgV6BGKbV8s9dPdw6l1A9KqduUUpXAA8BZXT5rVko9o5SaDVQCU4CdtuJ3/yHV8U8iX2w9pp6wlfMfATqAd7thez6R2/uvgGIiLWcWsAZ4ARgHHEjkYeu5bdjJISLax4i0ogcTCYUUMDl6jgVYCTwPjAYOBT7nlzF1GbAhes4+wI5RW/cBuUAmcCeR+NwRPedL4P5o+T8CJxMJoXYCFhF5PshK9fcYtw5S7UCKRX1g9PPTu2G7BHgDaOaXD3XjiDxwtROJyx8G7NuxtS/wWfQH9Rnwu6jNfbqcsx+wLGp3CZGW9BfXQiTUeDZab3v0B3U7YI2+ngBqovWsiQo+L1p2FpHWvpnIA+W7wH6p/g4T8ZLoBQ5IROQk4F6gTCnVlkI/jiHS2pcqpepS5Ue6kA4jij0m2r/sIBJSVPe2oEXkDGAFkXBmLHAr8LIh6MQwUB8ULyESo9YDV6eg/kHAo0TChTuJdCWemgI/0pIBHX4YpCcDtaU2SGMMURukHYaoDdIOQ9QGaYchaoO0wxC1QdphiNog7TBEbZB2DMhh8t7C4XRPJDJLzuOtqlySajsDBWNEMcHMq54myzbuPbKmaaffgLqByDTSMMizoK8bX/Lx5Lr2Qd7VLY4aTULabsVLD9jYPnhFbcuIVWYJmsYWfzppfVvZ8rWtw2qtWodlWO6Kg3/0jRkJooEKDs9dcfZ7l819JNXX2ZcxRB0HDqe7aOrwV06uadrRsbxxlxxQYzPNbfu1h7Lll2cqQPygOjLNbfagbvGHdGsHKKLv20O6NfDT+7C1PaQsAdDFrIXyQrqFrotgMkztmzrCmW9nmVs+m1T+Vr3N3P7UbbMe8/XqxfdhDFF3g0NvuMH+fcPYXwFjdy36bEZde+mg9W3lOcDgLqc1AF+NKfzCkmHyf/r5xr2/JLJG0AIEgamxhA7R0GNxxI4Kjyn8YklN08jm9lDOOCIzDQE9BNpnedaGb/Yo/VfLutbye75rGPeVt6pyQH65A17UXeNVYOnkoa8f3BbKnvTxugMUMDbP2jilKZCf03m+WYLhoswNvvVt5S8BX00Y9EFrada6j1797/Gfby6iZMfUp98x91cmCZ/+Qe1Ua1DPmGCS0H5hZbZGP67Lz9i0fHTB183/2bT7X1uC9g+9VZVNsfrQnxjQonY43ccI+nMKMYEoIgteo+sQVRjkuyHZK5vLc1Y1fLJ+/3uJ5Nj4r7eqsqcLdHuFedXTMtpDWZVv1BxbDOybZ234TVOgoDMhjsq1+NaNyPux8atN428G7SPADkwmzR5AB5yo51VPy2gK5F/mWXX4rxXaEfwUrCoF8u6O9u9eGl3wdc3H6ya5l7qmd6TU2QQw7bY/DvnnmqnjgH2H5njPqGsvHe4PZ0V7vX767v0gU9JF2ANG1DvNf2F4SLfOtGiBOUHdWmzROhqDesaLRDIUmYkj7u1POJxuIbK28RpQJ3R5AP3nhEH//P2zF163OnXeJYa0FrXD6TZnmVuOKctZedfyxp1Loik3/jF56D+W5mfUX7to1uPtA7UP+JcPoAgoyTS3SXnOyruXN+78J29VpX87JvosaSnq8+87Y+I3m3a74EffmMlAWbal2b+j/TvPl3UTZnurKr2p9q+v0PUHPXX4ywUrfKOr/+v7VRngLbKtv25S+eIHF816vE8+P2yLtBH1yEv/PimszGcDI0HtJ5F48XWFdg/g9lZVhlLrYf/A4XRPBXUTyPgh2asa17YOO8ZbVfleqv3qCWkh6oOuu+Wm/zaN+lM0PlQ5Ft9zBw5945a7znn4w1T71h854ZZLtUxz290frTvw+EDYVgjqxSnD3bc/OOfut1PtW3fo16J2ON3DiQxw/C46ageRbKYLvVWV16fSt3TA4XRnAn/QJLQAJLMkc93z69vKz/VWVW7cbuEU0i9F7XC6MyYM+uCFZRv2OSSkLEHgb6BOB4lr9M5gy5x/3xm7rPCNfvg/m3bfE6RtcNbq+/ce8v7Vt816rCHVvm2Jfidqh9N9GJHUWqNGF3y1ZkPbkAOWXXn6ioHai9GbOJzuMYJ+g0I7Otfa6G8O5J8DPOatqtS3W7gX6TeiPvPO8/dc0zLspe8bxpYDy81aYN7y6377aqr9Goicddc5c/+5Zurs9lD2GEFfdtDwV//24Jy7b0m1X530eVE7nO4M4CJQl1m0gG1M4VfPfln369O8VZX9frSvP+NwujXgJJup7Q5/OKswx+L7oCVoP4fI0HsFKbxj9mlRn3nn+c7P1u97qS9QkAc8V5y57pJPrpi5ItV+GfzM3OpT7V7fqDu/qJtwFJAbHXpXIAFS9GzTJ0XtcLodwC3AsSWZ64JZlpbT3p0/7+kUu2WwDRxOd5Ggv6yQidFeqDCwIBW9UH1qjeLMu2bnnnir800h/B1wqKBfNrHsnSJD0H0fb1XlJoX2J1CBaGutEUkc3+v0mZba4XQfAep2kJEj7d8u/9E3Zqq3qjIlfxSD2In2Qp0I6lSr1pFbMewf5903+74HetOHlIt69r0z9v+2ftyj//WN3gH4vsi24eKlrukvpdQpg7g56dZL9lzeOOajxo5CFVaWI71VlYt7q+6UidrhdNuAiwX9cosWsJblrLrb2zTqQqNXI334/aKLR3+0dvJzIKMzza3TvrnmxGd7o96UiHr6nedd8dHayXPaQ9mlwDP7lS2++om5f/2y1x0xSDoOp7vQrAXe1HXTnhPL3rn78bm3zEl2nb0qaofTvQORrSCOLs5c72/wFx394/XHvNlrDhikhLnVpw36fOOEL2qadioF5nqrKm9PZn29IurZ907P39g25NlP1u+3P0g419p405Rhr/1l0azHtrRpp0EaEg03nwSOLc/x3jNh0IdzFs16PCniS7qoHU73USYJ3hVWlmHlOTVLa1tGHOutquz3S4YMeo7D6TYX2Ta8tMlfesSo/K//8UPjrkckI41D0kQ9+54ZB366Yd/b1reV7w58u2vRp9e6L17wWFIqM+g3zKueZvqmfrfF3zeMnQw8CJyd6NX5CRd1dA7unzUJXW7RQiazFriiNZhX5a2qDCS0IoN+S3TxrwtYOCL3x693L/33xNtmPda8nWLdJmGidjjdEwdlrb5mY9vgsTrmUosWeP7QEX+//s5zHv4kIRUYpB1H3XTVA1/V/XpGnrVhaVOgYLK3qjIhz1gJEXVkFEm9B2KOrkC5wFtVeUf87hn8hMv+cyYpl697k4RiKdPLVFx363xv06irga9BvQDyeryToBIl6puJbOAOqBCIsZwqyrgHdwkhoqGU/uWM/3Q/dbLLPlGhDmq3qa/DJv3w3FbzLIUyEVmu9kdBVjbkh3b22/RdBq+zfCpITlNueFzQoo8uqrd8CoxQqClEZhcFBDkcl++d5FxlfDic7vmgro2+bQeJa3Zf3Pmp51VPs9hMx/zWH84GCIEEieSlG/CMe3CXEJoWSWMmYhr3wM6ht9trlhQ0mL8yh8Xsz9B38Nv0XfOaTN9rSjKCZlUWNqkhGR3SIki+IGT5hc55ZxKZ/WYGbgMoaPzp6zsNILdZ08MmTRSqRJAMQKJlrMCb7VW5PzTnhr8t3WhZAOTSd1pxFXmJgMog4lfqRL2yeYdH/eHsHYbnLn9oZfNOP2Asp/oZkagaJZLVTNNMxXXmScAeQLMlKCpsknwlZKOo1zUVDFpUtq1DK+xqJqypBk0nh0iePy0qVHRRi9cPCt5RWG9+LyOgtYirKfDTF+qyTxRksUJZBAkDz4niN6UbLWOAYwGlIrPpOsRln5JiYXsiqY7JjOY09MRjLC5RO5zuMbDvsSWZ6z7eo/TfM9+7bF7fmPLXV1BKR8REZ4inVLhmRMDimO5XEFFodue5LrtkBLRTrAF1R1iUrimURL7goEmXyuhZFUS+8FpggSiml26wTG3NDj+dEdDOBX7uYXL5luCyTxUkUsblW2IDmm/KGZnbYrpRoX4riCiUDZhJHC1jvHirKpdE8o1wN6gRk4f+42Oo3G65rRFzTD1q/guTgrrlCRA78CtvVeW6mL1IY7oTU9c8aBtT0GB+Ia/ZNAb4MGhWMywhKWQ74UHtfZkV2a3aQ/k+swNoDJr0v2tKVpt0cW+z5Y08QC5WkVu9CCIhk3pk1bCO+Tuc2bEmzkuOmaNvcv35i7q9qg4e8dIF98++N+aOhphE7XC6Jwr6+wrNFJkULhVGyBEjLvsxuqhHAHtLjn53XrPpAly+ng1GuOzjgTuA/aMhRbsgU7sh7ArgQ+AohbooYFVBc0iOMi1seiO2i4mPC6pPG/LqiuNXF9rqnvj4ipmnxWonVlG7QF0RTbho9HbEgPch27DB6yz32jq0I4Bl60uDlwya0xb75C6X/VKFujYaUoQEWYjL1+3vZHW1bdbgddYrzWEZAtwXNOsvWELaHvTyg6TD6X4F2BXYMdYh9FiXc/0jGtgbvR2x4LJPLVtj+TajQ44Ia+oGYJ+4BB3BI5HvguiDoacnhYfO8lebwzIS+ItCnWUOyWsKdQ2wONqq9xYvAo5dij6bHKuBmEQdDTWmAAsxsiF1G+9DthL9yrx7gLfMIVm3emhgumlhkxOXL/4pBC7fkpCm5gH4rXpVTK2ry9eOy3eJ36a/ACCIRiTVb0Xc/nWTyUNf9wg62ebWK2K1EXPvR1TIhpi7Scd1uZMHi+VNTYkFuFVTMn/YWf72RNZROzSwdMTKDBoKQyOHxGEn02+6mUj3g41IH7InEf51h0fOv335Hlc8snzZxr0Gb//sLdOnVpOnI/7rczNw2a/PCGhvm0PSsrq840Jcvgtx+RIqaABN50uFUkWbzOvjMhRp5afoouo7rHpDb/dhN3QU3x3UM8ZEF5X0GEPUSWTNvZlH65pqAJzAQ+awOIbO8t+arPqGneX3C7LBGtTy4jbm8i3ZWBL6OCOglW66LXvXBLjXE/4OkGdteDy6Or1HGKJOBi67GZf9siFrLc+aQ2JZOzhwKS7fWbh8Sd/yLayp+oBFT4gIM9u1PwIU1ZtjHwmJjVLQaQrkTwQW91TYhqgTzMoHbIe32/Qa4BpBnjeFZfCQc9ureqv+dlt4ELBXInos8v7U8h/g30Q2e+pNKiLdxQIxPKgaok4ULruGyz5v6GrrS+aQDGnOCV+Ay/d708KmTb3ow8TsNpPdEhQLCeqKa8oNfwDssfIB2+HxO9htPJ27QhDJN+7pSWFD1Alg5QO2/YJm9S/gVlG8sW5wYLfci1pSMZ+8QhCTxNjCbYmGgtATCkVhvfm38drqLoeOePEzAJupbQkxdBkboo4Hl12UK29mea31fU1nT4WaJchvhp3l/yoV7rRmhWsAFEonhhZuS4yY4V8qyLs5raYDcdll+yXix2oKjAL49aAlq2IZAzFEHSMrH7CNU6iXBblfCZ/Wlgcmi6vpfly+lM1UbMoLTwDw2/TngG3P/egZTwFjmnLD+yXI3jZ5q+YoDeCb+nGvx1LeEHUMtN6Yc86QtdbPlXAYcKE5LPsMn+n/INV+DV5nyVGo5tVDg6cmsm+5viD0skLRkaH/JVE2t4U/nFUMUO8v/W8s5Q1R94DAtbnFuOxPZreZ7gmb1JrVQwNH4/LdisvXJ/Y8EeQgQTyjTu1I6Mr9wnmtte2Z+neF9eYdeiMEGV3w1R4AjrzvY1qIa4i6m6y7O/MiYK1CHQ8ssHVojuEz/a+l2q9OVj5gmwDs1JYZTkpOwqx20/UmXQYDeyfDfleKMzfsA7BbydKY0ibEvZwrrYl0iR0K7DkY69FtmXp7XXHw1LJz2p9PtWubk9muHQ+wqSj0RVZyqnhRoQJtWfpF2XBCcqqI8O+1B/wAShfU8ljKGy311ois5n5XoVzA0cCjmk5BXxQ0QEmdpVSh6sMmkpMu1+Xz+ezhTZagHLfm3sykNoYhZSkE2RTrvuiGqLfOLMAiCAoVBr6xXdrcl3NnHyTIu47p/oSm8OqKEm62BjWtbK11UrLqACjJXLtHlrnFH2t5Q9RbQLnypgLTiKy4DklkpylPar3aOisfsE0CHE254Zhu192loNF8D9BKkofNM81tY0qz1ubGWt4Q9Wasrradr2u8oYtaLsiRgiwksX2+CSe32XQ4gM8e+jCpFbl8rQGL7glr6gzvQ7bMZFWzsnnHtatbRnhiLW88KHbFZd+3HOuNfpsKbCgNnjhihv9rIKYBgN6koNE8Atg4bHXG35Nd18aS0LLyNdbK7FZtJpHFvklASkO69a1YSxstdZT2qtz9gdcFqTWHZKeooPs+kX7jw4B1wL69UOP1CtVYUmfZKxnGz757lg0oGJrjtcZqwxA1sLo68zhzSN4Pa8oPTLFc3lSbap+6S4M9dCVQolBj6YVFsuVnt7cK8jxwPC77gkTXZ9ZCOwGMyPsxJ1Ybhqhd9l3Kay33KVH+2vLACbh8q1LtUrdx2XPzfabzFQpBhF5aJNuaGfYBWdHuzoT+kF797/EawCfr94t528EBLeq192QeoFCLBQlYg9ruw2f630+1T90mEnbcK4hdkA4i2VB7JV2FOSyTIGmrzUsAOsKZa2M1MGBFvem2rN0L683vhE3YifRu/JBqn3rCukGBR4CTdVFXAgcRTVfRG700GQHNT2QCf8J/SOOKl+4DsHPh5zH3Uw/M3g+XfUQRlr+HNdWxpixw2rCz/N+k2qUe4bKPLxXLKU25oU31heFrowMuvdPlGLlD7Ay8CvyTBGdwyjK37AYwMv/bhlhtDDhR1zxo+/UwsT6vKckz6XLAsLP8n6bapx7hsucBz2hK1mu6TEjmCOKWWDms4+DhqzKKNxUGvyua25bwVHP/Wjf5B1D6+tbymAeSBpSow1flDR5ksbyvhIywqEmmhU39StDeh2xSmGv+KLdZ20GQg3Iubok57oyV/EbzBID2TJWsvcZLQOqeufD6mKfzDhxRu+wlJuQtrQNqywPnD53l77MjhFujdINlfla7tvOGkuBrpee1peShNq/ZtAPQOLTWmpRBqbLslfs0B+xx3X3SX9Qu+8SgSf1WTOo0c1jLF+TIobP8fXLvk23isu+ZhbYwrKm32rL036TKDYWaJMiSZC2M0EQfVpS5Ia6FCOkt6mhycXOYTBDaM8KuzEtb+p2gvQ/Zhg01WV8zhdlg0uXk3o6jO6l50OYYQcbOdUXB74qTVMfqFscmYFk8NtJb1JH+04zo9FE9s8PU/zYoddmlKMf8mqZTurEk9PvS89rqUuVKcZ15H4CQWb2axGpKgI3xGEj3fmqPQgmgogMUnhT7Ewvn57aYdm3JCd9Rel7b06l0JLvNNA4ID15vfSIZ9udVT8sECna0fxfzEDmkuahXDusoEUQ6LPqH9PHpo1ti7T2ZJyjUzcDLec3muan2J6ypKQq1DJcvITvTbk5TIH8HgEFZa0zx2ElrURfXWSoVirVlwXP7m6Bb/pJTXNBgfiJoUTpwZirziQCsut9mAybWF4biEty2eGfVkWaAJWsPimsKbfrG1C67ZKEdDLzlmJ6ajEkx47JLDqb7FUpqywNzhs7y16fapdINlvEmXQD+L4nVlET/3RCPkbRtqRvyQ4cBOwJJif+SSYdVnw8cI8jFQ2f5H0y1PwAZAW0vgKJ6y2PJqmNE3g/TAEoy146Jx07aijpsUtfpolhfGuwzuTm6w+pq25mWoFzjz9A/Am5NtT+ddFj1oxVqTbKm5jqc7okrm0aeDrCxffCiWJKtd5KeonbZTYX15qF+m/7poDlt/WfTUpe9sLzWelXIrJrXDwqenOo4ejMOaswPh5Jo/+DIvpwAYiaO6azpKWqYrCkpyWo33ZBqR7qL9yGbKNTDggy2BrWpI2b4van2qRP9yrxhGQHNZA7JU8mqIz+j7oDof8PEOZ01LUXdkh2er1BtwCup9qW7ZLZrLwnym5BJXYrL93Gq/emKpmQ/gNwWU1IeEqfdduHpvo7CQ8qya74AFhDnNoZp1/ux8Y4sW36HeUpDQdhbOK+1LdX+dAuXfb9SzEc22kMrG/PDf3Wk2p/NaMkO/z67VfML8kWibTuc7iyYernN1F43vvTfh314zpy4w8W0E3VJneUQQExhrkq1L93CZS8CnhbEm+8z75l/YWtfiqMBEMWhLTm6P/eilmCibZskdH1YmUf5w1lT7zrn4YQ8/6Rj+HEysMneZH481Y5sD+9DNlNTbniZQg0CTsDl86Xap//BZc/OatMyLEFJeNforLvPnq0rbW6hbeP/easq306U3bQStfchW4ku6kR/hv4uLl/CW5VEU7bGckVes2no+kHB53H5+uqChb0EMdk6NHcijTqc7qx3Vh3hzLX62iaVL07oFIC0EnXJBvOVmhJTe6buTbUv28Vln2QNavN1Uc/4berkVLuzNRrtoZkAIZNK9DSDa0O6dXhToOCo22Y9Gt8OvZuRPqJ22Sdmt5vOVijyG02zk53UJR5ab8z5fVjUWwq1RlNylmO6v8/F0Z1oukxpywx3mBc0xbwQdnPOuuucOaD+YJLQPd6qyoTPb08fUUc6602CIEivJHWJCZf9gKw27QlNkQEMAnp7i+Tu47Jruc1aVkaHlrCuPIfTnfXR2slXF9o2hip3fNaVKLtdSSdRexRKKRT0UlKXnhK4NncY8KggEv3xafTVH1+EkwTJN+lSk0Cb17UE7YUZpo7fJjrs6CR9RO3yLWnN0n8MaypAH5w7vebezAtE8d9oT0eAXsyoFBORnRT+BqBQFyUinDvt9nkzQc0F7lyy4NykDYylVT91TpvpNeD0PiVol10DLhmC5Vq/TXWsGxw4btjqDB+RFjqhiWASzKH8rI/OuRgx+zp2wRPZVtMedxZkbAoGdKszAf5tlbQSNdAA2HHZTbh8KVmc2pWaB20jSjLNL2a1m8YL8rQ5xKxhZ/k7d5zqq2LuzMJ0YOfWIILEfUdpCdqvI0jG/mVvnfP43FtaEuLnVkif8APYVBgcCrByWMfwVPuCyz6+bI31U5tfG9+aFb4GONlyeVNMW6j1NhuLg48DU4A7BFlAnOHcvlffewQwF7jj8bm33JcgN7dKWrXUukYDQEaHVgzEtFtqIghcm3uuFe0Wc4j6tUOCZ5ad0/5IqnzpKR3X5U4tDphP9uWFVtmbzHPjnf46t/rUkmB46kvZlqbG1mDepYnyc1ukVUtdUmd5F2DQBktq+n1ddlvDrdnLrEHtboX6lyB79CdB47IPzghojylhRUNBeP9EzOd+ZcUJV2zyl5r3HfKuy1tVmdSwo5O0aqmJxNQABb1es8u+A/BsQaN5943FwQ9bs/XDHNP9fXmLul+w6n6brdRqedsaELum5FDHdH/cK1wcTvdkMJ8H3PHAnHsWJcDNbpFWLfXawYFMgHWDAlN7s97a+zIX6qK+BEYCx5Sc37Z/fxI0QG6z6YWMgLbzpqLQTbh8cW8FPbf61BJ7Rv2rZi2wGkhqb8fmpFVLrWusBbAGtIxeqdBlNynUFeVYF7RlhtusAW2CeUFTUvcyTAou++/yMR/emhV+ufiCtoWJMPlB7dRFvo7CrIOHv+y8f849SckTsjXSqqUuX2P9EaCwwRzXEvvuUPOgbbQu6k1BFoQ19cSG0tDQ/ijo1dWZUxXqYeBf2W2mhOw57nC6K+r9pSebJHTX/XPuuT0RNntCWokal6+dyGjd4cmc0NRxXe4Bg9dZvgYmA2ebdDnVMd2fsAk/vUXg2tzswnrzKyEzNl3UCbh8cYdMc+6dXmoztf0fqB/DynxJIvzsKWkmavtEhbIq1IEkY/s1l11w2edkBLTFprD4assDZ+DyVfexVd/dw2UXa1CrzmyXjA2lQad2RVNCUh/80LjzM/5wVsn+ZYuv91ZV9mrY0UlaxdREJwcJAj/vGpWQkTvvQ7YSe75pSUGjeSTwmjkspw47K/WZk2LFn6E7bR3ayYJcXn52+82JsOlwus+DXQ/Mt256+/G5tzyQCJuxkF4tNXgE6bqrkychVl320SNqrJ78RtPIuqLgq8BRuHz9VtC192XOsAbkOn+G/gmQkH1bKq675WxQtwM0BoomxpOMJl7SS9SRodwpCvWdjmr1juhYFq/JDXdmXa5QnwgyKGhRvym+oK0yWVn0ewWXvbRsjeXqkFn51g8KnpCIaxk9/7nS9W1ldwKdOwCkdD57eokawOVbsnZI8FENsVsDck3sduzmthtyHivdaLk6YFWbgD2tlzX3mzwiW2J1daZVoZ4SpNAa1CoSkTDH4XTnBXTba+2hLF1QQfrAlNr0EzUQsKobQya1Ycja2DaFD16TVwYszmo3TWvKDb+1dkhwN1y+lQl2s9fJ6JB3BDkoZFLzcPmWxWtv9r0z8nKtjR5gd9COU2iTiW5SGk8ymngRpfrfg3u3cNkvAW4AxuHydTuVb+19meeWbDTfbglKSJBZuHxJy/LZq7jsxwAv1heEviqc1zouXnMOp9s0IvfHL2qaR+7iyPvhYs/8P9yUAC8TQrr1fnTlQYW6xmcP35MPk7Z5ZqTrrwIYUoZlTkeGCtWWB04aOssf86bvfQn9yrydNOQRYGlhg3nbf4tu4HC6BbirpnnkLmOLlz74ykUL+4ygIZ1baqB+UfZyu8+0g65RYLm8qWmLJ0X6thcDmdGuQE/QrI7Z6vn9DO9DtqLSDeYam19TmpJxuHzeeG0edkPVc981jDsOuN5bVTk/fi8TS1rG1J1kdMhMky6aJSSPbmMgpoKfd/BSwBvpImhc9onDV1rfyWzXstcOCd6YCEEfeO1tVd81jDtuZP43HwGXxe9k4klrUWe3mQKArlBHK9TWRhg9QIdC6YCfvroQtqdE7kDvakrGAaHyNda34jXpcLqnrWwe+eeCjLr3xxZ9VuGtquyTt/m0FjVQoVCdI4w2ttR36vItEWSqIJcL0udWocdC+Kq84vYM/ZVo/pPO66+Ix+b0O8+7lMjEp3cbOooPXTTr8T47tTadHxTh51Y4UxABttyyuHxLPB4xARkVvedb4oksmD3BhNxh6yA/evfR4104O+ayZyaF1dRrB2fVtvoCBcd8c82J/u2XSh3p3VL/3AovBL4GFrTemLPfVs6+Driy95xLLLX3ZY715YVWA08DNYKMF2RS9NpjvgM5nO5d/eGsl8LKtHKvIR9M/OaaE/teZtbNSOvej1/gsg8OmdR/wiaVt35QcM/hM/2/SCDu8civgJaKClWbIg9jI9I6z1Com5WQV18Yerp4k+U0XL6492eZfe+Mie+sPOI1fzizHWR/b1XligR4nHQGjqiBVffbTiivtT4his8EmRydf91vWfmAbVLRJvOj2W0mB/Beh1U/N2N+8zeJsO1wuktyrY3fhnRL4diizw555sLr437Q7C0GlKgBcNmPBV5QqKdrRgRO7sw46vHIEKASeLmiQiUlx1vCcNlNwHm6qL/oGtb2TP2q3BbTlYmaaOVwunOBt0GN3aP0X9Nf+OPVSdvAKBmkd0y9JVy+F0MmdYUgJ2W1aW92+WQHoBr4dYo86xYrH7BVBs1qGbBIFIvXDQ5MyL2o5YpECXpu9am55Tk1X4HaA+TE/iZoGIgtNZHt3ew+07cFjebRwPG4fM95PGIDBgOrKypUMvcLjA2X3aJQFyvhGl1DN4WZLshjiVx143C6TXZr/eu+QOHBE4e8c+eT8246P1G2e5MBKWoAXHYb8DYwPmRSk80LmvrUNm9dWV1tO6m81nqpILsHzfrra8qCF42Y4f86kXVE53PcCcwuyKi78rMrz3Al0n5vMnBFDeCyDwpr6gtdVJHSuGv10MDqlSMCayoqVN+Ymeey2zqs+l+tAZkdNtFiDsvpuHwvJKOq390yf/HS9ftPAW70VlX+ORl19BYDL6buisu3vjknfKs5LCZLUC5weDOuz28wXZFqtwCabs6uBJZlBLTZLTn6B7XlgXHJEvSo+c//Yen6/afsWvTp9/Ry4plkMLBFDeQ3mSEy6oYotNHf28zeh2zDUuaQy57j+2v2W7nNpld0UTnAYbkXtRyQrG2dHU7374N6xl9NEnLvlP/tbn11PkdPGNjhB3TOpV4MWBVKBNF0UU2akoXAPYnIhdFdPxRqliBHKNSg+sLQsqa88JE7nNmRkA0zt8TMu2Y731l1xLVKyT8V2mHeqsp+3W/fiSFq+GmRQH1B6KtVwzpm7/p1lt0clv1CJlW3oTT4ZNla6x8SttjWZc8FRqwvDRxmCsvI4k2WJmBPhTokOvFIAefi8iU1j7PD6d7HJKH3SrPW6hMG/XP07Wc/mpC8H30BQ9Rd8HhkDPAf4MTJntym9kz9+ax2UzawFLgEl2+bu7J6H7KJoyZjEDC8rih4sBLGl9RZ1gEj/Bn6RHNICs1hMW1WLAg0K1RhdE53SJCFuHwJSV2wJUZe+vedw8r8PuAblf+fKW86L07kRkUpxxB1Fzwe0QBzRYUKQGSb5SFrLWdlBLTLgGGtmeF6S0jesAa1DxryQ6VBi9q/ZKO5RpARQbM+3hSWIk3JL2wqVLMgNe02XW/L0vWievNTQE1dUbCjLUuvGb4q43NgbyIhkIWIyJM2Bfa8e8/c+/3ag99vCeY26cq8r7eq8sdk1JNKDFF3B5fd1poVfjKrTTtW+B/RrhfE227TAy05YVvRJvPjmpIVjfaQz2cP14yY4e9eK/jzOsmkbW7kcLqLLFrgY03CIyqGvX7Kvefe/3Qy6kk1hqg3w+OR04FhFRXq2l984LJfqlBXC2ICwmFRd9QODSwcPtPfL5Z+7XXl/bkb24e8Bexu0ToO/+G64zyp9ilZDPguvS1QARy7heMeQTr3PwyYlDzdXwQ9r/rU7Fxr0wpQewEnpbOgwWip/wePR6SiYit/lF4IERKNw+nWNAk/qSvTiQeUv/nQoxfcOiPVPiUbQ9RpzLzqafLyihPv0JV5Dqg/e6uOujHVPvUG6b5Gscd4PFIGXA1UV1Soj1LtTzysaR32pq7MUy1ax21BPeMvqfantzBi6v8lDBwBpG6oPAE4nO7ZH687YOouRcu+P3KH5/6YDsPf3cUIP9KQ3RY+dlpToOARwA0c562qDKbap97EaKnTjOl3nven1mDu37LMLV8AJw00QYPRUm8Rj0fmABMqKlS/6ilwON17gfIU2TYEJpUvHr9o1uNpNfzdXYyWessUA8NT7URP+N0t8yeCehVkwyb/oF0GqqDBaKnTglNvv3Ds13Xjl7WFsjs6wpnjvVWVP6Tap1RiiLqf43C6C0G9b9aCIw8e/sr0e8594MlU+5RqjPBjC3g8UurxyJsejxydal+2xdzqU0vMEnwDZKeQbj3cEHQEY/Bly/iAPCJTQfskDqfbsoP911+ElWmwzdx64rfXnOhJtU99BSP86Ic4nG4NeBQ4Zb+ytx98Yu7NM1PtU1/CCD/6GfOqp0mRbf2jwCnAfEPQ/4sh6q3g8cifPB55P9V+bM5/faP+b5N/0CmDs1c/BVSl2p++iCHqrdMA1EaXePUJHE732V/U7XX8iLzln+wz+L1TB9J8jp5gxNT9hN/dctn8pesnXg3yOnDsQBz+7i6GqPsBh95ww4krGn/1dGHmxjUb2spGeasq21LtU1/G6NLbCh6P5AH/BhZVVKi7U+GDw+meCJwCY2dkmVtW7TP4/Yrbz/6bIejtYIh66zQDnwEp2S4jImjdA2IFUW2hnPNuP/tv/WJ7ilRjiHorRNcpnpw6D9S0qKABpYOMBV5OnT/9hz7zZN9X8XhEtn9WYnE43RUg0wEFKkxkFbunt/3orxii3gYej/wZ2Nibwp5+55yrNAm/CXhBjgFZAEz1VlX2i9XrfQEj/Ng2nwOPABlEtnhOKg6n+xThiMvLcla2Fdg2HfLKRQvXYIQcPcbo0usjjL7suQsCYdsiUO8eucOzJ991zsNJS+Gb7hjhx3bweEQ8HrEms44TbnW+GgjbbjNL8HWQIw1Bx4cRfmwDj0fMQD1wM0nY4jm6eVAVHHDEzoWfrxhd8PXvFs16PC0Sn6cSo6XeBtGt524BPky07XnV0yyFto3PApcAd31Tv/soQ9CJwYipU4DD6bY68n5Y6m0aNbbQtvHuen/JecbkpMRhiHo7RLvzCisq1KZE2HM43VnAM8CRe5Yueeb5P15zYiLsGvyMEX5snz8DdR6PZMVr6IL7ThtWkrnua1BHAGcbgk4OxoPi9nmLSB91XA2Aw+kuybUe/l5bMMexW/Enl710kas6Me4ZbI4RfvQCO81/YWhIt74JOHYt+nSu++IFhqCTiBF+dAOPRwo8HimJpezse2ccnG1pWS7o5cChhqCTjyHq7RB9UKwBLu9pWYfTvds/vMc8FdIt5kNGvHSOt6qyz615TEcMUW+H6BTUC4CnelLusBuqKoF3dWVu15W2232zq41EM72EEVMngRNv/fO5yzbsfbemhdf7Q9n7eKsqB2yyxlRgiLobeDySA4wCPq+oUNvcztnhdP8W1FMFtrqm/cvemXLH2Y982TteGnRihB/d43TgU2Dwtk464VbnraCeBVna4C8ZbQg6NRii7h6vA8cDW903cZ+r7rvq43UHzBuSvcoLHOKtqmzoLecMfokRfsRJdKbdQsBVYNv4/gHlb1XeNuux5lT7NZAxRN1NPB4ZBwQrKtS3ncfmVU8zeZt2+ujzjXtPAB4GZnmrKkOp8tEggjFM3n1eAd4DTgNwON1mq3bcIwHdNmFc8Sf//rJuwkxvVeU2HyINegcjpu4+ZwLXAZx7z8wcUE8HdNspmebWqh3t3+9rCLrvYIQfPeTU2/9QsKZl+A8rfL8qAv7grapclGqfDH6JEX50E49HBj3xzcxzPqg9diaowgPK33jg0QsWGYLugxii7iZPfTv9j2/UHHNJ5J0WeL/20AdS65HB1jBi6m7yQe0hZZEUYAKRv1tFSh0y2CqGqLtJSzDvLpB2IAQEMdKA9VmMB8UeEE2tWwF4jDRgfRdD1AZphxF+GKQdhqgN0g5D1AZphyFqg7TDELVB2mGI2iDtMERtkHYYojZIOwxRG6QdhqgN0g5D1AZphyFqg7Tj/wHNVdJr0bDLEgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top-5 predictions:\n", - " 1. ear 62.866%\n", - " 2. moon 17.284%\n", - " 3. boomerang 3.729%\n", - " 4. knee 2.912%\n", - " 5. squiggle 2.257%\n", - "Answer: ear\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABMx0lEQVR4nO2dd3wUZf7H38/M1vRCrwEsiRqxIxYcEjvYC7YTy6EoqL+TU8GzLOqd3J146h2K4qnoWbCfgpWEATyxoSJIEEQSegvp2T7P74+ZhTUmpO1CCPt+vfa1mdl5ymQ/+8z3ad+vkFKSIEFnQtnbFUiQINYkRJ2g05EQdYJOR0LUCTodCVEn6HQkRJ2g05EQdYJOxz4vaiGEbOb1QozKeUEIMTsWeSWIL7a9XYEY0DPq75HAjAbnvNEXCyHsUsrgnqhYgr3DPt9SSyk3R15AZfQ5wAVUCiEuF0IUCyG8wM1CiGohxMXR+QghThNCBIUQ3RuWIYTwAKOBEVFPAM36LF8IMVcI4RVC7LBa9PTd1VkIMUQI8a0QwieE+E4IcXaDPDXruEtUmhzr3DFR5w4RQswRQtQIIbYKIV4VQvSI+jxfCFFk3W+NEGKJEGK49ZldCPGEEGKjEMIvhFgnhJjS8v98x2WfF3ULeRh4EjgEeAt4FbiuwTXXAbOllFsaSf8I8DowF/Mp0BP4XAiRBHwE1ALHARcAJwDPNVURIUQKMBtYARwN3An8vbU3JIToCSwAllllnwqkAO8JISLf6yvAJuvzIwEP4LM+u9Wq72XAgcAo4KfW1qNDIqXsNC/gYvOWdh7nABKY0OC6Y4AQ0Ns6zsQ0U0buJu8XMEUffW4MUAWkRp3TrDIPaCKfG4EdgDvq3BVWGq1BHl0auZdjrOMHgKIGeWda1xxnHVcDo5uoxxNAESD29vcW69f+0lJ/E30gpfwGWIppUoApqgrgw1bmmwf8IKWsiTr3OWBgPhUaIxdYJqWMtvW/bGW5YLbyw4QQtZEXsM76bJD1/ijwrGV6/UkIkRuV/gXgCGClEGKaEGJEVAu/T9MpbqIF1DVy7lngWuvv64AXpJThVuYrMFvGxmjq/O7SRDCiro1gb3CNAszBFGb060BM8wYppQfzx/Uupln0gxDiOuuzbzFb/7utvGYCn3YGYe/zN9AO/gP0FkKMB44Cnm/m+gCgNji3HBgshEiNOncC5v+1pIl8SoB8IYQ76txxDa7ZZr1Hj+Ic0eCab4FDgTIp5c8NXjufHFLKVVLKJ6SUI4B/A7+P+qxGSvmGlPImYARQABzQRL33Hfa2/RPLF03b1Mc0cf1MwA/Mb0Hed2M+3g8GumC2nEnARuAdIB8YhtnZems3+aRgivY/mK3oqZimkAROsa6xA2uBt4GDgNOBJfzapu4FbLWuGQIMtPJ6BkgF3MA0TPs8x7pmKfCslf524HJME+oA4HHM/kHS3v4e262DvV2BvSzqYdbnV7cg767AJ0ANv+7U5WN2uLyYdvkLQHozeR0PfGf9oL4DLrLyHBJ1zQnA91a+izBb0l/dC6ap8aZVrtf6Qf0TcFivV4Ayq5yNluDTrLRjMFv7GswO5XzghL39HcbiJawb3C8RQowCngZ6SSnr92I9zsNs7btJKbfvrXp0FjrDjGKrscaXczBNihl7WtBCiNHAL5jmzGHAY8D7CUHHhv21o3gnpo26A3hwL5TfHXgJ01yYhjmUeNVeqEenZL82PxJ0TvbXljpBJyYh6gSdjoSoE3Q6EqJO0OlIiDpBpyMh6gSdjoSoE3Q6EqJO0OnocNPkU0eNHIq5skyfMGv2or1cnQT7IHt9RjFKxAudaXVH+quT/gEoIHxAYULYCVrLXm2pH73irJNAmY8pYvzVydEfOzDFnhB1glaxV21qRQ0/DEKxdi0ZCKMYZMj6OAzoe61yCfZZ9pqop44aeWQ44DgeZNgSsh+pvL+rTlLsLn2CBE2xV0T98t8OzlbsoXeAraozcIUzo+4boYaXA1PNlntn3bS9Ub8E+zZ7RdS1m7I+MYK2/giZFPY7XvBXphyvqMYBwKsg/WbLLQIkzI8EbWCPjX5MHTVSBYaDfBFEZJf0duD1rIPWf+VMq//PFXesDLdmSC8x/JegMWIi6qbEZZ2/2pVVfXywzpUX9juckc+SulXOrN+a8XzGwE0HK7Zw9x0r+/wMJKf13XaMUIwuVWXdlwPJyd0rjkXItLrNWauAZGdGbb5QZGaw1ukPB+yZICQQBIYnhJ0A2iFqS7CjnFnVJ/l3pB4FQmD6aSuYMGv2Iuvzz2i7iSOBOsUeVBWbIUJehyPK3m6M6RNmzb6pjWUl6ES0aZw6WrD+HWnscjgkXTa3/1rMsWVtVwopQVQBGfZkb0Van+0vlf/Udx5Qn56zOd2R4mPbspwfgPqsg9ZLZ6q3JljvrKss7T4s5HWeJ43wFSC6WLb2RzaX//2Qz3E/0GuXwyPB+okLzwYGA3qfKScnWu39lLZOvmggrfFlaYAIY7bIqpTiuidvHjYF0nRMfxN2TGeMbuDTYJ37zGseWGI0lunUUSPVHSv7nCRs4ctVe2hMyOtUAL8MK18502sdUoqHb5kx77//nnjMbZVrevSyhgMFiODR2af/IJFzAATCv37iwuE/nznsR02T1W28xwT7KG0yP8yWWn5uZeEFbgO6pPQsd9RuzrwLqWxFGC8jRSlC9nCk+CYG651hGVZzJ8yavbFBXjZgWFqfbVNrt2QeaARtyYAvqWvlWmda/Vs1G7K/Cfkcr4NQAa9Qw+fYXMGPhGIEAjVJZwInAfqFh/zuUpu3523CNIOQhMoq+7/V35+x4uVjLp97FYCui2xNk+Vt/3cl2Bdos039jyvPLJVSIMPq5Q06hzcBT4JEqAYI+ZoM2S7rN2zp4q6Hrv1G0+TYqaNG2nofX/JY3ZaMcyvX9HQBXYUSDiV1qyqr25x1N/DBhFmza58cd3JusN5ZEqp3RbIPYZo2J2fnrr3+msk/PAeg6+IKV8WhL/X+clpQoKiAkEjL750REKjaz2cO+xnYAozTNPnUAw/cfaoQ8vxw2Pmyx+NJmCqdiDav/TBCtp8BdyMjDhmAAUKRYUWCGAXyOaGGxZriw29c/NSIniBO3PBFXrZiCyEU401pKK8dfs3cUTZn6EBNk68DzHps4NP+yoOuNkI2LJs9bOV7AjAjZ/jSaIeO7/kyf7xfilCqkI4jMZ2gnycQijRFrgErgYnAgoceuvN0w3B/bKW9zuPxFCaE3Xlos6hVR9CQxq5QDFHogB+kA1BBbgDxctm8wZ9aNvi5wMepvbfP7jds2ZIzz69dCKDrwgl0f+XvBwlfZcq7FT/nnQsChLHJlVn7x/S+2/5SubZr/2BNUp0Rsk0EFui62KZp8kJNk7XfzrwwV0j7lZi/gIDVOUUggoBumR1/83g8SSDfM6sqAOxDT3hp4adzX1IMA+OM01d3uOW4CVpHm2cUk7tVDlCdof4Nz1std6HqDK4FSUrPHTOBf0YNx4WA+Tc8+sW/IoIG0DT5yuKnRjy95fuBb1b83OtcS3B+pHLeuKcWvFKzocvL/oo0Mg/c+PyEWbN3YDpG/GBnfbaeeKUw0whA9aX+pAKE1fq/9ply8iJdF6vmznU+rSjBD0AMMDu4Mjz0hJeEqqIKgVBV1I8/GRRZUJVgH6XNrZK3IuWLYL2jZxMf9w/7HQMUe+CV2k1Zd4C0WyINY7Wc0RdPHTVyqOoIXgH2M4yQ7QCEYSAVJbX39ik3PPrF11NHjewF6eOBT8tL+t0KoGny8Uj69RMXpriVwX6J4RAoYSDsqjlIARQl7J64fuLCj0OnOt5YvvySSYZhQ1V9Y/LzX/Ns3HjUCkWhAMxRdilBUVAeffT6m7Oyfp7qcNQ+fcUVi/9P14Ud+BfwmqbJedbxycCPmtZojJgEe5E2izpY514DJE0dNVKZMGv2ziG6/0zJPR4xaAZSLDKCjuW/FjRzgckNOpaFID8MB2x2a7zZQCoKSKNmQ5ePp44aOdTm9r0d8jpdIG6aMGt2Yz3bGxXD6ZQYN2D6ju4Hyo2RewwSKvzss0mHA3Tv/v1zN9307rMw5VmAjz8ZFFJV1Eh/2TAwqqv7TKuu7iNBjvV4PLM0jZ+B8zDDbMzD9IVXhBm/5RldF/2sz27WNPmmrovuwD3As5oml+i6SAUOB5Zpmqxq6/88Qctou03tDPQJ+x1CdQZOAz4Gc5zZnd3tv4oaTnF3qb6hbnNWKqa5EentvQWUTB018py0vlsnenek9gd3L2s2EtMkYNcqPWHMRor0kNelWp91A1ZH1+OHGddnZoqrJgppK+o75ZQZAOsmzbtaSNtYQG4UFaEi1zc3I9WewE033fTu9Oj0Z5y+2vbxJ4NCioJiGBjffH3BM8BNZp2ECmiaJhcB0f2HcmA4sMo6Dln3VmYd98R0+PghpiPKfMzJqrOAj3RdDMWM9nWJpskvdF3kAtcD/9Q0uVbXRTamV9YfNU1GomklaCHtmFG0Xw0Q9tv/O3XUyMi6iwne8rRu6f23/PX3f/t6mXXt7cATIG3AMyCeBkTNhi6GM71uW7COFzADCanWJA5m6w5I4beEBWYcFI0GO2Fs3h5PC2nrUtOj+CU4mR9mXKcmJ5/yL3tdb+/Povy1BY7l15iCliEQSxq7n+jO4aLPPUNB3mDWh9+YSgCaJr3R5zVNbgRuijr+HjNSVoTlwJnAYuu4BvOptdU6PgAYjxnZAOA0zLB4hwAlui4uBqYABZboj8cMhPp3TZNVui56Yj6hSjRN7vd9gnbMKO4MsmMHtGcmDEmGLg+BeKuqrPukqGtTAGlZrYAsAvGQze3/ctz0+T6AqaNGzrDy1M0kIupviswyfmuLr5+40JnKaScGXVtWB5PLXgRIL7tkvBpKSa3uPfupBeVudddTQETqvduhO4/Hs+gvf/lDGERNIJB2diyG+jRNVmI9zazjZewKooSmydm6LpKikszHNHciLf82zAheEdPlKMzhyb9Zx78D/ooZFqNW18UtwFjgSE2TAV0XZ2DGlXlI06TUddEXcGmajDxpOhVtFbUOwg+4QWBz+RcHqpPmqM5gMOx33NjA7tUxFzpFhHlfw7Ft6zj6XAObu8nlpR6B2svu6/6Hw8c8J9dPXDhSJeWvwDdpG0aOw1X0tHVdiCZa3YZ4PB4npNnS09fOu/vuR/fY2LWm7ZoF0zS5CXgv6ng+ptAjx0/qupjOrkU3bwNr2BWFbDPwg6bJgHVcCNygaTLii/suzKdjFoCui4eAIZomT7OOLwa6app8yjruD4Q1Ta6P3R3Hj3at0hNK+G5pqCOFGt4sw2qProeV3nn1vct+E701Huue19499yRhOBYCCETIEMEvhFRPssamfUDBK1mvzfL7U+zhsPsJQG9Jq+vxeI7AjMNymcfjmRWLunYEdF3YNc2Mya7r4gggR9Pku9bxOOAwTZM3WcevA7maJg+3jt8D+mmaPMI6fgawa5q81jq+BvBqmpxlHecANXtrSUKbO4oTZs1e9NjVpz8W9isjZVjtAYS2Lcv5rKlrifGucGHYTgFTwoBNSHWIJWgA23Jl3TX19Vl9UlM3/jRhwr8fbmm+iuK73DBcZtadiIigrb+/xwySFDme1uDaS63JsAh/wzRtImzh1+H3xmH2DyKNwLuY0cXOBdB18Q7myM+91vFNwM+aJj+1jnOA7ZomayMZThtbvLMhHDe9oFXaadcmgamjRk4C+ZA1sRLCNC1aLKD2sH7iwqHstLcJYi6qehywbxGV4fcdixUEdpABEFoLW+mhYPzPssO9IBLT5y1A14UCuDVN1lnHI4F6TZPF1vGMitVn+TZ+/ceNgH7oZYXvSUN9a+NXEx5WnTWHpPb6fJa34sDPajcev1R1VB9uhNxH124+JhuUyBr9wtYIu71TwrplW0eEpbczvxbTZ8rJi9ZPXLjT3raOlwHa5/aV/RDcYF4pIms/musg9gFmWv9IsDrAzaVLAJomDaKiCmuanB39+Y+vFT0H6ObSCcmPr31aBWIMiBsByn+6GMzhzrMAECEjaga61d9Du0Rt7XDZXUcurlgbARY1PC73FA0FRoN0m+u+Fb2pPDwez1C3e/tUIdKPltJuYP44BXv4R9rJ0QDbTotOhFchbR86M362u7N+Sqled8oHRjBlU1LXH2qTuy3Ztu3H3x3Cr5/CemsK2+tux+KFx+MZ6nBUvRsIJGeA+kBS0raVoZCrLBBI65GcvPlYt7vitPLyA3xS2k8GFJDYbPVXhULJv2D9SBOmR2yw7OMikC5AuLN/vO26P9/6RAvSaOxpm7qj4/F47gb+HNnuFY0QYaSkGtQ084wMgbjP4/HskT7B/sa0scVDVWfFlUbYcbOiBjaE/ZkHjpteEJfZ0s7uylfFnPgBpFRV3zvAcQ5HTe9+/RbaQD0TM/xxqLHJnQSxY9z0gkVjH79ovM1VeXnYn9kHeHna2OJJVoscUzp7S91whOQ3oxnWNRoJc2OPMe2mj19D2kdZ+1v9tHJ0ozk6taghIdqOyIw7XvgyUNPvOOswBNw3bnpBzMy+Tr/LwxJyQswdiEBNb581wx8Xs6/Tt9QJOhbTxhYnYbqb+wBz1WKrRzeao9O31Ak6Fml9542vXjfcbXOVP3/jY5fMiUcZnX30I0EHw1/db4xQ/BhhR13zV7eNhPmRYI8xbWzxicBn1k7/Vq/paCkJ86Mz4knfOeKDp6rlomlrupZzCubma5U4rq1JiLqzYQqzGHBIZKjiseR33D7lU7dPqalLCmdWpYdzs3bYfnD5lbra5HBWdVr44KwdtiUuv9JbIu8DVIEI4EkvjIOw54EMgqGYW/eaXpPTHhLmRyei9HlXdrettsVur9JftGM5uESGBeJePFUxXzIw446Zhen95r0hVP8jl9z86l9inT8kRN158KSfI5HTBKKvREqBMCQyVJUWvsceEsXJ9aqvOjWcVJkR6tllu219klf1V6eGkiszwj26brOvc/uUPImciWkWGAJxGp6q4nhUVdeFiN6+FmsSot7HWftv10lZO2zPptSpBwPLa5PDd6XUqeW03aa+GbjcEHLh2n6B83Ou9cXNT4muC8Vaix1TEqLeV/GkO4AJhpCTpcDudxp/T/Kqf8JTFWw2bTOEH0i7RjXE81VpoY3p1bb+eKpi6nbB2ir2BfB21GbgmJEQdQzImThn56hB6ZQRcZ+SXz/DdXvPTY7bVEP0k8i31/cJTOn7e9/XsSxj81Pu13pscYzCdMjzGTAvlh1HXRfTgM80Tb4aqzwjJETdTixB6yDtAhmWKBeXThnx37gU5knvIZFTBeIKv8PwOgPKxXiqPmg+YZvLmw7caNnoPiAeIyIxJzGk1340zK1KQiJswLs5E+esG5C2sjrdWfHF99uGPIXpeuxY2tiahyenneR3Gk+4UQ4SCLvPafxrc4/gfTnX+ipifTMNKJNIrOgMMR9X1nXhALrF2p9IQtTtR8f0x23HnFh4EmTvHb4uF66pPuhQ4HqQPoF0SYQBwp8zcU5hi4XtST9Hgf8m+VQhkRK4zDWp5vWcuN3Or9ABQyIVEZ9NFAswN+wWxjLTxNqPdmKJsxDEfSCGl04ZcXvplJGjljzwO3uPpPUHAJerIvSDRGDtkHbQ0vDUnnQXME3sdJ1GGBgU+7toqvyqRQLxojBjVcbD9PgrMDXGeSZa6lhgCfs3X/gX9924GlidM3FOGchiwAWoightbHjtb/J83iUy0tXFGVW2vkAAiFdr2RyrMPfDLW7uwtaiafKdWOcJiZZ6t+RMnDM0Z+KcSVZnsNWfRzBFLwqARxRCO1yq7983PjXm4t2l6bnJfn9Gle2QrV2DczFb9vvYCx21rV2DgwHK+vmbcrDfLnRd9NV1cXYs80yMfjTBKX957I6y6gP+GokxkOqoNHyhpG1Bw+mzKQGH21bXvSaQYcWSNL0ItcROvvnpa4d/tqHwo+pAmh/U54HXfpPOk34WMCesyP+u6xu4MOda3177knY8nvxoVoXtD9u6BA/sOr7+51jnr+viSWA0kB0rX9yJlroRtL881m1rfa+HifKr4FL9VUn2uq+BBS7V+5VL9Udm2gRIh0Pxn9qSvJ+88fl51YH0K0FNAW4FiqJb+rX/dp1lCPmORC5RDXHV3hQ0QFaF7XuArtvt8arHI8BRsXQuv9/Z1Pkz83dOlCwdvfQ3LWvOxDkKHPg8GAhkQCIUEMFt3h4jo1tUS4hFIO12JWAbO/hvJ8KFLayFcqC1k1o1HbwIDViEJz2zh93+n5BNOrZ3CV3f60Zv3BbStwKv9e5ubcKS3LyhEqkh0OvOLv8iZU4Xakds3/l5ypwuJI/osib5g+zjl8vcSQKh560oabd51alFfcTMw05KVYPXScm2KsPht2GcBuJ462Nf/sz8gobCdqt1L3rDyWeD8ncJ79DE2HLplBGLcibOKQShnTtolnFU9y/fakXVdBAB0y2adexJtwGv2oMitSIzfHGvG73ftummY8zGnoHcXpscrOvjP6ovLGtpupLcvKHAfIGwI00Bw673CJFjaW7E9Zbk5hW2V9idVtT5M/OHAfMqw46IiWWEEFYzIQCcNJhMOG3K3+7yhg+50tqZMR54p3TKiCaXX+4a9RhBxIutros/AfM0LRLmuvF05g+C+0CcCWyryAh9nFlpKxCIMVm31b3d1vuONY6AWAuQVK/6W5lUw3L3K5EYKeHFaq3tfalK1T+45iR1q+MX+3rXOinkKUi0WE7wdFpRA4/s8pwpwyAmg5iL6dzGBVJk2wJl0QnW1Qw4i12xGFv9D7aicI3GDLjUpKhhp7DHAGvvcT3/VGalrWBHZujrrNvqnm1peXuCLuX2lQDZO2ytXa2nS2RAIFwIwmqt7ZbGWmCrRW+zM8jG6JQdxevf7PMC5rR0yHyJADDXMjUKbRiPCaCH3X9XdDpfOCkSRazF4TSi0TRZAxwPTABT5Lq+c+LkN5ROGbH+7KT5W66m+NSQKhftyAoNa015e4h6671VNnXeipJFAlFguEM+Iym8oSmTwjpvPbVot+kBnXBIb/DMw4YAn/dzeHesC7gvCCNOppFO4chXB31WFnAfC2Lg0tFLN9w240rne6sv2y4Rc0F8RTtX3Om6SMFsredompzU2DVlz7mO6bI+5X/bQlmOyVx+zvMPTJ7d2HV7k3XPuk7tu9756aYegSd7jvWOa236kty8+wAP0DtvRcmmmFewETqV+ZE/M787iLdAlvV2+LT3L1+9FnPZ5G8oCyT9DliJGdTnVm8o6VKJkjKs9yelL97yeCy2MdUDH2E+Wn+LJ93dzWX/0C4CjhuCf/CvlP3OAjqcqJ1+ZTNAUr3S1vgtbwKTw+nB37Ermlhc6TTmxx3vdnd3sfm/BJkF4sLpF21Yu7vrl45eusYhjNcU5M23v9Pj6EWbtAEADpsvJjatpklD0+SdmibnAui6OEvXRTcAPOkC+LfLJ7IrMkMTVsq+7ygidNVtM65KjkXZsaTbNvsmgPRq2xHWzphWkbeiZHk4O1BvZIQmxr52jdNpRP1dfdrM7SFn/2OTK2csHb30+5akOTm1fAagrvQlP1wTyDgO+OnZm57+MdZ103WRDrwC/B1P+lC/w/gauFwg/tR1fP2jp/T5+EdD2tKqA+mNmil7mXwAiRwBFLVF2OGs0Ee2MldGSW5e15jXrhE6hajzZ+ZfsSXouiRVCc587uL1t7U03WMXbF5gF8bLZf6kU1zdZp/uSvsuLsEyrXjkpx79TfLLEqk7AuJoaxmpDpDh3DHVrgSqF6w/7ZB4lN8evC5jAoAwR5IiI0KtwrEq6QFryO78mFauCfZ5Ud/6ds+LBfI5YGGNYR/T2vR+qb4DOGxZn9ntvd44y5pxjDmaJhen1qrHCITDcl8QxhLI42Ne9gYNx8ywtJ+dM3FORjzKbxOe9HSXTxwnkUhkm0aELH6QQv4STgvdGNsKNs4+Ler8mflZi+vTX0xRQrbuNv8VS0cvbfWm07C396mSSJBpqYa9va+OQ1UjzMOKXNBwGalD9b0MOI/o+uX9cSy/VUjkvwQiWyB+LxBtXiWYt6JE+o+o3arUqkd//YeuA+NQ1V+xz4o6f2a+CrxSHbbZDnXXjp575co2bQkKVAwFhGkMSJt1HCdMQewck40WyFk5b3/V1b0psN3b7Yr4VaDlbHza/YhAXBWwG4/hqfo3nqqH27XsVci/CEOQ/GF23Mfi91lR93V4ZwJngLhlxsXrX25rPqGqY14M1x4kpeGkfu31/lDVMS/GsJq/xVO1qDGBPD7mZRkwnI+trx3QLWfinP5xrUNzeNJ79thsv6EuKVy1sVfw3lhk6fo2bTZQJhC7XUceC/ZJUV/+ev8J6wLuK/s76hcBz7Qnr9IpIxa5FcMvDAeGN2f4nnBx0BRV/qzp1p97r7W2hhsVKWzJ9eqQnGt93mbTtIC8FSUynBr6WAp51td/6No3Fnk2xT4n6vyZ+Zct86b+2S1CG/LctWctHb203VOiQhhSFQZ7U9AApVNGrMlwlq/Mdm29+7YZV+6V2OhbugVfAM6SyDvwVP0Uy7x9x1V/LaRQbFscrZ6ZbA37lKhPeCn3dJCvgHB6pS37o6puMRkCCxo2vzRHI/Y6h2R//0W5r1vKh2sunN7cNrFYIz1pl3TdZruqzh2qKusfeDLm+buM56WQm1zfph0c67yj2adE7VKMp9i1s9pGG8ZMG8OQiugoov58Y+HLAAHDNYYGu2LiifSknS8Qs4RESfKqzpwy5/HNp2odx07dFhZSvAGcVZKblxrr/CPsM6LOn5nff1vI0cdc69y2VXRNYRdGiiKMjrIO5mjrXdAadwptxZMutjyZ9IwUvCWRQiAQplOeuJQb7O37GHB6h1bGbeiyo3yRLeER01E3o4A8mtiO1RbCUjVU0xnNb+gx7/ud2782Dz8irjb3Ox9luw/ImHjSz5V51hmhYkayig+e9H7AjO5b7afXu8M1bq/iwFzYHzdXDP4jaj9Vq2whe6n7lHjkD/uIqMe93ev/IPtihwg/tPjq5e8C78Yy/7Dik4hQOH9m/tDoH0rPeYuHgTLfOgz1mPf9g31Y/c4QPl0+bfj0mJgrui7Ehpp+SS8uv+nqQPieJ9ZUH2TbFUtdhkF0aS6P1lL6vEu4fOKFbsJ+qSJFGBhXm2JMT/KqQ4hveAyOnbotuDw3d4at1nattSz101isoY6mw6+nzp+Zb0tVQutVIbOPT6no9vfzt8TUf1z+zPyhUorPBRIhpP+IpOrfvXjJ2jcAesz7bjJwb2S+MbK53E0tPpLmS5RvDmTJRiC8isHJwLzWtOZ3PndRUrK9dv27P19Bhb9LZqZze6BPaukXS7cfPRSEHdP1QkFMR2U86f0kcoZAnF6TEt6eXKccp9xfvSZm+beAkty88cA/AQPwE6PNARH2hZZ6bI1h656shC6LtaAtNJARvTqzbYFHgDcAsthavIPudwB2KzLrjUcx//AArlOWMcQNjF/FYGdUXt4e874v3J2wdV2cXhtI1cYXv7op3XH+36sCWc5ke806YHyFv8vr300eHcqZOOdW4HEwbi+dck5MvmyrdX62O/ZLBEIJ2I07yrND/0j9o2+Pd5DDKaFctdYGZp8u5o4nO7SoJ7zT/SBB1z9LxNw6w/Z6nIrRkTYkIYnAX2+o94HpGPxJwRuL5Gnv/8QRhzrwPfXM8CdegiN2Juwx73t7Jlueq6DbldaozG8281p5HQb8eNeCp8/PdP3ltdKqQTZAkYgVBX3nzEp1VE1+fMzLOx+Zw/t+8MO8dWczrM+ng+Gc9t+hJ71fH9Xxii0sTvS6jNVunzjd8aeaX3Lan3ObkC5jEbWMk0gjHq7UOrSo1wXcbwlIO9hVc98bo0rjYictHb100cDJT4YdmV8ssKd/96enL9oQEaQLmDFUfLpgKJ8+Dth1/Z+vAA9omlwBsHn4EcEe875/ErjI9N+B0oO1K6KFr+viAuDt55aN/8OW+l7/2FLfG9PnB2N/eOCqp+Gq39Qpy7X9e4Cy6kHtGp0qfd4lMivUyenY/s8WFmpVWuiRiszwxJxr93zrHI1tu2MBgEC8CzwSa5u6ww7p5c/MP7LEl3JoX4f3gzdGlcZt1OH6J8c6DG9/tUv1kJ+iO4maJqs0Tf5J0+THmiZzgaXA6ViR4nVdHKjr4oTXxJFfAIVd2PQaCLqw+VpdF2/ourjcykoCsxdvPjET04YEhAFkNVWnqdfPqgS2lFUf0PZZRU96v25bbSvSq233hlS5AshPv73ujr0t6AZ8EGtBQwdtqe98t7uAbv8Esb0skHRlrPM/4aXcsX6pDghI5d3h9sE/A/RJLd3tegRNk0W6Lnprmoz4v7gV+D3Q7TVx5A7glWvkZynLOK6gXHYryRZbM3RdKMD9QEVdKPUjwLLPWzRkViYwclp7b6EH005RDG5XEKe6vQpbugVf9bqN33UkMdcV7uieXJSF99iqY4F/xzr/DinqqrDtCeDEVCV0y+e/K6mMZd7HvXjIcK+0PWUd3lJkbLsA4LutQ+Y1lUbXhRv4GnNL1l/wpA89WaSmhmzGt86gepiuVT8IFN7D2Ln38KJ7Ms92D0jX8hXDTzMs82NT6ZQRfsuBjUYLdqoflPljtwpf9pEtuafqqSnd0mrU04DRKpwmEFj26qXdb65vjeeoRrF8c2hATNyCKdWqD0CptVW2N6/G6HCizp+Zn+IQ6Vd1t/tqtNTy6c2naB0hmBTl99GOWnMKgD/srmkqjaZJr66L+cAqPOlDJVJXJA5HUAHQc0tc16zI8y1azSF2kAVb6dPXTkAfN++mP0wbLh+L5NOUH+vGCBq2JeW+rn1yJs5RSqeM+G1YNk/6wcA59e7wraleJfKUqY26wgAOaklZDYkWsZEcShKoc6xZxkAs3IK5v06vAnCWJMdl+1yHEzUwKSDVjK1B5YR7ztkR01Bn+TPzM0EdYnXUDBDB9HD2ijpgYPpPmab7sMbRNGmuLNPTJwGRLVlIpK3HFkdOj5u891427/tJlssywqisIe8k4DFdF8mY9vgHUebLbllTdfBc4DxMb0+b8aTbgZNqUsK32YPiLBeKA8AeVMq2dwl9llGpTrKHFEOYXqjsbR1ViPKY5JRIRL2iREXPdUqbMZI4xBOPJR2qozjy1UE3g7wL+PCH0cti/o/r4/DOAJnaxRa47bS07dsuyNw0JV923wHQN3VNs07FdV24KjJCy4CA5dAQCcaSw+sutYSrW96gQgaqdzlHPxa5NeBtTO9N6LpwW/b27ihLo5YX0u+/p+Kx5FKJ3A4Up9QqZ/udRnW9O3wfkGO/pzqn6/j6k+331HyGp+pzmthZ0wo0aTquVARCMZKMDdb+RAkoUpGTfjgj5+mS3LyUNuQNQN2p5d0BvMdVDWlrHrujw7TU5oZX978w/T0Pbzhl3V6ufqPfkZsCqRcd5KoruaV76VOYLee31y06dwPAok3aghZk892SI+pLND1NA64GWH2Af1tFVri/psm6zbBo1LzJYxYyIsfAVlw6/MRI/d+yyltoHU8Axui6OETTZJ3ldkAD9JqUcH19kvHgt6kph6cFgtj8xriAoRhetzE3yas+LRCfpt9e16SpZAm5zf+3QH9v0FHmJhJmTq2zXWJ9pAVyvELAOHup+wbgwmUnDprhHVI99dhHt7XK0Y1SZTNt6mpbWx3k7JYOI2rgtEaWlcZM1N/Vp98pkL5+Du9VmibDwLkAxkfm0s5A2FW/2wxMHgC2RQvnQOsFpn+PmwRP3oTnRU2Ti3b5wj5MXzp66adR+SwGkiOCNpALBKgCQWqtKlJrVeod/vLp4fPYYk96+fpeL4zeE6MXJbl5Q+24rpTIgHQbjwuv+k6U/Rx5/0tJbt4Q4AG13DEpaX7GHctzc+8QiKfzVpS0aJfMTpt6RXLMIxNAxxL1/6x3gxivEjty5qHHg3KZRDz4jws27/T7rOtCHdz1voFLth1HXtaStN3Z1AAtiM5aA1wDrDIFLXXMIbxA/sz8W4AugL50tPwQM5IsEqkJsFl2qwTe29o1eG+3cfU/PDJxTgUhKh+8NjaLp6KxPLQeAKzUNFn33RW9L3Eqqa9gYBOIUANB/4q8FSVfAmcsvqn7Tc7FaWMVxD8k8o7vruj9SahH4NZjH93W9JPk15xdkpu3vNNOvgx2Vy0BSFZCi4DCWJked77bXXSz+z90iHAt8PfIeV0XJwKVh2Z/NwKgb+qatJbkp+tigK4LrbHPLFdj72iaXIb5pLGbTx/hBPk08BBQFO1bRCB0gfBirhH3AVO6jav/wfzMWOtQfY3uEtF1YdN1kaPrIs067qLr4ve6LnKs44N0XczSdTHYOj5J10W5rosTrCxOBr7F8sCk1KrnWILeeTvN/S+OfmrLU4d9tWowMFwmG+Wub9OuSZqbtaYkN++Gkty8k0py8yZZHU++ua1bn2+v7nVGSW7euYY7NAVAIi8AiiLXxIoO01L3cPidS7yQ564tf/7idTH75c6vyRpVb9gyjkuueOnfF6+PbkFWAi8s2XbcT8Dl89ad3VLP/f8AjtR1kaNpu13iqIPwgXQAimVa7fR7reviCyANjaWanlZoCFlYmuMPr+0fqNAAXRcZR3S75/Bt9d3NzHTRx8yTuzVNvo7ZypYAV2KOn/cAZgCXAqVWOUcAmVZ9NgKvAjus42+AC6z/A7YNzhnAxRLZ6pGTvBUl+tcTug5WqtUJ7oUZFwNPRzrSAiFLcvNqk8neudNF8dqIZyTdDiPqBdXZNQDf1aUtbO7alpI/M98BtgeB5V/VZV4X/ZmmyW3ALdd8NGcUQNBwtHTX9D2AtxlBs3T00kX5M/NvsyLgWktXQQFpIHTMXS2VwD14qv68QBc/YI4zG8AKwMh2beXH8iNCORPniBfOpAb4CthmFbEeuB74wjpeCfQDtlr39yOws5XXNPkLMD7qeCtR69IPXbxqYUlu3s7JodaaBMdO3SaBR0py86YCzwOjo1r9HwMH1C8Ndw1UuBdlvAV0EYg3iaGj9Wg6jKi9UgUgjPLbiYY2crCr9vGffCkHAGcvHb200THv43osGPrV5mEc3uVrR3M2NYBlWrSULpitNIDRz1G/7Zjkqmcmn7t9EYCuiz+wK+JAPTAYWGeVU33NR3P+iBm9KkPTZAVRrhM0TdYCz0UdByJp24ol5Ha1mHkrSmRJbt7TAnEpu0R7++DZZb/Ktz0/oOboMKIe7K5yLPGmk6KELsqfmb+ovTb1ma8ckL0j7L6hn6O+fG0g6aPGrtF1ccMh2Wfc9tXmYfRP+0Vtad66LoYCJ2uabM7fso65CN4OBNcGki6Yc/nq6EVTj0X9LYEfohM7FP/6gOGkX+rqQ9jVke7w5K0oWdScaGPxA2qKDtNRXB90DwWoNdShNOhMtYUNQfddXkMRPe3+a3fjG2TeyopD3wL4pOzc0lZkfypwrzWC0CSRcBxYkyGt/aFqfT90AQzK+CmmEWH3BHkrShblrSh5OB6r8Jqjw7TU5SH7YdaWqXZ3Hk78T+4gsN8GYuazF69/v6nrNE2uuuajOV8CF/nD7tZEn3oC+HtLAlpaQm7TfVQHMhYALN1+dMwCZ+4PdBhRY3ae/IDTErfe1px62P1FdWFVFdCsH7jcrCVHrdgxmP5pP7dY1Ja/6bjzxSatFPBu93bP2BPldRY6jPlhtWjDk5XQLwJsBanbe7Uln8EzDztupS+l/yHu2gXfjf6xWU+oB2SsuEwRYSaf8H+tKkfXhabrYo6uC1db6tkSSqeMkKoIbkqxVx0erzI6Ix1G1GAK+8SUHac5hFE/ryb7wfyZ+Xe3xrbOn5k/1EDMAiqWetPOa0maRRu1F5D4iFqP2kLcwEDMYbS40T9tdXq6s/KE5q9MEKFDiRpg6gVbfvFL9RGJyAP5Z4H839EvHuIxI281Tv7M/L7HvZj3FMjPgRwgBTisJeWV+7rXGah1miZb67D9I02TeZomV7YyXauoDmQs3FzXu7XRZvdrOpBN/St8mOudFYkUAaneD9x//Et5W/o5vNtKfClvAF0HOuuP2RZ0dAf7AK+MxPUEc7JDaLSgg9YvdfWh5b6uSbouCjRNFre0gpHJl0jwz+YmY9rKdm+Pr4HzcybOSSqdMqIli672ezpcS22hY3YaQ5jhJH4P3JWhButX+ZLzrJDM43/xJx+vCpkJTARGsXMNRcuneZPsdb2SbHVu4KlmL25YSXO8uhSIm82b7tixFSAva0l+vMrobHTIltqaYrYG70W0z7y/5c/M/xMwGVBBhivDjr8tHb30rwD5M/PXYQ34t3RMeMWOw3+wKQEVOLMNVf0F+I44Ng5Dei50fFJ2Hj2T158KfBmvcjoTHVLUsNvx3WLgT+zymqS3IM3ucIYMR7WmyVa73tI0uYU4h1HbVNe7GODrLSfWxbOczkRHNT+apL2zdA3plrTx4CzXtixdFxfrumhLa42ui3RrO1fMWbr9mFVAqCaQ0S0e+XdG9jlRgynspaOXPhyLNddS0i1sqF2Wlx/+MNDqsA26LgZirpy7rL11aYzSKSPCqghWutT6S/Z0ZIF9lQ7v9TSeWCL5DHNfpD/JVnfa8odGfdaaPKzRj3uBdzRNLo1HHQXG5xKB1REu3NuxaTo6Hdam3kNo7HxaCVt9KOVkTJG3PANzKO+BWFcsugiJkLFYE7O/sE+aHzFEN/10SEAGx+Q/OkDXRWGrM9GF0HUxWNfFgc1f3Wp0y/cexNHDf2divxZ16ZQRiwakr1yuiLBURPjUE3sXXwKc1IasHJjrnW+PbQ3NOibbq3+0icAOEqZHi9jfzQ/WVB38DPA4sAropWmy1cEwdf3+o9LS1s5SlPAcTYt1DaFH0sZe/rDT8dk94zuEoIuKB+30U1JYsLpD1Cma/V7UmDOCADmaJr/e3YXrJy7c+WX2mXLyIgCPxzMc+KS6up8AecWMGWeNHzPmw5h68lxbM2CVQLZ4Z048KSoeVAh8CNIGhIuKB00EPhVU7QBjQ0HBDrm3Rb/fi3pw169qlmw7jiE955+j6yO3YroxeKKhwC1Bz5NIB0jWTpr7qiKdy/okOc9fb/it/6NUk8Ipzy6dPr4ubf3Z320YMv7mkLO8e0bZRVcePua5sK6LYwB/9ChJYz+UhgQNJ0B1HG6/xRQXZ+VLkv4EzvMwJ77A1M8jAJJ0QAaLigdtANkP07T1FRUPKtjTwt7vRd07pWzVkm3HUR9MGQDUAQWYfu8attoapuNFIQEhHZcBygDfQNY7SkCCio3cstFkyvRXAfr9b2Yk7ah1ExfUD7DNthv2GvsvC1/22uv6fhd0bzjATq9uIAyB8K+fuLCwMWEn22u62URwW8Pze4Ki4kEHAH+EjDGYm+HngTgB88kRAnErGDWCuiskzgA4ctm52Vi6gFuLigd9UViweo+NHe/3on7yxhfW50ycU7F0+9HVmia3A72buFTH2kRr+cUoBL79OfN/Y6jL+meqKt/LsdkWpqQt21bl2nZw2rpzfxQoKd6MpYPDzvK8lC3aYqkG+oZc2w9HKqkO+nmVUGoSZjDO3Qb0SbFX98lw7nDH5R/QBMXF3c6V2P4Jrj4gQmC8Lqj5d0FB+VzTvBAavzYvXoOIvS2KLH8nArgMwr2Li7PvLCgo/6LRwmLMfi9qi1LMddhN8vOZw75xlx+9NvOXy79LKj/uiUiLuslTVAVQY4gJF919dyO+4U5uMk/L9CiiGf8X27zdN1b6s75v/jbaR3FxlpCkngG22yH1NDAkBN4E522FBaWbItdZQm7UpCgsWL3ItLuFBiwAeSyIqZK0/xUVD/wHiB3AvHiaJAlRA31SSu31oaSTAHRdDMO0Ey/UNBm9HSzLm714tTd78SuaJnd+IQ5HTU4gkIqq+rZb6W8EBmianBhdhsfjOQlT4brH41kE0GfKyYvWT1y405VAUza1IW02f9gWt32RRcWDVJAXQPJzYEsFtgATBfXPFxRs2dra/BqI/n/FxdnfSFKfAmUC5qSAr6h4UGG8hJ0QNZDurKjYXN8rz/KEVIvpWCYT0wsSsHNF3m+83aSlrTtj+/Zc+vT5IiK6Q4F8XRcisnHA4/GcDXI25uM45PF4bvZ4PDPAFDbNzBDaFX96hnNHRvvv9NcUFecUgjEZ7P1A9AW1XFAzU5I6trBgdcx2sBcUlH9WVDzoFZB/tgKtOlu6iaMtJEQN/Fh+5JuYrWgXTZPf0ohzxGiRRlNZ2T8ghPSVlWnHY35J/6dpsqGXqVMAYXWebMA0j8ezLNJiN4dNCaX1Tlmb06qbagbTRFDmmqHIpQRxD6hTCgq2xstlsA74rc6jJI4zo/v1jGIUpdZ7TuREZJtWFJ/rupgafcLj8QwNhZKHSam6gCKPxzO0EUEDvGuu/d4ZClqhBV5FI3hDSb4VO/Jb4hS+NYyK2mscBozCgtVx84FtmhqiAFgDoiyeNnVC1MCQnvN9ACf2mnsh7LSL1+u6sFvHAnOh0/IGSTVzPyRYvX3Nun68rovvdu1fnLy4f3/9213rTAjQwpYqZ+IcAcLpCyfFepw6MkQYbs32t/ZgCfsxYGBR8aB4rJMBEqIGINu1dTnAdm/3bOvUL8BsIBXMlXiaJu/QNNlwplAHAtaCKMEuYWwBlkXSA6EBA+Z3ycz8Raiq3wAKW2p6nNiryAGI3iml2c1e3Crqj7N+ZPcDceu0/ZbAhwCC2ub8ELaZhKgxx6qBip8q8gMAmiY/1TR5o6bJHQC6LpIaMUcwhSkKVDWwylrr/IOV/g1Nk7/TNFltHRuaJg+oru7ztaKES1oqaIBs97YMgL6ppTH2L6JmQ7i+sOCXP+/JGb/CgnWrIFglccVts3JC1LsopcFYddQWrWcx47T8Bo/Hsygcdl4LIhnTAXp0+p2hmp9/fnhyOOzoFQwmGx6Pp8U7WD4uPS8E8P3W4/SWpmkZTgm2mPkCbx32R8E2oKh4UJO+XNpDYvTDIidtVUpdMGV45FjXxTOYNvJBwHvs3pXu56rq3yiE8YTHc39XEN5evb65PxC4JG3+/Hu+l9LWA4b1sDpmvTA7lS0yQfxhtxPAF05qaRyVZikqHiSAQey9zQbvApMhfBHwZKwzT7TUFk7VX1bh62I3O2YAzAGmW0N5r2manLab5MeHw/buoZDbCeIhYOrmzYen1td3RQiqgDkZGWuwOonRO1iaZXDXr7oADEz/KYY2deASIB38/WOXZ6tYCiE/GH+1VvTFlISoLX6qOOz9kLTbgWwATZP/1TT5KJCl6yJz96nRGgyPPWAYDvXOO6eJ++57SPN4PL+vrBx4wi5nOy3fwdIzeX0vaFnw0pZgisj+knnkOCMeomoBx4NqB1sKUBTrOiREvYtS6z0nckLXRRLwF2B7Mw7W9UikW8zhuo88Ho/UdaHqujhR14XbMjV2unZoaWexaO2IzQAL1p+WHaPd5BpmnHEwF1JpMcizLXWwJqNa/tRqKQmb2mJYn4/DC9afgdbnw8tgxDfW6YWYq/bGa5ps0qb1eDyLPB7PzjUcUYItAD4BztF1cZSm0UXT5K2tqVfQcB4FIFFHYfrUa++WLh1ztaHbmknU25FXO+ogDUCNxxh5QtQWblv99wDfbBl6Qs7EOUMt4TwA1Gua/HS3iYkM7/2m47UAGGW9F7Ar/FuL6eLafPV2Xw8wn6rt3k2+axVd6FMwlMKC2IX3a10d+lSDmgK2mI+R79d+P6KxHu2fY60iAwpfOHPkcsywbd9b0a/2OEdP/vfGcm/3nuxyfBmTzbdFxT3fBPeFIHsUFqxp9Uq89pff/yeQwcKCtS1yudwaEjb1LjTrXYCMtIiFmE4Z2+x9SddFiq6L63RdHNTatDkT5wwo9/boaRPBF0DcR0x3kyc9bNq1SptcrbUfWwjsJXHJOR6Z7qPoIAMgHAIppGlrRhb9FwAvtjFfN+bkzWpdF6s0TbY40pbAuFaiyJB03Fc6ZUS7YiQ2wncgN4NxBW2/t3Ygs4C4rBFPtNQWZgsotCRbzWaJ8AE/W1Fxz6AdHpisPHKBR4EWx4e5bcaV9jRH5aTuSRuWx0HQFBasNsBbBeKM4uIsZ6zzbx7ZA+rjMlWeEHUUpVNGLKoPpQ4H4QLDo+viCmCZFQK5zWiaXKlp8ilNkwUtTbNok3Z+VSDLdnDWsiZD5sWAZ0FBkr5HY8oUFfdzmNJzkZh82QOUThmxItVR+YqCvHljbZ+XgYt0XVyo6+KAtuap68Kp62KKrouLWppma32vm4HaBevP+KCt5TZP0gwgtOftarvl2k09msTky55heN8PH3aofjnt+0krMMeZ3wJaLMhGCAB3AW/qumh2Ec8pf378xl4hoQ3x2ZJ7hZRP4+XCt7BgdRUYX0H4iuavjiXh66w/oocpY0ZC1I3wxJj/lATCzrs31PbPveaj2b2Bo4HH2pqftQ1sBDCXZjrnORPn9Emq6P+vy2udnOyzictqHc5zwtVTnrrlvbS2lr87BHXloPYpLs4+Lh75N07wGGsNequWDLSUxDh1E8z+JO3mP+gz77UpwdrT+//3kMfHvNzakHStJmfinB5IOf/3Nc4DMwxFiN+GdlztTCurcqSu3Vyz4eQnge8x4zhqgD5uekGrh/uKinucCMmfATcXFqxudTCn1pc3SAG5BcIbwfYacXBNlmipG0HXhZriqPnrVXnTg95Q8gF1wZQXdV1M1HXRrkVFui5e0HXxj8Y+G//M1QelOiq/Gxyw9c80VAHSkOYr4Mr86XHgHuC7cCDl4JoNJ5+NuTNnvRk7Uj4EFE0bW9wGMyX5c2AN0OKhxnYyBEQXsE0pLFj9cDw2KCRE3QiaJsNAjyE9Fxyd5qhcra8761R/yPkwcExb89R1cRgwmkaCluZMnJP52YZT59n9ST1O9dokSF0IY5hA3CMQ2vUP3/R/46YX/Hnc9IJLbnzskhR3VkkWcDLI98wcRJttU9MdWOhzkGcVFQ+YHP9Ve/4JltkRtw5wwvxohpyJc04EPku210z58cHLJrU1H8sh++OAR9PkV1H5pwKfIuWR/xeuqrLX9kgCkT9uekGz0cLMllkusFbd+YCCtpkgPZ+GpBvMRUbCT5z2LJqbE4I+CNcUFmzoEuv8IyRa6kbQdTFG18UNAKVTRvwv3bFjXjDsuHPcM6MHtzVPTZOrNE2erWnyK10XKQC3zriqa6/ktStBHn2FKH/fXtuza3q/4rdaImgAU8DCGrkIvdAWQZskWZF0297it5BcsDtAeTxO+QMJUe/kH1eeOWzqqJGTpo4aORS40HoBcFLvoofCUlG21fco0nXhaE2+Jbl5I0py8yaX5OYNBdB18SKwIGfiHPfcspGzN9X16XF65jfP9q7se4Zir/nKkbr+umay/BXjphe8obq3b1Ucdb+fNnZuW02HyJPDIL4hOM433xzPxSl/ICFqAJ649tRzjJA6H+RfgOLFT414gKign9NufKG4X9qa2WlfurL9Dxw/IyLQ5ijJzTtVImdL5L0SWfS/6ckrgSxvyP0fkG/Wh1KPzXSWjzty3bH5AEYwddSlt8xslUOZaWOLh4a9WdlGIN0GorhtncW6DeZ76BPi6i4heCuEVxYWrN4Qn/xNEqIGgvWum81dGALABfLWjV8f6I++5oE3Xv3g9u9ep8/GyqslFLVQ2McCCDOylsO1JCVYH0x66dHFnttBnA2Mvd294ngj5D7RnVXy2LjpBaVtqL4GijX2J9pkOgiCqeZ7/bJ4CbqouNcgsPcQeFsdWbi17Per9KaOGunAHNUwAAlSAXFZ+aqeZ/zjyjOfMUK2/w7r/eWybG/2ZBAo5oVO0bLF+jrglUg3oH5Qc9b7zxVd+CeJ2vusnLe+POz7qz6pqjztUUfqutUpPb+6rw2xSa0yZAiEgzaaDpKMNeZ72m7Dg7QP9+lmGa4741eGyX7fUmcfvG4q0EWxB+8GZkTOB6pSM42QeidQVFOTtkVI0RVkIIwgqNjE1KNG9W84fX3ova+m5Eyckz/sz09ce/njf/zvJZfcd+N9Q3///f/6HuYTCKrrs++SqPmCsHFkty+PRISfB2EEavoWXnrLzDYNQ42bXrAoqeuSrwFs7m0Xtb2zCMD5cRzSOx9YCbaYB1BtyH7dUk8dNVLYk7pe6Eyr82UdtOFvm745aCI7vThKQAikdNT91E2tP3kNSQsztc96D77/3UEnnbEiq/+NIK/PmTin2Kl6uzuUQH5dMF0BWFsziLU1g1BFqP6b7nk//di7n54qnjvzyhWfsLD3YDYnZ8mypdft6CVVTbHX3HLTP88ra899hIMpa8A4IXPgBx+au8daS+AUM2qeHAXi/Fj7ji4uzu4H6adD4M3CgvVxH0Pe31vqm4L1rl7+avdjV9yx0nIvK6JsaRlWpFQy6nzrgwO9A/JWlCx6fOgFX6zI6s+uQD7y2GzXtsyDs5Zt6Zf6yzRgVLK95vhzBs4aFJa2lNIpI44qeejSs77KG3BtWFEZv+QtDgoIo+emw7s6Ussqsg96e3f+RFqEv/KAalB2tLW1B2WY+R6fIT2J60IzDIjv41jm2xT7bUttDt3Jf5riVG6bOmrkexNmzV40ddTIQtUZGB/2O65IFTVqRoUht2QkT754UlUpgDeU/DHIu6wtXwGtz0d/uOawac8Dl2iafEvXRW/M5vLlf97w4k6RPfr4Uy+8deIZRwzyhW47r95pB0Ggtk/K9pLLI3sj244IZyGVyrZnYLPcDO/cB6m3qz6/wTUU2CJJj+tQXoT9tqUWavgMdt3/ztZpwqzZi/7vxU+udKneHTVGCuuy00RZl4wnrPHryA6ZAhD3gih8Yfy/ZgJd2TXteyIw1TqHrosjdF3cqOsi5ZDytRM29BtaZTpIFSCl3ZG6vs37HyO4s1YUOtPK2rMu5TgQX0X2QcbW9OiaDPJs4L/mbpv4s9+21KojtCrkdWJNDf+qdSrJzRuRNLBnui915yq5X7kmsDa/7vziNU2WR/39uq6Lz4HIWOy5mIuR/rNl+ooXMua9l75t47EYQkGRBu7SYN20scWTaOMqOwB/dR8vUpXTxhYPbW0excXZZ0HGweD7W2HBhofbUv7ukbeDSIHaZbHPu3H225Y65HVanTMxEyicMGv2IoCS3LyhAVW8X+V2qqb7ZhmmlUNlmibXR4XSeBAYpGmyDliS5l/NEUseY2DpbAb+8l64MuPAu8xYKMybNrZ45LSxxb9Zb7o7npnwnwuNYHpfI5TSlTas1JO4RwIIvG+0Jl3L80/RQIbB3dBhfdzYj1vqYE44YAd4dMKs2TtbEcNpnLcms4sI21TyyzaHt6clz92UmTo5IvrWYol7nfX3I8vHH/w5oTULMqpL1RUHXCoRO91vOYH3heoNPTPhPxXBul6fAD+l9dVtir3+m8pfzi4aN72g3hKtBlTakzdeHKzvFr3vsQ3ObpxHA18XFOz4ptlLW0lR8aATQbU8yarvxzMiVzT7rajdXarG1G7sgjO99kBMr/8AVNiSytZ0TadnRY3sW1kX6FtZN/mKT+bH7Is4ZNlPny85LWe5bZPzUHvXDQ8I1f+ADDsMUILAtKSuy04J1PROAYYBV1av03amnTa2eDMY3SN+6IJ1Petc2SWrfOV5/UCotPKJUlSccxGoQ4Dpsbq/XxOaDLbIk6fd3qVayn659NQa+ViIGZrKB6Ig0hI/fXHhJ3XCddrQnze8luH1P5G3oiRmX4KuiweBSzP/1n+tfb1z2NYnVrp+evf1YSFf9gk0YlNPv+3t5IycT0fWl+f19G4/LA2MC0EMtlp2A5g8bnrBA1Gtd4vtcnOSRS40fwzSD2J4LFvRouK+dlDqTO+mu7xLJVrq+KGZrR0ALpvLP++ZCUMeDfntVV41/bQelXW4B5T/I+/tdV/tLpM2sBRIcfziVoBjzFgyzAfmN3bx2McvrIMLZ0WOp40t/pRfR8j9FCJLUFvdAt6N+aPGetfakMducIwG7OB/FJzbicO2rabYX0WtY8UZB4lQDFGzvqu1AUCyNS0Jf1L/HkfEuFBNk68Dr5eQt3M9sa6LXsBM4HFNk7N3l37c9IJF08YW7/Su2pbRkuJ5aTYpU98B10gQYUDGemy6qLi/C2z3AV+C84/m7po9x34p6sgkC2aLrXc5ZN0Xm7456CngBhDCEFDhTT8UMyxGzPHn1R1nX+OK+LvehhnFq0Xem9rYKgNQVDzIDRnzwX4sBN4Bx1RM2z2mrajA+7IktS+ExhYWlO1x+3a/tKkbw5pcKUJKlyIlhqKc2NYRj6YoLk5/CKH8Me0/GWVJXzgGibBycixt9t1RVDyoK/BfkMeDd0ZhwaYb41ROMhibIOgrLFjfLR5lNMd+O07dEEvAhQNrt1cevX3dplgLuqh40FBJ9p3SyHRWXa4cVHVxWPXlhud/P/LA08EMQKrrosW+9lpXdu9bILwB5NEgLo6XoC1uBSUVnOfFsYzdkmipG7Bs6AE14azg9sFzygbEMt+i4kGTMCdi1F3RnAGJRMifBLW5CL9XymwNxJLCgtX+JjNrhOLirP4S1wBwp4McCPVXgSMA9kyQB1uXBUBo8eqwmXXIWAZifmHB6pHxKKMl7Jc29e5QK+whtcK+2w5bG9GBAFI6CQol8xlVIgjVnGs8H+pLT4k7F5nqxvSHHSwq7r8VAlsg6V+AH8JHQ3gdONYB/aH+crDZwKGYx5npu4oSgFuC3A7sABH5GUVivMRF1BLHCyBSBDVPxyP/lpIQdRQluXluIAPYHOu8I2EpXD+IySmf2E5Ty8P/Vqvtzx311spFAMXFWQLsh0pSDgKOA+MqzKiw1so2lV0jcACuMBiVmCv8FkBdV2ApJH8MlAmqthcU7JDWov/oYUA91vcGUFQ8qBskHQvBzwoKtsbTU2uzJMyPKBaP7TEkSc/8IpwW1NVq+93x6MSV5OYVA93zVpQc2vAzXRdpQJeI62DTRRePALcBirX4ahpwP1DZ0qEyS9gacRwrLioe+BqIS4ErCgtWvxaPMlpKQtRRLBnZ/x7Hz0kPSqQUpuP1wlgKe/GYHv3dCzNWA389ZMWKPzX8XNfFMmCdpsmzIucaaWn3yKxcSygqHtQFuAhC94LaG3PM28dermPC/IjC/ovb7LdZu7+Jsf0pwuJugVDrh+9Y0cQlk4Dy6BO7omnFt6VtKUXFg9LBNx74P3BmmtPsaqX5qYiO5psQdUdAGKIIuDuy+zvcLdCU+NqE68u0Q6VqeN3zMxuNTKBpslFb1BLyXhNJcXG3TJAeSXI+qCeCywGhEARfA8cjINzsAbu9pSTMjwaU5OYNDWcG/6BU2S4Jdwn+YNvqODJvRUm7d2z8eNRBf1fq1T8SFdKuMdNG18WhwIDmpszjTXFxVrok6RJwngryHBBJYNSBMgOYJaj4sqBgx07x7Am7vaUkRN0ESwsGTrZtdN4H3Ju3ouShtuZTkpsn/IfV/te5LOUcy7QBM9zzfXkrSn6z00TXxSuY0cB6aZrcI9ufIpgr6xynAqPM0RdFBbYDb0Lt54LgawUFO+Lup7u9JMyPJrBtdHqAgRL5wLfX9fQe9dymqa3NoyQ3zw487VyWck6wj7fUtt7VneYf0fcCE/aUoIuKB6nAMPA9CPYhmJqogtB8gfcTSfrUwoLVoT1Rl1iRaKl3Q0luXlKoa2CrUqW6RVB5VEjxdktHQ77+Q9fe7q/SPlHLHYdghqzzAMdjPaL31JqPxjCHCmsvAnE3JPUE0d1cU+3bDPa7wPZua2c0OxIJUTfDkjP7j7eXuv8pEEhkKHBg/fPOVcnPAFsCA7zbBn9Y6ou+3vKxd244KfR7xad2CfX13XP4x6V/bk2Zui5OAc7UNNlmf9jRWBsCNPDZwdED1BFAP3OfgbEAbP8C5hQWrK6PRXl7m4Som6EkN28S8BBNLP4ynGFD8as/A1vC2YHuyg77AUIKRSIJ9vdNHfxx6R9bW6auiwmYi/gP0DRZ0Zq01oRNV6CXoPociWsQOK4AaTNnyqUB4kOQrwsqiwoKdsTVA+neIGFTN4+OtaFAIsOhHN9f7KXu74Hu/ry6U0WY3o6VyRuA7qJW7Yc0xS8QYUeZu7zpbHfLk2Ej50tQxhYVD9KtsWohqOgF9oGSFAfQC+ouADUFXDXmcegoc/uUuatHEh3QSwBSgvFoYUHpHW2s1z5BoqVuAZZJodGMLWxd96vZv7bYztbwmA7SgTlLtw7IBpJ/e7URAmUVsAF8XUBuBPeHwEZBjUPicILzKTrgjGS8SIg6xrT0B7A7rGWqf2aXo8qlQBHUZwiMbZKUD4ANULe1sGBzs0HrO9IY8p4gIeoOSEde77EvkBB1B2V/a11jSULUCTodiT2KCTodCVEn6HQkRJ2g05EQdYJOR0LUCTodCVEn6HQkRJ2g05EQdYJOR0LUCTodCVEn6HQkRJ2g05EQdYJOx/8DoX/8K7r8p5gAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top-5 predictions:\n", - " 1. monkey 34.293%\n", - " 2. mermaid 8.274%\n", - " 3. blueberry 7.341%\n", - " 4. camouflage 4.992%\n", - " 5. bear 4.961%\n", - "Answer: monkey\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoC0lEQVR4nO2deXhTVfrHPydb96ZladkJCiJixG0AYcSr4loXGFxGUSs6uCPiNnX7TUdHreK4Iyo6UgV1XHHGuo3L0UFcBhWNiChK2CkFurdpk9zz+yO3TmTYSpvcJL2f58nT3u2cb9pvTt577jnvEUopLCxSCZvZAiwsOhvL1BYph2Vqi5TDMrVFymGZ2iLlsExtkXJYprZIOZLe1EIItYvX3E6qZ64Q4vXOKMsitjjMFtAJ9I76/SRgzjb7mqNPFkI4lVLBeAizMIekb6mVUhvbXkBN9D4gHagRQpwlhHhfCNEMXCaEqBNCnBZdjhDiGCFEUAhRuG0dQohSoBgoivoG0IxjXiHEu0KIZiHEVqNFd+9MsxBilBDiSyFEQAjxlRDixG3K1IztHlHXeIx9h0bt208IUSGEqBdCbBJCPCeE6BV13CuEeM94v/VCiK+FEEcax5xCiAeFEOuFEC1CiDVCiLLd/8snLklv6t3kTuARYD/gZeA54IJtzrkAeF0pVbmd6+8BXgDeJfIt0BtYJITIBN4CGoCRwERgDPC3HQkRQmQDrwPfA4cA1wMz2/uGhBC9gY+Ab426xwPZwD+EEG3/12eBDcbxg4BSIGAcu9LQ+3tgCHAmsLy9OhISpVTKvIDTIm/pl20PoIBrtjnvUCAE9DW284mEKSftpOy5REwfvW8qUAvkRO3TjDoH76Cci4GtQEbUvrONa7RtyuixnfdyqLF9K/DeNmXnG+eMNLbrgOId6HgQeA8QZv/fOvvVVVrqxdEbSqnFgI9ISAERU1UDb7az3GHAN0qp+qh9iwCdyLfC9tgX+FYpFR3rf9bOeiHSyo8TQjS0vYA1xrG9jZ/3Ak8YoddNQoh9o66fCxwI/CCEmCWEKIpq4ZOalHgTu0HjdvY9AUwxfr8AmKuUCrezXEGkZdweO9q/s2va0KPObcO5zTk2oIKIMaNfQ4iENyilSol8uBYQCYu+EUJcYBz7kkjrf6NRVjnwr1QwdtK/gQ4wD+grhLgCOBh4ahfntwL2bfZ9B4wQQuRE7RtD5O+6bAflLAO8QoiMqH0jtzmnyvgZ3Ytz4DbnfAkMB1YppVZs8/rlm0Mp9aNS6kGlVBHwJPCHqGP1SqkXlVKXAkXAUcDgHehOHsyOfzrzxY5j6kN3cH450AJ8uBtl30jk630o0INIy5kJrAdeBbzAOCI3Wy/vpJxsIqadR6QVHU8kFFLAEcY5TmA18AqwD3As8DW/jqn7AJuMc0YBexllPQ7kABnALCLxucc4xwc8YVx/NXAWkRBqMPAAkfuDTLP/jx32gdkCTDb1OOP4ebtRdk/gHaCeX9/UeYnccDUTicvnAu5dlDUa+Mr4QH0FTDLKHBV1zhhgiVHuJ0Ra0l+9FyKhxktGvc3GB+ohwGW8ngVWGfWsNwyfa1w7lUhrX0/khvJDYIzZ/8POeAnjDXZJhBBnAo8BfZRSTSbqOJVIa1+glNpslo5UIRWeKLYbo3/ZQySkmBNvQwshioGfiYQz+wP3A/+0DN05dNUbxeuJxKhbgdtMqL8QeIZIuDCLSFfiOSboSEm6dPhhkZp01ZbaIoWxTG2Rclimtkg5LFNbpByWqS1SDsvUFimHZWqLlMMytUXKEbPH5N5y72FERohJX7Hvk1jVY2GxLTF5omgY+gMiI8UCwNGWsS3iRazCD42IoQWoDDv6MTGqx8Lif4iVqSUQAKVAkGkLn+8t9+bGqC4Li18RE1MbocbRefbQ3cfmbgrX644BgBz1zLDeu7rWwqKjxHyUnpTCNm3V/scL1Mtue8h2cFbtiQ9M3PBeTCu16NLEZeiplEL4mnL+MX9L35OadPsWhTjBV+z7T8wrtuiSxKuf2unNrO93ScGq1xSiHpSc/MLAS+NUt0UXIy6m1jTVCoz3pDX/DhiTYwtv/bY555GJz+91Szzqt+haxH3mi5Si2+ag86yHNw2aviXkGgL8EZjpK/ZZU3AsOgUzHpPf0sMZvOe87mvHA88Dd+2bXv/x9QsKt00UY2GxR5hh6v8Dxl5wfONqYPKQtIYPvw/kHPZhfbd/eMu9aSbosUgxTJ14K6U44I2aAt/njXl/2RJy3Qh80N/VfNobZ63Yapooi6THtFF6UoqRwFcn5m26UE5efhNwLqhxrbpt7fRXe3vN0mWR/Jg59PQ/wDXA3wF8xb55h+dsvXlL2Ol6v677695y71ATtVkkMQmR90NKYQfSNE01jSjf/1Ad8QYo29js6umPTlo332x9FsmF6ZMEDEO/AzwK8HXxt4uBMdm2sP3zxrx5xz87eLKpAi2SDtNNrWkqTGTdlHfb9vmKfStGZ1f/Nk3oK9cFM8q95d5t12exsNghCRF+RCOlEJpm5Mgt9+YQSVV77IGZtW/3draccPeEysQSbJFwmN5SRyOlOAF4R0qRDuAr9tUDJ++V1vj9kib3ce/XdZ/jLfdaD2ksdkpCmZqInm5A97YdvmJf69D0xv2zbKFHWpT9QlAvXPZKn5wdF2HR1UnE8MNuxNn/g7fcOwO4t7+ruXagq2n47Enr18VZnkUSkHCmBjDCjz8DszRNrY4+dvHLfR/4tCH/Ch2+IzIue605Ki0SlUQLP9roA7StGPUrHpu0brqOOBbEQIH6dPorvU+KvzyLRCYhW2oAKUUvTVMbd3TcW+49KMMW/gSFyyH0oxed+/0H8dRnkbgkrKnbkFIMBbprmlq07bEZr/Y6/KP6bs+1Knt34Pe+Yt9r8VdokWgktKmlFILIGBEncGBb/3U03nJvT6AC1CGjsmqefeK0tefGW6dFYpHQpgaQUgwD6jRN7bCnw1vuzRroalqxqjWzlw11q44otWbSdF0S3tRtGK32ME1T323v+HULCjPer+vxRKuynS1QTxznrrpi5oTKljjLtEgAErX3Y3tcASyRUgzf3sGZEyqbW5XtHFB3KMQffgxk+Sc8v1dWnDVaJADJ1FJ3A84HHtjRw5k2Lnip3wv/acw7DcQnwMm+Yp81k6YLkTSmjkZKkQk0b+/GsQ1vufc0YL4DfY2Wu+Wc+yZu/DR+Ci3MJJnCDwCkFP0AHzBlZ+f5in0v2dGPtws16LOG/I9GlO+/f3wUWphN0pka2AAsJLIE8k5ZUrz0gzHZ1ac36fYaHbHQW+4dF3t5FmaTlOFHe/GWewcCbwnU4MOyq+97bNK6683WZBE7ktrUUoqrgQGapq7a1bnjnx1SYEetWB9MzwEu9xV/+0jMBVqYQjKGH9H0AfpLKXa5ds27Z/+46YDM+kECKkDMOvjp4Xddv6BQxEGjRZxJ9pbaAYR31guyLd5yr8OGekxHXDA0veH75YFsr6/YF4qhTIs4k9SmbkNKUQBcC9ykaSq4q/OvX1AoNgTTPljS5D4CqADO8BX7mmKt0yI+JHv40cYRwDTg4N05+e4JleqZ01drRMZsn5Auwp9d82rhPjHUZxFHUqKlBpBS9N3ZoKcdcdgzw34f0G3PZdvD9TVh5wG+Yp8/BvIs4kjKmLoNKcXRgE/T1KbdveaKV/pc+lF9tzsVogk4wVfs+zp2Ci1iTaqEHwBIKXoC/wD+1J7rHv7d+tkKMRZU2CH0zy9/pc+M2CjsOnjLvYd5y703GAvFxpVUbKk14HNNU+2+8Zv8wsD9NgTTvtwScjl0xNm+Yt8Lna2vK6DNH3rklpDzHRACaCXOKx6nVEsNoGlKappqklI4pRSD2nPt/DNWfbdvesMQHT4Bnh/1zLDrYiQzZZFSiJ6OlpdAOAA7kVlLWjw1pJypo5gHvNeW7Wl3eWTS+jUgjnUI/Y0m3XH3WS8M/NBb7rUe0uwCKcXhUgrbs1v6nPh9IDsHlA6EgCCRFZDjRiqb+n7gj5qmAu290Ffsaz4md/PEYen1vm+bc8cBc73lXmenK0wRpBTHAB9VBl3nL2/OfiXLFlYgTiayFEpcQw9IwZh6e0gp0vfE3EYLfRNwm9se/GJ0dnXRPRMqKztfYfIhpegDDNI09bGUwqYrzrtq9fBTFJwyLmfrtFm/Wz/bLG0pb2opxZHAs8B4TVNL96SMo+bvc93mkOvufHtw49aw6wBfsa+qc1UmH1KKD4ABwD6apsJjntn35nrdeRtwna/Yd4+Z2lI5/GhjGfA50LinBbw/+YeZv8mquWlr2OkGFnnLvXt1mrokQUphl1KcL6Vom/c5HThG01T48lf6XNSoO27Lt7d+AvzVRJlAF2ipO5NIn6t6PUPomaOzqy988HcbnjVbU7wwFp76DJiqaeqJtv3ecm+BQC3JsoUzx+ZsHXHPhMpV5qmM0BVaagCkFBlSijlSijP2tAxfse+TMdnVp7tsuvPD+u5Pesu94ztTY6IhpThASnE2gKapz4GxwJNtx69fUOgE9axC5DfojiMSwdDQhUxNpHtpODC4I4U8Nmnd+72dgaE64kfgjXHzhl7UKeoSk5uAMimFC0DT1KLoYb4bgmnvgTjaJfQrE2loQZcKP6QUzt0Zmro7eMu9eS4RfrtV2UeOyKh9ft4Zq8/qjHLNREqRTWQI7xxNU+ukFL2BgKap6m3P9ZZ7TwQqhqY3fP/SmSuHxVvrzuhSpm5DSuEFjtQ09WBHyrluQaF7eXP2FytbM/cmcoN0va/Yp3eKSBMwnsAuA6ZrmnpsR+cZcz6/AlYDh/mKfc1xkrhbdFVTPwxMBPbTNFXbkbKMNWjuB67It7f6mnT7xy3K/k6+vXXR2JzqYFiJ6kRefElKcRwwWtPUn43tfpqmdpjI/roFhTlfNrrXbI6MjznQV+xbETexu0lXNXUGkNOe4ak7w1vuFd3sLS9uDadN+t+jSgfRZEe1uO3B3Ebd7m9R9qoMW1j0cQYGVgbTFjfojg159qDTk9a0t78l8+OasHNdgaPFNSS9sd/3gexFW0KuqgGuJjEkvTF9aXPODxuD6TX9Xc0Nb5y1osPT0KQUdwOnAgftziCw0c8MK2/UHeeNzd5a9uikdTd0tP5Y0CVN3YaRdHIC8JqmqQ6FDd5y7w2g/gLCBuguEX7Xm1Ef/qkl66easDOYaw/27eVsGbmmNeOnZt2uMkS4d449tPfWkHNLCJvThsrVad84FTs6OqJGIerTRdiW7wjmbwq6loSx1XSzt2YXOFt6r2jJej+kbNV9nc35vV0tvVa2ZC4cm7315Nqw43OF2LSsOXtxi7JV93c1632dgdA7dQV+oHnbrLHGENLpwJk21F+/Lv722o78vWLJLmdhpzjHAq8AZwHPd7AsCaKFyKi0YKuyl849fU27xjxcv6DQvrjRnVEVSsvcJ72hVz9XYPDiRvfmurDT5XE1DertCoxY0uRe3qzbHX2cgaE9HC0jlgVyvg4qkZZlDw9Ot4VdCqGAwoCy9V0fTO8ZUqIHkL0umOFcF8wAOPUfNb0AfpXYZ2mzk6XNuW2b6sDy4aEMm25r0B2rAAVqL0AAuo5Y0IG/U8yxWmo4GXi9oy01/NKaaYCM9yCenSGlmBxU4rR/1fa86s3agnBPR0t+b2egX54jtNdH9d1/BrL2SW84INcW2ntxU97XQPZAV9OB6TZ94PJAtg84CNR+EU+rMIhbfMW+O819VzumS5s6GiOrqq5pqsZsLZ2B8YFF05SSUlwKnA2cvCfvz/iwvofxLYQJI+/aQ1d6+LJDpBRpRJbhSImsTVKKQiImPNXY9Rgwbk8/sIaBj8akoaTtpavH1ABommqRUtwOfGO2lo4QtbDqFiKzTjIAOiO0Moyc0GZuwwo/toOUwqVpqtVsHe3BCDEuBQ7VNNUqpRDtyVyVSljhxzZIKa4EFkcNsUxYpBQOKUXbjJyVRPJ2Z0MkljZNmMlY4cf/shT4mgT/wBs3th8Dc4B7NU29BbxlrqrEwAo/kgwpRTdNU1uN3x8h0h35hsmyEgrL1DvAmIP3KDBD09RPZusBkFLMAG4Bhmia2mK2nkTFCj92jBM4CBgGmGZqKYUbEEZ33DtAAZEEMRY7wGqpd4KUIk3TlGkLjBrjm38EXtQ0daVZOpKNhL4ZMps2Q0spTpFSHBuPOqUUwhjvjaapBuAOoDwedacKVku9C4zVChYDlZqmjotDfVcDdxMZ6/1DrOtLRayYehdomgpJKU4CYpbrQ0oxELBpmlpJJF1aE/BzrOpLdayWuh0YY0SO0DT1TieXuRpYqGlqO5MMLNqLFVO3j1uAN6QUno4UYmRknQC/xO1TgKs6Ks4igtVStwMpRS4wxnh615FyLgFmA6OMfBoWnYgVU7cDTVN1GI+ipRT9gbW7O8bCyHBk0zT1KTAX8BMZ7mrRyVim3gOkFPsRyc93LZGnjrs6304kSeVKIvnnAljjNGKGZeo9YxlwL/DPHZ0gpcgDLiIy2CgkpfgdEVNbxBjTY2pPScUv8/r8ZUVJMQg9GmPalGPbzE9SiknAi8BRmqakGdq6Kqaa2jD0e6DSgQCIo5PJ2Iah5wI6cAGRBDl2TVMvGsf21TS1zESJXRKzu/Q0UGnGKk4ZxHnBm45i3CT+TGTAkwCuBi5pO2YZ2hzMNrWM5MpQKuIJ9jZZT7swngT2BR405gGeBsT8UbrFzjHV1EaocTSIm4DXgQsP+lP51WZqaicFRFIP/EZKcSjwEJEJrxYmYnZLjb+s6BN/WdGdwO9yXdWf1rTk//W8h6a3a8XaeCKluFJKUQKgaeo/QD9NU+8RabFHElkHxcJETO/9iOayx6YU/Gfj2G+rmntlJ+pNo5TiaSAPOHXbBy9SigxNUwmV1rYrklCmBvCUVBQAH4PKH937wwnPT5+50Ew9UophwCzgAk1T/l1NHJBS2IBpwEuaptbFS6fFfzE9/NgWf1nRJuD4dHtz5vLq/eXZD14z1AwdbWm7gHpgILAX/HfiwE7oD9wOXBg7dRY7I+FMDeAvK/ppXL9/XVTXkhdetP7Iv3tKKnJ3fVXnIaW4jUj/M0YC8n00Tb2/O9dqmloFHALcFjOBFjsl4cKPaDwlFccBrzttLZ+cOOiVEx6YOm+P10LcFVIKh6ap0Kw/vBPCZrNh0/Xhvz8uzUjjtadlFuTMKzwhc2F+H0AO+35Zwt0jpCIJbWoA7//Nv6i+Ne+xofm+FcurvUP9ZUWdvqaKlGJ/4LWlz789EGX/b5dcOBzWvrrCp+eGetk3uX4SYRHSs0N5ek640F7pWiF0EdazQ/l6TrjAvtH1o1BCD+eEuqnscE/7BtcP4YLWg+1VrmwUSiACwNGWsWNPQoYf0fhunfz4IQWLXlte7R1MZO5ep2EskwGRYaAr0G2Rv0dbOG2z2ZRDT9Mzwt0QygagnCo9sh15WrTtNlHb9i3OWhSISIFOkuyJabKSFKP0vtg0ZiLwIHDNmNtmBxfdcmmH1xoxFjM6REoxxpi1fdzSee+EsNvttH176bq+/2cr9tvTOpbtO2zbvM6yo7otdk3Ct9QA/rIiBVzVI2PjovWNA0rOuP+Pt+9JOVKKfKPLDWAR8CZRH+zLnzjWQTgcRilFOBy+/IljO/ShN0KNX/I6W6FHfEj4mDqaK+ec4/5k/ZFLqpoL+4I43l9WtFs9EvDLwP6PgUs1TXV0fReLBCYpWuo2Hpw6r7aqudfBIH4AtaD44Wmn7Ox8IzFM22Pr74FniKS7tUhhkqqlbsNTUtE/21m33CbCafnpW/b78Mbpy7d3npRiDpFRc0Otx9ddh6RqqdvwlxWtGdv3vbMagznNq+oGv+YpqejedkxKMSSqV6Mc+BNWQsUuRVK21G14SirGAe+k25uWnbjXS0efsvcLbmA58H+apspMlmdhEknZUrfhLyv6qH/Oz9NawukHfrVp9OLz33p9DZFVWeeaLM3CRJK6pQaQUjz67qqTLp637BKILK12qdEFaNFFScqWWkpxuJSil7F5z/iBr48HyoCLB+X+8ISJ0iwSgKQztWHm94gkkkHT1Apj5smN/XNWfryybp8LimbeZsXTXZikMLWUoqeU4mwATVMbgZOIPKX7BX9ZkTq44JNjuqdX+pZuOehaT0lFkRlaLcwnKWJqKcVdRLKCDjRMvUM8JRU5wAeg9juq/xuX/O3yR56Oh0aLxCEhTW2MzzgL+EbTlE9KkQ/02t08Gp6SisK8tC0rW8OuNJe91bvkz+d9F1PBFglFooYfuURG5V0MoGmquj2JYfxlRZWH9ZGnBMIZdTUt3Ss8JRW9dn2VRaqQMKaWUgyVUvzZWFO7BhgD7PGKVLMv/tu7unIcBxRkOhoWTnv83L6dpdUisUkYUwPHAjOAQQCappYbWY/2GH9Z0ed7u7+/JBDO2PuLyjEfe0oqXJ0h1CKxMS2mNtY6mQF8rWnqTWPh+HxNU5s6u66J995y91ebRl8HzAfOi8WUMIvEwcyWWgfOJ9JCo2kqGAtDA7x69W3XAzcDk4fkfbcgFnVYJA5xNbWU4jApxQtSCqeRz3mUpqkZcar+jiF53y38sWa/k7U77uvUuY4WiUW8W+ruwCj+mximNl4V+8uK1H7dlxyVl7Zlob9un2s9JRVnxKtui/gS05haSuEC7geWapqaZWQ9cpm53renpCID+BeokUcPqLj2yctmP2iWFovYEJOWOiplV5BIb0Yv+CURuWmGBvCXFTWn2ZtP6ZlRGfp43VH3DbnxlQPM1GPR+XS6qaUU44ElUop8IyvoSZqmbunsejrC8ttP2zqy17+Pag2nVQX1tDc9JRVW+t0UouOmLnUfRqn7htBtub819lQBzUBPgI6k7Yolsy6e+6mO/RhQ2VnOus+mPX7eXmZrsugcOhZTl7oPU6gPgDQlCNmUGEdp7SfGU8HEG1SyHSbee8s5vqpDnslL37pqc3PhMH9ZkTVBN8npaEutCYRLIBAKG0ZarWQxNMCrV982b2i3b6/f3FwwAHjWU1JhLW+R5HTU1JVEViDSBaKFJE2rVXHdzTNBzAAm9M1e+ZWn5PUbjOXwLJKQDoUf9fdkr8hqsPW2IWYCb1Nam9RptbQ77v/SXzfkIGO1sBbgqERcosNi5+xxSx28LeeCnAb73nXu8DJKa0uT3dAAq+r2fskwtADS89K2/G3a4+cONFuXRfvYs5a61H0Y8G+FsgPNAnF0Kpj6vyvw4gIFKLvTFmwK6mk3AI/6y4qspDhJwJ621BpgN1Iyu0iRvMv/XdeRW0AcfpzntbPCyvE58IDT1rLi/FlXzJw+Z7LYRTEWJrPHLXVbVx6AQIyntPa9TtaWEHhKKgRwQrf0qme3Bnq6BfqnCtvVVqyduOz5jWKp+7DmNP2m9BZxvEC8DZxKaW2oU9UlENPnTE77ctNh166pHzQNKBzk/uH7Yd2+ueyRi5/6wGxtFr+m4wOaSt2XALMbssKvL/5N4ynJ1Ee9J3hKKrILM9fdXR3ofmlQd4UVtoeAv/jLiraYrc0iQqeM0qu9N6vCXec4sTov9Ej+VY2Xd4KuhOeSRy8c8ZZ/4jQQU+wi2PybXh+/H9KdZ700446YrSBmsXt0iqn9T6XbCyudH6cHxEiBmEBp7T86QVtS4Cmp8A7MXfHGqrrB/UD5QdwI/N2aMmYenTJKzzMlEM4I2I4SiC8U6vm1czLO7IxykwF/WZHvwxun9++RsXECiDrg2V5Za7ec99D0qWZr66p06iSB8K25vUIO5RcKOzDYdVP9qk4rPAnwlFTYh+QtvXFTc+8/1bZ0swMLgBJ/WdF2VzqwiA2dPvNlzRPpE/qtdT0jED8Dv6W0tr5TK0gCzn7wGvei9UddAZQI9MwDei5euqZ+0DFflp5faba2rkBspnOVuo8F3mh16ovX9wke4ZkSMHW2i1l4SioK9+/+5VtLtxw4QmFrAO50u7be//Wt51rDW2NIzOYo1v0169bcesctNe7Qx3m1jsMprU3prr6dsc+NLw9r1dPLgFPy0raEBub+dPfXVSNvsW4mY0NMJ97W3pv1D3ed42RgBqW198esoiTh9PtLzl9XP/Dh9Y0DsoCvMhwNNyz7y5lvm60r1YhthqZStw14UaEmbu4R+mPPK5pmxq6y5MBTUmEDfg/cCQzY2/39Rn/d4PE/3XnqUpOlpQyxTztW6s5sTtdXulpFQX1OeHzejMaUHCPSXjwlFemjen/44peVh40P6i4X8OShhQvvemnGnT+ZrS3ZiUsuvVV/S/f2W+t6164LHRhFae3qmFeaJHhKKnoAt4C6LM3e4uibvar859qhl/vLiqwnk3tI/BJElrqHA4vCNlW5pn/rkZ4pgXXxqTg5mDr74iP9tXs/9WPN8IHAhu7pm+7+bd93Zz0wdX7QbG3JRlyznjbdlT0ho9n2akO2vjanwT4olUf17SmekoqxoO4BMbpnxobGqubek/xlRdbNZDuIeyrfTbMyHymocl4KPApc1pW7+nbE9DmTRU1Lt3s+2zDunEA4swDUv7T+bz089/KHu8yYmo5gTn7qUvddwPV1OeEHcq9puCr+ApIDT0lFGnCpXQRv05U9u0dG5dtVzb3/4C8rWmu2tkTGLFPbGjPDizObbAdt7hG63urq2znTHj/P468b/LRv88GjQIQLMtc/M6r3R6UPTX1mg9naEhHTVhLwP5We33uD8wtXq+glEOMorV1sipAkwlNSMQj0O8F2ZqajPtgUyrkSeMJfVmTdm0Rh7pJzpe5C4FOFylzTv/WUARcGPjNPTPJw0eyp5y9cd/RVTaGcEaCWH9Hv7efy0rbe+sDU+db9CWabGgjfmjtcCb5udalWZ1D0ct5cV2eqoCTBmBB8Sqaj4bGmUHZhlrP+y8ZgzkX+sqIvzNZmNqabGmDd4xnX9FnvvEsg3gNOorTW6pvdTabPmZyxqn6vB5ZsGj0R6FGQseGDQ3stvPmRi+cuMlubWSSEqQEodV8IPBFI01/a2Ct4hmdKIEGEJQeekgq3TYRusAv9j7qy6WHluAe4019WVGO2tniTOKYGGu/OfjqryX7u5u7B53pMazrbbD3JyOWPnT9Srj3uj43B3IkCvXp07w/fL8jceP4DU+d1mcfuCWVq/1Pp9h6bHYuzGm0jBGISpbWvmq0pWfGUVBzcI2Pjc5ube+3jEMFVIeW8BnjFX1aUOP/wGJFIK97imRIIZzfaxwjEZwo1f+PsjElma0pW/GVFX47t8/6+I3p+fllIORuBl/LTq1ZcNPuiC83WFmsSqqX+hVJ3QatT/wnIbMjWvd2mN35ntqRkxlNS4Ui3N13ktLc+VN+aZwNeAG7wlxX9bLa2WJCYpgZWP5le1G+t6wWbEiuBsZTWxm3NxVTlyjnnFv5r1UlXN4eyrwDlPKjgM19h5vpJj17ypN9sbZ1JwpoagFL3UcDbYZtaKhQv25R4NxVSBpuNp6SizyD3Dy/6awePUVALttuAh/1lRSkxQTqxTQ20/iXnflfINl2hEIiWsE2dtWJw4J9Dz261Hg13kGPuunvsj9XDbwaOz3bW1h9Y8J85C9eNvzbZbyYT3tSUum9QqNsFvyw4ii4UwCqbEj8G0vTGutxwVl6N/e+uoG1ZfXZ4/ZbuodWeKYGEXOouETn0z0+e6rCFnt/Y2C8d+By41l9W9G+zde0pyWDqqOz+hJoyws83ZulDu29xrLUp0T9sU/vZdZETfYkuFELxk0CsbMoIhxqydUfPKke5QKyscYc21uSF/Zbpf830OZOdb6w87byg7voz0Hef/G835LjqJr484/akG4+T+KaGNmNrgNxeTL36yfRuA9akFQCe6rzQ+LBdje6xxbkW8ITsan9HWGRFn68LhU2JFYC/IStsb87QAz03O+cD/qoewc1bu4V+6qrhjaekIvOAHouf/r56/4mt4TQdxKMue+DWH26fVGW2tt0lOUzdQdY/lpHbZ4OrN+DZ3D1YJJQY1n2rYzPgCTrUCGdIZESfrwulbEr8BPjrcsKZrS59U48tzpcA/8bC1upad/iHVDf98Fue69UYzP0TqKlp9gDDun2zYEnVqHOTYfHULmHqXVH5SGZO4SZnH8BT1SM40RkUffNqHQ2AJ+jQD3aGbK7o86NNX+MO5es2VnSrdvwT8K/r01oXdKrvUiW8KZr5l9GtYdeCH2uGFwJr7CJ080l7vTD/ganzE/b9WabeDWruy8rKq3X0AzyVBcHfZzSLnNx6RxDwtDr1Q11BmyP6fIXSjQSZ/q35od42nS/yah3vAP7V/VuamzP0b5KtpfeUVGjAPcAhfbJWNztswckf3XRlQg5jsEzdCTTMzM7MbrT3VyhPZWHw3OwGu8hutNsUalDQqX7jCtp+NRxBocICsVKhVm/tFu7rDIqPcuvtH4bsas26vq1N/de40mxKjGMH9xBm4SmpsI3p8/5MX9Uhl9QH3ZlARb/slX9aePMVCTWG2zJ1HGi5IycjrdU2oNWpD93SPXSmu9bektlszwjb1D5huzpwO6aPrPYOASDh1qj0lFSkA1eCukmgcvfOW75oRc2wSf6yoo1mawPL1AlBm+kbM8Ne4ObMJtsBAiEUiuYM/d+bCkJHJOL48imzLh9UHej+ypKqkV4QAZc9cN/xnlcffHDqPFN7SixTJxpR/fIKZRcIFOpNgbiM0lq/yeq2i6ekYgiRhJeTcl3VukJcWd+a96i/rMiUm0nL1ImI0S8ftqmPW13qmIyAbYZCic09Qq83Zunne6YEErJb7Q+zL774y8rRN20NFPQHfPt1/+q+N667+al467BMnQyUugcE0vQX01tsI4MOtdIZEmdRWpuQT/qMCcGn2UToHl05BhRmrvuhsqnv6f6yom/ipcEydZIgpRDDvssoKdjkuFwg+jSn669UFgZneKYE1pitbXtcOeecnKqmXk9/uuGIIxW23AxH49+P6v/GPbMunhvznhLL1MlGqTtHF+oOobgi5CDgDIlzgZcTNSehp6QiH7jJJkIz7CJsA1EW1F13+MuKYrbAlWXqJGXNE+nn9lnv+qNdF8N1od5a26/19gEXBhaarWtHXPbYlMO/rBx958amfmOBTd4ei5/fy/3D9Q9Mnd/pY7gtUyczpW4HcIUu1N1K4AzbVakraLsjkfOmeEoqRqbbm2YHwpkHZztrKxuC7j8AFZ05htsydQqw6m/po3pWOR7LbLaPAL6uzgvdkH9V45tm69oR0+dMFrUt+X/5cO1xpytsQzIcjYsP7/uv+x+/dM78zijfMnUqUeqeoAv1qFAU1ufo7+XW2ycl8txOT0mFE7gow9F4b3Moy2Uj/KyO/QZ/WVGHlk+xTJ1i+J9K751Tb/tnt62OgwSiMmzTH7XpIigQCTWOJJppj5/bf3Hl2Fs3NPb/PSixf/evFlY1Fz5c2dR3GCD9ZUXt0m2ZOlUpdR8KzAOGGmNJAsBRUqs7FVimaaocQEoxE1iiaWq+sX0f8Kmmqb8b2w8BH2qaesnYng28rWlqgZTCBswG/qlp6nUphRN4GHhV09RbUooM4H7gRU1T70opcoiM9HtO05SUUuQDZcA8TVP/Pvehqw5sCmW9/0XlmHxQgNCBFuDo9hg7oZLZWHQipbWLFeoZhVICAeAkMntoPHBg1JnHASOitk8A9o/aLgL2i9o+CRgWtX0KsI/xu93YHmJsO43tvYxtl7E9yNhON7YHAlzofaB62kF3tAzv/tV/iLjaFqV7t7Fa6lTmv+NInECQBBzxtz08JRX/o7s9LbVl6lRnF/M7ExXD2BpWTG1hYcXUFimIZWqLlMMytUXKYZnaIuWwTG2Rclimtkg5LFNbpByWqS1SDsvUFimHZWqLlMMytUXKYZnaIuX4f1nzmjW0iwk/AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top-5 predictions:\n", - " 1. fork 8.643%\n", - " 2. shovel 7.149%\n", - " 3. syringe 6.684%\n", - " 4. screwdriver 5.352%\n", - " 5. stitches 4.247%\n", - "Answer: line\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAs50lEQVR4nO2deZhdRZn/P3XO3Xvvzr6HJJAGAgQhIWGxIMogAZRRBsFR3Inww5lR1ODCZEYdIoIjaJRFZwjiPoyMEkBZLAgQwpIdkhASOnvSSXd6vfs99fvjnA6Xtrd0zu3u3NTnee7TXXXqnKp77/fWeU/VW/UKrTUGQzFhDXYDDAa/MaI2FB1G1Iaiw4jaUHQYURuKDiNqQ9FhRG0oOo55UQshdC+vB3yq5wEhxKN+XMtQWAKD3QAfGJ33/2XA/Z3yEvmFhRBBrXVmIBpmGByO+Z5aa72v4wU05ecBEaBJCHGNEOIZIUQCuEEI0SKE+Ej+dYQQ7xdCZIQQIzvXIYRYBFwHzM+7A0jv2AwhxFNCiIQQotHr0St6arMQYrYQYpUQIimEWC2EuLTTNaWXHpZ3ziQv76y8vJOFEMuEEK1CiHohxK+FEKPyjs8QQjztvd9WIcRaIcSF3rGgEOJuIcQeIURKCLFTCLG475/80OWYF3UfuQ34CXAy8DDwa+DTncp8GnhUa72/i/PvAH4HPIV7FxgNvCiEiAFPAG3ALOBKYC7wX901RAhRCjwKbALeA3wV+P6RviEhxGjgOWCDV/f7gFLgj0KIju/1V8Be7/hMYBGQ9I590WvvR4FpwNXA5iNtx5BEa100L+Aj7ls6nJ4EaODLncqdBWSBsV66CtdMuayHaz+AK/r8vM8BzUBZXp706pzazXWuBxqBaF7etd45stM1hnXxXs7y0v8OPN3p2lVemVleugW4rpt23A08DYjB/t78fh0vPfWr+Qmt9avAelyTAlxRHQIeP8Lr1gLrtNateXkvAg7uXaErpgMbtNb5tv7KI6wX3F7+AiFEW8cL2Okdm+L9/QHwM8/0+oYQYnre+Q8AZwBvCiGWCCHm5/XwxzRF8Sb6QHsXeT8DPuX9/2ngAa117givK3B7xq7oLr+nczpw8sp2EOxUxgKW4Qoz/zUN17xBa70I98f1CK5ZtE4I8Wnv2Crc3v/r3rWWAk8Wg7CP+TdwFDwEjBVC/D/gTOC/eymfBuxOeW8ApwshyvLy5uJ+rhu7uc5GYIYQIpqXN6tTmQPe3/xRnDM6lVkFnAJs11q/1el1+M6htd6itb5baz0f+Dnw2bxjrVrr32utvwDMBy4CpnbT7mOHwbZ//HzRvU19VjfllwIp4Nk+XPvruLf3k4BhuD1nDNgD/AGYAVyA+7D1cA/XKcUV7UO4vej7cE0hDbzXKxMEdgD/C5wIXAys5d029Rig3iszGzjBu9Z9QBkQBZbg2ueTvDLrgZ95538JuAbXhJoK3IX7fBAb7O/xqHUw2A0YZFFf4B3/RB+uPRz4C9DKux/qZuA+cCVw7fIHgIpernUOsNr7Qa0GPuxdc3ZembnAGu+6K3B70ne9F1xT43+8ehPeD+pHQMh7/QrY7tWzxxN8uXfu53B7+1bcB8pngbmD/R368RLeGzwuEUJcDdwLjNFaxwexHR/E7e1HaK0PDlY7ioVimFE8Yrzx5Um4JsX9Ay1oIcR1wDZcc+ZU4IfAn4yg/eF4fVD8Kq6N2gh8exDqHwn8AtdcWII7lPiPg9COouS4Nj8Mxcnx2lMbihgjakPRYURtKDqMqA1FhxG1oegwojYUHUbUhqLDiNpQdByX0+RDnV0Ll8/B9a5T4xafv2KQm3PMYWYUhxi7Fi6fC/wVt8NJAfOMsI8M01MfBUsWPHMervvqX2+856KjFt76execVxa8dFkgUxUC0OiQQEhc11NDHzE9dT9ZsuCZc4HlXjIJzOuvsHctXC6Az2mRvUuLTEQ4kSxeh5Muqbtmyrc+8RtfGn2cYB4U+4kdbvoy7hpCATqEawMfMevvvf6sbKjhZeBeoQMvto16bqZAXJCN7vst5HKh9ok37Fq4vPP6REMPGPOjnwQiDRfkUh171mgLhDqS8xfduigLWDijnU87JZYm+6AgsD/SdMrpTRN/92bl9n9YCKwDvutYyYd3LVy+AvPg2CeM+dEPlix4ZjzoumDJ7qdz6cpyJ1M6G5h14z0XvdKX8xfduiiLyFvEK8h9NjlP0MOdU6MdgTAPjn3AmB/94zMgRKZ93PVOpvT9wEFwbuvz2cL73Ds2QHCwtLdrgkY76djOlbjbN3wqEz6gNFoLhIW7IFf69zaKEyPqI+R3P/pk2Aq23WwF21648Z6L3r7xnotawxVv/xyseb++84tf7tNFtLevh34nra00mpwWiFQoPv5fxi0+/4Fxi89/IJga/nWBSOLuKJUBVAHeVlFhRH2EJBpPXOBkSksqJvz1+Y688nHP32aHmxJNde/79JIFz4iezgdY9O+LAmhygEaTW/TtRYFEzasfyUYabqeTeeH9Pw+4tfMxQ9cYm/oIWbLgmcfAOWP4KQ9N/oebHkjl5X8Gd9env7/xnov+MHgtNJie+ghYsuCpK0Ffgsg+d+D1T6Q7HV4Kzpt2qHnJ7370ySMeglNKzFdKzPOpqcc1pqfuI0sWPDMHnOVgdYxaxMGpiw57o8ZJl76Uapn0fKhs55Xp1vFzS0evfLBt7+xP4m5aIwHV28SMUuIVoF5KPb+gb+Q4wPTUfUe+M1yhHWCNFUjuyqXKK1Kt494PfD/dOn4uQNve2Z8AMqBfAP0fwNPuj6JHPkTePneG/mMmX/qOApEGgiAywM1f+PFlh3vfJQueqYxUbT5VO4Gvp5qnfAC0N9soAB0EIenBh0NKvbugrT+OMObHEeD1tpIezIklC54RgejBDU4mcpKTLckAAe9H0KNviFLiSiAhpX6iEG0/njCiLgC//sGNn2l888M/s4KtDzqZsk0Ym3pAMTZ1AbjmS0t+DvzRyZR96ISLF+w95aPz+jKqMZ93IhsYjgIj6sLxDdBlTW//3V3Ax5USPU7KSKnrpTQbRPqBEXWBuPGeizaUjFy99dC2S8u3P/edy6Xs2c5TSlyllLhsoNpXzBhRF5Bw+fZP6Fwo07Znzpf6UPyrwBcK3abjAfOgWGCWLHjmx+B8oXT0yy+17T3n5u4eGH9yw/kXp1tjc3Pp4J+//NtHjX/HUWB66oKT3QyW1bZ31ly6mYS58+rL5iQaKh7LpYO3Ak/fefVlvU3UHJssqpjDoopbWFRR0PdnJl8KxAOLbp/cvu+shRD4nOtjasE7/tCde2IJ2vZmLLsrc2yzqGKeRj8BCIFIs6hiHouaC/Iejah9ZsmCZy6yIw135tIzzgCdBfF7EJfjirU7f2gvT+NN1HRV5pgmZ+m/sx3RobeC/nCN+eEjSxY8817gqVyy5gycoI5UbvnijfdcdLWw0u+rPvF/to6Z9f3/6sqm9mzoQwj9CjCvGG1qy+EPGo1Gawq82MGI2lf0fA57PVm5ZNOJlQA3/OSSF0ef+dM1VSc8saX7c0UYbT1bjIIGEItaVmjYrQWbgIKZHmDMD1+J1ry+K9FwKqB1ZzNCSv3R7s5buui0AEyIRWtaqgagmYNGS0WuOpQWkdjX2gr6wzU9tY/YofirAHa46XG6cWDqambRjqSHAUSrW0cWvJGDSCaoGwJZUV3oeoyofaRt76w2gFyq6uedBa2UGKGUeBv4TOfz9q92w4Ef2jbqzwPRzsFCaFaFMpZovKskVsh6jKh9RAQSIfefbK6LwwdwQyXv6OJYKYDO2c0Fa9wgM2nhMvmHA64XQPWhwLhC1mVE7SNVJyw7FaBqyrLTOx+TUmsp9Sel1H/pfKxy8r7JAKWjG8sL38qBZ9LCZXNAP/1k5uwrAH6fveCSQtZnRO0jqaYpjQDp1nHbuyujlIgpJUL5ecGS5GSAaE1LUYoad0za2q2HA5COZT9WyMqMqH2kvX5mE0D7/vfs7Oq4UuIcoAV4b37+gQ2T6gAOvjFheRenFQPLAfZRpbPa4nRrS1shKzOi9hEr0B4GEHbK6abIG8Bi/tauPhNAO9YJhWvdoHLAXa6p/y9rWQ0np+r3F7IyI2ofqZj01FkAVVMePbGr41LqFin1N6XUmzvyXOcl/W03pe8rRmem6dXr5gH8/bRfPpcsT9bkbH1yIeszky8+kmyasg8g1TyxqxEOAJQSNlALvCGldnDtzY69RGyK0JmpInTogwBjS7f/JRPXjY7FKYWsz/TUPpI4eGojQPv+s3q6vX4CWA9M89LK20bhb2Yhi4XX9s9ttEVm/z//w8uvB7LihVBa2K13lBasQzWi9hEr1Brz/va08uJJXGHXe+k6XIPzLxSpM1NWB6fldHCtN5u6QSBEWZs9plD1GVH7SMW4Z2cDVJ3w2Njuykipd0mpfyGlPgRQPW3XrQCx4U3fKUZB/9P9H7NtkZ1RHTmwX0qtd0xIdWx3PLFQdRpR+0iiaeoOgFTT5H09lVNKjFRKXAwQP1hxdiCSylRMrH9hINo40KSd8KycDoRqq9daAHZOLALYOyp9TaHqNKL2kWTj9AaAtn2zGnspeiPw+P89OKIqeahsajYZfvDar7xZlItFH3/7wxUA25pPegigtM2+B6Ck3S5YcCYjah+xgq2lAHa4qbtx6g7+G5hb9/QZZwIVwGOFbtsgUguwt338qwB1k1NjHaEPlbfaBfsRG1H7SNnYFXMBqqY8WtFTOSn121LqlaWjG7+DcIhUtT4zMC0ceMaXbbs8aKVb6xbP79io59Z4zIlqtLGpjwWSh6ZsA0g1TzrUW1mlxKz4wfKTIxXxnTfe82xTwRs3aIiZY0p35N+5/jUd0vFkRMtC1WhE7SOp5ikNAK27z2vtrWz9+gm3pVtj5cmmkv8rfMsGh0kLl4mdrZP0nrbxD3fkSak32jleDKeEYFFFr/Fx+oMRtY/YoeYygGDpnq78qQ9z59WXzdn5/Knnuynx2WKcGvcYAaIq44TXdWQoJcZngnq/pUUQGF6ISo2ofaRk1GtzASonPt3b5ypx4yKC66ogC9isQeOc0Wo+wJTKjfkzrHLv6MxnANJBZ0oh6jWi9pHkoalbAHLp0kQvRRWQpshjI2adwFyA2up1W/OyHwtmxC0AB4dlP1yIeo2ofSTdOqERoHHLlZmeynkzh4djIxbjTCLAq/vPS4ButUXu1Y48KXVDaZv1EEB5S2GG9YyXno/YoebKXLo8d+M983r9sjwhF6WY86gFsfGuz/3y8OehlIgyjbljd4faStvtcCEqNT21j8SGrz9H2Gm795LHB7FA65wxJTvinbLDwG8zQd2Ws/S0rs47WoyofSTZNGWzduzkYLdjKHDVDxeOiGfLYuPK6to7HWoGZsRjTigZcWQh6jbmh49k2kc3AUbUwCv7zj8B4OV9F9ybn+9FVNjQ9krpimjCurAQdZue2kfsUHMlIleUjkn9oNb7u7HzAaXEBzJBvc/SIsaiCt9X0BtR+0i0ZtPZdqilR7+P44VTalZ/3BZZB3i7i8Nfrx+RcaMDl+Sm+123EbWPJJumbHaysd7cTo8LmlLVY6sjB9rqFs/vanb1mlBa3AfQXJHzPXiTEbWPZBPDWnUuXNA9LY4VdrdNDBxIjH68q2NS6l3RhLUMoLoxkPa7biNqH7FDLVXCShfESedYYtLCZVFgMl3Y0wBKiTM3n5S8VKNT0aRlbOqhTLhy2+nB2IHRg92Oweb9E/84HxCnD3+5u174fdrih1qwNxNwTvW7fiNqH0k1T9qSTVbtGux2DDa728ZPAxgW3b++myI/BWraSp3yVFif73f9RtQ+kktVhpxsLNJVWLnjiTcaZsYA5+kdlz/Z1XEpdauUujGYESticcvY1EOVX3z31qtAnwt6DN3ESzyOqAXeqls8P9XVQW8D+puBLZYW1SyqiPhZuRG1T2Tiwy8GLTrFQjwuGR7d+4GJ5W/19MBcA3z/UFW2HOBQZba2h7JHjBH1UaCUOEspcS1AouGU/wKRoMh9pHtj0sJlwYOJEZFYoP2tHoq9CVQ4ll4L0F7ivN/PNhzTvh8zls6Yg9sjqvXXrR8MN86vAzOUEr+/8R69YsmCZ+Z1tKe7GOTFRDef/xSNbW1sPP3X3Z0npc4BLQ3rYn8FGH4g4Ku/zDEp6kt+NXXU7kz0StB34d7qczOWzvgFsPu0aPMFTbngrh3p2DaA02PN723MhrbvTEfrBFqcFmu54GAmVLc7E91uo61TYy3nH8iEtu3JRHcGhRM4Odp6bn0m/NbeTGR3SORCtdG2Ofsz4S37MpE9EZELzyptumZ7Krp8ezq2tSZwYv2kULxpRzq65KalM+pLzs2WTI20n7U7HZl0z9Lw/FIrWzol0v6eXenohoZsqKHcypRPjsRn7khF1x/KhRor7EzFpHD8jO2p6NqmXKipyk5XTQgnTqtLxdY054LN1Xa6enw4MWNbMraq1Qm2Dgukh40NJU55K1nyarsTaB8eSI0YE0rWbkmWvBJ3AvERgdTI0aHk9DcTpSsT2k6ODCZHjwqmTtyUKF2R0nZ6dDA5dkQwNfWNRNmLGW1lxgST44YHU1Nej5c9n8XKjQ0mJgwLpievj5cvdxDOuGBiYk0wPWldvPxZjWB8KDG5OpAevzZe8RwwFvTHAQtEcsbSGfPWX7d+hSVyJzvahm7GqDtQStxkn8zu858POuG0NcxPfQith6b/zYylMwQw/LzShqv3ZSKT3kqVRICTS6zs+e1OoJPPsgaEA2gLbWvQ2k3z7rTGAluDoxG6u7QDDj2kARxErq/ljyAtLLAcyHk7oRY0LdBCHFnaEiDc944AbXnXzYH41vrr1t928fcWr3zz0IxZpcHmSzZ8+9puo40pJd4CVlygyj7g2BwM5MSn/AoYOuii/uojI8W+THjq6njFBODkqeG2f2zOBUcfyIZjuA8UHbQAr58Qbg9GrdzrryfK1wC3gQ54W+DOK4QJ4u3UOVNKvcpLXwiskFIf1y6mrumhnwbREXN9XuvGxYB+Hrf3TgDz6hbP7/I7UUpE3qvKZgIvAgivvB/CHjDzw+t5x5wZa7oiq6256xLlCeDkkKg5O63tw4F9dqRj6epAugV4GHjjtGhLfEQw9dpTLcNXr79uve50zZUgJIW1qa8HfqKUOEtKvUpK/dcC1XNMsf669StmLJ1x+Bli/XXrV0xauOwWOBz8tGMEqMvvRUqdRFVIjUa8e8Ro6Il6xtIZc0qt7MfanMBbgDU2mLjcQcyEsABRvipe6ZXUDSBeHxbIPDMm2Nr8arzyfuD1tLb2P3ntlj7dPjwhF6J3toEqKfVB4Je499i1ftdzrLP+uvUrlBIfAD6K+z0oPFuQXkaAlBKXj5wenFy7Ker0pfyR4KuovVvSc21O4PB1D2TDraODSYJC/yajxdpJofjeEyNtm2zBxts/tH9oGvTwCFCllLhASt2KO61r6JpSoBygbvH8Fef8+z3t8WxJsCVd3a3p4XHR/lGZy6e9Gd4ktKixtbjSL5va755a4s0+eA8Pt9054Y0U7lYAN0upW5QSI4AWb1nPkEEpEQSyXrsewr0dDqk2DkWk1F/KTydzsfqQncn0ImiAL0up/6XltZKDliNCpV9p8+2O67eoFYg0EPQe3h4DUkCrlLrFK3MncL5SYrKUWislxgD7vbHLQUEpMR74M/CvwO+l1L8drLYc6zSlapqAXkPKeUGciMXtTULja6xyX0Xd1cODd2hVXrEHgKfyeupHgEbgEgClxFhgzwD35HuBTUCvu5Ua3o0XvVcBv5VS3wU6DKJLn49O550MXH++LsvZjhjaky+9PbxJqZ/ulHUH3gps7wFtA/Ag8E9e3hgp9R6/26mUmAd8E7hUSp0A/t7vOo4HpNRppcQuoAlgWHT/ScOi9eUwv7dTRwLXpcLO/mDGyvgZVmDQZxSl1L/LSwaAm3F7TZQSo4HdSokbpdQ/8ezeSin1AR+q1sAwYDSwzYfrHbdIqf+h4/+2dHlb0Mr0+nl6Q6OVLa+VHHQsJ1RUos5HSp0Cfp6XlcLtsZ/y0nMBpZR4n5T6aaVEKWDl2evd4k2iXAdEpdQ/lVI/o5Q4YzBt+WLC+3xJ5h5N722PbenreSXt9htAiZ9tGdJeelLqRin13VLqN72sOlwnoo4NBz8GNColJgIoJaqVEj355n4IuLLjCzCC9gelxGzcuJDngg4JnF4d/5USllJiSTagy2yndxv8SBjSou6MlHq7lPo2KXWzl7UCd8SiI2zyN4G9npmCUmK0UuJmpcRI78HzE8AlQ204sQjYDvwRaAlZqaozRqyc3dsJ3ujH5amwMyETcCr9bMyQMj+OFCn1OmBdXtYjwDYpdcdWugo4EXCAHwBRoNfQFYYjQ0q9D/gMQOaJPzkNiRGb+3jehJbXSg6mwnqcnzb1MdVT94aU+jng50qJK7ysrwHfBv7TS7+AO7ICuEE6B7aFxc3SP06p0FjWjtYpb/Ze2qWk3X49mrD6XL4vFJWoPb4K/EEpcYKU+hEp9a3eJI8F3Ibry4FSIgbsUEp800sLb7bT0A+UEreMKtl9AMAW2R43nc8755+SEWe87QhfF98WhaiVElUdD4u4ZsY8KfW7hpWk1I6U+udS6ie8LBv4CtCxi1AtsF8pcZV3zYhSwveNVoqYZ9vS5UsAZo1aPquP50xPhfXkdNCp8rMhx7yovR54ObAUDi+/V72d55W7W0r9mpd1CLiFdyaOLsUdWZnp1VPey8jKcY2U+sX71//LXQD18dE9rnrJO+cLgSwN6ZAe62dbjtkHRaXEMKBBSu0oJb4GHNWso5R6L7A4L+sN4D+A1730jcC3lBKjpdTNSokqXJ+W7NHUW0y0Z0pDAFubp2/trWwHJe32BqGPo3Hq7lBKnI47C3gVgJR6mZR6tZ91SKk3efZ4h733V+DbecOJPwA2dYx5KyVqOv4/Xvn8aT/4NUDISvbph66UmNde4tTijk75xjEl6o7xZ9ze8wHgte5L+4uU+iUp9W15Wb8Hvp835v2o9wJckQ9U24YKB+IjnwWYO+avp/XxlPJsQI9Ih7SvQUKPGVErJT4PrFFKxKTUWSn1F6XUfb7N+Y2U+jEpdX7oh3twf2gddv5mpcQPOg4qJaoHtoUDzxN1Vy4D2NM+oa/j1H8IZGnIBrSvq8mPJZv6TWA9EAE6R3wadKTUS/OSQeDfcNuLN1S4TynxBSn1vUqJAFCSZ8oUBduaTvJcSHVvwVEPU9pmr8NdPeMbQ1bU3hd/B7BTSn2nN6KhBrVRfcRzzPpRXpaD67Oy3Eufg+uYdbHnWBUDnGN9hXp15GBlfWI054998jL42i96K6+UGHZmacmpkaQ4GOqt8BEwlM2PHDABGDXYDTlapNQHpdSLpdRveFl7cCeC1njpa4CmPMesMu9HfUxx6rBVZwDEs6V9GtIDUtmAHp4Jal8nvYbUB+cN030XuFVKvV8pcVUxetJ5E0PfystajTua0uGY9S3gk0qJsVLqjFKigiG4rrMz25pP3Aewpv7s5b2VBXeuoOW1kgYt8LOjHlqixnXavwb4C/BwMQq6K7yNcvKXvP0FqM9zzHoQGI7rT45SolJK3TSgjewDdS3TWgFmj14+XSmxWkrda1Cn0jZ7LT7b1INufiglJiklrgd3bBiYKKV+eJCbNahIqZ+SUt+Rl/Vr4Gd56ZVKiQc6El5PPuhUhBorAGqr1/0YOLcv58RjzompsL8zioMuauD/Abd7pgdSarP4tRNS6t9Iqf8LDg8X/gj4Xy8dwR1ZWeilxWD5rMwY/tpcgPr46BuBzmtRuyQT1KMywSIYp1ZKnKaUOMlLLgJmeLshGXrBc8z6sZT6j15WCHf4sGM7tBOBQ0qJD4O72lspER2Itm1rOqkO4C/br3hMSt2nYVc7R7PlcGyvfFFKhHH32LgdQErdJqXe0fNZhu6QUrd4Iysrvax23IftjiVvl+CK/AxwXW4LNbKyp31CC8DFE/84WimxoC/nlLXaa0rarTd6L9l3BkzUSokZSgnhjeFeBXx6oOo+npBS7/J8VrZ7WduAH/POftE3Ag0ddrg3fOiLz0p5qKkaYHLFm/OAn3pOXz2SjOjR7SXOKX76zQyIqJUS78NddnUlgJT6eSl1w0DUfbwjpd4gpb7Z60wAVgJ3581m/iewMc8xq6y/dZ1Uvf5cgJy27wNG9OX5KBPUI3K2LgXC/a23MwUVdZ5TjwK+jGt2GAYRKfVzUur8MfJlwD15Y+CPKyUe6TjobUPRJ+qap70lcHIf/Lum+r7vzaKFnROtfs6mFmycWilxB+52BDO8h4Yf9HaOYeCRUv+hU9aDeL41Xu/9llJiqZT6a15eqZS6y/jrBxKjWnlnt62PArGOUZvuKGu1VzOU9/3whpM6Qlf8CXdstU/r1QxDAyn1fVLqh7xkCLczegoO33kPKSU+66VtpUR04/TaORun195yUf3K6Ra5Dl/qa4HP91ZfzibWVuqcrpR4r1/vwbeeWilRgutP/Dhwu5T6WeBZv65vGHg8O/x2gI3Ta0X4+tIJTkX2V5EXKxMbF9ReWnJZzZdEuz1Po3MCIf555cOi+b0xDVcA/CN92I4iHXJGOJaOgX/Den6aH3HcHZTqfbymoQBsnF5rA1Vxeeh0qylQE1lTlgSGJWe2Xmo1BazQ29FGoCYzJnm+1Rpw7NaABmoq7x3XcRf+BEDpo+6cicYNx2XltD5l7844uEONfWlLNqCrPJv6Jb/eX79FvXF67ZzsqNTVrVfVn5c+pf0yb0OTT/nVMEPfWPXJMeHoSxVVQE1idvMskRGjI6vKDwDD0ie1zxMpqzxYF90P1OQqMjNE0g5ZWEFAxNS7R9wiq8vQlnZw95duADJOefaA3Rp4EWhIzmydIrJia3h96YvAwfiFjZHwmrIK+1DwN0DQEZZYU31iIxye6fwOoKTUj9IN5a2BVQwFf+qN02vnAM/Z+0J25ZJxIjMh+dTGBbWPApnkmS1z7MbgW8G66BYtdDY5u2W2XR/cEtoW26ptnU3MaZ4Z2B/aGtoS26FDTjZxbtP0wJ5wXWhzyV4nmnMS5zWNCeyK7A5vLGnMlWVzyXObygK7IgfDG0rbs8PTmeSslszZdx4Y0t5q/eXVm0aU44gTSp6u1kBN8rTWcwjqqZHXyrcBwzLjk3OBUcGdkX1AjQ4646OZisObG0VXvtsFJLg1mtNRJ4O7aKHBqcht0yMy7aEtsSeBhuQZraN02NkfXVnxAnAwfl5Tu1ORPXikn+/G6bXzALn43I9euXHE+I5GpHDt6kPkLXPriraS3KmvKvFdKfU3jqTe7uhXyLmN02tvwV1pjUaDICe0yGl0UFD4xaca7QhESgud01GnRKRFk8habTrgkKvMjrTa7F1W0m5yQk4gNzI90W4IbrHidoMTy0WyY1LTAvtCa622QEOuPFuSHZ+cHtgRedVuDTTkqjOlmYmJ6cGtsZV2S6AxOyJdkZmUmBraXPKS3RxoyoxJVmQnJyeHNpSutJsDLZkJifLM5OSY8Oqy1XZLoC09JV6SmZSsir5cvtlqDSRyVZnZWuhL7cbgCoGoT0+Jn+1UZGeGV5VtEIhhuZr0aTqoJwb2hRtww+v1NArQ6sRyOac8awX2hVcADZmJiepcZZbI2rI/AQ3J01tLnMpsU+zZqleAhtpNGwd0hdC8xXfUJ7Oxkhe+eUMJuH4q3p553ZJYXPZ6OuScvPrM+Oel1Pf70Y7+mh8KSABBgcigmVe7aeOKV748XACh4I5wMLy+zHLCTjB+UePY4M5INryhNOVEc+HEuU3TAzsjzeHNJe1OLBdNzmqeGdgR2R/aFmt2SrKlyZlt5wR3hHcGd0QbndJseeqU9rnBHZFtgb3hQ05ptiJ9YvzcwI7IlsDBUJOO5aoyJyRnB3aGt9hNVosO6SqnOnOmlbR2AHFsXYXQGocgUEVOVFotgRqRsk4GHCtulQa3R2pE3B4LWNahQDh8qCwotDgPIFAfIlAfAm9D9uCeCME9EYAbAII7ogR3vONWEdoaI7T1nUgP9qHDnejVHccBNPoM4CAZSzgV6XYt9LNCi4OZiYmS7Oh0LLKy/BGhRUPqlDadHZ9qKnmiZlPtpo2++kcUgr1t4+pwl9sB74TA6IlMUI+wc6LFL0FDP0Vdu2njio5bDqBqN21cAeDdtlK8+0m288xh53n+znEJf9MpfVd/2ng0rL18oh3aEgumprdHM5MTVZFXypOBgyE7PS1emZmYGBN5pXy/3Ry00tPiI7PjkpMiL1dstdpt0lPi47NjUlMjL5evt1L2FRp9lUBY3ujA3ekp8TvT0+MHz77zwJAXaH+IZ8vS5I14KCVm4NrVX/Pciv+GcnecevBtanCFTQFiGA4FTv/T9hzucrIk744DsxNvMW1vbJxe+7ZAXEHH3Qx+f/qy7bt9b+wQImLHKy3h5C8MyOJ6DQ7Hiw7RFYmIM2GlEquk1Gf60Y6htvKlaOjublbMxIJt0wQ6NWnhsjl1i+evkFJvxN2jsFsSEWdcNqArcPdR8YVBj01uKA4mLVw2B/QLbkok6SEueT4td5bWWw6h0q+0VfrVFtNTG/xCdhWXXCnxKdz47nO6Wjhc3mqvodjWKBqKBgU66wY90/lxxhO4s8zdurRmAk6lUqLRe7A8aoyoDb5Qt3j+itrqtfeBoLZ67QMdpoe3vvKK7qbNExFnfCaoa3A3w/cldIkRtcE3xpfV3Qo6u6nxtKa+npMN6CrHIiSlvklKXedHO4yoDb5x3xfubwDxssa6MD9fKfFLpcT/dHVOWZu9rrTd3uiV82U22oja4Cs1kfp1Amf2F+//eH6QqHW4u1B1iUYLpUQL7n6DR40RtcFXZo5Y+bbGEg2J4dd05Empvyel/m5X5eNRZ0IqrMfgboX8ih9tMEN6Bl9pSVfcB/o7L+yZ965wfp5pEcyLzABAztYVWhCWUn/VrzaYntrgK7/75+81gXgZd5waOBze7yDu4ut3UdZmry+J25u8cr7ECDWiNvjO2NLtWwTO7H/52TWjALyF1/fxzgY7f4NS4k+8s3/3UWHMD4PvTK9e98butolie8uUDwL3Akipb+mqbDyamyi0iAJL8Glm0Yja4Dsr917wE+C7q+rnTM7P91ajt+bb1TmbMsvRYSn1L/2q35gfBt/Z8O1r24HOdvX7ce3q2flly9rsDSVxe7O3vUapH2PVRtSGgjClYtMui9zsm+7/+GgvazVu2OzuNgO9AXea/KgjdRnzw1AQxpdve2lr8/Sr32w85WJgqbdV8x2dy8WjuclCiwjwAvBVIN25zJFiRG0oCGrnpfcBt28+NOPwIgFvw6OpUuq1HXk5m6jl6IiUeg3vBHY6Koz5YSgIdYvnx4GVoGVe9jeAV709ygEoa7PfKInbb3o2daU3pn1UGFEbCsbJNWsOWcLJt6t/BXykm+ITcNeDfvRo6zXmh6FgVEcO/tnR9uVr6mdJ4NdS6g3Ahvwy7bHcCZYjIri7Qn0Zd9TkqDCiNhSM53e/77+B/9zZesIZuBHGUErUAmVS6pcBtCDsWDrk7U/ty3bPxvwwFAzXrtYvBaz0+/Oy78WNXgBAabu9sSRuvwWglKhWSozsfJ0jxYjaUFBmjliZdrQ986b7Pt4RK/FLwGe7Ka7wptWPBmN+GApK0Er/xtH2vBf3XHQObhTjdzk1tcdyUy1HhL3N2/4N6NMWwD1hRG0oKC/vu+BXwJKG5IhZwMNKiRAwH9gqpV6nBQEtdADAr0jHxvwwFJS6xfPjlsi9Gg20X+5ladz9Ev8RoLTd3hRL2FvBDUedFzS23xhRGwrOmSNWZJPZSO1N9318rJQ6A7wH+Ncuin4NeP1onZqM+WEoOGknfJ/GvuDJ7Ve8B9jtjVcD0B7LTRNahL1pxN8Ba3E721x/6zOiNhScdQfO/l8gnczFzgP+qJSYgDtzuPQsUWIJrS0Av/w/jPlhKDh1i+cnwnZibVmo6cNe1jjge8DM0nZ7cyxhbwNQSkSVEqcpJcqPpj4jasOAcNqw1+Jt6bITbrj3k2Nwt0IYJqV+olOx03HNj/OOpi4jasOA0Jiq+ZHG5rG3rzpDSp3piE3fHsudGI/mOpZ9bQauAlYdTV3GpjYMCFubah/DXQBwIfCYt7zr4rPzYjdJqQ8BXW5PdiSYntowINQtnp8oDbZsrAof7Ni5aSbwqWjC2hpL2G93lFNKnK6UmHI0dRlRGwaM2pq1TU2p6rFX/XDhCFynpuGWFp2H7p4Cbj6aeoyoDQPGtqYTv6exeGXf+Wd7drVuK8mdFI/m8nvma4EfHU09xqY2DBgNyZF/xQ1HKIFlSomvnxaKTYgmrL0dZaTUTx5tPaanNgwYdYvnJ6vCB98eHt17nZd1WjAj9kWTVl1HGaXENKXEuUdTjxG1YUCZUrlp38HEyOHyP35YLaX+aFmb3Tku5S38bYDYI8KI2jCgvLZ/zr9pLOpaps0FaCvJ1cajual5Re6g+8W5fcKI2jCgaOyX8OxqpUSpY+lxVk5Us6hiDoCU+g0p9cqjqcMEBzUMOLP+/f6tFk7NCucrHwBeBBCIBDBPyZZtwNnAs1LqfkXrMj21YcAZU7pj8774mPJHcud9By0QCHgnoOhc4E/A1B4u0SNG1IYBZ039OX8CS/wi+36ZIojWOEBHQNFncXdG3dzf65txasNgUAOwSp9oXZv+Ru6TgT8/dYW94t9Y1LxCusePakMbY1MbBpxJC5fNETjLNcIGUiAu7IiQ68V9uRR4U0q9sT/XN+aHYcCpWzx/xdjS7deB1iEr9XiHoPN4BNcFtV+YntowaExauOxB4EpgXN3i+c0d+UqJmcBOb0/rI8b01IbB5C6g9JSa1bfnZ0qpV/dX0GB6asMgc8F3725uzZSHDyWHl9Qtnp8DUEpcCESk1I/355qmpzYMKgEr+41DyeFh4LK87K/ibkHWL4yoDYPKtuaT7gF2Av+Ul3098MH+XtOI2jCo1C2enx1Vsuu3wIUL7vnMhwGk1Duk1Ht7ObVbjKgNg87ZI1/4adBK61X153wWQClxilLihv7GKjeiNgw6P/r8g9syTuje+viYCyctXDYceC9uWOfq/lzPiNowVLgbCA+P7lsIPASMBg7050JmSM8wZLjgu3fvbk5VjZLj/1x+1+ceau/vdUxPbRgyjC3dcUdzutp6fve8jyklbvKCHh0xRtSGIcOKvRfeBbzZnK78Aq450q899YyoDUOGusXznZCd/EnWCZ3xhy3X/jPw3/25jhG1YUhxyaRHfhMNtLP+4Huul1Jn+3MN86BoGHKcdusv721Jl392SsXm/9vaXPv9LlxTe8T01IYhR0u68gkQ1tbm6VcCT09auGzOkZxvRG0YikwHNO9ekNtnjKgNQxEFIglkeWdBbp8xNrVhSOKZHBJQR2pTG1Ebig5jfhiKDiNqQ9FhRG0oOoyoDUWHEbWh6DCiNhQdRtSGosOI2lB0GFEbig4jakPRYURtKDqMqA1Fx/8Hw+g2hAa1JgIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top-5 predictions:\n", - " 1. snowflake 22.972%\n", - " 2. yoga 10.533%\n", - " 3. matches 6.915%\n", - " 4. candle 4.574%\n", - " 5. syringe 3.947%\n", - "Answer: trumpet\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2AUlEQVR4nO2deZgcVbn/P6eqept9yWSSyTbZZ0gGAgmBsIQiKKABFUFAUAEVDQZFwesvokIEldzrBRVuFA0qKFwFFRTIFdDEYg1LAiEJmUnIMllnMpl96bWqzu+PqoEhJpnMTK+T/jxPP0l3nzrn7Z5vn3rP9r5CSkmWLMMJJdUGZMkSb7KizjLsyIo6y7AjK+osw46sqLMMO7KizjLsyIo6y7Aj40UthJD9PB6MUzsPCiGejkddWRKLlmoD4sDoPv+/CFhxyGuhvoWFEB4pZSwZhmVJDRnfU0spG3sfQHvf1wA/0C6E+LQQYrUQIgR8RQjRKYS4rG89QogPCyFiQojyQ9sQQiwFrgEW9rkD6O57NUKIfwohQkKIVrdHLzyazUKI04QQbwohwkKIt4QQHz2kTt19PqLPNZXua3P6vHaCEGKlEKJLCNEkhPiDEGJUn/drhBCr3M/bJYR4WwhxrvueRwhxrxBivxAiIoTYI4RYduzffPqS8aI+Ru4Cfg6cAPwF+APw+UPKfB54Wkp54DDX/zfwGPBPnLvAaOAVIUQO8AzQDcwFLgHOAH5zJEOEEHnA00AdMBv4FvDjgX4gIcRo4AVgk9v2h4A84EkhRO/f9X+BBvf9k4GlQNh972uuvVcCU4ErgC0DtSMtkVIOmwdwmfOR3nteCUjglkPKzQFMYIz7vBjHTbnoKHU/iCP6vq9dD3QA+X1e0902pxyhni8DrUCgz2tXudfoh9Qx4jCfZY77/A5g1SF1F7tl5rrPO4FrjmDHvcAqQKT67xbvx/HSU6/t+0RKuRbYiONSgCOqNuDvA6y3Gtggpezq89orgI1zVzgcVcAmKWVfX/+1AbYLTi8/XwjR3fsA9rjvTXb/vQd4wHW9viOEqOpz/YPALGCrEGK5EGJhnx4+oxkWH+IY6DnMaw8A17n//zzwoJTSGmC9AqdnPBxHev1o1/Ri9ynbi+eQMgqwEkeYfR9TcdwbpJRLcX5cf8VxizYIIT7vvvcmTu9/q1vXQ8A/hoOwM/4DDIGHgTFCiBuBU4Df9lM+CqiHvLYZOEkIkd/ntTNwvtfaI9RTC9QIIQJ9Xpt7SJmD7r99Z3FmHVLmTWAGsEtKue2Qx3t3Dinlu1LKe6WUC4FfA1/s816XlPJPUsobgIXAAmDKEezOHFLt/8TzwZF96jlHKP8QEAGeP4a6b8W5vU8HRuD0nDnAfuAJoAaYjzPY+stR6snDEe3DOL3oh3BcIQmc45bxALuBx4FpwPnA23zQp64AmtwypwGT3Lp+BeQDAWA5jn9e6ZbZCDzgXn8z8GkcF2oK8DOc8UFOqv+OQ9ZBqg1Isajnu+9/7hjqLgOeA7r44KCuBmfAFcLxyx8ECvup63TgLfcH9RZwqVvnaX3KnAGsd+tdg9OTfuCz4Lgaf3bbDbk/qPsAr/v4X2CX285+V/AF7rXX4/T2XTgDyueBM1L9N4zHQ7gf8LhECHEF8EugQkoZTKEdH8fp7UdKKZtTZcdwYTisKA4Yd365EselWJFsQQshrgF24LgzM4GfAk9lBR0fjteB4rdwfNRW4M4UtF8O/B7HXViOM5X4mRTYMSw5rt2PLMOT47WnzjKMyYo6y7AjK+osw46sqLMMO7KizjLsyIo6y7AjK+osw46sqLMMO47LZfIsH6Ryycp5OLv5jPplC9ek2Jwhk11RPM5xBG2/AEIFEQO+eNro5//66E3/1dXvxWlKVtTHOZOWPHmrjfLDvodsBDa5nq7O7ljhK0Dd3FEvFAAvvd44/+/AgfplC9NaNFlRH+c4PbVcBXhAmGD/4NTyV87d01XpbQyOzQVZBSLn/Stkx9i8XYqNeGt/94RnBHbdhZVPRL1q1PjZ9Q/3fLDe1Lg0WVEfxxiGOBV4+9pnnp7NEQT4qZ98WxmZ0zDnnZZZlfWdU8t9auikirw9n9zXNV5GbX9JbzmBbUuU7R4lun1Cwbbx29qrp4JQcI7BnZdMYWdFfZxiGKIU2Ak8ouvyhsHUUblk5XleJXzF5KK60sbgmP1t4bJRXjV8sml5JtvvHeeUcmTO/mfmjX5+4c+ufyQpYsuKehhwuFv9TSuuFiEzx1ffOcW3tW2mVuhtC5w5ZtXEHR3TwnWtJ0bzPB25V1b95oYtrTPeeHHf+dvzve0FJ498bd7Ojql79nRN6szzdBTNGLH+rPqOKTsOBMd05Hk6SqYU1Z25u2vittbwyC6fEpwStf1nSYQAEaJPbzz11ifOitmef4DwglRAoApzmyW1nwK/q1+2MKGD0KyoM5gbf/W5aS/tO+9L7ZERXwepAqjCjFrSY4P0gRD9VDEAZNSvhrym1DpN29spsPIkSpE7wDSB2+qXLbyrt3TvDy3f0/7GlOK6895qOv1DwByPEolWlWx6e2Pz7M8ApSTA786KOoO4acXVnnfbTvjw5tZZc0FeKJCnfTAekSTP01nbHStcKbAjc0a9fHpzqHzLzo5pWzURi51eYZwSiuU2zhn18vU7Oqb9xpZq+77u8dvqWk/cm6N1m+eMfXbUnq6Jeze1nNKc722P6uOe0Tojxe3P770gfOiMhytad4BJjH785solK4WCddq0knce3to6Y6KNqgC2c5ZYRPq7fiBkRZ3mfOLu2yauP3ja2cCFAa3nspCZ68FRwmvTizfutqRSu619xrc4RnEZhhgL3A98U9dl3VBsG+wMx9RbHx8Vs32/B/khN7aPBeJ7fXv6oZAVdZrxhZ8v8q7affGpwEdK/Ae/0Bou641i2jQqd88704o3b3hh7wV31i9b2NJ7TSauCLpTiS+A0ECGQSzI9tTDiMolKyuAC0fm7P9CV7RgXsjME4CV5+msPaF0fUN9x9SlTaHRr9YvW2j3V9eRMAxRDNwOfF/XZVu8bB8KlUtWrsCJGHV2/bKFL8Wr3uzejxRQuWSlBzizLND4GVUxr4axfoCW0Mim6pIN73bFCn6yq3PKHzfd+el2J4hSXDgXJ+LqQzjBb1KOTw0Rsfxt9csuipugISvqpFG5ZOX4fE/HJaPz9vw/VVQVWVILHAyVm5UF27omFdb9dkdH1f2W1DY+/R/fS8itU9fl44YhKnX9sPG3U8LEwq3nN4fK8+Jdb1bUR2D5otXv+amL718wIF/P9XHPAzpmlb129bb2qglQOKorVojosaPjC3a8urNj2k9ArDZu/XpnAsx/D8MQecBUXZdvpZOgAfZ3T2gV2OH+Sw6M41rUvQMsjxJ9KWZ71wOBeaOeH3Pi/hlfyGfsDYCQyNjX7/zv3/21p3oVkDOz9M2TvWp41JtNZ2wEApOLaudowizZ0lZTCwRK/Y2nQvnY3jniDQdny4q8vfu6Y4W3AM90RotrN9zxmWQOZL4D3GIYYpKuy71JbLdfOqNFKkeODjtojltRu4J+CaQSs714JMyIqkzfej4FtoJEIhDY4G1oqfkifvOLAJtaTumt4jIgtqdzkvSqYQEUAaGgmVfE+1veLBv1zpe+u/j7yf10H+C/gA3pJmgARVijFGGti3e9CRX1UG7hSUAHlBGWwqyIysyoZnkQaizQEomM2Ozz7jsdaWu2Aubk4nfufC00/S9A8NTyl8TovL2hJ7df2Vy/bOG/BWn/90UJ8VxyP5aDYQgPYLozHX9IhQ1H46YVVwvB5WUnlb0xzUk9Ez8SNqW3fNHqM4B/ARrYdk7ZhoeDB2f9FmjJq3glHCje1nj5Vx88XIT/hPP7H9zuf7PxrG/6JHeOs1RMJEHFerbA1m4HXp9x5XljWrZ88kuNby0OMXifWieF88aGIe7CyW2zUNdlNBU2HI25d6wobQpWNFcWvHuPcevXb4ln3QkR9WP3XRto2/GR7WaobHQ/RbuBVi3Q5NV8nXa4fcpLQEtO2dvlqq8z1LX37OeAloLxq3NUb1dz27aPbwDaF9+/YKBpLABYvmj1OH/x1h/FgmVXWZFiJaxGQ696RIAR73z3T9+9+YeDqTNdMQxxPTBD1+XXU23L4ahcsnIaToDMz9YvW/hwPOuOu/uxfNHqXNX3seesSNFosC1QJEjLX1K3NNxavRYoyatYcw5SVHQ3nL4TKFW93fNsy1eIkwKiNHiwptQ9E3w1QOfuBX2bkL+48WlT0UJhM1y6GWgNlG4eIxSzOXjwxOdxfgRjgH2duxe8CvZ4T97+L1nh4hGQe0q4baoIjHinSS3ZcvvDsvythvCo1+ievru3csMQNwJv6bp8Od7fTTLRdbki1TYcjVG5eyc09owlR+tuj3fdcRX1/Tf9ZQQUP2VFiub6Cnd+N9IxcTWggzC+8KPFfW7DCx774JUfEC2P3XeNGguWj2rfeWEAKCmsfO5sO5pX3LX/jCagNFBSd74VLfCa4dIOYGSsp3yaFcur7q3ogz8ChVj3WNzcQb8Dcfvnf/C1eoDbl6xUcaLonwn83jCEH/geTgT+jBS1YYgbgN26Llem2pajUV2yYUFjz1jmj32u0EnhGD/iJuo//mTRXEU763krUqiCctkX//MLT7hvDdinvPyrD1nAvvdfWfD6B0ssuP1w1y1ftNoDlJRM+8vJ0e6K/O798y7G6e0VnO2RdYvvX1DfW75+2UJr9tLf1kvEp4BFui7DhiEm4uRLyTgMQ6g4mcZ24mTuSls2t5zUCtAUHP1WvOuOi6iXL1o9Ay57QtHCnpJpT3zj0zcvf6L/q+LP4vsXxIADsOAZ1669OFNvHvektHHoNZOKtjStbTzzxI/814/K/v6tWw/qugwCKUuVMRR0XVqGIc7ESbCU1hwIjtEA3myatzPedQ85mM3Dd33napAvgaLYlveUT9+8/L54GBYP3FmL84DbgPMON4uxtvGMuyQKxf6Wqw1DvGQYYmrSDY0DhiFONwzh03UZ1XXZnmp7+qPQ1zpFYAfrly0M9V96YAy6p16+aPU81dvxH1bs7EtUb2eLFS08Y/Evzo/7r26ouEI+ogskUV8HrIaeMXNx3I6GZNkWLwxDjMDJm/4gcGNqrTk2xuTtPlcVljcRdQ+qp3YXVQwrWngJ0iO1QMuNi+9fkHaCPhbqly3sLvYfbIrZ3gW6LmfruuxOtU0DRddlM85o6z9TbcuxUt8xuSFs+rcnou7Buh86Tp4+QFiRjkkT42RPSqgs2N7c2D221N0SmlEYhvAC6LpcqetyT3/l04Wgme8PmvlpJWrDmSKT4BwhMuJkT0o4qeyNHFN6NOAn7mpgRmAYogLYZhji46m2ZaBoSnRsjtadkAH5oES9+P4FaxBmVPW113KEAVimYBhC7Oma8Lj79AZgVQYJW8HJirs5xXYMiMolK4VAjqwq2TghEfUPfkpPesJWpPjZTBY0gK5Led0zT/XuaVZwNiLpDGJ+Pdm4O+8+lmo7BkqepyOnO1bI/u5xzyei/uM6PrVhCL9hiOtH5jS4ApaSDHCnDEOMMAxxn2GIkv5Lpx/dscIygMbg2ITcYQYtakXryc+veGV+PI1JARcAv/rP+V92nwqDJMd9GyQ68AVgbIrtGBRTijZPARgRaEwfnxpA2p5oNDhyd/8l05ongVNxtshawJoMEDS6Lv8MTNB1uSHVtgyG8fk7zwA4ZeRrcT+fCEPwqaXtjUTap9TH0Zako+tSAmsB1Gf/qswcsf5MWJhiq46MYYgCYIquyzd1XR5MtT2DZd2BeQcBdnRMfb2/soNhCD61BAYdhiLlGIa4xTDEnYbxXrw5uyua35FSo/rnu8AadyovY+mIluQCbGs/YVci6h+CTx0syK949Zx4GpNkqoCZbm+NJT2hHR1VCVkMiCN3AZ/Vdbk/1YYMhfKcfTMFdgxISPTTIbgfnnC0Z1RGLo0D6Lq83t2q2YsFqEcqn0rcVcOYe97wsf7KpzsBrWeBVw2rESvndBIwdTqEgaI3GumYlJEDRcMQueBs1ex9LaD15M8cse7M1Fl1VH4E/MM9TJvRVC5ZOa++c+qYiBVQSNBC19B8amFm3Dy3YYgxwAHDEFf2fd2WSqQrWtiaIrP6ow7niFks1YbEAd1JmyHg/YWuuDJo90PRggW5I98+G86Ppz3J4re4sx69RKxA567OKWnpTum6fCDVNsSL0bl7djf0jAOkfaSDG0NliD716B3xNCYZ6LrcB3z1MG+lnU9tGOJrwA5dl0+n2pZ4Mb14U3VDzzjKAo1/Oxga/eNErAsM0aeemDFbHQEMQ1QZhjjhcO8V+lrLqkvWp41PbRhCAz5HHMOepgPG3gsFSLO6dMO1iVroGpJPLZRoWvVsx8D3gJd69yD3JWZ5g53RorRZ0NB1aQJn4OwcHEaIuSA2/O7GexMWGHOoPvVZcGE87Uk03wB+c7iIRUEzryXYnZcWsznu4dm1ui4jOHkIhwU3rbha9SiXnl3oa0/oSfehLJOHo91jtsXTmESj67IJJ87d4UgLn9owxEjgH8AK4KYUmxNXOiLFZ8Vsn6+6ZENCV26HsqHJinROqHDPK6Y1hiGEYYifGIY440hlygKN46YXbzzi+8nC/eFdihOtdFhh7P3IOIDa1pr/SWQ7Qzh4K3NBngGsygBhVwCfAWYeqUDY8re3R0qakmfSv2MYwgeg6/Lv7izNcGMu0NMcGvV2IhsZysFbnMDi0ksCJtDjiSuQMTj5Tg5LV7So6UBwTMpiOLup4HYYhsi4kyzHSlmg4VPFvua9hwuBHE+GcPCWsJvYsfd5WmIYQgFwg7xEjlLUJvU+9RvAphTbkBDm3rHC2xYeUV5ZuC3hOyEHf/AWsQDE3wEVrNw42xVPrjUMsdYN+HJEKnJ3T51cVHtasow6FF2Xe3VdfkLXZcYtaB0LTcGKGlN6xPqmuf+d6LYGPVB0D9x+UtGCzd68hr8+dt+16brZph0nYGLL0QoFzdyDHZGSpCf6MQwx0jDE8kw9bzgA5gJIlIQcDOjLkDYkLb5/QbhwwuqHo91jc9t2fDQtFwl0XT6u6/JTvfumj0R7pLShOVSeiuxV5wDXAKP6K5jJTCvetMivBkNAwtcChrzLTvO33AysMUMjvr180er8ONgUNwxDzDj27ZrSApn0XYe6Lv+Ec94wo2J3DJSm4Ogxo3L3NtcvW5jwzGRD/iNe/tWHJHAzMCpQWvuroZsUH9zpsRdwksv3y4SC7TWVBdtnJ9aq9zEMUWQYYjaArsujukaZTuWSlfntkdKS+s5pSdltGJeeafH9C17NKVu/I9w26cqH7vhhdTzqjAMmcC3w82Mp3BUt3N8eKU6m+3Eb8LJhiGHtdrjMxpkmS7g/DXEMZhMo3naVtD3R7v3zbo1XnUNB16Wl6/IpXZfHlKevNVy2rz1Smswe8w7gKl2XjUlsMyXMHfXizQAzR6xLSkiHuIn6ypt//hoodwOf+fnilXPjVe9gMAxRaRji64YhCo/1GoFtC+yEJ0s1DOE1DCF0Xbbruny8/ysyn92dE8sLvG3dT3/ztqQcGI73wGiZooV6fPl7n33svmtE/8UTxkLgbqDgWC+YXLTl5Iq8PTMSZ9J7/Jhhct7wWGkMjh3VGS1O2kGHuIp68f0LOvPHvvh4uH1qUXPtld9Zvmj1t1OxL0TX5XKcoC/HfIihLVyyuzNamIz91BuBN4bJecN+mfP9X48BxpMkfxoSECCyo/78zwM7pO27A+SdpGjDk67LAZ03bAmX7+2KFiV8CVfX5QO6Lr+d6HbShZoR674McGbFquZktRl3US++f4GJsxdEgFBBBoB7fnHj01c9+rMvJPz2bhjiAcMQ3x3odYowEVgJcwkMQ3xjOG9WOhJ1rTWjBbYsz9n/92S1maiB0QMgr8ZJoSGBE20z55Hm2qv5+eKVu6UV+LsWOLi2qPIf66646YG45dFzQ4jlAL6BXjutePPsllDZyHjZ0hfXf/4MjuvxZCLaSFcaesaPAzbc88U/Jq2nTkhucngv2ZGO02uvza945aOKFvpSx55zVKR2BuCsPgpzJ1Jb5SvcsTG/4tVXrrjpgbVHrDSBnPr9B57vieVP2/yDK/rLpz4o3HORPl2XCQm1lY7ctOJq8eT2K1slyp/qly38UrLaTdgU1r+nelvwN+BvAMsXrdYKK5/7mLS8V3Xu0b3ApyIdk74Y6ZjE8kWrdoAwAiM2bc8t22hccdOKV46lPbeXHqnrclALKAdDo/fg7LmOK4Yh5gOvDbfzhsdC1PaeK1GK5lWsVpIZTTbh87KHw/G7FzwOPA6wfNFqtXjKkx+P9Yy8qLvh9BLgklDzzOJQ80yWL1pdDzyfN/r1Bl/hzpUtdVe8vPj+BYe7vcwH/mkY4nxdl/8aqE2aElUsW42rT+2uFj4H/ALn0O9xxdrGM6cBKCR3Pj5h7sdQWL5otVIy7c+fCLdNPSd48KSxIOfDe/uh9wDPF4x9oUMLtDy2//Wdq3EGvPbsG1b+GLjTTcU8IBb++M5393VPmLj++5+L6w/dMMSFwPrjYeXwUCqXrPwJ8GWgoH7ZQjNZ7aalqA/l9z+8XfHkNF3c03TS3HDbtKkgzwUxItx2z6FFrVsefXpQopx7x4qV7eGSeVt/dGlc9jUbhvDrugzHo65Mpeo7f1oftXw9O5Z9LKlBglLifgyUz37n+zaOP/43gMfuu0bYlv+j+9bwFO55MpdBT1E2BSv2Eief1zDEBOBVwxBf0nX5VDzqzDRuWnF1wJKXnnTSyNfXJTuBWEaI+lDc7a4r715z0aHnCged2sCrhtWY5Y3X92EBrwAZmZMlHqzafdHMmO0jZOYmPZ52xoXi7Yvralg4c+GDdj0Aqks2zM3ReuLierjnDS/VdZmQ9A+ZQHes4GSAutYT/5zstjOyp+7LUITcl8aeMXVhyz95KHUYhhiNs0/6u8N9439/lAUaL24JlbXbqEkPj5zRPbVhiFzDEH82DHHqUOs6EByz15KeoWZmmg9cDRz15PrxgCrMD00s2hpLxvGtQ8loUQPTgHmAf6gV+bUeD8gh9fq6Lh/FOW+4Zaj2ZDKVS1bmNgbHeHui+X9JRfsZLWpdl28BE4CXhlrXjJK352hKbFA/DsMQpYYh5rg2tQ3VlmHAKSCUxuDYlASLz1hRu3nFha5Ls7/wB8fCvp7xmy1bG2w4rNuAF92Ipcc9U4s2XwngVcJvpKL9jBU18APgTTfi/pBp7Bm7X6IM9vu4HbjSjVh63KMq5sUl/oPm1h9dmpLvI5NnP9YCYTfi/pDJ9XT6emIF4qYVV4ufXf/IMfX8bhiGmK7LdtyFoeORs35f9fmwVE6LSPXBjddsXFPXWmPlaD3PpsqejO2pdV3+UdflgA8DHIkZpW+f4v7331JnHIV7gOfidbfIRC57dOLFnbb264hUvgSsOuEXCz8CojJo5hmpsikjRW0YYoFhiCHPePRld1flJoC61ppjvuYfuy5q/+WGm8W1zzw95CnFTMIwxBmGIT4LsCWcN9O5rTl5EQu16FcAKnJ3pyziVMb1MIYhxgP/xBmc/SBe9Tb2jGsA2NJW0+8P/fPLvzJ99Z6Fl8Gib4HUBPbLlUue/iuIN6cVb9LG5O2O/GvPR58G9gOtqZirjTfuoLz3c3wNmGsY4n9hpgHCxlF1LD88sawRizmjXlmXqhxMGSdqYC9wARDXnqDA2x7ojBYxPn+7Bwj1fe8rv7xu1jP1l5xgS3V+nqfjku7Ywj6zHALpnMc8H7hka9tMtrbNBCf1MqowrVm3/85sj5SuBfZNKqzLL/a39Kw7cOYTwP5TR70YGp27d8e91z+cNpnBDsU96PArwxAf0nW5F2dveKeuS2sjrJn7u+qwKmRbt+351NZ9H/+ewHrn3ut/n4pgm0AGilrXpY2T6CeuVOTuXtAZLSJk5py7+JfX7nt+7/kndscK5/nV4MKwdVnvEa9OAZsun/6bkablWfv4ts/OADxu5tYPA2/q4/7vRMvWql/cd34IqJhavPkjMctb0R4pjQKz9nRNmryjo0oFLgN4o/FsAJ5csrIT2FeRuzsn4Olp295e/Qywf+6oFwo9SnT7y/s/9BLQWL9sYVJCK7hL/pobZmIP0ASUAHt1XTb0LWsjvOO94b1r37obYL5EHfAhjXiSEfupezEMcTZwJnCfrsueeNXrJH2XL4DQQEon7QcAHV41/NopI1+NdEcLlm9qOWVV/bKFpnuQ1nvtM0+fiHsOcyCJLq/82X+UvdqglwIVp416/qKuWMGIzS0ntwMVo3P3nNMZLfT3xAp8OLm7+yJzPV2mTw23tobL1gL7Z5W9NtaSau3G5jmrgP3nT/hrKKAFt/3s+kcsN5l9v/Zd8J/L1C1tNb6ROfsDc0e9VNEUHKV+YsofjI5I0SvrD859dGvrjJadndPCxb7molkjX5/7btsJe/Z2V3YX+5pLq0rXn7Gp4J+XxDpOeTPc8KmT3AgCJoj5iUr+2R+ZJuo7gEXAuH5SXQyIyiUrv43jnysg5aicvZsnFOz41muN5zzbNz+JYYhzgTXJ2PxfuWSlAoz48IQn5zf2VJRubJ5jAxUzSt+89GBolGwKVlg4Zyr/bcFHwbJt1CaQI53PhASxTWDbxf7myd2xgp6o5bdA+lRh5VpD2R2gBMmffgfhxouItZ2J41pLC8T36pctvGvwFQ+ejBI1gGGI4ngvRbs92iqcnjEGnPeBXmZp4byI1774nRmhb3YWWvfquvxmPNsfCjetuDrwbnv1+M0tJxerIjb2tNEvXrG7c1J4b3flCSBPdpNNAaJWYG+qLn17dlt4xLsNPeO2eZWwVVO2bnZTcPTmMXm7xk8o2DG/KTj62frOyWt3dkzfmat12aeNfqFqT9fEunfbT9hX6G215lUYo3d1Tt5V23pS84hAY2z21P8585WY+Wh5rPyhbdu+cTlH+g6TSMaI+pDRd9w54q16aWGv4H0SaXYWWJ8ovLknaYFZBkt/P1TDECcCfwc+o+vyX4YhcgFzoHfAa/807tJ1waI/n5bb9u1/rv3l8wzCHYs3GTFQdMMfvGoY4o+6Ln+SiDbcP8Lh/hA6TnAcRSDUwk5tFo4Y0pr6ZQvXVC5ZeR59RGYYYiJQ4oY33gq8DHQDDHaMsi5Y1APwWk/x80f5DpNKRogayAXqgFRMExmS924QUYEwUmDDoOgrMrdjeBroAM5wxwWXx6GZ3tNCrXGoKy5khKh1XXbjJPtJPks71oTvymtSLVHiNZXzWNqR8p7oWHFni24ErtZ1aRqG+DzOPH/cODHQ+aENoQLm5ralTRTXtBe1YYg8oHggYXnjytJCNYCaC/w6EwRtGCIHkLouQzi96GnAROBdXZevxbu9sFTyAEq0WEN/ZZNFJuz9+CywyzDEtBS1fwJO3L9MEPRonJRu17svPYUTp/vdRLW5NZy3H+j68ScOhPotnCTSvqcGVuKM4BP2hzkaB0bGbipv8tBabL6Tjtk7DUNUA9N1Xf5V12WDYYgVwGvw3urrUM9d9kcxaeRPQwaIWtflbuDeVLWf26NMMVUZ6yyw3kpHUQM/xNlc9JSbvCmpAd3HeUPzg7aal8w2+yOt3Q/DEJ8xDHF6Km3I61FHapZ4rvK6cFpM6BuGmGsY4pU+qepuBk7WdTnYo2hDosPScsK2otY8VJP0bBFHIm1FbRhCxdnpdmOqbDDvLCgCqkmxP20YosAwRLn7tA0oAsYB6Lqs13WZkh1+NQ/VzOu0PGU9tlYIrEoXYaetqN2e5wTgW6my4UB57CsATWWxlG2jdI+MbQXuBHAHfTN0XabkUOsh6DibPQTOuEdPpTG9pLVP7c5Pd6eq/cIOtVIiCebYK5PZrmGIWcACXZf36LqMGIa4FXi79/1EbhcYIAbvLUyJmPM89aTl3g93+u5+4Ku6Lt9JmSFLC58BKljacWKimzIMoeDML0vDEN8HbgImpnsckbMenn4gZitaUGoXbbxmY1pMe6ar+zHWfaRsqqj+t35VIk8DXk10W+603CacveLgHOidkO6CBuiwvJuCUqtNF0FDmopa1+VqnLnXlK1SKTYXCETRgZGxhORpMQwxwjDECe7TXUADrjuo67JD12XCczrGiQiDyIaWSNLOpzYMUQK0uwsHKWNEs1YFYKnyiXjX7W4u+hfQhbO5KAicF+92ksF4b3B6j62VpdqOvqSdqIHfA3nAOak0Iiekng2EKxq8cVn+NQxxCs7y9Y26Li3DEDcBGZ8HxpKiI2orxam2oy/p6H48DPw2lQbEflCgS+THJdIH/NM9KDBgDEOo7nlGgMk4Wz2nguNi6bpMWWyMeLEvFtjYZWudqbajL2nXU+u6/EOqbTA1+z6PqfYevu2dfx3QQMhdLFkD/BfOTM4TwMrBZA5Lc7I+9ZFwp7Q+Dfw1nifFB8zSwrF+lMkSaQsnSMsxz78ahqgAqnVdrsIJKfAcsA3AjfmXtLRryWK6v/ukXZFA1qc+AmfjuB5XAo+mygiJvFs4IRI+BUwHjAHso/45cLphiLGuiBclys50IWorB2NSpNViRzqJ+gUcYads+XfvisB/jMV7echv3xtY0tVvllbDEDU4+1Ou03XZDCwBovGKxJoJ7IzmvA1cmGo7+pI2onaXfoecEWDQLC30jlY8iyNeO3igPHZb5RGKuXsxctyFEQs4BadHb9Z1WZcka9OJCKDWPFSjbrxmY0p2Ch5KWsx+GIa41jDE992deani66otJviiyuWV14UPu/BhGMKLcwD4BwDu7MUEXZcvJ9HOtOKknI6TAS4sbCpKsSnvkRaiBk4FPpSqPcG7fuOfawt5p0Q+ydKOD2xeMgwx0T2wiq7LKPAz4D3X5HhyNQ5H0FIbABpjvoHE9U4oaSFqXZeLgXNT1X5Zk/YI4O3Ksw63G+9LwHLDEKUAui5/6s5uZAHejeRtBFgfLEybwWLKRe3e0nt7weSytNDP0sI/5oTVKUIiC7q1nzYtz7nMMMSLhiFOc0vdjXN49bhO9nkUeiM6pc1cdUpFbRiiANhrGOK6ZLe9d4X/I8GA1QxcIZHSncbzlLRqM3CC55QA6Lps1nW5L9n2ZQpzc9tOBFhQ0Jyq0/7/RqpnPwI4K22bktbi0kIBLBqD9yemJrWOAnN5Xpf6FUVKKRAxzRLP6br8ftLsyXC6LG0fQFPMmzbBbNLykECi2PUbf1XZQe3RnJB6Yk+OtR3Qc7/VvXfng75vlrZ4phZ0qQ9mQsCadKLmoZqLgSeB5cAj6bCvOmWiXn/puI+rTd6ztYPev1TX1Sb8i5BLCz5sqTyu2OQdKI/935bp4QUITtV1mby7xDCk5qGam4Cf4szZR4HzUi3slPjUtVXV87y1uY+rzZ5bJHJVbVV1wk4h1//Wnx9alv87gXhOCtm1vyJ26Zaq8CcQjM8KeugUq9Hev51Kmhy+TZVPrWOjCDdNGYPYBdcfhiEKx+32XjC6ybMiEFYKDo6I7dg2JfydeRfaj491iqRt4qBMos3y/Azk5W5KEZs0OHybqtkPQyAkzlHkuJ9ClksL5s16K6e2cqfvUX9YYV9F9IdlNwYnz7vQ/mM828kCG6/ZtAbEuTjJjuwpvp5D89QknZT51Jurq0JSk+8oMeWr8fCpDUNM9UbEHXPW5nZ4YuLLAoG7ffQTLO14Kh42ZzkyNQ/VjPYLa4tPsXNOzumYcd8nG7akypaU9NRv3FImAH90ZndwKII2DKG8+Tctb/8vA7eesi7n6dNfzbvSG1O+3Pu+ux96ZjxsznJ0Nl6zsWFeXtsN3ZYmja7SX9c8VJOyxZiU+NT+1wryhBR4dgUGvStv/y8D505R/H8c1ejJ1SyRG9OkJQXLkbwuEPfzfq4TI152Zzk6936y4ZGah2piwKMK9hM1D818EYRxrLMhbtgyHTAeu8uk9/8D7fhS4n7UVlWPxklxfEN1Xe39x3TR0sJ5Mc3+RDDHnuqLKLP8EWWiRMqIT75pqXL5wTLzscrrwj29ZXG/kOy889BxT7+T+9QI7Dwzxyoxx/rfyg/ZhWap0q16zfLoJO+WnCazPDpB6dKsRycG/t8B21etWeAxpSwxrc5cxcpXI0pUhJROn5C5HuxcNSZMJax0e5G5io0nFlPRLElRN/aUBikABCIMnDcQYaekp45O6xnt3ZqLOTJ6bO6PI1JDM4W3sFPDErLhwMjYSinkLaNuCG0BZ137/fIdaZFQJx68ddUYJTy7a7R3a44iNVmgtmtqbGxkomePr9vOs8qVDs2yyqNTtb2+JrvIHK90amGrJDZd2+vbbZXGpqgdWrdVbE7V9vp2WqWxKrVTa7cLzElqg2+HXRKrUjq1djvXGqce9Oy1860JSo/aLX12mdKutUi/XSbCSqRMmZojwkoMiUdIcURbfW4srWvfgD5hsQUoha6n63ceAksRmCqapVJgakKJqhBRJTEN8kNOfL7Bzo6lRNSxsZETvFtziVb1VBzjJTqg9g7+VCnuK/9K8AOJJ925bp1B3K768sYtZUJ67HylW8tVehS/9NtFSPIxlYASVjzSaxdJQb6ICk2Yih9VFkhF5ouwIoUt/AjypSoLlKASRZCLxCdVipQeJYRCPpZQpSYLlR41iCLziQnQZIEIqkEEucIUEgiIqDCxhcdvF+B/s+ADNvrXHeOH2fH+fyXyLO2AVyCIymaPSlQpEjYFxJSAYqMJS6io0pIeu8MO2KaI2NvM8ugEpUfdbeebuepB7xZzbHii0qnV2/mWX2vybomND1cqHdpOmWtp6gHvjtik0Gi1xbPr1dGeymcrAt+OqmimRuzEg+Z1n1sTeyl8cpemNfpa/W/l98zcXPeBbcau67EK8MzcaVu3/dH2uXtyBuxCpsanXpffDODdknOsIb0MnNUqz+E+pCvof0mkF4HcOH/SOrvI9CqdWoedb01QutXuXiHZfqtcCasRICAiwpQqeSIqbGyhCVOQZ4+I20EFqUgbTUqpShuISI8EVVpSk1JYwpZeaeOVEem1wwia7YDtBYLSZ6tKUN1v55k5whIdtt/WlE5tt10cyxdRpdnOsVS11bPLKovmi5B6UAYsS2327jfHRAJKt9osBUGtydMarQoKEVY6cp4v7hAIs3pTXVJ8zVnA8odqnsPtZJ69eUu/nczGazauqXmo5jxAn7VDHgB+LRCPAD/PFJ/6Y8DfgFOr62rXHtNFR/GTa6uqv40TUV9IJFKVJgEbLNFp51p5IibapN/2iqjSbBeYJSKiNEm/7RUR5YBVaJYoYeWA7bNVJaI0WYVmkQgrjXhtKaJKi1Vg5oqIchBNRkRMtNv5lkdElBYpCApJj51vWSKktGLTjULQzrci/rX5LWq7J1pdV5vSKFOZytsLJ9zu3Z6z1Mo3q2a+8e6ApwZT436MD0/27PYTGxc+9lMjR/eTDSCM25MLS5xXvbb/3iFLemLnWh+XHpvISd3bB3N9SuapzYrIHIBodXzCe7i3p/OA2xjgSDlL+uHblNeG4J3ZDzQM6qhcSnpq39t5dQCebYH6eNXpCjkr5mGAsMUMouL/Bnt9SnpqJaR6ALw7ctIqBluW1LNuUfkUoNwsi+4fbB2pcT/KI9OkIkPZgVSWf8MWHwWIzujpGmwVKXE/rNLYySKkps1BzSzpQ84LTlRgbbd/0KHnUiJq77s5tdgi1ecjs6QnM4EW747ArsFWkBJhiZjiI81S/2ZJD6zi2AVYomHm6+8OegElJT61lW9WWvlmyjeTZ0kv3rilTIgedZw5ITyksVZKemqZY1XaeVZ7KtrOkr7krRwxARCeLTm/HEo9KRG12uQ9oLSlRcbWLOnFTAAlqqwfSiUpcT+EFLlKVGlORdtZ0pdIdc9VAFZJbEgJYVPjfiiyyCqL5vZfMsvxhAgrNVZhzJz5yrYh5ZBMek/9xi1lucIWmjk2MjrZbWdJb7w7A1Lp0J4daj1JF3XOP0v8AN53cp9LdttZ0pfaqmoPUCUQG4daV9JFrUSUfAAlrGZD42Z5j6De9mHAE50aHPJ+oKSLOnxiVyVArDKUk+y2s6QvSqs2GyA2PjzkeCFJF7U1IjYNIDYhXJjstrOkL/4N+T7Ayl1VcrhsDgMi+T71v4p3AfhfL3gx2W1nSWtqgC3VdbWRfkv2Q9JFLaRwfOqQ2p7strOkL1Zh7MOxMeG4pEhJuqijU4M1AJHpPWmRcy9L6tl41uR8tcMTsEtje+JRX/J96uLYDIDYpNCQbzNZhgdas7cawLch/9fxqC/pog68XrgewL+2YHey286SttS4/8YlCH4q9n5MByztoHd2CtrOkoZEZnZ/WXpsG9gZj/qSKuraqup5EnmVRKpAQtNiZMkctAZvvlVoHozXmdVk99Tnwr+lxchynKO2eEdqzd498erkki1q0RvkkWzs6CxAbVX1hTiJWE8hTnfvpIn6ravGKFLIK4FdAvE9spGUsgB2rvlR978Kcbp7J20/tZ1n3SmkmBmdHLz1pJW77ur/iizHA1KT/wC+OtiwvYcjKT11bVW1CLxaeImVb3ZGq4L3JKPNLJmB2uF5BkAg/kmc7t7Jcj8+IqJKtdqlfePUuw9mF12yvEd1XW0MZ3y1Ll7uaMJF/cYtZcIqii2XQu4Bfp/o9rJkHrbfUiM13RfGq76Ei1rb7/ui2u6pDJ/e8aL7q8yS5VB61GZP3A6NJHSgWFtVLfzkf04qstEqNhclsq0smYsSVhuUBjVu0QUSKmqpSl1Y4ixhi6+ees/BQUexzDLs6ZHIuEUXSKiozTGRP6kHPN1KRI3L7qssw5PY2PBEVFkZr/oS5lO/c/K0+Z7d/tJoTc+z1XW1oUS1kyXzEWFln9LmaY9XfQkTtRJSbwUO+tcWfC5RbWQZHmjN3i1qpxaMV30JEfWG8yu/A1wAPFZdVxs3Y7MMW+LqU8c9j2JtVfU8KeTLQgohkVGB+A3wu+w+jyxH4u0LKrdr+70TlZh6Zjx0kghRf1sifyhwkrRLpARMgbgReDN0akexDNixnBeKdwLR0Bntmu23g7mrSzqq62oHlWLsCHbEJa1zlvjwxi1lAaVbnZvzfHEuMCU6MXSxMEW1Z48fiRwDIBAh4rBUnpCeGifHtE8ie/dOHyu21Gykgq1ElVYgYhXGihHE1HbPTiBijo5UIglpjb53gEh0UrBaWKLTsyuwHohGTug+UWnzSE+D72xAlciIQGR3BCaBN24pC+Q+UzpGWGJqdErwAhmwz/FuzG0UiKlSyElCivfEIDU7Yo2IWWqjd7tAzAQEYAK3VdfVDmnDW0LSOLvC/pxEXoezndAUiP8H7Aif0nkSkOt/s2Ar4IvUdM/Fxut7J68O8EWm95wuLKF6t+VsBbzRiaFTRUzg2euvB3zm6EiNiApLbfE2AT6rMFYpYoqtBNUg4JOanS9M5f0vD4nMtQ4qPdrtwMrqutrs2cghUFtVrQGV0SnBM63S2EW+t/JblKgy3vZbp4ioUi7s9zsx22cjTLFRWKLWHBXpjk0K2b4NeY8o3Vot0FRdVyv7dIIenD0g6ddT9yVVLkDvFyWRXgSK1GSrElNKAcyR0bD02U949vj/B3ituq42G6rhEGqrqrXolOAJ5tjIxb71ebba7hll55lzpM8+VWnxKAKh9paVQgaFFFvtfPNgdEoox7Pb9ye1xbvOHBHdET6ts+HUuw/2K7B46yShok4lfb8o4FVgujkqcp30yi9pu335AqFKRbZHpwXblB71Hs8e/8PVdbXtx4sv/tZVYzzWiNgZ3ndyyz37/GV2rjnLLI9+TNvnjyoRpRyn5+ylR2r2rtjEcIHSrj2rHfS+bBXF9oRP7zggVTYdi3CTybAV9dGoraouBs43yyM3KF3afCWoCsCy/dYOEVEmCykAzNioyEPmxFBPYE3RK0AsMqO7wioy83JeLloHmOFZXeV2genJeaG4FjDDczqL7DxTyTFKdgFmaF57wA7YVu7qkhYgFpzfhp1vRU+9+2DCNnb1/VF2L2xe692SM827LWeM1OyqyAk913r2+C21zVMgkRMF4j3hSmSPNSqqYoo3tWbvC9Jr7wyd2e4R3eo/Am8UvltdV5sxQjkuRd2XdV8creW8VDQXuMj2WV9TImoyMhxIwJSarUgFlKjSAZh2rpmPglS6tAYgZpXERgGm2urZCZjmqMhEJBHtgG8LYMbGh6qxRLdnn38zYMYqwqdr+30TBUJIJCiIvj6u9NjSDtgH1E7tZeDd0GkdZSKirPavz/8X0JhJwj0ax32CztkPNJjAK8ArtVXVT0nkaoHQANMcGV0cndG9N+dfJfsBLTy7c4KdaxXnvFC8HfCET+6aKv1WUWBNUR2ghU/qOkF67cLAG4WbAC0ys/skqck8//r8DYAWqe45BUUGfO/kbQC02KTQHMDj3Zq7CfCYo6KnYAvF26VtATQ731SICaniaQY0FGxiQgEKAE0E1RIREwWAF/CoLZ7xuAtqAiHNouh2a0zkb76N+U8C7/ac33pMPm6mc9z31IeSyT51ImYSMpGsqIcZmfyjjBdZUWcZdqQkj2KWLIkkK+osw46sqLMMO7KizjLsyIo6y7AjK+osw46sqLMMO7KizjLsyIo6y7AjK+osw46sqLMMO7KizjLs+P9sfHI8s9UvAwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top-5 predictions:\n", - " 1. shovel 15.070%\n", - " 2. floor lamp 10.788%\n", - " 3. screwdriver 10.516%\n", - " 4. lipstick 9.559%\n", - " 5. lantern 7.887%\n", - "Answer: anvil\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA8rElEQVR4nO2deXxU1dnHv+fOnkky2SAEAoRdhChalYJir6DWSm21ttpWLYWK4mvVV601apdptYq12lZLpWLVuC9t9VWpiiVeikJVlE1AZJElQPY9mf2e94+5oTEEyMzcbMN8P5/5zMy9Z8vkN2eec85zniOklKRIkUwofd2AFCnMJiXqFElHStQpko6UqFMkHSlRp0g6UqJOkXSkRJ0i6RjwohZCyKM8njCpnieEEK+bUVaKnsXa1w0wgYIOr78OLOl0zdcxsRDCJqUM9UbDUvQNA76nllJWtD+Aho7XACfQIIT4nhCiTAjhA/5HCNEkhPh2x3KEEOcIIUJCiPzOdQghvMAcYHaHXwDVuFcshPiXEMInhKgzenTPkdoshJgqhPhYCOEXQqwVQpzfqUzVeJ/XIU+Rce2UDteOF0IsFUI0CyGqhBDPCSGGdLhfLIRYbvy9zUKI9UKIs4x7NiHEg0KI/UKIgBBirxBiYfc/+f7LgBd1N7kH+DNwPPB34DlgXqc084DXpZSVXeT/HfAi8C+ivwIFwCohRBrwJtACnAZcBEwHHjtcQ4QQ6cDrwKfAl4CfAvfF+gcJIQqAfwOfGHWfDaQDrwoh2v+vzwIHjPsnAV7Ab9y73mjvd4FxwKXA1ljb0S+RUibNA/h29E86+L4IkMDNndKdAoSBYcb7bKJmytePUPYTREXf8dp8oBHI6HBNNeoce5hyrgbqAFeHa9838qidysjr4m85xXj/a2B5p7KzjTSnGe+bgDmHaceDwHJA9PX/zezHsdJTr+n4Rkq5BthI1KSAqKjqgTdiLHcisEFK2dzh2ipAJ/qr0BXHAZ9IKTva+u/HWC9Ee/kzhRAt7Q9gr3FvjPH8APCoYXrdIYQ4rkP+J4ApwGdCiEVCiNkdevgBTVL8Ed2gtYtrjwJzjdfzgCeklJEYyxVEe8auONz1I+VpR++Qth1bpzQKsJSoMDs+xhE1b5BSeol+uV4hahZtEELMM+59TLT3v90oqxR4OxmEPeD/gAR4GhgmhPgxcDLw+FHSBwFLp2ubgROFEBkdrk0n+rluOUw5W4BiIYSrw7XTOqWpNp47zuJM6ZTmY2ASsFtKub3T4+Avh5Rym5TyQSnlbOCvwJUd7jVLKV+SUl4DzAZmAmMP0+6BQ1/bP2Y+OLxNfcph0pcCAWBFN8q+nejP+wQgj2jPmQbsB14GioEziQ62/n6EctKJivZpor3o2URNIQl8xUhjA/YA/wDGA+cC6/miTT0UqDLSTAVGG2U9AmQALmARUfu8yEizEXjUyH8T8D2iJtRY4I9Exwdpff1/TFgHfd2APhb1mcb9H3Sj7EHAMqCZLw7qiokOuHxE7fInAM9RyvoysNb4Qq0FLjbKnNohzXRgnVHuaqI96Rf+FqKmxt+Men3GF+ohwG48ngV2G/XsNwSfaeSdT7S3byY6oFwBTO/r/6EZD2H8gcckQohLgb8AQ6WUbX3Yjm8S7e0HSylr+qodyUIyrCjGjDG/XETUpFjS24IWQswBdhI1ZyYDfwBeSwnaHI7VgeJPidqodcCdfVB/PvAUUXNhEdGpxMv7oB1JyTFtfqRITo7VnjpFEpMSdYqkIyXqFElHStQpko6UqFMkHSlRp0g6UqJOkXSkRJ0i6Tgml8l7mqKSpdOIesdpuxbOXt3HzTnmSK0omkxU0LIMcAABEDNTwu5dUuaH+aiAA4Qgupv95qKSpeLIWVKYSUrU5qOBkMaOLR24ON3WtOaav8w7u2+bdeyQErXJTMjeWAUoIJaBmAH61WHdOmXZrm8sKyp5/faikqWd9xqmMJmUqE0m11V1F8BpQ/59966Fs1ftWnjBI7NGvn6yy+p7G8RvQP/4R3++Zs7RykkRP6mBoslM+vnz7ysiMnbm8H/m/XH+M1/4cItKln7DaWl7MhBxerIcdU/VB/Ku3bVwdvPhykoRH6me2kSKSpZmt4YyTm4OZi3pLGiAXQtnv3rOyFcnjfJsW14fyLsc2DTzngdSvbbJpERtImM8n15FdO7/5cOleeiqp/aV3XbT2cDpFhFu29k44Ykzf/PguqKSpYfE8EsRHynzw0TOvffefZWtQ4eMz95se+nGe/Sjpb9hyeXuA62Fr3xQccaZINpsiv9RAf6g7vxnam47flKiNomikqVpIGsL3OXLVv98wTdjzDsBeB6YYkwFShD/mJiz/uOizO3vvrHr4pW7Fs5O/aO6SUrUJlFUsvSbRMN7nbNr4ex/xZH/dpB3glCIKjtENHYHRIPW/Of43LXNec7qf/9737nbiMYOSS3Dd0HK98Mkhmd8/pN9LcNbdGldEWcR74AIEI3OFALOOXfk/w3Z3TR66tb64sEgp22uPWk8cJmRXgL+opKls1LC/iKpntoEvnL3H63VbUMCRZ7tu/95yx2j4y3naI5Q1y+5fNy/dl9wd1vYfXF0GV5GQPx818LZ9yTQ/KQj1VObwO6msWcCSoM/565EyjGEfNhe98H5T28rKln6gED/pkTYBDIiEVoidSYjqSk9c7gI8O9vHfFCT1e0a+Hs1en2xv8BsCihu1Omx6GkRJ0gNyy5TKTbmn6U46xet2vh7K7iYJtOczD7bwBh3dHSG/UNNFKiTpBtDcd/tSWU6ZqUu3ZjL1bbqIiIf2j67i/3Yp0DhpSoE2Rz7ZQzgcj66lNvS7gwr2caXs9teD3TjpRs18LZMtdZpWTYmo6Y7lglNVBMGHkhiBUbfn15bULFeD3TJHIF0f+JX3g9s/A2HtZebgpmf1DrH+xMqM4kJdVTJ8A1f5l3HoiJE7I3bjChOBWwif/umFGPlDgQcW7XpWWoCfUmHSlRJ8CG6lPOAxib9elzJhRXKxBIJIawj+jglJ+2LwCy4IYll7mOlO5YJCXqBNjXMnIasGbR1U98kGhZLe7IFRLpE4hfAe8ANxxY7HrgcOnHZW9xgxBB3XFConUnGylRx8mUXz55CdFTtdYcLe3RqHkobYjLp5xRlxPeibfRC5zf4o7U5lfabgzdlfm1rvJsrDn57wBvfH5x5xPDjnlSoo6DopKl0xoD2c9G38m5xvJ23OTV2i6x6AIpuBEAb6O/Njf8JeBTW1i8iNczp/OsSGMgZ4fxcngidScjKVHHhyppP0RTWDjKoO6IeD2C6NHOH+Zd1/Z2++WR8/y7FSnOlsgWiXxCIu8ElrcLOz9t3z6AcdmbvhJ33UlKStTxoYFo3wQQir6Pj/JhgauA41vTIi8dctPbuC9ok28LBCL65bFhfIG+XLCi3mHx4ba2dD5Y9JgnJeo42LVw9mpFhHaBvg1IyPUzu976vbBF6tWDwk92dd8eEg9LJBLZ7mOtAfxx/jMyGHFsXVc9dVe8dScrKVHHidvaNqo47+NIQg5FXk+2u80y1RLhL0Vz/ZVdJRHeptUC8ZZAtAJfWJCRKHuBwrjrT1JSoo6DopKlzuaQR2kKZr2bSDlBm3414BSIR46Urs2l/wtI3zc06O54PT9tn+6yth6fSBuSkZSo46MQYHfT2PfiLUB6M6chudNvjzTgbVx3pLQ1eaGPAexBcUnH68MzPnf6w66Myx68yRFvO5KRlKjjYKh7z0QAp6Vtf1wFRGcw3rGHFasjqKQfzYFJV3hHIvcPqrFldrz+cdWXn5EovLd/Viq8QgdSoo6DMVmfzgZQh78Z7144VSBsQPuSuHqkxEVz/VIgygDVmAIEQJfWvcbLlF3dgZSo42BT7UnNABFpiXc1UZPICIBEBunGlGBTRmQrkL+3MPDV9msTc9Y3A5w0+D+z4mxHUtIvRF1esnJWecnKu8pLVg4I/+A6/6AMoGbJNY/Ux1WAt3F1gye8GsDn0r9/JBfTduqzw6sA3K2Wg6Iem7VlL4CCPimudiQpfepPvWHJPEta1RnPOBl3KYBE3vG596UWm3/Iq8C21rz3I6G0fTuz9nxraeHCGQ192daOuG1NkwIRZ5dTcN3FHlI+As5sztCXp3UjvRS8I5HlOfXWgvZritD3AK0fVU2vSKQtyUafibq8ZOVxmY7Zr1kDg8ca7pYAUkQcYWA68D13zVTRIX11MK08FLHXV7oaiv8GfNY09K3WsKtizQnzH63uzbZn2JpOGere25BIGe42SwNAfpWtrTvpi+b6JV6PBpyD1yPwNso/zn9G/l/J0tRcdSd6XdQblvzInVl+/q+sDL7OEhjU2pa97h+u+hO/RtRBPmQNZZ9fuHDG6vKSlc6GkX87y9Y25Dh39RlWYJxUAt+0txSNB34DkLk/+ktcXrJyH7CtLefjTERkfVrtqa8A25oLlu2eeMOdbYZZowJa4cIZCe++rvIVhMLSujKRMkJWPdsaFhHhbYp0N099VnhPdoM1f8/wwHkj4A2AQa4KJAwIs6236FVRl5es/HKG69y3rYHB6RL9BYFyw/hbr6vsSnSFC2f4C5nxBsY/L8qMq4xy0oGxjYWvXeZoHpPtbDzeKpHjHc1jplhCnpOBuQDpB2ax+443my243YAA/OUlK2clIuyikqXpYMmo8Q35KN4yABqyIqfn1FktsfiNNmdE3s5usN7uabScwX9FLfc0j8pLpC3JRq+IeuPiH+dn7frO7QLlOksgt7Zx+MsPTLr2gV+23zdE1m2hFS6c0QKsK2TGus73dtz1RJ6jZcxo3dJ6fFveBz901ZxaKJFjjF0ldoFQY6mrMxNz1k/aUnciHkddTbxlAKS3WHYISUyrgSP2OlYA5Z4m65j2a5vrpvwN+FlRyVLbroWzQ4m0KVnocVFvv2fxDzL8Mx8zAh8uUnTH7ZOufaDHoueP+dkPa4Aa4AM474nykpXTJPoKEDaQOglGNBqavvesLXUnctqQd51wRdzluPxKExBb3A5vo8Tr0STynN2PO0XRXL8E9hL9FSoA9sTdoCSix6b0dv/89fzykpXPOhsnlQJNjSP/dnXhwhnXFS6c0avHQRQunLE6Yq+fD6BbfL9L1Kb+oOKMFoDy5hFaIuWErDJbF/KoMaw7U5MbqhGI/CEVtsfxeqYV560RAGcMezvlV21guqjLS1aKLX/41e+Rln0SeTHwS2tg0JDJ1zy4xOy6uos1mPsPAEvE3ZBoWc3BrDxAbqmb8lki5bSkR04LOGTMtrA9oGwDcATEFcDyH8llmQC+cNqYI2Y8hjDN/DAGexcBakbFzFMDGduaApnbLjr+unvKzKojXgoXzmjeW6L5QmkHTkq0rDxX5SkN/pza7fdcmJD96m5Vdih67GeGZrZYhgGIqDlnO6tlZwbAR5Wnpw5EMjBF1Ibd+m8QVmO++b5QWnnJ8dcd/YiI3iLsqrSGnVWnJ1pOhr1hmtPSZj96yiNjDyltQF2s+XTkWiX6GetAyI3/TeAmUnsVD2KW+aG2C1oiw0D9cTf+ot8IGsAS9KxzNkw6kGg5e5rG1DcEcuN2OW0nbJHZEUXG3FXvKwwKgDZXZCUwy/qr+tUeR12oKHPbeYm2KVkwS9SaQEhACkRCe/Z6CiXi3q7ojtxEyigqWSoi0lrQEsrcnGh7fC59cluaPirWfOktlqCR/8l2n5FMe0Nbayg9K9E2JQumiNqYUagBPgISWtzoKULOSr8UkeEblsyL3ZA1mDHs7UIgbZCrIuEQui6fsscREDEPNrMbrH6A3Drbp+3X9jaPXlbtK+j2ymSyY9rsh674s/yeT+r6o6AB/Nnrc4W02IVuj9v2TLO1fBlgUu7a7vggHRFrRITsIaUq1nwRRXqMlx2/WOVAQerc8yimiHrDknlC6HZbxN5/B+DOhuKlAJ7dF6fHW8bbuy8oAlhTOf3zRNsTUaQnZJUxD9SrBofOBtgzPJDdfu2EQR+mA+Lcka9MSbRdyYApos7ZMdctUHBXT4v5qLXewuYr2Aqg6M6Co6XtiqKSpdN0af0NQEvI87tEozIF7XJES3rkuFjzuVstNQCOgHJw9TDD1rQPoMY3uCiRNiULZpkfGcZzv+2qAxnb6wF82eviDf6iQnvPKq0kEpUJsAdFXVqbsj7WfJnNlkaA/CrbQX/u9/bPegvg46rp/WLTR19jyofQWPjqeIDWQe/223jJrYPfqwYIO6tnxFmEJjh4Pl/CMzwWXUhHUInZuT+iyGwjsI2vw+Vy4znlV41Joha6PRsgYmsJmFFeT3DC/EcPSPSW9IqztseTf9fC2astIvwYgECel+ipWLqQ7qBNj/kkgPrs8LkRCwJvY8dNv412JRCZnPfRdxJpU7Jgiqgz95/XaDwnvCjRkwiU/UJa4w4nEJb2nQAS5f1E2yIFGU2ZkZgD0aS1WfYLSWPHa7sWzpZ2i79tV+PY4Yna+snAMWNTA4TtdYGwozpu/4/hGTuHAUwreCfhmNCKTiS9Jfbd6Gk+pdmiiy9MBRaVLJ3WEvK4W0KeocDyY13Ypoi6eUjZ6QBNQ9/s10c1BNN3ZkoRjnkVr52h7r1jAQalVSQmaq9HEQiLMxC7Ta0LmS2Rnfc1qkR9qqFDZNRjFVNErUScaQC6rSW+kAG9hLNx0qtW/5BQecnKuFYV11Z9+T2A9/bNCibSjrrssBPA79BjXsRpdetTW9L1ok6XNYEOSDBhEDvQMUXU7urpewGydn97txnl9RRKxLVLIFyA56iJuyCoO8IAtf7BCbWjJT2SA9DoiX2e2ukXNbaQ+MJgd9fC2atznNU7nBZfKwmGFk4GzLSpJdArxxjHi9+zRQdoLlh2Yjz5R2TsGA6J29R5NdYwgKfREvMBSLawEnYGlB2dr9f68zf6I2k7j3VBg0mibsv5SNUtvkjhwhnxxpbrFfyeTTqAbm07OZ78Be7y0ZC4TZ3ms1gBnIHYfT8k0hNRZL+dOu0PmGRTp1mlEuz3O5nTK2YtA/DsvTCu4DcfVU5/FxK3qRszw1kAba5IzDZ1xMKQ+uzwIcfMjfF8etJg14G4B8HJhCmidjZOLLeEPP3angawBrPbV97iWvkMS1sEErepGz2RkQANWZHRMWX0eoQlgu7yKes63/KF0xoDuqNb0Z6SHTNt6iaTyuoxChfOaJEiGPB7tqjx5C/K3DYSErepB1fZqgCy662xzlPbBcLibrNs7Xxjf+uInY2BnITi+yULpog66N51ciB9Z7/1++hI2FktpBKcEE/e/LT9RZC4Te0MKALA5Vdi2qPYnB7JAghbZELmT7Jjjk0ddguE3q9XE9ux+oauctWfGNcJAB9WnPFvSNymbsoI5wO0uCMx+X7UZ4fHAFQPCh2yvD42a8vJg9P2x2bOJCmmiNoaGNTqaB6b8HHGvYFA7CcazShmdCwSErepmzL1CQANWZGY2pFdbw0BuFuVtZ3vtYbS6wJhZ8LbzJKBY8qmBghkbHNIERoZz17FUZ7PiiBxm3pQtXUHQG6tdWMs+TJaLApAZrP1kHnqA63DdzUGc2KeIkxGEhZ1eclKIUU4py33g/FmNKinCabvsghps1qCWTGPAQa7DoyExG1qR1CRcDCeXrdpc+n5AEGb3ic2dXFp8bTi0uLbikuL+7XDVMKibstd4xLSCigJRQHtLTIOnPMCgGfvRZlHS9uZ9yu+sgLg1R3fS0hUzemRQoCmjHBMexTrs8NTASrzQ4fYP2OzNp+Sn7a/x0KPFZcWq0R9Su4CuWLWM+Mv7qm6EiXhCE1ptae4jeeBsjzbHtBmKLClLxrQnBGZnNFioSErkh7LNyurwXIAwN166JReSyiz2hd2mb6bvLi0uHi8s2WJhbRTIijGL5RQqsKOvxWXFm8FVk9Ja/SnKZHXVrXkvLVxzsY+D9VgRtixdl/qAWFTtw5a1equnk7L4H/PghnLY8k7xvPp6B2Nxxk29ey42zCoOmpL59VYY1qwcrdZQgA59dZDIk1VtBbuJup2mjA3vjwkryFi+/WaVs9JIL683e8OD7X7KsuDrlzAIkBmW4Kv1UUcdpBfX9fmyQMWAM3FpZPfP9HVZI8gnv/El/nCxjkbYw6tligJi7phxD+mZO35Fs0Fy0ZBvNv/eo9A5ra97urpCGmJ+ac611VVuKPxuIRtals4alOn+SwxzVb4HfpQZ0DB59Rbe8Jx/cTSySfoiKss5M6LoLhsQt8dkuImHfHkG9/bUWvY0qoEbcXln60G+Okr+SIoxVmbfBnFFSHnBCvyKxt8mcdLxJnAn08snbx9vLMFn255dncwbRswAnhn45yNPfbLnrCobb7B0d5BWgfECVEnzH+0srxkZZu7+vRh5SUrp8USfOeDijP/DZz36o7vBR9MoA0t7khRequFxsywHosPbFNmZIazWqEyP+Qr6nRvXPamU5sCWTGFVTNEek6aCGdlWcPzdZzpQADEP9SMmlUuRV/02wsrDzqpGUL8wudl3C8zHgD85JX8/Pdbsk5qiNhPciuR8/cGXae36tZfRO9KBISLS4vP7ClhJyxqd/UZzQAZFTPXJdyaXsAIOeySyNOBsvKSlTN7O6pUq1svTm+1UJ8diXiA5WVjDp55M2vmjsO2JbPJslMipxfN9R/iPNYUyKr0hd3d/gWJClquAGFrk1YsEdk2ydX8+CZfxi3r5nxSG8/f1c7vLqysBN40Hvf89JV88UbjoPtA3AhCkWBV0B8pLi1WN87ZmFBdXWHGPPWAsqkBVSKlEXLYCfxPdzOOzdo8BhKfp86ttX4EkNVgaVpeNno68G/gLmC5IfAucQaUkEA0dnWvsm3YnqZgVrdmoIpLi0WuJfg0xlHSQKRZt931/CW75vWEyKK9ufg7EAAZBhnRUSYCm7734sj/Nbu+hEXdXLDsXICGkS/16/2JHdAEIiCR7fufLt9bov1jwyNXHXXjQLaztgASn6e2RoQAIutOaiuCxpeN4DgKSBcEH19eVtjlCQNBmz5MF4n5fRSXFtuAJ2oj9tHROCYyDHTrKOlEMEyNWSB+AWIG8CWniDR/4sv8/dnPjHu3uLQ4oYi0HUlY1FbfEB+A0AeGTW2YGrME4mciOpi5HSG/4dlz0drPf/XCzUfav/hhxYx3IfF5ar89cqqO5LT33UWK8B0AAkAEkGCfAPZdQ8rWhIeUfawPKVsTbs/Xlqaf4nfqXQp+fPYnU4eklY87Ur0/eSU/P9sS/AD4AfBziTg9KjJm9eTArZ2Nczau3jhn4z3G83o1s/aEya6mNyrDjqnApjOePu5SM+pJ2KZ2NZzgAPDsvWgUsC/hFvUCnY64e3fjX675KL1CfdjmG/o74ILtdz96w9jbr4w5JFh3aHzAfX5GyHKOANJ8ltfUFcqssjOBaOB6DYLyMl5+F9qPWLRYhpStCVfMPMWa3mLZLQVdmhgNgZx9vvDh9xwUlxYPyrZkfdQQsQ0bavPf/tb3t91j3Oqz9YX7Lqz0AecXlxafCPKJxojt+W8+P/pXOwPu0xMxgxLqqY1B1w9ldBfzMuP9gKP46oeX2XxDxwHzJfpJ9pZR6z6774HnyktWfmHed1zWprEAZw3/Z9ydQdgq5whJ+7HVNimYZVE+/6tF2blv1swdq2fN3PsfUKL/F9H+oxF9b42IdFtYOPF6Dvmcq9qGljcHs7oUQnFp8WjgvfqILfdL7saSDoLuF2ycs3H9eZ7q6VPSGt/ZGUgbC2wqLp18a7xL8omaH6pEWoxjMQZ0vInChTP0woUzHm0oevGMgGfLnrTaU78LrNl7m3ZqexqPoz4fIMPeGNPnpmnCoWmiGCCnzvoHwA+EgVBTZuRj4BOMlU5NE4MQevRokYOh+3Qdr2eaRE6SyHESufxQYUvj8UWu/0fBd11KZDPIXBCzHv/23ntjaXtvcd+Flb6nvrNnJogvgWwCsRDkb4DlsQo7UVFrINuXRSMkQbyJ4gWLNo679ccjiZ40locU72+9/94Py0tWpq+pPOM9iMum/gvwjqaJTOFtWi0QM4FfALOybmz9p6rKS1RVvm2k/c7z4lQLRCJRVUciFTNPaY+yKowe3k6nDmR89qapQ9L2fcGmLi4tnrWiOfcxu9AtM9LrvrdxzsZVMba7L9jJQV0KQRzBeRISdeHCGasFyrUAAnFbfz1FIB4KF854JeSsmtSW9/5md/X0U4BPvot93CQslJFxy9FMLU0TQtNEu5lyD/AjVZXRaU9v42q8jfe0n9nSicXA1IqZp1grZp6sPK+c+rCmibd0IVcIhE8iwwIRBDRNE3dpmrgIoN6fW94Syjhofsx8ZvzVwBs6Yke6Eh7/54v3L0v8U+lZbnx5yASBfAdEEcggxq8ZMXaWZvh+/BNAVwJJt8VolPfiBmDy3hJthsDyyI9xzo0gUcAL3F5esrLL8200TViAZ4maFP+rqnIrcIgTUleoqtSBjvFAtgAtyi+bVuH1zKrNDf8kYuGlLcf71gIPE+3JXq72FewDXADff3Hkk9XhzCucIvKRX1rOfvP72xvi/Qx6i7OfGTc+JD0bFKQlgrgIRA3GglSsMzMJi7qx8NWKzH3n0zboP5fB2YsSLa8/MnyhurK8ZOVJex0HGgsDQ+wCYeG/P4uHfOCqKiOaJvYCcYVi6FTWn9tfa2rTFuB8YKuqyuc1TXwJY/HLY6/LEa7Pi6aU/vS9CJnTR9rbtk90tcy678LKLhdr+hPFpcUngPNNK3r4jIy6G/70rQOvGbfi+uVPeJ560o/vC+vWtnpH01h/omX1ZwoXzvA/Gch6LAjI6DjiCz+LmiasmiZ+oWliAoCqyp+oqjR1UKaqsgEYCTxgXPoSsEPTxPScrLVfiRT8PSOCMh0I7w6m/XAgCPrH/yi4ViDfA2QYZeqfvnVgcaJlmrKdyxLKXG/zDUv4FNj+jKaJ35fnrc6+njZCUfOjs+mRB1wP9Gjgc1WVVaoq2+eq24A3blv5sGtfREhjahUpEcCZPdkOM5hSOulb7zbnPJRtCVms6NM3ztn4iRnlmiJqidwjOSQSZ9KgacIFfGlk5g51ExHuHP7C79sFrWliuqYJoaqyAjhBVeVdvdUuVZWfqKq8/EDr8NPCbWMk0oqUAlB0+vlMVHFp8ZURlJcUwYZT3A1T1s7ZZFowJFNE3Zr/75Egh21YMm+g+H/EhKpKHzDzQOvwD+C/89SaJr4BvAdcYKSLK/SCCWi6b2Sgbc+VkWD1OaFQ/bRre2PZOx5++kq++MFLI5YBS4BlIamcfv9FlTEfknokzIn7Ecp4T2AhrXr6CDPK6y9omkjXNHGvpol0VZXhjyqnrwYIRhztqxxLgaswZoD6CiPS6SzdN/LnwdqZX9l64+Ilfdmew1FcWqy80TjowbVtnnMmOFs+n+hs/ubGORtNj5RrxpQeaXUna8DtzqYJQ+jm1NUAYRZwI/Aa8G77xW+Ne+pDTXvsNFWVzUR7nD7HEHa/7J0BbnklP8Mm8kpDUrlIIH8/2tF2y28vrOyR/Yzm2NQitBsg7KiOOYh4f0ZV5f8BY1VVvgtQmP75mQAbqk+pAhI+9+VYobi0eNaqluwDIalcZEGWbJjzyU09JWgwSdR1Yx+vAvBlb/y2GeX1NZomTjLmgFFVuUfTxNd//uTse/e1jDwH4E/rbj/1h2++PrFvW9n/ueKlEcqJpZNuA95uiljdAhmJIP7d0/WaIuoTf/RUg674m5wNkwdEPL1u8HvguQ7L3HNrfYO+Lw+6zYkB7bzV0xSXFitnPTP+igNBZ4uOcjcgQCARkl743EyxqQEU3blV8TtjPsze6/Ue3J/n9Xr7i034beBsIAeoAuat3HfOiSDeJLqSeMwfFtQVP30l37LV774K3FfXhB0nZlpCzaMdrS/sDLi/QS9+bkLKQ90V42HP7ctfBk4ccfesbkfeNAS9nKjXWRCY1ZfC1jRxKrAGSAd2A0tVVV7Rft84n1AFtNTZKv+luLRYAb6ZbQk+Uh+x5wnkdon4FfD8xjkbw+2hFYjDjyMeTOup2/LeL0yrOXXUhiXzxAnzHzvqN8Xr9Vpdrto/+Xw5Lr7oTtknYtE0MYmoI9FPVFXer2niB0QFfpD+PsPQ2/z0lXxLU8T6G4Xs2TpicrNu3TMtve5hjyV8430XVh48l6ar0Ao9iWmitvoHlSm685TM8tn5wGH3Kxq985WA6vPlju7g3C6j25n6nM8BVFW+3tcN6a+098xWkXd3WCrHuZVwdatuvSIslecfuXhf+KgF9DCmidrZdNwqAGtgcCGHEXVU0Pq7xvYkKUTkDimVd6xW3ysgc0ePfufDqFtF72G4iWYTFfMrxnOKLiguLVamp9f9JkPJmNOs2wrCUvlssqvpN4V2/50de+a+xjRRR6zN5ZZwBoH0nVNgxmECsMtzQbTPuESktEiv17t68eILn6yomPKTvXunnQ+8alabjoamiTHAdqIuosWqKi/qrbrNZNGCsoM267WLZ5r+M3/FSyOUdW2eC4FfrmrJOSHHEgxY0OdEUJ597pLdfd4zd8asoOs0jni5FiCYsf2Cw6cSaVH7+YuumxUVU34ONPp8uZeY1Z5u0n6e4iqisxwDjqigZRnIu0GWGQI3heLSYuWSF4pu3B90tgB/B5wZSnj+aekNnnVzNj25cc7GfidoMFHUiMhuKcJ+V+2pXe5ofvxxVYCcDWwF8XM6zHR4vV4/8BzIi5cs+VqPHoikaSLT8Kyzqap8CchVVXmhqpo0DdT7qIDTGGybMn/+01fyLWc+PeFyYO0Wf8YDYSmUSa7mXwPHr7piy6P9ydToCtPMjxPmPybLS1busAazs7u6Hw6n3QhiUkbGvttvvnnJIVv0hwxZq1VUnLQgEnHcDfzQrHZ1wV+IxuHdqWniBVWV/SpcQBzsiT5JibF3Md6CikuLFYG8MM/qebI+YncDnwGX51hDzz9/ya4+jzvdXUwTNYBuaa2SQk7q6l519cQLLRZ/KCdne5c7GxyOxhet1rY/VFVNPuTkqUQxBoM2VZV+4HaiTkiXAYecnTKQePGhOcKefvavgy0FzaD8AXgjHpv6xNLJp2dZQl6wF0nE2BbdWjktva50dUvO9f0hiHqsmCpqX876wc76yWM7X/d6vSMh43Tgt3PnvlPfVd65czXp9Xp/D9zr9Xp/B/zdjIUYY6n7LaICvkpV5edEZzjKjphxANBafeINwZZhowdNKt1wyXWlv+hOnuLSYnG8q3lyjiV0+dq2TFurbj0NOL0uYsfo7b0+3XLXIxfvG3BibsdUUdtah79pCWdO2v3z19NH3vn1gwHFXa5ar8+XA4iHj1LEFmPO+iYQ/+P1ehNeYVRVGdY0oQF7jdmORcB8VZV7Eym3r1m0oCwNTrjJkbWDQcc/+39Qekia4tJiCzAuxxI8s9Duv3J7IE2AdcxmX4ZhIkpJdIAsiRrlESA4EHvnjpgqanvb8I8ALCHPCGAzwOOPn5UdCp02JzNz796bbnpsz1GKmBx9+kIQk5hFrWkiDbgP+Iuqyg2qKu80rn8VOA4zB8h9wKIFZdOkf9PrEdmaY2048L6whO+55ZV896e+9C/tCqaNtaCfOsQWuEzB6dAR9rqInSafFZcS2Q28ZEVff0ZGXZtT0f/vzcbBx4FYDthAJIVPi6miDrkOVNp8Bfiy158KMzYD7N595kUghNPZ8OtuFKEBOkglwQ/YDVxIdMPChvaLqirf0jQxXlX7xzHIf73tS0rDzgI74MibtDsPXbhqtoxoA+y5E/eMkWGLo27bsErAnjO+/EQ9ZFGays9wCiXvrkjgQwE6LVimrnz6B1XvnbY9vcXeAkIngtIiEYHhdt+q3cG054C1Z2TUffbQtw4csuP/PlhdXFo8i170zehpTHNoAtj4l6tPyf788g+DabvX29tGXvOoc/l/gI+JfnlO8Hq93fEJeRH4BnBWLKaHpglh5HtVVaX815v2zKoNRaHqTSOVcd94/7t62JLe8Hn++1XrR9dKXbF7RlYOc2S2FVZtHLUdsGcOrxpjT/ePqNkyYgNgzxhWc7wtLTC8btuwNYDDPaRustUZHNq4a8hHgD1tUMNkxRYZ1LI/dwNgd2Y3H69YdE9bjeczwGHPaBuDkK5gk/sAYLc4gkMAWyRgbwPsCOlCHowAmQACq/N0rK7TkOgotpagHsrYJBD7XXmfDFIs/orWylPeADIs9saxkaDniZ5YoOlPxC3q+y+dPV1Y9K8i5HvHf+fdc/SQhexN1+0u9J/7EBIJMrg668n3NgeGz7S11Tyc1bxxdfqQuhOb9g76LNicFnRmNQ9NG9x4UlN53ifhNmfI4WktdOU2TakJT3H53MOn5FS895bT3TS2tTJ7gx6y6ja3v9Du9o1tq838VEYsisUZzLc6gkMDTWn7kIrF4gwWAA49aPVLXREg7R3ChpqEBIQfCCi2sF2xRqxhn6McCNjS/DmKPWwPNKRvAoKOrJZhFlvY3ladtQYIpg1qGKXYIraW/bmrgUD60JoJilWnac/gVUDQM6JygrDq4YadBR8Awewx+8cIRQbqtg1bDwRyJ+wtBNoad383DcXzVLjtLQE6YMGtjF0T8Zz/1/SC/3wjHMjK8Ncd1wQUWOyNkyPBTJsxh22gh0E5M5mFHZeo77/069NArvrihwUTPV+mOHsGQijoMsIrrKDOHiJ92waE1I/eGEUnlJET9g0da03fs6HNTqMj7HOUS11psdhDTnu6L9/f6P5ERiwttjR/psPTWuirzfw4ErTVOzJbc9KH1ar124aW6mFrsyunabAzu2V4w678MiCQXlA3wp7uz6z7bKgmdYs/fWhNriu7Ja9688hVSBHIHF7lcWa3uKs2jN4IBLNGVTic2S1UfDx2PxDMm7gnOMe7oc9X0F58aI6o3nRZox7YIW2tG+zWcN07V/7jhfMPl/6vty22+uvH3wnyFhAW44u5+NrFM6/pxWb3KvHa1CoHR8xSB/G6ze1fIQd/dqYMnXE+UiqtBCJ1Tt1q15vfEFL/jTO72Zo5vDqvZX/uzrYaT6MrrxHPiCpr8768mtbKbB8QvOm5f8p77vnfMwmwomXECZd6vd4jesppmvgJcB0wRVVlfad7gqg34NNGiIOkQOr2aWDNyJ6w67nLSx7+/tHS/+ieBeFFC8peBXED0cGgBbh08fUv/3bBgxclpfNWvKLWjJ/h9hHzwusf+9dq4AEjGqi6zL5+PELMCVqyr7/9hdd3drfgQCBrm/GyO+EWVhANw9VVyLNTgUeIbpBNOJRVf6F+59dGAeih9Ge7m+faxTNXL1pQ1j4Y/Fwoob9aHE2bXvzTFaMv+fFTA+JYk1hIwKb++kHPsJtfeP0L9tnjj5+VsX//qfVWq2/zrbc+dEIs5Xq9XgX0YEbGgVduvnnJFzbyGr3vPCBHVeV9RytL08RU4EMjkmhSsGhB2b1EwzZkXLt4Zlw+GM/df31J3bYL7hZK5A2p2y+4dvHMpPl8IIH52ptfeH31zS+8fk9nQQNUVEy5LBRKs2Rn73w61nK9Xq/ucDRJiyV48mGSzATO1jTRZds1TWRrmpgMoKry/WQSNIDFWfdVYQl8Gq+gAb5384MLQVwvdfv5Ue++5KJHFiECAc9cYOv+/af+Lr78masaGooOhvDSNHGGpolhhifdfOBrRxDrfcC7miay4qm7P/PiQ3MsMuw40T14rQn/N2WRUIKPgrj1md/+5JHEy+s/mC7qRYu+cyFwGvAnr9cbZy+pfA5iJICmCQ/R8F53AaiqbDtK73sHMNcIe5tUVG/+/lg97CbUNuipRMu6dvFMmTfx+eud2VvrGnZ+de6iBWXTzWhjf8B0UYdCrvstlgD5+eufj7cMt7tCghz26KPnOVVVNhJdVLn+SHk0TQwzoo9Wqqp8Od66+zXSdipAoHGMKbH7LrnuCV/YN2g8WHYBryxaUDbSjHL7GlNF7fV68xsaRg13Ohteu+aal7t1pHBX5OZuGwVC5OZuvQFAVeUKI25dl2iayAE+BH4bb50DAWfW9u8gIgGiR2aYwtV/+HYtcAEi4rK4qjf/+cev323m7pm+wOyeej4IW2tr/k8SKaSi4qT7AfbundbdedQGolGVYh6YDiQkQnVm7Qxcu3imqYtA1y6e+al70PonI768NBl2lQDLB7KwTXNoevzxs1xW62m3Ae/97Gf3xhxv2IhdVwJcHgz+chtAXd1425FzRc8oVFUZIDpATFoWLSizwmibxdH4TE+U31p1crmxkKbQxzFYEsW0nrq6+vjfhsOutPT0A/GG8h0KTAWKXK7acoCsrJ1fO1IGw5V0a/s5K0nOJBCuSCDrnR4qXwMRMOKwKAxgF1RTRO31eqe1tQ36H5A0NIz6nhGw5qhomigwhImqyteACaoqt95660MtVqtPh6OKtZaoa+mAdvjvDukF/7kCwJ6xp0fOTDccnGbZM8o3gxDZY14r7Il6egOzemo1WpYgxoigDwFPGmeq0NFHIxx2rWtoGHXEI9tUVa5RVfkNVZVtcbV6ACF1+0zF1iIHFz9h2iCxM9cunrk6c/iK8xCRtvodFwzIGChgnqi1DuHDjujcr2nCqWmiPTrq/wLqYRyOWoCTu+r1NU3cp2niDmPZ/JigtfJkqYdd2jd/oPXoCuml1z+2F2lZDFyyaEHZgDzuxCzzY7XV2tZmtzdXcYTIpZombEQHHw8DqKosV1V5SM8TFbI8HWQ+yOUdhW0sjw8F8gdwrI6YWLSgzAmcgLS830tV/hF0Jb3gg+d6qT5TMW2gGA67a4PBzKVH2q2iqjIEPAEcbQSvctCc+WKAFmM18XLgpsRaPHDIHr30IsDqyt18tD2epnDt4pl73IPX726tOvHURQvKPL1Rp5mYuUfRQRcuoPfcc8O8nJztNwnB/VddtfRxVZV/7EZZGojotg5jr6Jhdz8A/FpV5QGih7EfE/jqxn0HQEql1/ZWttUed4mMOD4g6pN+f2/Vawam9dSKEszxeHaP63jN6/VOCwSyHj1w4JRJ+/d/aXF3Z0WM3n4t0ehD7ebMFKI99BSz2jwQWLSgbJq/YfwFIPHXTXiotxZF/mfR7A+BFRC56cWHfjigzsc0TdRSWiyKEu5s486N7hMUGOF71e6WZ7c3T3C7K6vbzRlVlauBUaoq3zCrzQMElegvFr191kz60NV/A8vQkC93QC1smTVQVKS0iPr6Me91vG6zNZ9hzIiEieG8D6/XK0KhNLfD0dSqaWKSpon2E2Xj9icZwGigG8FlZJheXBRxZX/2sMVRX9vw+TlfW7Sg7LaBsnRuVk9tN54P2tSLF3/zy6FQ+sTMzD3rgV8Q23kug6S0KHV14/4G/Ax4RNOE26S2DiiuXTxzdVreJ88CODw7bu/NXeCXXFcaiQSyH0XaRxN1/R0QPiGmDBQLC1cNKi+fTk7OZwdXACsqTvouyHBGRsUVN930+MYYi2yfH91DNJjjGFWVph/3O1BoqznhYeAHgcaxfXGacKuxx1ohgahZvYkpPXUk4kwDUJRIEMDr9WYC80C8MH/+G7EKmvz89bOjz+tQVelXVbnJjHYOYMqN575Yuv5X9OnoC2v9BVNEfeDAyQGAmpqJ/wEYNOiTJUCG1dr2UDzl6br1OIBRo7RLzWjfQMeZ/VkF6KQXfPDN3q772sUzV6MEdyEiO4BZAyEIjlk2tdN49nu9Xkt9/ehz09MrGn/2s9/GtQJWXT1pH+gBq9V3nUntG9D86J4FYYu9ORAJZOT2SQN0xxaktXEgCBpMEnVBwZrxAIMGfTIa+Ek4nJbV0jI45l0omiYUTRNFwAhQdp99dqDLozaORSJBz3pf3cSmvqjb6qwJCIu/qC/qjgeTbGqHHcDvzxr83y33ys+6u9jSgeuBT9zuivPT0qocZrQtiSinb2xqXHlb8qW05Lz40BxLX9QfK6aIuqqquBqgpSV/SIcj5eJZKHgJuDcQ8GC1Bo7FOenDkpa3MUtYfeP7om5f7cR/otuo2XpJVl/UHyum2tRC6IZfs9SJYaSsacJl7ATfp2m/XBgOu9KamoanTpztgGJvqZJhl6X0V/f0ul0d9uXtAJBhV35v1x0Ppog6P3/9KQCKEhkUvSLuppuLLcYhQ6/z33h3Xye6JnzU/YnHEi37p70K0HJg6uDertuZtb0NwJ3/UUwh5PoKU0QdDjsEgJSWiSB3e73en8eweiiJ9uirDT/qF4zLt8RhkyczfTZX7c5fGwGwuysGxP/DFFHX1h63ByASsY3xePZ0e5XSMDl0VZV3qqp8gqgN3p4/JgeoZMdTtMwP4Bn59rd6u+7WqhM/BGjYdU6v+HMnisnz1ApSKm91J4OmieHAfzRNdPxJ00AYnn6JHXSZbFid9VsBgq0Fve4D468fXw1EpG6/YCD4fpgi6ry8zTPaXzc1DX+xm9kGAel0cILKyflsl7EcW0ZsDlBJz3f/9y9NQLWvZnJfBJCfCtIC8kwGgFOTSTa1M9Th7UfdyaOq8mOgWFXlwcA3DkfzT0Eo+fnrH0sJukvKgWF9UK8affrCUYD9FlO89BoaRn8OYLc3R26//f4jzi9rmvgWMBq4v3P00tra8SMUJeR3Ohv+Zka7kg1n9mdZeiitL+aqP4pOSEl9IJy1aPY89X+6kfbrwHfoNGXn9XpFMJgxVddtr8+d+07cAcWTGaGE9oZ8uX1xsKmxSUE8wQBwajLlA3K7K78FEAh4uuNm+iPgq50P6MzN/XQGMAxktwaaxyK+2knLZMTlWrSgrFf3DLrzP/oBgMVRf2t/FzSYIGqv1zuttXXwcdF3ct7h5pY1TVynaWKwqkrZVUB0iyV4M8CIEe9tOCRzinbKAYQS6lW7OuTLURVrix4JZI87euq+x4yeWu3w2kIXgwjjoPvfEt1u3yU1NROzrFb/vnnz/vWBCW1KSrJGvZkOkD3m9a/3Vp2LFpRNCzaNGq6H3YIBMPMB5oha63BIaJeDCFWVO4CTOExQdK/Xm6brtqnhsPMlE9qTzGwE8NePdR4toWmI8JWAGCgzH2CO+dHBxhJXdHyvaSJD08RZAKoqP1VV2WUAmtzcT38AOKxW3/JE25PMNHx+3scAbTXFvRJu7cWHfuiyOOsvjyciQF9i6kg6M3Nv52DrdwDLNE0cJdCguFJRQgwb9sF7R053bHPt4pktQAMiMrw36qvd+u0bI75B9rTBHz+GERFgIAwUzQw7hsezJ6/TpV8DK1VVHtFnoLZ2fJrV6l81d+479UdKlwKsrmqnEJEfLFpQ9kxPCmzRgrJhkHY78NrcX9/yo56qpycwtaeuqTmuAkDTxChNEzbjeLilR8rj9XpHgJgYDrv+bmZbkpFFC8qmhX15jlBbfgY9OGhbtKBsmsVZ+yHoNuCGnqijJzFV1D5fbtAI5FgGdOusv9zcT28GsNubUvb00VGjDl8CogE5VbMriH5RpBbx5xYQ/SUfYnYdPY3J5sdut6pKn6aJW4Hd3ckTDGacZ7c3RwoKPk7NTx8dDQiAdAJK2uB12dFTrRPnxYfmWMKB7F/B1+eAYkTcEjoDIHhNZ0ztqXNzPxsJoKryRVWVRw2P4PV6rc3Nw/JDIddTc+dqx0QA9URoP5dFsbbdZ3HWhX11x12zaEFZQpsGFi0osy5aUHZZzaeXbq3f/o07hCWQQXSWIzwQ/Dy6wlRR5+V9+qymiViOAz4N8EhpNeUE12OBaxfPXH3Nny641easnybDLoC/GycNxMSiBWXOpxeWPKnYWg4AT8uI0585XPtt3nEv5QNfYQDNdnTGVPOjvPzL28aP/+cn3U2fm7v1F7W146Xd3pKyp2PkRwuvWrNoQdkc4O8Oz871ixbIJ0BoRxPhY3c8lOWrnXQlcFPjrnMLHJm7GgOhtAtBee2KO37d7jW5mgFmcnQkYVF7vd757a/37z9lyv79p16qqizpTt6mpqEn22ytgWAwYwID+EPsK65dPPMfj93x4Dpf7eQpIH8DhB+746GnHJ7df2vYef471y6e6Yf2wR/n2zN2Tw37R55NdKRZZkurnJ85fMU/L7muNKlMPyETPAvI6/W+CXw1+k4C4i2v13teN/J9FXjTyOQntdMlLhYt+NcdIO40lrE7IoFd9ozdGcHm4TlG0Hscnh21jozyq6/42a+SdgrVDJv67x2OmzPed6NiJeg1Xg4Yn4L+iVIGwg+EQfrSBq3/pSt3803ArxHhNZFgpqdDgKFIoHHM/cksaDChp4aDJsjdQNjr9RYcLf2jj5771fLyqW+CohvTRiFSPXXcGOaFChxiUxv3lhPtOEIM0MFfLJgiaoB7773uTp8v92eFhaumXnnlssO6j3q9XgH6MiH0GWlptfNaW/NHAlpK0D3HkUSfjJg2+5GX9+mavXtPx+/P+T5wJJ/ob4FytpTK9bfc8vCzZtWf4vAYQk56Mbdj4pFzoVdB7q+pOe6w5sfjj581yGZrfVpRgtswTr1NkcJsTBN1dEVQvA2c7fV6uwz5WllZfHco5HYWFKz9vdfrPWYO90zRu5jsT12+EcgZNuw/3+18z+v1TvD7c+aA/tT8+W+keukUPYapos7K+vwNgObmoWd3vP7446qw25ufA9kGyi1m1pkiRWdMFfW8ecs3A2ubmkaM6njd58v1BoMZJ+XlffqK1+utNLPOFCk60xOBUZYB0++669YMAK/X666qmjzPavXtcrurru6B+lKk+AKmizon57MtgM1ma3s5uigjl4IoDIddl6ciL6XoDUz10gNoaiosB4nPlzML5KzoVRkxVg5TpOhxTO+pw+G00zpsOaJDTBDV7LpSpOiKnrCpNaJedxFD0JFUAPUUvYlpvh8dMeLpqUANkEfKtyNFL9Ijok6Roi/pi1jHKVL0KClRp0g6UqJOkXSkRJ0i6UiJOkXSkRJ1iqQjJeoUSUdK1CmSjpSoUyQdKVGnSDpSok6RdKREnSLp+H8CA7+vWdnIbAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top-5 predictions:\n", - " 1. blueberry 13.230%\n", - " 2. submarine 11.078%\n", - " 3. bicycle 9.777%\n", - " 4. motorbike 9.246%\n", - " 5. eyeglasses 8.239%\n", - "Answer: pickup truck\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABQG0lEQVR4nO2dd3hUVdrAf+fe6SmTSkJooRNgUIqoIDiAPdbVFRVX1oKyssK67PrFsmssq9EVO8ouNuyurrpq7OBYAAsqEpQqhJ7eM33u+f6YCRsxIZkGLM7vefIkc+9pN/POmfec8xYhpSRBgsMJ5WAPIEGCWJMQ6gSHHQmhTnDYkRDqBIcdCaFOcNiREOoEhx0JoU5w2PE/L9RCCNnFz1Mx6ucpIcRbsWgrQXzRHewBxICe7f4+HVi8zzVX+8JCCL2U0ncgBpbg4PA/P1NLKSvafoCG9tcAE9AghLhQCLFMCOECrhZCNAkhzmvfjhDiRCGETwiRs28fQohiYCZQ2O4bwB66ZxNCfCiEcAkh6kIzunV/YxZCHC2E+EYI4RZCfCuEOG2fNu2h11nt6uSHro1rd224EKJUCNEshKgSQrwghMhtd98mhFgaet5mIcR3QogpoXt6IcSDQojdQgiPEGKHEKKk+//5Q5f/eaHuJncCjwDDgX8DLwCX7VPmMuAtKWVlB/XvAf4FfEjwW6AnsEIIYQHeBVqA8cA5wATgic4GIoRIBt4C1gNjgeuAv4f7QEKInsAnwNpQ3ycAycAbQoi29/V5YE/o/migGHCH7s0NjfcCYDAwHdgQ7jgOSaSUh80PcF7wkfa+zgckMH+fcuMAP9Ar9DqdoJpy+n7afoqg0Le/NgtoBFLaXbOH+hzUSTtXAXWAud21i0J17Pu0kdXBs4wLvb4VWLpP2+mhMuNDr5uAmZ2M40FgKSAO9vsW659fyky9qv0LKeUqoIygSgFBoaoH3gmz3QJgjZSyud21FYBG8FuhI4YBa6WU7XX9L8LsF4Kz/GQhREvbD7AjdG9g6Pe9wGMh1etGIcSwdvWfAo4ENgohFgohCtvN8P/THBYP0Q1aO7j2GHBp6O/LgKeklIEw2xUEZ8aO6Oz6/uq0obUr24Z+nzIKUEpQMNv/DCao3iClLCb44XqdoFq0RghxWejeNwRn/xtCbS0BPjgcBPt//gGi4FmglxDi98AY4MkuynsBdZ9rPwBHCCFS2l2bQPD/uq6TdtYBNiGEud218fuUqQ79br+Lc+Q+Zb4BRgDbpJSb9/nZ+80hpdwkpXxQSlkIPA5c0e5es5TyZSnl74BCYCowqJNx/+9wsPWfWP7QuU49rpPySwAP8HE32r6B4Nf7UCCL4MxpAXYDrwE2YDLBxda/99NOMkGhfZbgLHoCQVVIAseHyuiB7cCrwBDgJOA7fqpT5wFVoTJHAwNCbf0TSAHMwEKC+nl+qEwZ8Fio/h+BCwmqUIOABwiuDywH+32MWg4O9gAOslBPDt2/pBttZwPvA838dFFnI7jgchHUy58CrF20dQzwbegD9S1wbqjNo9uVmQCsDrW7kuBM+pNnIahqvBLq1xX6QD0EGEI/zwPbQv3sDgl8aqjuLIKzfTPBBeXHwISD/R7G4keEHvAXiRBiOvAPIE9K6TyI4ziL4GzfQ0pZc7DGcbhwOJwohk1ofzmfoEqx+EALtBBiJrCFoDozErgfeDMh0LHhl7pQvI6gjloH3HYQ+s8BniGoLiwkuJV48UEYx2HJL1r9SHB48kudqRMcxiSEOsFhR0KoExx2JIQ6wWFHQqgTHHYkhDrBYUdCqBMcdiSEOsFhxwE5Js8vKj2WoLWYo7ykcOWB6DPBL5e4nyjmF5VOBD4i+K3gBaYlBDtBPIm7+mHWtc4maB+sgjQAN4dm7gQJ4kLchTo/dVNa8C8JQcE+CViaEOwE8SLuQr2jecAGkJpe8X4evCIEwZnbHu++E/wyibtQt/hSc0Ds9GnGP4JwEQxN4AMc8e47wS+TuAt1sr5xtFnXWhlaHE5LNdTffdbA529MLBYTxIu4C7UqAgUD09anAZSXFK58cOpvss8Z/PxtDodIinffCX6ZxHWfOr+o1AQZir7V1z5aaAlwn90uO4rFkSBB1MT78KUfQI0r55u2C3a73BLnPhP8womr+lGQ8d1EgBzLrp8EXXQ4RJ7DIR5yOERBPPtP8MskrkKdYao5CWBc7vJ9vaT9BOPYjY1n/wl+mcRVqL/YM3k3SK9O+Ne0v263yyogx26Xz8az/wS/TOJq+5FfVPoKwXhvl9GJQZPDIVS7PezAjAkSdEpcZ+pUQ8M4i645AHwE8m8gP2p/PO5wiMcIBkFPkCBmxHWmHn7TS1qyoamqytmzR+h4HIJx294f02OFZ1LvD5OGZ67+3qh6/2K3JwKQJIgNcRPq/KLSNKDeqDoXewLmiwEjoIH4SKANkyh9QkWdIL8am7NC8Wv6F76rHv9ieUlhfVwGleAXQTyFejTBqJrnEYy4aaedTv27f1w67tuqY8ZUtPYamWJoPL3Vl9Jfk8Hwz6rwbxieuVpr8aUs2do49BVgS3lJYWImT9At4ibUZ95zy/w1NePuyU/ddLzjhj980lk5h0OcC7xS0Zp3zh1f3OVu8qYflWqoP8MbMB7lDlgAUIWvbmDaBnedO/uJGldOKfBNeUmhNy4DT/A/T9xOFE0650QAW9bX27oo+i4wKzdp97I1t17cFHp928yHr9Gt2D1luE8zTsi2VF5Q48qZWOfOvgm4SREB3/F3PODc09r7CW/A9FGqoWHlmltnJCKGJgDiq348DHJGecnp6TFssycwcaB1/WVOv+XYPa19kkHoALLNFe5qV85zIJYPTS9bMyyj7JsHZj2XUFl+gcRTqEuBnuUlhWO6KutwCIWg7t1kt8t3w+jDAhw1Kuur39e5s0bvbOmfCaQBWHQtPqc/+R1g+bic5duyLRXvPHrVE00RPUyC/yniJtS2vz5XbVTdm1bdfPmErso6HEIQTHK5wW6Xv4q0z/yiUgUYdkxPxx93NvcburOlfy6hxDyK8Gua1H0BLD+mp6MxzVj3yqLZj6+PtK8Ehy5xEep5i2eIt7eep43M+nrVa3+8/aju1HE4RG9gt90utS4Lh8GQG17Nmdhr6R821o/I39XSrx/IsSAModubQC6fmLdUSJSnV+ye6igvKYxp/wkOPHER6pDuu1sRgWu23HnmwzHvIArOu++GpDRj7SVrasblVznzhikiMFmTalrodr1e8awa0+Nzrcmb9ti6uiPeLi8pPGi5YBJERryEegKwHCgsLyl8e7+Fi617A9047E090uvUW21llpcVKZZS3Bh3l695i2cIr2Y8ecWuKYMavRmjTarzRHfA0nYw5DepzvUFmWu8la15j+xu7VtaXlJYEe8xJYiOuAj1OffedPu3VcfeOCxjzfh3r7v+q04LFluPlchlBNOjeWoz/P/MqNfNFRIpEB5g2oEQ7H35/T8vGfJe+dkFPs14bJqx9pwWX8oQvxbUWIyqq2pg2obW8sZBDzj9ycuA7xMqy6FFXPapNamOBBiRuXpTF0XtgFEghESas+r0RxNMXdw+jMIBF+qHr3x6I7AR+A9QdOnCOUkf7TjNBkzMNFf9ZlvTgBFOf/L9AHrF6556572NWxqHLASxPFnf+MXa2y5KuKodROKlfjwOnFpeUpi334LBmXopYAKECKXilkgpEG4O0kzdFflFpYJgUvuJg9O+/12tu8fQOnd2GoBAkz0sFQ2VzrxngOWjsr/67o35xRsO5nh/acRLqD8CDOUlhRO7LPxfnfrLVkvgmiSnehaARL4iEHMobqyK+QDjQH5RaTpw7BHZX87f1dK3X40rN49gKmWS9Y2tLT7rG8DySb3e35FhqnnngVnP+Q7qgA9j4iLUI//yfLPV2LBm+U1Xdy3U7ah90DIxs07/mSakR5FCpwnp39bPYwyo9B70G8+umA80juQXleoVETjy6NxPrt/cUNCj2pU7AOgJoBM+r1/qPwG5fGqft1tNOuczj1z1VGIBGiNiLtRn3HOrYW3NaM+RPb5c9tofb5sWVuVi6zTgQ2AKsKcu3b88o16XGVBko6qJ638c4F4y8BLP/+QWW35RqeiVXD5koHXjvLW1R2bWuXsMA2kL2plLCeI7o+padUzPj90uf9LiLysmlSUsEyMj5kKdX1Q6APgRuKy8pPDJsCoXWy8mmAl2KMWNGwF2/dP827zd+ssF4jinOcCuXt7lep8yKf9S9//8G/6bh+bl6hXfpV9VHJfV7LMeqYjABE2qptDtXUn6pjVHZK9y7mnt/fDWxiGflZcU+g/qgP9HiIdQ751ty0sKHeHUrXzE8kZOlf6Mnb28Ob1nuf6rSxdbRXNyYKai8WSSU0Uiv3RatFu/Gt+6zG6Xrpg+wEFk3uIZRnfAfO6y7afl+DTj0SbVebI7YEkL3XamGBo2DU3/vmlD3ch7mn3Wj8tLChsP5ngPVWIu1Ofdd/3CVZXHXT26x8pRr/3x9rJw6jbfk/xqUqtyhnJzk76j++VPmvQ5lfrfm93KfKBXbYaP1iTtvL6Xuw9bP8crH5111Pvbzh4ITEw31pzb4MnoKYOupTLF0LAnP3Vz7dqaMX+XKMuBrQmVJQ5CffJdJW9sahh+xgVDHzPe8ds3wjPkL7a+CIyluHFwF+XMlT18/86s1Z2qBpACsWTdMNd/KnN9bx7ununn31+U+WXFpNHAxF7J5b+tdub28WomFcCsa3X2TNq5e0vj0EeA5T0su1d/+ddZvzhninioHy8A48tLCgeGW1cWp34sEILixsndKb9nkblPzwrDXImcKwWGnb295O02ZOj+0vSL8XHMLypVgZHAxCHp38/d1dK3Z6svJRVAp3i1TFP1rkpnr2eB5ZN6fbDmmWvu33FQB3wAiIdQfw60lJcUnhBuXVdJisdj1HakXds6KJx6/ttS82sz/et7VOmMAtHQagk8tmaUc9mxp2jvhDuGw4H8otJeighMHJW1qmhL49C0Jm9aX0AFSDU0VDV5094QaMtPzn99h1F1LzvcnCliLtTDb3rRm5u0+8tl1//xuHDrarekelqStQ9T57cURtK3/7bUI3UBcQdwqtuo0ZwSuC+7Rv9nihsPa5WkK/KLSpMyTZWTB6ZtuHZd3aiUZm9aAWAF0CueJp9mXGZSnasm9f6w2qxrfeHBWc82H+QhR0VMhfrUu+9IXVd3ROOR2V+8+vr8W88Nq3KxNYVgTJD/o7jx7mjGUfGo+SqLU30ktVlVJHLt5kGeDbvzvDcfP1V+H027hwv5RaXKsIw1x2Saqn/3bdV4s9OfciTBY38Emk+ifGk11JWNyfm8tt6d+c/X59+6/eCOODxiKtT5RaUjCHqwXFheUvhiOHW9f0spMPiUH4BLKG58JurBFFsFcJ4m5N2KFPkNVj/WRvUYUdz0RdRtH4Zc8vDcoQraZZ/tnmbya4ajBdo4iaKGbm/MNFVtLMj8rmZ9ne3eGlfu2kN5lyXWQn068CZwTHlJYVjCs3OxaW7vXcYHdvf0zs+7ynVvzAZVbNXv7ul9JadSP03VRJJHr61pSPdbklvU2UnXtSyNWT+HGXMXX5ze4k2dvmxHYRow0aC6T/AGTG0HQ3XZ5opt+dZNe76qmFQCrCovKTxkzgtiKtTn3/9/L3xZMfmCY3o6Brw47+9bw6nbtCB5Xmqzen9Vtm9qjznOj2I2qDaKrcnAfRJ5ReiKWyCmOuxNnydCnnXNr++7XtGr3skrdk8dCExMM9ae2+DJTA3d9mWZKytzk3ZuWVsz9gFgeXlJYeV+mosrMbWnrnL2TNYp3kCOZXd5uHVTm1UFoEe1/rtYjmkvxY0tFFu3ADJkv63ThJwKPOBwiEV2u3wiLv0eJrx87Z0awYxqDuBx4LJT776j97q6I8YCE42q+7Ifao84DpgMcOTNT7emm2rXbW0cshhYflTOZ+tCbcSdmAp1edPgALA+ki2igCL7KhoegYjnHrNDICSAQPiak/1fA+OAGgCHQxgAxW6X7jiO4bDhnetu2AnsJOhMcd3Y4ieNte4eYwXacdnminnbmgYOA/4BsLZ2tHb0rYvXVTrzXgCWnznwhbIHZz1bG49xxVqn/g7YVl5SeGa4deseSNpicSp9TNc3d3hEHgvKnzSp/bYZmgTiO2D+vg4IDoe4BvgzMN5ulwlT0CgJOVMMshrqT+ybumXupvoCsztg6QugCj8WfcuPzd60t8y61i+n9i1dt/DKJd/Got+YzdTzFs8QRvUc2wDrxiYIf5s5qVVpAroKURYVisYUgbBU9vCtybna2ZFHzXfAa0AlgMMhhgCbYx224ZdCaIdkU+jnEYD8otLMfik/FmZZKq5aWzPGAFzl8ifNK91yPu/f8GqFTzMuTTfWrMm2VOg31Q9HoiwLN+dmzIT6+9rROZ6AWegV78ZI6hu9ioGgUMWNzFrdQAApZIcnjXa7/AT4BMDhEFbgc+BZYG48x/VLoryksBZ4OvRDflGp4YjsL0+x6Fov/6riOAlMq/dkzaj3ZBHKZ+/KLyqdFo5gx0yoNzcU9AFYU3PUG5HUl8g8KXDEM7VBklPtB/hzKw3dCW3WAlxDcN8dh0NkAcNDgp8gRgSj1xa+AbwBQZUlSd+0qNWXcmXQ/zp8B+yYyZBA6x/6M6ytPIDyJ03pAmGtyfKHbQQVDn5VTpDIHyhu9HRV1m6XAbtdPme3y7Zvj7nARw6HyI/nGH/plJcUylZf6uqQQAeIII99zIR6fM9PfwtwfO9394RbN7NWlwNg8IrlsRpPR2iKnFSfHgp6HT4lwBl2uywHcDjEpQ6HGBazwSXYy7icz34FGorwlwBhqR4QQ/Vje9MAzai6XEt+/1B1uHVTWtRMgLRG3ZexGs+++G5PzTP4FUUNaG91Xfrn2O3SCbwN4HCIZOAe4F/A72I3ygQAWxqH9s4yV9WuuvnymyKpHzOh3tPaR09I/wwXl0kbbHYr+FVZGa8o8Hq/OBLA2qR7Ndq27HbZ0n6WdjjEsK9bUm/9V33eBqeme7tsZtkhF6vkf4VgPvvs/sDCSNuI4bpMG0AE+jRAo9VfCLCrl7dLXTdSnObAiaE/Y7LDYrfLartdVgN80pQx85na3r92aupNwEe2JbZju6ieoBPSjLV2gkmvHJG2EROhnrd4hl4VgUFHZn+x/4hMnZDWoKuVyIAUxC2Skdcgf+02aj6KG2MeeP3l+rymAEILLW50BFfrCSJgcNq6IoHGUbmfRmxNGROhXl09vl9A6vFqhogGYvIoRoHYk3+pO27G/KlNqkb84vI5CK7UARn2aj3Bf1lXZ8tIN9XufvkPJRFH5oqJUG9rGpQH8EPt6Pcjqe9X5SBNyPglIiq2WhUp+pg8ynvxaL5sZtnKQcbWrwFSVf9ZCZ06MvKLSi0tPuuwOnf289G0ExOhTjE0FIT+3BJJfa9BG9eUGsiNxVg6oi7dfxKAV6/FzfOl0mdcBTIwMbn+AwDbEtsk2xLb9Qn9uvv0S918GsHDlqhMj2Mi1MMy1l4o0Dhr4Ath71EDmNyKx+hRPo/FWDrCa9AuANjT0xfRh647NGt6AaLx7rMrZUiQPwJ5h0B+NuGZYZfGq9/DiWxz5TxFBDg5/7Wvo2knJjtoPzYMdRpVd8MDs54NPy5zsdWgIKxmt1gdi7F0RHa13q0JWdvvMndYwXXCwar6+rdqapvJqh0QIJCgNGv6J2xLbH/uqXd/MczU8p5J0V66++zKhGPCPpTVjElK0Tf9+I/Zj0XlYBAToa5zZycDayKpW5/mz09v0OHVaw2GrotHhKqJkUDcDnYAMnXeMaaALi300iGQfhkMS+ADsRAYU+Ez/naPz/Rb4I53ltheHW5u/qyfwfXm3WdX/qK93QHyi0qTwWzzBMwLom0rJuqHIvyDFeGPyOO4JTkwAaA6258Ri7HsS/mTphSJHOkxaOXxaL+NnV7TtsaA7geAh/qt/f7a3C2G0ZamD0BMLZtZ9qeymWVTT0ytLhhgbL0dWA9y7g+ulNc+bs5osi2xPWxbYpty2guD4paB+FBneOa3vwZ0BsX9cbRtRf1PnLv44hQpp+eOy13eC84Ku352td4LkNSqxMX6TQ1wukAotZk+V0Sb6N3EK1UD0BZD29nf6BrTP3tHld2+fW9c7QXnVK4H/gJwyvODMvsaXbf94EoZCVwGzKn167WTnh/s2OMz3QMsLZtZ9osJGWbWuWapws8p/V//BsKLrrEvUQv1l3sm9ZMoNHrSI/LMNnkUK0Bao25dtGPpiN47DRaApFZlSTzab8MgtFyj0PYA2O3SD+zXi+PdizbXAlcD2JbYknobXBdblMD1m9xJRwNvC2TLuS/1r/Zqyl3lXsszZTPL/ifjcneX1VXj9Sada+2Ds56J2mE3aqGucPbuBbCxfmREXxsukzbK5BZSIOKSBkMgRgPN1iZdRHYp3UUvtNy+Rlc/AIdD2AgGh3krJOD7pWxmWStBX75/2JbYTMC0HnrPtTu9pqlOTbcIuHfis8O+GGlu/r7aZ7j51Qu21sXzWQ40+UWlKaAb3epLuSsW7UUt1D3Me0ZXuXqiV7wR2X04LdoUNaBIw41NcQko7jZqhYrGNsONzXF1yWrVVP8Oj6lNhbqQoK+jaT9V9rJg+ul7c0mWvVS2EigFSs9/Kd+wzp0yCTjXqykzV7RkTAF5pW2J7YN8g/PzIaaWFxecU7k5Do9zQBmbs+KSrysnqGnGmpgcWkW9UOydsvVsneLltP6vROSoam1UdymaiMsb03Bfkqr3iX5NqYG47i7YltiMIPRNmr4toujdwNjuhBUOCrT8GOQdIJeFBByAf00v95bNLFtaNrPs6imptamjzE3nh3ZSRpZ7Lbd90JS9ybbE9qFtie13F/6rX1wdLOJJQFMvUoWPyb0/iIlQRz1Tb6wf2aAT/t0PzHouIsHRBUQaEBehTmvUDQKEtVF9NB7ttzHC3Jz7vSuFbJ1HB2C3ywagoZvV7YAuaAwlO3VdCm37vQy8bFtimz8lpeaiDe6kk3f7zOOBR753pWB/buj2Wr/hfuC1spll5dE91YFjdfV4g17xfhmrkAlRz9QtvtQsd8AS8aFGQJH9vXotXoug0QB6vxLX+Hm5evdAgEGm1l4ADoe43OEQY7tZ3QFCCzqZCi/dMIYqm1kmH/zVnufeu2jzJUBBL73rqNGWpmWtAdUH3AtsPfH5wa2FLwz8h22JbWgkz3SgyC8qtYIY49OMMbPLiXqmVoV/sEH1RLQIK3/SpO+nGdLrMgI52dEOpAMarP7fWBtVTSB+iEPze/miJb0VYKM7+WOHQ+gILvpKgC6Pe+e/9NbKBReeugZNyUJo08fOfme4wyE22O2yW4vBspllElgFTAOwLbENytO75oC4YrvXciVw5ZinR/w4wty8qzmgu+lHT5KfNv39EDC8OrbnR1et3DNF6ZW8bVWs2oxqpr7mn7/pFZC61COyv4pIJnvtMmQLBMktane8u8NG5xc2p0VzU9wY1/3eFk1nAaj1G/YQNEHtCdzf3fqGJM/I5Lw6xs5+pw5YBMyKdCxlM8s2v3fR5mvfu2hTCtAXmJui+OV3ztTJP3qSPgGWg7wdWHooGFvVezJO1ilexuasiPrQpY2oZupPdp6cC1DpzCuNpL7eL3IBzG4l9nvUxVaRjGqSyLBCCkdCf2Pr4K2eJPoYXIFQsMlu+2kumH66CmZFZ/SttNvlBodDHAN8E8k4dhZ9uncXpXfJpJVlM8t2AA8BD/325T79v3amLQB5Tih3oxnEaRyE3O/tWV93RLpA++TBWc/GLNNYVDN1oze9D8DWxiER6awNVv9ogFZLoCGacXRCHpAtEDEJZbU/cnTeMQBDTS26r6/InfntBb3fKJs0cGo3q/cEoTprrMsA7Hb5td0upcMh0h0OkdbdMews+vRYifaJRN4BLA0J+F6e+vWOrcDfAVcwGSkAc2xLbOEfA8eI/KLSDOBIibIslu1GJdS9k7ceC2BUXRHtUbtN2mSAmix/zGMbV+R4LwGoT/PHPXHPt87UDQBT/mFNMi9Pe9y4OvkMtVr/1rphBV1+vZvSWkYCCDWw13bG4RBmYDVhqDCAHYROIJD/3UX5CUEdWkwDcSOI3xAM8/b6eS/13zzp2aFnHGj770m9PpgLiCHpayMyhuuMqIQ601x9ikl1ckr+axFFKs2u1m8H0PtEzMONGT3KKImk0RqIq3UegEeqFoB+O5QjkQiBQCAMdMNXMSm37hyAHrbyvVuioYSndxBUHbqLQyACEIzoSie7KGUzy1aWzSy7s2xm2bPA0SPNTR9scCcNbAjo/wPcxgHUtXe29BuvU7xyWEbZh7FsNyqhXlc7qkoiNkWa3UnVRBZQm3eVK+YzdXqDrqdA1ORvM+bHuu196al3DxdInyHAUoFo84iXdGN7rnlnlhNAUbWf6LZ2u/yH3S6/BnA4hOiqnc2nTPZKZDmwDpjWu2RSl7py2cwy7wvnbztJwKNBPRuV/4b5ijtbG4f08muGj2KdOCkqofZqpjxPwByxTYXbqI3xq7IlmjF0SLH1WILBvzOBpaHXcSNd5zvSogR0BevXrQSmacbANs0U0FoKa7rcpvK2WNKA3Rddt6HDN9bhEMXA4v214XCI3ki+kKproCttze7uCHR7JOIZkIHg51D6OQCOw0NvfCUTGEWUrlsdEbFQz1s8QyjCPyjNWBtxkHS/To5wWgLJkdbvDIm0S6QgeEwX95lngyvpe5emlgMUrF+30n1U878Vt2qwfJT+dFd6taL3jRRKYOd+iqiAGtr/7oxKQ/OguUrAQsDQGLZLXdnMspUDjc6bQdBD533rQOxfH5vnuA5gdI/PYx4WI2Kh1lBGaFJnGJ75XUqkbSS1KvUWpxrzZEJ+nfw6tGCSRBBgMFwCKBatXQYE83LrGwCKU50OLN2fYKsG/+jkvLr97fP/1W6Xl+7P2s9ul76+K574CiC5atIr4T8BvH7Blr8J5PIqv3GMbYktnsFnAdhQN3KITvEG+qZsfTvWbUc8+Pe2np0KsLVx8GsRNVBsVQQiVxcQMXeG1fuV7wEE4nVg2r4ZA2JNquoblKL49s6kQooJgAYIiTT7M73Xd1RvwfTT9b5Wk/C1mjrd0mpLsuRwiHyHQ1y7732HQ5zjcIirpPANCF2KaCcKQCIeAgZYVd/ZkbbRXfa09hns1wzLIvJr7YKIhdqrmfIB9rT2iWjnYk+utx+ga7XExYLOGvr9UrwFGsAktH499N4e7S45AI8kmIFAV2s4Y92wgifWDSvI3KdqHxCKuz5lRTe6uRS4xeEQvfa5/mvgqtYeyy8CaM5dtutnNbvPaxbF7zaLwGPx3N47+a6SPsAI4qBPQxRCnZ+6yQ6Qamgoj6S+XydHAzRaA+ZIx9AZu3t6xwFU9vDlxLrtjqjyGyq3e82OttdtC0aBuAmDnEbQDuQSqdfKv76i50Nfzc8WAEk59WMAdCbP/nTqNu4ARtrtcl+hnQGcqHf2smhqq6fgDzdHbOlWNrPMm6l6v6rwm9JBxm17r2fSzj8ATMz7sDzWbUMUx+TJhqbJKYYGbc2tMyKysOuz09gKkFmri+iIfX/ofSIJQFNkXLI//RyR6pPiJxGmQoLd9i2x7Afb0JcCWb5PLJ+l/R4YuK604Hem8w2FrZXpZA7b2eWWpt0uPcB2AIdDHGG3y+8cDqEL6dq1O9/9VCNCj/727PBZ1gCTQLTf3ovpt92amnG9dYrXl2Wuej2W7bYR8Uy9tmZ0S4s3ZU9+UWmkn+SeAEavEvPkRdk1+jqAnhWGuB+RX/d6jhBIa0+9e78L5uFlG1a7xzRnapbA/wGTJXKdYYvpeJDaEc9i787pI4DDIX4NrHY4xGxgp8Mh7KFb/YlCn25DjxayaJQRRfHvDnXu7FF+zbD0gVnPxSVLbkRCHRRkZYxEzQOWRiLYjan+SQBevRZRVKcuaNOpY2Yk0xk+KTIlQsnTu3t0VfaoBdW+Ed9svBsYEcj1bhdVpv5mr1/RBSiWyGXdFOw3gGsJJln6HFj/zTNn6qTwDXZmfrmvzh42x6bUJwFk6bylwLRYb+9Nv/+6QcAwkHHRpyHymdpOlPvAfp0c41clhhubY+4gUJ3lOwlgT6437kk+P2zK1gOUuVK7vTVVsH7dNvfY5oLmFF2r2esDUATCFLD4l60bVnDHumEFx605qX+HqqHdLj12u7zfbpergXPtdlmRvGdqfyH1SMUXtbVjucdcA5Cp8z0Sj/1qo859DcBJ/d6IW57KSIXaEfwlIcKvqMw6/Y9qID7xqA1eISRSeozdM7SPklQAr1TC6uuoBdXSbVHMZp9PAgEpZACFauA64FO1Su9ec0L/1euGFcxcN6zgJwteh0OMD3nWrHY4xMmWurG5AEnVE9+M9mG2ey2tABvcyd1ZvIbNqoqJGarwu8261pfi0T5EKNShxDL1IL8igkQzIXoKxO5I+u8Ka5Nuj0DU51/qjnu8upHmpiEAA42tYe3iLJh+usnnNSqt6cq/gL8IKSaNXLWpL5ClJQVm+Aa4tugqDf2Ap4CKsikDWtacnP/sDyOHHkuAF4H7gD1AQBKIeo+6jWTFnw5gUfxxyerg9CePD0jd0gdmPRe3rBFROAmIVhBlEQo0Pp0s8OnlmkhTZXWBlQOgTwOkqb4hAL0Nrm6FQ2hHP4AGUkoL1n/8TNvFgvXrGoDngefXDStQgCP8Wd7fSFVeodtmulAgZvSYN6TZM7I1U63TF+u3m1a3zP74xuQKOy09P9wFk6J6nuHm5slftqYzMTmoW8eSSxfOGQGnDTGpzqdi3XZ7It79MOtazblJO/p3XbIDiq1C0UhvTYo4/dt+aUoJTHaZtPR4tL0vn7VklgN83pIeVrq8lF41EwCMqa2d6pYF69dpBevXfWv77Mc/jvpwa6pAZAMXBjL8Xxk2mVP02033SmSV4Xv98Zqsw//qc+NCH4SI2eE1bweo9BlirvMGpHo1wPF93otruu6IZ+okfUtqurE2MqGGNFUTZNXo4qJX6X0iIIU8IDM1IZ3aI9WGcCoZkt0nAKQNqOi2QVjlovX9gInABUlvZtUll2aNQSfPVIzZN8naOnSVxo+B6rLJA8p8g11l5uVptxasXxeWrr/HZ2oCWOOyNoRTrzt8tmuaWRH+FpPqejnWbbcnYqGucfX4scbVI9LN/p4A8dKpzW6liaBXR9wZZGwds9mTxFBTS1g7LXWbe1aA9Cm6QDh76WMJRn+66agF1QEW8BXw1Y7rP7pMmt0rgdeBU5Um3a/Ny9OmAtesG1aw0jvYudXfy/2GxZHxSsH6dftdZyQp/sxWTZWhcA0xRZO6ycCyB2Y954t12+2JRqf2R1q/Kts3oUe1nvo0fyBOOsIB06mTFP8QgP5GZ1gmuDKg9gHKL/rzxm7bvtjt8jGHQzwX8owBYPUTM5Iz5ZV5zryv0yoXrS8FypLezPqt/kfzKcb1SUdJ5GmGTZaLDZssFwN71g0reNd1VOOOQJbvseR3snoTctQNnYAy0OicvM6dLL65ZG1MF9mzHr1qLJw5MMNU/XQs2+2IiIU61VBvNaruiNQPKSgAaE4JNMVDqP2q7NuUGhgSl4DX+/Cdy1oG8ri/n10Z1mpeZ/aMQ9LtY3yHQ1jsdulsL9AAyRXH9xcoKH7zSuAVoF/rGTXD7Hb5JvAm8NdVf8i2GcqST9bvMh0lkeeav7KmSuRNEokIpsnzrBtWMK1g/bqVO72mrZqk4OcjiI5mb8olAEflfrYOfhvr5n9CxIuKFENjRqqxoXckdXOq9BUAfXcYu2OdFh7FVqEGEIpGXFSbDhgMIhCu4Y/URL6lR2O3dhgcDmEENjkcomjfe6amglwAS+34DwjucZ+/r+31uPury+r+Uv5I5aL117cW1vZonVZ3jW+wUyH4/iu0O0CrCxhaAigx/5b7fM+UVIFWb1JdUWcc7oqIZ+pdLf3WgIjUFSsPaAVi6psWIlkgRFqjLu4mp0FBlqcDCoiltiW2bh0rL5h+ejIYhLPK2l2DfiPwNB0YFvkN9cN13nSArXa73Os573AIC5Btt8u2tcX7gDhqQfVE4OEvizKT9ZstNyPR0e4AzSwCWV6pxEPntUsUR6QxF8Mhiu2fyHXq5uTA8T6d5qG4MR6HIwfM7gM4maBAQ3jmAvkAfrexW+HQ7HbZZLfL6+12+bMoRu70NRdI4aNu4JMVDofIAXA4xO8JThrrHQ7R9h7/DShuqze+pLZESDEV+CswrU2nzjO4j8rUeWOa/m/2ossnAPm9ksvjlvKvPRHP1BmmquxI6ysaeR6jRB9p5/thR2/P6D47jVTkeAfELTHjfxkW/CUD7Ccswb5Y+1ZOadyegyW7oUudOhTA3Wy3y5+FenA4REq/xlecmuqurhv85FXAgyHB/gbYCDxI0MdRs9vlO/vW38c8FoAKn3G7hJimuq5o7XU2gC3rm6hSyXWXiIU6zVif5Q0YI0qoleRUvUAVxdZjY+2ZYnEqOgA1IMpj2e6+XPZK72mQdh5Bl7EvCSPgomr0HweQ2qemO14qNwAnOhyiN+AHVLtdehwOMRV4T/FbNqn+5NXAUuBPQMBulyuAiKKdtmo6NxDTg5fV1UfngKypdfV4I5btdkbEQr2lceiXQJfmlj8jGK6gD9CbYPiCmPoQZtbp3QDZNfrVsWpzX2xLbKKPwfQvk9CEWQlc9cnFG8JK7VG3qdcukE6haN2xqptD8BuhB0EngGuBJwlGcLpHCRh/J4V/hd0u1xGM+bEXh0PkA7cAc+z27oWiMAgtQxA7Q7D8olIBTAHhePnaO+OazaGNaI5UI9Kp/ar8VejPeIUvOBA69bk7vOaMQabWx8IV6BD9QZRf9OeNP1tTtOnADofQORxiPXBdaObdASwB1gPY7bIuY9Pl9wupt7bkOPb1W2yjF8GUaaO7O7A01Te4t8E9JMzn6ZRT8v99PNBnUNoPccs2vC8Rz9Q5ll15Lr+lZ7j13CbNldyqIpHa/sJjRUpFjrcwt9LAjt4efZ9YNhzCtsRmARYAa9a6UudE0obe4j5aKHI3BKMvtfMYf5ngRHMuYCaoQgjY61U+r307yRX2vgA6T1aHYbvsdrnc4RB97XbZbR25PqCv9UglZkmftjYOPQFgYNqGT2PVZldEPFNbjfVZRtVj7brkT0luVWsBBKKEOIQvsDiVtm3CaLyqO2WUubEU6KuizS2bWRZR8qWAT80xZzYZQtGX2keM/YL/LtwGEfRJ7HRf19DaryeAuf7ITgWmTaAdDnGKwyG6DBzkkwqNAX3M/ncb6kfmA5XvlZ8Tc1/UzohYqDfWj1xe7cqN5OFHEYzffFM8whekNusagECfncaYOwjYltjOLXOlTu6ld+5ZPfP7sIOEOxziog/fMWzWfHqlcXv2M8AW4Ku26Et2u7zHbpf3hP7+Fhhot8tOwyT7zLtHA2hdRJ11OMQQ4G32mek7QkGmJCl+tdsPtR/mLZ4hQE4BHOUlhQcsF/sB16md5sDZTnOgKU571Ehk0O4jxu2HTgxfkghll8+c3p0TRIdDHOtwiG8dDjE4dKnKWZsa1C2l8qPdLp+22+WcfU8AHQ6R5XAIpascjN7kLWdrqouG/Bdr9lfObpcbgUKC8an3iypk6kCjc3hX5bqDVzOeCCJvVNaquLludUTEQt0nZUs/s641PPOKYqvO5FasbpOM2xF2Q1rgVLdRizgUWmeoaGcS3PMFhI4OFrgOh+jjcIgPHA5xcuhSNcEsXakAdrv8sPr7fh8BJOfVNuynuxeBLlOGmBpG1Uvh3zZq1hNdfoDtdvmO3S69Docwhk4bf4ZtiU34pMJOr+mrrtrrDmtrRh8DkJO0+61YtNddojBoakivd2eGG4hmkCKFmlGvezzSfrvC5FbqhCSi/fP90d/o9G/2JANSaztocTiEgaC71TK7XT5GUIjTAQuA3S43A1PatyM1MQogObeuw92AUNjeJwktEPeH6kvNArodIcvhECZCe+rA3A6KGADqAoaY+CfuaB5QAOz5YNuZMY+XuD8iFurva8d8RnCvORxGhX7HNHJ8e8xuxUmM8jIunL1sbw6V5km6bQCjzE3rRlmaV/zf6fUrARwO0RNIA7DbpRsYt782G8tza4DGXkdv7NDeO7TL8VxXY1uz+DKRLi4ZpKnOz7v7PHa7dDsc4l90klNmiKkldaM7mTTVG/Vh77zFM4TggqkS5cMDqU9DdImMfBDeSXd1lu/qrBodzSmBdalRdLw/JDIN2NLlNNcFIYH+CKQB4Q+k77I/UpnzOdMz96xLVf+7kLLb5ZT9NNMR/YHytm289jgcIgs4A3gh9AHpHKkOFlI1t/ZYkQWndbtzu13e3unAjM5eG93JDDW1Rp170RswniZReozP/aQpqM4fOCLWqQdYN/TXCV9YPobJLarVY5T1qfNb4xaPw2OUw+vTAyNj0JQdMIAQSJ1uQNPgk0C2fNaccb7dLi+PtFG9xX2s0drS2cna+cATwIBO7u8ldWdhFoChtW9E+qrDIWY7HOJv7a9922p1A2z1WKJOKfJV5XE2gGRD0/PRthUu0dhTp8kwZ3qzW8kweZS45Exsw+AVXoNXxCKFnQNwE4pc2qdm9LCTy89N7vfuCxEHnVww/XTh9+jTjFZnZ65SjxLMad6l9Z7Om9kbwNRYEOmibgQwtn0w9yq/UQ39jnohX+PKGQPsXLb99M+ibStcIhbq76rHfxqQ+m6f5XvuSEknmKwybvo0xVZFkcKY3KqujrapOYumrgSmgbjJkLJj+taen/j77TkOYPOjc1+/66UHL41EuLNlQFWatvfocPay26W022W3cih6krdMAAjoGyON9TEfOLX9tmFfg7MHQLbOE5VOPW/xDKEK/wmCwAHdn24jGp3aDyj5RaVKeUlhl8Jdne27qPcuI5U9vJ54xdd1G7UUk0dRJLIpWp0a9gr2SgDbEtvCHpnfvv+rtX/Ua97U6+p/PONPj8x5e54MmP4xZ9HU7hrVt7m//UQQQzserwFvhXZRusRvqjxR58mU/W47PSJHDbtdekN9pwOn2O3yhf5G5/DtXgsF5pbObEm6hSdgOisgdemTen3ghTOjaSoiIp6ph6aXDQA4a+Dzxu6UT2vQ9QTwGuIXGLAyxzcUoCLXZ4tlu0c9PfxEIKs+dat7zqKp52cM+fcVQvFtkQHTQ0DZ07fdNv9fD83s8nOUPmjXmQDW/Ip9bTGSCdp6dHsr0lw3ukpo+ljkXL8OeMrhEL3KnKm7ADa6k6JKAfjJzpMGAgjkohiML2wiFupkQ3MKgE8zdGuvOrlV7QHU9dlpjHnOxDbSGlQVwORWYtaHbYntWLdU3gTwS3GJbYnt2Av/uPBxvyt7CHCWUDyG5l0T76nfcurm0I5Jp/jdhnwAS3bjT2II2u2y2W6XJxPUqbuFopl6KQFLLDxJ/gYcY7fLXXUBw2CACp8pbEO19jj9yROAbU9f80BMDnHCJWKh/rpywmcAb289r1tGPZqQo4E18ToeB7A26RSA9AZdzKzMCO6C6AFk8EDEDjBn0VQ5Z9HUN7IKXiqw5r/3jN+VlQSsWDT39fdevP+qkzpqqHlndgtQc9GfNu09NnY4REZbuuaOtvk6Ys3iy1RJoL/fWBVxZrQ27HbZYrfLb0P+lqHdEPmPSDMIzFs8Q9Up3pNMutZu75/HmmhtP6Abenn5kyZVCsbVZvhiHp+tPV691gNAE903tewGjtAJIiG/TEf7m+df85Tn4qK7LgFlEHCz5jdOq91w7nsLf/fBIwtnL9vXiSKfnwdxvA4odzhEt7fuhaYfLVB1zsyvY5aub7Cx5Xf899yhQzOA7uD2W87xa4bko3KWx9QlLBwiFuoRmd8MBDi+97td2n9kV+uGqppASBHTxOr7UpPlnwqws7c3ZiE/ymaWrbQI/7UAyYrvjs5ctuYsmtoyZ9HUWzOHvnKEIbniP0j1SpA/Lrnljtf+9dCl2QD6JNdEc2bTvnrzC8CN4dg8W7edlwRgahweWWa0DqgP6J8CZDA8s/ASoZ37+9vO7A3gDpjDSUEdU6KJpWcCMKruLg9gkpxqAUBGvS6iHH/dJbVJrQEwu5RNsWz3mJSGymVNWRxhae7SUGr6vMe/B85eOHvZUNVUv6hlzzFnt1YdOeXhqz581Oc0WwxJpr07JQumn34ZFA4G3rDbuz8eRTP1AzC09ovZ9miN39im538A3BxpwHWJYge2vPyHkrJYjS1cIp6pv6yY/DnA+9vO7tJtymPQJobSr8XVRT65VW3zT4xpwPBN7qTNAOvdyT92t86cRVM3zL7/vCnpg/5zpQwYtyNbi5AIT8u0sY/+/q0/LZh+znEgHwNZBCxdMP30buuw7tT1U0KJT7eH/zQdM9LcdDsgxifV3/ZQv7W3OhxiQrhtzFs8Q69XPCenGWtXx2pckXBAdGqXWbvAbZJ+ihvjkrimDZ9O5spgbu2Y9rPDa24AqPUbwg6aeNGfHlgM4gUZaNIAhGIVmt/yd9U4/P1gkvuwY4ag6ZsmBYy1Wu+SSTELXF7lM56ao/O4f5O1azVBJ9+8cNuo92QW+jSjaVT2qspYjSsSIhbqI7O/GAhwXK8PutyoT2lWpRTEfXunKdV/gl8n1VjvsPTUu/0APXSesN/oEA4p60JCneoBrpdacyiBkwBUVZ902ohn7rjp9O7sd5trx+1WfCmrIhzLz7AtsfWp8htzGgK6u+x22QyMtttl2KriJztPHgBQ2Zq3IFZji4Qogq47dQA6xb9/nbrYmqpqIs/iUn4WTCXWJLWqu4UU1bFud4S5WQHoa3QdFUn9OYumrtSZPv4QQGdqPmPOoqklmm9LC/CDztLzLX3ymStUw9DpTdunvlm3+azqhbOX3bJw9rJhnbUnUPIVzbihs/sR8GsAj1SfBbDbg/YuDoc4w+EQR4fRzhRg03v/V9RtNS0eRCzUK/dMWQXg2HHqflPGtaWWCygy7iGnTB7FpwuImDvc7vGZagE2upMifgZXrXcPsOd3D132wbN3FpwCjDKltfx73pP/PGPu45cfZ+370YC0/u8+IwP6H4G/AOsWX/ek87GixQ8snL2sX1s7ZYuuTpbI3t6kbTFTsXL17r9YVd+usplle+3QQw4FDxMMkNMl8xbPMBoU98k5ll1xSU4VDtHafkAXNtUus3aRtQl29vZW9ttfwRgQUGQPIXFGlR+iA753pbgBmgL6aAIn7k3e2VqRfhFAWv+K/7TdvPiG23cAlwAsnL0sz5y19s+az3KFp2HgXGDuo9f8Z21Kr8/X5xvSXk1HCHfa2pg85uRnhw6qD5jSjrQ0ftL+esih4ESgvDvt7GzJP9GrmfRDM9ZGnUwpWiL+xxyV81k/gIl5Swftr1xmrd6vCemUgrifMHmMmq0pNTAw1u2WzSyTAunL1HkjNvTRJ7knJOXUpwK0VGQcCfKzGUXrO4wtN2fR1N2X3T732ivuuiIFGAjcoOjcuY3lJ563e8sJzwLsqBhheOnBy/IjHU8b9QHDOQCrndZr971nt8uN7fwa9xuL/OvKCQUAqyomlEQ7pmiJWKgNqju0oJH7NWjS+8UgRYqvD0T6N6NHaTJ6Ymf38ZO2habvqXePjaTugumn63ytRr2iC2y9b8YpBYANRLfynsxZNHXLnEVT77zqvunZyXkrJ+fog/boO+t6zaxZd8GWhbOXvbFw9rILH7/hkYicjRXkhcBXZTPL9hdB6TWgtL3tdQdMAdb/cPsFByoueKdELNTLd5+wNvS709wq5U+aVE3I0T6djInPYFeomjCa3crGeLTtlUrdFo8l0gOFPiBE866s/1j7VT0EEnNmY9iJPGf+9cZP83LWeSWBQPLgV2caU3a+DIwBnvc05jc+VrT464Wzl521cPaybllOXvta7hQNMXqEubmr/9nfgfmdhWy48tFZJoPiPrlf6uYdHd0/0ETro7jfNhSNCYoU5sosry4qs69uUP6kSe2HIdWvIzoL907QEC1OTRdZwHAh84NZr9natDNrqCmtdc/Vj3waoe6p2fzmKm36Hx9+Gnh64exlitG69RS9perulooxg4DXQWt6qviuSiG0O1r2HP3snEVTOxTGL1vTTgDI1bsX7q9Hu/2/5sKheCQ/sZ/f1jRwilczKX1Stq6O7JliS8Qz9YS8Zb0Ajunp6NQfsNcuQzaA2aUcCD+1XIEQdRn+qJ1GO8IgNDVN9UWkU2cO2XkxgCW7oVfAY+jtbki+M9JxmBtG1elcOXujQ81ZNFW74q7L35558/Ujkfos4FR9csUXrpoRg1v2HP0ksOsff3jlmRfunTP7Xw/N/EnkpaaA/jxg+9Km7G717XCIGcDK0M7IXjbU244A+GzXifdE+lyxJOKZWhX+AIBEdGrYrmpiJCDTGnVx91PLrtaZASxOpdMwXdGQpvoyU1T/iEjqOmtSdSCl32U4GqQE8e8ohtJfoHRYP+SB8y7w7gsLfm+t2/SracCFfk/qhXUbz70YtBsWzl72oj516xvvjr79VkgeAmhAd1N71BIMzpMCtHOellNAfF9eUhhJBNiYE/FM/emukzYDfLHn+E6Nh1wm7ZSAIndR3Bhpbphuk+RUzQApLWpcdOr6gH7TDq85oj1YV61VAbFdqNoV5szm+vkvvRXRYmrN4itygCx36rou3ecunP9w45xFU1+ds2jqr7MKXuiT0mv5HaCUSeS1vqb+n4794o4p43acQpqrx08SGe0Pu12+S9D1a+8B13VPnGsxKJ6TBqd/3+1MY/EmFvvU+2tjXHNKoCotik66S6sl0CvJqeIxaO5urZLCxCeVRoJ2mREgBwBmT2OyMaV3dbd8EDtC9WSOAfCkbgrL5mP63Cf3ADfOe63nEStr8nPz621jjqge3zx258kp43aeSo1lpy4pbevxC2cve37Ooqn7Tapqt0vpcIgM4M9A8YrdDx/n1UxkmGrialYcDhHP1Mf3fi8TYHzuJx0H9C62JpncQmd2KS9G2kc4NKQFjgGo6uHrnoIYJsmK35Kk+CNKI6Mze44B0QOQzTuz/9ZlhU6w7jxdD5C6qzDsNcqpzw868asW6zdeQ5NtXc7Kc2/8+xWpHw5ecuamnOXvZem8LvPuSScD5Qtnf7jy2ZLrX3rh3qv3l0vxKIInjcftbMk/CuCLPcfvd7F5IIl4plZEwAfg13SdhX0dIRDC6BUHJO5DRp2uAiClWY1LCIYU1de/OaBLti2xHRuOrfFDl081+l0WBUAogc//+MI7+zUr6IL+AEKqYe2c2JbYLgXzIrMINByfWjfrgXP2vArw+vxn2hKI8sjV7w2Qmv4CRe+c1Vh+4jEgz1s4e9ky1Vj3n/SBb781fe4T5W3t2e3yPYdDDLTb5Xb9+6/e7NMMa8pLTt9v5NUDScQz9Uc7TtsF8E3VhA71zLp0/7kATnNgfaR9hIPZrQiAtEZdzG0/bEtsx+7xmVJbNJ0e+PjoZwo69EHsCG+LZa91QPqgPVHt47rSvztTU7w+6F6m3D+/nmOe/lL+KoJRnz51SXVIm0Dvy9WPnLxlzqKpd/zuoTP7Zw7911mg3Qn0D3gyHqpZP33rI3PeeWfh7GUXLpy9LAnAbpfb5y6+OEUgJ43KXhVR8Pl4ETedWgpO8KuSqh7+TflRdNJdXCatv9mt4NVrjTEPeQr2dkFI9T4p3i18YeDi7V7LdWUzy/brJKEze4b5XUEtX9EFbo5mEM+5ao5H96kC+IqZtN/3zrbElqUXWa/7pDJ2qKnl0w3u5FO6m/nggmsXvQG8sXD2sr+kD3xzurel1+zWyjGjgOeF4vM/+Zf7tzmrR81vHNor26uZGNPj83gkE42YKHTqdy0AY3NWjO/ofkad2qJofJl/qTvuGU4BWpIDx2lCsjvPFw9HBAfgBfwgvZmqr26713IlsG3ys0Mfmv9aTqf2L9a+VecDILTymTeXRfytVfzXYj8SFYFAoBb/tbhTAf3Ny31PAL7ySWVchur9/SvTt06OJJXHnEVT5UV/vu/F397yJzvBjGp2S/aaMlf94F7A62M2nPTQKU4duRtP/mHh7GU3dhUi4kARsVCrIuAB8AUMP99eKrYKgRilSNGtEFqxwNqobgGa4mFjEtKhpwF/BWH/YMamLGAssLQ+YPj9R81ZG21LRt5tW2L72UKyeXdmAYAh2f1EVIMQofdK7PN6H857qf/8H1wpHxiElgZM/vjiDTFZwM1ZNFWbs2jqx7+95c9jpN+cCpy23eh2FXgVAtVHXArcDiw9FAQ7YqFetqOwAWBNzbif6dQ7e3nHAmnNyYEDthlv8CmKIkXcFitlM8tWls0su7NtkVg2s+ybspll505NrTnLqvo+BjEf5NZzX+q//I+v5e799vI2W8YAZAza/XpUA5Bood8/fR3CtsSm2JbYbt/gTr4nRfXvOj6l1l42syzq6KUdMWfRVN+GsU+s+E+SN31X+s6KtiCaxCeFYNjExUdR7xNTARrS/AfMYsur1/oFFBkzn73u8sA5e974aMbGKcDQVNVfutmdNOHDpqwVtiW2f9qW2PaG5K34dlBUMTqKby3WIQkAEkmg+Nbivf/3458demaq4qsBbgQer/UbBt57TkXcImEBvFd+9ji/ZqBZ9T8DwkNQHmKeQjASIl4ontTvdfn+trM5MvuLY/YNqp1TpdcBZFfrD8geNYDHKEdKIQPxCubeFSGvkfOufS13wrKmrIslXNZ/l6V9HOulC6afPm3+S29FnJGsTZBPen6wZc6r/7x6kztp8B6faQzoJwdLSD+Ix8tmlsX9w+0JmCcD2jv+vL+NDJqm2gFHKKjmQSVioTbrnB4AT8DU0cp3FLDVdH1zPLPO/gSLU6nUFHnQTR/vO6diBbDCtsR22zHbLXtDNWhIU0ua+xL2SXDfHWxLbL2OSaqft8NrGrLLZ+4JxjF7fKa2964GhOS/2rY9kj7CJc1Y+2unL+mHjXec2xjq76ALcxsRC/UDs56T/ykqDayrO+JnOrXHoJ0cUNkSVpqBKFE1YVI1cdCFuo3fvt2vgpB6J5FSU6T4tKBh9inPD5q2y2e+uDN917bEpgdGHWFuvKbWbxi102fOBPp+3pqOiqYBn4G450hLY20Pneet95t6pANLCeqzB+Tr/3f/uDStxXtWgS171VfB5LyHFtHsU0NQj/qJ+XLDfUlJVq+aVpPlbzyQQq0JmenTSxEPu48I2WvRJxC3eDJbvu7Tq3red87Uo4EvjlgyctlAY+u3mzzJLqBxkLF1cqumjgdTKmD+zmUlVfH5CH613zvC3Ly5j8Hl+PvZla37dmRbYptG6Os/0shK4fDO1vPGAtS7Mw9aaLH9EZVQGxSPfkjG2mPb69RpjbphANk1+gNmC1D+pEntJw2WRmsgf9+IjAcL1eidGfAYUA0+7Q/PvHdL6PJbtiW2ZGC2grxlkyd5alv5zR6L1lPvcSnIxzTEZ70Nrm/euXBztzyGQoJ8IL/+pwCB8qYh/+my5EEgyplaBlx+y75JieKSVi6/qHRv+rfyksKfvIG5FfoUgSCzVuen2HpsPNJDh8Pzfx8idMZecwMeA6rR52h/r2xmWQtwz+inR6Qg5V+CUZoIgLj1/Ys23XpQBhwmmabKGS6/ZdMPt19w0CKb7o+o3Oy9mqnpx4aCn9hT16X7L9OE9BPMux01+UWlyil33XkPyM+AO4BPJ//twZJ5i2fs1TRMHmUKgKoJO7CUYutBPQCo/G7AKE9TkgHA22x5u6Myfqm8C8JNUIXzEgzMeMhz9oK/Whs8mfnDMsoaDvZYOiNandq3bxuWVjHAr5Neg0+MJ4qvxLMX/HXs6uqjzwR+s75+VP92pw7q9uaB/1fpzJuXX1T6DPDyuhQuNwf3YNobvB+02Vrz6fYmtleN3g6/scpmlq080LpwLFhdffTRAFsbhxz0UAidEZVQpxoaMvKSt0/Yq1MXW481oeYBSORSUWydFo4qkF9Umgacn2WuvLHGdXTfkOvThxmmqjfr3NmzCK3wCzJWv7yzJT/LEzBfCMz6wDOeM5QvkZKAAJ8QB+8AIBi9VP62bYdNNXYeaP4g6MKxYArgr/dkHdDUzOEQlVBrUnE7fcntXbXshKJ2A2a3UbvLVGy1U9zYqftRflGpfkTmt5cGpHoT2HqAMDZ5rOVH9/z4HZffcu0b84s3hMq9GGxfON657saVoWvmYRlrLh/i3nHPJn+e/vXAJHWVHKy5MpxP1N2+8KZdLfn/KS8pPNBmkXb27hlLvE1JBcDrB3gMcaOHZfelnoCp/LtbfhN3F71IiUqoW3ypVS2+1PYG6w7ALZEGQDV5lEnAp9otqXOUm5tWtxWat3iGcAfM53+xZ/IpkHna97WjeyTpm2Wv5G1v7GrJv92rmb5+ad7dPzFMCi0OV+5zzUXxRf8E/u4RuoWPBM76qHfy1uur6/uP8wTMrwC1R9/6z89HZn376eaGYQs+vmHegRBwB0FnVgVEgEPg2DhWHHf7w9ZqZ9+cMTlfxDSofawRsnu5czokv6h0HbCmvKRw+t6LwUWaHfgYGArcLZGZdRn+7x6snXnREs/phQJtpkQZqYiApkn1deDp43u/9/6S3z8YttloxaPm83MrDS85zYErLP/X8jjASXfdlbSxfuRJwK8Niud8r2ZUgRrgNVvWqhUDrBtfeGDWc3E7Sl5wwakrkOqxis73zrXPvdf9xOGHOPlFpacCbwu0E7eWnPHhwR5PZ0Ql1Efd8liz1dhQ82HRnzqNs/b+zcf3zLZUfD7KVdm3XqZwh+8iXtMmfTE8c/UX/a0bH3r4yqejit5U/bDluewa/UXb+nrG9LvM/e2+9+cuvjh9fZ3two31I48DeSaIJJPq9LgDlqeBl8flfOZ45do7Y2bkHtKpPwWhhmwxJkdj73EokV9UehdwLZBWXlLoPNjj6Yyo1A+/pm9p8SU373s9v6hUmZC3bGa9O/PadZ4/98MjUsfpvm9aYFgk7hWLUm5JXjisNSlwS+6VrqjDkWXX6PUSua0jgQZ4cNaz9cAjwCNnL/hrcpqp9qbvqsaPcQcsFwGz1tWN0o67feHSnS35fwc+ioEObu/g9WEh1D2Tdlzp1/S7v7r58kNWoCFKoa73ZO3Aw14b5tmLLp+6bPtpJ4DpghW7p/Y3qi5S9E2vNfusD63yj/i4n66W6izfgrQG3TXJLcqbFFsfBm6muDEyw6diqwAmCoSjO8Vfn39rC1AEwUXmAOuG3xhV9w3r62zHAScqIlB/xj23VLr8lls3Nwx/OUIBd4SyW+lDqeq6NbZo2d/hVCwYXfxUWoO7l3VU9qq42GjHkmh16jWAFXjBpDpPdgcsR7ZtwxlV1/Mn579e+uCsZ38W2d/7t5RMg0+5TSJnB1Q8NVm+xbmVhnnhprXY/rjp6L47jJ83JwfuSPlTy41RPIcZOKVn0o4/1bqzJ3gDJoCaTFPVZ6N7fLGywZN+XzgqSigpkR1wxEL1yC8qVcbnftIzy1x1hGPHyW6nPyWjv3XjmCxz1YRvq8Zv9GuGQSDtBHddPCCmxFqw84tKTyfoeT61vKQwbqm4Y0HEQh2cGbQV/z2UlOXjclZ8l2WuvG3R7Mc7jLu8L833JNuF5K3kVjUJ+BSYQ3FjtyOLVj9sKc6u0d+8o7fnwj5XuGNiuz39getSvthz/AnA+TrFe55fM+hA1oB4bVjGGsfQ9LX/jsUi89z7bkjtmbTL9vmeyaLGlZvWK3nb8N7J5VO+rx29vcWXmpRiaBiarG8eWenMa9KkmkEH36oCDZB1EtUHMico0xIQnwJnlpcEvZNiwYDr37hXk+rVBPXpfU0jDimiEerrg2l/22wX+Et5SWHYgQ/LnzSpfbcbLlOkuFMi02sz/au9Bnla3lWurjM8FVsflMjLWpK1tJQ/tcR8u27u4ovTtzYO/m1ZzbjxwBlAklnX6nX5k5YA/xJobokyCXCMy/lsVW7S7iFrqscmb28emJxpqhwwJOP7UzbWjaiqdefoLLrmAZnmmvEVrXlNPs2YCnToCaMQcGmoe0yqs7VPytbsSmevT5q8aZuzzXt8wzO/y1xfZ/ug0tlra17S9rqjcj+reWDWc56Q6rEUpD74fkjFrHP6R2Z989xXFZNmxWKvfsJtj7YiZOOKm66ONJnTASPKmfondrzTovrKK7Zm1qf5301rUMcBFQLxKG32wZ2dShZb14X6/028jZiO+Osz5tE5n9+8tmbMMTWu3HFA0n+P7gUhtauDzFqaBkqlTvjq+6ZuyWnwZHxd587+PkXf2HJkjy97b2/u79jWNGh9pqmq7vje7zXce8WLEflZtteph6aXmTwB06vlTYPTgHUgF4MwEaG+PezGl9PdAXPtiMzVr5X++aZDz4B6H6LVqWO+OHHfmXKcyaP8EyiQQaGRAvGdJqS7NUkrMHrEToNPqQsImalIhofuu4GwjuSjIb+o1GxUXU97AqbzQoeHUhBwHJvnqK519Vixod72rVnXWnNSv/94gPIHZj13QMJEtGfe4hnijR8vOFOiPAz0Dn0AXSDCnnzyi0rPIngqenx5SeEnXRQ/6EQl1HGj2HqDRN4uEEIiEYgtmpC7W5K1ESa32GHwKbUacoCAfiIoVH7grxQ3Rhz3OVxi/k0VJ/KLSm8CeWtILZEgbiovKbwjnDZG/uX5xS2+1ItBpJWXFB5w5+ZwiXUiq1jxUWj29QuEC7hYublpUur8lgzDjc1HUNw4VUFcGLp3ULyYQwIcigVyaAp0iKVBE1epBQVbGz1v8YwuE5C2J8XQdHG/1B9b/xcEGg7VmRraH7fvT6fuukyCvWqiIvxHalJ3/jE9HW+9OO/vZ3SzbiZQMzjt+2c+KLrukviONDYcukKdIObMWzxDXV9n27Kh3tYXuKi8pPCFrurkF5WeA7wKHFdeUrg87oOMAYeq+pEgDjww67lAlbPnUOATYMmwG18+oas62eY900G6IP655WNFQqh/YXx7y0w3cLZBce8E3p+96PJf7a+8IrSzB1g3OstLCr0HZoTRkxDqXyDlJYX1J/Z78yKd4vO9v+2shflFpb07KpdfVJpd6exl9GsHLtJWLEgI9S+UhVc99XmLzzpek2oS8E7h32/L6qDY8QDbmwc8e2BHFx0Jof4FU15S+B3wK4E2vNWXsnHu4ot/kgq6d3L5pYKAC+iWLc+hQkKof+GUlxR+eFyvD/9Z3jQ4/c0fp/8zv6h0r0x4NcO0AdZNreUlhYdUpoCuSAh1Ap655oHfATdIlAt0wnc3QH5RaW6VM8/Y6E2POEXewSLauB8JDh9KTKpzsDtgmX/Rg/P7wNRXAWpcOR0mPjqUSRy+JNjLvMUz9Gtrxvz4Y+PQ3ma1tdodMGdI1CnlJYUHJG1grEgIdYKfkF9UagG+AEaGHA5cHNq2LT8joVMn+AkhL/HX/xuT6NDI4xIOCaFO0BFvcxAtIKMloX4k6JB4e6fHk4RQJzjsSKgfCQ47EkKd4LAjIdQJDjsSQp3gsCMh1AkOOxJCneCwIyHUCQ47EkKd4LAjIdQJDjsSQp3gsCMh1AkOOxJCneCw4/8BTx4J1XngGOIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top-5 predictions:\n", - " 1. stereo 21.389%\n", - " 2. radio 16.453%\n", - " 3. yoga 9.803%\n", - " 4. ant 6.983%\n", - " 5. power outlet 4.575%\n", - "Answer: calendar\n" - ] - } - ], - "source": [ - "n_new = 10\n", - "Y_probas = model.predict(sketches)\n", - "top_k = tf.nn.top_k(Y_probas, k=5)\n", - "for index in range(n_new):\n", - " plt.figure(figsize=(3, 3.5))\n", - " draw_sketch(sketches[index])\n", - " plt.show()\n", - " print(\"Top-5 predictions:\".format(index + 1))\n", - " for k in range(5):\n", - " class_name = class_names[top_k.indices[index, k]]\n", - " proba = 100 * top_k.values[index, k]\n", - " print(\" {}. {} {:.3f}%\".format(k + 1, class_name, proba))\n", - " print(\"Answer: {}\".format(class_names[labels[index].numpy()]))" - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2022-02-18 16:47:16.114014: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.\n", - "WARNING:absl:Found untraced functions such as lstm_cell_1_layer_call_fn, lstm_cell_1_layer_call_and_return_conditional_losses, lstm_cell_2_layer_call_fn, lstm_cell_2_layer_call_and_return_conditional_losses, lstm_cell_1_layer_call_fn while saving (showing 5 of 10). These functions will not be directly callable after loading.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: my_sketchrnn/assets\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: my_sketchrnn/assets\n", - "WARNING:absl: has the same name 'LSTMCell' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", - "WARNING:absl: has the same name 'LSTMCell' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n" - ] - } - ], - "source": [ - "model.save(\"my_sketchrnn\", save_format=\"tf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 10. Bach Chorales\n", - "_Exercise: Download the [Bach chorales](https://homl.info/bach) dataset and unzip it. It is composed of 382 chorales composed by Johann Sebastian Bach. Each chorale is 100 to 640 time steps long, and each time step contains 4 integers, where each integer corresponds to a note's index on a piano (except for the value 0, which means that no note is played). Train a model—recurrent, convolutional, or both—that can predict the next time step (four notes), given a sequence of time steps from a chorale. Then use this model to generate Bach-like music, one note at a time: you can do this by giving the model the start of a chorale and asking it to predict the next time step, then appending these time steps to the input sequence and asking the model for the next note, and so on. Also make sure to check out [Google's Coconet model](https://homl.info/coconet), which was used for a nice [Google doodle about Bach](https://www.google.com/doodles/celebrating-johann-sebastian-bach)._\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading data from https://github.com/ageron/data/raw/main/jsb_chorales.tgz\n", - "122880/117793 [===============================] - 0s 0us/step\n", - "131072/117793 [=================================] - 0s 0us/step\n" - ] - }, - { - "data": { - "text/plain": [ - "'./datasets/jsb_chorales.tgz'" - ] - }, - "execution_count": 100, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tf.keras.utils.get_file(\n", - " \"jsb_chorales.tgz\",\n", - " \"https://github.com/ageron/data/raw/main/jsb_chorales.tgz\",\n", - " cache_dir=\".\",\n", - " extract=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 101, - "metadata": {}, - "outputs": [], - "source": [ - "jsb_chorales_dir = Path(\"datasets/jsb_chorales\")\n", - "train_files = sorted(jsb_chorales_dir.glob(\"train/chorale_*.csv\"))\n", - "valid_files = sorted(jsb_chorales_dir.glob(\"valid/chorale_*.csv\"))\n", - "test_files = sorted(jsb_chorales_dir.glob(\"test/chorale_*.csv\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "\n", - "def load_chorales(filepaths):\n", - " return [pd.read_csv(filepath).values.tolist() for filepath in filepaths]\n", - "\n", - "train_chorales = load_chorales(train_files)\n", - "valid_chorales = load_chorales(valid_files)\n", - "test_chorales = load_chorales(test_files)" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[[74, 70, 65, 58],\n", - " [74, 70, 65, 58],\n", - " [74, 70, 65, 58],\n", - " [74, 70, 65, 58],\n", - " [75, 70, 58, 55],\n", - " [75, 70, 58, 55],\n", - " [75, 70, 60, 55],\n", - " [75, 70, 60, 55],\n", - " [77, 69, 62, 50],\n", - " [77, 69, 62, 50],\n", - " [77, 69, 62, 50],\n", - " [77, 69, 62, 50],\n", - " [77, 70, 62, 55],\n", - " [77, 70, 62, 55],\n", - " [77, 69, 62, 55],\n", - " [77, 69, 62, 55],\n", - " [75, 67, 63, 48],\n", - " [75, 67, 63, 48],\n", - " [75, 69, 63, 48],\n", - " [75, 69, 63, 48],\n", - " [74, 70, 65, 46],\n", - " [74, 70, 65, 46],\n", - " [74, 70, 65, 46],\n", - " [74, 70, 65, 46],\n", - " [72, 69, 65, 53],\n", - " [72, 69, 65, 53],\n", - " [72, 69, 65, 53],\n", - " [72, 69, 65, 53],\n", - " [72, 69, 65, 53],\n", - " [72, 69, 65, 53],\n", - " [72, 69, 65, 53],\n", - " [72, 69, 65, 53],\n", - " [74, 70, 65, 46],\n", - " [74, 70, 65, 46],\n", - " [74, 70, 65, 46],\n", - " [74, 70, 65, 46],\n", - " [75, 69, 63, 48],\n", - " [75, 69, 63, 48],\n", - " [75, 67, 63, 48],\n", - " [75, 67, 63, 48],\n", - " [77, 65, 62, 50],\n", - " [77, 65, 62, 50],\n", - " [77, 65, 60, 50],\n", - " [77, 65, 60, 50],\n", - " [74, 67, 58, 55],\n", - " [74, 67, 58, 55],\n", - " [74, 67, 58, 53],\n", - " [74, 67, 58, 53],\n", - " [72, 67, 58, 51],\n", - " [72, 67, 58, 51],\n", - " [72, 67, 58, 51],\n", - " [72, 67, 58, 51],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [72, 69, 65, 53],\n", - " [72, 69, 65, 53],\n", - " [72, 69, 65, 53],\n", - " [72, 69, 65, 53],\n", - " [74, 71, 53, 50],\n", - " [74, 71, 53, 50],\n", - " [74, 71, 53, 50],\n", - " [74, 71, 53, 50],\n", - " [75, 72, 55, 48],\n", - " [75, 72, 55, 48],\n", - " [75, 72, 55, 50],\n", - " [75, 72, 55, 50],\n", - " [75, 67, 60, 51],\n", - " [75, 67, 60, 51],\n", - " [75, 67, 60, 53],\n", - " [75, 67, 60, 53],\n", - " [74, 67, 60, 55],\n", - " [74, 67, 60, 55],\n", - " [74, 67, 57, 55],\n", - " [74, 67, 57, 55],\n", - " [74, 65, 59, 43],\n", - " [74, 65, 59, 43],\n", - " [72, 63, 59, 43],\n", - " [72, 63, 59, 43],\n", - " [72, 63, 55, 48],\n", - " [72, 63, 55, 48],\n", - " [72, 63, 55, 48],\n", - " [72, 63, 55, 48],\n", - " [72, 63, 55, 48],\n", - " [72, 63, 55, 48],\n", - " [72, 63, 55, 48],\n", - " [72, 63, 55, 48],\n", - " [75, 67, 60, 60],\n", - " [75, 67, 60, 60],\n", - " [75, 67, 60, 60],\n", - " [75, 67, 60, 60],\n", - " [77, 70, 62, 58],\n", - " [77, 70, 62, 58],\n", - " [77, 70, 62, 56],\n", - " [77, 70, 62, 56],\n", - " [79, 70, 62, 55],\n", - " [79, 70, 62, 55],\n", - " [79, 70, 62, 53],\n", - " [79, 70, 62, 53],\n", - " [79, 70, 63, 51],\n", - " [79, 70, 63, 51],\n", - " [79, 70, 63, 51],\n", - " [79, 70, 63, 51],\n", - " [77, 70, 63, 58],\n", - " [77, 70, 63, 58],\n", - " [77, 70, 60, 58],\n", - " [77, 70, 60, 58],\n", - " [77, 70, 62, 46],\n", - " [77, 70, 62, 46],\n", - " [77, 68, 62, 46],\n", - " [75, 68, 62, 46],\n", - " [75, 67, 58, 51],\n", - " [75, 67, 58, 51],\n", - " [75, 67, 58, 51],\n", - " [75, 67, 58, 51],\n", - " [75, 67, 58, 51],\n", - " [75, 67, 58, 51],\n", - " [75, 67, 58, 51],\n", - " [75, 67, 58, 51],\n", - " [74, 67, 58, 55],\n", - " [74, 67, 58, 55],\n", - " [74, 67, 58, 55],\n", - " [74, 67, 58, 55],\n", - " [75, 67, 58, 53],\n", - " [75, 67, 58, 53],\n", - " [75, 67, 58, 51],\n", - " [75, 67, 58, 51],\n", - " [77, 65, 58, 50],\n", - " [77, 65, 58, 50],\n", - " [77, 65, 56, 50],\n", - " [77, 65, 56, 50],\n", - " [70, 63, 55, 51],\n", - " [70, 63, 55, 51],\n", - " [70, 63, 55, 51],\n", - " [70, 63, 55, 51],\n", - " [75, 65, 60, 45],\n", - " [75, 65, 60, 45],\n", - " [75, 65, 60, 45],\n", - " [75, 65, 60, 45],\n", - " [74, 65, 58, 46],\n", - " [74, 65, 58, 46],\n", - " [74, 65, 58, 46],\n", - " [74, 65, 58, 46],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [74, 65, 58, 58],\n", - " [74, 65, 58, 58],\n", - " [74, 65, 58, 58],\n", - " [74, 65, 58, 58],\n", - " [75, 67, 58, 57],\n", - " [75, 67, 58, 57],\n", - " [75, 67, 58, 55],\n", - " [75, 67, 58, 55],\n", - " [77, 65, 60, 57],\n", - " [77, 65, 60, 57],\n", - " [77, 65, 60, 53],\n", - " [77, 65, 60, 53],\n", - " [74, 65, 58, 58],\n", - " [74, 65, 58, 58],\n", - " [74, 65, 58, 58],\n", - " [74, 65, 58, 58],\n", - " [72, 67, 58, 51],\n", - " [72, 67, 58, 51],\n", - " [72, 67, 58, 51],\n", - " [72, 67, 58, 51],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [72, 65, 57, 53],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46],\n", - " [70, 65, 62, 46]]" - ] - }, - "execution_count": 103, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_chorales[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notes range from 36 (C1 = C on octave 1) to 81 (A5 = A on octave 5), plus 0 for silence:" - ] - }, - { - "cell_type": "code", - "execution_count": 104, - "metadata": {}, - "outputs": [], - "source": [ - "notes = set()\n", - "for chorales in (train_chorales, valid_chorales, test_chorales):\n", - " for chorale in chorales:\n", - " for chord in chorale:\n", - " notes |= set(chord)\n", - "\n", - "n_notes = len(notes)\n", - "min_note = min(notes - {0})\n", - "max_note = max(notes)\n", - "\n", - "assert min_note == 36\n", - "assert max_note == 81" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's write a few functions to listen to these chorales (you don't need to understand the details here, and in fact there are certainly simpler ways to do this, for example using MIDI players, but I just wanted to have a bit of fun writing a synthesizer):" - ] - }, - { - "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import Audio\n", - "\n", - "def notes_to_frequencies(notes):\n", - " # Frequency doubles when you go up one octave; there are 12 semi-tones\n", - " # per octave; Note A on octave 4 is 440 Hz, and it is note number 69.\n", - " return 2 ** ((np.array(notes) - 69) / 12) * 440\n", - "\n", - "def frequencies_to_samples(frequencies, tempo, sample_rate):\n", - " note_duration = 60 / tempo # the tempo is measured in beats per minutes\n", - " # To reduce click sound at every beat, we round the frequencies to try to\n", - " # get the samples close to zero at the end of each note.\n", - " frequencies = (note_duration * frequencies).round() / note_duration\n", - " n_samples = int(note_duration * sample_rate)\n", - " time = np.linspace(0, note_duration, n_samples)\n", - " sine_waves = np.sin(2 * np.pi * frequencies.reshape(-1, 1) * time)\n", - " # Removing all notes with frequencies ≤ 9 Hz (includes note 0 = silence)\n", - " sine_waves *= (frequencies > 9.).reshape(-1, 1)\n", - " return sine_waves.reshape(-1)\n", - "\n", - "def chords_to_samples(chords, tempo, sample_rate):\n", - " freqs = notes_to_frequencies(chords)\n", - " freqs = np.r_[freqs, freqs[-1:]] # make last note a bit longer\n", - " merged = np.mean([frequencies_to_samples(melody, tempo, sample_rate)\n", - " for melody in freqs.T], axis=0)\n", - " n_fade_out_samples = sample_rate * 60 // tempo # fade out last note\n", - " fade_out = np.linspace(1., 0., n_fade_out_samples)**2\n", - " merged[-n_fade_out_samples:] *= fade_out\n", - " return merged\n", - "\n", - "def play_chords(chords, tempo=160, amplitude=0.1, sample_rate=44100, filepath=None):\n", - " samples = amplitude * chords_to_samples(chords, tempo, sample_rate)\n", - " if filepath:\n", - " from scipy.io import wavfile\n", - " samples = (2**15 * samples).astype(np.int16)\n", - " wavfile.write(filepath, sample_rate, samples)\n", - " return display(Audio(filepath))\n", - " else:\n", - " return display(Audio(samples, rate=sample_rate))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's listen to a few chorales:" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [], - "source": [ - "for index in range(3):\n", - " play_chords(train_chorales[index])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Divine! :)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to be able to generate new chorales, we want to train a model that can predict the next chord given all the previous chords. If we naively try to predict the next chord in one shot, predicting all 4 notes at once, we run the risk of getting notes that don't go very well together (believe me, I tried). It's much better and simpler to predict one note at a time. So we will need to preprocess every chorale, turning each chord into an arpegio (i.e., a sequence of notes rather than notes played simultaneuously). So each chorale will be a long sequence of notes (rather than chords), and we can just train a model that can predict the next note given all the previous notes. We will use a sequence-to-sequence approach, where we feed a window to the neural net, and it tries to predict that same window shifted one time step into the future.\n", - "\n", - "We will also shift the values so that they range from 0 to 46, where 0 represents silence, and values 1 to 46 represent notes 36 (C1) to 81 (A5).\n", - "\n", - "And we will train the model on windows of 128 notes (i.e., 32 chords).\n", - "\n", - "Since the dataset fits in memory, we could preprocess the chorales in RAM using any Python code we like, but I will demonstrate here how to do all the preprocessing using tf.data (there will be more details about creating windows using tf.data in the next chapter)." - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": {}, - "outputs": [], - "source": [ - "def create_target(batch):\n", - " X = batch[:, :-1]\n", - " Y = batch[:, 1:] # predict next note in each arpegio, at each step\n", - " return X, Y\n", - "\n", - "def preprocess(window):\n", - " window = tf.where(window == 0, window, window - min_note + 1) # shift values\n", - " return tf.reshape(window, [-1]) # convert to arpegio\n", - "\n", - "def bach_dataset(chorales, batch_size=32, shuffle_buffer_size=None,\n", - " window_size=32, window_shift=16, cache=True):\n", - " def batch_window(window):\n", - " return window.batch(window_size + 1)\n", - "\n", - " def to_windows(chorale):\n", - " dataset = tf.data.Dataset.from_tensor_slices(chorale)\n", - " dataset = dataset.window(window_size + 1, window_shift, drop_remainder=True)\n", - " return dataset.flat_map(batch_window)\n", - "\n", - " chorales = tf.ragged.constant(chorales, ragged_rank=1)\n", - " dataset = tf.data.Dataset.from_tensor_slices(chorales)\n", - " dataset = dataset.flat_map(to_windows).map(preprocess)\n", - " if cache:\n", - " dataset = dataset.cache()\n", - " if shuffle_buffer_size:\n", - " dataset = dataset.shuffle(shuffle_buffer_size)\n", - " dataset = dataset.batch(batch_size)\n", - " dataset = dataset.map(create_target)\n", - " return dataset.prefetch(1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's create the training set, the validation set and the test set:" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [], - "source": [ - "train_set = bach_dataset(train_chorales, shuffle_buffer_size=1000)\n", - "valid_set = bach_dataset(valid_chorales)\n", - "test_set = bach_dataset(test_chorales)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's create the model:\n", - "\n", - "* We could feed the note values directly to the model, as floats, but this would probably not give good results. Indeed, the relationships between notes are not that simple: for example, if you replace a C3 with a C4, the melody will still sound fine, even though these notes are 12 semi-tones apart (i.e., one octave). Conversely, if you replace a C3 with a C\\#3, it's very likely that the chord will sound horrible, despite these notes being just next to each other. So we will use an `Embedding` layer to convert each note to a small vector representation (see Chapter 16 for more details on embeddings). We will use 5-dimensional embeddings, so the output of this first layer will have a shape of `[batch_size, window_size, 5]`.\n", - "* We will then feed this data to a small WaveNet-like neural network, composed of a stack of 4 `Conv1D` layers with doubling dilation rates. We will intersperse these layers with `BatchNormalization` layers for faster better convergence.\n", - "* Then one `LSTM` layer to try to capture long-term patterns.\n", - "* And finally a `Dense` layer to produce the final note probabilities. It will predict one probability for each chorale in the batch, for each time step, and for each possible note (including silence). So the output shape will be `[batch_size, window_size, 47]`." - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"sequential_19\"\n", - "_________________________________________________________________\n", - " Layer (type) Output Shape Param # \n", - "=================================================================\n", - " embedding (Embedding) (None, None, 5) 235 \n", - " \n", - " conv1d_22 (Conv1D) (None, None, 32) 352 \n", - " \n", - " batch_normalization_3 (Batc (None, None, 32) 128 \n", - " hNormalization) \n", - " \n", - " conv1d_23 (Conv1D) (None, None, 48) 3120 \n", - " \n", - " batch_normalization_4 (Batc (None, None, 48) 192 \n", - " hNormalization) \n", - " \n", - " conv1d_24 (Conv1D) (None, None, 64) 6208 \n", - " \n", - " batch_normalization_5 (Batc (None, None, 64) 256 \n", - " hNormalization) \n", - " \n", - " conv1d_25 (Conv1D) (None, None, 96) 12384 \n", - " \n", - " batch_normalization_6 (Batc (None, None, 96) 384 \n", - " hNormalization) \n", - " \n", - " lstm_3 (LSTM) (None, None, 256) 361472 \n", - " \n", - " dense_17 (Dense) (None, None, 47) 12079 \n", - " \n", - "=================================================================\n", - "Total params: 396,810\n", - "Trainable params: 396,330\n", - "Non-trainable params: 480\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "n_embedding_dims = 5\n", - "\n", - "model = tf.keras.Sequential([\n", - " tf.keras.layers.Embedding(input_dim=n_notes, output_dim=n_embedding_dims,\n", - " input_shape=[None]),\n", - " tf.keras.layers.Conv1D(32, kernel_size=2, padding=\"causal\", activation=\"relu\"),\n", - " tf.keras.layers.BatchNormalization(),\n", - " tf.keras.layers.Conv1D(48, kernel_size=2, padding=\"causal\", activation=\"relu\", dilation_rate=2),\n", - " tf.keras.layers.BatchNormalization(),\n", - " tf.keras.layers.Conv1D(64, kernel_size=2, padding=\"causal\", activation=\"relu\", dilation_rate=4),\n", - " tf.keras.layers.BatchNormalization(),\n", - " tf.keras.layers.Conv1D(96, kernel_size=2, padding=\"causal\", activation=\"relu\", dilation_rate=8),\n", - " tf.keras.layers.BatchNormalization(),\n", - " tf.keras.layers.LSTM(256, return_sequences=True),\n", - " tf.keras.layers.Dense(n_notes, activation=\"softmax\")\n", - "])\n", - "\n", - "model.summary()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we're ready to compile and train the model!" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/20\n", - "98/98 [==============================] - 25s 208ms/step - loss: 1.8695 - accuracy: 0.5301 - val_loss: 3.7034 - val_accuracy: 0.1226\n", - "Epoch 2/20\n", - "98/98 [==============================] - 22s 225ms/step - loss: 0.9034 - accuracy: 0.7638 - val_loss: 3.4941 - val_accuracy: 0.1050\n", - "Epoch 3/20\n", - "98/98 [==============================] - 23s 233ms/step - loss: 0.7523 - accuracy: 0.7916 - val_loss: 3.3243 - val_accuracy: 0.1938\n", - "Epoch 4/20\n", - "98/98 [==============================] - 23s 232ms/step - loss: 0.6756 - accuracy: 0.8074 - val_loss: 2.5097 - val_accuracy: 0.3022\n", - "Epoch 5/20\n", - "98/98 [==============================] - 22s 223ms/step - loss: 0.6188 - accuracy: 0.8193 - val_loss: 1.7532 - val_accuracy: 0.4628\n", - "Epoch 6/20\n", - "98/98 [==============================] - 23s 237ms/step - loss: 0.5788 - accuracy: 0.8280 - val_loss: 1.0323 - val_accuracy: 0.6826\n", - "Epoch 7/20\n", - "98/98 [==============================] - 25s 256ms/step - loss: 0.5396 - accuracy: 0.8374 - val_loss: 0.7257 - val_accuracy: 0.7910\n", - "Epoch 8/20\n", - "98/98 [==============================] - 27s 278ms/step - loss: 0.5079 - accuracy: 0.8451 - val_loss: 0.8296 - val_accuracy: 0.7497\n", - "Epoch 9/20\n", - "98/98 [==============================] - 26s 267ms/step - loss: 0.4796 - accuracy: 0.8523 - val_loss: 0.6217 - val_accuracy: 0.8162\n", - "Epoch 10/20\n", - "98/98 [==============================] - 26s 270ms/step - loss: 0.4543 - accuracy: 0.8594 - val_loss: 0.6307 - val_accuracy: 0.8136\n", - "Epoch 11/20\n", - "98/98 [==============================] - 28s 285ms/step - loss: 0.4291 - accuracy: 0.8665 - val_loss: 0.6203 - val_accuracy: 0.8183\n", - "Epoch 12/20\n", - "98/98 [==============================] - 28s 284ms/step - loss: 0.4062 - accuracy: 0.8732 - val_loss: 0.6111 - val_accuracy: 0.8210\n", - "Epoch 13/20\n", - "98/98 [==============================] - 24s 247ms/step - loss: 0.3846 - accuracy: 0.8798 - val_loss: 0.6185 - val_accuracy: 0.8167\n", - "Epoch 14/20\n", - "98/98 [==============================] - 24s 247ms/step - loss: 0.3647 - accuracy: 0.8856 - val_loss: 0.6036 - val_accuracy: 0.8244\n", - "Epoch 15/20\n", - "98/98 [==============================] - 24s 248ms/step - loss: 0.3454 - accuracy: 0.8918 - val_loss: 0.6400 - val_accuracy: 0.8149\n", - "Epoch 16/20\n", - "98/98 [==============================] - 24s 243ms/step - loss: 0.3299 - accuracy: 0.8969 - val_loss: 0.6517 - val_accuracy: 0.8099\n", - "Epoch 17/20\n", - "98/98 [==============================] - 23s 240ms/step - loss: 0.3100 - accuracy: 0.9027 - val_loss: 0.6472 - val_accuracy: 0.8148\n", - "Epoch 18/20\n", - "98/98 [==============================] - 23s 238ms/step - loss: 0.2952 - accuracy: 0.9080 - val_loss: 0.6446 - val_accuracy: 0.8167\n", - "Epoch 19/20\n", - "98/98 [==============================] - 22s 221ms/step - loss: 0.2781 - accuracy: 0.9136 - val_loss: 0.6774 - val_accuracy: 0.8104\n", - "Epoch 20/20\n", - "98/98 [==============================] - 23s 234ms/step - loss: 0.2642 - accuracy: 0.9179 - val_loss: 0.6484 - val_accuracy: 0.8199\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 110, - "metadata": {}, - "output_type": "execute_result" + "source": [ + "fit_and_evaluate(lstm_model, seq2seq_train, seq2seq_valid,\n", + " learning_rate=0.1, epochs=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rsog1rxQnU0d" + }, + "source": [ + "# GRUs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true, + "id": "XotvpyWjnU0d" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "gru_model = tf.keras.Sequential([\n", + " tf.keras.layers.GRU(32, return_sequences=True, input_shape=[None, 5]),\n", + " tf.keras.layers.Dense(14)\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-JvI2rxinU0d" + }, + "source": [ + "Just training for 5 epochs to show that it works (you can increase this if you want):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hvlrTkywnU0e", + "outputId": "80cf0fda-08aa-4217-f3f2-873a3cf93d7d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "33/33 [==============================] - 2s 29ms/step - loss: 0.0516 - mae: 0.2489 - val_loss: 0.0165 - val_mae: 0.1529\n", + "Epoch 2/5\n", + "33/33 [==============================] - 1s 18ms/step - loss: 0.0145 - mae: 0.1386 - val_loss: 0.0139 - val_mae: 0.1260\n", + "Epoch 3/5\n", + "33/33 [==============================] - 1s 18ms/step - loss: 0.0118 - mae: 0.1249 - val_loss: 0.0121 - val_mae: 0.1170\n", + "Epoch 4/5\n", + "33/33 [==============================] - 1s 18ms/step - loss: 0.0106 - mae: 0.1166 - val_loss: 0.0111 - val_mae: 0.1109\n", + "Epoch 5/5\n", + "33/33 [==============================] - 1s 18ms/step - loss: 0.0098 - mae: 0.1107 - val_loss: 0.0104 - val_mae: 0.1071\n", + "3/3 [==============================] - 0s 14ms/step - loss: 0.0104 - mae: 0.1071\n" + ] + }, + { + "data": { + "text/plain": [ + "107093.29694509506" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fit_and_evaluate(gru_model, seq2seq_train, seq2seq_valid,\n", + " learning_rate=0.1, epochs=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1OIoNd-pnU0e" + }, + "source": [ + "## Using One-Dimensional Convolutional Layers to Process Sequences" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eW-OcsmqnU0e" + }, + "source": [ + "```\n", + " |-----0-----| |-----3----| |--... |-------52------|\n", + " |-----1----| |-----4----| ... | |-------53------|\n", + " |-----2----| |------5--...-51------| |-------54------|\n", + "X: 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 104 105 106 107 108 109 110 111\n", + "Y: from 4 6 8 10 12 ... 106 108 110 112\n", + " to 17 19 21 23 25 ... 119 121 123 125\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pMXbezninU0e" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "conv_rnn_model = tf.keras.Sequential([\n", + " tf.keras.layers.Conv1D(filters=32, kernel_size=4, strides=2,\n", + " activation=\"relu\", input_shape=[None, 5]),\n", + " tf.keras.layers.GRU(32, return_sequences=True),\n", + " tf.keras.layers.Dense(14)\n", + "])\n", + "\n", + "longer_train = to_seq2seq_dataset(mulvar_train, seq_length=112,\n", + " shuffle=True, seed=42)\n", + "longer_valid = to_seq2seq_dataset(mulvar_valid, seq_length=112)\n", + "downsampled_train = longer_train.map(lambda X, Y: (X, Y[:, 3::2]))\n", + "downsampled_valid = longer_valid.map(lambda X, Y: (X, Y[:, 3::2]))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xCuvnLfjnU0f" + }, + "source": [ + "Just training for 5 epochs to show that it works (you can increase this if you want):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WUFbsdqSnU0f", + "outputId": "b0dcabec-7457-423d-f67e-8accc34627db" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "31/31 [==============================] - 2s 30ms/step - loss: 0.0482 - mae: 0.2420 - val_loss: 0.0214 - val_mae: 0.1616\n", + "Epoch 2/5\n", + "31/31 [==============================] - 1s 18ms/step - loss: 0.0165 - mae: 0.1532 - val_loss: 0.0171 - val_mae: 0.1423\n", + "Epoch 3/5\n", + "31/31 [==============================] - 1s 18ms/step - loss: 0.0144 - mae: 0.1447 - val_loss: 0.0157 - val_mae: 0.1342\n", + "Epoch 4/5\n", + "31/31 [==============================] - 1s 17ms/step - loss: 0.0130 - mae: 0.1361 - val_loss: 0.0141 - val_mae: 0.1254\n", + "Epoch 5/5\n", + "31/31 [==============================] - 1s 17ms/step - loss: 0.0115 - mae: 0.1256 - val_loss: 0.0124 - val_mae: 0.1159\n", + "1/1 [==============================] - 0s 88ms/step - loss: 0.0124 - mae: 0.1159\n" + ] + }, + { + "data": { + "text/plain": [ + "115850.42625665665" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fit_and_evaluate(conv_rnn_model, downsampled_train, downsampled_valid,\n", + " learning_rate=0.1, epochs=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_xAQCBp_nU0f" + }, + "source": [ + "## WaveNet" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PY-TwsPPnU0g" + }, + "source": [ + "```\n", + " ⋮\n", + "C2 /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\...\n", + " \\ / \\ / \\ / \\ / \\ / \\ / \\ \n", + " / \\ / \\ / \\ \n", + "C1 /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /...\\\n", + "X: 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 111\n", + "Y: 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 112\n", + " /14 15 16 17 18 19 20 21 22 23 24 25 26 ... 125\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aH8HCnqwnU0g" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code – ensures reproducibility\n", + "wavenet_model = tf.keras.Sequential()\n", + "wavenet_model.add(tf.keras.layers.InputLayer(input_shape=[None, 5]))\n", + "for rate in (1, 2, 4, 8) * 2:\n", + " wavenet_model.add(tf.keras.layers.Conv1D(\n", + " filters=32, kernel_size=2, padding=\"causal\", activation=\"relu\",\n", + " dilation_rate=rate))\n", + "wavenet_model.add(tf.keras.layers.Conv1D(filters=14, kernel_size=1))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l4MgufdAnU0g" + }, + "source": [ + "Just training for 5 epochs to show that it works (you can increase this if you want):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "sDESXGZbnU0g", + "outputId": "84f589fe-a973-41d6-b0f5-085a3ca24681" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "31/31 [==============================] - 2s 26ms/step - loss: 0.0796 - mae: 0.3159 - val_loss: 0.0239 - val_mae: 0.1723\n", + "Epoch 2/5\n", + "31/31 [==============================] - 1s 16ms/step - loss: 0.0172 - mae: 0.1585 - val_loss: 0.0182 - val_mae: 0.1545\n", + "Epoch 3/5\n", + "31/31 [==============================] - 1s 16ms/step - loss: 0.0159 - mae: 0.1561 - val_loss: 0.0181 - val_mae: 0.1505\n", + "Epoch 4/5\n", + "31/31 [==============================] - 1s 16ms/step - loss: 0.0155 - mae: 0.1535 - val_loss: 0.0175 - val_mae: 0.1479\n", + "Epoch 5/5\n", + "31/31 [==============================] - 1s 17ms/step - loss: 0.0147 - mae: 0.1488 - val_loss: 0.0166 - val_mae: 0.1407\n", + "1/1 [==============================] - 0s 74ms/step - loss: 0.0166 - mae: 0.1407\n" + ] + }, + { + "data": { + "text/plain": [ + "140713.95993232727" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fit_and_evaluate(wavenet_model, longer_train, longer_valid,\n", + " learning_rate=0.1, epochs=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gkENZvRynU0g" + }, + "source": [ + "# Extra Material – Wavenet Implementation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1oRwYhnsnU0h" + }, + "source": [ + "Here is the original WaveNet defined in the paper: it uses Gated Activation Units instead of ReLU and parametrized skip connections, plus it pads with zeros on the left to avoid getting shorter and shorter sequences:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PP6y8e1tnU0h" + }, + "outputs": [], + "source": [ + "class GatedActivationUnit(tf.keras.layers.Layer):\n", + " def __init__(self, activation=\"tanh\", **kwargs):\n", + " super().__init__(**kwargs)\n", + " self.activation = tf.keras.activations.get(activation)\n", + "\n", + " def call(self, inputs):\n", + " n_filters = inputs.shape[-1] // 2\n", + " linear_output = self.activation(inputs[..., :n_filters])\n", + " gate = tf.keras.activations.sigmoid(inputs[..., n_filters:])\n", + " return self.activation(linear_output) * gate" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0NBecwwdnU0h" + }, + "outputs": [], + "source": [ + "def wavenet_residual_block(inputs, n_filters, dilation_rate):\n", + " z = tf.keras.layers.Conv1D(2 * n_filters, kernel_size=2, padding=\"causal\",\n", + " dilation_rate=dilation_rate)(inputs)\n", + " z = GatedActivationUnit()(z)\n", + " z = tf.keras.layers.Conv1D(n_filters, kernel_size=1)(z)\n", + " return tf.keras.layers.Add()([z, inputs]), z" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vM8hpo8snU0h" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42)\n", + "\n", + "n_layers_per_block = 3 # 10 in the paper\n", + "n_blocks = 1 # 3 in the paper\n", + "n_filters = 32 # 128 in the paper\n", + "n_outputs = 14 # 256 in the paper\n", + "\n", + "inputs = tf.keras.layers.Input(shape=[None, 5])\n", + "z = tf.keras.layers.Conv1D(n_filters, kernel_size=2, padding=\"causal\")(inputs)\n", + "skip_to_last = []\n", + "for dilation_rate in [2**i for i in range(n_layers_per_block)] * n_blocks:\n", + " z, skip = wavenet_residual_block(z, n_filters, dilation_rate)\n", + " skip_to_last.append(skip)\n", + "\n", + "z = tf.keras.activations.relu(tf.keras.layers.Add()(skip_to_last))\n", + "z = tf.keras.layers.Conv1D(n_filters, kernel_size=1, activation=\"relu\")(z)\n", + "Y_preds = tf.keras.layers.Conv1D(n_outputs, kernel_size=1)(z)\n", + "\n", + "full_wavenet_model = tf.keras.Model(inputs=[inputs], outputs=[Y_preds])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IgaaJNqXnU0i" + }, + "source": [ + "Just training for 5 epochs to show that it works (you can increase this if you want):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pQt5IdghnU0i", + "outputId": "41f0325d-22a8-46e6-bcc1-d15db3ab90b4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "31/31 [==============================] - 2s 26ms/step - loss: 0.0706 - mae: 0.2861 - val_loss: 0.0209 - val_mae: 0.1630\n", + "Epoch 2/5\n", + "31/31 [==============================] - 1s 18ms/step - loss: 0.0137 - mae: 0.1398 - val_loss: 0.0140 - val_mae: 0.1273\n", + "Epoch 3/5\n", + "31/31 [==============================] - 1s 20ms/step - loss: 0.0104 - mae: 0.1190 - val_loss: 0.0116 - val_mae: 0.1125\n", + "Epoch 4/5\n", + "31/31 [==============================] - 1s 18ms/step - loss: 0.0086 - mae: 0.1048 - val_loss: 0.0096 - val_mae: 0.1020\n", + "Epoch 5/5\n", + "31/31 [==============================] - 1s 19ms/step - loss: 0.0073 - mae: 0.0942 - val_loss: 0.0087 - val_mae: 0.0953\n", + "1/1 [==============================] - 0s 71ms/step - loss: 0.0087 - mae: 0.0953\n" + ] + }, + { + "data": { + "text/plain": [ + "95349.08086061478" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fit_and_evaluate(full_wavenet_model, longer_train, longer_valid,\n", + " learning_rate=0.1, epochs=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6_OO2hxonU0i" + }, + "source": [ + "In this chapter we explored the fundamentals of RNNs and used them to process sequences (namely, time series). In the process we also looked at other ways to process sequences, including CNNs. In the next chapter we will use RNNs for Natural Language Processing, and we will learn more about RNNs (bidirectional RNNs, stateful vs stateless RNNs, Encoder–Decoders, and Attention-augmented Encoder-Decoders). We will also look at the Transformer, an Attention-only architecture." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "osaQSFppnU0j" + }, + "source": [ + "# Exercise solutions" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "U14lEXiznU0j" + }, + "source": [ + "## 1. to 8." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nN_n8jjCnU0j" + }, + "source": [ + "1. Here are a few RNN applications:\n", + " * For a sequence-to-sequence RNN: predicting the weather (or any other time series), machine translation (using an Encoder–Decoder architecture), video captioning, speech to text, music generation (or other sequence generation), identifying the chords of a song\n", + " * For a sequence-to-vector RNN: classifying music samples by music genre, analyzing the sentiment of a book review, predicting what word an aphasic patient is thinking of based on readings from brain implants, predicting the probability that a user will want to watch a movie based on their watch history (this is one of many possible implementations of _collaborative filtering_ for a recommender system)\n", + " * For a vector-to-sequence RNN: image captioning, creating a music playlist based on an embedding of the current artist, generating a melody based on a set of parameters, locating pedestrians in a picture (e.g., a video frame from a self-driving car's camera)\n", + "2. An RNN layer must have three-dimensional inputs: the first dimension is the batch dimension (its size is the batch size), the second dimension represents the time (its size is the number of time steps), and the third dimension holds the inputs at each time step (its size is the number of input features per time step). For example, if you want to process a batch containing 5 time series of 10 time steps each, with 2 values per time step (e.g., the temperature and the wind speed), the shape will be [5, 10, 2]. The outputs are also three-dimensional, with the same first two dimensions, but the last dimension is equal to the number of neurons. For example, if an RNN layer with 32 neurons processes the batch we just discussed, the output will have a shape of [5, 10, 32].\n", + "3. To build a deep sequence-to-sequence RNN using Keras, you must set `return_sequences=True` for all RNN layers. To build a sequence-to-vector RNN, you must set `return_sequences=True` for all RNN layers except for the top RNN layer, which must have `return_sequences=False` (or do not set this argument at all, since `False` is the default).\n", + "4. If you have a daily univariate time series, and you want to forecast the next seven days, the simplest RNN architecture you can use is a stack of RNN layers (all with `return_sequences=True` except for the top RNN layer), using seven neurons in the output RNN layer. You can then train this model using random windows from the time series (e.g., sequences of 30 consecutive days as the inputs, and a vector containing the values of the next 7 days as the target). This is a sequence-to-vector RNN. Alternatively, you could set `return_sequences=True` for all RNN layers to create a sequence-to-sequence RNN. You can train this model using random windows from the time series, with sequences of the same length as the inputs as the targets. Each target sequence should have seven values per time step (e.g., for time step _t_, the target should be a vector containing the values at time steps _t_ + 1 to _t_ + 7).\n", + "5. The two main difficulties when training RNNs are unstable gradients (exploding or vanishing) and a very limited short-term memory. These problems both get worse when dealing with long sequences. To alleviate the unstable gradients problem, you can use a smaller learning rate, use a saturating activation function such as the hyperbolic tangent (which is the default), and possibly use gradient clipping, Layer Normalization, or dropout at each time step. To tackle the limited short-term memory problem, you can use `LSTM` or `GRU` layers (this also helps with the unstable gradients problem).\n", + "6. An LSTM cell's architecture looks complicated, but it's actually not too hard if you understand the underlying logic. The cell has a short-term state vector and a long-term state vector. At each time step, the inputs and the previous short-term state are fed to a simple RNN cell and three gates: the forget gate decides what to remove from the long-term state, the input gate decides which part of the output of the simple RNN cell should be added to the long-term state, and the output gate decides which part of the long-term state should be output at this time step (after going through the tanh activation function). The new short-term state is equal to the output of the cell. See Figure 15–12.\n", + "7. An RNN layer is fundamentally sequential: in order to compute the outputs at time step _t_, it has to first compute the outputs at all earlier time steps. This makes it impossible to parallelize. On the other hand, a 1D convolutional layer lends itself well to parallelization since it does not hold a state between time steps. In other words, it has no memory: the output at any time step can be computed based only on a small window of values from the inputs without having to know all the past values. Moreover, since a 1D convolutional layer is not recurrent, it suffers less from unstable gradients. One or more 1D convolutional layers can be useful in an RNN to efficiently preprocess the inputs, for example to reduce their temporal resolution (downsampling) and thereby help the RNN layers detect long-term patterns. In fact, it is possible to use only convolutional layers, for example by building a WaveNet architecture.\n", + "8. To classify videos based on their visual content, one possible architecture could be to take (say) one frame per second, then run every frame through the same convolutional neural network (e.g., a pretrained Xception model, possibly frozen if your dataset is not large), feed the sequence of outputs from the CNN to a sequence-to-vector RNN, and finally run its output through a softmax layer, giving you all the class probabilities. For training you would use cross entropy as the cost function. If you wanted to use the audio for classification as well, you could use a stack of strided 1D convolutional layers to reduce the temporal resolution from thousands of audio frames per second to just one per second (to match the number of images per second), and concatenate the output sequence to the inputs of the sequence-to-vector RNN (along the last dimension)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tSl5sPnvnU0j" + }, + "source": [ + "## 9. Tackling the SketchRNN Dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "t_AQw_mVnU0k" + }, + "source": [ + "_Exercise: Train a classification model for the SketchRNN dataset, available in TensorFlow Datasets._" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "alx-gztWnU0k" + }, + "source": [ + "The dataset is not available in TFDS yet, the [pull request](https://github.com/tensorflow/datasets/pull/361) is still work in progress. Luckily, the data is conveniently available as TFRecords, so let's download it (it might take a while, as it's about 1 GB large, with 3,450,000 training sketches and 345,000 test sketches):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Lda0KH_UnU0k", + "outputId": "e6b0c3b5-a706-4386-96c0-8dd5fd1baea6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from http://download.tensorflow.org/data/quickdraw_tutorial_dataset_v1.tar.gz\n", + "1065304064/1065301781 [==============================] - 230s 0us/step\n", + "1065312256/1065301781 [==============================] - 230s 0us/step\n" + ] + } + ], + "source": [ + "tf_download_root = \"http://download.tensorflow.org/data/\"\n", + "filename = \"quickdraw_tutorial_dataset_v1.tar.gz\"\n", + "filepath = tf.keras.utils.get_file(filename,\n", + " tf_download_root + filename,\n", + " cache_dir=\".\",\n", + " extract=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kTx5i8QlnU0l" + }, + "outputs": [], + "source": [ + "quickdraw_dir = Path(filepath).parent\n", + "train_files = sorted(\n", + " [str(path) for path in quickdraw_dir.glob(\"training.tfrecord-*\")]\n", + ")\n", + "eval_files = sorted(\n", + " [str(path) for path in quickdraw_dir.glob(\"eval.tfrecord-*\")]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zYeiprU5nU0l", + "outputId": "a3d5529b-f7bc-46c1-a927-7315c140c58a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['datasets/training.tfrecord-00000-of-00010',\n", + " 'datasets/training.tfrecord-00001-of-00010',\n", + " 'datasets/training.tfrecord-00002-of-00010',\n", + " 'datasets/training.tfrecord-00003-of-00010',\n", + " 'datasets/training.tfrecord-00004-of-00010',\n", + " 'datasets/training.tfrecord-00005-of-00010',\n", + " 'datasets/training.tfrecord-00006-of-00010',\n", + " 'datasets/training.tfrecord-00007-of-00010',\n", + " 'datasets/training.tfrecord-00008-of-00010',\n", + " 'datasets/training.tfrecord-00009-of-00010']" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_files" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Cr7xflh3nU0l", + "outputId": "22d65067-3690-4b51-cf44-e3f194eca069" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['datasets/eval.tfrecord-00000-of-00010',\n", + " 'datasets/eval.tfrecord-00001-of-00010',\n", + " 'datasets/eval.tfrecord-00002-of-00010',\n", + " 'datasets/eval.tfrecord-00003-of-00010',\n", + " 'datasets/eval.tfrecord-00004-of-00010',\n", + " 'datasets/eval.tfrecord-00005-of-00010',\n", + " 'datasets/eval.tfrecord-00006-of-00010',\n", + " 'datasets/eval.tfrecord-00007-of-00010',\n", + " 'datasets/eval.tfrecord-00008-of-00010',\n", + " 'datasets/eval.tfrecord-00009-of-00010']" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eval_files" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NOMkmW6CnU0l" + }, + "outputs": [], + "source": [ + "with open(quickdraw_dir / \"eval.tfrecord.classes\") as test_classes_file:\n", + " test_classes = test_classes_file.readlines()\n", + "\n", + "with open(quickdraw_dir / \"training.tfrecord.classes\") as train_classes_file:\n", + " train_classes = train_classes_file.readlines()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cDreLBeEnU0m" + }, + "outputs": [], + "source": [ + "assert train_classes == test_classes\n", + "class_names = [name.strip().lower() for name in train_classes]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pOiY43yUnU0m", + "outputId": "b59db16b-f6c3-4665-a848-f92a3a98abf9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['aircraft carrier',\n", + " 'airplane',\n", + " 'alarm clock',\n", + " 'ambulance',\n", + " 'angel',\n", + " 'animal migration',\n", + " 'ant',\n", + " 'anvil',\n", + " 'apple',\n", + " 'arm',\n", + " 'asparagus',\n", + " 'axe',\n", + " 'backpack',\n", + " 'banana',\n", + " 'bandage',\n", + " 'barn',\n", + " 'baseball',\n", + " 'baseball bat',\n", + " 'basket',\n", + " 'basketball',\n", + " 'bat',\n", + " 'bathtub',\n", + " 'beach',\n", + " 'bear',\n", + " 'beard',\n", + " 'bed',\n", + " 'bee',\n", + " 'belt',\n", + " 'bench',\n", + " 'bicycle',\n", + " 'binoculars',\n", + " 'bird',\n", + " 'birthday cake',\n", + " 'blackberry',\n", + " 'blueberry',\n", + " 'book',\n", + " 'boomerang',\n", + " 'bottlecap',\n", + " 'bowtie',\n", + " 'bracelet',\n", + " 'brain',\n", + " 'bread',\n", + " 'bridge',\n", + " 'broccoli',\n", + " 'broom',\n", + " 'bucket',\n", + " 'bulldozer',\n", + " 'bus',\n", + " 'bush',\n", + " 'butterfly',\n", + " 'cactus',\n", + " 'cake',\n", + " 'calculator',\n", + " 'calendar',\n", + " 'camel',\n", + " 'camera',\n", + " 'camouflage',\n", + " 'campfire',\n", + " 'candle',\n", + " 'cannon',\n", + " 'canoe',\n", + " 'car',\n", + " 'carrot',\n", + " 'castle',\n", + " 'cat',\n", + " 'ceiling fan',\n", + " 'cell phone',\n", + " 'cello',\n", + " 'chair',\n", + " 'chandelier',\n", + " 'church',\n", + " 'circle',\n", + " 'clarinet',\n", + " 'clock',\n", + " 'cloud',\n", + " 'coffee cup',\n", + " 'compass',\n", + " 'computer',\n", + " 'cookie',\n", + " 'cooler',\n", + " 'couch',\n", + " 'cow',\n", + " 'crab',\n", + " 'crayon',\n", + " 'crocodile',\n", + " 'crown',\n", + " 'cruise ship',\n", + " 'cup',\n", + " 'diamond',\n", + " 'dishwasher',\n", + " 'diving board',\n", + " 'dog',\n", + " 'dolphin',\n", + " 'donut',\n", + " 'door',\n", + " 'dragon',\n", + " 'dresser',\n", + " 'drill',\n", + " 'drums',\n", + " 'duck',\n", + " 'dumbbell',\n", + " 'ear',\n", + " 'elbow',\n", + " 'elephant',\n", + " 'envelope',\n", + " 'eraser',\n", + " 'eye',\n", + " 'eyeglasses',\n", + " 'face',\n", + " 'fan',\n", + " 'feather',\n", + " 'fence',\n", + " 'finger',\n", + " 'fire hydrant',\n", + " 'fireplace',\n", + " 'firetruck',\n", + " 'fish',\n", + " 'flamingo',\n", + " 'flashlight',\n", + " 'flip flops',\n", + " 'floor lamp',\n", + " 'flower',\n", + " 'flying saucer',\n", + " 'foot',\n", + " 'fork',\n", + " 'frog',\n", + " 'frying pan',\n", + " 'garden',\n", + " 'garden hose',\n", + " 'giraffe',\n", + " 'goatee',\n", + " 'golf club',\n", + " 'grapes',\n", + " 'grass',\n", + " 'guitar',\n", + " 'hamburger',\n", + " 'hammer',\n", + " 'hand',\n", + " 'harp',\n", + " 'hat',\n", + " 'headphones',\n", + " 'hedgehog',\n", + " 'helicopter',\n", + " 'helmet',\n", + " 'hexagon',\n", + " 'hockey puck',\n", + " 'hockey stick',\n", + " 'horse',\n", + " 'hospital',\n", + " 'hot air balloon',\n", + " 'hot dog',\n", + " 'hot tub',\n", + " 'hourglass',\n", + " 'house',\n", + " 'house plant',\n", + " 'hurricane',\n", + " 'ice cream',\n", + " 'jacket',\n", + " 'jail',\n", + " 'kangaroo',\n", + " 'key',\n", + " 'keyboard',\n", + " 'knee',\n", + " 'knife',\n", + " 'ladder',\n", + " 'lantern',\n", + " 'laptop',\n", + " 'leaf',\n", + " 'leg',\n", + " 'light bulb',\n", + " 'lighter',\n", + " 'lighthouse',\n", + " 'lightning',\n", + " 'line',\n", + " 'lion',\n", + " 'lipstick',\n", + " 'lobster',\n", + " 'lollipop',\n", + " 'mailbox',\n", + " 'map',\n", + " 'marker',\n", + " 'matches',\n", + " 'megaphone',\n", + " 'mermaid',\n", + " 'microphone',\n", + " 'microwave',\n", + " 'monkey',\n", + " 'moon',\n", + " 'mosquito',\n", + " 'motorbike',\n", + " 'mountain',\n", + " 'mouse',\n", + " 'moustache',\n", + " 'mouth',\n", + " 'mug',\n", + " 'mushroom',\n", + " 'nail',\n", + " 'necklace',\n", + " 'nose',\n", + " 'ocean',\n", + " 'octagon',\n", + " 'octopus',\n", + " 'onion',\n", + " 'oven',\n", + " 'owl',\n", + " 'paint can',\n", + " 'paintbrush',\n", + " 'palm tree',\n", + " 'panda',\n", + " 'pants',\n", + " 'paper clip',\n", + " 'parachute',\n", + " 'parrot',\n", + " 'passport',\n", + " 'peanut',\n", + " 'pear',\n", + " 'peas',\n", + " 'pencil',\n", + " 'penguin',\n", + " 'piano',\n", + " 'pickup truck',\n", + " 'picture frame',\n", + " 'pig',\n", + " 'pillow',\n", + " 'pineapple',\n", + " 'pizza',\n", + " 'pliers',\n", + " 'police car',\n", + " 'pond',\n", + " 'pool',\n", + " 'popsicle',\n", + " 'postcard',\n", + " 'potato',\n", + " 'power outlet',\n", + " 'purse',\n", + " 'rabbit',\n", + " 'raccoon',\n", + " 'radio',\n", + " 'rain',\n", + " 'rainbow',\n", + " 'rake',\n", + " 'remote control',\n", + " 'rhinoceros',\n", + " 'rifle',\n", + " 'river',\n", + " 'roller coaster',\n", + " 'rollerskates',\n", + " 'sailboat',\n", + " 'sandwich',\n", + " 'saw',\n", + " 'saxophone',\n", + " 'school bus',\n", + " 'scissors',\n", + " 'scorpion',\n", + " 'screwdriver',\n", + " 'sea turtle',\n", + " 'see saw',\n", + " 'shark',\n", + " 'sheep',\n", + " 'shoe',\n", + " 'shorts',\n", + " 'shovel',\n", + " 'sink',\n", + " 'skateboard',\n", + " 'skull',\n", + " 'skyscraper',\n", + " 'sleeping bag',\n", + " 'smiley face',\n", + " 'snail',\n", + " 'snake',\n", + " 'snorkel',\n", + " 'snowflake',\n", + " 'snowman',\n", + " 'soccer ball',\n", + " 'sock',\n", + " 'speedboat',\n", + " 'spider',\n", + " 'spoon',\n", + " 'spreadsheet',\n", + " 'square',\n", + " 'squiggle',\n", + " 'squirrel',\n", + " 'stairs',\n", + " 'star',\n", + " 'steak',\n", + " 'stereo',\n", + " 'stethoscope',\n", + " 'stitches',\n", + " 'stop sign',\n", + " 'stove',\n", + " 'strawberry',\n", + " 'streetlight',\n", + " 'string bean',\n", + " 'submarine',\n", + " 'suitcase',\n", + " 'sun',\n", + " 'swan',\n", + " 'sweater',\n", + " 'swing set',\n", + " 'sword',\n", + " 'syringe',\n", + " 't-shirt',\n", + " 'table',\n", + " 'teapot',\n", + " 'teddy-bear',\n", + " 'telephone',\n", + " 'television',\n", + " 'tennis racquet',\n", + " 'tent',\n", + " 'the eiffel tower',\n", + " 'the great wall of china',\n", + " 'the mona lisa',\n", + " 'tiger',\n", + " 'toaster',\n", + " 'toe',\n", + " 'toilet',\n", + " 'tooth',\n", + " 'toothbrush',\n", + " 'toothpaste',\n", + " 'tornado',\n", + " 'tractor',\n", + " 'traffic light',\n", + " 'train',\n", + " 'tree',\n", + " 'triangle',\n", + " 'trombone',\n", + " 'truck',\n", + " 'trumpet',\n", + " 'umbrella',\n", + " 'underwear',\n", + " 'van',\n", + " 'vase',\n", + " 'violin',\n", + " 'washing machine',\n", + " 'watermelon',\n", + " 'waterslide',\n", + " 'whale',\n", + " 'wheel',\n", + " 'windmill',\n", + " 'wine bottle',\n", + " 'wine glass',\n", + " 'wristwatch',\n", + " 'yoga',\n", + " 'zebra',\n", + " 'zigzag']" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sorted(class_names)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dBzicCsPnU0m" + }, + "outputs": [], + "source": [ + "def parse(data_batch):\n", + " feature_descriptions = {\n", + " \"ink\": tf.io.VarLenFeature(dtype=tf.float32),\n", + " \"shape\": tf.io.FixedLenFeature([2], dtype=tf.int64),\n", + " \"class_index\": tf.io.FixedLenFeature([1], dtype=tf.int64)\n", + " }\n", + " examples = tf.io.parse_example(data_batch, feature_descriptions)\n", + " flat_sketches = tf.sparse.to_dense(examples[\"ink\"])\n", + " sketches = tf.reshape(flat_sketches, shape=[tf.size(data_batch), -1, 3])\n", + " lengths = examples[\"shape\"][:, 0]\n", + " labels = examples[\"class_index\"][:, 0]\n", + " return sketches, lengths, labels" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "x3EC7Dy_nU0n" + }, + "outputs": [], + "source": [ + "def quickdraw_dataset(filepaths, batch_size=32, shuffle_buffer_size=None,\n", + " n_parse_threads=5, n_read_threads=5, cache=False):\n", + " dataset = tf.data.TFRecordDataset(filepaths,\n", + " num_parallel_reads=n_read_threads)\n", + " if cache:\n", + " dataset = dataset.cache()\n", + " if shuffle_buffer_size:\n", + " dataset = dataset.shuffle(shuffle_buffer_size)\n", + " dataset = dataset.batch(batch_size)\n", + " dataset = dataset.map(parse, num_parallel_calls=n_parse_threads)\n", + " return dataset.prefetch(1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bePtZAfdnU0n" + }, + "outputs": [], + "source": [ + "train_set = quickdraw_dataset(train_files, shuffle_buffer_size=10000)\n", + "valid_set = quickdraw_dataset(eval_files[:5])\n", + "test_set = quickdraw_dataset(eval_files[5:])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Jbn6IjOKnU0n", + "outputId": "c43c617b-7354-4d2a-9d48-74bf31b0f37f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sketches = tf.Tensor(\n", + "[[[-0.08627451 0.11764706 0. ]\n", + " [-0.01176471 0.16806725 0. ]\n", + " [ 0.02352941 0.07563025 0. ]\n", + " ...\n", + " [ 0. 0. 0. ]\n", + " [ 0. 0. 0. ]\n", + " [ 0. 0. 0. ]]\n", + "\n", + " [[-0.04705882 -0.06696428 0. ]\n", + " [-0.09019607 -0.07142857 0. ]\n", + " [-0.0862745 -0.04464286 0. ]\n", + " ...\n", + " [ 0. 0. 0. ]\n", + " [ 0. 0. 0. ]\n", + " [ 0. 0. 0. ]]\n", + "\n", + " [[ 0. 0. 1. ]\n", + " [ 0. 0. 0. ]\n", + " [ 0.00784314 0.11320752 0. ]\n", + " ...\n", + " [ 0.11764708 0.01886791 0. ]\n", + " [-0.03529412 0.12264156 0. ]\n", + " [-0.19215688 0.33962262 1. ]]\n", + "\n", + " ...\n", + "\n", + " [[-0.21276593 -0.01960784 0. ]\n", + " [-0.31382978 0.00784314 0. ]\n", + " [-0.37234044 0.13725491 0. ]\n", + " ...\n", + " [ 0. 0. 0. ]\n", + " [ 0. 0. 0. ]\n", + " [ 0. 0. 0. ]]\n", + "\n", + " [[ 0. 0.4677419 0. ]\n", + " [-0.01176471 0.15053767 0. ]\n", + " [ 0.16470589 0.05376345 0. ]\n", + " ...\n", + " [ 0. 0. 0. ]\n", + " [ 0. 0. 0. ]\n", + " [ 0. 0. 0. ]]\n", + "\n", + " [[-0.04819274 0.01568627 0. ]\n", + " [-0.07228917 -0.01176471 0. ]\n", + " [-0.05622491 -0.03921568 0. ]\n", + " ...\n", + " [ 0. 0. 0. ]\n", + " [ 0. 0. 0. ]\n", + " [ 0. 0. 0. ]]], shape=(32, 104, 3), dtype=float32)\n", + "lengths = tf.Tensor(\n", + "[ 29 48 104 34 29 35 28 40 95 26 23 41 47 17 37 47 12 13\n", + " 17 41 36 23 8 15 60 32 54 38 68 30 89 36], shape=(32,), dtype=int64)\n", + "labels = tf.Tensor(\n", + "[ 95 190 163 12 77 213 216 278 25 202 310 33 327 204 260 181 337 233\n", + " 299 186 61 157 274 150 7 34 47 319 213 292 312 282], shape=(32,), dtype=int64)\n" + ] + } + ], + "source": [ + "for sketches, lengths, labels in train_set.take(1):\n", + " print(\"sketches =\", sketches)\n", + " print(\"lengths =\", lengths)\n", + " print(\"labels =\", labels)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FATkuMzlnU0n", + "outputId": "92bd45dd-fc7c-494b-f4ee-666923850932" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAYRCAYAAAB72cuIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3xTVf/HP+fe7KRN96a9UPYeMsqyiiga3I8THKiAE/Tnijvu4HrEgQIq6iPurVF8UKkCgsiUvUPp3mnS7HvP748ErX1YTZPcpL3v16svSHLv+X7SnN587znfQSilkJCQkJCQkJCQkIhVGLEFSEhISEhISEhISBwPyWGVkJCQkJCQkJCIaSSHVUJCQkJCQkJCIqaRHFYJCQkJCQkJCYmYRnJYJSQkJCQkJCQkYhrJYZWQkJCQkJCQkIhp4sZhJYSUEEJeEVtHeyCE9CWErCGEuAkhVrH1SESfeJy3EhISEhISsYZMbAHt4CIAvpM5kBBSDGAFgHRKaV0ENZ2IJwA4AfQF0CKiDgkJCQkJCQmJuCVuVlgppQ2UUnu07RJCFB04vSeAVZRSK6W09hjjyzswvoRE1Ojg34KEhOhIc1giHiCEyAghRGwdsUZMOKzBbdPXCSHzCSGNwZ9nCSFMm2NeafVYQQh5ihByiBDiIYQcIITMIYRwCKyuAkAtIYQSQt4+2hjB594mhHzbxs5rhJDnCCG1AFYHn+9PCLEQQuyEkBpCyAeEkKzjvCcKYAiAh4MaTIQQLvj/KwghPxNCXABmE0JSg+OVEUJchJDthJAZR/kdvUYIeZ4Q0kAIqSWEzCWEKAkhrxJCmgghpYSQq9qcl0sI+bDV79VCCOnVns9HosPIjjW3CSHJhJB3gs+7CCE/EkIGtD6ZEHIRIWRrcJ4fJoQ80PpiRgixEkIeDs5le/CYywghScHP3kEI2UsIObPNuMed00f+Nggh9xJCygCUBZ+fTgj5o9V5nxBCcludVxyc55MIIb8TQpyEkPWEkOFt7F8XnLNOQsg3hJCbg383Ep0AQshEQsja4PyzBefCwOBrVwev3c7gHLul9WcfvF5uazPetYQQR6vHhYSQrwghVYSQFkLIRkLI1DbnWINjvUUIaQKwNPj8WELIL0H75cFra2Ikfx8SnRcS4B5CyP7gdXwrIWR6q9fNhJDdwdeshJBnCCGqVq+bCCHbgnN8PwAPAK0Y7yWWiQmHNcg0BPQUAZgNYBaA249z/DsArgbwfwD6AbgeQBOAwwAuDh4zAEA2gLnt1DIdAAEwAcDVhJBsAL8C2AZgFIAzAOgAfE1aOdVtyAawG8Dzwf8/1+q1pwEsANAfwJcAVAA2Apga1DwfwEJCyKQ2Y04DYAcwGoAZwIvB8/cAOAWB38kbhJAcACCEaBBw3t0ATkXgd1sJ4MfgaxLR4Xhz+20EPs/zEZhbTgDLCCFqACCEjADwCYDPAQwCYARwH4Bb29i4HcA6AMMBfIzAXHgfwHcAhiIwf987cpFsx5w+FcBgAFMAHJmPCgCPIHBDNhVAGoAPjvK+nw7qHQ6gHsDSI442IaQIwBsAXg3q+xrAo0f/9UnEG4QQGYCvAKxCYJ6MRuC6xhNCRiMw7xch8Nl/A+CxEMzoAHwPYHLQxmcAPieE9G1z3P8B2IXANfJ+QsggAP9FYM4NQSDcbCiAt0LQICEBBML/rgdwCwLf608j8B1uCL7eAuA6BHyVmwFcDuCBNmN0B3AlgEsQmJfuyMuOMyilov8AKEHA6SKtnnsQQFmbY14J/r8XAApgyjHGKw6+nnYUO6+0ee5tAN+2OebPNsc8BuCnNs8lB22MOs772gbA1OoxFzznzpP4nXwI4I02uta0ekwA1AL4utVzcgBeAP8KPr4OwN42v1cWAefhUrE/967wc7y53WoeT2z1mh6ADcANwcdLAfzcZkxTm78NK4APWj3WBcd96Shz75Tg4xPO6eDfRi0A5QneY9/geXnBx0f+/s5qdcy4Nsd8AGBZm3EWAaBif2bST8d/AKQEP+9Tj/La+wCWt3nujdaffXCOb2tzzLUAHCewuxbAg60eWwF80+aYdwG82ea5oUG9GWL/7qSf+PpBYCXUBWBCm+dfBPDdMc65EcC+Vo9NCOToZIr9fmL5J5ZWWNfS4CcXZA2A3GNs0wwDIODvrf9ws6HN4xEAJga3thzBbanDwdcKQxh/fesHhBA2uM37JyGkPjj+RQDy25z355H/BH9XNQC2tnrOB6ARQEYr3d0B2FvptiHgmISiWyI0jjq3EbjbFoKPAQCUUhsCn2n/4FP9EAxLacUq/O/fRuu54UBgpXZrq9erg/+2nhsnM6e3UUo9rY0TQoYHt2IPEULs+Hs+H3O+AqhoY78vAivCrfkdEp0CSmkDAjc8PwTDTv6PENIt+HI/tJrzQdo+PiGEEG1wa3UHCYTUOBBYRW07D9e3eTwCwPQ2c//I35h0XZRoL/0R2CVd1mZO3YTgfCKE/IsQsioYvuIA8G/87zwto5RWQ+KYxFOVgNaEGowsHOXcoyU9tc3oZwBYANx1lGNDmWBtx78LwJ0IhC5sBeAA8BT+/nI/QtsqCfQYzx25EWEAbEZg+6EtDe1SLBEJjjePaatjjhXX2fr5E82NI8e2nhsnM6f/MVcJIVoAPwD4EcBVCNw0pQFYiUCoQGuOZ/9470uiE0ApnUEIeRGBcJLzADxJCLkAJ3f9Pplr9XPBse9CYCfJicDqadt5eLTr+RsIOA1tKT8JbRISrTlyTTsXQGmb13yEkDEI7Jg+CuAOBEIXz8M/wwQBqZLQCYklh3U0IYS0WokaA6CCUtp8lGM3IjBJTgOw7Cive4P/sm2er0UgnrQ1QxDYNjoeGwFcCuBQcBUz3IxHYNvqP0AggBtAbwQmdkfYCOAKAHWU0o6OJRE6R53bAHbg79jWXwEguGo6CMCS4LE7EJgfrRmPwN14R6pmhDqn+yLgoN5PKT0Y1HxRCPZ3IhA725q2jyXiHErpFgBbAMwjhHwP4BoE5vSYNoe2fVwLILPN383QNseMB/AupfQzAAjGZxciEIJzPDYCGEAp3dee9yIhcQx2IJAkVUAp/bnti4SQfwEop5Q+3uq5gijq6zTEUkhADoAXCSF9gh/w3Tj6HTAopXsRSCx5gxByMSGkOyFkAvk7Q/4QAqs3BkJIOiFEF3z+ZwBnE0LOC9p5AUC3/7XwP7yKQGzhR4SQ0YSQHoSQMwghiwghCaG/5b/YA2ASIWR8MGHgFQS28jvKUgRWy74ihJwa/D1NJIFKA1KlgOhx1LkdnMdfIRCcPyGYDPIegGYE4vyAQNLeqcEs0t6EkGkIrMY/00FNoc7pUgQuzrcGzzEAePw4xx+LlwCcSQi5mxDSixByPYALQxhHIgYJXmvMJJCNX0AIOQ2B5L0dCHz2ZxBC7gt+9jPxv599CQJxsPeTQDWA6wH8q80xewBcGAxROfK3o8KJmQdgFAlUphlGCOlJCJlKCFkY+juW6KoEFw6eA/AcCVQ+6UkIGUoIuZEQMguBeZpLCJkWvGbehMBCkkQ7iSWHdSkCK6K/A1gM4E0cw2ENcjUCX+ovIZAB+jYCX8CglJYjkMX8JAIO25FSVm+1+lmNwNb7FycSRimtQCBpREBgRXc7Al/4nuBPR3kCgXi+7xFYaWtBsPxKR6CUOgFMBHAAgUzzXQhkjycjEOsqER2ON7dnIPDZfx38V4NAMqELACilGxHIGr0YgSQ+c/CnQ92zQp3TNFBP+BoAFyDgfDyCQBZ2e+2vATATwBwEYl0vQMCRkDJjOwdOBHaJPkHgC/sdBP4O5lFK1yKQUX0TAp/9RQgknfwFpXRn8PVZwWMmIxAm1Zr/QyAkZSUC1861wf8fF0rpnwhcFzkAvyCwAvw0QgvvkpAAgIcQmMN3IXAtXY7ANfsgpfQbAM8ikIR1ZC4/LIrKOIf8MxdEJBGElCCQ3NG2VI+EhEQXgRDybwBnUEoHia1FIroEdx4+oZRKxdIlJCSOSizFsEpISHQhCCF3I7AS4UCgDuyNAO4XVZSEhISEREwiOawSEhJicQoCW2h6AAcRaIgwX1RFEhISEhIxSUyEBEhISEhISEhISEgci1hKupKQkJCQkJCQkJD4HySHVUJCQkJCQkJCIqaRHFYJCQkJCQkJCYmYRnJYJSQkJCQkJCQkYhrJYZWQkJCQkJCQkIhpJIdVQkJCQkJCQkIippEcVgkJCQkJCQkJiZhGahwQZTijpQhAMYASq9mwRmQ5EjGANCckJMRH+juUiAQdmVfSnPwnUuOAKMAZLcoMdeWIVHX1fTsbhpwNEAagQs+knfs8vGrNYXuPHUrW5Rmd/Wv/Cke3zfua+u/TyW2u8bk/pZY78vdvrTulMkNT4Vj38EzvSdiSJngcEfi8hBKAyAEiqNiWbwelbUoqtXf/rdqZezBVVU2HpK/P2dvU74/D9h4VWdrD7lMyf6NVLbmln97xtFts/RISnYHuxm+KKPALwMgAeAGcJl0/JUJh7uJpypXlk3s1uNN7J8gbL3X49JdSEABEULLOP7jE/XkVLd122r1JNp28OTFXd6h/uaNgh8OX2JygaNLnaA/3K3Nw21p8CQqAFiOwE+4HyBwA71rNhhZR36CISA5rmBn92KKUamfuIIbww/ulbLnlUHNPhcOXmI2/VrMpAAKAQkZ88FM5BQg5mbFlxAcADj+VN8gYrydLU55t86Tssvv0ZRqZnWZpy4ccsPUpCI7nATBJuujGNn0e+HS+h1fNCcwJgEDwUTDykzzdwxKfO0nZqLV79fu8grI2QdHE5umsuYeaC1c5/QmVmZpyVY+k3Xnb64b92OxNruES98p6Je/Qbageu77BnV7fL2WLa1jGWttT1359wpshQLohkuhccEYLA+BCOeNe7BNUyUeelzOehnG5P7/V4k2495M7nhZElCgRo3BGC5OjLe3TJ2XbtB31Q9TVztwsOeMdRoF+fkHR6sgj3/kAA39DuqZG2+RJrvTwaqeCcauTVQ05je6UCq+gcilZlzpJ2ZjT4E4t9wlKHUAzjpwbHEvI0pZ7mz36z53+hJ+ztYe3jMpauWX+zKW+aL53sZAc1hDhjBYyhft8RJmjYPS2uhGpAIYmK+vOafSkKY8co5PbfAmK5gOVLd0+A7C5IGFf2iF74fOB1TT4AEwCsBaAJkdbmjQkY12f3Q2DfAdsfZCqqskYlL5h3J7G/pUVjgKPXtGQ3TN5Z/FBW++DDe50r0Zmz87Slo+obOlW7vJriZzxphII2V5BSY44xFma8v3dk/ac/cGc5/eK8kuSOC6c0aIHsAmg3QHwAPECmHR+4fvrVldM0ta5MhMKk3ZmF+p3D9xUM6ah1pUly9VZuxckHhiztW74Hrs3iU1TVxdmaCpG7G/qu9fDqxVauT1PLWspqHelN1GwWgCak1NDnQCxa2QOJKvqEyodeesFsE2ZmvKETG1Fxrba4RYBbCJAbwBAjmiVnFaJeGTWazNVbr9m/u9VE6Z4eHU+IJQRIJuCUIAICfImavclKQHsAmDO0Za+/9tDN3UJp0Din8xdPI1sqxvee7+tbyFLfIP7pmy7obS5B2P36bMAqFsdephA2DEs4/eUFp/Osrtx0HcAEgB8C+Cv7/yTvWYGFwd+anXuwz30u4cBmHzA1lsOkCQAULIueHnlrxTMmkL9rkN9U7aue3X22xvC9guIISSH9SThjJaL09RVc5SsS1nu6O4AMBRAavBlCmAvl7jXo1c27tpSO+pNAJutZkP1UcaJ2ApVqwmuACgTWGmlPoB8lqMtfXdk1qpl82culT7wGGDu4mnqZdYL/+vh1WMA3A4gERGYE9cvuFGhZN3Zv5adSRw+vW5g6sYemdqKgSvLJh/wCkpND/3uganqmiEbqsduFiiry9SUD0hQ2Hrta+q3GyAJGpm9GyE0ucWX4AOI8u+RqR8gD1vNhqfDqVdCIpJwRosawAyA3gOQglRVdWO9O/MmAJ8CGIXgtfn8wvfXr6uacF1lS7ebAAzRKxu8+QkH3txad8qdVrPBJeJbkIggnNEyKV1deSfL+J1VLd1sAAYoWdcoD6/+a5kzQdHk08haDlY7c78DsP30bhafSuZcvmD22xXHGDPsMazBnYFewzLWXuPxq07f0TCUBTAEAecWAC0HyLpeydvr83SHtqw4fM7bAAaFqiNWkBzW4zBn8fSESkc34x/V488GMCzwLAVAdgJY3TflT3uOrnT7z6VTP7KaDQ4Rpf5F6wk+KG29f2vdKVcAmAEgKV1dZa91Zd0D4L1Y0dsV4YwW0j9108Yd9cOGpqurbv/jkevni63pZOCMlokEwo/BkAU/gInxeuGT6FpwRkvC4LQ/Fu639flXiy9RDmBNd/2e1wenrf/P8W7iOaOF9E35c0aLT/fiYXuPBAA1apljwWndvn9zwey3y6L3DiQixdzF08h+W5+p2+pGzARwbquXGgFs7pO8VaaRO7Zuqin6AMB2q9nQKI7S48MZLarivO8vqXdnTNhaN0ILYDSAwuDLAgAC0GC4IInLGG3JYT0KnNHSB8AsBeO50SsoNQRCEwWTCICJx5WlwQ8v1QxOX79gc83IYodPXwDQ5gGpm3Zl68oeeeOmhcvE1tfV4IyWOwC8MCB144+Wux+aLLae9hC8IXoOwFi1rGXqzicutYitSULiWNy66Oqey6wXXusXFLcASOqh31VPwVx/0Nb7a6vZcNJffpzRQgBMAHA/gLPUshZKKXnezWuesZoNtZHSLxE5OKMlDcD0JGX9g02e1FSAeoPhegSgPEAeiqfv+aNx66Kre1ttvSZuqx9+OUBPD+66AiCrAFxgNRvqxdbYHiSHNQhntKi6JRyYxRLhMWtzTz0Av5J1fT8+96fVJYenrOKpbDlCiEOJJYIX3TEJiqb7XD7tuX4qB4CfFYx74UW93vvaPOMLKes8wpxievOpOneWEcAvCMyjuEvo4IwWtUbm2MMy/uwJucv7LZj9thQj3YWIh8Q7zmjJ0SsaHnXz6hs8vBoAvmAI//SBp8/7o6Njz3xt1pU76wffU+boPhiAu3vinhX9U7c8+urst9d1WLhEROGMFmZYxtprXX7NI7saBmUBRKGWtWwfkfnbhk3VY95v8Sd8gTj/nj8af4cL0mA2GGEIBMeorJWrM7UVV740872YXDVuS5d3WG98/fopm2pGT6925k4BkJqsqvVkaSo+3Nkw5N7WMajxcJFuD7cuuqb/MusFF/oFxSwA+XplA+/j5R85/QlWAN92hvcYa5z21L9nH2zu9XrgEXEhji+Is1+/4bLlh877QEZ833kF1bntWa2SiH2CMXJpAPJO6/bdhYft3RX7mvrxwTI7RQAoQNyIsTl888IZp26uGXVvRUv+JICyhfrd2wuTdj246KbF34TbFme09JUx3gcEykwHiCBQ9m0A86xmw55w25IIjSPf2/kJ+yubvUn9mjyplwLgNDIHTVI2fFHRkm+ymg1b2x6PTvI935rW7w2APVtb+lFlS35/Ar6Sgn0QwDtWs4EXU+OJ6JIO67BH3lE1etIuAugsgJzKEJ4KlP0MwEIAP8fjqleocEYLOyZ7xT0HmvrcXuPKyQg+HdfOVKxSeN+XJTyVnRosU+IHEFehJW3hjJa7ATwD4Dqr2bBEbD0S/+RYX75zF0+TVzjyC/+oHq8HkDcya+XF9a507QFb3xYAecnKulE2b7JcoGzbTog8APafT9HPzy/8YPr8mUtFTUTijJaBAIwEwjSG8BAou5CCecZqNhyItO2bF1479peyKTe0+BKuAKiyb8rWsgSFbdYnt5ulcCsRCc7/FcFVxWD1HPwM4I1J+d9+++bNr9lFFRgDnPPsk5fsqB96J4DRekVD3dCMda/+Ujbl0VhdgOhSDitntPTtnbxtfpmdm+T061gABwoS9303KG3j66/Meme72PrEhDNa7gPwOAAWoBQgD8SzMxVrBMMxDgPIRiAAPu63nDijhWWJr4QhdMzkgq/PXDB7yQqxNUkECH5Z/wxAQSAgXV1lrXHl1ADII+DzaBu/kyV+gaeygwDKCpN2psoZX+muhsHfAyibmPeDUs74tv1UOvV8gD55pGweQCgAkqKq9atlTlO5o+BZq9lwUvV8w8WVL/3fxbXOrPl7mwbkAmhJUtZ9MC735wWvznpnUzR1AABntGT2TNqxoMzOXejmNQTAdymq2hc2mq79Kdpaujq3Lrpm0C+HJ39j9yUXBJ6hNEnZ8ObmR6+eKa6y2IMzWohe0XClnPUuqXNlyQGsBHCP1WxYK7a2tnR6h3XO4un6Jk/Kk6vKJw0VqGwcIPB9U7ZV2r36OeWOgq+60mrq8WgV46IGAJXMOW3XE5e+L7KsTsMV8++6fE3laR8wxP+0QGV2dJItp5sWXje65PCUNXLGu6/Zm9zfajb4xdYk8dcN6BMIJIpCLWvxuvy6lQDK+qb8maST22vWV4/7GkDZuJwfG9PUNaUnKnnX94FPznPzmq+CN7R+ALeMy/kpaX9Tn3urnHmpAA53Szjw1rCM359/aeZ7EVu9mrt4GvmxdOrkFl/i3QDO0MgcNENT+R9rc6//i4UkkjPMz6Xta+o3C8AdANLydAfryxzdpwP4IVZXrjoLnNGiAHCbjPE+JQiMQgDrD66sxv0CQaQJllqc6eHV9wPI7JO8tUKvbLz049vnrRZb2xE6rcPa+/7P+nkF1UyG8NcLlE1UyVpq3X7t8wDePlp9VImA06qROS51+rWzALLCajZMFVtTZ+Hc5x7dtKth0NAp3Bd5L8/6T7nYesLJwIfev9bh0y8B8JDVbHhCbD0SRy063uEva85oORPADwDeAPDWkfGCuwdnAvQRgBTp5Da3w6e/G8AbVrMhbImcnNFCGOKfmqM9/F6Zo3sigCoAz4/KWrnk49vNojuqbRn88FLNgNRN72yqGT3JzWuSAbppTHbJt5mayse7SmeiaHL9gpuMv5ZNnuUTlN1Z4v/hTO6rF74/eLEdnTQmNVJwRotuQOrGd/Y29b/QyysFgLwhZzyP7n3qokqxtYnusIYzyJkzWlQy4rskN+HQS4eaeyYB8AP0i4l5/12drKx/Zf7MpTEdUBwrcEbLXQCeVbHOj9y8Zr70h94xAnf9tCJR0bThz8emnyW2nkjAGS1LAXrZ5IJvrl9808J3xNYjEf4Ekh7Gr+8RwM4DkGo1Gxravj538TTi8CXetabi1OlOf8JggFaMyf5ldYamcnZHspDnLp4mL7X3uH9TzZiLAAzWyuxNg9PXf7um8rSZ4XSII0Vw1W+agnGbvIIqXyNzVDn9uvsBLI12CEVnhDNaejDEP1+gsql6ZYPd5km5wmo2SOX2OsjQR97JbvKkPQDQ2XLGx/RP3bJ8S+3IS61mQ7NYmkR1WAMXVPoLAqsAboCcHsqF9cbXrz9nb1O/W/c39RsNICVB0WTrlbTz5401RTdJq6nthzNaJgD018Cj+M5mjwU4o+U8AF8BONdqNnwrtp5IcIb5ubQ6V0YVIYKn0Z2eYTUbWsTWJBFeznn2yf1l9oK8Px+brjzeccEV1+IkZf0rTZ7U/jLia/BT+RMAFlrNBufJ2gs6eldp5c3zWnyJqTLi2++n8kcBfGg1G+JuhXLu4mnyJk+K+deyMydRMEPkjKd2ZNbqXzbVjFro8utGQloFbBdzFk9P39/U5+3t9cMmAcSfqzu0eETmbw9HMhylKzJ53jNDWMJ/s6thcDcAtYDwHkv4Jp7Kl0d7vortsN4XDOIn7S3IzxktpwK4CUAfAEMZ4gcBPuepbAGAFVJsauj883OJ/2x2sSl+6t87yh1cN5+gSInHL9qT5dIX752xrmrCmwBZZDUbbhRbj0R4GfjQB4cTFDbHmodu7Hey50x76Y4bVleccQWA0xWM2z48c+0v2+qGXb7t8SuPeUMz67WZqXZf4qJ1lRPG8VSeyRLflol5y39IVDTd3xl2yYIO/VnZ2sNvVbZ0yw4msAkAPJAWB05I8Pd3mZJ1LfDw6uRkZd2yRk/a9Vaz4aitUSXCA2e0jATwGoARgTkb/Y5ZsmgZOgYlCJRKkSEQZ1VyMicFt7qChfwpNDLHkuJuPzy/YPaSLp3pH0ZKANLuz0Xifxlmejup2dO978C0TVu/uvPRTuusAsDHt89bwhkt/QDcffYzT236/p77F4qtSSI8cEaLEkjMcvgSn23PeUvn/PsNAG9wRsv4bF3Zp2sri6cCsHJGy3P5Cftf+/WBOX9tL/Z94JMkN6+5BTj/DoCkZmrKS6uduWfxVL58yS2vdppki2Di1TIAOX0e+PQdD6++GoHkOCVAigFIDusxuPH16y/Vys94oMWXONjDqzad1u27u5fc8uqbYuvqCljNhj84o+UzgA4DSHC+4mpEcb62rbMXVQKeOfkQgB8g7bmzLAYoAwAEAnX7NfskZzV8WM2GNQz4rwHqhHTH3yEa3ekX81RO9jb2v0lsLVHioVRVTf1hO/fata/c2ltsMRLhIV1dOQSBG9gtoZxvNRtW/XL/3Cy9sqEYwHoA5np3RuPYxxd8xxktzxY/9e91AphaAE8A5Pd+KVsu+P3hWQVWs+G/nTmz3sOrXwfgCq5YMRnqCrnIkmISzmhJ5YzfLvjBesFHlDL9AWEWQEZKzmrUKQGIBwAfKGtHZ0x/+Y57omVcVIcVAJKUdYQhvLOdTlEJQLwA9VMwbgHsipISoi8pIYmR0tnVGJS+oZdWbldLzmpHodMB7HX6dV3i92g1GzynZK2e0eLT+UvKprwQ3L6TiHP6pWy9HgAm5X/zP8lW7WHLo1f9YjUbzh6ZuerCJGV9U0VLwdkA7rI29xqZpSmvT1dXjbGaDYbv77n/q7AIj3GC19dJGpnjBTXbUl3jyrmPM1omia0rVrj/7fMUl8+/+x2A7gHIrCRV/XuT8i29rOZzF8d6V6bOyJH5CuAhAFNTVbW23ypOmzfm8YW3RsO+6A5rnq50VKKiSduec/7+pZGHATLp7SlT1wL4AMCKkhIidphDp6DGmXXAyytPOkFC4n+5aeF1owFS3DNp5++deZWoLQtvfOMbCvYugBhkxNdVVpY7NTsaBqsZ4vfr5PZfwzHeJ3c8/WW5g3sOgZAwAIQvtRfO/+OR638Px/jxhNVsWLPjicvvdPG6gQD2AtRy/YKb7hRbl9hwRsvEz/detX1tZfHVyaq6KgDDNpmuverlWe9axdbWlbGaDWusZsPTVrPhu7E5Pw/XyZu3VLXkvcwZLbdH2rboDuvB5l57nT5tu+tStvqlrSkuphTACwBeLC6mUuHyMFDZkl/mE5QxXzImltlYXXQJAPRO3v6W2FpE4JUEuW0dIcIrNy28borYYiQ6Rp0rK1ugss3zZy71hHHYEgBeBBI7vejisfJWs6EOwKR0dZXv17LJz/Z/8KMzxdYkBrcsvHbUyEffKAHwi5vXKEZkrn5oYu7ygVazYavY2iT+ycuz/lPe7E0eA+AzAP++6IUHV85dPC1iu2qxUIf1GwC5VrNheLjGLCkhEwFoioup1Ms5RHre9+Xrfiq7xGqemiq2lngkuBW+DUCT1WwYJ7YeMbhl0TXDfjo09Xeesrt9gnJ4Z66Q0JmZu3ga+ebAZXWUki8Pms+9Ppxjh7tWbGfg1kVX9/3BesHXPkGZB2Cq1Wz4WWxN0YAzWlQA7pQx3kcJwFJKnvBT+dPtKYUmIQ6c0cL2T920YUf9sCFyxvOOT1DeEImuh6KvsGrl9my1rCVsHnlJCSEAHgHwTEkJYU90vMTRGZC2aaxWbk8WW0e8Mjht/ekA+gN4T2wtYvHqrHc2uXnN5T5BORCBv0mJOMRPZYMFyqYU5ZTowz12652ycI8dr7wy691dPkE5HsB+hvDLbnht9v+JrSmSzF08jcx49ZYnCfhdAJ6QM77/Ti74esK+py94SHJW4wOr2cD3Sto5TCNzPO8TlNcA9OObFl4X9pwi0R3WZGVdnxzt4bxwjRcMD7gAgKG4mPIlJYQtKSGiv894o8aZvd/Lq6SLRYiwjN/MEh/G5fzUpTuuWM2Gz1nif5dAuP+GBbOleNY4ZG3FqYUA4PJrPhdbS1fBajbU9EzaeXa6ukooKT37Gc5oKRZbUyTgjJa+y6wXlqw4fM79CYpmDYAzdj5x6TkLZi9ZJbY2ifYxf+ZSuuOJy+4CMBcgF+6sH3zo8vl3p4fThuiOXLUzp7LKmbM5nGMWF1N7cTE9HHz4HID3pNXW9lHZ0q3cJyikGNYQ4IwWdkvtKVyaunbj0jkvlIqtR2zO6fGpMUVVx/9WcfqTnNEiVfKIM+rdmT0BYFPNmO/F1tKV+NF4V9mQ9D+G+KlsNwBLZ3FaOaOlqO8Dn5hHPbroVwBbPbx6SJ/krS+d1u37AqvZ8JPY+iQ6htVseGli3g8LDjUXJq6tPPUHzmjJDNfYojusPkEpa/ElVkVi7GB4QDWA6uJiKn4JDJO+CCb9fTDpi2J9XAXjkRMIUkmi0DhdoLK0ameO1B0MwMsz/1MpY3xnO/06PYCXxNYj0T70yoZihvAVVrOhUWwtXY1FNy3eDZDTCIRSGeP98YYFs+eIrakjBGOWS9y8+t4aV84EBeP+CUCvH+41zp0/c6lLbH0xSXu+3yPlY7STd2996RYKZipA+jLEv+a0p164kTNa7gt+/iEjetJVz/u/aNTJ7cs3P3r1pZGyUVJCSHExpSUlhANAiovpwUjZ+h9Melltmu9CuY8Y9TZ2KAFhKCj1Kiiv8BIrARF8Mprol9FUlZtYCQj1yajeL6MprR4n+WU0WeUmBwkIfDIh2S+DXu1mrABUFDQ/aM1DQE6DydbheLDzn3/kz31NfQduf/wK0W9q4o1xTyxYWenIGyqATbeaDdIqdRDOaHkMwENjslc8/uHc5x4WW4/EyTH6sUXuRIXNttx4d9hWSiTax80LZwxYXz12Q50rEwJlz7KaDb+IrSkUOKNlEYCZgUdUAMiDUtvv4xBwPH8GIEegksYkmGxrrEtUhDukVADQ1qT7cjxKIa9bmTILwOsUVAbAS0AmhcMX6Ag9jF8XyRjfSq+gZBFoNuBFB5oRiV6zlCV8Unf93sJI2gg6qwSBBJjUkhIyMJIrrjWvaoYIDL07vVaezIKMS6+T6yn+eWMgEDgowRZC4fPLaLZbJXRXetjNhIL3y2iuWyUUqNzsJgCCTy7keZQ0X+VmNwKAT07zPUqaq3YzGxFI7MknIACgBLC08UXtczY9v5ib4Q45K7uqJXevh1d1D/mX0EW54PmH9bWuIeMHpG3e/c1dD0vO6j95PEdbevuftSMfGPzwe4v/fGz64ROfIiEmgZasOTKW8F06FltsFsxesn3ko2/0ECj7I4Dv+jzwqdHDq3WIo+oKty2+KlstM0xz+XU00PqbdI223yb9qT5WuJih5A9WILtsif58h04YlFEj2yf3Mwq7ju/l1AhD0+pkW1iBKNwKfrSMJyNlPNO265kawG/Co4nuAqpQHXkyo/afhxEQUFA1BV1MTPqXHFr+F93djt1B57cYQEm0HNkD5vPWDDe9/X6DW3kVQFgEHO9ihNjOVVSHNVD6RyUcsPWOeIB10Gm9HkB6cUmigBL9eAATEIYPr+5lTYpHSW9Pq5P1VHqZUzIg7wUAfpY2APjEz9IVXoXg0bjY/wCQExCf2kPOOWJXHfw5QtvHmuDPUR+b9EUE5CcKKicglIKqk5tkr2pbGDNM+ocBvAVgANo5UauduZUAwllzsUuwuXa0AQDcvOp+sbXEGlazwXfDghsv+LF06rcAeZMzWqZYzQZBbF0Sx6U/QNiKlnypRKDI/PHIDRWc0XK6jHg2enjVS8EVSg9ntMRF++zfKycudvu1mr4pW+ftahhsQxw52yETcBL/K+cZxZGn9M0y6Jv/PiTBwSLBwYKCngWAqLzHT7dhKFHZdfw+bQvzLkNJsy3Rn9yiFVKzKuWHGZDHKKgcAAhIGoCFuhYWnicT3EowMgAEgBcmfdRWXxvc6a8BuBwBZ9WPDtykiL3CqgQIY/OkRCSGtS3FxXQ3gN3+lYn/Ynl8AkAgIJ72fng1r2oYj1K4MrlRVqRrYQemQjaWgMgEQv0AfqCgr5TleffwLH7gZripDMFftElfgXDf4Zhsa2DSTyIgxQBKynN9GxgBT2bUyM8A8G8K+iQC/q9AQE56oipZl9LLK6VwgPZzFYDSvY0DvhRbSCzyxs2v/xzsiLIwW1v6GIAHRZYkcRx66HedfcDWFzq5bZvYWiQAq9lQNfCh9z92+BRzAcKggytW0YIzWgxAjkHFOl9cds99RrH1RJFiACwAUFCBgLzn0PKfNyX5k1Lr5X+q3UyjLdHva07kvQovsyC9RnYRE/hcQUF5AvIQAg5esUDoBoaS8RT0dp2D6dmcyF+mb5ZdpP+/lj1/1Zsz6Vce8QUArAXQpybd90hyI3sagMzguCoAxSRKc8ZqNqzpff9nl3sF1We9krZvWG68J2S7ojqsA9M2pGyrG4FMTbkymna9CuE6jYsFAklnx/+DDy6j23V8pV9GC5ObZD0zIJ8M4EhB/U0E5PmqTO9+t4p+yM1w2wmAbkcdy7bmmHY6Qqtxg/XB7g5qH+GX0Y/lfqYHAn80J31x65uydfS+pr5JYdfaibl10TUDCP41JV1T9ea6h2dKK4fHZnG2tnROrSvrgesX3Lj2zZtf/1ZsQRJHJ1HZ9C8F48GkfMte4Eqx5UgAcPj0HwE4knwV89vqox9b+C+GZL0jUNkBN6/pSs4q8Hc3NzkJhEC8rrvbsUbX6gC9SV+ob5a9D2CiQ+Nv1DpZNQGRkSMhE8Hv9+Dq0X8b52tf51n6WVqdbBiAHdSU+INPTq0KH/PeUXyMXRnAFUdiYSmoioAQr1yYqTDpP4bJtj/yvwJgz1MXfz7m8YWNta6so7pGJ4uoK2gFCQfyAKBX8o6CaNpVu5gdQOAOBsf7gw98yL8CeCrBwS5JbpI9iIDDZ2lI9j98KN8zACbbcJhsxqybXIu5GW57VN7AyWKybZD7mWuCjwS04+JmbS6sc/k1vo5m9XUldjcMnEnBYHjG2q/E1hLLWM0GOiJz7aUMERw/lU59MhAnKRGLbKsdYWcIv2P+zKVSl7IYIbCNTqsIhK3oQAJLNOCMlqIaZ87HAmU1AM0FELaOlnFBwIGcBOBhBBOmjrxkXaJiq15Tf0JBtwEYIhB6fV06n0pATj/a8UdImdtSkX6rs4iAFAD4FMA5ch+5GcBPx6wOEBjndAD3NyX6v5T7SCqArS5zwmPWJaq2sbIRoaol75kmT2o+Z7Tkn/jooyPqCuuq8klOANhRP3R1NO0SEAUAJwF5Asffni/G38v51KOk71dl+a7iZrhpCoCU6MjtKBuD//4XwGMnEw4QcFJTJyAwP36Klxgpsdnb1H88QDe9fuOb34itJdZ5ZdY7Ozij5XIA3zLgnwRwl9iaJP5JIMdAPsDPy78QW4vEP0lXV6emqmv8y+65L9avy5MpCAmEToJFHIQvhJ2j7aya9D3yieJdhpJxDi1v1bWwE5hHmsu4wKsntxNrslXDpN8C4LJg0vUJdottawiwJilgP4+CLlS7mYcyamQ3w6SfA6AAkU3I+hzA02pZy6UI1MdvN6KusNq8KQoAaHCn10TTrkslnOaT0UqYbE+f4MMpAeAG4CcgbpWHeZWb4Ra3Dlg7Kcv1JAFAfYq/qh0TsRigwblBj/wRSByHYY+8MxjACID8R2wt8YLVbLAkKho/oCB33rDgxk7dfjIemZD73/4AUlNVNVaxtUj8E6dfU1fnyiwTW8dJsBwgLgSSbWI+fCHSWJeo2LqXNYso6FaGkkEtGv7uujR/D5hsoX6WJcHQAaA9v1+TrexQgXdqRbb3FZWLUQJYCuBxHG+VtoNYzYY9aerq5gxNZch5C6I6rH2St+YDQEHivqgsSR+BUPR16PgTry4fZzk/fiAKAKCkXQV3SwhoMAaTCujiF5mToTBp96sEAvJ0Bz8TW0s8MT73pznJqnpnSdlZ93JGS7LYeiT+ps6VMQcA0jWV0ucSY7T4EmvqXJn1Yus4EcGdub++Q7v0Tp1J3yO7Ur4lrV4+06uguwAM1N7jeK5Di2ABn8QMABT06vb4KNwMN82Z7bqNAZkfLLvZOs8lImRoKn8+1FyYGGr3K1Ed1tyEQwMAoHfy9ujtrpv0KqWHsAl29sOTO9625iRWYmOWvPJAe9W0evm6kz3HajasydBU3gsAWpnjyS59kTkJOKOF2Vo3vE+OrtS66sFbu3wr1vawYPaSugZ3+ql+QZEC4LXANrSE2HBGS9HOhiHXARS7GgbfLMWyxxYEPM8Sv+rER4qP1WxYYzUbnu6q3yPWJSrWOU/3EIA/FV7SrTbN93Jltu8UmGxhqUNdmeWtA4DyXG9OiENYAFAKCgoa0VXwHfVDTQAhCFzr231NEdVh/b3i1P0AsKVm1OYomu1JQIiMJ1uiaFNMjqxetytpotqZ+w4AtPgTm090rATGeXh1ermDe0hsIaHCGS1F4WidFwpWs2E9gfAogMsm5P735WjblzgqxQCRBWIPiRQWFGPkJRzqnZ9wYITYOiROgEnfPb1WVqpxsY8JhK4lIAPTb3XOCWdoIaHYCgA6B6s40bFH12hbY9cJTxIQUIJnIrw4pwEoBeiFCOTHtOv7RlSHtcWfIAeAGld21HpU16X6pgJAcwJfGS2bYlKe480DgNo0X992ntpAIDhSVLUjIyCrU5Giqr0doE4AX4osJSSCF40VAH0CIVxEwsF5hR/Oy0/Y37y28tRZnNES1aohEv9Lz6TtwerltF3VRSSiQ7M36XCDOz0q9csl2o91iYoVHk28BcBWjZPRV2Z53y3N904O16pqa7KqFRsAIMkmOz3U+NNEB/sIgDKGkkjfBBUDOJKE1+4bYVEd1u6Je3oCQGHSTn+0bFKCIgBoSPHvjpZNMWGEwAorJe1bYbWaDTRbW8amqOomR0ZZ5+CmhdcluvzqC/ul/FlpNRscYusJkWsAqgwUIqdqANdFe2t+/sylvgRF83ifoHADeJczWo7f7kUiwpAiBn6oZS3Po6vHHsYgNk9Kuc2bbBNbh8T/4nhW1yelQVbLUPIKgN8ISP/sG13XRDBhe0BwO38KQk2aMtkEP0s/o6BnH3pL1TP8Ev+iBICAQMxsu2+ERXVYs7TlQwFgUNrGqDms6XXyRgpawc1wd4kV1uwqRQMAZNTKN7X3XKdfu+5Qc494dcKiwn+t553p8uuIRu4IqUyH2Ny88NpCgL8YAA1s1QAAbiDg18549RbT3MXToua4Wu5+cCtAbgMwcUDqpiXRsivxTzijhd3X1H8oBfPNzicuu0dyVmMPlvgoS/zqEx8pETVMegKT/kZdC7te52B0VZnedwGcBZMtonkNfpaeDwAkEBsacvhOZbZ3DQFhVW4mYm3FA9cSshUgBxDCjbCoDuuGmqItAFBmL6iOotneBGRPFO2JzZFqCO0u/N3kSV3nE5Q5nNEitWg9BjyVXwmgekP1uDfE1tJeOKOF7G4Y9CtLaJqSdc0GyAMAKQZws5L19Fxx+JxHvrdetJszWi6L4ornu72Sdhzc1TDoqtOffuHUKNmUaAUBPxFADgXznthaJI5OYdKewemaqj5i65AIcPgN1Ri7jq8G8BqAtQwlvbJucl0Dky3iZTApoU4CAtrB8B2excc8Q/dn1MgiucIKOeNJVrHO7aHcCIvqiHh5lRyA99M7no5aFxWeocNbNLwrWvbEpiLb2wcAqjN87Z6EiYrGKgDKEZmrpQvjUbh54bXdCYTzNDLHF1azIWq7BGFk7n5b35yhGeve3f3kJYuDmby/WM2G187ivswbmbnqeS+v4gF8qJXZK6Y889TXnNHyQCRjXK1mA+2VvH0ygJoDtj6vcUaLtIoUZQakbX5Vznj8iYomqWVujFLvSttr8yTFfFmrTk9gVXV2XpniR42TSatL9b0C4EyYbIeiJUHuZ5IBeAmICR0ov8nNcFNWIEsIyASY9CF3ozoRMsbXrU/KtpDyFER1WJOVtWMY8IhWkkfVa+oCViBKh07wRMNeLMDy5Mhn7G7vuaOyVikAIEVVd0ZYRXUSqp0591Iw7IS85SvF1tJeRj22eAKAZwB8taF67LVtX58/c6nrkzuevgvAQALhX0rWpdvVMORcABFPzFow++39PJVNB9BPr2h4PVJ2JP4XzmhR7m4YxHGJ+3b9+dg0p9h6JI5OvTuzzOXXdZmFl1ik9E3VWJdK2AngdQKy1qUW+qXd5rwtGquqreEZaqCgK2GyPd7RDH+fjH4EALVpvufDo+6fcEaLwuXXkeqWnF9DOV80h5UzWoqaPKmnCmAUiFJmcla1IhcAMmpkcbd9GyqZNfKK4L872ntuZUve9wDwW8Vp3nDr6gxsqB43gCW+fSrW9YHYWtrDbYuu6uYX5D+rZS0tAK6zmg3HvMBazQb+oPnczxo86U/g72YSKoAWR1Kj1WxYXpCw/2ubN+Xqa1+51RhJWxL/4GyfoFDvbRpwt9hCJI6NgvEQhvBxUYe10xFYVZ2VV6ZYofCSPi6VYAQwWXe3I+qJ3IfeUvVnBdKrJsMfll1q+YPN+xxa3p5gZyMVjpUGAFXOvG2hnCzmCmtxqx7D0arz1wcACEiXqBAQJKQ6rACwvX7YDgB8iy8xL7yS4h/OaOkOYDxP5W/Nn7k0btr1ckYLsRz814uN7lR2Qu7ye61mQ8PJnUlKAOIJOK2E9EvZMjaiQgEMyVh3daKisaakbMrtnNGSFml7EoBG5pgF0FoAP4qtReLY9E7ZNixBbgu1ULxEiBx6SzXGz9KVABYSitXlud4JaqN9XrRXVY+QU6EYAQCEYlG4xtS2MA+qPEw6TPoB4RrzCIVJOwsBIFlZ1xLK+WI6rGuCzmrU6vw1JvkvCwYmWyNtK1aoyvQOBoDKLG+7Y1KsZoNPznhq0tRVEXdO4o3hGWteBgCd3HZyHdNiBmG2QGUXUTDGRTctPumL3JEWiwT0oQx1RePuxkGTgk57xHhp5nu2Zm/ymQBJJhDeiGbFgq7IbYuuyvUJ8rMHpm46FKcx2V2GGmf2TqdfJ1VwiRYmfRE1JX6ed1ixmlAUAbiFgJyRf717lZiy5H4yHoAto1b+TbjGJCAfARAo6LRwjXkELnH/OAA4JWt1Qijni+awjs35aTAAKBjXh4hSnT+ZnxS4VdQNk63LXIxZnlAAIBQhxaPlJRxSqmWuUeFVFd9wRgvZ29RvTLeEAw3bHr/yoNh6TpbZr99wCUv4BUrWVQKg3WW4rGbDmoPmc5+qceUMEyjrQxTqpVrNhi0JiqYnKJjzG9xpb0XSVldneem5Z/sEJZJU9S+KrUXi+NQ4cw77BIUgto4uQaCu6a8E5EKGgrRo+Vtgsi2AySb679/P0vN5hv4eVp/GZKt2qvkDHiW9y7pEFdZFgg3VRQ0AcKi559pQzhfNYW10p50rIz5M7fHp3GjV+UtwsILazSyPhq1YIb1OfggAsqoV+0M5v86VsbzMXtBlktROklPs3qTUw3buXrGFnCyc0aIrOTzlBa3cwU8u+Pomq9kQ8sXWajYcIhBuATB+ZOaqL8Io86ic3u27p/IT9teurph0OWe0FEbaXlfF7ddeAuDgqvLJ74utReL4qGUtLIEQWitOiZPGukRFnCr+EwTLQxIQPtEuSxZZFoBA0peMJ5m16T57uMe2JwjfqTyMPKtKHtZY1iZPqhYA9jQOCGmhRzSHdWfDkDSesr+8cMOHdVExaNKzAHoBSA61fVmcEnIMKwDYvUmbKZhUzmgJaQm/M8IS370AeICJWumSjhDsWvWah1fnuPyaM1+Z9e6ujo55XuGHS/um/Fm2oaZoao/7vh7acZXHZv7MpXypvXCEQFk3gPc4o0V2wpMk2sXNC2cMAOhkBeP55HhJeBKxQb+ULcNZwmvE1tGpMelJfqniOY2bzaWBpip+xFCb4m6HFX0AQO4jL4V77Mwa+UMA3CoPc3E4x83QVAwEBD+AkLq0ieKwckZLOoChFMx/o2WzWee/AYCcgk5AqO3L4pDqDN8oACjP8aaHcn629nA9AJySuXp0OHXFK92N3xTxVHYxQFkAX0WrJFtHGJfz02sApgN4dO9TF60Ix5jzZy6lemXjWIEyVQJl3+OMlohmLFvNhsMAbgIwZnjGb1J90DBT70p/CCDk9HyLqDF5EidHRUv+Vj+V0Wi3UO4qWJeoiEDoMwwl/0dBFwIYB+BhdKDOabghIJcCcKQ2yMNfx95kawbwDQW90rpEpQzXsBmayvF6ZRMT6k2xKA7ruJwf7wWAnkk7/4iWTZU7cKfQ0fZl8YbMH1hZZYTQYlgHp693AkCCwjYpnLriFYbwlwaSBaNa3SJkCu/7qt+6qgk3cIl7G0/NW/ZUOMf+aO4zhwEyA8CAwqSdn4Vz7KNhNRs+7J+y+eCmmtFn9b7/s5i/UYgnfq+ayClZ157Xb3wzbMkbEpGjqiWvDIHvsmh1oOs6mPRE28KsYii5SyB0MQG5mZia18BkezpWnFX+0cTxFHQKBdUiQgtwVZne7QQkJaNG9nW4xt/b2L/U7dfsDfV8URzWw/buI1Wskx+QuqkkWjYVfoYBEHPL+pEmtUG+HwCyqxSVoZxvtfVcDgC/lJ0ldVUBwFP5kXghHjE+jzijRc1T2cc+Qd5QkHhg3Du3vhz2ZEOr2fDDwNSNG/Y39TtnyjNPXx7u8duSpqkeT8GUegXVu5zRoou0va5AIC6YjPbw6i5Tnzre0cmb5QCQp7NKcazhxKQnAJ5Ir5OPrU/xby/N994UC8lVbREY+jwBiegCXGq9bBUFhdrFTEaYnGIPr0708KqQQ+mi7rByRgsptRdybl7z1fyZS6PSkrXmVY2cgo4AYEGMLetHgQ7FsP5wr7EGQJNA2YiWMIoXNDJHAUBbEJxH0UoYDIWCxH0WAAMBMv2dW1/aGSk7PZJ2nyVnPId2NQx+hjNakiJlBwDevfWlCoBcDdDC/IT9X0fSVldhcPofzwGAjPHGWYm2rsvAtI1DAGBw+h9JIkvpNFiXqIhHIbwI4H4Ab6Q2yAZzM9y8yLL+F5P+HDnPjKKgPCK4ACf3M+PD7RQrWVdBoqIx5EZEUXdYWeLrCSAfUSxM7VUI1xOQpLpU32+xtKwfDWrSfeMA4HCeJ+Se7Fp5c326umpC+FTFL4nKpku76/c6rWbDU7HsrJ45b95dh5p7njY4/Y+frWZDRGPFX5r5Xr1PUF4CIEcrt78dSVsAYDUbfhmctv6XUnvhaYZnn7g10vY6M5zRQkqbexQXJO6z7XvqwsNi65E4OUqbe2wBgD2NA2Nu9S9e0TmY75ReZo5XLnwKYHYsrqyWvqkaLxD6EYAtBGQSIrgA16LmWQAIOsbhcoozC5N2ZYd6ctQd1jHZvz4KAEPTf18XLZspDbLhFJQ6dEKXK9ci9xEnALA8CbkveLcEq5IGu4R1ZTijJbGqJVfJEj6mS6NxRkvPPY0DH9bIHFv7p2wxRMOm1Wz4g0vc+06LL+H8q16eG5E+1K3prt83VcU6926vH/YIZ7RkRdpeJ2Zokyc1qcLR7X6xhUicPBUt+RUAsK+pn9hSOgcm/SNp9fIpTXr/looc3+Wx6KzCpFem18q/EBjo6lN818Fk+yWSC3AtOmEiBQXP4hmEwSke+ND7Wg+vhtXW64dQx4i6w7q7cSCXoGhqKUjcvzFaNjUudgQBWc3NcMdFGaJwktwkOwAAOZWKkGu1HbT1+rTOlUkiXSQ+DhgFELKvqd87Ygs5FnMWT09QMO6vAPidft1U84wv3NGyPSb7l1tSVTXlK8snX8cZLbmRtDV/5nstbl5zAQCdinV+IHXBCg0C4UoAPp+g/EhsLRInj17ZcCSGVSu2lnin+XntEgAmAO8k2WQjYjIMIMCLajeT1pTkvzN1jjPi/lNanYzyLPbIHmq+PxxOscOnTweARk/avlDHiKrDyhktbJ0rs7/dm/RhtPqv17yqKQQwHMB30bAXgxypWRlyvLCHV+8AiBxARJ2QWCdDU3EeAvX4fhdby7E4aOv9k1dQ9ecS995lNRtKo2nbPOMLd70743SAKAC65JJ/3xfR64vVbNjBJe590c1rimuc2e9F0lZn5JH/nC1LUNhuz9Ye3m01G6SkyjhicNr6gQAwOH19ntha4hnbC9oliXbZtS0a/lcA18Nki0lntf4lrQnAjQCeSbvN+ULEDZr0MoaSkTKehLwa2paBqRv7A0Cu7lB8xLDm6g5NBKAHELUtVZ6lRgAoz/F2uFh6PFKX6ptIQdGRP8Qe+t1NADAya+XpYRMWhyQobFdkaiq8VrMhpKLHkYYzWi7YWjdiZK+k7ctL7r9dlDamVrNhj1be/ABAJsvZyCfxDEn/4/5sbeneNZXFF3FGS99I2+tMLDt44VnN3mRZD/3usH0pSUSHA7befwLAtrphMXktinlM+iKY9Mv0zbJrWzT86tp0/xkx7KxOSGpiH2nR8BUAHoiGzapMrwGA1q0UNodrzAxN5WgAGJC6SX6iY49FtB3W+wCgKOfnqK1QpdXJc/wsbfbJ6ZfRshlLyH2kmRJ0KB6nb8rWKgBgCT8mPKriD85oYQ429VYhijdb7eH85x8ZCNAlANbvbRowVUwtZ+R/O7+7fnfl2opTL4i0Ezl/5lJa2ZJ/KkBaALr0X/++L6INDDoT1c7c8wG0rK444xGxtUi0j3IHVw0ApfbCsJeq6/SY9EUUdCWAswDwWid7LzfDHZWKRe3GpE9MbZC9QSga69L8U2CyReXzJpRcCQDVmb4/wzXmqopJZQCwo35IyOEFUXVYt9cPS9UrGyo+mPO8NSoGTXqZ3E/GynjyGTfD3SXbDeqbZQcZSlwdGaPGmbUWoP61lcVdeduwrwBWV+3MjXiB/PbS94FPTj1o67VBRnw6AJdbzYaQt1zCwfyZS+lBW58RAthmBFqphnxHfTJYzYZKBeO+ESDDAfJTJG11Fm58/XodgXApgC+sZkOL2Hok2keqqkYBADna0kSxtcQbPEOn4u+GCxTARBHlHBPrEhXxs/QDAIUMJRcUXOfeGi3bGTUyRiD0cMF17vXhGtPLq1IAoMzRvSzUMaLmsHJGi7bFlzDI5klZGi2bdam+CwAkCYR25S0vOQK12kLm0zue9gHkEIAe4ZEUf/RM2nEZAChYd0yVsuKMliI3r/6x2Zus4KkMADLE1gQEnEgAswCMGJr+uyXS9vY8dfGnA1I37VxfPbaIM1qkEmwnwMOr7qNg9ONyftosthaJ9jMk/Y9eADAwbWNvsbXEG6xAKAEJd7mmsKN2MR/LeHJOi4b/N0y2X6Nm2KQnBGQcQ0lYbebqrCMY4vd05AY5ag5rz6QdFwGQEwhRq79KCeZSUBzu5l0bLZuxRrOOn8IzNKGjXSpSVTWuVFVNl3UEVKz7Cq3cTs/mPt8jtpY2FANEBgA08OdcLKaY1ljNhs8HpG7cv6V25OSBD30wPtL2ttcPGwWQAwD+wxkt+kjbi2fWVBQPUjDuljR19QKxtUi0nz2N/bcDQMnhKRM5o0VqU9w+xgAoJyAPIVabCJn04zJqZBfYdfyu2nT/PdE0XZbrGQcgu0XDhzXvR69sOiVJ2dChSkNRc1gTFLY5MuLD2d0/D9sS84lIq5Ml+GV0a8F1Xa+cFQDApC9KcDA9GQEMOthaLUdXSlx+TZetd7mjfgglEFZFq7rFyZKurgw60FRADK4W5CUcmkBBDjl8iUsi3UrVajY4AEwHaF7v5O2rImkrnuGMlgQ3r5nsFVRvz5+5tEPhQhLiUObongUAXkF1NYCfJKf15Dj0lmoYBZ3kVgpfxGoTofqXNAUU9GMCcijBwRZFO5xR6WHOB4D6VP/2cI67q37Q/mZPcofCGqLmsG6tG6HTKZq3Lpi9pCEqBk36LAIyRO5nunK7wWICQggI0MHWalvrRrzr9OvYrrhyxRktqQLY3g6f/nuxtbRlYNqmYQCQrq76FjHYKnbhjW9UHmmlmqc7GPH4X6vZsHZk1qpVexoHDBxuentGpO3FI4PS1t8FQCUjvg/E1iIRGmqZ48zgf1lEqJd8ZySxmZ1NQFCT4ftGbC1Hw7pEJZf7mI2UIBPAxTDZmqKtIb1OnkhBmwQGYW19LYDN91O5uiM3V1FxWDmjJdMvKPo2eVKjdoGsS/XNBQCfTIjJrO4oUUJBgUBgeQdX38j+4H+6d1RUvDE8Y82VAJCmrt4ktpa2/Fp2phKg/lOyVl8Ta87qEaxmw68D0zaWlDm6n3n+84/cHGl7ycr6KQz4Pxrc6c9zRotUp7INDl/CjSmqWr+hxye/ia1FIjTyEw6mBf5HI9ZLvjOS3CQbSUE35F/vjmi76lApOKR4JNHOplRn+t6GybZFJBnjCchv4WygUHjfV+MA2hugfdCBHYGoOKwDUjddDwBqWcuKaNgDAJmfXOKVC0J5ri9qIQixhrXAU0pAiFPF70QHY3UGpm5sAoBRWb+KWjJJJC5mCI+xOT9vEFtIW3gqKwLIH6/NXtIktpbj0UO/53y1rOXAltpRD3NGS3okbS26abFbADsNoIoUVc2yuYundfUObX/BGS2ZB229U1niXxJr4S0SJ89he/c9DPwtAHkYMbizEovwjyX2BzCcgMRkkxFqSjQQkAcAvJl9o+sGMTRYl6gKAfS36/jD4RxXybqfAAgAQtCBHYEohQTQazQyBz2z4KvofOGb9DK9jU1hBPJJVy1nBQApDbLeANCiE97uaKxOd/2ePQDg4VVdrnn1xpoxAgPhz5dmvlcrtpbWzFk8Xc+AH5OsrAtrrFEkeGnme3aXX3sBgGQl63o30q1UrWbD3lMyV7/b4M4YsK+p32vHOo4zWoo4o+W+LhQDeAlA2FpX9nyxhUiEjtOvSxcg22M1G56WnNWToyHFv5CCwqUSPhFbS1sOvaUaz7P4imfoLgC3iaUjwc5MAQCbnt8WrjE5o6WP068bG8iz6NiOQMQdVs5oIdvrh6kZwv84f+bSaBXnHUVAkmU8+TxK9mKSRDubCwDpdfJvOzrWy7P+cxhA/ZbaUc0dFhZHcEaLDCCj/FQevbIiJ4nNk3yxAJYdmrGuTmwtJ4PVbNiap7O+5OHVU+rd6YsjbS9XV3pLkrL+t+31w67hjJZBbV8POqm/AXgSXSRxJUNT8YBG5rBazYaYv8mRODZqWcsArdwenXyQzoBJT5IbZX1btEKZ2mgvF1vOPzDpVbnlikUASHmu90aYbKIlQqY2yLsB8OWVK94Mx3hzF09TamT2LwG0AOSCju4IRGOFtRdAujl8+qg5j/Up/gcpKPWztCvHr8LP0iHBWnP7T3jwyXEAXawW66l5y84FoM3THdwttpa2/FI2JQ0A6lyZcVOaaETmb8YsbVnpqvJJl3NGS0TjoefPXEqbPKkXAGhkif+jOYunt00YLA7+26Ftqnhh0tPPD6hx5mQNSt+wU2wtEqEzd/E0IlAmv1fSjlSxtcQRRTKepOla2Ki0Nm0n82U86ccIuCj/evcvImsZD2BDuJzmQ82FHzr9CX2HpK/7t9Vs+KajOwIRd1gHp/1xOwAkKhp/jrStI2iczCkOndAse6i5MVo2YxGHjr/craI8TLawdD7K01mJXtEwNhxjxQvN3qRzAGBw+vqNYms5CuMB7PnmrofDGm8USebPXMpXteRNBBgewLtnzTNHNL7UajbUZmtLb+eprF9pc4+2N7AlgXxEGoakxNhnv63vBQCwr7GvaFuOEh1nmfXCZA+vRrmjICYz3WMRr1y4mYK6AHwhtpbWVL6ufh3ALAo6j3mk+SsxtViXqPQCoWNtif6w7NhxRsuQzbWjDJma8jVf3fno4+EYM+IOq92XOCVFVes/rdv3eyNtCwBg0mep3Uy6zsE8GxV7MYzOwfKUYEe4xktV19jtPr321Kfmy8I1ZqyzqWaMGqCVcsYXU3Fiz3wwgVGyrsnp6qpwrZ5HDavZcEjBuOci4HCvjHQM6ZqHbvqwd/K21ZtrR4/kjJZJrXSsUbFOmqGprEYnT1wJxAzTaQBWbjBdF3dzRuJvPLy6AABqXVliZZHHFdYlKjWhuNKm5ytgstnF1vMXJv2gzGr5DXYd33SowPuI2HKSmtiJDCXEqRE6nGs0Z/H0BALhPYA0VDtzzw2HPiDCDitntMgO2vqk2r2JS6OYkXoWABCQ76JkLzYx6VkZT7I0LiZsYRFbakctFShLDjX37EqlgsYC5LdYy6jeWDNmnIdXq/qmbK0SW0sonN3983e66Q5U724cWATgCUQ4hnRP48AzAewG8M7IR99IO/K8X1A4BMr+2pmdVQBw8+pLAdKvd/I2qZRVnNMneesYAMjSltWIrSUeyC9V3Cr3M4ThETs+gUmvB/AZoajxKIUR3Ay3R2xJSTZZPwDIrlK82tGxyh35yyiYgcnKutusZkN9x9UFiPQK6ykAEn2CMmoTpUnvf9jPUheAzdGyGYvYEv19ASgpaDhjLw8E/+0Scay3LrpmEIDu3fV7YitIH8DayuI+ALCpZtRzYmsJhfkzl9LDju6LA+GjYACq1isafuKM397PGS0jOKMlrNcmq9ngBDCNQMhOVdduPFKlwE/l3jpXZkxVf4gEm2pGn82Apz2TdoYlmUJCPFLVtZMA4JTM1Z1+3nYYk76IoeQpAEh0yG7oaIvycEBNiUVeubCbgvYgIJel3eY8cOKzIg8FnQBgN0y2Ds0rzmgp2lA9dkyf5K1bNj16TVgrMkTUYR2a/vt9AEWCoik69VdNelmCnc1x6Pi9MNliakUs2jh0wsUAUJ7rlYdrzFMyV9cBwKisXy8L15ixTKm9+2QA6Jm0q0Pt5CLEOAB1Dp8+jhNoyHcAXAB4AipQwAOQJwGsV7HOljPMz+3gjJZrOaMlJxzWrGbDhpFZq/67q2Fwt28PXDodAAh4hYzxjunMFQI4o4WpceZMEsBaFsx+OzqhWRIRY13V+HICwc0SPuYSQWOQYgp6JE5e/MRKk74YwEqFj8kMPuMXUc1fCI8mjhMYGBzajvUK4IwWLYB3AFK2u3HQxPCo+5uIOqwVLd2GZmnL7FsfmxatO8FRrEBUSTbZk1GyF7OkNMiCcaZkWbjGzNUd2sUQP210p2ae+Oj458/akdkAvMsPnfcfsbW0JUlZ/69MTflhq9kQtzdmwW34SQAeomDG//nYVckAsgBcxen3lZbZC/IBLAFQfsqjbzafOW/eMs5oOZMzWtSh2lxXNXEqgFU8lb1ZeN+XP1IwCX5BPgKduKxVz6Qd5wPIA/C+2FokOo5fUORSMIdiLUwpRikBjrR7pKImVjbM144C8AEBOeJAU4jtQAOASV9EKH5iBUK0LUxhR1ahB6Wt/wVALwDXWs2GsJfAjJjDyhktuhpnTnZVS7djFu0ONzxDzwMgAOjS5awAQO1mMgHU5c10WcM15vyZS30Cle3b2zRA9HibKFEEYIPVbIip93vmvHn5TZ5UXX7igVKxtXQUq9mwpnWpE6vZUG01G95bds99fdy8JgHAUCXrfiBB0ezb29hvEoAfANpw+tMv1E6e98yrnNEykDNaTroJgdVs4AsS960AIOepPJiARYBYWH2JEGqZ80kF48bQ9N9jJ4ZPImQSFY3DExVNXaoedsiYbGu8CroIAASCKzraQCdU6l/SPJTYzP4ugOoAeAD4CUisVCYpJiAKACCBTlTFoQzS+4HPJm+tO2XE0PTfN1vNhojsqkcy23sCAl8CP0bQxj9wq4TbANRr73F06XJWAOBn6SmMgP0RuCM5AKAw/MPGFnMWT0+QkX+NLdDv+w4wiC3nH+xpHDgCAP6omjBPbC2RJLh6vCX48xRntGgAnJqkbLjU4Uu4ssaZczOAmxnCVxuefdzu9OtePWjr/Z7VbDhqWRbOaMnN0h7+oqql58ijvMwjNr48wgpntCgYMiw3S1u25ss7H7OJrUei41DKFHD6vTF1Ex3LKL3MCgA3spREvzqGSa8C8O9UyG9s0fDVdWn+qQWlyiM3xyViOdCtadT7JyXbZASBxT4vQrgOckaLHlC9CdA9GnlLcZgl/kXEHNYh6ese3VY3TNDJ7asiZaM1/GOJmVqB1TQk+7/RRsNgjCMwdGhzorA3Jczj9kraoS1zFAwN87Axx66GQeP9VE6yNOWxWn/VAyAWtUWMYOLU98GfGT3v/6KbX1CcmaKqvfqgrfcEp1/3bwAv9Hvw4z39UzfXldsLnqpy5tkZwp+qYl3dAN2VVS15slMyV3+3qWbU7zyVmYK9rQUASzpppYCzBMomVjgKnhBbiETHCYTD6JkDtt5duotje3CpBI/azaA5wd89EQhby9ETUfqmqjhdJf9U7WZSATyjdbIPaq9zHOn2GRPXGv6xxNOTBHaSXeuvS2iR/RvAilCc6ILEfd8dai7MBci49+c8H7Eb44iFBByw9c7N0pZXbHnsqqi0GWMFchYApDTKnomGvVjG/3hissLHMHIf+T7cY2vkjkMuv5Y9a545I9xjxxJ7Ggf2BYDVFWdELaTlZMnRll6XoamojbVQhWiz76kLD1vNhjfXP3L9qZMLvlYCGA3gYY3ModhUM2ZclTPPAuBXgTKPO/26WQDdCpABn97xlIGn8uUAcSOQ9OAB8K6Y7yVSZGnK7mPAN0EKk+osdAOAFl/iLrGFxAt1aT4dADh0wuioGTXpL8orU1hkfpJSl+qbA5PtXphs0WpNf3KY9HmsQD4AsKcxhR8Ck+2pUJzVM+fNm3mouefYYRm/r7SaDWsjoPQvIuKwckZLlt2blFPu4Dpcz+tk8cqFyyloNbp4OSsAkPGkDwAkONiwdxfbUjvqMwDY3Tiok9diFcYCsFrNhkqxlbRm8MNLNVUtuYkZmkrpC6sV82cu9VnNhnVWs+GJDabreozKWpkB4D0ANBCjSgUA31jNhgPAPxK+OtTbOpa59EVjar07vWhg+sZyq9kQW1+WEiExNP338QDAJe5tEllK3JDYzG4CgNR6WUWkbVmXqLQuc8JSAJ8xlGxrSvIPTbvN+XKk7bYX6xJVglsp/EZBNQTkgvzr3SH9bjijJW1P48DH5YxnT37CwYjHzkXEYdXJbecE/xuVu3rrEpWSUDKlMZlvhskmRMNmLGPX8acCgE9G90Rg+CM14zptHOvcxdNIosJ2YQ/9rhaxtbSl2Zs0UgDLbKsbMV9sLbHMh3OfrQWwAEBwFZV4AFLS+pi2CV+djXVVE872CUr4eflDYmuRCA8aecs4AOifuqXL52mcLPrmgKOq9DKqiBoy6fMzq+X71W7mSj9LFwGYkH6r88+I2gyRtDrZ5yoP06060/csTLaQSiPOXTyNaOX2/wBI8QnKS+bPfC/i35cRcVgLEvffp5Y5+D7JWzdHYvy25JUpRsn9hACQimIDcKuECwRCUZ7rtYZ77FFZK8sC//56TbjHjhV+r5zYo9mbzCYommOuK5CM+I7Utos5bbFGV1hFPQFXAji0o2GoqD3KJcLHbxWnVwBUOGzvvk5sLXFEMwUVnGq+T6QMUFOiAcAmlZtoKrK9z8keap4Nk80bKXsdwqSfpWthz3CphMVZN7keC3WYenf6Cy2+hCk99LvetpoNUXHMw+6wckYL2ds4ICVVVbf1h3uNHatCe5LIeHImACGlUbYoGvZinZQGWRMlOBSJdm8f326uV7FOd4UjP2wNCWKNKmfeSADYUjvqdbG1tKVAv++2NHW1w2o2NIitJR7o7Kuox+LWRdf0JxCmpKmrllvNhi6/69SJyAdI+Td3PRybzlAsYrIJPAsCivPD3unKpJfVvqJZTUC+BVBKQIbnzHbdHVYbYaR8kfoaCvoKgB/UbuamUMfhjJacVeVnXJOqqjk8KG3jbWGUeFwiscLaxysoU8ocXNSSVbxyYRrP0I0w2aRtEgCsQDhWIBHLIHfzmi1lDi7SbX1FQy1rOR2gTgAxtZ3DGS3MoeZCbaKiabPYWiRim31NfWdSMGRE5hqp9monIk1dPU6vbHCKrSOuMOmLWB5Qu5kMAD+FzWk16XMA/JxeJx9bn+Lb2ZDsHweTbV9Yxo4A/GOJmem1ssUeJaV+ll4Jky2kBcVAW2v6BkBU9e6MM+bPXBq15N+wOx1Z2rIjbTujUn+19E1Vf4WP6V6f6pecVQCH31CpKGgvj0KIZID5AYB22hjWFFXdtPyEAy6r2RATbfNa0d8vKDQHbH0Wiy1EIrbZ1TB4FEC3LrzxjS/E1iIRPniB7ZajLVWKrSPOKCYgR4rih6VBSPki9T0CodsADKeg01PnOPunzG2J3RsJk17OCuQTuY/wdWn+K2QPNYe8Q7encYAFIGerWOdbVrMhEnkyxyTsDmuC3HZjiqrWfyQbN9LkH1aeAgAyP3k2GvZiHUowkYCwDSl+RaRsDE7/I40hQve5i6eF3CIzVuGMFk2Fo5tSznpLxNbSlhRV7dnB/64WVYhETNP3gU96ABgLEKkVayeCM1rYRk8as7tx4Edia4kzSiioFwBooEtrScgjmfSs8GjiEzkV8nleBZUBOIWYmpeGRWUEcar5pQAmEJDr82a6Qq7hyxktV+9sGHw2QOHm1ddFu511WB1WzmiR7Wvqm6iSOaPW3QrA2QCqUxplP0XRZsySW67QAIC2hf0kUjYIsEmgLHbUD+mMq6ynUDDs/qZ+b4stpC1Z2vKbEhRNAv6u1CAh8T8MTl//GgAUJO6TVlc7F9kAZAKVHRRbSFwRqC16mlcm8F4FtQMIqVZo+SJ1Hwr6A0PJAz45/aoqy1cIky3mywvWvqIxa1zsJc0JvAUmW8g3sYMeer8fgAWBMoEEAIl6O+twr7COpGA1FY6Ct8I87lGxLlHJeYZe4FEI66RyVgFYgfQGgEQ7+0ekbGypHfkdAOxtGpAdKRtika6uPDf434gWQA6FfY39VFqZY0OwZamExP/AGS1kW92wAVnasupf7p+7W2w9EuFjTHbJqQDQJ3lbl24YEgrE1LwGBPcqvUwygDHtPb/xRe2/0mtlOwBMBHCd4gH7BdwMd23YhYYbk35YWp1srlsp7GlI8V8S6jC3LLx2DMv4/2TgF/BXqUD4EOV21mF1WAsS910PUAog7AXrj4baxVzMCkRVn+qXVpyCtGj4yQKhTTDZmiJo5gAAKFl37wjaEIUkZcNV6eoq77H60YsFZ7TkeAVldpUz7wOxtUjENIOc/oTcqpa8R8UWIhF2BgNAd/2eerGFxCMKH7MQgRJXc076JJOegUl/X1IT+xEAW1me9wqYbEsiJjKMlL6pKqSgXxKQepWHmcDNcIfUdZQzWjK+t170nsuvIZO5b2YBOB0ilQoM9wrrv3J1pS6r2RCVP6jMGnl/CiqoXYw5GvbiAUowukUrkEjaGJm5qlxGfBiQuvGqSNqJNpzRQvbb+igZwv8itpa2dNfvuRAAGMJL8asSxyRZVXsrQP0AIhYSJCEOayuLGwFgVfmkqCwIdTpMNoddx/9CCS4/9JZqyIkOP/SWqqddxx8C8BQB+VjhYwq63eD+LApKO45JzyY1ydZQgm5+ll4Ck60mlGGufmVODkB/ECib4+MVxQtvfONDMUsFhs1h5YwW3aHmQq2XV3wYrjFPgrMJyNrk21uqomgzptG2MD6Vm/k6kjY+ueNpQSVz1h5q7tnZagH2FKgsqdqZG3Nf9npF4w0KxoNze3y0VWwtErHJ3MXTWEqZ63ro99TE2g6BRFgoAFC/7fErY64DX7zQmOx/kVAgs1o+47gHmvQzu5UqNmodTF5dqu81AFfCZLNHR2VYeCLRzqbXpvvfkD3UHJJjee0rtyZZbT13MkQYDOCiA+bzVoVZY7sJ5wrrqQCR1bqyo7Jl6XhWdyWAU1xKPqQ7h06JSZ9GQFLkfrIp0qYcPv36eneGLtJ2oknPpB3/AgAV6/xdbC1t2V4/jFXJnFvnz1wa0raOROfnu4MXj2/ypLKJiiap418nJEd3aJJe2eAWW0c8k3+9+2cC8p3Kw0yHSf/gUWuymvRTASxiQBII4Emrl/8HJlt85A2Y9EX8o4kfAzACWJR5s3NWKMNwRouipGzKB6X27gkTc//7otVsWBZeoaERNoe1h373LQS8D0DkvXCTvkjbwrwDACoPc07Yu1fEKTXpvskA4NDyUVhxpgcAoWegiHDnQCNzTlexTpzFfbldbC2t4YwWnU9Q9G/2JkstNiWOiU9QXgHAubl29DNia5EIPx6/KjNdXR2V7pGdnOUAUinoozh6I4FBNJCLAwLCIsqZ8CFj0hdR0BUMxSVB/SGV25q7eJpcwbg/AcgUgJn19q2v3BlmpSETNofV7k08ldPvs1vNhmjcARYTEAYAgv8WR8FmzEMJnQQA9an+8kjbGpP9Sy7AJAiU7R5pW9FiW/1QyBjf7/NnLo2pL4Uh6esuBsBq5c1S/3CJozJ38XStnPFOVzDuZVazwSG2HonwwhktpN6dyexr6ieVKusgFFRDQUFAGAqqwP/6DyWUgAadvqhnwoeESa8C8AQAJQEBAAHAuPYOwxktZG9T/01eQXWeRmZ/0Go2vBFmpR0iLA4rZ7Rk17qyNXXOrFfCMd5JUALgiFMRHxMqCmTWKBopqEfuI79F2laLL2EFAGyuHZUfaVvRgDNaEgUq6+fw6b8XW0tbFKznagIBp3f7brPYWiRik531g573CQptYdIuqeNf5yQZgA5AqdhC4h0CsgKA54jTCmD9Pw4w2dZ4FXQSgAcATArWcY1ZyhepZ7uVQi2A0wkID8BPQLxop1/EGS0EwLM76ocOGJqxdsWOJy5/MgJyO0S4VlhnA4Ddp49OeSmTbY1dy28RQAXEwYSKIn0JyJ6c2a6ItxTdWjdiBQActnfPjLStaDA847fLAJBUVU3E43/by/qqsYKc9e59edZ/DoutRSL24IyWoj1NA28AKHY2DLky2t1nJCLPqXnLJgDAwNSNYkuJf0y2NQTkNALyBgDBoxDM1iWqf3RtVN1nLyGm5qdj2rcw6ZNg0i/MrVC8DkBVn+K7AcAEBEtOtVd7lqbs3wDuBPDq5poxk8IvuON02GHljJYiAuEhBFqevRati6XAUh8vgy+mJ1SU8cqFcS6VYIuSuYMAoFc2nLA8SDxACL2UQMDYnJ83iK2lNZzRwlKwo728Kprd4yTii2IArFjdZyQiT4tP1xsAMrXlUkWccGCyrYHJNrNJ739M6WWGJzeyP8Kk/ysfo6SE9CwpIS+WlJAeYso8FhUL1fN4hloB3ADgheZEPj11jvPN4Ptqt6N94QsPLa5y5s1NV1f9CGBOrDanCccKazEFYQIXS0TtYqlvlpXK/eRQNGzFA/UvadRyH0l26PioTDSr2eBIUDQJ+QkHL4qGvUizoXoszxJ+18uz/hPx+N/2MD53+TkAEtLVlVI5K4mjkqKq2RJYMIijmDuJdrG+erwHAH4qPXe52Fo6E0l3tDxmS/R/pm+WjQXwf61e0gOYCSC2HFaTPpeaEr/IqVTc41EKMoHQMTDZ7sy4xdkU6pCc0TJ9U82YG3J11p1jc34+z2o2xGzX0HA4rCUAoQhcMaN5sUwE0BwlWzFPaoO8OwFBar1sUbRsEtB9B2y94z7BgzNaGICM8VP5r2JraYuXV14CACOzVm0RW4tEbNI/dUsGQJCpKV8BEbrPSESFAgAuAFJ93TCjb5ZdCuATCvpszauae4NPbwKgKy6mMbGzZV2iYqteUy+loDsJyBSfTDDVZPjTmUeaO9SC/ZIXjXcD9G0AK8od3PBYL5sYDod1MwLLqz8iihfLFg0/vEXDd4r4yTDRFwAYSnZGy2CzN/mPFl9CWrTsRYribt+fCUCfoy3dJbaWtqyrmignECrljE9yQiSOyqryyXoAkDH8dZKz2jnprt9j0Csa3LG6VRvXmGwCgGtcaqE2tV5mtr2gPa24mArFxTQ2ftcmff9uhxW/Z1UrrnSphRoAA+UP2h8NtdXqESaZn7t4U83oZ9LV1bUAzo9ShacO0WGH9bRu340HgH4pm3+N5sWS5QkrMIjpu4Fo0pDsvwQAXCphb7RsKll3KUC7zX79Bk20bEYChzfxPAAYkvFHLG67j6Ngfp0/c2lsXDwlYpERAKpWP3izFCLVSbF7E/WJyiapw1WkMNlcten+0wFU65tlS2HSdyspIXNKSohJLEnWJaoE2wva/wDYzAqke5Pe/1BNhr8XTLb9HR2bM1pG7W/q97ac8ZaOzFo53mo2xEUXrw47rA5vYj8AyI5yMLjKwzgSHOzaaNqMZVge/bxywa822qMWJjEq69c0gDAy4o/rrOT11ePUAK1TMJ6fxNbSmlmvzRwJoFtewsEOX6AkOi9JynpDmrq6QmwdEpGjzpXFHLb3iLmSe52Jguvc21mBnAFAyxO6qtdu1eyUetlZoogx6cflVMj365tl030y4XsA/ZLuaHmCm+Hu8MLF7NdvOJ8h/H8B1Lj8uqIFs9+Om++XDjusf1SP5wHg58MGS8fltAsphrUV+maZR+FjohqDWefKXAYAaypPTYim3QhQBJA1sbaKWevKnAoAA1I3x1TnLYnY4exnnkq0eZJTuMS9cbFCItF+OKNFDSADUg3WyGOybfPKhWcYivycSnn/wVs1w2HSj4+WeesSVTffEwnvAlgl9xF3eY73QfmD9vNhsoWlBX3hfV/2WF1++idauV2rldvPspoNcXWjG44Y1u4A3ACitsJqXaIiAqEpDcn+ntGyGdMEynH0ARDVGMydDUN+B4AGd0Z2NO2Gk5sXXtsLQJ+CxH0xV+N0U01RKkAduxoGfSy2FonYZGfDkEEUDDZUj31BbC0SkeHMgi/HAsCwjLVxHXoVLyh8jABACHaMUlDQryoWqp+zLlFFrg25SV9ETYn/yS2TH5T5yVUU9EUC0j93litsxfs5oyWHp/IfW3wJLWNzVly0/fHL94Vr7Ggh6+gAXOLe8xrdqc4tj10VtdUpnYPRMpQAgNTVBYBDw1+hc7L6FjWfqo2u6UoCwZOmrhkN4LXomg4PFY78KQDQK2lnzCVcARgPkLW/3D834o0gJOKWEQBAwcRU/WCJ8FHtzCkAgAR580GxtXQRSgiIh4IqKAHxyakqp1Jxp0DoZJj0/weTLbTQMZNeXZfqG+xW0YnZlXIbK5Acp5ofS4HRGjAJBITIeNAmPf948h0tD4fzDd266OqeOvmUXx2+xAQKZtLCG9+IyzbfHXZY7V59kl7ZGNXSRmn1ci0ApDTKVkXTbkxi0hdpwbwNABoXcxFM+qJoNVOwmg3CqMcWkyRlw+Ro2IsEm2tHZwHgfyw9902xtbTmtkVX5RJcOoTT7/sPYBBbjkSM0itpx/WH7ZzTzWviamtP4uTZUjuKAMCv5WdKNVijgcm2Bib9JK+Cnrezn+uK5kR+7sBtmhEpjbJrAPzonJew26MQPky2yTwASoLHMwAymvT+wU6NcGZancym8DGpHoUwzC+jp2icjJuApKTVy1tbokoP0+BnqfLIEwSET7bJwppMzhktCSmq01e4eXX2kPQ/rvrqzkfj0lkFwuCw1rszFPXujE/CIaYdJAb/lWJYgRkk0N0GBIQg0LghatUaXH7N+kZ3akq07EWAsQA2W80Gp9hCWnPQ1nsyBQMuca9Uf1XimNS6MvKytOUNJfffHlPx1xJhpQCAACCmmpp0aky2NUpgzVDgPgDAJHwFk/4pP0vnKrzkaY1L9ggASkGp98kEQQFCCYg8ySZD0t+9Jh0yP6l2q4QWr4KuUHrJFpdKaKpP9bEJdvZHfbNsP/tws5c16YsA/IRA46Ww1rLnjBYVgK8a3GnZg9PWz/nqzkffC9fYYtAhh5UzWpIR6AgR1a2K8hzv8NwKBaoyvd2yomk4xihfpH44G/LrCEAJCA8RutzYvUkbAFzLGS0k3moEzl08TSlnLp6Yl3BoeaytYm6rH94DgLDisCFqjSAk4gvOaNECaUlNnrRXxdYiETn6pvz5r3JHvnfrY9N8Ymvp0phsbhkwz/94YhIFvTe4QEQEBs0utfCVxsWu88qF6qosH1F4yeqsakUV+3Az1bcaQg0g73/HXQOTfhICi00l4dohnbt4mjo/YfSfpfYehQC56uu7TEvDMa6YdMhhnZT/7eSfSqdieMYaWTS/8JUeogQAQklYMufiEpP+khzIH3FqBDehuEbjYnshjJP9ZElS1lc3eVITxuX8mA8Y4qoO5O7GgeN8gpLJ0R6OyfqrALbES308CVEYgkDirBS/2ompc2UoNLKWerF1dEVKSsg9AIYVF9Mrjjwn48nXAOYCkBMQn9pDzjnyvasAkB+KocD5Yfvu5owWJkl51qdNntSeo7J+fefj2+fFvbMKdLBKQI0zKx8AEpVNUStWDwBp9XIbAGTWyDdF026s4Hkq4VYAHxKQ33xymq+51/EpTLano+2sAsCwjLVKANDKHZOibbuj7GoY3B8AVldMekVsLa2Zu3iaWs54TuuZtENKKpQ4JqOzf7kNAAan/xGLCYMSYaLOlcVUO3N/EVtHF4VFwA/9m8D37CQADwOYJMb37vHgjBYC4KUmT+o5ycq6eR/fPu9asTWFiw6tsG6tOwUAUHL47GgXXD9S9zM+Y1gDMSvFaO+KqElf5FTxr2m87BA/S1fKeDIl6Y4WUWMvyxzcdwAeWll+RhxmstMigFQgxuobbq0bUeQTlCRdXR23wfESkafMXpCjkTk83RP37hFbi0Rk4IwWFoFFu0Oc0VIktd6NLsXF9OmjvhDmFdFwMjzjt5KNNWMnAniu0ZN2n9h6wklHk666A2iymg1NYdBy0lRn+M7MrJHjcJ6H7RZNw+0lUB81vSrTO5XlyYj0OrkXwBgKOgYACAhg0td55YKcZ0HVbmYHgBaHls/jWerXN8vWAGhpTPL3ZP1QJ0JWrHGzMgpKKaGPwtQseqLQ3sYBfwKAy6+L6Y/iaCQr6y/RKxv3x1rCygFbn0EAsKbyNCk2UeKYlDu4FAA/xVrDC4nwkZ+w/+pSeyEL0FMB8hNntEySnFaJY9Hr/s+NPmHsxIGpG3duqx9+T7zllZyIDjms3RP3XODwJQrhEnOyKD3EBwCUoDrato+GdYlKLvNjTF65Ug+gr13Hn8cIGKAFCwApWdV/7Sg4ATQBQWcVoAAOulVUSSjUAFwAEmR+kqXwEjkC3U20SU2sLng8gufycj8ZhUBmoahYzQZnz/u/aEhV1U4QW0t7OOXRt/IaPZny/MQDf4itpS0M8U8UqOyQ1WwoE1uLRGxS9PhrWqBbf4B8IbYWichR7cwOlgwkBIEs8mLE6MpeZ6SkhGQB+BrAM8XF9FOx9RwPzmi5AVA+zRLf54VJuy7/9u6HOpWzCnTQYa1zZyiSlfVR63B1hCSbTAZAyD+s7Ido/vGa9FoAvRuT/Gf65PSc9FpZLQHpk08UfRlK/vpdapyM3akRBAr6MQHZ3qT3N9j0/L6CUuXvAEYTkNYlLOYm3un4x3tQtTF7aImK5JUpTpfx5BtEoPRFR0lV1io9vOrUeNqyqnNljgKALbWjFoitpTVzF08jOvnZF2RqKnfHWuUCidhhYNqmKytb8plRWb+2SPOk8+LhNWzwv37E2HW/i9AIwIZAN8+Y5ZpXbnsBOOsOAvoDT+VXzJ+5tFNWlAjZYeWMFgZI0tm9Se+EU9AJCcR/XklBGQC/EpP+GQAby3O83ZUesjOtXr6bZ6itIsfb0u0G94m3zNvGk5r0pCbdV+BV0HMzq2WM3M9wHoUwgRIMVYFhASC5SQYKCkpwiFBs9Sjp+qYkH01ulL2r8jB/sg83NyS0MpEU/AnS7hIW3Aw3BfBTJEpfdBTOaCkCctQIJPDFzZaVknWd5uFVXoDEVOLeyvLJPZu9yQyn3/ez2FokYpfdDQM5AEhR1f0oshSJCMIQ/0iByn4D8C2Akni4tnYmioupB0BMN8bhjJYpBGfOyU840Dw0Y920l2a+5xVbU6ToyAprFgKLgdFuF1dMQdngFrkMwP0AkFvxdyIfKxB0K1NCeDTRy1BST0GbW7RCrsxP9qo8zG6eoc6GFH9/nZ0pU4M9n4LKAEB4LHEfC5KWUStPbmXPKfOT0uZE/jAl+FLtZlY71fzBqizf3h7XeJqBQG01dXveQagB27EZ6D0ZIEeqTcTNllWGpvIagTItqx+8xSO2ltY0uNPHAMCftSOl+qsSx6TUXpgDoGaZ9aKNYmuRiAy3LLx2kkAv6T4ya+WqT243Hz35R6JLU3jflxMA+ecUzJ8qmXvySzPf69Tlz0J2WM8o+PrcHw+dh6LsFaoob0mVEBA3BZUD8BGQK30yeqg60zsuwc669c0yj5+l6Q0p/rN1DqZG42JdAoN0gUE6yyMBwAhGQEpqvSyVoYG4UAICCgoEOmh97JPRAzUZPpnCS75Or5PvYB9uFlp7sBoAPaL5jmOYnkk7Buxr6g+A8gCJiy0rzmhREnDqHkm7vxdbS1t0ctsUhy+xGSDbxdYiEbsw4EcKYDd0tqQKib9ZVTFpFADoFU3SzauIlJSQ+wBMKy6mA8XW0pobX7/+Chlz9ntEQKmfyqf89957OrWzCnTAYT1kK0wGADnj2xw2NSdDsCsEASlGcGtcDiAP+GtrVwYgA3jhyGMWf/dyBQCCQFxofqniVIaS7wHICIiPFXDhkfFyo/BWOgN2r74oUdHgb/YmP4z42bIaTsHI9jf1e1tsIW3Ryh0XZ2gqm3++705ebC0SscmcxdOTQS4dMDTt9yopfrXzYvOkTACw542bX18ltpYuzkEAa0pKCFtcTGPiuswZLX0Ycv4rCQqbf3zOT5e9OvvtLtFEKWSHdW/TADkA/Fp+5m/hk3OShGFrPBgXWgKT/nTEWFxovMAZLb2A3G5yxvOw1Tw1bras0tWV59S6soEYC10ItDrOVRYm7bSIrUUidllXNWGYQFkwhP9BbC0SkWHO4unJBJdNYggvra6KTHEx/RDAh2LrOMJpT/+7F9B7uUBZv8ObOOjV2W93mTrMITusBEIPCqbSaja4wiko6sRmXGicIDwIMNQnKDeLraQ9pKjqZvBU5t9ourZSbC1tKAKA/U39opvIKBFXVLXk9QeAjTVjY+ZLVCK8OHwJt1IwiuJu31UCF4gtRwJASQkhxcVU1BCcG1+/vr/DO3aTjPh4P5UX7X/6/C7jrAIdaM1akLj/glydtW0FJokuQr8HP7odIFcDlAD4KFAtIPbhjBayr6mvUs54o78zcAIyNeUXA9QPQOpwJXFMtPLmUwFaC0Cq09tJ+bXszGwC3qOV26XmISJTUkK0JSWkAsCdYurgjJakH6wXfNDoTmVOy//u/6xmwxYx9YhByA5rlTNHIIR2Ke9eAjhr3ryLOaNlhcuv+3fgGQL8XR0gHsjnqTyt2pn7sdhC2qKSuS7O1R3yWM0G0TuYScQuCfLmqYX63ZASrjovfkFxJgX740sz37OJraWrU1xMWwB8AUC0RNg5i6enE/DfUTD9/FQ+dfFNi14XS4uYhBQSwBktckCbVGbvvjzcgiRiE85oKc7UlL9d7RxYQCBUUzAvAmQ2YrCRwfHombTzX/ua+kHJun4XW0trOKNFAfRQZWkrpM5FEseEM1rUQK6iIHH/f8XWIhEZZrx6y0TgnEK9omGh2FokAhQX01vEsj3qscUKnXzYdoCkM4S/9MDT53XZ2PWQVlgVjPvC4Lkhr9BKxD6c0UKuX3Dj7T3v/2I1gBV1rkzN2JyfP5/S/fO+VrPhDgCTADwMIC6aBQCATt58lYJxYwr3xVaxtbRhOMAoq1ryYrr9n4ToDAEIc6i552diC5GIDC0+3Y0AMD7vx5i6qe7qlJQQxYmPCi+c0cLWOHOWHrD1TR+X+9NbB54+75Noa4gl2r3CyhktRQSK9wCAQLibM1q+jRdnReLk4IwWAuA0OeN56qfSc0erWKfDD8UcnsreeH/O838l2QU/97j67LfWDYda5to0f+bSmGoYUJi0c/r+pn6QM57VYmuRiF3ydNazyxwcZIx3g9haJCLDuqqJKSzxHXh11ju/iq1FIkBJCbkXwOMlJURbXEyj0va0u/GbIjnjW+gTlIMA/N97t73472jYjWVCCQkopiAsANBAh6NixJnTInF0OKOlKF1d8WCiQjWk2ZuS6xOUFQNSNy0oTNp1f2eIpeKMltMA+SCHT/4fsbW0hSX8hamqav8G03VVYmuRiF2SlA1XNHlS6KT8bw8DF4otRyLMcEaLBkAxT+ULxNYi8Q9+A/AEAAUCIXARJbAwiFU+QckEEnHJ2kjbjAdCcVhLAOIHoIiXzkYSR4czWsiE3P+OEyh7zeqK07MBck6tK4cAFCzxzeep3Gi5+0G32DrDQaCKAV0WaCNLr+CMloWxsjMQWNEeIE9Q2L4VW4tEbLOrcSCvlbVsmD9zqZRw1QkZn/vjravKz1Dm6A5JzQJiiOJiuhLAymjY4owWGYD5FEzrkMtiSAuD7XdYrWbDmsL7vnyZp/I7CYRLD5rP7fK/xHiBM1rYIenrTtPKHbP/qBonB5SjV5afmRV4VXAHM/4BwM9TebXVbOgUzmqQYvw932WIrQtAT4Ck271JMdcqViJ2CCRcKXrZvIp5YmuRiAxVLTnnKBg3Tsn8bTlws9hyJFoRjGFVFRfT5kjZmLN4uj5bO35FZUu3YQD8gWelhcEjhFQlYFTWqu5rKk/D1B6fbAfODbcmiTDBGS3K7ol7JqVrquZsqxuuAXSDt9SO0gOAnPHUAliuVzZsLMou2bv80Hn1PGWWA5B30j+QEgS2cpSIsaoGQ9L/uGFL7UikqqqlJAuJYzIkfd3kLbWj2ERFo2jldSQiR2CnpX83AuHbl2a+Zxdbj8TflJQQAqABwOsA7oqEDc5oSUxRnfF7gzu9T8+kHS/ua+r/MYJdOGNlN1BsQnJYyx35ZQBQ7cxuCK8ciY7AGS0JiYrG03on77h7d8NAPaDvfbC5t/Jgc29o5fYqAB8pGPdvZxR8s3fB7LdbFc6/6sj5k9BJ/0CsZsMazmi5E8ArALkjlt5fozvlIjnjoU2eVJ3YWiRiF53cfiUAjMv9+SAwXWw5EuHnEgA9KBipAkSMUVxMaUkJuR9ARKrLcEZLJoDvG9xphYPS1j/yzV2PPBZ8KWa+p2KBkBzWUnthPQCsq5roCK8cifbAGS0ZAMYPSV9330FbrwwgOa/Zm8xsrBmDJGVDBXxYAGDlFO7z7a/f+GarJg8XH3W8eMz6bw89k3ZU72vqj55JO6oAg9hyAByJrS0sBCgAspwzWuKmRJhEdFlbeaqbIX6bgvFICRidjECSjfABBQOA3sYZLV9I14HYoriYvhSJcW9eOGNCsrJ4WaMnlQDk3G/uemRZJOx0BkJyWJWsO9HDK/1W81R/uAVJHJ1gqSkOwIQ+yVvnVrbkdQeSkwFge90wIV1TVdnsTX4SwMrBaes3fHnnY61Wv2PDORMbLnF/t31N/cEl7usmtpZWXAGAtOkYJn1RSfwPPJUNBfC7lHDVKbkhWHUHAIm1GHsJACUlRA6gAMD+4mIalr9BzmgZxJLzP1ewHtXp3b674a1bFkjO6nEIyWHtn7q5eEf9kJDOlTg5Lvn3fcwf1eP7A5hQkLhvVoI8vZ/dp1cCwEFbL09uQmltszd5HoCVemXjhjUP3diqrqjkoB6N36smbAeAtZXFO8TWcoT8hP1TS+09EKy8EVOxtRKxw5zF0/UElw1KVtVLTkwno/C+LwsB+SUAoQB4SNeBWGU2gJcBZAPocPnB055+YSrQ5z88lbco2ebhb92yYEuHFXZyQnI6KxzdSgXK9g23mK7M3MXT1N/sv2yIAHZCpqZ8mt07dBCCncSqWnJt3fV7a/Y29n+Wp7JfvIJq24r77hBElhx32L1JPgBw+BKjUvj5RPR+4LN0XijI7564d//B5t5vohPGDkuEhx31g++gYJhMTXmC2FokwsecxVdlpqonbql3ZQg8lV0CoDek60CsshzAdQCcHR3oshfvuavMPuZZFessd/OacZsfvfpQx+V1fkJyWKuduY0AmsIrpWsxZ/H09OWHzh3u8uuK9MqGC12+iwYLYAEATZ6U8l7JO/aV2wteavSkLfPw6gPL7rlP2gbsIL2St6ftbRyAPsnb0mJhFdrLq2YCYEvtPc6zmg0xs+orEVsE4pwH3A8AOxuGXMwZLa9KDk38wxktRMWe96aHV2lPy//uvrdufk1KtophiovpbgC7OzoOZ7RcDUw0p6ura0dn/3LGK7PelZzVkyQkh1XBuPV+Qe4Nt5jOzM0Lry38vXLi6Hp35nAV65ziEy4ZwFMZAFCnT7drQOqmzU2elEXW5l5f7H7yX1K3owhQkHAgb2/jAHRLOJArtpa5i6epGXLZbQJll+9/+nzJWZU4HsVA8G4WUKWrKxcFk/NqRNQk0XHudfMaAwP+3rdufu0ZscVInJiSElIAgCkupgdDOf+8503vAiOvAshPta6sC1+Z9a5UvqwdhOSwdtfvHdPkSUkLt5jOxE0LZ4zcVjei6LC9ez+G+E8T6CV9gi95vbxy/bDMtWu8vGrJ1roRH+996kKb1GYx8pQcPosP/iv6anWTJ+UpgbJZIzJXz4uF1V6JmKYEgAegSgLK1LqyBwIo44zffjkx779rVpdPWsdT2URIW8lxw/ULbnoQMDxOQD8SwD4rth6Jk+YXAKvQzrpynNFCMjXlb1U7R16Vp7NuLnNwBqvZ4DnxmRKtITSEZLehj7y71i/I07c9fkVhBDTFHZzRQs4q+HLKflvvcfua+hcAdAJACoIv2wH8NiJztV/O+D5eW1n8cSfrIBUXBLZVsQKBxgEeAKeJ+eXe6/4v/lCw7h5n5H+bMX/mUl4sHRLxQXD+FgMoUctaml1+7fUM8V8nUJk+WBJNAKi/d/L2x1Wsa9HXd5mk1dcYhTNaesoZz9Y0dQ2Ksku6vXDDh3Via5I4OUpKiAFAVXEx3XCy5wRbrS4EcF2W9vA3o7NWXjx/5tKYyKOIN0JyWDmj5UcAaqvZMC78kmIfzmiRndbtu4urndmTdtQPSwMwHkB68OUaACsHp//RlKqqXbbi8DlfWs0GqfyXyHBGy30AHgfAApQC5AGr2fC0SFpOAfAHgDusZsOLYmiQiH/mLJ6uX1c5/vsqZ15Rq7bKR2jSyBz1eQlWzWF7969dfu3O/IT9zf1Sttq31g/78bcHb24SQXKXhzNaEhAoV5XVM2nHhB+Nd+8UW5NE5JizeLp+R/3QP/c19csH8BgAk9VsEH2HL14JKSRAzngTaGCVqkvAGS3qouwVVzj92vO31I5SAyhacficYFciehAg3/dL2VLG6ff98v3Bi5cHJqS0zRtjlADwAlQNgDDEv1ksIfkJB146bOecFMwSsTRIxD8vzXzPFuze9hMAOUD5fimbP9vXNOBPn6DoppG3FNk8yXkuv+YqAJpSeyFK7YFNMc5oaUyQ25qzdYflexv7fUzBHuydvM3VQ7+nfpn1ouVWs0GKrQszz3wwgeESL15vbe7ZEyBnSs5q/FFSQpIADAWwtriYHnenlDNa9HLmou99gjJ/VNav7398+7xHoqGxMxPSCuu4Jxa0qGXOlh+Nd2VEQJPocEZL0pD0dVeyhJ++sWYMBchIAHICAQC2UzC/dNfv3tM/5c9Vr85++6S3BiTEhTNaiuSM50qfoLwVwKNWs8EUbQ3nPPNkwZ7GAdYBaZv+/OrOR4dE275E56N1uMDRwlyCTUdSR2atHKeWOcf/WnZWDQAuU1N+qkCZHrWubApA0+a0hiRlvStNXe3f19T/MwAHB6f9IWRqKw4vP3T+CqvZIHU5bAec0VKkZJ3PeHjN+DHZJV98OPfZi8TWJNF+SkrIJQA+BjCsuJhuPtZxV8y/q3BNZfGnABmolTfP3P74FW9HS2NnJiSHtd+DH1tVMufhTaZrJ0RAU9RodaHf2jNpZ6FWbr9+W90wlqfyfgAIS/yQMf4tHl71Q5b28JbRWSvXzJ+5NKTsQInYgTNavgLo+NO6fd9ryS2vNpz4jLDafgjAY8Mz1hR9/n9PSC02JUQn6NCmj8v56VSeskPXVhbbAHC5ukOTXX5NZoM7XQ5A1ea0+lRVtV+vbLIdsPX5GoD1lMxVsgRF8+4Vh89ZaTUbWqL+RmKU7sZviihICUAUAOUJ6ISD5nOl5Lg4pKSEZAAYDOD34mJ61F2IK+bfNXJPY//VTZ5U8FR2rtVs+CG6Kjsvocaw7gXwh9VsuDL8kiLHzQtnZGyuGdW3oiW/QC1znOf2ay6mIEfaYkLJuqBkPRubvUlfJSoafy/utmz9SzPfqxdZtkSYOXPeM+fuaRzw9dicnz99f87zl0TL7qjHFitqnDmHAGy2mg1nR8uuhERHCDq0GafmLTvD7tX33FhT5AbAdUs4YGj2JiXYPClqBJIZW1ObqSlnlKy7otReuAyAdVzOT1qGCBtXlk9eYzUbOlx8PdbhjJY0JeuayRL/405/wpGyZH4AD4sVPy8RWTijZTBAf1CynqTivGW3LLxp8Vtia+pMhOSw9jB+VUsILeep/KZYLKPCGS3palnLwOEZa6/b19RXUe3MTSIQBlAwrepvUgEAE3RWBUB4/fzCD++aP3OpSyTZElFk1GOLyxrdaaxPUORbzYaoZGxe/cqcl38tO+vWXJ318tUP3vJRNGxKSEQazmhhAGRMyv92SnVLTva2+uEUQHcuce/5da4M1uHTJ+B/HdqaHG2pCoTurnAUrABgLe72fbLbr165trJ4vdVsiMvrMGe0kNO7WW7e3Tjg6nIHNxSAIklZV2vzpCTTQONCH4BJsfi9KXFylJSQ0QjUYv3HZ3jdqzff+PPhc+YBpBnAWVIzmPDTboc1sI1Ofwue7oJIf3yc0ULO7v7ZqEPNhf131A9NAmi/bgkHL6luyVF4BdVf8Vgs8fl5Kv8ToDtHZq1K8/Cq5X/WjvwOQBqAHwDIIV1Euhyc0XIugK8BTLeaDUujYXPww+/tlTH+nAm5yxOlUlYSXQXOaGHkjCezuNuyqQdtvfT7mvorGPDdOf2+C6tacv1Ovy4ZgOKfZ9HqPJ1V6xWUm2ucOasVjPvwhLwf9Y3u1J831hRtiTWH9qqXb++2snzyxQj0m++rkrVQL69aIFD2NavZsP1EccYS8UNJCfkdQHNxMZ185LnhprcvtXv1H2nlzc1NnrRBVrOhVESJnZZQHNb7APrUkW10ndy2a1zuz0/8YL3w/UiUaxj7+Gvyipb8QgD9hmWsvbrelZ5Tai9kAfQFoG11aH2OtpRXyZz7Dtj6fgpg5+ndLHUJCtumYzkH0kWk68IZLQwDfrtWYU84vdt33ebPXBrRUiOc0XI9gDcAPG81G+6KpC0JiXiCM1qYTE153uD09efsahikPGzvoVPLWvplacvOrnDkezy8Og2BhYW/YAhfm6srVbf4dL83uNPXJSoaa0ZmrVZVtuQt31E/dHs0al0HQyXGZmnLnqhzZRT7BQUArE1TV78/Nufn96Vwss5JSQkZgoDDehAAOKPlWgBvaGSOvafnW85/Zda7e0QV2IkJcYUVPwFQABQseIaHjADYAeDdkVkrv/nkdnO7l8I5o0U7Ife/Z7r9mtF/VI/3A+iXrKw73eZN1guU/avIYIKiyW33Jv0KYOeQ9HWMXtG09dfyM7+0mg217bUp0bW56uW5b6wsP/P6Mdklcz+c++xLHRlr7uJpZJn1wmQPr84YlLZhSIqqdszK8skHBcpmpKqqJ9e7M0YFjhRvV0JCIh7hjBa2d/K27gWJ+ydvrhlNal1ZKXpFw9AUdd1pZXbO5RMUmWhTolFGfHU5usPKBnfqLw6f/s8MTUXToLSNzP6mPt9bm3vt7kiXoWkv/V82BXlpffXYYV5eVQgIjiHp661K1n3Xx7fPkxJsuhCXzb/nm98rT50K4EcAF0nl4CJLqElXf61Mntvjw4qNNUVXljsKDADGEQhIU1fvrnVlPwngcwQy6ooRXMWc9dqs7v89dH4ugH499LsuECg7zNrcywugoJUJHsD+LE2ZM0tX1ry5ZswbAHb2TNq570fjXU0decMSEkeYu3i69tsD/9rPU3k5gE/RZqU9GJuX2jflz165utKi3ysnNDh8+qRs7eGhKaraoj2NA0t9giJZwbq78wKbzFP50czwLPH5eCpTBXclpKQLCYkwwhkt7JD0db0zNFWnr62c6LV7k7LS1FWjdXL72FJ7d7tAZbkA2FanUAXjaczSlsmrnbk/eHjV7m4JB5y9k7f7NlYXfd3oSTtoNRu8rcYvAmhxgsLmsHuThgP0MoCoU1U1lfXujIcBfCiV+eo6lJSQzGUHz7/5sz3XnOWjitG9k7dZ9zQO7Cu1Wo08ITmsx+LCFx4aLmP8L2yqHt3TT+W5gOAmgJKCACBURjweP1WqjxzPkP9n77zDq6jSBv47t6cXCKETqhSjiFiwHsEeXHt3F9eKYl13NeqqsceCrroo6meJrr0rsQNHQUFsaIDQCT1Aeru59Xx/zAQvMYEkpML8nidPcmbOnPPOzdyZd97zlmAgNXpzcEtN74/D2r54SOKS0iGJS9f9svXQzxfcebl/J1NZWLQKaZm5TwDXGeUtCYH4yWOv6eay+wZV+BM1CHv9YwThYLy7THgDMcv8YffaJHdRcFDC8pSVZSNyy/1JqwfEr/SNSP49tKjogB82VA3cAhzC9uTulr+0hUV7kpaZ6zik5zcj4tzlR3+z/sTqQNjVv1fM+qPc9toxBRVDykD0o55C67HXlPeI3mxbVzlwHtgmgHaYL5xe4NX9Uxa899FNd3/ZEedj0bFc8czlU75ed8p/w9oO6JDTFpArHjh9bkfLtTfQokpXjfHBP+79BZCmb88Rsc7Kl6oC8YPr/F3tttCasT3UqmUl++aU+rr/EtaOtfPumBz+YwSrOpRFu1Ni1mIHtB3oI4Re0T9+daiwuq8q8qYu6R61pXp0yg9xq8qHz1lTPmyNxlb6291/bc6b3ry0zNwJWP7SFhbtjlEaOyMPyGtof1pmruPIPl/u57QFxs1an1ENpKVEFx6rEfuA7RDAVFa1Bh4qyJ54t/Ws2nuZtf7kEWFtM1tCB8KuIwFLYW0HWtXCWh9zKcW0LAnLsmTR6bCuUQsLi8aIiNmwVkcsgO3XxCwMg591TbQjbaqwghWJb9H5sa5RCwuLxrDuDxb1sa6JjqHNFVYLCwsLCwsLCwuL3cG26y4WFhYWFhYWFhYWHYelsFpYWFhYWFhYWHRqLIXVwsLCwsLCwsKiU2MprBYWFhYWFhYWFp0aS2G1sLCwsLCwsLDo1FgKq4WFhYWFhYWFRafGUlgtLCwsLCwsLCw6NZbCamFhYWFhYWFh0amxFFYLCwsLCwsLC4tOjaWwWlhYWFhYWFhYdGoshdXCwsLCwsLCwqJTYymsFhYWFhYWFhYWnRpLYbWwsLCwsLCwsOjUWAqrhYWFhYWFhYVFp8ZSWC0sLCwsLCwsLDo1lsJqYWFhYWFhYWHRqbEUVgsLCwsLCwsLi06NpbBaWFhYWFhYWFh0aiyF1cLCwsLCwsLColNjKawWFhYWFhYWFhadGkthbUWEEEoI8d+OlsNi70QI8bIQYkb9vy0sLCwsug5CiAIhxD8ba++tODpaAAsLizbhekB0tBAWewdCCAUs0lpf09Gy7A5CiIuB/2qtYztaFou9moOA6o4WorNhKawWFnsgWuvyjpbBwiISIYRTax3oaDksLDo7WuttHS1DZ2SPdAkwl+afEUJMFUKUCCG2CSGuF0K4hRDThBBlQoh1Qoi/RhyTLoT4WgjhNY95WQiRELH/ZSHEDHOcjUKIUiHES0KI6J3IMcGc60qz3UcI8aZ5bKkQIlcIMdTclyaECAkhxtYb43IhRJEQwtX6n5TFnkp9lwDzO/G0EOIB83raKoR4VAhhi+jjEkI8JITYIISoFkL8KIQ4oWPOwKKrIIR4GTgamCKE0ObPxebvk4UQC4QQfuAEIUSWEGJRveMvFkJURbSzhBCLhBCTzKXQKvNe6xJCXC2EWC+EKBZCPFbv+i0wj/2feUxh/WVUIUSCEOI58/qvFEJ8U3fPFUJI4CUgJuI8stroY7PoogghThRCzDGf4SVCiC+EECPMfWnmdXOmEOIrIUSNEGKJEOI4c7/NvL9eW2/MYeZxB5htywWgAfZIhdXkQqASOATIBv4DfAgsB8YCOcD/CSF6m0rn50AVcDBwOnAY8GK9MY8E9gWOBc41+13f0ORCiDOBD4ArtNbPmnPMBmoxbu7jgM3A10KIaK11AfA1cEm9oS4BXtVa+1vyIVhYRHAhEMS4tq8BbsC4jut4CePavABIx/iOfCKE2L99xbToYlwPzMO4fnqZP+vNfQ8B/waGAz80Y8w04FRgInAmcDbwEcZS6fHAZcC1GPfgSP4B5ANjgLuAB4QQZwAIIQSQC/Qxxz0A+BaYJYToBXyP8Z2oiTiPR5shs8XeQQyGPnEwIIFyjPtkpFHpfuBJYH/gR+BNIUSs1joMvIFxL47kQmCJ1vrXthW9i6O13uN+AAXMi2gLYBvwccQ2J+AHzgIux7jo4iL2S0ADQ8z2yxg3YUdEn+eBr+vN+1/gCnO84yP2XQKsAETENjtQDJxjts8CSgGP2R5hyrBvR3+m1k/n/zGv0Rn1/zbbO3wnzG1fAf9n/j0YCAP96/X5EHi6o8/N+uncP3X3voh23f3zzHr9sjB8XSO3XQxU1evjBRIitr1r3sNdO5mzAPiq3tj/B8w1/x6PYZSIqtdnIXBzQ7JYP9bPrn4wFNgQcATGi5YGrozY38fcdoTZ3i9StzC3rQBujWgXAP9srL23/uzJFtbf6/7Qxn98K5AXsS2AoRz2wFAMf9daV0Yc/z3GA3xkxLYlWutgRHuTeXwkpwLTgBO11l9GbD8QGAhUmstVVRhKbRKGsgCGBcEPnGG2LwEWaK13WEKzsGghv9drR16/YzBe7JbUXZ/mNZrBH9enhUVz+amFx63TO/phbwGW6x1Xmrbw5/vvvAbadffwA4FoYFu9a3xfrGvcookIIQYLIV4XQqwSQlRgXIc2oH9Et8h77Sbzdw8ArfXvGLrIBeZ4h2Bcf6+3texdnT056Kq+c79uZJsN40GtGxkncntjx0fyu7n9UiHEfFNZxuy3EDivgTlKwFCihRCvAJcIId4G/grc2YhcFhbNZWfXr81sH9RAP28by2Wx51I/0jnMn7NXOBs4rqn3b3szZLFhKBdHNrCvohnjWOzdfAJsBK40fweBJUCkS8D2a1VrrQ1vlB10hdcwDFL3YLgDzNFar21bsbs+e7LC2hyWYCiJcRFW1sMwLrD8Zo61BsO3SgHPCSGuMJXWX4DzgSKtddlOjn/enPNqIA54s5nzW1i0hF8xFImeWuvZHS2MRZfDT9OUx21AqhBCRLzMj25FOQ5toF13D/8FSAXCWuvVjRzf1POw2AsRQnTDWJGdUnefFEKMofm61GsY/tWHYsQR/LtVBd1D2ZNdAprDaxiWgFeEkS3gKOBZ4H2t9crmDmbeDI8BTsRQWoU5xxbgIyHE0UKIgUKIo4SRyWBoxLHLgbnAI8C7Wmvrzd+izTGvu9eAl4UQZwkhBgkhxgoh/lkXtGJhsRMKgIPNKOnuNP5sUUAycJu5tHophu9+a3GoEOJWIcRQIcTlwN+Ax819XwPfYdyDTzLvweOEEHcLIeqsrgWARwhxnBCiu9hJFhiLvZJSoAi4XAgxRAhxNDAdw8raZLTWGzAC/qYDCcA7rS3onoilsAJa6xrgBCAeWIDhSzqPP0fsN2fMVRiBBydiKL9e4ChgNcbFuRQjCjsJ40sQyQsYywsvtHR+C4sW8HeMSO+HMa7PGRjXrLVUZbErHsWwTi7BsKL2b6iT1jofuAojMPV34DjggVaU4zGMoJZfgfuAO7XW75pza+BkYBbGStYy4G1gH0w/Q6319xhKxBvmedzcirJZdHG0EeV/LsY1tggjXuUOwNeC4V7FyCKQu4tVVwsT8ceqjEVnQQhxC3Cp1npYR8tiYWFh0RUQQhRgZA2wUlFZWOyBWD6snQghRCxGvsLrMfK4WVhYWFhYWFjs9VguAZ2L/2L4WH2H4UZgYWFhYWFhYbHXY7kEWFhYWFhYWFhYdGosC6uFhYWFhYWFhUWnxlJYLSwsLCwsLCwsOjWWwmphYWFhYWFhYdGpsRRWCwsLCwsLCwuLTo2lsFpYWFhYWFhYWHRqLIXVwsLCwsLCwsKiU9MpCgdMPXfiOIwypuqmt2bM62BxLPZS0nPSt1+HeZPyrOvQwqKLsiFzzvbvct/sI63vsoWFSVpm7vbvRkF2Rpf6brR7HtZI5RT4EaMu7wsYyrMfmGAprRbtjamsKsCOeR1aSquFRdfDVFZnAU7M77KltFpYbFdWZ4N2AgEQxxZkZ8ztaLmaSrtaWE1ldSZoDyCAIIhIGZwYyqx1c7Fob04G7TIuS+0CIbGuQwuLdmPa5FlHA4cBasr08S367v3+/GUpCfYzp9tDsR4AjXYJhMT6LltYAEjQbuM5hxtQaZkzVgxNzE8IhJ3fF1QM/cxGaNnJg94tsovQsicuf61TVZZqb5eAY4AoUynAEeVfIWzhVYHqqImgNYgQhpXLwqK9+RS42VBWsQMVHSyPhcVew7TJs44FvjKfA7XTJs+a0FyldUPmnKPjXRNn2EOxsRodAuyg7SFnxU9tI7WFRZdDAV5DaSUE4g2XzZ9c4U84bmtNr1OBM8PYmbH6XBw2f81Hmbm/u2y+NQf0mJ9cXJvy8cqykd8AKwuyM3wd4VrQrgprVErZcd5tiQBhwGdzhN7yV3nGt6cMFhYNkTcpb156Trrs56r5R3XIflZpyPWf418favvyghVPdbRsFhZ7AdcZv4RozgrHhsw548J270TCjpE2nKfZ/YllNck/Px5dcuA7/uh19ztr+klbIP5fGzLnjMXyZ7XYi1FKnPLyiVx0+9xpf9lYNeAg6imaaZm5dmBAr5j1Y9MSVpyfX7x/bZmvW2pY2477ofDo7sAJRk8d3u/OVzUkCeP7ii8tM3d8eyit7ebD+t/Ljxnvq4ieaXOEfOGg4zebIzgmHHQ4AB/gYruLAHfe9NaMB9tFKAuLeigl3CVB5/0Pbx58bHXYsf8IT+Vb+bVx5+dNyutUSyMWFnsKbz81SZSs+EtVyJ8YbW4KgThyVxbWDZlzxmn0bIylTQQirNE20Fpg+wDYErb5LrCF3QmYRhIsf1aLPYjmWDmVElcDFwNHSKn9kfvOfvxW249bjnBFOardE/rn9llbMSicVzQ26LHXRA2IX3X6pqp+6bWhqG8DYXdxz5j1RwVCznOLa1MT61bLkz3bKqMc3ks3Vg14ryA7I9w2Z9sOCuvUcyfaMDTzTyM217jiq3+O71s0tyi//xdo8RmG/2qABoKurCwCFu3Nvz5MjVtWG/vDGl/0COBZ4Jq8SXnBjpbLwmJP48Xbp53hLR7xXnTqzx/XbDmwB3AQMHLK9PHLd3bchsw5twL3ATaN1sLwyxMajUBUAzVh4U8U2uk09wWBO/tmH2kZRCy6NGmZuVHAFcCjoB2gw2CbAZQPS1p8eIU/oaKwum8h4Oobu2ZMVSC+sszXrQy0O8ldPMgbjPbWhqIDoN12EYoJ6SYttvuAYwqyM+aZivJMwCUI47Z7dW0oxgGsHBC/8uP9uv/81FNXvFLQ2ue92y4BDSmTU8+dOM7h8U12J1QfhEhKQIveRm+NM6b2gUB11IcOdyBO2PQoV6y3u78y+l6bM3B4TEqZw1saP2HquRPHuxOq0zxJVQdWbU4sA9fRgADhn3ruxGMspdWirclI3Oo7SW/d9FJRv+qFNQlX9nTWHvXPD1OPfvS0Lds6WjYLiz0Jb/GI80CXEnZeAMRCeLU7cc07MH7/XRyqMB6iTmHEPwDYBSIAHNc3+8h5ZsaAmfxhEFFtcxYWFm1HWmauAEYAJwyIX/lPu0hLDWmH3dgrwMipL4GSYm/31JB2xGBc774YZ1Ws0xaoKfN1WwXC1zNmI5X++PUbqgYuBeHbP+XHg0t9yavXlO+zFLTvsN6zDtnm7bl8Remo5aBPBs41l/7t5hzzTKV1AiA1NhXjrP6lNhRzBugpayuG/GNjVf8b0jJzPwUKgNdby12gRRbWqedOPAq4yO72jQj5XEcAGkQtMAFjeWYW5qfYBky/6a0ZV7XR2BYW21FKPAQse7IwbeRKX8xNMbbQ6qqw47C8SXlbOlo2C4s9gZezHhpcXTh2KYgnpkwf/0+AV++/a3bF+qNldMrvJ/393hs+39nxkflWK/p8OsgWjDnXXTH08YF3nTu7oT6WO4BFVyEtMzcJOHZwYv5NW6t7718ZSPAAxLtKi/rHr161qOjAt4D7iVidrq8YKiUEMBeIAcZIqZu1XB9hSW10jvpcOf2ys+dtktdU+JOOMjfVAq3i49pshdW0qH4HCKg7VoDhI/Rvs3HfH/sNvdUZ430grk/xwOqtiQt8ZbEb3QnVtvh+W3tXbe72u7ckdpsz2jcqHHCcHA7ZjtMhe6o5cD62UICwfT+jqQGePXdg5nyNHiYQn1g3IIv24Oy30qYsrY17BCh0ifDJP/9t8dKOlsnCoqvz0r8f/7GmaP+xdnfJpMlPnPUKwFtPXN6zKP/cPLAtBo6ZMn18kx5SSonJwDNALyl1YRuKbWHR6qRl5jqAg4YkLrnWG4w+eWPVgDgQNocIeAcnLi1ZWTb83pB2fl6QnbE24phd+rAqJeKAHlLqVS2Uq9nZANIyc28Ffb8ZRBkCcUdBdsZuu+K0RGG9FfQDpiIawlBUHYBwxVX/4q+MWQD8HbQdsIOoAkbd9NaM9fXGEcBYYQ+d64z2XeevjHYCGnQesJ8xrvA5PLX5wVrPGNBa2MKMHhv18bBtN/5FowXocEXvz75weftsjSod/aylvFq0BUqJE4DrMtcPv78mbP/YI8KJB8WWXT3tjE3PdbRsFhZdlWmTZx0Beo7ZDER1X5TtLUp/GtgCTAGecsYUnn3F1AvenTZ51vaHZmPBWEoJD4YlqbS5liQLi44gLTO336CEZZc4bf7LlpeOitPYEkDrvrEF1ZX+hOfL/cnvAgsKsjOaHT+hlBgErJVSh3bZuZUxlFz9rZFnX9eC6EgLq/7ePNwLXA+kOGNqLg1URw8y8+j53QmVQV95XIwz1vu3616Y+apSInrZR4f6qjZ1Ozy+39aHq7ckjQj5nfFAyJNcsdGTUPNZ2Zqej9ucga/CAWc/c7oQYBOOYK4O2r8feOzCUfttu7vSXTHscoGw6+0WXrRA1GpCE1adeMzfgdel1CorK+tw4ChAZWVlWcqsRYtQSpwB3AWc/GFp6tBfqhM+Kw05bSAuzJuU925Hy2dh0RWZNnnWv4F7G9jls7vL/CFfYpzRDL8ATAJhA+EDmp2j1cKiM5CWmRvVJ7bgLylRW25eUrx/sj/sSQNIcJeEXTb/Z9u8PV8Bvi7IzijZnXlMq+pS4DMp9WW7L3nzScvMfRn4K3BkQXbG960xZkt9WPMAD/C37YFW52XcjuZe0zk3BNrefcR6ivL7H+mMrbklunv5xKrN3QIhn8uJCIcS+m+zexKr39/y26DLb3prRskHL/V8tODr0eeGg46+htKLmfhZFAFDbnprRgVs90earY3SYhrDyR4gGHRve7TgmDP/Dtz63Xf/3BAIRH+OEaxVC0ywlFaLlqKUcEipgwAHvjKqu1/bPgYOHeCqeWLG+atu7GDxLCy6HKbV1PSP02F30orpvtJhK4ABUcn5p3hLRuzTwGFB4M4p08f/aXlRKbE/cCwwXUpd3abCW+xVNMXCX5+6pXSH8G8Y2/P7s5aWpPcr83UbCbgdNj+J7pIlRd6eL9pE8ItTBr29uDWrSpm+q38FFkupf26tcZtDWuaM50FMLMjO6NVaY7ZUYf0cSL7prRkHR2yrK7vqBGGH8IaobpVTvcUJj2P6s7riapb5K2Pusrv9n46+5KvpGEs310ybfPRV/sqop8NBB8Bi4Pq4vlu/rtzQg/h+W6+//NEFTyolcoD5Qz7/dqEm/J3pGxEAHKaS7IXwhFUnHjM/L++8mPLyfmuCwajuEa4LPwE3WkqrRUtRSriAe4Bnr127b2GiPfBlWch5xABXzadr/dGn5E3Ks5YhLSyawc4UgWmTZ9mABcAgCMcYzxXhpxELq+XDarE7RPpqnjr49QXlvqS479afZP9bpfvvSWHxEICGwI/u4E2+gTNdGhG7oPCoAiBqdMoP40La4ckrOnA5EN03ds3xG6oG7As2W934ie7i0jJftxzgi8N6z5r3+nVTy9viPJQSQsp2SrC/E4576OFN5b6khAV3Xh7TWmO2SGGdft3hywLV7n7XvjArOnL71HMzxjljvF8EqqOiHR7/LcFa5z1gM/voIIgdigJMPXeiE3gYuAHA7vajQ7ah4aDDhggvju1VsvXKx+f3AVBKzARmDv5iVj+hHZMBNOFw2OYvFtqRUDTiP7aK/h8/qtRd94D+CDjOzE2mDX9aAYS1x1N+2qGHPvkJhq9TdWf4x1p0DZQSA4DfgLuk1E/c/GGqc3ltzOerfDHjgfeAv+ZNyvN2rJQWFnsO0ybPmgB87UnK/7y2dMS37NyH1YWRpaba8mG1aA6msjoLY+UYp4aRfjv7+x2khmyYuX0JofnOE+QHz05dSr0O4XcFtdNeF5DutnufWHb/Wf9o6/NQSiSa53GblHqnGTbamtF3vbLCafOHfrzrsuGtNWaL8rDqsNgS9Dn71N9uc4QOClRHx8X2Lvq2alO3R/gjU0AIIzeeAsMaa/f4z3XFB/7ur4iJN0cNJQ3e/E9ntG/V5p+GzkLbqqs2dR9bN7aUegLAhs/nfGf6roZABO1hTzeNtqXk3xAI1aSUREdvza+pSek/ZMgXq0G/sXLlSWOB4wAbCFFbm/jq99//4+E+fRbc53DUPgLcrJRIAXKAR6XUs5QSCcAZwEwp9TqlhANwW8tMezdS6rVKieF11puHT9sSACak56TfCDzWw+E7/KYPUo+cevqWlR0rqYXFnsGU6eNnvnj7f4t9Ff2PG5rx169dcZuS/8hOsyNm9R5/gzstOi0tWW5vAyRoV4+gjf39dkb57WEnNpvfUxIoSy4sTige2lOHHWEBAbfmH4f0/GZrlLPGp9aflA94j+zzlS3WVV752ZqzyguyM3T9dFC+UNQ77XQeSRi5iYvaab5GKfN1A/i1NcdskcJasy1xATA2ctvUcyfuC46HQH9WtanbD8BREcvxXwN39xq7fP1/rzz6foi7OVTrdIRqnZhBWgKwFS0ZUBrbuygXhLS7Ao/f8OoXmyPnyP9P1mlxTDhMIKYD68K22pGE3RcJBEEtxHdb0q6v0YE+KSlLnrjoovk3AGRlZY0zZNEuQxZR4/fH3bdmzXiAa7Oysj6QkkIgBaNELMBg4EXgdGAdcACwQClxipR6hlJiX+Ah4FYp9e9Kib4YOWg/lVJvU0q4AZuU2rK27WHUKatKiaHAACn113mT8h7/6zv94xfVxGWpym6z03PSj86blLe6g0W1sNgjsLsqzg8HYr8sXnHa7b3GPP0RkNtQP6XEGOBE4EkpdVW7CmnRIl789xP/glEPG7qCCD9745uLPImrddXmQz8GiqN7LIxzx60XpatO+Roojusz1+tJXL31nGtf9rWWDNMmz4o+2+GKcWtEr5CdAJoaoT9NdpZn9xn8yfc90l+xrZ975+kVG44eKkC98sQJ84zinZFk7NCKTKxPM9JB7S5S6jVKicM6x8qxTgHRqoV2WurD+hxwOXDkTW/NmPv6w/skFS3tuzJQ4wmhxb4YCt8cM7VVCMRsIBn0mB3rCegwRlBUvSIDGsALYocyrSuyny50VaWlBGLWdx9y65Wlq+7NWeKqHjhikygJzXUutVWKWqJjtt10883THo8czVRaJYaF91jQ9xBRqi8rK2sHB36lhBPoB2yTUleaCumFwFtS6gKlxCHA08AlUurflBKnAR8AB0qpf1FKnAm8C4w2908AbgSulFJvVEoMBw4G3pNSVyslogAtpa5t9j/DokMwXVQGAMPrgrEmvjF44lp/9CtAoIfDd/bMC5d/26FCWljsIUybPOs10KfH9p4/etKdtzdYstXyYe1aTJs86yhE6Gu0zVmnFwh7bY2wBTzhQJxg58WHyoASR/RWj8NdTm3p0G+AkuiU31Lt7vJA5YajPgNK4vupaIentLhkxem/A2VTpo8PmnOPEzbfhZ6klcd7S/bpjXbEBER47Q9RNd0XOijMf/gvQ9r27FsXc1X4RuChzmAou+75i+I+XnV+xdjUuV++e+OD9bX7FtNsC6uZ1uoS41rSX089d+Ix7oRe/wxURyWn7Ftw+9/uWLQV2Dr1vJMfRttuBeygjwXxc3SP8v/ZHMGSqk3dLwecbC+np+1AEMRcYIKpwDoxy4ABbMicc2AU6anepN9eGXrLNaUbMudIN4NGrHGvmj9LrDlEm6Vba2pS5teX2Qy0mmf+LYB7TMtug6X6pNQBYHVEewOGRbWu/QNwYMQhnwNDgA1mewlwG1CX4DcG6MMfy1XHA08AnwHVwGTgMaVENyl1iVLifOB84Bwpda1S4iBgH4x0XWGlRCwQkFK32lumRbO5FAjXKasAM85fNSM9J/0wB+FZpSHnN5e+2/fWF87akN2BMlpY7BHYPSVZIV/8+cHaxC+nTZ71LA0sH//6/Il5Oizu0JqB5qqZRSfl2RvfnAQ9nkPbN4FOxdBFAjrkOfbqaSfPmzZ5lh1ISBz42XAhwgNLV2eUAMmxPRcciQj3q9p86Cog2e6oPiQciEoEDgKSa7alJxtVSjkfoGK93GHep6fkBm32QADiPTrsFt7ikTjj1q8IVPa/1Kltc+e57FnAv9Myc+NePnFiLfAl8B8p9Uft88m0mInA7cAnQIdkBYhkSfH+PQCqAvG/tea4LXEJkBF/u4CrfOWxZ9hdgWf+dseiB7bv0bZKw4IqbBiWzPeuemrugwBTz534Jn9YPAER8TeHU6/us5nK6gWgMqp0/2sL7vj4ODuJbwjExm9Y95mGQ+vV092Z+X2L2fcD4NHWyBpgWkZXRbTzgfyI9sfAxxGH/B+GslpstudiXGxlZjsW6I3hiwJwLnA18JrZvhfDwh0LoJS4ARgrpb7IbB8DJEup3zPb8UCt6eNl0QpIqQvq/lZKHCSl/hEgb1Le0hs/6Hn8bzXx3y6oTrw/PSe9LG9S3vQOE9TCYg8gVJu80hm7fl1tyfABoO8D4Zs2edb2bAGGIcU+C+PZcdvUcyfusDrXpchK+GNFMKu8a57DTnjlvqzXgt4jLhD22p91yHM8iH2o58M6Zfr4EFAC478HInJ4jn+tgSG38/7/TXR4i0f0KltzkhtITkj74ohwICa5cuMRW4Dk6G75x9VWpKVhPF8BgoHK/i9NmT5+DsAXU7MKft92kG18v9zJwJsYQXztnni/uUipX1NKfC+lXtPRsgCsLBsZB7C0ZL8/GRB3h5YorMpMLeIBBITPBdvykN9ZPxelMpM8O+tbMs0bSeQXcfvfU8+duN3v46a3ZszbkDlnnCasBDaXRmuB+NoeSBwrEEKj/f1C3WvWOLZiKscNWkwjiY0tHF9V1RMhgg/dddd9C1pw/ruNlLoGWBHR/hH4MaL9PPB8xCF3A09H+KV8AkRemDFAYkT7KoxqYe+Z7ZeA4cAoAKXEA0CUlPpGs/0XwF8XVaiUSAKqTEuzxU5QSlwAvKaUGC+lng3w+OmFi9Jz0vsDbwHPnPrmoBPj7cEzXj17nRW5bGHRTN54bMrfXHEH3+Ov7DfADOK1UW8FzvhbO810h07TCNL1lL2shOOBGRjGFz9ZCRP2FKXVTFP2CBx1QVS3JQWxPX8+7pxrXyrF+D+1yjmecdmMIBBRVXN8vWf8+Lt3zP+7o84wIH7V53nbDmR1+bB9pdTrgcPMnKadEtMVoIeUekVnUVYBoh2VfWqCcQBbW3Nc26677IipbE7AePsAhAv0AGBMI/3uBJr8tnvTWzPm3fTWjAcj+kujvJcxGTDS/I1A2MIifKK56z2aUBzAbq+9CsI4nTWJTZGnMyClrpRSR7oozJJSPxnRvl9KPTHikCsw3A7qyMFIH1ZHLBAX0b4NiEy58SURFmGlxP8pJW6LaF+glDiyrv3CrdNPmDb5qyzzRrC38S5GGckd/FXzJuVVAaf2ctZ+udoXc+pGv2dWek66q8ERLCws/sS0ybPOnDZ51u8ly8/MCfni+9tdFc8CXowVu/rGCcUf6QN2abjorGj0URjKuJ0/lPIuz9tPXRznils3F+M5819v8cghprLa7phW3O26SaRryVOXv7pZY/tlfeXAAWZsCZ0jgKlR7gV+UUp062hBIjmo53cZACemvd9qOVihhUFXAFPPnXgr6PtNf9MgsEOO1dbCdAfYnh4CoxTsE4BziygLfeL+yYXhv+plFwprVlbWRaBfaWr/vQWlRDLgkVJvMtsXAjWL35wZBE5PGvreeFfM1p7Fy85+Lujt7orv++2VQV883pIRK3XInQw62RjJ+Ez31rKJZjk8X6Trxc0fporltTEvrfLFTAJmA2fkTcor6ygZLSy6AubL71zABjrojN5y+hWPXTBjZymQpp47MQf0RcARN72V2yXvQTorfhzmErgw76dd3cI6bfKs42zOqtfDgdjunsSVT9aWDblhyvTxnVYJTMvMfcIuAlc9e9xZFQ5bKK0zZ5xQSvQGJkipX+1oWSI54v7/Zm+oHHjLkX2+6v/qtf9Zv+sjmkaL0lqZKLPk6Q7+pq1N3+wj523InLPdTcBsLwLk987l/YErzQAwV0PLQEaGgPCEhIT1E6H/2IiMBPWXlPZapNQl9dqvGQ8G/R0IUbriTHOPngIUVxWOXeuOX9vD5qhZHwq5S4Fk0+i9136mZiDcTxi+yTfUbX/4tC0auDg9J30m6BeTHYH1N37Q87jHTy9sVd8eC4s9DAnaZqY7IlDTMx2YMeq8CVuAozGy0NQ/phxERZf1XQVEVsW82gdiwwJR5vaLiXuAsjoO+DwciLFBOFhbNuTNzqysAoxNnVvy05YjnPnF+y+89uyfO6WyWlcq3DQydSplFWBD5cAwEJyz8biNrTluixXWm96aMa++v2mrSVWPvtlH7uDjUtcuzpo5DrgY8JgKU1FWVlYs0C81deHxVVWpB0Ovc0A4yssH4HKVbfT7E5NpYyV7D0H+8afWNmf1o92GvXfrOdfm7OCAbtyQRKQFXLWjjJ0GKXWVUuJ/wDcN7c+blPfqFe/1SfqlOuE/syu6f5Sek35C3qS8he0rpYVFl0EZv/6UzaUEI2Amvv4BUckV6b7KqE7rb9hU/G62uH2EurqyaiIjXzzoAgaN7lFbPwSynv7tZsfUn3PHtVcO1WbytLmid2FnrOrmtnv7+kKe4oLsia0qW7N9WCNpwN+0XTGW88V1gFl+VT8HVAJLtmwZ/Z/q6l4XAA7TAhv2+xOnEeG7YrkD7BQF1BoPDEQ4ELu6vrIKO/cH2tuQUt8rpf4WQCnxp+/Wc2dufDLKFhobMoIWvz3tzUEXtLuQFhZdAOM+IkpBLCDiviKlLpNS7yel/rT+MXZ3IM0R5Y9qd2FbGU+tmO0MiISOlqOVUMYvDV3EoJHoLjkVtPYGY48CZppVqzoNZhDYamBlZ1RWAQbErz6uZ/TGVr+Gd8cloLPQHTCrZWkwcqK+2r17vq6tTYirqur9HyKiASNzslo0zpTp4+eZdbxPAC6B8P3Tr/twn5A//u36SqnZtj5TE6XEFcDfzMwBO6QSm3PRsl/Sc9LHRYnQnDW+6NfOezttvzfPKcjsIFEtLDozGvixqS/BVZu7LQFdvOuenZe0zNyzH4k7dNzZekFcwUueXml/r92866M6L1Omj5/39JTPqm322k0hf8Kkzm7QUEqkBsJnZ/FH0YJO5+ZmBoF16vzem6r6ljptgVYvD7tbFtZOgsLIVxo0g37uycrKev2aa95645//fO45LItqi5kyffy8KdPHZwl77R1gSw75424AZu6l2QCawzaMHLuehnbmTcrbcFR88VEpTt/axd64W9Jz0u9Mz0nv8kuZFhatic1RkxzX+/s/3WuUEkcrJVabFQMjiQHRKX0Om4JhydNvflN98ECA91ZdMKGjZWoNdMhdEfIn/ClIrjMipd6yrnLQuQJNZ7QKKyX+rZQ4vKPl2BVVgQRnqa/7otYet8srrKYS2qhSmpWVNS8rK+tBS1ltOTrkGmv8tUNglUUjSKk/AE6TUlc01ufR07as3xLwDANeAe4e6K7+4V8fpnb55UwLi9YiHHIFAt7uBQ3s2gT8Qr0VQmdM7RB3fHViO4jWVkjAtlGnABDQzmM7VJpWQ4MIdhld450bst+JdZavcttqS4AJncWH1SwAdClwWgeLsksE4Z5Om7/V05btCS4BWMv8bY2tLpdaQ/kPLRpASq2VEt2B/wK3NpTUOW9Snj89J/3iIe7q2JW+mDOKAu7Z6Tnpx+VNyqtsf4ktLDoZ2kFt6bDl9TdLqVcAZ/2puyYlHBYxU8+dOK6LZgr4BmCD7q4BcUzsvC6j5O0Mu6c0NSpp5eE7pgbvfCglTsZQBm+uDMxYAXTrLMoqgJS6QimRTievvHXd8xfFac6PPaDH/KFwequOvUd8ISzajmmTZ43D5jsTgiuxAquaSxyG1WRMYx3yJuXpD85bfWZ/V01WZdgxFvjm4FdH9m6sv4XF3oARWKIdoIM76bPd5WbquRPHBWs8zkBVdAIw0yjV2uXYBIIiEj4KChgUt7K+y0OXJByIqvRX9ew0VZh2wlCMlGlVgpAWhDuNQU8pcaxSwi6lrpJSeztanp2xcOsh3QGKvKmtnrrRUlgtGsXMxTqbsDsebANpIFm3ReOYVtXBUur3dtU39/xVdwOnCPRwlwgXXPd+r4y2l9DConOyNW+SA4SI7/dNg/56SonLgQqzjDTAcfyRO6lLui0dlDr3LwBnDP3fL35PiPgKe6MuRV0JHYqq8Vf239DRcuwKKfUTwEgpdXBI4tIDesZsHNHRMgEoJcYAX2FUVOz0rKscdBTA6vJ9qlt7bEthtdgZEuPmT0QOPYtmIKWuBlBKjFdKTNxZ37xJeZ8dHVd8eUALVGW319Jz0o9uHyktLDoX3pJhDoBAderKRrr8DDyC6dYW07O4r7FZh+iibkshbTsCYJ/kvIUhO4WOoOjR0TK1DmEhbAF7R0uxM5QSMQBS6hBAqa9bQYU/odWj3FvIr8A5wPMdLciuMAMHnzNaOqu1U4JZCmtnJithHFkJt5KV0LR/enP77xoFwgeEMHKHqlYad6/CzJt3P3Cb+XejPHXG5td8YdswjdgM+stz3077d/tIaWHReajafKgNwFsyokGFVUr9i5T6din1NgAdsg8T9qAWNn0PMKEr+rD+svWwKtCFV5y+5BNnQHwPDOxomVoDu6esR0zqr4d1tByNoZRwAMuUEnfXbSvy9txQHYjv8FgCpUSMlFpLqd/p7K4AJpLtRi4ctLKRq9P4aFhEkJUgal3he9yIfwMIhNZZ8QXeqHBvZ0CUOIO2Uo0W3qjwIGfAVuwMijKNjgEGAGGB8JGVsNs1qOtysUZ3z7s8acgMTrv4qy73EOgMmAFYZwHlZg69nbJw0uKC9Jz0wxPtwXlLvHH3TnxjcK+1/uhr8ibldeqShhYWrYXNWeUIB2JBhBoNMDGLc/T/+ZmMtZA4BPT7N72Ve087itnajAKxBKAiPhTbY5szds3L7u4DL/Z1FktfizB8WHut7mg5doIbw3r5fd0GuwgS1sLZ+CFtj1JiPPCmUuIEKfWvHSlLM1BA2CjkRKsbuSwLayej5qHYkUCux2+rU1brdlX7XXpb0EEBsEQL8o22XgMsAarN/jbARSu92UyZPn7ewGNvWJeY9vUJSono1hhzb0RKvdEs3+rYlWsAQN6kvJJDY0sP7uWs/XmtP/pq4Kn0nPROvaxmYdFadBv2fg+AhP47zfn8GJBndwXGAH1A5LaLcG3A9c9fKJw2/5g+sQXVSgl7cbfgoQADCzwpHS3b7mL4sPZr1ZryrYmUulpKfbeU+qu6bcOSFh+U7Cka0JFyAYXALGBZB8vRZIysCmKV+dPqKcEsC2tnISshujQx+FZCrX2iRlcKxJMCcTmGeT0gEFck3li9/Z9vAxIjDhdZCeM0ehZGsnp70KY3tOI/92Hg3jr/HovdYgrwH6XEmF29NT9y2pby9Jz0g4GHgH/2d9Wc/K8PUw965LQtXbqaT1uQnpM+DuMlTeVNyrNWAro43pJhQQB/Ve/GfFgB3gB+ie+/9ZHSlX2I6VH6dftI1/psqek9KhB2OQbEr6qQUocWveP8FpgIpAH5HSvd7hK2CXugQ62VjaGU6A0MBuZGrn4VeXusrA7EdaiBRkq9BDivI2VoLlc9+/dEOHOIx+59fOn9Z7f6fdiysHYwBS95ROie+LOA/KQyx8SyxNCaTb0D48gqv56Iggi7XN7PKp8nEOOBR0NCV4bt+qV1L3jGt4aMUuoaS1ltNZ4BTmnqEk/epLxw3qS8f+0XVfHSen/UwNkV3Wan56R3eatLa3LgK6OOAOYA9wEzTeXVogtTtfnQAIC3eNSqxvpIqX+QUr9SubFbP3d89bbJT323vv0kbF3mb5Z9AL7fNOE5gAFr3dcClCYGu3y1K7unLCWmx2+HdrQcjXA5Rv7bvpEbt3l7bagNRXeIz6hS4hilxGNKiS5XSCYYdp4Hwjaut6pti/EtC+tOSMvMPRzDajOrLRII+x6IG5Xstn9jD4tuQB5wVPL11XO2dzCU1KbPa/bf+IJnTu9Nrnf6rXe9TlZCDvDh7vqzKiWOAx4AjpVSl+/OWHszUmo/MANAKdEf2CKl9u3quNfOWXvJ+NeGqW1B97PAvIlvDD5zxvmrfmtjcTs9SokL+7nSnlvli61zl+h0tb8tmo/dVe4K+RMQNv9O/bafvvrIC4Le+MFBr/i/9pKtjRhl/l4CUNwtuD6m2kbIrrv8y1c4EF3hr+yzM0t5R/Io8IOUeoeXHafNZwuGnR1lFT4cyAC6XMDtNxtOiAfwh1wvt8X4loW1Ecx0DDNB3ycIfz8w8+OctMzcjLF3v5gS2SctM/fWZqVuyEoYp7Pi7yIr4RW33/ZrTLU9bkuPwDvAGLLK5+zy+CbQ/9Lajx0hcYVApAI3AzNbIXNAJVAL9NptAS1QSvQAFgL3NvWYWRcufwUYbyfcoyjo+vWyd/ue31bydWaUEs4668Psim7Hr/LFRIMOY1Vi22NIHPRZGkBC2tcHNtZn6rkTx3lL4v4HQgB/66LFAgAYmrj4fI+9xluQnVEEUDDQ939+l/Z1L3Z2WatxHTrkCfqr+qQaeb07F6b/6uf1tw9PzjsozlWe2kEy3QeMkVLXdMT8u4M/5DkQWPvadY+3yQuKpbA2jgQcINAINPaLgBlF3tStB2a9WJOWmfsJxoPxXmBmk5RWw8/0GyAL+CvwlT0s+qdeXXMOWeWNVnRpIb01231ydjuRtpR6vpT6SCn10t2WzAIp9VaM62B6c47Lm5Q3T8YXn2FHV/9Qnfhiek76aW0hX2fFDPzLA/6dnpOe9lFp6ukpDn9Ngj04EdN9xvJh7frUlhhJx30V/Xf24JPo7UGpdrpwnuhyf1KflOgtkWmU5oVtegNG5pcui1l8pjvoscDMzqS0KiXuV0qc2tC+rTW9l3mD0a2e+H4X8hyklBgGf+Tv7mp47DXHxjrL28zn2lJYG0dhpGUIgvACxwJydMoP73sc3rXAMRjR+HbQTY3Kv14gnAKBNixCc8kq39I24qMADaDRrWZ1Ukq4lOrYdB97ClLqJ6XUq2G7ItYk/nN64dcVYedgEL+Bfv+Ctwe80HZSdg5M9wlMq8O7pUHHT8D7IWzhkqBz/7kXLf0sb1Leg5ayumdQvfWAGgBv0b5rd9JNgaili1vW0zJzxdaa3tHrKwe+W7dNSv0csCJo1+kdKFprII1fQoDuNBXIzLK+ZwFjG9q/pab3hkDYHWhHeQRGfMO7u8rV3VmZPP3SkbWh6OT07r/422oOS2FtBNNndXvQU0F2xuyC7IxvPrzpnjO/+/eUEcBxoAOmTmjDWN5tlLLHY04CTgfCQFAYCflVm52AEYT1NIBAnLK7PqwASolRwFYM/xqLVkIp8RCglBKuph6TNylvKzC+p9O3KM8bf8kxrw17JT0nfY/8PislrgOW1ymtn5b1uON/xX0fAA4ALlo4aXFn9Y+zaCF2V7kHwOZofFXULA6w/R7dFYsFmPQGEjD9V+uoig07HCERs/G5qLiOEatVUKBNBUaY7Y5HSl0LjMCIy/gTbrvXIQi3W4yPmaHgFOCvTcnV3Rn5vOCMIQCbqvs921Zz7LVBVwMzPxnncdScrhGqNhgzPy1+hSO9+y+xeUVjqgoqho4GjgC+KMjOeLCh4wuyM+alZeYeHeOsuLE6EH8q8HBaZq4A9gdUZJDWxueiDkypccwIOHSZMyguxHjQqtZQIndBnWl+USuNtxwjlcy6VhrPwmA+xt28WTeqvEl5NTd/mHrgrzW8Wxjw/BVwp+ekT8qblNcmEZrtiZluRkipNwIfADFAEcDsim7X1Gr78NHR5d++eva6GR0opkUbkTjwy5HFy84mIe2rdJj4XmP9TCW1qyqqABzd9/Nzv9lwIgf0mF9ZZwtQSvw1tZvzmB7bnPTZ5OqFEUPQ5TCLz0hgGrCvsAXaakWxyZgFJ5BSh4EGMwGMSP79oKUl6fHtJE83KXWxlHozsLk95mwjDgFCayuGqLaaYI+0yOyKtMzcwzRirjcY+6/aYEwuUFxQMXTLJ6vPXVVQMXQL8AVwhyA0e2e+qQXZGfMW33v+OcBJEB4KOhf0jj6tWQmxvTc5X3AERWBzL/8ksso/J6v8wXZQVilJCvYG2NzT3681xpNSB6TUV0mpf2mN8SwMpNQfSKlvllIHmrsc9PBpWwKFAc9pGMF15/R2ejfe9EHqoDYRtJ0wA6p+A7IBpNTrpdQPSqlr0nPSD6nV9qkC/UW0LdTlU/5YNIy3ZJ9tAL7ygY2mtdpTKKzuMxCgT+y6nyM25wNvm3+ntbdMrcmU6ePnAacggkQlL53d0fJgvBWsVEoMbaxDYXWffH/YvcvsLbuLUiIGWKCUmNrWc7U1PaI2nx3jqFxbkJ3RZsFie6TCmp6TPi49J/3WneRjvAejIhRmdPGMZM+2Ow7rPes9t937NcayPQKcca6yXS5/F2RnzEqJ2mJGGgo7ZpBTwUsee1jotwQi3abFqf0vrW1Xa5DfFXYChG10a+ox+cNHjMsfPuLW/OEjGlXUF57R7y+LDhvy0M76WDQfpcQ+wFylRLMUzrxJeTpvUt4jh8SUPrYl4E6eWZHyRXpOelrbSNk2KCXcdRXAzJrZVwN3Rfa56YPUkVG20NegN2rEBc+eubG1AxUtOgk12/arMn9v6mhZ2pplpekuoHjG6nO2uwRIqX/qWejMAihODpzcUbK1FlOmj98Y33fuNzVF6f2fueaTjn7RLAd+Bgoa61BY03djWLdLYUEf8H/AR+0xWVtx9uO32ir8CUMGJy5t09y1e4RLgKmYju/h8BUn2gNHQ8xZpuJYm56TvkPU8LHZj0yHkROAEKBBBIAHfsm6eB5sT2d1OGinRoQq/Ym5YCwjmEsIDbLN2+sh0BkYn2kAUDHVtrk2LQ4NOMK3OP9d+UWbfQCN0HOLay5wc59NribVojYV0Nka7ULAorFDf7BXOVaEPaGoQFrtGEeha5mt3GFzEXOCuXh9bf7wERNGLM3v0ktynQg/0A3oCTS79vb/nbXhpkNfHfFZddjxDuh5F73T/9L/nb3u01aXsm24FnhEKbGvlHqxlPqdyJ3pOemOBHvSOwEtYo+KK7lk2hmbSjpITot2wO4piQ7VJmN37RUpn0cBSwqyM3ZwCSpPCK1JKLcDjOwQqVqZmm3pfwHyw8GYqdMmzzpwyvTxHVKMRkr9LfDtzvpEO6pcNcGYNtdYpdRBoEG3w67Ej1uOGA6IVeX7PNWW83R5C+u4V4efBXoucN/WoPuZ5b7Y80A4AAHaTURU4qH3PHvByrIRV5qugkGMN5sd6t3+EWwl7tTYjinIzpinlDgLIygmuTE5zBq6lwDEuUpfKfBcsE9KkfPQkqTgLxv7BB5pi3NvAnVvO02NQJeAUyAEGiG8tn2BI0TAdohji6u/rcZ+gNDiYDQIw4G+00R97glIqdcAo6TU37d0jPl/zf8aONwtwq7FNXG5414d8VF6TvqEK9/r0+leTpUSE5QSdXk2nwVOoF7gSQQPloecIxPsweumnbHpnUb6WOwhJPT7djRAQtrXgztYlDbl+ucvFFGO6nFDExfv8P1USvQoGOirDtso6lbi3NZR8rUmV/7nbC+G69L+sT0XdMgzUSkxRikRu6t+I7stPFCg2+yeqZSIUUp8qpTorBXAmsshANWB+J2+COwune4h1hz+9WFqnCDpNbYr3jocawvNrArbjwCiAJuD8PZk/IU1fc+KONwOrGuogpW5LXK7wLCa7tQ3oyA749WD73n+6YNF/sWEuASYmVzqOCn5+uoOifrb1j2QlFLkZGtKYL8eRunKXaEwrHweIGgL2Y6vbz3NHz5inEDMxFBWu2wqmc6KlDpk+rFeAWyVUn/Q3DHyJuUtOeH1ITdsCnhyqsKOvwB/+b4qmdE5+4ZDiDKgOtEeSLShvSUhVz5QPcBVM1hD2Tp/9E9A9b5RFSMD2rZlWW3sj0D1wTGlQ2rDtk2/exMWA9VHxRUn1oZtWxZUJ20CqvMm5TVred5MK/Mq8B1wtpS6Eviyob6Xvtv3QUj6J/CMunBZm77BW3QOvMX7bASoLRu8Rwd4/l40tp83GGOLcVbVz11ZCkzVQh8HIq0DRGsr3vEkrpzuLdnn+hdunX7fpQ9ObreVEqWEHWPp/WfgtJ313VCVtlhjOzItM1fUt3y3Ev2BfQB3G4zd7gxJXHLZ2oohtYGwa1lbztNlFdb0nHQBKf8B4RLooHFFiUBV2HEXQIrD9/C2oPuIKFtwH2CueVgchnk1RDOULSn1O0qJd6XU2nzQ7i+l/qHBvjHzv8us+PwEr92+LSocOpus8nbL5VYfv0uHALTQSU3pP2Jp/rz84SPGh2KC3+qYkC/929V/UubNPhMwLKvKcgdoExzApcAajAj5ZrMpENUXwxfbDoST7f5lSY7AmlW+mAIgJsEeOKw2bAtjvIylVoQcfX3a1hsYBsQs8sbXpdi6FGBB9Y6X0LeVO7pFH5AzCiHwBrStCKju6azt5wvbNpWGXCtBV+/jqR4d0GJTtC1kX+KN+3pMTN8xwFd5NXHfhHJGnTUurnTY1oB76bLa2NVRtpD3iNiS6KKga+NvNXEnQMIt3ey+aiG4oSWfhUXXw1syogKgZuvorR0tS1uypnzYEICF2w55PXK7lDoA3Fr1Y+yhoA/eUxJfT5k+Xr/20GeX1pYNfi/kT7gN+Gc7Th8GzsFYXd0phdV963yn7U3p31yk1PlKieHm/7nLU+ZLHtEntqBK3XZjo26TrUGXVVjt6GtDxhL8fRrxKaYCVeevmp6TfjTwa2XYeXN6TnrOeP9+oSjHqYc7hP+nykDSB9RLPbUrInKjZQE3KiWG1K8/TFZC/P3YBlcTxeTwtV/nZN1duvtn2nL6bHItBkjd6mqyP+SIpfnzfj9u4MuO9e5L84eP6DNiaf7GhvrQxVPJdGbMbAEnYVhZWorCsJY7gUBJyHXpNxcta/L/7F8fprq3BNwJv9YkOICYo+OK9i8Ouljkja8AYg+JKZ1QFHRVrfLFbAViRkRVnVQcdBVvCni2gY6JsoW7ecP2MNADiCkMuAf6wraBQS3sYcThP1Un1k31N4A5EQqwN2znq4qUCGk0xSGXA8SBWNfdXoHDUxwbrO2Gw1PcJXNSNhVBeF9tLBD+yRVGKWEbGR2lY6pt0cVPRkd1u66mTQNa2osLb3nkg2mTZ70EXPfsjW+/cOXj57RZZaRIzGd4k+4fsc5yd1UggX2S8uyQ0WoKq1kg5iLghT1FWU3LzI2GnvFF3tTstp6rSyqsU97vfX2Y5P94RGhmrbbflTcpL0y9CzFvUl44PSf9LuCDkZ7KuzeX9v3SG4yJOrLPd4tfvfaJ3XFyzgZ+ra+sbng+ytUH55tOwmm3B//+83zST5z032sdOdc81ZGRzHUuDE2uogTgXO+ZClwGnAk82dpCWewaKXUxgFIiCThVSv1yc47Pm5Q3Lz0nfbslvLkVoB45bYsPo0hEHSvqdXm/Xvue+mOYFdFuBFZJqd8zl+R6Pbx5cOHIqMrUNb5o9/LaWHucLZAwJqZ87FpfdHmBP7o2xhZMHhVVeczvNfH9arX9CDOjR13pTUth3QuI6z3voNLVE0lI+7o3nP1rR8vTVqR3//mK5aWjQrWh6MIGdn9XER+K6bHNSbcSZx9gTyqQcbuw+f5qc1XMmTZ51lRAmemv2gSlRF/gSuApsyz2ThnVfeGYHzYfzajuv8ZgRPK3Fhdi+Ov/BjS4StsFORCwg2jz8+lyCmt6TvoAG8lZSfZAzSGxpRc/fNrWnZmgP0p11lZvDrj/uW7LwVsAFhcf0GBli6YipS4D3gJQSowGrhv3fWxOss3+ukD0Dgt9dVWvin18G6IO1IirgA7zuStM9YueW1zUukNXeLISFjc19+uIpflLl+y3z8pwbOgGLIW1o7kW+LdS4tu6Mq5NxVRSO1LBCwHnAQuA96TUIWCDNPbVt9z/VK/9gpn9w/KX3gup3HywBigvmNC9o2VpS9ZVDrLHuio2Lb3r7IYsyc/YwgwB0jFyse4xCuuU6eMLX/z3f37wFu13BOj7gdBLd059PCp5xT3n3TC9qg2mlMCtwItN6byuYtAi4KRFRWNaO5PB/wG/SakXtPK4HcaBqd9f8/OWwxgQv7LN87N3qSwB414dEQ18GEaIkpDrgIdP27phZ/3zJuXpFIf/ltKQyxXV/+Vb7NGrC3/Juri+pWh3ODShzH6Syy++iq6199bosE2LhdHOqixBqPLbDScc1IpzNZvu25zHALh9trHATLISmpw31ZdetdZe4hz46wV9hreZgBZNIRs4pLnKakehlDhCKfGZUiLKTAMnpdSTWzKWqXBvL73ZXCuxRddk2lVfjQt6U64GCNZ2nz5t8qw9Nt9zma9b9yJvz88b2ielfiW+wv4uwNaUwKntK1nb4y3a7wuM1JIChKNm6wH/Kl56VvG0ybPUc/9446k3pl77r1cfuCOxNeaSUv8P6G1mYtklm6v7FQIsL923NaZHKRGtlOghpdZ7krIKsKW699AEd0ntN7dd/yf3wdamyyisN3+YKno5axeD3h+4IG9S3vKmHLfIG/+L1mh7VEHv6H4vpO6kmECzkVJP3+/36ByBcAIIRBiQz1z5UpnG/iZwZlpm7i5TaLQJWQkuR1g8oNEIhKCZKahsVfZMAM8v8ce3kYQWTUBK7ZdS/wqglDhIKdEpo0ojKnQ5gKGY1Xmk1BW7M27epLx5eZPyHrSU1b0DpYRIHvrBi6Drgv4c7KGp846477+9gO40kspNKWFfNdhXrNE4A6J/+0rXLswEaoEg6Nro1J9fwSjhGhOoSZlSsuL0hyvWyW3TJs+a//zNL/3v9Uevv/vZG95pNLVkY9Tdm5riClBHgqvEA9Andq1rV32byD3Aop2lxuyqbKhK61buS26XwgddRmH9uqL7rSt8sWljosu/zJuU1+Rk6CFvn78BQgjQIizMdqthD4uPMHxcgkQsWyZ7tr0JRB/aS3VIUuCyhOB7QG+B8NeXrSns/9G6n4DfMaIqLToYpcRg4Hsgs6NliUQp4VRKvIWx3IaUWgHDpdTtEkhhsWdg+jcjpdbu+PW5iHAAdLPvW12JfZIXnQNwVN8vGktQf4s3OrwBWJdU5titF7/OiOmzaq6giPF/v/tfk6ZMP/YfU6aPP6j7yNf7JQ78/CYQDwMBf2Wf80tXnnpnsDa5aNrkWQtfuHV67msP/St72uRZqU2Y6g2lxKPNkW1U94WjAQ7oMb/JVSJ3wUvAg1LqPargSVpmbk+MFF3t4o/bJXxY03PSTwTbfaDfTnX6z2vOsf7ScXh6fgAiBNqOv7SVV5eyyueRlXAMZnBLnZ/okX2+mj1347H+NeVDT8bwQ2w3yh+LOSOhwj6xJCn4e3KpY3J92ZpKsJdvrmOz++ofb0wZe9Dj2+r7GFq0I1LqVUqJS4CPO1oWAKWEy7T+BpQSAQx/VWB79RaLLo65GiUBdVLC1vkAn5X3AOCkBMNY1ZJ23d917cf7Lx5ih49mzhZX37Bu329O6r71X/21eA+QmrBaf+KF82/+0KhU0tDxXaX9WXnKoSAkZhDk0pL9EgHsIvg1DfMlUAmcDQxopE+XxlRa//RcOve6FzcCj9W1337q70m+8v4TKzYcnQYc5SsfcGJt6bCTgVumTZ61LKrb4hJn9NbvKtYf89SU6ePXmW4kEhFSo85lG9AsRXFN+dDfgbMXFx+w09zru0IpIUw3gMXA4t0ZqzMi+352jdpwEmN6fL8BdlnFfrcRWnfurCE3fNDz2DmV3T4NarEsjDg0b1JedXOOT8vMHedKnj3HnfqF3bvpTH+w/CDZnHRWu8OgWz/OCmv7nUBaQXZG+yTAzkpIAn4PCx1c199/cNrfa1tcJeWna3ucGPNVt8/8g2r+s/+na29sRSktdgPTGpUkpW5Syd02mP90jKW7MVLqwrqbckfIYrH7pOeki2Pjt43cFPDsv8QblwCMTHH4LtwWdCUZaXotWhGNsQw+oTI/+yZgInDMzp5JNdmxi11+McwRth3VXKPDnsrbT10cVVO07zHVW8aMAn2UzVGTEQ7G1F2shRBONa5dUQtMaG4GgrTM3Cswovn7FmRntNg3UynxCEaGk5v2xHvkUfc/+dqGyrTzJw5+u9uTl/+vzdN4dmoLa3pO+gQ73d51iLB9fHzpVY+fXtgsZRWMqlXjnvhofhUcnugufuCndlJWAcLangPcZRfBvwH3tfV8BS95RG+n83VXwNbTpsW43VFWAcY+tfXzJcOH/+5aHd2hwWMWf+JNIE0pcVh75fJTSjiAaNMnNQ+jQpUTdshRbNGJSc9JtwH9gBHpURUXVYQcA9f6ozUw4uuKlEjfusrqsD3SXSzc3eFbFW8P/rTaF7MMYL+oisMqw/Zta3wxKwD2jyo/ojzkLCzwR68EGB1dfmRp0LlxrT96tdk+uiToXLvOH10g0OKY+OLJLhFO+qI85UEBYv/oiiO3BlyrNwai1jsIO9KjKw/fEnCv2hTwbHCJsGtUVOW4woB7xeaAZ5NHhNwjoqoO3RxwLy8MeDZH2UJRwz1VB2/0e5ZuDbq3xNiC0cM81Qdt8HuWbAu6t8XagrFDPdUHrvd7FhcF3UXx9kD8YHfNAWt9UXklIVdJoj2QMNBdM7rAF/V7achVmmT3J6W5vfut9kUvLA85y5Pt/uQBbm/6qtroXyrCzsruDl/3fq7aUStqY36uCjuqUhy+Hn1dtSOW18b8WB121KQ6fKm9XbXDl9bGLvCG7d6eztpeYS2O2xp0DcSMJzBc0/TpgA3EzLTM3An1lValhH30r9EnJtTahwM2jZ4pshImWEornHPty17gU/PnkbefuthZuXHcwbVlQw+E0GSw9TQUVu0yrdrN+sy6ebZGF9f2oG9sgaelMpq+s27AsafeI9dVDu4J/Noeyip0YoXVXI76IoTNHtLC93VFSovTS3T3FLmqgJE95rerRaogO2PNwfc8v9YXdN+ZljkjBKJZxQqaS0KZ7R1XwHZidVTo45hbqlplCV8g3gbuyzticFr63FUFrTGmxW7zPyCZNqjA0hCmsvozRnqqy6XUKzGWKS06Iek56Y5DY0oOD2I78qfqxBAwMtnuP84pHCkBbbMB5HnjibKFghh+0e/s46nSyQ7/snlVye8CG2vCjkOJSClWFHRPmn3h8la7dykllgI3ZiRufUZKvaW1xu2spOekjxPo2RrtBBEwXdNspgW7LiC2/uc7oiQ5OCOh3K7Fzvvt9Zxz7csBjJfo76ZNnvUj6Jmg3cLus3cb9n4ljG/WeCO7Ldx3zsbj2S/lp17AqpbIZCqp10UEpO5RTPrvtQ444SAQ/2uvOTutwtrN4X+gOOgyndHFbiUNL/EnbMUDIRGobDUBm0i8q/TnlTWjBoC+F/A39CbdKmQl3JiI40yNJtprO46shHGt8SbuG179uXtpzH2BQd7HgdNbQVKL3URKvT0iUynhaCufUbOa20opdVAp8Qp/Lh5g0cGk56RfBDqjh8PfLc4eHLbKF10FYuj86uTI6OYNQNEwT/WGxd6454H8Qe7qVR+dt3pnS527VXiiPuZLz7+AAin1Gxi5rN8xc/Pu8eRNypv3wCfJ0yvDjqt/rY4/bWn52ErQk0FrEI0Flq0LOvSjwA0Yz+o9NgCtNZkyffy8aZNnTbC7SzNS93shPmnwZ88a6U+bzoqykXkAi4tHt8hyqJS4EpgtpV6+p1pXoxw1J4OIG5s619se/qvQSRXW9Jz02ChhO8xw9yG4ky90k9hWm1zijoeF3tgdUmH1nL1we1BB4TGj2+StdWXZSHNOYQdctPIb8toXPYMSyu0zEnGMEH/4m7Xam/joD9f9vGjckCL3kph9dncsi9ZFKXEk8JJS4vjWztOqlLgYeEEpcYCU+ncp9dTWHN9i9zFXoV4BIbYGXfi0wIH+PAi5/Vy1xYPd1Vt/q4n/4NuLlpW3ZPxWLjwRBv6CUeHnDfMhvlcoq3UcFld6K3DTg6duDXEBpGXmbgXWA9c2ZMQw3W/+VTE1ZmR8peNkrzt0QdStVZZ1tQn8Ecx1ZouOL6zuWwSwtmJIs12ulBIJGC6AbwHXtEiALsCiojHDAeJcFU3O2rS7dEqFFfi3VztcPRy1mVuDHhu7+YafErtmbAVgc5TvA8yH7crqbAzlzt9z9sLxram0pmXm2oCMBFfplHJ/MobyLexA67klZCWc2U+4ngOSq6NCM2O89sNog6pA9lLn48D9+cNHZAMfjViab900OwcbMCpGNZYWp1koJXpj+KmuBD4CUmnhcphFuyAxbywCdHXYcdevkxbfq5T4B/B34NCnzthc3VFBcWZZ4UzgXil1lVLiOCl1W1Qx6hJIqb2RbUHY7rAFFq544IxG76dKid4joqKq4yuhpFvo5z5tL+YegVLiDKBCSt1YBoadkhK1OXqbtxf94lY3O4+6lLpcKbEfsEdf6xuq0gYD5bPXnzy7vebsdArr+W8POATi/gHi5ZkXrnhod8dLz0kfR5QwqjUJ/Vx6TvpyU/mVpkO2ADx2/N8eOvuNogJG5AC/jOGbVb9xmCeE8yiaYYH98IukoxduPeSjHtFnurfW9PZUBeKqzWcKGBaF3S41uPZFT3qPrc7norAdatPil+Lk4FndrquebVaykrQghdUuWAGg0TcLxHX5w0dMsJTWjses2nJ0a4xlZh74HiOJ+clS6lJgt79/Fm2KwsgB7dSIQFCLuofzOuAnKXVdkOozSomhUuoJYPyv22kpfjjwD4zr6qO9WVmtQylxLRAnpX7Aba/tNjw570A4Y2eHzPG5wyUAfTa59vrPrxncDhQDLVJYR3VbOFxt6MWobgv7A00uOaqUSJdS50mpN7dk3q6EXQSOCGnHgoLsieH2mrNTKaw3f5gqKkOxuW4RtoURt7TSsNJ0LQDDEiWVEno8d2yczakBwKURwd6sXVFFQneMG6zzF47GPE4DtT1nL5zQkNJqOlQf/tOWcZU5i6ecVht84dpA2J3QN3aN3icp79ZlpelzQX8LWmAk8VctPpOsBAH8ta/N9ZzQuAMOfY8zKO7tdl214cNoKKltoUgOaaBilqWwdhKUEi4M5XKOlPr9Zh53OvC2lDqklJiM5afaZciblNegn6mU+l3g3Yiuv7Hjys5XSokCKfUl0Lp+0EqJgcDBUuq3pNTzlBIDpdQ7LaG9lzEOSATwhdzBrTW9Fu2i/z/jK+xHA2PbWrA9jMOBlJYevLQ0PQ8gr2hMYVOPUUocAPyklLhKSv1cS+fuClz3/EUpYX3OyDE95m81MrO1D51KYf28POUMjei2f3T5K/87e12Ty6jtAqWxh9BhhxDUKYwPXiHuTf1JH32cC19GNFVfLzjmnK8Aes5e6AZG9WTts4X0PxDDNOqhnpKmlLBJqcMPLbjvypC2P1NQMQR/KArQs+wi+MiBqfO+eOLy1zRAWmbuDPP4E1oacLXuBc8hfWyuB+xhMV5oFmzo67+7/6W17eU7ogA0Wovd9Ce2aDMOA2qAJiuswEXACxhuBXOl1A3WNLfovDTFz1RK/Uy9TbOBbbD9hXu1UuL/pNT3mNucu5EuLQs4WSkxQ0pdbSmrf+JCKbVOy8wVYHdsqu6/09r2UuoPti2KPg1gQx9fXF9ol/RBXR0pdS2Gf3CLKKzuWwqwsSrN14zD8jAMXm+2dN7OTGQhEfemG+I1djSiOc+b3abTKKzpOekxIB4Hfv+tJuHS1ho3b1LevKMfv3FtifYNoNucCXmT8uYpJc4G+i8/ZsIvSom5wDqlzn1bSv2PwmNG+4Bfes7mOmAmaA8gBrO4BEbX3eA/BTZd/szl6/JLTssyjLBaD0tadM+Xt9ySZcx8aoQU+kcQpwxLWvR7s6PpshJsIZue0gfXExiBC9fZtHi6/6W17RawMGJp/rz84SM2AVuAKZY7QOdCSu1XShxt3qR3ilJiPKCl1LOBVzGWj79raxktOg9S6nsjmh7gDeBXALPW+XrTSvSKUsKGkUfS39h4SomDgY1S6o0YmQD+HeGOYBFBnS/xPkl5rmWl6XgcO/+YlBIp+zg83QBsYdFuS69dFaVEH+Ad4AYp9YKWjtMzZn1MYXU/+sWtjm/ivHZzleKJls7ZmTGUVf0NYAfhK3etfwFvT37demi7Kue2XXdpH0ZFVXyCkdR6St6kvN1enkrPSR+XnpN+a3pO+rhwzeByW9m4qoglsyIpdZ1fykCgD7AZQCmRqJT4+k1xgAAmxFPytB0/yWy9zzxWY7xJnR3vKr8TdNgwwtpCy0v3bfBt7Mg+X/UCGJy47Mgmn0BWwrjAffHTgJ/sYfFk0KF/39DXL8kqf4qs8naPrtU2HQq7QystZbVzUqesKiWGmkE3f8L0U50G3GoeE5BSf72npl2x2DVSaq+U+hYp9SfmJhfwHMY9DuAgoEQpcTQYbiRmiirMdhIwC8OyipR6q5S6xZatPR2lhFMp8eaV+z96HcDolB8P2MUht1XHhI8F6L3ZZb0E7Jo+QBzNLMVan1HdfhsMMCL598G76quUOCS/OH3Vofc8+1haZm4r137vWCJyyErACcIGOD3R604UhNcWZGfsVnGi5tIpFNYDXxm1T743Tu7jqVqdNylv7u6OZ5qu52Cklpi5SddWlfuTG7uJlgNl/LF8kJZUYh+y32/R123+5iieE8f+5wTeqf0R2f2g2e+8f9bs+8+TUt8MpFX4EyeD8GEkcG90qbzSn/ANwKKiMbt+W8tKcJKVcJVGz3EEuVqjDwAecPttBwy4pHa3P5uWEk4I9goMrD2wo+bvLKRl5p6dlpl7aye+MV0G3KaUSAFQSvRXSjyqlHCZgTanYqQXsrD4E1LqQin1jVLqX81N5cBLQL7ZPg8oVkrU5QvyYUQN3dS+knZNTFeLPr6gJw5gY1X/33dxSE5Sqf3Vtpdsz8C0qu5nZjppMYuKDlgC8Nu2g3ZZUv21/MvHTf357gGFNX2uB2YNu+39k65//sIuXyxAKXEqkKeUiMXQbbSRN5iArXrowOHJee1+jh3uEpCeky7A9gToSoE+tpWGvZI/Uv04HdGreoaqRjSYi1BKXaSUSKkLOpAq/liN7g8MAE5LLXS+vH/q955PuZD1DDl9MwNOHTZ75qblx+hvpeT5tMzcRZh+HY35py7cdsj3AOsrByY2KG1WQkrQrk+pjAtlJQh7d5sWUQACgUaHgCqyyltkBcsfPmK738nuWEdFtb3YscW1fNc991zSMnMvBP0/QIOobbMiELvHHcBTUuq6N999MXIBfgB8J6Xeq/+HFs1DSr0UuDZi0zLz97tKicMwIi4uBfoDKCXigUrLat84Uuoj0zJz+wB3rK8ctHYXfRduWxTtAVjf1xffz/JhbRTzJb20NQIIt9T0KTd//2nV9Mrpl6UGw85L526ckOQLRR0Kpxxm2v5sgMcfdn+au+YsPrn14/VhbV+f7NkW7B+3OmFpSfp7taHotUMS831DEvNr5m8+em6Zr1tZQXZGp/muKCVGAMVS6q0YLoCbgO5mgGcRsC5UPfDuyor9Pu6WsOy99pavwxXWUVGVNy72xp0A4sZ3zi3YqQN6U/jXh6lRHpH8l1ptNyoJIwLJoeQUW+zaxMaO2X6BZyVMAB6B7cqiY/hSz7qLUv/5BIhrAVsIu5jA++8pdWwPKbU2FZZdKS2bQAfjXOX7mvMIYP9t3QMPxFXaR3iwDXCEhIitsgWqYkO/xFc6PhSIOwFnS4Kc8oePmBSKCU7RzvAoO85o81x8+cNHHNNSpdXmt9Xgt7Wr+b8T0t/4JQRod0tqVLcDQeA8pUQ5RmDNZ0CalLrJ0a4WFvUx3QBSpNQ/KCV6AZOAH4F4oDbCx/VFjO/JweZxyRhKRKd5KHcGekZviCus6Uuss3ynViqlRNwwp6c7gD0k9qpCCy3gOWCAUuLA3b3e+sauidlQNRC33Xv5vne8nnhQz+8O/WXLoT3K/cmj4bQDQNgFYZ3kLlrvDUZ95AtFnaIRAkQoNWrj+33i1g5cuPWQVUBPf8g9amlJemptKHp/gJVlI1hZNqJuKu/If79V3T1qi3Nd5aAvQGwalLDU1Sd2nZ6z8fj3gU3Dk3/fuk/SotK6IO62QinRE8MVKBvDD30+cHzdfhs6McXh/2rluitHAqwu3ye/4ZHajg5VWA98ZdQEQfQjCXZ/TXnI9d/WGLPAFzW1VjuSRkeXf7CiNmZxddjxqb968FtOe6DRaD+lRAwwY1T3qPKUIqcWCKHRaMCGmL2RQQBXYKR0CsVS/nTdF0IpkQt8JaX+T6MyZWeEDs+azqnR6sryx644KAFHP6BPSpGTmqhQKXA3kOsM2n5x3lRpONZnJXxDC3Kq5g8fcRnwvK3ajmlkNhOLC3coITBr8ehhE0ctXD6zqePVoe3aqV3h6OYet4ehAK8RiCdsdBKXmkik1GGlxPEYvlwjgeul1E92sFgWXZ+PgFSlxCFS6hqgLvPAF+ZPHe8ACRHtb4BFwPkASokepvVmr0Upse+1Y/r9ePvcZzgwdd5IuGBn3Q+sjgmfCJYPaxN4EejWGi9Hsa6KIwF8Ic9ffaGov85efzI2EQoC3ztE8OGj+31RftqQ14bGuSpPAC6++PMZozCf1z/cdUWDz+u0zNwYoNeBqd8dEuWoGTN343EbgV7Jnm1HasQgEKOBjNXlw2NWlw8HmAKwtGQ/VpcN0x9l5q4ENveNXROd5Cnx5RUd+AGw6cDU7xzJnuKNX639ywIgnXorvtc/f6Eo8qa6vts0wQW4jxvwcZ8Kf4Lzh81HV/991JOnJ3qKj/1m/Qn/98vWGdtOSPtgqta2hEd/uueORUUHbgTcB/f8VpYFYnzhHsJZUTpWQvh8I25HPJGWmbuoPVcZO0xhNfxMbZ8DNl/I5sBw7t+tE0/PSU+GuHM9IjS/l9N35qtnr6tLK1WEURWoQaTU1UqJ0rLE0OKUIufxGu0CCLj0P923Vcx7U4nD5uiT33yRW9d6if3ykWP+Nw9AKeEGvIDfbDuBf49aFJWXUuQcWhUTKq6OCcseWx3Js7XD7qoJOYJ2+yEa/YFAzPB6wl9G31LVcD3vFuZUDUeH7hU1NsQfhQrCgNBCC+G1aZvf/nX+8BHf+vatei4woPb1g6Zua9KXOxwf7BlM9e8qQGCPpiA7Y15aZu4E4DjQZ9gI33Pp01f5X7j6mUc6Ui4zSvsR4HQpdQlwmpS6RilxEvBlR8pm0XUxX+RrTAXgOYyArJ1Gqkup34o4XgD/BQrNtgtYo5R4TEp9h7m/596QZL0eRTWBmJXAvmsrBu8qD+vv3YodzwOXt4NcXZqIwMHdZmPlAFdEwZ9wd8+Wjw7rM+vvT17+P9O18DSUml53/VYUSHb5vC7IzqgGVkLGSuC1xvpd/ezFPb3BmOGz158M0Hvf7j+fEA7bBywpGV0I9Kr0J+xTWNMnBiPXLD9vObzeCMYjPS0ztwpwCM7z6Ajbyldr/whheGnxdXV/HgPwRcHpf5JnQeFRCEcFsT2gtGpwL2OFUUAH5GTvSAur/GN+YaMVTtwpwvcGtC2xVtuvfPi0LVop8VcgCDM8GMEBjQsjtVFuJCvhU4GQgHLfVlEnz9FHik8zjuTTgVLqmrGvjDzep+0Hwr4qb1LeWRHDHBBfbr+9e5EjDDhjq+3EVtsJC13wZWjs4ndCR/e6e+i9A9L+XlsNELU7J9sAeUcNutZR4+6phQ6jCWMEgl0PdBdaKOG3/wpcroW+3b0o9n/2za5784ePuBTDv3Wniqut2l7kKHQtbWWRuxx1LiCXTLv6pSXF+y//Zv0J96dl5s4uyM74qb1lqcsFjPHS1AtIA0pMCxhS6s/MfnFAgpUT06KpmAUAvsWoGPSKlPqj5o5hKrrPRmxyYJRq/dFsDwRWKSUullLnKCU8QPyeboGVUhdenJl7GTC/oGJowwaLP/qWbF0cHQOWD2tjmKnXLgXeNSv07TaVgcQ3MAJYnUCgqDb1kTpldcvTUecllTr2lYH43FauKAnA01e+XIj5kmeQ8Xr9PkYeX+KB3kf2+eqYqkBcn1+3HjoGOMF0WdPA78B3o7r/OhItqhcVj/lxv+4/Dh2TOv+KdRWDXp21PuPTGGelHp3yw4BA2FWyoPCofMA3vv+MXt5ATMm8zcdsAHwnpr3vXuha2qcavrPHLr8jUHbo7bRBCfim0JEKqzI/VEErJKO/4YOeJ4Z096t7OWu/+PKCFXWRl5cB/kR30aAe0YXsKgeqUkIgWSKl3uEilFI/qJR4Wkpds1/OvidobJ+bb1/B9Jz014HpeZPy5kmpF/jvj8vGuCmj0WG/S7/ovq3y8ptuf/c+Xzjq9rtrLuWlXZyLUiIKEKaVzIXhR7JUSr1SKZEI3Am8L6Weq5ToC3wa/Vm31+K2ptyv0aAJYiyPvNKAz+pTP/4j5RV7sfN5z4/xRwGztCv848+TU9+M+iZpntBCUi9Aa8Ft3aJj/SnC7nf2yh8+YpyV2gpenPL0+rMev23/wpo+XwCfpWXmHl6QndEuAU3mDfoVjOpFN0ip85QSw03ltX5fgVGeUCslxlm+hBY7I6Js61rgK6DVrmnzReqpiE2VGNkFvjXbxwCfKiWOkFJ/Z97rbOaqwR5FStTmxG3eXiS5i3YZaR106GQAR1C0SjWyPZDDMVYAyoG3W2PAiNU0ScTyus6KH9cD5xsAGv0PkZUwoS2U1ibIpzHOtxwy8gHMzDVHY6SfCgD/fPnEiT8AJwObpNS/KDUxBcN49/CLU542DRjn1Ru9vp6UwflvDzh8kTee4d1/XLFww9/+9Lm0Fx3mg5c3KW9ed7vfm2AP1AAT6nKktpQ5ld3+YRc6kB5VGZle5TTgeF8oKugPuYsaOTSSBRgX/p+QUpcD2NBm7XYBhsL/N2CmmUoLV8CWC/g1OigQPrff9qJS4qjjBnxyAIDH4R2nlMhSSmSAoXwoJb4zy2JiWhlqgBvMqV3AJxglNOsmvhzDPxGgGljtzosZiuGrijAs1usaUywPemxb+ZicTeeIsEgDrtEOPTJaJU9FMxe4Tws9N++IwUvyh4/4Ln/4iA2x76dUC0QqMBqYaWYe2Ot598YHloM4XhAW8a7ShVOevbhN036ZLzKYiuk2InINNqSsmts1ho/0zZayarEzlBLnAguVErFS6rCU+hIz8KJNkFJvk1I/JqWuC7bNx8gRXJdS62KgyAwGQSnRy8xC0OU5fcjrtwCM6z176K761kSHjwHoVeiqaWu5uiJS6jnAgRh+1q1GQXbGvILsjAfrKWVnmc9YBKJuSbxTYMo5AcOgVZfBxo2Rlu4a2P6du665q23x9mA6QH+XVzTyubQLHRo0Uhxy/VYRcs7bXWU1PSd9gl/bjgto2x1TTy9cXLddSl0qpdbeYIyvoGLob00Y6gVgp6kaQtg+MXKvRj77tWdsdNk9AGSVz1s4uqZyc6/Ar0Dd29d7AxNWJAL8WHh4DMbFc7QpYxhD8fCa7VrgFoxk3GAopIcAL0ecU5w0axWb7dNcq6NfwHhz2mlO2EhGLM2vHbE0f1qNLO0TigvOFXWBRBqbrdI+GMM39+tQUjBfb7eG06m+pB1NQXbGiuPTPrrOF/J4vl438Z20zNzktpjnx3+k3BCT263o1wv7nANg5sq8pynHSqk/lVJ/C5B35ODx+cNH3Gq9dFg0wHoMX/+4jphcSl0gpc6uc2nBsPDeGJHh4k5grVkAA6XEQNPPtsuxpmLIfIAyX6P5wbfTvcjxfNtL1LWRUv8ipW5OGdUWIRB1gW8hOmBJfFcUZGfMe/nEidUvnzjxLqWEkFJ7MVYurtydcb+vSl4FsKA68YfWkLOldGiWAI3Q7Kj5NZubP0x1JtiTXq8MOdaHETuURTNvbA/ZxEcxYW3fZdlKKfX0XfUx8pHt+x4RoZ0CrYdHVW1PyVWeGHqgPDG0pveV3jpF/JQ15UPtwNwib88UjPQw289bSn1KPTkejvhbY1h+d4pZPnW7qb45y/YHPbatPH/4iJuBmZi+KTaffULdGKZys30fnexL2tE8O/n/Xh91xxvF1YH4j4FP9rvzteN+v+fC3baGmKmEElInDx8WQ7dHMdI+vJV3yJD/OMqdywGCPfwDCRNyFLnWGW3fIMIi4ChyrQcIpvoGi6Dw2YtdG0Ixof72GudAjdYCUZs/fMQEy71j78V0LXkYw+/5ASn198BJHSzWdqTUi4HFEZteBuaZLgtgGBjiMAJ263JIrpFNKFHc0Xy19tSfAb7fNGHFrvr6XbobwLp+vvj+lg/rDiglpmDkTM9sbJWpNamODh0UVWOrsSHuB2Z3hDtAQyglDgR+M1N01mK420QD1VLqXQX2NYVkgOqwoykr1W1Gh1pYY2zB/h4RSq9bTm8Jy2pj7ioPOXscGlv6Tt6kvB1uVFLqkNacpDXu0Sk/jGnKeEqJJKXE2J33Ev8F4cV8y9LYJt8ysfSKiHmfkFJ/HNGeP2P1OT+ADnWPKtztHHGNMWJp/rwRS/MfbIkSYh4zAbhTIHZQZCL3AZaS0wCL7z3/C+BC0ONSojevuv75C3crps70PZ2D4YssBcJmZn5AhMV2C5h2hqNwas/2tktH4YhoO3W0NvfbvDYHGgTCspRb1K3u9MEI2Ov0SKl/kFK/ErHpPgx3l0hf7RfrdiolDjBjADod3aMKUwD27f6zZ1d9wzbj++sMWD6sDTAUo7JVmyurAEIjK+NDNWSVP9CJlNXxwE8YVQyRUj8npT5bSt1qadAGuGoOFkYRow5Nrdahaa0E9r6m5jYzPSe92X6s6Tnp8RBzuYPwggR78J8N9Xlj6WUHauzemmDMpiYO+wIwVikxoDHF0qz6sN2a2RS5C7Izggdk5dAjuvCEJsrR7piKaIPnsrN9FgYF2RnvXvjkP974btOEC9ZWDH7ho8zciwqyM5p1I1VKjJJSL5ZSa6XE8xjuIlsw3pqdAhGwVzqOb8lLg2UptzD9QR8Cbjf92C6KsFh2KaTUsyKaAiNXdgmAGbD1E3AvkGWuto0Ffm6NSki7y/DkvIPmbuzJ30Y+8wXcmbSzvn6X7geWD2tDSKlvqHMRaXOyEhKisLltYf3Mrju3Heb5XgdskVK/jpHr+EraMIVhlC20T4wtJOb9defZhNqaDk1rpSFsprRy04K0VjG24P3VYUePILaMh0/b0uAH+eXa0xwAy0v3bYoPK8ADNOFzMZXUZskbCLkWrSrbp0s+HCyaxmvXPXbhwMyPlwXDrrsF4U1Agy9SDaGUOB14XykxXko9W0ptWIuWQkvdPSLZHbcRiz2GaOAUjACVDV1VWa2PaWHLjdjkA84Clpjt0cB8DFeuN0yFdiDGMmq7WOciWV46ahWANxi9y6Ie3YodX2Io2xYRKCXipNSV7XgNHyIQwuMTn7bTfDsQeb5mgOQy4HXz/BsMFm8tltbGFYEuSs9JH7e7MUe7Q0e6BCgjeAkN2tbTWbvTfHT1ufGDnkfWhm3X9HF65+VNyms0B+ZfBr/RB2D/lAW7jMYEkFL/JKWe3xbL9lWB+IW+UFRqa49r0bnQ2O+1i+DTGttN5z3xrxk762tGPu9nNj/DUHD/5LO8O+4ebTGORddBKbGvUuJfAFLq1UB/KfX7HSxWmyKl9kqpP5BSLzM3rcTI3/OV2T4Z+AVDkUUp0c/8nHaZZqo12FrTuwbgru+f/M+u+lbHhAeD4cPaxmJ1GczywIVmrvV2oSwheKkZfLzLmJLWxvz+rlRK1FWbPE5KPak95jZdNo8C0YOIjEgdQYemtQIm2NCP29FaoKem56Tf2tQPY1ZFt3vDiJDYxZuFQCcCDE3MP6ypsiklRpjO3K1KvKu0CHTvK6dftreXON2jKcjO0BMHvX3d8OTf1s7fLDPSMnP/3lA/8+H4JfB/ZkRnrZR6amv6HllYABcC/1JKdAOQUld1sDztjpS6XEr9lpS6LmjkK4zPpW7l7XLz73gApcRIpcQ+baXAdvNsTQW4cMR0l1Kix876Ck0AwO/SndIft4OoK0rRZmnX6mMPiaNqosM+ssor2noupYRLKXFhxLXxHYa7ohNASl3Z1jJEIEHX6YodGvvQoVkC6pbVT35jcPp6f/RxwAOgQ2e+lfZhVchx8xcXrFxtKrASUG4R2pIeXfnYEm/sfmEcA4HwhkDU0+k56csaM1OvqxwYAsgvSd9puqp6TASylRLvSqm37N5Z/sH+KT8mztl4vLCL0CHA7NYa16Lz8cTlr4UOvuf5YRg5dJ8ffvs75UvvP/t9MwjkfOB/5tLO1cBmK0eqRWuilDgBKJRS/4bhxzlVSl3cwWJ1GqTU24DICkLPAb/U5dsG7sJISN8PQClxCLA1ImfsbjEocdnBxYU9mND/02XAG8BVjfWtU1hrokM9gF1mFdgbMFOd/aPdJsxKsMdhjw7ZdKMlVVuZNOB/wI3Af8wMHt+309z1UcYvTWsUedodOjRLQB3r/dHf8EeNavvy2rgzNwWiVqXnpG8EPRf0/cB3Pm1f9VN14qla09Psb2MXGv+vW8d5ARYXj1ncWJ8GeAGjRnCrKasA6ysH5gJ8s+EEd2uOa9E5WXDn5X7gTLfduySoHe9e9vSVVwMnYqTnORmMpNdS6pUdKKbFHoa5bPgyZsU9KXVNhGXRogGk1Buk1B9GbLoN+FvEi+SzwP/V7VRKTFBK9GnpfCtLR+SDDttE+HoMxaRR4ivsywF6b3Ktaul8exJKiVFKif3bedqRQLw9LL5pqwmUEo8pJR4DkFIvx8i/vksf57bGMAaKuSA20wpFnnaHTqGwYiTJr0t67+3j9N6MUempBLCZtXEBPh3irt7Pqx0TaHqSfA/AVftnP66UOLwpwkipS8w38FaloGLoQoDqQFyLb3QWXYuC7IyqzINvfbx71BYxc93E7Eu++LAAo2jETn1bLSyag1kx7y+ma0kNRjnniztYrC6LlHpVvSwEF2AUdEEp4QQ+BG6v26mUOE0pkdLU8Ut93WtB1Eqpc6TU3+20b1LoAICa6LBl6DC4E/i6PVOWbeseuAqgKib0c2uNqZQQSonREZucRKx6S6kXdERAYCMUAmUdqaxCJ1FY6/xZgTtBTPj8gpWP5E3KewIjTYkXdBBELXDfB+etztux/841/mMHfDwWINpRk4yh4DYJpcRopcRrSomE3Ti1+mwAHe4TW9Bkf1qLro1SQgxMWHnJDWPuXagRFWHt+OKBH7KLLRcAi1bmDIzI/zrLfV57VP7ZW5BSL5FS1wX3hoAjgf8AKCX6Ax9gFpNRSkQrJc40MxE0SKK7qKdNBENKCYf5rOneWF+XXxQDlCQHB7fKyXR9rgLOkFL722tCt08cHHCEQ0Xdg/mtOOz1wC9KiSEAUuprpdTXteL4rUZPZ23vGFuww/M1d6gPayQNpYnaWb7TpqaV2lzVtxrg63UTL7n27J+bU1YsGjgO2IdWigosyM4IHHBXjk5wl8rWGM+ic6KU6IuxHHublLpCKXFhz5hN20AMdNp8P5XUpvx62dNX7vd/Vz+7tKNltei6KCU8wCAp9RLgfeB0oENS7uxNmFavhRGbNgIHY5S2BcP39V2MqmGfm64DY4CZqZOH7w9IefIxR8yKPSwGGAL8imENz2lovoRy+0qAWk94PH+U7N5rkVKXYBRVaTfiKx09NHpZ2lr3obQwH7lSIh7D7/ZTKfUC4E2gjD+um05LvD2YWB1ydHgZ5E6jsDZGS/KdRrK4eEwPgN+2HRytlHAD/iZat+YDvVo7x1tVIHZ5fvF+MWmZueMKsjOs1EJ7Jr2BSzECrr6QUq8DKJAsufyZK66fte7kp79ed8rraZm5siA7o80jTi32WN4ADlRKDDWtqR92sDx7JeYz4se6tn2TS4mwODZ6VlLpT++kXhCdlHRMKCF4WcwXye9poU9HIy75/NvwmiOGlGIEUZ2Pkfy9QWxahAD6bHQ939bn0pkxSwk/B7y0KzeK1iRwX9x5Tmz9BCIMzCQrYUJzqlwpJaKk1HWVMa8BvMACM3Ds5TYRupVZXhv7DbDTbBbtQadXWHeHtMzccaAfBIEgPH1F6fDpQ5OWDgXW7urYtvAdMeTxDMOoCT8zLTN3gqW0dn3M1Dc3AG4pdbaUeoFSom9DUdnPX/Xc82mZuRuAj20i+Ml1z1/0lycv/195/X4WFg1h+klWmArqg0C8tfTfdvx4U4rbvTA22bnRkxDs6evvH1ZzlCs/ptixzWUPJQYGB/v4pLPAs8FW7XCG3eF+2h1O61YxMCQQzgaGO7PuD3s4ZNu/cI02ld03dybDlh6BI1K3OgnbaJccsZ2YNCADo1pfuyisSglxiD3meUdQI4wiR3VB3k16bislXgCGAUdKqauVEkOk1GVtJnDb4cMo8NSh7NEKK8aF5QTQCPs3G078bmjS0iYrokqJYRipT26RUs9sHXm0zagi2LwL36LzYpZRHQtEmUEvemcphAqyMz4bdtt7l/nDnpeXlqTnpWXmDizIztgjKg5ZtA35w0ccFYoLZjgvj5ocGOZ9FLjXXFa0aAL5w0eIYA9/jO+Ayn2dq6I8rpXRjnB0qJdvv6oMZ4Gn2FHoDoTd4d7BPj7p2OIqsVXbHVrolFjdfXuyfkehG0fhH89sW5kj6AwJG0ERBazDplcF+9YGHIXuufYS5/JQcsDvG1XVw1kQ9Z1zvWdN2BUeLPziLYFwhmx226Ke/X0ASolUDJ/YDxpa0XP7xEaALamBYwdEZCrY25BSrzb9hduNo76JO9WmRaxGhzAiv3ca5K2UiMGosPaqafT6FliulLBLqUNdVFllgKum/3p/lOUS0MYowI/xZhCau/HYW/537ePN8RfZAFRBq73ZKoE28h10cD4zi93DjO6cDpwrpV4LXNIcS9fyB87MOe+Jf50yf7M8E5iWlpl7VUF2hhWIZfEn8oePGAfMtFc6HMmPDUCj71nC8NsFIqAdYbv2hN2iyr5ZIALh6FBMOCYU79jmWgoEQomB5HBcKNm53vMTEAj28PcKxwWTXauivwcCgT61/cPxoUR3fswcIOAf6B2oY4Px7ry4bwG/f1j1oHBMKNrza/x3QMC3b9WgcFTIGfVjwgIgUDu6sr/2hEXU/ITfgYD34PKe2qlD0d8lrgAC3nFlidqpA9HfJm0CAt7Dyhzarmuj5yRVA8ERS3ddm9w8f4lZTvi3UwbYXSuik4FuNbL0KMdml921LKZWo7v5Rled7ih0VToK3dUa3T2U6j/YVub02bB5HFtdbscX3baPa6uxEzV/e0xtpfCLUpvXFqOd4Y1gz8ehK2rTK4fbi1zznOs8eeGYYIX3kIpExxbX7+7FsQUCUTnyxxXN+c4uqSuN/N8TTvzXlm4xSeb2k4CXgBHAn/zaE8sdawACTn01e6nCamZmCEqpA+02aVZCrA3xJLBIIK7CeKlQu3AHyMBY5l8PzJJSN+iX3NWItwfjwwjbzR+miodP29Jhz6k9WmEtyM6Yl5aZewrwJYhnXz5x4nyl6F/nU7grlLprf+ALoFrK1pFnyK0ffBbUjqNAHN/e7gAzZw3efuOfMH6VZdltAXVvykAxEAf0Ada2ZFn2zesfOSstM/cB4NYkd5EPI2rUwqI+EjOji0brUI/AWnuR8x3COII9/EPCScHBrsUx8wFnOC44OBwX6s8211rAiV3Hmu/IMYBT1NpSbWFHInAg4LSXOLvZy5xRQH/A6VzriUJjB8YDuJZvN6pcAOBeFLuDYJ6FcTu0oxbsmFQlal7iju3vd2wvGTlcY9NhEbRVAYFwTDAe8NuqHVuAQDA+0M+OI1ogBKAX7zdMu/zR27PbRKuk7WMJBO7fY9FOXQOsFYjicEyoWDv0CttGz49AsXdc2QhbmfNXd37Mr9qmi2uOLRGExeqx/91Ss/N/QetglkSe983t754ivNpjbp4BjAVW7+zYPhtdZ+5s/x7OTcD5SonD2qsSYElS8KPkUkc/4Hyyyr8D5tbvY1pUnwe+llK/iBH8eDh72Mppnjd+NnDsZ+U9XA8b7gEdwh6tsAIUZGd8lZY5o8xtr43CqF5yu1Ii3nSC3s6GzDnblbm+2UfOy8rKGgf6W4wHhe/hh6eccvDBT38npa7dHXmC2lUEFHeMsqpnAy4QgZmzBl8L1d8J/CvHjy/x/dHHUmgbQynxPEb2iAul1OuVEvu2Qnqq25M920aW1KZcd9bjtya9e+ODf2sFUS32LBTGQ8IpEAHHVtcFpuLTZuQPH2EHnDVHlMVpVzg6ZlZyLeD0jivrpZ06JvrbpG2A03tI+WBsOjpqXuI6wFk7tiIdcHt+il8JOGsPqBhDWDg8v8UtA5y1+1UeLILC5l4Smw84/cOrxwm/LeRaGb0ccAZ7+w8VPpvPVu1YDTiFIBVD2QYgHBvaGOxeu8C1POZboNh7WFkvAmJV1I8JvwHF1ScVVxw0dVunX6nwhaLCQCmAWdSh0cIOhan+o3pucSHqFuf2TlYB37WXsup7IG50YsA+viQpuCz5+uod/GWVEnZgqJR6KVAD9AISAKTUQTquIlVbUqekurEU1ralV8x6V7Sz+i/ACRjL/Dvkn92QOWecRn8DOAQitPbfn+UOj2a/pX4chjeAjuoXXfFlVNFBtt9e+NutsZvHzy5Le3dwbeLvR9j9yU/3XfDU4pUnHuUExJDPvx1DhOJbX5buUYVp1YG4dkt4PHPWYAEcATwLos4By2W0Y9BEM3PW4E1AKeiRgAbhmzlr8ARLaQWlRFxE3eY17OinutsPkILsDH398xee++vWQ377acsRf03LzP2sIDvjjd0d12LPYcTS/Hl1S8mYy+LtMGcII6q5/gv6hnrthfXaX9dr79a1XOcOgeHzH3CUuM4d8X3Xvy9FO6q620Rou5+7UmIcMERK/Wr9vlFe2zqAzb38l65R4t72zD/aWZBSvwO8FxK/bwABAABJREFU0y6TZSUc5sb2mkaX13rCJzTQ4zlgolKiv5Tap5QYv6fn1R7mqRqwvDaWw2JLugMdltlmr1BYQ9qxeFNV/15S6l8xct7VR4J2CkOPddiC0RlDK8c6lrqMPNF27AzbeK4tdUMCGJG5pC66pe7YqzRaD/rqcxEWATRaC8PltXZD5pwJ9ZXWZE/RUIcIJtHGzJw12A41N4DjLnDFAeVGAQaE6T97G1QPBltfiCrFUGqFUVUMD4ZfVZd/MOwOSokjgU+UEidKqedLqR9oi3meuPw1X1pm7mjgc9A5pz92R+wH/7h3r05hY7EjdUvJHS1He9MRynp74LHXDBRC945IbzgJOFcp8b/6yk9ChaMAIOjQ/waeATa1u8AdiFLiMOCndlHUsxLGafQ3AuEQCH/vza7eSokAhkvCA2Yw7bNALmYhoj1dWQWIswU9AE4Rbs1CSs1mr1BYt9b0ngNclZaZK14+cWI3IC2iagmAAu3XhB0Cm09gm7Ah9csfKUv22bWYN8DhesbV6zN/YMvRJU5vL4cvbvmA2oTlY2O2HbLS7ksWgZiNg2oT8o/zlO4bbQ/G98AwyzaYBWBV2fBFQKNVTXaXWbOSkzRxl4HjCogeAoEAeKdC1J0g9qeRJX/THWAmaI9ZCvfaWbNSkjRxr4No8Jg9EaWEA0iRUm/GsB59hOGv2qYUZGfUpmXmnproLl62pHj/506bemfhhzfd80lbz2th0dnZ05R1I71hihPjGTEzLTN3wssnkoWRjeZPyo9GIxD0W+8euGaQb3N7y9uRKCV6YOSofQS4rU0ny0pwhWz6UVvY0Is02iYQEiOf9rUYEf8fmdk59qoMHT/XJM4FLv+msnuH5g3fKxRWmwgVhLU9amDC8n7A/cCxSonedTeHvtlHztuQOUcSsZT/9mMv94RkGw7vx3+7467XlBK9i4c/nWhUlTkS4LmsrKxxeJCEeDnruvuuNP1gty9f0UAWgJB2OIBW98OZOWtwd9DXQPwdYLdhJLI+B4LvTxi/qS5VSqM3/gnjV82bOWtwnSVjIwQf0MRfA/pqjHQe/r3ETeBTIM507q/EsHy0CwXZGeXXPDfpuJnrMmYt3HbIS2mZuUcUZGdY1bAsLPYspJl4ZrthQ0rd6H11S2rgqJ5bDC+yvcGaV49i4BRgWVtOUjE1Zkw8jufsYXGgRoc12qYFCI2SUi9SSvTaWarCvYA61yDPTnu1MXuFwnp03y+6zV5/MkMT848DHseI6tuOUiKOE/kt8qaRkLBudEVFP1JSlgwwN83G8GE8EcAIyuJbI68qoaysrClZ2VnPb8ics335qiEf1gRXaR8hwrsVuFWHYRUN/h3CB4FrHxBREP5dUPW8JmHahPGrmnVzM5XReQCzZiW/oYmbCY4jzd17bN5YpcQBwELzYTC9I2X57xU5eWmZuYcC39lEaOaUZy8+ddqVL/+0ywMtLCy6CspwzxJO0CEQCkApMRkoklK/G9k5ymtbC7C5l/+KNUq8KaX+vd0l7iDMjCyft9kEWQmiODn438Rq+9Uhm66xh8UZAlFYmOq/rzIuPG/oRb55phx7s7LKvlEVfRZ54xkbUzYYWNxRcuwVCmu5L3EWcNfvRQe6npPP/dJAl0uBR823qG0AmzePHg5QWjpwq9nnaqAw4phTYHtQlg30tKysrEVZ2Vk7Xb6KdVX0jXLU7LaF1VzC/xbsDqNwVugrsN8wYfy6Jbs7NsD48SWBmbMG3wJ6DsYEgbob6x5BVsI4QK7t76tkEE8BZwPvSqnf72DJKMjOWLXP7e9mAAt+KDzy231uf7ffsvvP2qtvmBYWewoF2Rnzjst++I4VZaOyhyUu/vTLzFvqnhdXAiuBHRTWhArHWoCgQ98KrAP2CoX1pympV9jLHKc5CjyPpH+3anarT5CV0BN4sVuJ46Ti5CDL9vFG+916npS6sCdM6NnqE3ZdYm0hO8DK2pgL03PSt+VNyusQw5Vt1126Pr9sPexngMLqvokASomDlRLHRHSZA9xRp6xmZWWNCwZjHgLw+ZJuzcrKGielnimljnyz+MR4S9aYyzs2DAvkTtlU1W/NmvIh81vhtCTbFWZCYJ89YfyqVlFW6zAsrt4cY47anD3FHSB4b7zUhiJ+b/91rod7bXJOpS3f4lvAsvvP+vmIPjNvLPKm2n2hqBlpmbkdXmXEwsKidUh0lz4iCBUvL9u3KmLz0cA59fuGhbYBDFzj6Y8R8LPHkz98xLjoWUnPuH+OO8le7Mw1s0W0Gmtf9DwfcIQ3a/R44JrFo2p6+d16fyl14S4P3guZX51UClAWcp4FzEzPSW/V/0dT2SsU1oLsjGpBuDjOVba/uelh4KG6/VLqn6XUD0YcIjGsioB2mW2UEuOUEhcCZGVlzRsyJNcPdT5Fwk8TKldpbK6QdraCD2vQ9G3U4abO3RIEvn+A9oLH3hbjdwQ+V/gxgbADdoFw7rM8qlhKXbXLA9uZF65+5kkQ5wEHxzgrfhx060d3GAEbFhYWXZl3bnwwrLHPAsanZeYKACl1RUM+qlt7BI4ACDq0fS/yYZVCC5tAIBB17mi7hf/+uKN8D8Q9RlbCJwPWuS+r9WiWjPTeR1b5tKMm6MK9ydWiBfTAsM7ZQLtphf9HS9grFFaAPrHr3N2jthxnNq8G/gJGpQqlxCgzGXAdCvAb/x+EEIE6i+iVGK4DNoC+fX+eaLMFlwBrgQlZWVm7tEB67DXdU6M37XaWAEF1svFXQAFtFgw1fnxJOYhPQJxqpMrq4mQluKK8tn4arbWR5qtTl8gtyM74oEfUppeqA/Ejwtp+D0ZUsaW0Wlh0cXrHrPsd6HP8gA+PAVBKdFdKPGmm09tOdI19DUBhT/95SokLOkDUjkCZv8O0wj1aZ8Uf4QiKb1x+cSMwUaNztvYIxI06J3Df7om516CAWlMnsnlEsENc1PYahdUbjPppY2VaDYCUekmE6f8oYBFm6D8Y1lNggsPhfRMEWjsHmbtuA4ZJqcPmOLMdjtphLlf5jvUJd4LT7k/oEb2pz+6ejyYuaPwV/lfbL9UHPwd6CCoubtt52hjDb/UNG6K7QPxTIO4EJuyiNnSHs9Xbe5VhyRcAUR57zb+vf/5CZ0fLZWFh0XJG91jwI8DWml6nm5tqgL8BwyP7xVfa1wMEHZwDnNeeMnYUNbL0Z4BQXPA3YEJL8u8qJYb/9r7jfZ0V/5hAfGbThr0WCAnEssF/83W6VbXOiumzOiHaFnrChi6q1Y670nPSd1uPaS57RdAVQHFt6g/A4WmZufaXT5wYxrgxbAZ+wUhdtEMkdlZW1rysrKz5wMGg73vooWvivN671gB98/LOP9/rTaa2NqF7OBznBJKAmVlZWbu0slb6EyqWFI9uBQdy2yAgDJ42j9gTVH2hSUATdfvMWYOXdElf1v9n77zDo6jWBv47szU9ISEFAiw9QZoIAiowgj1Yr1dU7IqiqNhdFTVWYhcriih49bPde62xXYkriEFQipQAUkILIUB6sn3O98duNCIlZZMNYX7Ps08ys6e8szs788573hJICD0PiACkQOS3dUW1Hg4QLsAMUrj8kWf8uOOkvTZ77kTgi8KcrCNlmVBHp91gUjzfgixavnt4RwBVlbUOh+hQZxCpw69Ig0ETZBZEnN5has2u8EjbygiZDODtU7ux/7s7GnyddjiEMnxRdGqES7lwaFTUk9E1BkNwJW2hRI4EFBEonONoGcHbL0GlNX/A3AFvAgvNwr9oyNtHzfVKJbchQVhBv1f18v/592T9IpNoQiGQI0ZhjTJVFdV4Y0wDkn7prapyrcMh7gcWq6q8GHj7AN1GgOwCwuR0Jj1Xt7O0tBdGo6vSaHRZPB4TwepQDUz7JKx+aQyFD+tZoNSCMuTQczYPSXy3gK+sqTsw7zDNx6oCFoEgWJJb5TBJ0VWYk5Vvs+eOA1SBdIxJ//of+TvVC4HPQC64+pXr35x9w6tzwiymjo5OI5gx6V35qT03DzjFZs8VhTlZcl9lFWB3R+/xqbvMVMX4IzqEQc5wEPl9BwXA+mvsNw3qkB03xmn1Zx9tilStLqEBisWtrNvRybMhwqlc12FqzQ4RzAwDOA4jY0Wr4XAIk1JmNER9lWgQXhHl6+xOUyqNJqXGYMIvIrV4byel0qjN1YT169SIn9YbracY/dxn8vnvfeCWvqWxRl+irDbuNPjAjIwwK1q8qDHsNfpRkERM8RusCVVSHrUVESyG4SzIyGyU9fyIUVhHpP0QOW/reFKjdpwErCXgAlDicIizgZ/qMgTsg8ofbhNSA/HqMce8vik6uvgmIeTwdevGn7Zz55DXCHyOh3xqCzjXS0vXmM0pzTmWQEorw+C6zVZQINXgcjRAXRDa4faDdwBuibSKwANGcpjlaRTB8o3Bz/zMfJs99x7gGrPiyZm3dfxbAx9457JKT8L1hTlZLZpgW0dHJ3T0il+zYUN5v0tOtX08HrI+dzjE8cD9wBV1bmtRNYaNALs7ekdsdojrVVXefbAx2wl1bnaHrqyUHXcK8E2Ey4DVJamI9a+KrzReaJpWWfCXNeuAktpm7lsOh1DMa6KsEQvijf5kT4JwKZFalD/RuMPi9Sd605Qag6JF+ZONu8zV/g7erkqNwS8tWkelzFStxfq6KE6DT5q0DkqFsVqL8ncWbkVDkTFKrcEpLVoyXkUKiVW4FJ80yXjhEwI/RuFVNASR+DEIvxD4hBCaMCX7+yrCL8ShJYeAD8sfz1YClMSAakBa3U5NKPgMJPoM4DWCxyCxeBCKpM41o9G53Y8YhXVXTafvgOlLik+oq/+70+EQPYFPgGvZp5hAEEcwAt9EYBnh3ZiYnUuA51RVSlXl7ezs7N8JPrUdyh3glG6fWL7dco7w+M3H16sh3RTUwJ+mfelNwBFU2BWQh2c+1uyKfJEdNw44EThVIqfufC3C1ek65z3hFq0pFOZkeYFXb5516X8LK3q+/tueoWOB1cMffv3LoakL73/52rkrwi2jjo7OwemTsGbehvJ+2Zsreo8jUAIUIJXAA3UxQEy1YQeAzyj7A9c7HGKaqkpvWARuJVxDK/tbf4nF3b86oQHNjyGgPSmAL77S+D7ZFQV1bwZTYqlSSEfNGXuXmwqtFm9XV5Jxt9nk7+BNNm61un2d3V0NpUavP8GXbtpq3evr5O5jKDXV+ON9NtM2yw5fmucoQ5mxwh/n627cYdniT/YcpZSbyrQYn81YbNniT/RmKJWGchmppRt2m7Zrcb4eSrWhUrNoyYYK0x4twp+qOA1OqcgYxak4pUJUsrevFLJhCmJDkIrUMEopBR5p1oxCUiuNEiRO0Cz4RRVG6ZaKVqtFaNXCJypQpBeBS7NqRuEXFUCtNEifNGsIv6hAE1XSrGkYpQ+fKBdeUaFF+cWSDpbOX6dG3uU1YPAa8Q8rd19/wSJfnlJuqnYPrpJajL9m2DO73XWyBd0B5vXZLs0P/8tvAKRoQjCdkEdIlgybPdcCOIGHCnOyHnI4RAzwIFAKzFZVuV/foGBFK5X9KKQOh+gPpKqq/K6BMowDvgsqf25gXFOU1j+LBmAMHlOLL9HPy+vsAOsY8J80bmzhvJacq6XxPBYT6THLnZG1SowUjDI8ULkw3DI1F5s9N0Xgf0AIeYMiNL9PM08HnirMyQpr7WcdHZ2DY7PnbgaWFeZknbe/932PxN5h9IunaiO0pMi7q46IAiJLr+g0NWJR3PO1Y8quPea14v0Zk/4ksNRfvyT6H4G0BRmZ10rkH7lrBaHRD6WQoOCTZs0gfKJKi/JHCZ+o0CK1SKVGKfIn+DoKl7JLxvhjlXLjJn9HT2dRbdiqxfkTDKXGdb5UT1dDhXGTP84XZyg1/e5Lc6cbykwbtThfpFJm3OJLc3c07DFv1OJ8ZqXSWOxLc8cYi82FWoxfU2qVcl+aRzFtiNiJglOL8bkQOI/+vx1/cydpSep8UgFHQ31YY1zaKW88538AcAjEtMb6sB4xCitAD/unpSaDZ5fbH3nVnNPGLwF2A4+rqnyqMeM4HGIs8AqBqiRDVVU2qCiGzZ77Hn9GefqABwpzsqYfpMsBmZdnuxsMOeB8ZdzYoilNGaNx8/V8CpgybuzGyJaeqzXY8qY1o+tW85cCEQuMJLvi93DLFAquf+3KsQu2n3JHtTf2dND2jEz7IS85sviqGZPeCYHftI6OTqix2XNngzx3WMrCpI9unf43paP41Yj/pO4yn7elq7t7t6tchWEQsdUpyMj8B4GKX4My1xYcOj/qAfxTCzIyn5LI2wVCSKT0J3s2SrP8wtfZ3UWpMBZqHbxxhp2WNb50V6qh3LTF38EbaSyybPB2dcUbSo07tHifMO6wFHl6Oo3GEvNuLcrvNBVGVA78drOvpY69PfPLjckXRX2X+H+1x5c/fczsnXc2tv8R4xJgs+eOFCgJbn9EAjDviq+/GDfntPF3AMuaMFwxgdyrrwH3NbRTx4idJ+12pgKi2fk/BZWvSOJyQBzd1DEaSQJQ3kpztTjdrnKtJTvuVInM9xnloqI3rcd3u8q1NtxyNZdXr3srD8iz2XOHJVr3/Ct/54kXGBXPcZ/ac+8EPizMyWrVp3AdHZ2DMzDpl+2/7RmakBhRMgF4z+EQtwDnqKpUAaJqDBsAqmL8HR0OcTswc5+qi+2R2ODfqga1PrB/6n8FYgpgEgivscRyWVNSZOmEBsvymI4Awi8+a0r/IyYPK6BKhBb0+7QYhG8s8BLQ6ETMwTyup6qq/FxVZYN8BYc99MZRu51pSX0SVv0MPEAT3QHqGDu2tArEJ2DtOi+vZ8j8YA6MewT4zC0/TyuSXfF7SbL3RkUTHVKLTV+THdcurMcAhTlZS07o/F3mkOT8KT7NXAa8F2cu3Xz1K5PvCLdsOjo6f5IeU/gpwOq9g48J7qoCdjscwgQQU20oAtAUTMBEoFs45GxN3EdVjwRwDqtsliUzqJyOI3jP1ZXV8GLcY+4GuCIWxf3UpP4hlqct4wj6jVoBRQhtCYFMAc87HOJYVZWLGz2gQwwABgAfqqo86A9rtzPtcsC/uaLPuYU5WTsbL/7+EJ8B5wCDgOWhGfOAc8WB1u78R1JucL5f/lxUYlyF4UXgXbLjzie7wh9uuULBjEnvSuAVmz33NZPiuUwI+fq8rWc+ZbPnngTYC3OylodZRB2dI55Xrntrqc2eu35bVY8MAFWVs4HZde/7DNJi9Av6rrOutdxbdWRkthJ0BPAne0qbO1RQSdUV1TaAFuEfKdzK2n5r1jbpHnvEWFiD1sxxAu1lkAxI+vUxAsv6aTQhxVEw4Oo34F3+XL7YLxn3fXQiyCnAj78/fl6IlFUIVKCSQE2T/GAbh7kGzHuDAV/tivhba14WiFuBc8rifT8UvmVtBYt161GYk+X//fFz3xqd/m1StKnifgLFMJae8eRjG694ecqwcMuno6NDHsjRV78y+Y9VLIcjEEG+J8k7HKA41XvQ+0x7wrIqej3gHvbMbt33vj1hlMM9fWujmtr9iFFYIaC0bs4586Z+iStW/7Z72NBfio+7RFVlT1WVXzRhuLXAvwi4FBwwEttmzx2Z6I7833CXKbKTTxwXyjrw48Zu2QneUrD0C9WY+yOopPYJvua1R6WV7IoZezv48hPKjcen7DJlh1ucluCFSe9UrHrk4keBnr3iCz77vbxfD8e203+02XOfsdlzE8Mtn47OkcqINMdeEDEG4b8EwOEQnxO4vxBdbVgPEFNlcDoc4mmHQ1weRlFbixga6r+qc1iwZmDfZKXKqCi1SlP0LeAIU1jrWLN38EkG4dO+3XLWXU0dQ1WlT1XlZaoq3zuYO0CGx3DjBdVWwwkuIxOqLaahLsOkps65f8zPgbHrvLyezSpGcHC8NxFw/q1f0avdURXjH+UzyK8iXMr9ZMedH255WorCnKyy7+x3nmOL/b0PiHeAW8yKq+j85+75zGbPbTd+vDo6hwsdrHveBVhaMjIjuOtnguXCo2sMxQAdyoweAtfe/mEQsVXxdnOO0KLbWczEEY7wKAMATFsivmzyGEdSWqv62Oxf2EFMn5j52uyTu30+HDhLVeXmxozhcIg04Drgc1WVv+77/iUv3jrMsOHUvGFuU/Q++d+KzLFbqsxRxduqdw5/A1gOWhIoowHHlJljG+xvMy+v52BgGWjXjhu7+eD56prIvLyuX4AxC/AHCykcjqVZG0Z2XATwnUQO29HZc3P6JNfMcIvU0gx+8O3BSRG7vt5Q3i8F2AE8ODTlx7f/fev0dp2cXEenLWGz564EdhbmZJ1Sf7/30di7TT6RcyTlYf3t5O6/C6fSccCPG+PDLYtOaPhtbPccU5H1bmnWUvr9tq6kKWMckRZWgBM6z3upg7XEl7f1jMv8mrIdaIpfxbEEig+8su8b5z47bcDqPYPz0/wiEkAipUT6CGQmyJN+c1p18dBxwPvAWhA/gnwMmPfy5LzGLLmvAL8L3NlNkL+BmLqBWAbiftqzsgqQXeEsj/P902WVpBabZ5Ad1zfcIrU0yx+6bPl39jtTDcKrAtuBN7ZV9ag6/cnHrw+UE9bR0WlpBNr3Am3U5JlXR0OgdKfDIax7E73HAuzu6I05+AjtB9M263bjHvPKcMuhEzq0eN95WoxPa6qyCkeowupwiInXDHg+OyVy5507a7qYrv72s49VVa5qwlDfAXcBl9bfabPndl1WMvLTLjXxoovPpJijiv8rEPcJxOgpM8feNGXm2EuvfWZinClidwQwhECCZAjUuG/Ukvu4sRsl+NeBNXleXs/RTTiGgzIvL30ggSWoOePGbpzerpXVIPG31hSVJfhUg58K4Cuy41rQ3aLtsHH6OT8AI49Nnf+gVzP6C0oHvQLMPyb7LTXMounotHvGpH9TJVGsfmm83OEQ8UAFcH10tWEd/OHDepXDIV4Nq6CtQwwHiQ3ROfwwr490IlnanDGOSIUVGAiMKygdNAOYD/LRS1+c2qBqVfVRVVmjqvIpVZXr6/Zd/9qVQw3CNz9aI/Hk6qgaU9TOHTGdFl00ZebY6fsu9V/77MXuKTPHLgOeDabcgkBNZEdDZQgEQJkzQRiBb0MdECXw5gT+qzmsy7E2lk7XOX8SiPESmeqyaMsK37J2DLdMrUFhTpb88JYnHi51JccD14PsvdeV/P3Y6c9utNlz2721WUcnXFiNztdByoU7xnZRVVlOYDXu1+gawy74w4e1G9BaxWLChj/O29vbxdUp3HLohIaCjEyD8Cl9lGrj/OaMc8QorM9MGD/ymQnj73lmwviRqirvBoYU5mTJeMveuwSyY5SpaqfDISIaMlZBRubIgozMe1eO6jnW4RBXOBziVodDnN773v92Wrxz9AKj8Ha5vMqyRkExemvSTrzo9hc9BxsvqMiOBVmF4ilv5KGpIIP5dKWREAdESSJs4N05bmxxe6+s8neyKxbvSvE+bnGLtNRi0+dkxxnCLVJrUZiT5S3MyZp5TMpPmcemLphXWNmzE7DaZv/itRteu3JguOXT0WlvzJw8ewuIpbW+6BEAqirvUVU532PSIgFqIzRFVeWDqipHhFfSlkd4FYu0anr503aCa0jlcMDqj/Nuas44R4TC+syE8SNB/gjycWBeUGmVAMsfuuznISmLdpYt6oN23/CnCjIyD2qhDL7/A/CYYbcp17TJ+hbw7O7alHu9muX7UleSdn3cr6sjpTJCMVVPmzJzbENr1EuQUWimZJDfN8KP1QHUJeFtlHX2UMzL65kOhkwwvRSqMQ83Uq93PuqM0B6wupXhwAtkxx1RPp3/ufXxsg9vyTlJk8ZuwCsCefV3W8avOPbhWa/Z7LlHTF5IHZ3WwGqsyRdox98865JEh0MIh0N0Ku3gGwFHlg+rUmvwmX+PbJY1TqftoEX5zwNwDa0qa844R4TCitDOB5RAViYZYYmr/vLFq8feXmdxvfK9/DseXDSX1L0VU4B5h1BaVaDO0mYpfXfYuw8snPHutIUvZgCdB7hNV5oKT+xjTVi3J7HPf2Y0Qkr1z8xRNNhSGvAp9T0a2PI9GFofU/fk4D//Dd2Yhx+Rd1c/AjwF3FDS0fufcMsTDgpzskoKc7JuPr37f09Oj9lSUFLb6Vpg4wmPvvTYnW/+Mzrc8unotAeO6/R9iUQx1nijrwLOAHYY/KIKIK7CUOtwiKEOh/jU4RA9wytpy1GQkWkgEASt52FtJ0T8FO+SSE24mp6DFY4UhVUqXYP/+EHgroiO91RHPA3yEZDz4ox7X4SgOgsWDq4sOgC3RAJCvNv59Albq3pMdPsjkpLMux851Wm+EWl0uyu6D7ngprmNKT/mABFcAhFeGmUpNf0Y/LuwEfM1AHkDeN3jxm5cG9pxD0vs5XG+wuTdpnO9j8Zeeujm7ZNXrnvr+7x7busHDBNoK7dXd7/3m8Kzi2323Its9twj43qio9NCCHgNpD9va1YCsASYGlMVKBwQX2H0EgjKtREISmqX1JxUmgrgPqq6W7hl0QkNwi+OEoj1x8ze2axAunZ/g3nzvqO7gDwDRC6I7/58RwDCgMRSbozsgCKlXwg8BqPyzNETuva859Pjx05/trvNnntCxn0fXfXP5+15wx564+vTz3n6ibtOuK7mP73G4FEMnLL1VyMSQMozTcUPAaOAm2945bRtjZFzysyx+Qbr3ncBhOI5tzG5WEEGE0nLAY2Z82DMy+uZBJZY0P4dqjEPa7IrtPJ4/2BNyEUmn3iD7LiQZ2Q4nCjMyfrlrJ7vjxvX9Yv73H5rEfB/Au3Xq16+4Y5wy6ajc7gy+4ZXS0AslignqqosUVX5gpD4AKqj/AZVlfmqKgepqlweZlFbDKVGSQCQJqmXZW0naBH+E/yxvu3NHafdK6xI8SaIyOjU0keBh4BgNL4EKf2KlEpsx1Iqrih678duR/1gP34y33UbOtkvDT9uqui7CVjg8kfOXlI86sRqb+xIQKxM6vXlinEdHD/2OmrxyOLVjCpaLpM16U8qOtoSmbRyJ/B2U0SN6riqB0BS5vsNjsgPZgV4Orj5XAizBJwJwgCW50I03mGP7UpXhSJFlkRu9ivym62zrVnhlimczJj0rpx9w6uPu/0RGcBlVqOzW962rKcyp32w0GbPbfeRzDo6LUGCdfcygTb8plmXpjkcIm5XivdcgL2JviPC9SYiP14DsC6PWRBuWXSazy9TUjoqTkOSt3dts8cyhkCeNsszE8aPQaQeb4qp3XbdjJ8WBfedaLC6v/R7DHHxVR5Xp7IarWMlfUpuqirPKb3iVpCjA/lQNRIse/MtBtezVw94/sI4S/mzF5yx86c/Rx9PwWuZxpp4w64rty7usDr2aA/SWG1N2KBe+ejUJpUPqykZtAnhH3rBTXMaU2FI5U+fWiW4HQI/Vu9UMBaDaFbetHZHdkVp8cyISxP3Ghel7TS/S3ZcBtkVxeEWK5wU5mRpwL9unnXJZ5sq+jy3as8xZwNLRzz82vwhKYumvXLdW/qNR0engQxJXrR53tYzRamz4yVAgtsih8IfPqwG4FPg36oq54RTzhakzt1B92FtB0TN69ATwLQ54q3mjtVuLayBzAB8i1QivFWRycFtbv/gi3xrfPWLaEZRHhkRVdA5yfJVv97dVVW6CPiRukD6QDjL3Em354yevL13wtqxyZHFCoDDIQY7HOI1h0N0yVxb4Ns5ZOgLa/veiOKPiETKmMjv48Y0VWa/O96ANDS29J6DP8q+Cg8hyBKQl5eSCIZBUFscKEygU5+0yc4lVTH+8UYfJuALsuOOCMvHoXhh0jsVX9zxwFVAT6PwPrXXlTz668JzHDZ77nM2e25SuOXT0Tkc8Grm10F6FhaNSwb+lbjXOBMCPqyqKv1AHNCgFIyHI86R5ccCOIdX6NeM9sEAAEOpqdmGtHarsBLIT2oK/m+gXiBV9DrLIKQEIZBC1FklKczJygfGgXgAxLjCnKx8VZWLgI5AnXW1NzCBoGtBVY/4s6QIKoxSGjSD4bW3J741s5HlVQFQTJWDEN7IxvQVVFQBCsjvCFHZVEn0uMCpYchu7ljtlcSba78SiAkSeXRVtH9F4VtWS7hlaisU5mSVb5h+zl0ndftsmNXg/BC4WaBtmvD8XV/fPOuSxHDLp6PTlnn7xhcqQeQDY1VVFkTVKDsg4MMKoKpylKrKdlvtStQaIgEwymalQNJpG3i7Oc+XBukGtjR3rPassDoCfyTAH1H3BRmZY+NqXGchBMiAHyv1rJKFOVn5hTlZ04PKKwCqKv2qKrXg/x8BiaoqSwDibf8bIoQPND9CahSljhJV0V2vA354eXLeHW8//Ojw95+7PvJQwr48Oe9izRszCGlMAuY1XGlV7gMQVLwQwpRW1wA1YN0TovHaJ9kVX5Qk+96OqTb0SC02/etIy9F6KF697q1f1jx64UXAwNSoHYU/F4859YtNF6y22XOvsdlz27U7ko5Oc+gUvWUtyCFTZ03sXpLsHQ9Hjg+rdUVMFEDEwnhzuGXRCQF+McSX5vZkri3QmjtUu71p3P7BF/nPXXLqr5pf6YlmyLr9gy/yATwJvik7OsQS4faSXlqpRXj9b52cv7hRil5wWQaAyKQ1Cem7511iqvK+6LIkUNRpVMAFNpB+5KmqouNA+Hl5ct4GYF1k0kqT0Vq2pXL76PeEwZVoiiy52+tM6gCRPQIj/tFXpQG+qJLoZNB2gGxWfrM65uV1PQOMJwMSxP/m5fUMidW2vZJyQ+2Vnsdiqqxu5SZgKZATbpnaGoU5WauBgWc+/dA/V+4ZehswK9ZcNv3yl26a+cP20x4ozMnS3U50dOpxVOKKlUXV3dha1eM8QxQZAJ23mzOBQodDPAJ0VVV5eXilDD0FGZkjJdIuAvfBfxVkZBZlri3Q7z+HKQUZmcKE1SKFXFeQkTmyud9le7awonlN0WjK7vr7fk/ukFJjNdOvaLfWu6TcnV5W1aSI/jpUVZaf9Z+nX+q2/evqjuW/bgTpDvjASidwTWzXvOcik1Z9AiwD0p2lfU+u3D56EpAn/daPPFVdh0pfRA/gIxBOwEc9i/DBmJfX4xQQKijzxo4tDdFNX7k/mPJL8KfirHMQzF7lFuD/gOk1T0T/RHZcqDI1tCs+v+PBj4DjooxVF5kN7tgftp82DVhgs+ceH27ZdHTaEkt3jXgDpDtqT+TlqTst0QBGTfwneG3R+LO6YbtCIk8kcN8B/f7THjgTiBFSDOHQRZkOSbu1sAbLsfYFBMiFz0wYf7MpylnoMycOi6l1k1zpfBz4srkav8MhTgN6pGgZzsTdG75NHvTmFhCPuytsV11yz2Pvw9i/tP/wxcsNzrI+faqLRt4OXEngocFHQKF9jsAP1HGoPKzz8rqdBoYvA8fHhHl5PWc21xIayL1qGBAssCBpoOJ8xJNdocns2NeAiyOdykiJXEh27NKyBH+M0cfPsVXGPIks3NbF49cUfrFd6XKGW+RwEbSmvj911sSPvyk8Z5LLH3kf8OPJTzy5M9FactH7U5/+Idwy6uiEm72u5CGAaaDYNEBKEbwcBxQ4VZUPhle6lkMapVB8ChIpRaML6Oi0NbQo3wVKjRECek6DV44PRLtVWAl8MFogl6gUwIveGisoghqria8G9vjy9g9zQ7HUcB4wXirSKKP8sR37vfcOgSjOhfDY3xoHq18VvDw5bzZwMWCqq2wVVFIPKdO8vJ6dwDCbP9MD1AWVNfN4vM+AMQLEpUA3wKG7AzQMgTheIv0CYQCQyOSoGqWz2SN6A5cKBF23WZBISXbcDk3I7RVx/hSTV8yPrjEs9Bpl0c40j1/RyE+f5KoI8+G0ODMmvesGXrLZc9/ql7jszY3lGf/8vaxfns2eO9ukuLN/f/y8onDLqKMTRlSQYpHWDw8mLNKjKaJ9GxAKMjIVBeUCYKtAvAZ8r7sDHN74UjwF5k1GJFILxQOIkLJ9uo8F01jNI6DVe4GFIE8KGFwlCHHv7R98Mb258zgcIgLwd7yjl8trc60Z/O9t/RvaNxhYpdIAi2odeXlJ50piXwSRANIIQiFwfM3yNc3LSxwqiV0C7hXjxhYNbuo4RyyBpbr659s4sivyyY6zAF2cVi2jPN53Xny50RnhUqJ9BpnhM8ohFrdQROA7rM8uvyJ3Vcb6E6wu5bsIl/Kry6KV7O7o9VrcyoLkKbWNTX3W5hn+8Oupu2o73wPyeqPiNRyVuPz7FbuP/UdhTla7V951dPbFZs8dCTIPsA4R6/0Pmd6eNUDZ/DbZFfkOhzgTeBg4TVXlrjCLGjKWTew8zfpr7CPAJZlrC94Ntzw6zacgI7M3sB74EHi+uQ8g7VZhhT+UVpU/tfp5SBmhINGEclxdIFZzmJfXMwu0Uzo8a7rGvJUNiscwedfMtYuAIcAmVQ1Nao5ABSvtZuBCkDVgOB6IJHh8zXcH6PEmcKmgYszYsXt/OmQHnb8TUFpVwEF2RcO+j+w4I9CpKto/sDraP75DqbHC4lE6eEzaYL+BQVaXkAKxb7Rsmc8g91RH+6Mja5UvzV5lVXWUv7IsweeKqzB+F1tl2E12xWH5w1Yff75fhLH2y4LSQd2AvSAfPc328RszJ8+uDrdsOjqtSUBp5VngGKBrYU5WMYDDIcYCtwKTVVXuCKOIIaMgI1PxJXkqAItreGXUsGd2N6Z4jk4bpSAjsxOwA5icubbgteaO164V1n15ZsL4kT13lX2cUONaO2bJr2pzxwsokXI+CCMSjFvA8rvi8/au/tLXfc9Z4Lv6xBPlm80YX4GanqBcAda7QBgD5mHPlePGbp/bXPnrzZMJrAJmjBu78bZQjasTArLjFCClNMF3jMuqnZRcYtpr9Is0l0U7VlNk/win4hOIqH16VXuNsqw20m+JrjZ8atDEhsoYn7Mizl+TWmz+yuQTxW1dobXZc48BngDGdbDu9sWay+4qrOwzI1hVS0fniMBmz+0Ncl1a1LbZ+fdfPync8rQUBRmZ/wD+7enuvHPQV4VPH7KDzmHBsgvSO1p/iylx9615Y/CnW5t9/h5RCitAQUbmXuD9zLUFU5o71ry8nveAfASEAQ2UCtBiqOcZLPeCWAI1RuAriHqfgG+oSsDq+yu4+grcJ0sifWDqAL5B4BsD5mpQUoB9rWs+4IFxYzc2253hz+PovAEsnUB0Gzd24+5D99BpMwRyv3bYneQ91muSatpOU7FAdKuN8I+Wgr6RtYpbIBL26eX2GrVKZ4QktsrwKVBYFu+jNlIr7Vxk/gIoIrvC3ySLcQix2XPF6M7f3lpQOuD+3c60eGBZ5+jCxxZOm/Kf1pZFRydcjMt5emtxTef0cV1zE1+Y9E67S6a/7OLOimVpzHKBsAD9MtcWtMsMCEciv05ONUc6EtzugVW5gz/cPr654x1RCutie2JszCfJFe7Mmg8Hf7x1QnPHC1hYmYcmI/AJEmcY/KZtwlNxWc3TzqEAlnSQxwJH/RkfJSV/bIh6/wfeBLkbPJFgWATGpeDbA56+EHFJIICs+f6qfz2GrqPANF9QnTd27K5xoRhTp42RHRdbnOIZKQVD04rN5YCtOsp/kpB0i6o1eIHkfXr4fAbNbfCLKIHQCFR1GxcOpRXAZs9VgItAPgrClh5duG17te2cwpyspeGQR0enNbloxh1X5e88cTZo1xXmnPm6wyESge+BJ1VVvhNu+ZrLr5NSn4pckHCHL9V90wDHppfCLY9OaCnIyHQBMzLXFtzd3LGOKIV12cTOA62/xq7wJXryjXvNt4ciAnHe/3qOjP5a+cq0lV0RK41zAEfm2oJ8h0OYgX8AGzQtYZMkagiYbwaZxR9ltsQ80D4UVMVIjD9A1MpxYzd69jtPQDlWCWHk/ry8ngJYAjIDtPPGjS38NhTj6hxmZMdF7OjkGWn0iaNSSkxuoJvbrF1l9ojUYAJv3GbtM8u9VWeHU8zJM6+OrnAn/Gtx8ahxfmmMUYT//dNsH7/yynVvLQinXDo6LYnNniuAX4AIoP+c08abgPeB2aoamoIx4aIgI1PRIvybpFVLch5XkaD7rrY/CjIy9wAfhGJV+4hSWAsyMi8F3iaQeNkNjGuu0lqQkTkUWAJckbm24A+/UodDmIDdwL9UVd4E9Syy9SLJw5E2al5ez17gugsMl4HJQr3PQ09jpQPUz3pglkhFIERthH9ZpNNwDtkVW8Mpms2eGwfcrQjfHQJpijZXzalwd7irMCdLd2fRaZf0m/bBlbW+6DdHp39zz9s3vtBuqukVZGSeD3wETMxcW/B/4ZZHJ/SsHtKn0p/kWTPw28IRzR2rXVe62g9dAAkoEmkhBFU0vJ1dM2RgmX9n/f2qKr3AUGBq3b6gMjgOeIBWVg7n5aUenZeX8tW8vO5rgN/BOingjSAlf03qq6NDcPl/HHC/38CJJR29n0U4lb5AgfvxmEcL37LuG+jVahTmZFUU5mTde7rt45G2uA2LKtwdLgM2jnnshZk3vHZlUrjk0tFpKU7u9vmHcZZS/+9l/a4NtyyhYk2/jOOlUZslkVuAD8Itj07LICP8CgY6hGKsI83COlIi5xFYWgHBGf0K1n7VjPFUifw+MJRwEgKLbSjJy0scJYk8G8wqgdQogK8QjC8A/wbSaQMWX53DhOy4bhL5vECc47RqtVaXOENkV4a9MpXNntvPIHxP+KVxfKSx2lnri54KvFWYk+ULt2w6OqEic9qHDzp9UdnAoDmnjZ8GeFVVTgyzWE2iICNzpBRyvpDCKIX0CSlGt6V7p07oKMjIXEOguNEVeh7WRlKQkTnSH++9USk3ni8QC4FTMtcWNPrGVpCRmUrAFSA9uMsHPJC5tuAv0fsOh7gHqFRV+XJzZW8I8/I69wXrmSAvADEsuHsx8KGgKm/s2JJlf20fet9YnfbNjtcjHkotNk02aCJZIt/e0dn7WPok5/pwy3XNK9ddv2DHyZPc/oijFeH/fUz6N/+JNZffO2PSu0fWRU6nXWKz53YAthmE79+zTz1nPeBXVXlYugcUZGTeI5GPCYQIrlDOE4gHWlppDdayVwnGmrTkXEcqyy5MT7Euj+kC9PJ2c15v3GIdHYyFaLZR74hTWOuo82f1dnL9Z2De5vMb0/eXG5PPsS6Oe1+pNMhglaI/qk3t+2U4HOIbYJeqystCJvw+zMvr2RU4H7x3g6ku4vsXcC4VuN8ZO3avHpSiE1qy4yKB+yTybr8BxRmhPRJTbXiI7Iqw5kkNBqicHWMun1XliU8yK+5fPZplamFO1sJwyqWjEwrGPD7j6x1V3U49rfvHA1+6du7KcMvTVIKK4zzAKgOl0wEQiBoppEuL9cULl7JHcRtKpUHTfKmeboYKY6FSbSzWzJrwdXVlGvaYVhvKTUVapN/k7ensbywyLzPsNe/wx/os3j61Rxm3WH8x7jYX+xM9Fk9GbR/ziqgyQ7XpNgLWPg9tbEX0cKEgI1MASUAv16Cqs4RP9Lesjq4AemlW/9GKy/CXVJwSSVBh3a9RrzEcsQorwIozuv3PvCnyJG+68y3T9ojfacBTV0FG5qlSyP9o0X6re0jVxZE/JGzjIE9sDocwqqoM+dLkvLye6eC8FwwXgzkusNe/SeBcL4m4adzYwg2hnlNHZ1+2zraenrjXOCuq1tAZWOy0ardE2KvCfhOYOmui5ffyfo+s2Tv4EiAtJXLHiiHJi+57dfKbueGWTUenqVz/2lUnfbX5vP/FmcueX/HwpbeGW57mEFRaH5TIkwVCkUgpEPma1b/e28N5vHGnpdBQZqrQLFqcP809xLDHtE2pNjqlSYv1J/h6KeXGPYpH8UuDjJRmLVG4FI+QwkC9TOgHQiKRFm2R4jbcAvyi5379K0GlNM01uGqMtGhqxM9xe4Be/njvCcKppCpuwx/xT1JIhBRbgA3edJfmT/ZUW5fGvg1skEYtWfiUL6jndqhbWJvIkts7RkQ44tcoNQYbIBFo/kTvTOMe82dalK/UOarCi0esG/rKLldBRuZILdL/qFJrGAOs8id4z+6fv2FLa8kaWLr3XwDuQWCNBiW43O9xgngZTK+NG7tRV1J1Wp9A8YKLJPJZIKU83r8wodyYRXZFRbhFs9lzo6yG2ruA+91+KxJlNpBdmJPVLkpa6hx52Oy5n5oU99iXxl3kthg8nVRV7jcV4uFAPUtrSBQagF+vSTNqsb4Yy6ooYdoaYfTanLGevrVdIxbEd1FqDa9JpJlAxLEmEIo0alWeXs7dpq3Wh5Vaw+eZawtKm39kbZ+CjEzFNbTyKC3ad3LEwnin8CrdfUme0RjkIMMusyYQkXVtJdIvEJv9Cd4qX7rbYF4TNUf4xXpPn5oSTy/n2mHP7q46yDwhc8M4ohVWgIKMzEeB+w7RrFIiY4L+NppAnJK5tmBeQ+dwOMTDwGBVlWcdqE0gJ6ovXlB9gsQaBVYzaF3BeT5YJBgHglQCvzP/LjC8CPKjcWM3hd13UEcHYPssa7rVpeQm7jUOEIhdmpC3b+3qec92pSvsF5kbX7+sz3dbzrzV5Y+8WqD5h6TkL0uJLLrglevmbA+3bDo6jcFmzx0DOC7s+8a207p/kqmqsibcMjWH1vQrrT8XsB44xdvVdZtht2mw4jQYAc2f4N3s7e5cb10aey+BAO1Wka0lWHJ7R4vwiuOsP8fGGCpMXXwdPcdrsb6xpsKIauEX6YClXnOPZvEX+9LdFuNOyydKrWGlN921x9OvpsS43bJw8H+3hf3BSFdYg094EmkCfDLSf41Sayz0dfT08vZ0nmpeH7nLUGoaIZHDgwqrL+gc3mA/jO+/V26XMvYMSYdN4IoDsQesLqATuE8Fox8MkdRlL/gLmgRqQIkCBEg/iPtDWZpVRyekZMcdA8wEhtZE+KusLuUtgxTvO9TKXQQim7cBOByiJ+BWVbk9uN0LcKqq3BHc7g3UqKosCm73AapUVe4MbvcFKlRVFge3M4AyVZW7gtuZwF5VlSUOhxBAxmsrbo8squ762paqnscowldpVtzvu/xR24B5hTlZh90NSefIw2bPFZ2itlbXeiON5Z6kh4Dv9XO3eRRkZBoIpKHM8nX03Gjcbf6jnLUkoCMJxHqg3Jfm7olXVBn3mDcBPm83Zz/hVkqNxZbfAZ+nd+3RolbZZdphXQf43EdVH6tUGXaYtkasBXyuo6uOM5QZC02FEesBr/PYiuMMe02bzBsjN0gh/a6RFccaSswbzRsiN0ujpjlHVgw27jJvMq+P2qZZ/NI1sqKvsciy1bw+aqcW5cc5sryL9ZfYJEO56TgtyufxdncNN22KqFRqDSkS2V0EKmQGjkVIlz/Zg1JjyFeqjb/4O3hL3AOrNOMOa67598gNbd014ohXWOHQT3jNXbaYl9fzn8CH++yuAYrAHQ8UgmU+UCSo6iQRyyF6EbBz3NiNNW2l4ICOToPJjjOUx3m/iKswnlYXIbp8UM328gT/GlWV5wA4HGINsEpV5QXB7Q3AIlWVlwS3twHfqqq8Ori9C/ivqsrrg9vlwBxVlbcEt2uBl1RV3hXc9gE5qiqnORzCQNDpX1XlI+c+e/9p5a6ErzZX9oVAbmYXME6/8escDox8ZObMnTVdrqNe0Rf93A0dK9Ue6cZiy3MEqlWKYOBQAVDo7eI6WjiVWuMecxFg9KW6+wmnUmuoMO0FjP4Er024FZdSa6gBjFqkP0l4hFf4FD+Be7ipJWXXzH4wsUmpMfyiWf3b3UOq4g17TF+Y10ctAooz1xYctkrfIZ2TjwSCyucBf+yZawvyCzIyx9H0pYEMAhcWJWAhlU+Cct+4sRsbdOKMG7sxf15ezz/m15VVnTZPdoU/PjtuPnAygahck63Q8uPyhNo367W6Hajv5zoV2FtvewpQXG/7OqD+Ev5VwOZ625cBv9fbvhgoCP4vgQuBVQBThzz63VNLHn4P5AQCmT7qCmfovy2dNs/Omi7b+eOeop+7oWaAY9P2gozMZ4EswCQQXuDqULkFLLu4s2JdGmv0x/iMzhPKE43FZmldFuvVIvwm56hym3GHpdayOrpWs/rNzhPKM01breXm9VGVWqTf6hpecbRxq7XYvDGyXIvyR2pRvpsMJeYTgoFrPuFRHuj329p2uQKrW1hbAd1CqnNE8md51z/O+2AFrTaBzZ77N/l0K5XO4YB+7rYOh0Pe1pYIXGur6AprK6En6Nc5IgkorSrgaEvKah3BG78KOPQbvs7hhH7u6tRxOCjWoUBXWHV0dHR0dHR0dNo0yqGb6Ojo6Ojo6Ojo6IQPXWHV0dHR0dHR0dFp0+gKq46Ojo6Ojo6OTptGV1h1dHR0dHR0dHTaNLrCqqOjo6Ojo6Oj06bRFVYdHR0dHR0dHZ02ja6w6ujo6Ojo6OjotGl0hVVHR0dHR0dHR6dNoyusOjo6Ojo6Ojo6bRpdYdXR0dHR0dHR0WnT6Aqrjo6Ojo6Ojo5Om0ZXWHV0dHR0dHR0dNo0usKqo6Ojo6Ojo6PTptEVVh0dHR0dHR0dnTaNrrDq6Ojo6Ojo6Oi0aXSFVUdHR0dHR0dHp02jK6w6Ojo6Ojo6OjptGl1h1dHR0dHR0dHRadPoCquOjo6Ojo6Ojk6b5rBWWIUQDiHESw1sqwohpBAiqaXlCidHynHq/IkQ4gohRHUrzVUthLiiNebSObIRQnwhhJhziDZSCHF+Q7d1dNojjdGFDmcOa4UVOA+4J9xCHAwhhC140Rwabll0dHR02hlpwOfhFkJHZ38IIeYIIb4I4XitZpxoixjDLUBzkFKWhluGUCGEMEspPeGWQ0enJRFCGAG/lFKGWxadw5e666WUsjjcsujotAZCCFO4ZQg3bdbCGjRxzxRCzBBClAVfTwkhlH3avFRv2yyEeFwIsUUI4RZCbBJC3HyA8S1CiI+FEEuFEMlCiGwhxKp92vzlaaaujRDiGiHEViGEUwjxySGW3zcH/y4JWlodwbHmBJe87hZCbAe2B/cXCiHu2M9nEZLjPIicOmFEBLhdCPF78DvdLoSYHnwvRwixLni+FQohnhRCWA8x3plCiF+FEC4hxGYhxGNCCHO99wuFENOEEK8JISqD8925zxi9gueeKzj/+P3Mc1DZ6v1mrhBCbATcQFRzPy+d9oUQIjJ4TawWQuwSQty7z/uFwXPpTSFEOfBucL++5K/TIIQQo4UQi4LnWIUQ4mchRP967x8nhPhBCFErhNghhHhVCBFb7/3ThBALgrpIqRDiGyFE5kHmywYuB7KC56kUAZe9/a661j+X67W5SAiRJ4RwAtcBbwFR9cbLPsDcZiHEE8Hreo0QYokQ4tRmfHxtgrZuYZ0IzAFGAgOBWcBO4NkDtJ8LjAKmAsuAbkCXfRsFT8JPCSjsqpSyUgjRUJlswCXA2UAk8DrwJnDWAdofCywGTgNWAPWtqGOAiuB7DRaAZhxnI+bQaV0eB64HbgPmAx2Bo4Pv1QBXATuAfsBMAorf/fsbKHhhepfA+TEf6BrsYwHqPwzdCjwIPAWcDrwghPhRSpkvAg+GHwNlBH5/kcCM4Bj1aYhs3YGLgX8SOP9dDftIdI4gngZOBv5B4Fx6EBgN/Ldem9uAR4GhNO56qXOEIwIrO58CswnoFSZgCOAPvj8A+JbAeXcN0AF4nsC9ve6BKCq47zcgApgGfC6E6HeA1dGngczgWJcG95UCnRoh+nQC1+yrg7IaCNwregbfP5B7wFvBNhcTMIadEZR1mJRyRSPmb1tIKdvkC3AA6wFRb980YPs+bV4K/t8bkMBpBxhPDb6fCfwKfAZY672fDazap88VQPU+bfxA13r7TgiO2/sA89qC7w/dZ/8cYDdg2Wd/IXDHfj6LkByn/mp7LyCagBI3uYHtJwMb6m3ve57OB+7fp885BC5uIrhdCLy3T5vfgWnB/085yLl+RSNkywa8QEq4P2f91TZfwfPfDUzcZ185MCe4XQh8vp++Eji/odv668h8EVAaJTDmAO+/DczeZ9/gYJ/kA/SJCl4jTzjIvHOAL/bZdyCd4I9ztV6b2/dp85drfb399XWEnoBW/9od3P8J8Eq4v4vmvNq6hXWRDH7SQfKBR4QQsfLv1sKjCXxJ3x9izG+BpcA/pJS+Jsi0Q0q5td72z8F5Mwnc8BvDKimlu5F9Wus4dVqPfgQsl/P292ZwmegWoBeBG7kh+DoQxwDHCiHurrdPIWAVSCWwSgEBS0F9ioA6t5FMDnyuN1a27VLKXQeRV+fIpidgJnB9B0BKWS2EWLlPu19aVSqddoOUslQEMk58I4SYR+Ba+5GUcluwyTFALyHEhHrd6qz4PYESIURP4BFgOIEVMCX46tqCojflnB9CQPY1+6wcW4C8UAgVLtqsD2sTaOgS0RcELEUD9tmv7WeMlnZyrtnPvkPJ0dzj1Gl7HPA7FUKMAN4HvgHOJPDAMo2Dn5sK8BABC0HdayAB6/zueu28+/ST/HlNOOR51gjZ9nee6+jU0dBrmn4e6TQZKeWVBJTN+QRc+NbX8+tUgDf46zVzEIFr5vJgm88JKKrXBcc5GvAReNhqDHUP/X+c9+LAAVVNOecVAtfyYfz1eDIJuG8dtrR1C+twIYSoZ2UdARTtx7oKAWuiApwIfH2QMe8n4EfynRBinJRyeXD/biBln/kG76d/ZyFEl3pPZscG5y04wHx1vi0Hs4jVZzeBVC0ABANYMgj4qkLzj1On7bGGwJLoOP5upT+egKXzkbodQohuhxhvKZAhpdzQTJkOdK43RzYdnX3ZQODhaQSwCUAIEQX0BzaGUS6ddoYM+G+uAJ4QQnxFICjqGwLXzKMOdM0UQiQSUPimSCm/D+4bwqF1KA9/v/fXGQ3S6u0b3MBD2N94+7KMgDKcWidre6GtK6ydgOeFEK8QsBTeScDp/m9IKX8XQnwIvCGEmErgBEwHbFLKf+3T9j4RsJXXKXMrCPiAdADuFUK8T8AXdH/Rp05grhDiNgJLrDOBXCnlgdwBSoJ9ThVCFAIuKWXFQY45D7hKCPEZgRP7PupZrEJwnDptDClllRBiBjBdCOEmYAFIJLBMtZ6A4jiRwJLpqcBFhxjyYeALIcQW4EMCVoD+wLFSyrsaKNZ3wFrgbSHErQTO9eeCY9XRFNl0dP5CcPl/NgElYjcB15QHaPhDvo7OQRFCdCdgGf2MQFBfDwKrTq8GmzwBLBJCzAReA6oIGIrOlFJeRyD4dA8wSQixDehMIFj1UO52hcDpQoi+wF6gQkrpFEIsAu4OZk6JIxBc1RAKAasQ4mQCimmtlLK2fgMp5XohxLvAHCHE7QR0hA4EdJpNUsr/cpjS1l0C3iVw0fqZQIaA2QRumgfiMuD/gBcI3GznEDgZ/oaU8t7gmPOEEIOklAUEorSvJeDbdzKBaLx9KSSwDPo5AeVyE3DlgQQK+o/eTCDysIhApOLBmB4c91MCfqg/EjjhQnKch5hbJ3zcQ+CieT8Ba/1/gHQp5ecELozP8+d5+cDBBpJSfgNkEbDCLw6+7MDWg/XbZwwNOJfANeJnAkEJjxKwBNe1abRsOjoH4A4CfvkfB/+uIvDgpqMTCmqBPsBHBB605xLQL54AkFL+RiArhQ34gYAVdjqwK/i+BkwgoOSuAl4mcK0+VAzKLALX818IGKCOD+6vW5pfQkBBntaQg5BS/kTASPZecLwDGSCuJJAp4EkCOsIXwePb0pB52ip1EcNtDhHIV7pKSnljuGWpI5jz7HwpZf9DtdXR0dHR0dHR0QkNbd3CqqOjo6Ojo6Ojc4SjK6w6Ojo6Ojo6OjptmjbrEqCjo6Ojo6Ojo6MDuoVVR0dHR0dHR0enjaMrrDo6Ojo6Ojo6Om0aXWHV0dHR0dHR0dFp0+gKq46Ojo6Ojo6OTptGV1h1dHR0dHR0dHTaNLrCqqOjo6Ojo6Oj06bRFVYdHR0dHR0dHZ02jTHcAhxO2Oy5IwEVcBTmZOWHWRydFkL/nnV0jixs9tyRBuE9PcG6d4mUyvy9ruShwLHo1wCdFuKZi844Hk0ZDThu/+AL/RxrAHrhgAYSVGLmA0aQHhCqfiFrfwS/5x8BAXiAt4C39e9aR6d9YrPnngV8zN9XHCXgAsbpv3+dUPL8paee4vcYvwlsCScwTldaD43uEtBADMJ7MsigRVqYY81ln9nsuV3DK5VOqDEK76kEfhcCpAXkdcC8oCKro6PTTpg6a6K47KWbXxFoH/HHvVBK0H4P6KoIkGYCqy06OiHhmQnjhd9jygnYRASACf0caxC6wtpA+iSsTg+cXFITaP5KT1wssKb3vf+9a+qsiZZwy6cTGmxxv1cF/qtbeRAC/YKio9OusNlzkz/fNOG/87efen0H6+4aApZUHwgXKE8B7j+vATjCJadO+0Mx+SYBR9fb5UU/xxqErrA2kE0VfSMVfB6j4n1EoowCpS/g8GqWJxYXjyob/ODbJ4RbRp3ms7Omy0YAk+LJBeEBfOgXFB2ddsNFL9z+AMhVmjSckRSx6/ETOs9LAcYCDxBY/p8F4kTgFxB+YFNYBdZpN/zrsX7nSk28ZrS6l4L2EoDB4rlQdwdoGLoPawOw2XONwE7gf4U5WRfX2y/GpH+ds7h41PVOX1Q08Epa1Lb78++fXBY2YXWahc2eexPwApAK9FCEb+yxqT9ufH/qU++HWTQdHZ1mYLPnxidaS97f60o+NdZcvqXSE59VmJO1+iDte4Ncmxq5451FD1x3eWvKqtP+eGbC+GihaMsVky+9Y/8tQ/0u03m7V9seSh6w+bpLp61+PdzyHQ7oFtYGMDTlx0uBJIvB+Wn9/YU5WXLujS/e7fRFpQMvgbyhxhu9+7xnp91ns+eK8Eir0xzSoradIPC7gJLCnKz8N089p+fkQU/PcDiEKdyy6ejoNI3jHnn1H8Cqva6OJ2V2WPHf02z/7XcwZRWgMCfr9z4JqzeWuRMvu+G1K7q3kqg67ZBnJowXwKtSU7r73ebTJ961bpXPZf4GoLwwxRpm8Q4b9LRWDcDtt95sVtycavskD87/2/uFOVmVwM2Xv3TTj+vKjnpjacnIR4HjbPbcN4AM9NQohw3RpsrRyZGK+PmBa+uWHl4DPqeeQ5uOjs7hgc2eG90nYdU3RTX9j1OEb70mjSO+uuveXxrav0vM5tvWl/X//MvN518OZLecpI0jaBBRgRHo95c2T2LfbW/sXdflEqH4H7ntva++Byjb2Gkp4PNURaaGWbzDBt0l4BDY7LkKyG3RpsqCVY9cfFID2huBG4HHQEYG9gofMG1EmuPj96c+tb5FBdZpFj3u+XS11eAqXvPohHHhlkVHR6fp9LB/doKGYQ7IHoM7Lv6la+ymU1+Y9E6j3bVs9tyPCSiH3YLGibBgs+fGAGO7xGyaXO5OOKnKk2AE/ATS7+mpt9ooz0wY318o2tKIxMqquG4lqRffud5b996zF52x0WD2bpw693+nhFPGwwXdwnpohoPoVO2Nu6shjQtzsnzA8z3v+aSTXxrvDKatMAI5i3aqOUfd/351jTfmK2DRmPSvy5eVDN9e6Uk4Bv0pOewErBbGbrW+6G/r73c4RCxwKfCZqspt4ZFOR0enIRz94FyrLe73+RojhgGbQaif3P7w/KaOpwj/Y5o0nDMkOX8uZJ0bOkkPTtCKOrBz9JYrTIrnCugVDcK4rapHsIUEhIE/s5jo9482xjMTxkcDH0lNKfW5zMfUV1YBIpPLo30u86gwiXfYofuwHoLMDiseFmh+ILcx/fzS9HEwIbAPcBqE97qRad9/HGGs/RUYBjzzw/bTZld64r8BHkXP9Rl2RnX+tgcQlRxZtK8VJgF4ETir9aXS0dFpKDZ77jFl7qRfl5WMHDYg6dfVUabKgYU5WU1WVgE2TT/rl55xa/es2jv4DJs994GWvE7b7LmJx2S/eU3WU4/+blQ8e4HlO6q73eLyR1g7R2/5MDVq+5NG4SXSWFVS7/6iZzFpg/zfU31EVErpQpB9gYtveiNvx75tfE7zPHd5lHhmwnhdF2sAuoX1INjsuSLW3HVkj/h1pfPsd5Q3pm9hTla+zZ47jmCJz43Tz8mHc/6IBDw556lulZ7YObtqO6sEHhz0p+QwE2F0qgCJ1pKuNnvuPQSt3qoqtzgcoo+qyg3hlVBHR2d/TJ01MaKouusXcPxoECUG4Tvj8zse/CpU42+v7vqQxx/xIvAgYLfZc0OyBG+z5xoU/MOOScmfvq7sqC6Q0GOvK0XU+qK0lMiipTuqbS8D3y66/7oimz23O8j8SGN1xYldvzold9MFkeglpNsse9el3+ypihwY32Nn3tXTf83bXxt3RfR84CKgM6Cv3h0CXWE9OIMrPQlRTl/kbU3pHLyI7PdC8j/7nVts9tx7Qf4IUgGhPyWHme+2jncBFJQOuhykUSClzZ77FPAOfLGmUA2vfDo6On/HZs/tZxD//D+/NA3qEbduxaaKvidunH52SFMLuv2RMQTW4JVABTyh0kTjgs2e22lEmuO+bVW24WDroWFIWLLrOJIji3dVehIeAr7uGrP5l2/utvvr+tz4+mW9BP/8UqKYa30xI1++dm7By4G3dEW1DfLMhPH9IXK6UPwLIjpUnXagdsYId6HPaSE6rXQkusJ6SHSF9eCcB2hezfJxSwxemJOVf+Ljz27bUdO1q8cfoTvNhxlNGoKpa4QCIAMOyHcBd5kVlzfrqUdM8ZbSXxcWnXTfwKQlyz67I7skfNLq6BzZTJ010bShPPN1GHyRX5qqOkcXTsq757Y3Wmg6B4HqV1ZAMQpPbEM72uy5luM7zbuy3N3h/NV7j+4IDFy0UyXGVOEF3gW+7ha7yfHDvVN3/dkr64//Bj3wr4hYy7G/KsIfA/4xG6efUxCiY9JpAd6ZnplsMHf91u8xVkrNcMG+fqv1Sey7fe+u5T0xx9SeDXzYimIelugK60FIiii+TSA3LXnwmt0tNYdPmr71+CMmAUtbag6dhtE5esvYXTVpVT5pNgKmoNX7MiCid0LBLZWe+CFr9g4eAny9cs8xHP3g3L1l7qT/Aj+p6V9tibOUOWZMeldPu6Gj08LY7Lk94i2nfFXuTuoTb9m7sNyd+I+F06bsOnTPphF08RprNTjP0qQY79Ei7DZ7bvXZPf/v8f395q98ecpIt996009FJ0aDGLuwaFyUQXhRhH++Jg13d4vdsGBwx8WLDnW9sNlzDdDh3QpPQoya/vXTc258aUFLHaNO83lmwnhhiUtx+D3GtIikiuk3vPxj8cHaK0b/UoR0VxSmVLSWjIczelqrAzDikZmDi2u6LBue9sO7H0x98pImDZIdN5KgjxHZFfu1ntrsuVcCbwI9C3Oy9BKAYWTM4zPKpBTK1qqep7Ef3zCHQ4grvv4i2iB8w49JybdvKM9IKHV17AHEA5gVl9OjWfMEWv64rl/URJpq3n1h0jst9rCjo3OkMXXWRLGwaNwde5wpD4L0DU9d8FZq1PbbWvNB0WbPNRO4Zk/sEbtuc2FVrzdjzOW/HJO8aMTCorGd3P4IFegNYFQ8O3ya+dPkyKIfj++U9/1z17x3UAWmPlNnTRQ/bD91brk78VLglsKcrBktckA6IeOZCeOvBV4DKUG4gHGHKrv6zITxK4Ctt3/wxZmtIuRhjG5hPQDFNV2yAH7eOebuJg2QHTdSIucT+IydIjtu3P6U1ghjzU6nL4r06MJ+6DWrw8qWyp5VJsXz04F8j1VVykKVKodDLAdOUVWp2ey5SufoLYO6x62/efWeo+M9bmtfiZL13dazAO2Zz+y5yy0G59LhafPdLl/EG4uLR68ozMnSnxJ1dBqJzZ7buWvM8EV7nCnpivDP06Thyg9ueaLV/f4Kc7I8NnvuZb3iVw/cUH7UAJCPVLg7kLctC0X4PcD/Io3Vr4/p8s1ys+Ke96cyPalR82yvtn1Q7k78Z3Jk0TuLH5ikK6uHB0HjlhA0MJDaYPHslJo4pqUFaw/oCusBUITvAk0a8wtzsv6WiqKBnAYYBQIZ8HtS2Z8S1OVrvtr8D3rErzsD+KLpEus0h4DVRKR7Ncvag7VzOMRo4DvgFAIWWA1YBlxZ1+aiF25PjzTWXrl456iEKm/cQK9mvmT+9lOtwBSg+Kj731s5IGmpu6i6y0tbq3r+UJiT5WrBQ9PROayZOmui+HzjhEvA8MK2qu7W4zt9935SRMnF4XS/KczJ0mx23gN5VMDnXWrJkTu+GZE2/6IXJr0TXN6d0OTxbfbcC+G4f3aL3bBycMfFVzRW2W3rFGRk/rH6mLm2oF3EbvzfU32EwdptmN9lliD8NDDdWEynvTHlW1LS/u/JPhEX37Xe2eKCHsboCut+uH7mVaM1+Y+Bgzv+/G595/fGIJGxQWVVisDT1n5rUfs0488AK/cMCVsFFR0Y1fnbYxfsOEV0i91Qc4imS4DngS0HavDezc9sBx6p2546a6LF5Y84J29rVkevZh4upXLqop1qR2A84Ol///9t6p2wpmZ92VHP1nhjHYU5WUUhOCQdncOe0598PF2TA37WMHQCFkqUK969+bm2kl7OAcJN0N+9pLbzI38qq03nvGenXQoj3gAxf0tlr1N/uHeq/9C9Dh9WHtdzvEGYPglEtQpPQUbmuPagtFZsST7a77JYo9P2fl29M3E+4DiUOwCAszTmIzTluF0renQBWrUSZjCnsMphkhpNV1j3ww/bT7kMoNyd0CQH98K3rCLFapqs+GWxxau8ABwPTCp5OdKUPKX2yvptZ13/epnNnlta5urY4KhTndAjhBwB0CdhdfXB2qmqdBLIHNBgZkx61w18ENx8CeDaVydlfrvlnL7ASKvRecGqPcf09WrmdwEyp31Y3i12Y9na0gHPg/gJWFGYk3XASFMdnfaIzZ57Dgx8XRH+xGNT53+2uHj0eYU5WW1Geds313YobvjnPjttzNrSgW/HWcr2Vrg7nNMeV18EvCmkMAQ3203+8drd8VcBVO9MfPX2D774rKH93BXRiwE0n7EXraCw2uy5MSPTvr9+W5XtQug+iEC6Nk+ocgu3JHrQ1T4Enzh+JJDM30kTajS7psecbnUrXxaneGamXu+8nuw4Y2WM//eYKsXmM8ock0+ppF4gVu97P15jMbj2rnrkIr1EW5iw2XOvB16JM5d1WfHwJdsP1d7hEAOBDqoqHaGY/9QncizrygYMAkbaYn+ftNeZ3KPKGxcBYBRef0pU0Z4d1d3eAvIHJP267PM7HtBz9um0S256/dJuv5f3+2Zt6cC+wDJF+C7bNP3sVeGWq6Wx2XM7A4vMBlfMKd0+O/2la+e2aeWhsQTdAG4CLqpbeZRIj0Coh7uF9ZkJ4/+mNzTEugrwwtXjUrzVEcVRKWUzJr+w8JZQy2az5xpHpDnO82qmq37ddVwkiJGAURE+NGkgWD7eBzxQmJM1PdTzhxLdwvo3pAoowS+xSU9/VrdyBVCWusscKDiQXeErfcs6JKrGvNDkU+yAH/AQDMTqFruhQ7U3dr8uAzqtRg/AXeFJOPhyfDDzQ8JAw6VSoJAdN5eDZIFoKN/cbXcDi4OvGQA2e24XYGRG4m+3FFV37QLcDphW7jmGQQ/8q6LC0+FT4KfR6d9sT7Ds/XbGpHd1K6zOYY3NnnuKQZz/tkSkZHT47T9rSwdetGn62e3+vL7p9Uu7GMU/vvFJU5zHbx390rVzl4dbplASVFbzACugCcSN0qDdC3SqGVcaEV7pQoIaLAAEjdQbkjK2lexa3kN6neYLn5kw/oOGKroH48IZdw4zCN+tPxePjgbz6EU71TiBhknxrPJqlqfTorblV3tiaqu8cd+CFIdL4SJdYd2H1Mgd64tr0wmmpWj0l7jj9Yi+nTCdJxAvkl3xhwO17UpXGdlxH0rkgwJhoN5JXeZKXFDmTjolhIeh00g6RxeeUuHuUL7qkYu0A7WR2bGjCJ4PA3+L9AEGAr6qfzx8hFKmwpysbcA2yPoQwGbPjVDwHzMs9Uf7xoq+SQQC+y6bv/1UjIrH86k9dz7In8Z2+dJlNda++8p1c7aGUh4dnZbi5lmXpiwrOXYu9DjVL40FveILJn591z3zwi1Xa2Cz55q7xQ79RUMkx5jLx698eOLycMvUAqgSaakX1xFfe1LZPyJ+iP8pYn78CwUZmUdnri04nB9MHIDWlKqVO3/pMwIknsrIZGDeMxPGN9g6W8cFz9/dOdJYc+uvJSM7V3nih4PaHcCsuHYD/441ly0Ynf5t/kvXvv0Xl4Nx059ev7myd1+z4sla+9g/27yVW1dY90EidgBEmao+r/HG5jTWHcDkFS8IhLE4xfNx6t/f/gZ4QCKFqHdS73WlLAXOt9lzowpzsg4V9KPTAng1sy0lsuigEZqawiWKhiICT9Hmem+1ih9WYU6WE/gRzhoPYLPnis7RW/r2jF978+o9RyftdSX3BqblbctSQD5ms+euMSuuX4enLfDVeKNmLy05Ll9PqaXT1rDZc0+INp3xWY03OiHOXPpGhafDzd/Z7zgioqVt9lwBzN5S2Sv5uE7zXvq/m5/NDbdMLYQDQCIRCA/gGDqjZPGazIyLhBQfAg8C08IpYHO4/YMv8p+ZMP5DAtUxG6twqiCCZX8bdi859YkcS5eYzdet3HPMgF21nQfBqGNAKEbF4wa+NgrvcyfbPltnVtz/+zObxt/Tydf6op/QpPFNl9/oboS8YUNXWPdhV23nZIAab+yjhTlZSxrVOTvO0BHjUS6LVpB6vfPvAVvZFfnVT0V/FlNjOFtDXqRkV+YDxFv27C13J9E/cWl/yPo5FMeh03ACN41OlJD20cHaGTQxRyIvl0iT+KN8qwTwCYSjFUT9C0Hlcy1wQ92+i1+4LSnSWHvZ4uITkis9CQP80njegh0nRwNXAaX9pn2wsn/SUk9JbdqrhZW9/1eYk3XQIDMdnZbi5lmXxOVtPWM6xE2u8UZvGdv1y2mzb3j1lXDL1ZqkRm2fXVyTfglw3//d/Ozj4ZanBVkWNNIsAe6s81ntV7D2ozUZGW8B9/46OaX4mJm7XgqrlM1jJXAhsLyR/RxAMNvE/lNh2ey54lTbx+M3lGeM21ie2Rv6j1lXNiBKoEkgH8TDavpXW1Kjdryfc+XHwUC9cw458c6aLnUPSCcAPzVS7lZHV1j3ISVyx6BdtZ2JMlU2JajlFoHobHWLA150Y2oM2cDZCuKPrABDU38yf7flLFKiilRAV1hbnw5ALIiDF27IrsgX2XEnAmpVlG9QTI1xQnCJSwNOLXotYlOn65wtVh6yIfzfzc/uAZ6t2546a6LB7bee+v2209Pd/ohjhZCnLy4e3Qk4GdD6Tftgc++ENc5NFX2er/LE5wGFuhVWp6Xpcc9nQxKt6oJqb1wkyNckyh2zb3j1iHp4OvfZ+18trhlxZafoLV8VVXdr08EuzUWz+McoboMZeHzfAKvaU0rvtf4Se4l1SdzjBRmZ72SuLSgPj5TNIyq19Nia4g5EJFVcCLzV0H5B6+wf2SbqrLM3zbq0/7bK7hcs3z28G3DSN4Xndgp2WQ9izpDknzZ3jt764YvX/iuoqzQ+BWdhTlZJ5rQPi+Itey8Hnmz0AK2MniVgH8579r5Fv+0eNjyrx0fGGZPebXgKlUBlq4WAEAgnsH+fxuw4RSL3eMzyB8u9VecCnPbk9P5rSweujDZVTln1yEVHlIWhLXDpi1PPX7DjlI8yO6yY8tVd9zbs88+OuwaY5TXK8SafuAI432PSKE71/tZ1m2U42RVtNh3NDa9d0e3Lzf/sB4xMjth5YYUnvpfbHyEALAZnVdfYTZW/l/WbAeKnBMueX5c9dHmbPRadw4trX51k/XbL2XeDmGZS3JWj0//33OwbXn003HK1NjZ77lkgP06L2r7m2NQFQ4Op79otyyak/2xZGX2sr4srduA3hVX7vr8iq9sppo0RXwrER8DFmWsLDivFJJAlQP4AwgTSDeLExvqh3jzrksQyV9IVC3acnEbAoDAw8I7cC+K73gmr1/VNWP11qLNHjH/64bUbyzN69U9cZv7o1ukHjOFoC+gW1n1YVzZgt0Hx7WyUshpAJaCswsH8ULIrtIrnomqtLuVMh0MIVZVybenA9YCs9sZ2bJ70Ok3B5Y8YANA1dtPORnTrBGDyif+RXZG7dbb1iuhqw1tdt1kGAutrn4iesXKA873hZ/jbXBGAV66bs4VA4YOvgAdOfSLHsK5sQH/guM7RWyeV1Kb1AfEkQIUnQRv5yMzynTVd5gL5gzv+vOKT2x9u1eTWOu2D856dNmpX7dFfg4gE3vVqlptm3/BqWbjlam1OfPzZB6HPfSDW7qzpMqK9K6sA5t8jU/wdPVv2p6wCDMrd8m1BRuaDwKOuwVVbAHvrSthsVIJuYiCM8T12TnM4xHOqKr87UIepsyYanL7IC+dtHd/NL43jFC4Yo2EwgPSA+DEtattzAzv+8qvV4Hw/oI80rYjRodhQnvG0yxc1a8muE5612XM/aMu5WMOisG63L/ijukJ6zqg29eHUeGM6EPALbCwOoC4C8qBRgkLyntWt3DH6hxgbKpsLc7I8ve75pCzBumdYk4TWaRZLikc5Ab4pPPd/De1TFe0fHVmr1BgeqPQAdL3aNQeYQ3bcWGB6pNPwdP9VEU/Xroy+KtJpmEN2RZu1GHxzt90PrAi8sl4FsNlzk4GR/ROX3rKzJr07cD1w6/Ldw+l////VVHvjvgB+Or7Td0VJESW5Mya9e0QEyeg0Hps91wDcAiMeizDWitGdv815+6YZ94RbrnAQyPPdJzu42Z2AFa1N3QNDTUFGZqqCoZtSazjUd57j7ey61VwQeddvJ3WfO/C7zQWtImBocAAewATSmzyg8GjgbAJlvHE4hElVpXfKa1eMWLDjpKGVnoQTjOKfp/ukqc418Ldoc+Wbw1IXFvo1wytzbnypvLUEd/mi6qqz3QRc25YLCLS6whpUVr8HzBLpW//kc/+VBtfcqN0nLEzPGRX28qQmxd3bpHh+aHTHgH9jDQGH6zsPluIortL4FnCHIsVYYDZAStQOi8XgGtE0qXWaSQ9gd2MCkDRF9nVbNEPkvm9kV+SRHTdis831dsou04RIp+FN4PoN/7L8ur2L5y5Vlfu1MLQ1CnOySoBPIetTCKTeUYR/0LGpC+7eXNE7tdobdxwwYWHRSRiE1/epPTcf5E9q+tceq9H5zszJs3UrrA43vHblmM7Rwz7cUd0tGcSnTl/UdW/fNCOsft5hRg38aXqe78MNX7LnfGOJGeDbg7XLXFvg/+Wm5DMjv+vwjWm7dXZBRubozLUFvtaRsnn81Q9VOGI6lf467ccXx+z530fTO0dvSUiPufGyG777oKLW98+65EE7hdByR3f+pkIR2ow5U14KGsn+Hsnf0kSZqsbUeGOgEVkKwkWrKqwbH50TJyIs/zE5O1sEAoEwRZYOnQBMANhmd+zxxGyyKL7ohSZn2kKfuWxrVadvfQZvzHf9bppe0tLyTZ010eLTJnQc1HFJSiDYr3FIpKUmStsSfWf1ob7sAk3IvS6rnBgZVFjLXIkL3f4IvXhAGOgUveVUty+iUctycZXGYoncf/Wd7ArZHS4lO+4K4FK/Ip/otdE6LHGv8VoccSPIrmhc9ok2QGFOlgdYAmedX7dv5CMzu/dNWHXj6r2DU3c703oCtzm2n24C7rfZczcYFc8vw1Pny1pf1JvLSkZ+35bKauq0LMF0TdcKzn3OYnBH9E9c+siqvUMe1AP6cIBwAxYCJTEdYZWmFdCsfrtm8kvhU6yHajv0xZL8gozMa4H3/PHep4FbWlzAEBH0Wc0HsNlzJ4GcCSgbKzIprOzlV4RcOTzthx8zElZ+Pyr9O8dJY71rAlmwwkvHiJ3bAgqr1Np6AYFWC7rabl9wDvCSRHYGKQWKXyK9rvjfHjZ4Eneaa9NTfOa9w3zWPSdZqnp4hTTt689Zohlqilzxa2JMNV0+MblSF3sit26v6vS/wkHXzCkKztEsV4P+9/+frdobt7lT1NZ7frr/+pzG9C18yypsWyxaSUfv/OQptWMO1b7s+agtkbVK+s40r9F2pUva7LnPA1cDsfpFvXUZ+MA71SmRRdv/Z78ro8GdsuN2AF+TXXH1oZoWvmWNMfiZ13mHuaciRQenVctfm+HcUhHvv1JVZbsJaLrspZtjrQbnxMXFo9LK3Yn9jcKr+qQpIfh2ldVQu7J/0lLfbmfqzC2Vvb4qzMkqD6e8Oi3DlNeuOOanohNnlbmTjga+G9Rx8c2f3v7Q4bS826LY7LkjjcLzvkHxJp9q+yz5hUnvHBarLk2hICPzb8HIDSnDuvLEHj8Yis2jnaPLrznmteLZLS9p87HZc4Xa5at7Vu8ZPGm3M8325ztSA/FgYU7WowAOh/gYGAl0UVUZ9mIJNnvuiQSqkM0C3mqr7gDQChbWlTOnDLWW9/84gv7pwG9ScV+gaFYJqALh6G2/cb8fznb7gqjaDr8c443aPj66eGytwRubrhncx5qrenQ3ehJvBzDXdiVxw9Vsu8exR0hDkUQeBSAQnu32BeMaq7RWe+PSAYpqui5r7HF23G00AiTtMR7Qybo+Jq943eJRHrVtsfQB1nWM2Fmz25kWPSb9686Qdcha9jqhwWbPNUGCtdKT8O+G9il8y2rqhjmtOlozxzRkjitdVcCxZMfFALeavOKhwcsjR/qMCBxxd5Fd0S4qUr194wuVwKt121NnTRRezTz6+22nd3f6ooYZFe8Zv+4aaZMYRgNk3PfR1t4Ja5xbKnu+WOlJmAesL8zJatNRqjoHJmhVnWg2nDkbiTnSWHVbrS/m+U9vf0h/AK9HYU5W/tWvXP/qvK3jp68tHXgb8FC4ZWpBVIEQwf8bvNzsGlx1ceT8hFURP8TfX5CR+VHm2oKwuwseiKtfmWyet/XM84G7HdtOHxhv2es3Cs+LPmm+BjAFrZb1q7ZNAvqpqvQ6HEIAbwMfqar8LAziA8QH/75SmJO1PEwyNIgWU1i32xcYgBvjueAxqXiiahOXzIncO+zaro+fXPdEcdCTNj1nVA2Mmg/M38/YUUDP2g6/jvWby0+N3qXulEg1WPIUmuiH0SNu3bBNFX3pGLGz0T5WUbUGC4AiRYMsZtE1hg+AR4ETgXX9EldE/LA9jQhj7XBAV1hbjy4ESqwePAdrPUxe0UsgRE2U39gQhfUPsiuqgId3vGl9P77cMCOu0niORJ67/Q2ruTjVe++w8f52lYsxWGHlh+BrDgRKcH628cKjgJFxlrILN5Rn9HP6ol8CMCke57icp6s2lfd5SWJYGGWqXLz6kYuOqNychys3vn5Zhlk55ymPZhmvaYbFJ9s+vefV697KC7dcbZVoU+UTAu3i9WVHTbDZcx9pxw9qDon0E7jGehtaYGXYc7t3FGRkngEskEK+QjicOw+BzZ4b0T1u/f0V7uF3EtCl1kSZKq8dk/7NOzMmveu02XPfI7jiW99qqapyD3/qNYnAYGABgMMhjECcqsq9rXUcRycvOm5ZyQiGpvwoWyoTQahoEYV15cwbL46xjH3C6O6YLlC+dsVuuL3PnbetCdX4AWWW32DUb8DzEHAHkMifgENG6R+IjpHFJ2+q6MuITj/sgmsa1XdXsjchpcREZYwvJfbQzQE2+oUs9xvkNHN23Ip1ypO5wK3fbTnT01i5dZrO6PRvsuZvP5Uhyfnehv5YOxeZIwBSd5k/aMqc3a5yrQdOJzuui9siX07fbj6zU5H5MX6JswALJHK4QHx/sMC9w5UXJv1r1wuwi8AS1GP/fO4eZcmuE/oAx3WN2TSp3JXYT2J4GKDWGy2PfXhWVUltp3cIpNRa1S1244o/Sw3qtAX6Tfvgn4o4/X2fNADc5ZOmZ1+97i3dX/kgzJj0rvzUnpsDvNvBuvt84MNwy9QSZK4tyF9+VteFlvVRo72dXFcNzNvc4Gta5tqC/NVDez+rVBvv/PXqtPJjZu+8sSVlbShTZ03s9lPRiTdD2qWbK/p07BxdWD4s5cdHl+w64bnVj1ykwUVAwJLOIYxmqir3OBxiIAGFHgJOrXMcDjFCVeVvLXogf5IKkB6zpc2nmAupwrrdviAaeDief97iN5dLn6XkSqM7eW5v+/UtfoNJzxmVv92+YCOB1BJXN8WHdXnJsUWK8Fe+OOlfjcnHCYDboiUC1EZqqQ1UWEcokjjFJ+Ilct6T3n9deBn34JOmzo2dW6fplDo7dgVIjty5rhHd6iqONPo8+QvZFduscNbW2dbT07ebJwEPBku9IpEukR03tj0qrfUJJqpeG3hlvQlgs+cmAMMHdvz1ll01ab2Ay4Ablu8ezvqyo9w2e+5XwE8j074v7hhZ/MULk95p8xfa9shZT2cn/7Zn2FMQfVm0qaLwlG6f3Tpz8uxPwi3XYcRHMeby16NNlbNopworgAgEFo9Wag2lje1bO6b8fuuymGsi8uOuLMjIfDpzbUFh6CVsGDZ7bieQt1oM597m9kcowJdAzo5q248Lp01pso6jqlICddkQlgMvAKsAHA4xHqgGfgi2CznLSkZsAuQnGyZuf74lJgghzVZY6wKdajv80jtCDDpdSFMKwvdGZfoXjw28dtaWEMjYYCRyA2gdu+SoTbrJu/0RyUBhU/p23WYpB0jZZWroMphKwBosANPxyur+oGndYjeNAmY2RQadxrNq7xAf4P268LxfG9pnT6J3XNJeE3s7+CoSQyBD16tdXwFfkR33EjAlWO7VCKgOh1gPlLbUxaotUpiTVQZ8DVlfwx95PI86rlPenZsreqfX+qL7A+fk7zwRBb/2mT33F+CnUZ3/5zMbXO/OvmHm8jCKf0Rw3rP3Tdpa1ffVQKC7eLjaG/fozMmzwx5AcjhRmJPl/cdz9/73113HX9rrnk+O3zD9nIXhlqklMK+P+h7AUG7q0di+w57Z7S7IyDyGQJ7oTwoyMj8C8hoSuBUqJs+8+uTCyl5PwoB+IIyx5vIfhqR8/eprk9/4KNRzqapcz1+LJkwD/KoqjweoKzYU4mnjgYrDwS2lWQprUFmdJ5HWyNKhwmfeW2X0JB7fZfq4/C6MC5GIDceZuMRmrurZu6n9o0yVAxVkUwNgLACChvmwAg6B8BPIfeY1CO37BEupjDJV6blYW5cewJbGpFwSkl4A5fG+raFQWOvxmUBMkUhNILwS6QC+AX6nbp3pCCT43fwGWZfW7Tv24VlpRyUun7Jm76DOu2o79wA5ecGOk63AHTZ77jaD8C0+Nm2+cHqj5izfPfybYFounWZis+dGA0/CcdcnWkuqT+n22fWvX//6O+GW63Dl113HXw9k+aTpDqBdKqzAdilkrT/Rq9IEY0zm2oLNBRmZzxJYgRooEPcVZGQ2KNtAUwkUeJATQWTCuSeaFI9IsO55r8zV8b4lD16zubEug83gRIJL9g6HiALyHQ7xgKrKT0I1Qfe4dcfvrk01HLpl+GmuhVUFLAIhJFIavHFPhbNyleKLXmrwdOiz3b7AkJ4zqtE+VFIqXXskrGlSipHdSd70jntMlMX7OiYcujlkV+TXPhG90OpURiuIcWRX5Ffd88mvZXsT9YpBrUhq5PZTDIq/UUvKiaWmIqCk52Xu2hCL4wMQiDnAGz+oVYuB14C9AA6HMADHqqps124CDWHxA5N2ErA+AIEa9cA/f911XLe9ruT+itDU/KKxKQR8wlx97/vPyqMSl2qlro6zCit7fx4sjBC8Mf09MELn71zzyuTJcebjn6rwJESBeHavK3na69e/rl+vmkFhTlZNd/vnL0vEtEmvXnfKrOtfO2hy/cORzLUF8rexPSRm7eRmDOOWSIK6hkUgVFoouf2gB98+TZDwpUQRAALt7dO7f/zkC5P+tbol5jsYqiqdwObgZkcC/v8lAA6HSALiVVVuaM4cmmaMizTWtnnrKjRfYXVIpF8Eaui6hWxYSqeWwlrRbwEBS1QyjfQvDFgOosWWyp6fNmVut0VLBaiN1Do0SGEFnBEy3uRFKNMCfoo+adoE6OVZW5Eyd2JEt9iNjc0RmUZz/Vf3Q2mC79IOZUZcFu1e6z1Vu9TA7ln1mlwA/J/DIcaqqvw+1PMfzrx+/SwX8K/6+6a8dsUx3287rW+tL2ao2eDKWrF7WB+/NA0H6HPff4rSorYBvToGa4B72nJJwnBis+dagYdh/B0drLv9/ZOWXvjFHQ+0W5/L1ub07v99739bzrx/e1XXpzhENajDFaVWcSjF5qHNGMIBOCXSKhCKRDYwVKRx2Oy5qdDhDYKlyACfxLA2HMrqvqiqLATqK/03A/c4HKKLqsripo67parnTg6TzERKczqn54zKd3ZYtgDAE1V4eTitqwASrQjAay1utK8MgfRGlLsTm5TNIH2HpRCgc5G5wcs6iaXG34w+/vDzTY3a7lOE3zZ11kRxsH46ocFmz413+yMs68v6f9yYfk6rNrw2wm8KtTwGPyPcZs1vvafqQGnVPiVQXOIHAIdDnOZwiKNDLUd74eXr5vy65tEL/68wJ+u2lQ9P7JvV49/xCv4TgDs7WPYU76zukgrCRCBCty4Vnk49rpt5zcURxpq1wJ3A64OTF6fpympoeeW6twpizeX/LigdlGGz56aFW56WwFBu+lFoIqUgIzOuKf0z1xbkC8Q4gXhAIn8G7EuvSns9lDJe++q1p4G2CEQigeBtH9CWKz+9ClxZp6w6HOJOh0P8ownjxAPlIZSrxWh20JXJmboMGOvqsCI3BPI0i4pu/46P33IBtR1/Pg3+2Sh/oLSorZfsrOlKjKkspYnTW4J/G1PiM1og/sgz2SNuvbW4Jt3g9lv7Eoic1mlZ6krhNjgHK4DRR1x1tNwVGWJh4iqNQiK/PND7qiprgTch4HwPPAlUAieEWJR2yQuT3ql4IeAnuBB4uu99H90AvAz4ads3plYnUFBD3quIsx6MNlX5PcJ3xsbpZ38F48MtWrtkryvlHgLuK1P5a9BNu8Cf4C00lJlwD6geAzQpQX7QZzX/l5uTXzKvj9xo/SnumoKMzLzMtQXvN1e+4x55dXyZe9xnEUany+mLGhV8kFVpw65Cqip3Au/AH+5ilxBwk/hPcF9E0KXgoESbKnomReyqbes5WKGZFlYAk7OTD/AcNeWZmhDI0ywMnvglABGlAxtVF95mzx1ZXJN+N0CVN3560K+tUezt4O0d/Bvf0D5Oq9bPbdai6raXlxz7IcDXhedFHbiXTqgYnf7NBIDjO33X8Ojm7DiDyaeYEsqNn4RUmOy4aKCPQDQoW0EwUnQUcAWAwyGiHQ7xusMhmrK6cEQyqOMv5wKYFPdTgO4OEOS6mdeMF2g/g8i2Gpyfjkn/pndAWdVpKQpzsjZ0sJYssBicd9z0+qXtLrWha1jlHgAtxnd2c8ca+kJJuVToJhALgHdWD+lzYXPGs9lzLymq6fpfgdx5YpevTinMyfqlMCcrvzAna/rhck1QVekHjiawEoLDIfoCxQ6HOO1QfT1+iyXSVHtYBKU228LqM5d2Nnjjwq6sAsTsPGU9oJlrupsb2VWVf5aPM9CEKlkes+wEUBupRTY0ctxvkKleE74602ytL7rO0tcVaHCaJZ2msaO6awxAB+uexpTiTSbwoBdSH9adqZ7z04rNoiLWt6Oha2aqKiuAiuDmMGAi8AaNtBgfqRSUDkxKsOzZteyhy+8JtyxtAZs915Bg2XN/lTfrQbPB7XT7I85f8+iE/8CEcIt2RDA0Jf/Nb7ecPeaXXcffDNwdbnlCifAo8yXSY10cW3Ho1odm0JeF1QUZmeM1szZfuJX3fp2UmnHMrOLsxowxddZEsaO66zdwwsnA97W+mPNeue6t8lDIFw5UVWpAXdC4D/gEWArgcIj+QMy+Abs2e64RrIY1ewfXLx3bZmm2hdUTs+l4n2VPoypUthTpOaN8Eq3Eb6zq1ciuDgIppqCJVbLSis2rAbpstzS4OkV0jWFbbJVhQd12t9gNxQCZHVa0fk6wI5CN5ZkCKH3x2n9ta2ifojTPcQB7Er2WQ7VtDGaPGAlQHu9vjPL8B8EgrM6qKhcDOBwi++HPOuQOmNv/qQFzBzR6xaC9Y7PnRlR54jPL3EnvhluWtsC46c8cBXxf5k56MNG6e9nJ3T4fVpiT9Z9wy3Uk8fr1r78N8vudNV2ustlzpzVlpa+tcszMYo9ArBM+pU+oxsxcW1BVO670LH+SpzxiQfy9BRmZUwsyMu8pyMg85Odms+eavtr8j7d/2XXCyX0SVhUApxXmZJWHSrZwo6pyo6rKy1VVlgR33QN84XAI6z5N64LXyltNuGbQbIXVUtlri+KLatUCAQfDE70l1hu1pVHpMwpzsvKTrMW5ACbFc1oTlwGa4sMaQ6CKBQCDOy4uMggve5zJ49vTxartInvQSGukySu6AbgtcncoJUksNZmBkm5bLUubOoaqyvK6/3+piev177JOp4O4A5inK61/xRb7+xkEfrNHdL17mz135NHZcxZuqeq+SqAdDVy+q7bzMS9dOzfsUdFHImlR2yqBJOAhYF57ug/4Y33FWoR/eCjHHPbc7m3GXZaeAlEokc9L5GMSmXcwpfXKl6ekgfzSo1kuiTFVPJPZ4bejjoA8zdcBWaoqXQAOh3jf4RCXXKHsuGi4y8hp1k3NyeDQajRbYTV446XBFx3yFD9NRfFFrjLV2Cob269H/PoogDO6/3tJU+YtTfD1Ayjp2HDLm88gU6qi/X8EeX268eIRfmmUu51pXWlnF6u2SFJEyYk94wviG9On4x5TNUDnIvMPIRZnCLCU7IqQVDGZu6fL6noD6RHw+5AYUXKrIvyc1PXzI9b1ptc9H08EfixzdTzOr5noGrNxamFO1tuFOVlHTFW1tsSQ7Dljd9V2OjtQPQyFdva79Se7OwinkrRqWO9TQjlu5tqCUoKlbYOVI63Ai6sH9VWX3N7xj4w7NnvuyIz7PnpuRcnQQoEcC1y58pGL75gx6d12f76rqqxWVbkIwOEQsUCnnUuvH5tU2vOlE1xGjirOnPDy5Lw2r280W2HVDLUpfmON79AtWweTK2WZwRfd6BxtS0tG/AiwpPiEJh2L1yQ7A7isDc+/q2hY3RYtut4ulcAPTtDOLlZtDZs917DXmWRUhNbYHKydCNxRDpR6qtEUvmWNk8iBFbG+JhWtOAAOQAZvfnoE/D6s2jMkOsZUsfGNG2Y2OX/h4YrNnptxyhNPrvdJ0zsE7wESxbelqndTM6ToNBObPfeoUlfHfwtkMeCi7adUahQFGZkjTRsiBwgEhirjZw1Ztm8kuQTytGoEsn5kKm7l+4hFse5Vw3o/evklj54J5Ln8EbeUujuaMzr89kphTtacEMtwWKCqslJV5ejS9edtBVAQCISRw0DfaLbC6jeX93bHrmszkcmaoXY3kFQw4/5GZR3yaWY/QFFN1ybNm1JiWgbQdZtlR4M6ZMcZFSlE0l7T1/X2OkDqSkbr0FliUH4vO+qLxnQqj/NleY3STXZFyOqmx1QpJwgEtZHa76Eac+XlK/OTjZ6aWIPPBYE6yQPmDrhHdw0Amz031u2P6F/h6dDsdDiHE1e+PEW12b94B1i9sbxvt97xq1eBdNLOlKPDjSmvXXGsWXH9ALj90jQSxFjgAdpX5gpVIAwAEmmRQoY0TqNentZpAjEKSHYNqXxGWuReQ5Xxvrt+effTh/LfsB6/YyVGze8vKB1cFMr5D0+UbyR4AhXEEKDtDbdEh6LZWQKMro4VQjM2aRm9JahOdaTH7jgDn3X3YOCnhvbrFruh65bKXhzfaZ7SxHxkjfVhrbOs/uHDWpiTlX/sQ69Xuv0RpgpPh5Pa0cWqzWE11PZ2+SOh8T6sMT6jdIayakBiqSkdIK3Y/EYIh2W3z7xR4Y8KKA7ADNJ3zvs9HupjrXnsyXN2tfulsP1xVOKyC1fvPdpgNrgc4ZalNbDZc3t1jNj5yh7nqScLNJfE8IxfGp/6n/3u3Xpp2vBis+d2SLCc+LUitIS+CSvHfHO3vRAopIXKjoYRBwHlyCIQirt3zcnAo6GcoC5Pa71ddwB3FGRk9vq5b6+vem/Z2WvakrepMEcZvIrhxFXf3dJTqTXM7rdmbXv7rBvElJlj8294+NnPq/Ye9Y9jPaJEkcYnX56c5yawiuiYMnNsi3wuQdcDtSlzNFthFdIUYXQnt5mgK1NtZwdwRdSuURGN6ZcSWdR9S2UvkiJ2NcnqXB7nGxhfYaQ8zueJb0D7nameLmnFZsrifSn1S7mWODsvh4Dy2hQ5dBrGsNSFExfsOJmTun7ubMwDSlStoYbQ30yGEIjSLAzloBIR60esAVSQxmC1QeNGd9Qjm92R1341d8C/U02u/x0dWfndk+fsCpnFuK1jNrivNSoeTrN9/Cs0pTDM4cENr105Jn/nmNugY9ZuZ6pnUMcl+d1iN02qX2YyeJ3RrzVhwGbPjQA+K3MnRo1I++Ga96c+NT/cMrUUmWsL8gsyMscBqi/Zfat5Y+SwgozM1My1BS3uknP6OU8XGRVPfPyg0rKx63/7+h+rf+yd6Ko4GQygcHlBRuboXTPXLgJMqirbe/DVX9gSUVu+OsJH79jCrMTdGZ8DcwANhPvlyXnjQqG0vjw5zwAkJ/TIVZ2lvUdBn2sIpA9t9BzNUlhXv3SnMY6zonyWkAZMN4uIskHLAcy1XRMO0fQv/LLr+AXAyU31YfUZZYpEEn9rjb8h7TWFFACXVQt5iU+dQ7OxvC8CTUaZqhobld+JYG67UFET6b8QKI+6qzqkFk+T0FISDN6oEp/FYUBKDZDg6m6u+XKzJ8oCTCn2Wm/9ocroHzC3/xwQHwPfrbx8ZaMKbxxurNg9zBxprFn6wqR3ysItS0tgs+faQE5TxLlXK2ga8AKIJz69/aEjzl+3rZJx30djok2eD6u9cR1BXPD+1Kf+HW6ZWpo6C2hBRua/gVVADsHCJy3MLT7NnLTHkzrqyfev/rEgI/MeCUcLhEFqUhCw9lUDPzoc4jxVlYdFTtJQsHrv0Qog3/TazHZLxad+d9x1IBQgAvyPffD8tQ/uWXuhjwNYRN+6/zlD7e5BKUB6bPoPJ0tp6FO144QSoIs5evsovzcqARJMgLFs098MQ3VxOq2jsPrNZWkAzg7LegWqyoUfv6l8p8Ebjydye3+gwRcBTRo0aLoPa9Je0zJgREPbdy4ylwOkFZu//8s4EcXpTRJAp1EU1XS1AIUzJr17yNJ1dRS+ZbV0w5xaluDv2CFUgmTHmSKEElUR5/8llOXNBswdIAwQlWZyJc+buD7/vk87PrDZHTlspTP2yc8u2pQfbBMzLKrs3iKP9eRazXgBcLVJaP7x7/Vcv8UT+TDw5crLVzY640ZbxmbPTQTDgGpv7P3hliXUXP/aVcMLK3q9CgMHgPAnRez6YHjq/JwXr/3X8nDLphMgaFV9CCLuwB8pBJpfIhoW99BOyFxb8PuajIxnBOKeXyenLDxm5q5ZLTXXja9flmEU5z2goXy+afpZPwZ3OwTCA5jEn3nXPQQyDawGcDjEucDNwMXBEqjtjqA70KUElt6++1lGTx0KTpCWwC5F3bP2wvkgtcC2ps2+9+UCV2nmGqCLYq7sr3mP+iPAvXL7mLp/XcB2KRWnJXZrRe3uhE+A7RGJa7o6S3vfjTQC+JuS875ZCmvMzpONAJaKjB8P1ba1cHZYtieq5AQ80ZtOBbIb2q977Hrb5so+zfFhNdP4HKxQz4cVIMJY29BCRzrNwCB8ffzS0Cj/1agapZtA4DfIUFqq+ilSGBLKjSH1XwWsfhRWO2NyAR47e/fj+zZYefnKKgIJpe8ZMHeARSDH9rLUPL3RHdUVeA+kJ+u9nnuiFf8Ha1wxT6y8fGXIMiOEi8Edf560fPdw4sylbeaa1Vxs9tx04F7BuZMMwm9Mjij+d4kz7ZbFD0zaAZPCLZ4OgQelYSk/vm82DB3p8Vujgu45SBRJEyorHu7UnlL6rPXn2LvMq6JzCjIy38xcW9CglcnGsq6s/ysaiuU028cz4Szgr+4JgCNzbUF+ZqB5/R+LgYB+tBvA4RBXAr2BacGKUu0BtZ6rmOn7SG/SUI/xj88lsc9/fJVFI97xVncOFntQFFdZ7wEgrSC2Gy3lSy3JK4xV24//P1C2RacuqbV2WL99z5qJv0+ZOfYvq4UvT85Ldu7ttwDhr45MWplTu2egRmv7sJqcnSIAzLVdtzZnnFCScesD2tZ7/1cSUTawUUpFx8jibpsr+zTZh7Uyxj8wslaxNPQDLenoPTp5t4ndSd7ojvX2b6vqoSfsbgUijTVDusVtWAfjG9yn4x5TbPDvl6GSQxPyGEUKCLGbAcEKJj6UModDGAgkIy9RVblft4OgG8BXwFcD5g4wACOiFf+lVX7j1Vs9kbcCtwya2//nIVEVJQry0dnnb28zgZaNwSeNEywGJ2qXr38OGBcOX4575FVbx8jizwTHZEoMUiLeOKnb57NnTp79S7hl0wlw/nP3DPpl1wlXA1cv2XVCZM+4tUUbKzLuAJ4lsCR6RGZnGPpCyZ4Vp9tuNW+OeIGAojgz1HPY7Lk94agTYs3l779y3Vt/uWbvJ0DrL6iq/Dd/XaEdDAyrU1YdDnEVsENV5TehlrsVcQT+SOqsnUEFMvi5jOXlyXlXAPMIBOx6kMq4KTPHHeBzG7vfvR+8cFUXxXROnuaN7ow0nHzlo7csbKrAzUpr5Ypb3QXAE7m1TT1xKJp1o8Eb36hysYuLR/8A8OnGi5vkw6opMtFvkA1+AJCCZACXVWvX/oJtkaPufy+6yhunOH2Rjf3hdAr+DVlKlNIOvql+RWolHb0hS2kFcHRkRQ+A7paaaKAHUEwDNLRnJow//oovu911xZfdtPxLCyaPiC43W4T/aOAhi6Kl/FITf9bimoTFA+YOWHH8OxnPTv049YK7PkkRhxq3rbBqz5AIIK8xriBtDfXx57vZ7Lkzimq6rF2555j+GR1WrQR6F+aMv15XVtsGNnvu0cc98upPS0tGLgc5GfgwylQ1aN49t3cuzMmaSSDVXHtLXdUozJsjXgK+l8jHfp2U2i3U4xuE9wnAW+mJv625Y6mqnAqMAnA4hCCwMvXH9dThEOc5HCKtufO0MjsC1lXxGQc4D4MK7DjgfhDjpsw8qVHn6suT8yIqt41ZpPksvawJv189ZebYJiur0EwLqytu3WBrxVHUdvw5CSY2Z6iQ4jdWVwhp6Neac8ZXGFfxZ2qrQ5JSYtoI0GW7ZU39/R0jdjbNiVanwdR4Y7sDbCzP/K4x/XYle89NKTFRlOZxdjp08wYRU2WweMxyR/KU2pA+9MUYfD0B0k2uaKCMgD/WQdO8PTNh/EgCuYCNgPOZCePHPfnBrnxgefD10K0fp46ZV5k0VCLOqfQbb82r7IhAPvnV3AH/6WxyfjcwsqrNZhyw2XM7g+jr9ke0mM9cSxH0NxvfKWrLuN3ObsNB+kHMiTDWTP/qrns3hls+HZg6a6Ko9sbcsXDHuLMh8vidNenVRyf/vCTOUjrprSmvrKjfVs/OAJlrC+Sqkb1uVyqMSw2lpi+Bo0I19nUzr7ncL8/9R9eYjXPn33dzSHxQVVX6g3+lwyH6AfEADodIJmCNfRB4JLiidRSw8kArWm0Bi8E52u2PAHioMCfrgCt8f7W6NpyXJ+eZgI88VelpsV1+eOTS+x5+r+nSBmiWwhq9a/QOgIjSwcuaK0gocSWsSIsoHdwoxa9H3Lrumyr6NteHtTEpMfbrw2oxuKL301YnhCRFFA/Y40xFEf5G+bBaXcIikXjMckNIBMmOM1hQ0oE3QzJePeZXJe4EWFSTkPfKP4r2AC82oJsK0hB46pYW9uNb99y5xT8APwDP3P5x6lG7vObJK5xxPYAbd3gjbiurMvkGzB0wB/g4weCZN/+SdW1mBWFY6oKpS4pH0Slq62GlKASVVQdgLqrpii12/ba0qKJ/vDf16cPSLaO9YbPnGoHzFTHBrknDoAhjTS1glyiv/fe2R8vDLF6bpn/+hmUrzu76g3l11OiCjMxjMtcWNLtUss2eKyyG026wGmtcQ1IW3Rt4Vg8tqiq9BP1bg38HEDAMQCD4+kcCOfP+63AIK6C1tZRZGR1W3rFm7yDZKXrbb6Ee+8MXLzdY4o9f6C7vNQzE9Zfe93BIXD6apbAa3UmBoKuq3m0qGMNU0/U7xR81aMv9X0R3e2R89aF7QFJESZdNFX2b7MNaE+nvZ/CLeGsD25cm+EZ2KDNSlOapqW+t217dfc0BOzWDgXP7n2kR2gkuafhk5eUrD6sbdqjpHV9wwR5nKmd0/3dZnSN+Q4irNNYAxbYrXSFRwmoi/f2jag1RhN5/FSAOwCuVsuBSlU9V5aHyzzkCfxpWae2Zc4tXAzcBDJg7IHZ4VNn9WzwRY2o14wTgmhrN6M96r2fBVk/ko8CXQH+CDv3hOAfLXEknRhqr5bDUH3+G61t7+uaggjQFl+/8hZV9X3Xce5uurIYZmz03aljKj6/EmAacW+WNi9GkYV1Gh98e65Ow+okXJr0TyjLL7RrzuqizgfXASwUZmcdnri1o7mrTGW5/xLHAjc9f838tXtEqaEWtH3tSAFxDwPcT4CLgeYdDDFRVucXhEKItWF43lmfEdLDu3fzDvVOb5AZ5IF6enCcssWP+7a60DYtKXfL+Fdl3h8w/uVkKqzt6Uy9LdQ9csetqg+4dbQJzbZffAAzeuDSgQb6Bi4tHzQdO+XTjxb4ZTZhTCmL8BtmYnKoJfkXKTtc5Q3qy1OfOT1LiFlUn/LPcb7oOxFCXNADyzgFzB3wZqfi+HR5VvsuiaJ88dc6uNmMFaw3WlfWvMQqvyyD8jV1K7UQI/Vcr4vyTomoN7Ojk2ds5VIMG6WutHrLOFU2GtcpPIN/hWKDLwfqkDV2/aOfSnsIS49zhroj+5+0ffNFgpTKY/upOgAFzB1hMQju5p6XmqQ3uqG7A+yC9AoyBusPCPWDugHGtqbTa7LkCMpMF2iczJr3bIhHJLYhDIKUMaKweEI5wC3QkM3nm1X2+Ljz3YhA3Ltl1QmKXmE1VEi6o9sb95+u77mlT8RyHA5lrCyrWHNXXLvzKm84RFa8Ak5s6Vu97Pz7BYvC/7/GbiySG10MoZoNRVVkKzK63a3Vwuy44/WGHQ4wATqtzM2htbPbcKIjtVu2NzWmB4bPdlbZzzDHb3o1MXBPSyNZmKaye6M3HWqp7UJ36fU3ggaJt4I0oKjM5O+FMWDEARoU0mOVARNcYNgENPvk6lBnXAwP33Z8cWdRs5/MBcwcMMKBdZxaJNzilQQBlICWIuuAYtVYzZn1flYRAur6eO+DnOIN3bf+IqvJSn+n1DycUNmqp/HCj1NUxHlg7Y9K7jXrKrY3wj/Yb2NuoaL6DkFBmjNaE9HtNslG+tA0hSvH1AUg3u2qAWUDuofqUrLSloRlQjP45t3/wRb7DIe4GklVV3t7QebfbF4z8ildUwJGeMyozmHHgOLPQnvVIZWjwHLQS8LtpTStrD6CrRHmyFecMCYU5WfkDH3jnvUpPwkSD8GVtnH72Eb1CEi5s9tweyZFFT5a7sv4RTAX0mVlxP73gvpsWhFu2w52a00rftqyInmFZHn1ZQUbm3ZlrCyoaO4bNnjtSYPxeYjYKNCswlDbgJ6yqcjGwuN6uncCmOmXV4RBPAztVVT7TWjJ1itp6YlFNVwONKF/fEP712APvgzoBmO2p6jLpgpvmhtSS3CyFNXLPsWsl2pjBV73boGX31qI65QctofAiPFHbTgT+25A+PeMLem4sz2yuD2tjfmQx7OO/CmBWPJFNmXzA3AExx0SWP73ZHZkF5s5+FE8Ho3N5N4vzXz9Vd/gZxHeAKZi+4uShUeU+k9AuX1Idr/gQQyv9xmsWVncwAHcPmDtgW7zBs7GXtbZyRU3sN16UBCCvvbgSmBR3hkQ0On2Y2aOI2khtW6jkiHApXYGltitdIY9YX1obvwr45zpX9LaUyQmdgD4FZI4MpnPZL3632Qbg3BtXdxFLA9IcDmFoiCVgu33B8cACAj4F7u32BeNW5qzMBxYMmDvgZpDzCAQmKga0Wyf/p3PkzH/saHYEb0MYkea4Z9FOlZ7xBT838fcdVio9CfnARL80rgq3LEca1828ZuLinaOuhKQTS2rT/P06rFiTFr3tttk3zDycUxq1KYY9s9u/Uu1xuuIyLCCQP/3WJgyjShQDgAw8UKi0AYV1X1RVvlL3fzDjQC8C+kPdvseAr1RVtliu6PSYwpuKaroyrusXq0N1PZx588fX+T3qhIikVYXOPf2v2zcXayholsJq8MUYaZyS1iqYa7osBojZcWrf7fYFI9NzRh3ypE2w7E0DmuzD6rJoPfwGuaeh1Yqqov1DTV4Rs6/P6/Zq2/+zd97hUVRrA/+d2ZpNbyT0pRNwARURVHQEO/beUT8LiordYF2s2NtFsRsV+7VczVWvEkcRUcECEYLUAKGE9J5tc74/doMBEtI2pDC/58mT7Mxpszlz5p33vCWnuX26MlwT4kzeGaUBqwOY9Ft1XGSS2VOrIG/WEW9+df6awnpldwQErid47rCDu/XTlNgq3XTGgorEGGC8VyrHL6mKi2GHkaf0uDJcR3Z1oXXGyxeY4IyBrqTfi+C05ld0x1rMCEdMhSksaftyX7eL/ljHAu+2U0yoWKDqiVmWYyTyCwCBuCNneNrkxoTWiMSycTVFsZgjPHVC+S2qKpttsuK3Fp9v9iYIguqnndLuZU/NXvTPHJQbkyzeFxZWJtzoythvDIhFwBftObc2VThdUZYy736Jf7TZqaMjSIrIVwprUhgcl5MMUzpPLuxuStCEhKNB3ganTbaZagLAYyCe/e9td7a7XeS+iEtbtzBneNqLEnnd7//X8+sDXt36VQub0EK/ZWuyKHUEIVvWU0OCK5omEoFrCDpy/ahpwgZMBT5phg9Cs1lRNCYiylKe/+o1L2wIR3tzpmWdCrFzhKn2x6iU30+47IHr28XUoU0Cq8++bbDJF9tuNpitJbLgsMEAQpqPluhH5KUvUJsSWpfkH/YjcFxrbVgBe10c1vlZg84E0oBvJ09a22C/QuIImFpveO3KcB0K8ofSgFUJBf79PMbke/ygyLIFj56av1u7IWGg0e/gsVPzy9jFW33smyMe90jTjQTj9doSTN63XRmu/bKnZnfZGJbapuN7+nQbJbWJ/2tJPV3IFEUKQZhsWBOKTdMEIro4ztcvbGle69HbUnNgod+qA6MBIULZTNiD1sEeV3ViTVEsicPyNgHUCashp63TVVXOaaw/TROid+Sz1WZvAhKpiwYeGPXn4K2fpnyUVW553itNl4E8Erixvexag8KH0wl82FIzkM7Cfkm/O7VNxzM4Lmco0C6OmQbgTM+0jE35cVYPx8Dp26t7xYDY0icq94n9e/z81HNXvrVPpVDtCAKJ3ntEtelK8yb7OznD0xLTVuY0+3491vmJ/evc04TDXJFV7Y++qyvFt61zwlJVWRQKk1XnD3MY8CKQB/xX00QyQV+KZa113HKmZyoQMxL4pO0jh3efuPYmxCmPIk1LZMB+/NnXvdFuO+5tShzgj9ju8tvz48I0lnCiAnrwIS2sulLzfF76gnZNeWr3KNtjKsyL52f1Po5gTuL7QC6Yn9WnQaPjqCrTlshq027hwFIcW5wpji3OPfXlynA5gJdA1P3//MCihReu/KEhYbW1eKTp34AHpF+ALA5YBwJ/ujJcncfDroWUeeOdALnlQ1q03bK5t3cywLYUb3JTZZvEHTshusL0NEB8qXkS7tgJbW5zF2yK3jfKFLAQFBrrXir97EHrULYxuUAogaILZ+aU7nLqKuAxTRN7ChU3sbz3VzcBCMSTwOQ9vSQ+dmq+xytNa/7JU42d4H0bdiyKZyTQA8hqj/b3BqtLRiwG+C3/kNIOHkq35PqXL0oZdudHtwCrl+QfNlOArU/0+tuAAT/eNf0WQ1jdO+y3cG2Bb3D185aN9njg7JbU3VzR/ySAI/r+77GuJKzuiqpKn6rK6tDHLILRVerWrnMJxsQeCKBpIkHThHW3RvbA6ORfxwEJJuH7ua1jnTMta2zJ2hNnWyO3+mP6/HDm9LmT2tU8tE0Cq61s+DpzTWpntKnSAI9E+kHqih4xCshZPfuFa5e9fFmDO7CD41YMBkI2rK0i2mPRD7PX1n4adHACwATWjPlZg96anzXo0vlZg2bOzxpUJ5w0aMNqVrx2s+JtNDrWjZ+kDksye9aCTCMYesjfXtsfIW3XZBD3SMShwNEEbW1+OPeD/svO+6B/eygH25XeUbkHATjMlbktqRddYYoI/RmO+a4KhBlABF861DC0uRPrPJFrivzWpWkrcxYJxBkE1fB7HLvus6RK3fR3A6ceBkarqtxTCuY1kQXjf5JIHbijOWY4hO7TUBitus9h56DUhfcCjEpa3GVDQW2u7L8ZoKAm1dTRY+kuONMzJzjTMx8YfueH73674cStnkDEY8BGgX7S+J5a5I93XvtY7uwpnSp25r6ALTv6BoKh/p5YfuDQZscl/6vogN4gN1sVT7exLVZVKVVVLldVWRs69D5wnqrKugg39wEbQskKqPu9J2KsZVcCHNP/P216CZszLSsN+Erqls2RPZYeeNFd7ry2tNcc2iSwKro1QdHt0XnpC8KuIWoLoYflZIG4R6AcBhwshbcoonS/5yLz1Zy89AW7eeLH2UpSoJU2rO7YCRLZw+oT/UaslGZknSCJB/QvgNMJbrc/AMyfnzVogteiDyiPDuwWZmhzpXPl5krnyoa6cWW4Bi+oSPiuNGBJHe0onwkcQSi9X3vZ/2VPzV6UPTX74dDvbwFXmr1i8fKaaNdfNdF/uDJcx7RHv+1Fr6i8UwQ6R/X/vEU3a1yZWQCk5lt/bapsM9AkUspmxjttJbFAeejvglB/YyUyK2d4WoP3q2L272e2ewt3Pa6q0qOqcjWApglXQ3VVVW5RfDE9A7Yib5/ZE5uV6So4Z8VkEF+Eoge0S4asv4tH9om2llb85xZ3dnu0vzfoHZUrAfpFrzUy4bURZ3qmOOaR2feB/BG4szbgODfaUrZxcr8v/i939pTD188+6YsuGPqs25C2MicgTfr1QG/vkOpmCZ/BbW6OBJHVVc1+moOqyu2qKt+rd+hj4IF6TrGfa5p4tYGqO1i87VCrWfgqC2tSWi3Yv3rH81cKU+1S0AWIo86/7YkWOzG3hlYLrHnpCyZI5DCJHAbM74xCa5/ZEx8O/V5SMnDe2Iqe//vUWtm/L7Biw11f3rHs5ct2pFJdkn/oQoDP1p7fIptcTRPXb031PgFIgSC+PCDTVlW+DpVfCVFyx+RJuScDjwE6we/bAqhKQFisXtGjudvBR7w97HBgkUearP2tNSe9fdbGR+oLky0Zc1vInppd+cE5ueMsQh4Oogb4+rh3Bq8f9+aIR10Zrk41BxpieeGYIrPiK2hpYG+J7EXwf7i9zYNwly2qiNK3BExSBybjLgv7/y9a8Q9OMXviQh9VAPHP1vstOcPTdrr333tqkEMPmJKiehXF0QiaJo4DlmmaOGmX41M1TRxoreordFNNi9IghubuBSAr40y++1pStzk40zNNRbUpwyu8cR+Eu+29yajk3xwAztg1Yzt6LF2VC5+78TBneuYsYNWqEtfd/PP8C+TX9H7x1WteCHvGOYPWMWL53ws9w6tW2/6MGp8zPO2Jxl6y6zjW+ckpQHJawtL1e2mInQJVlVm7+Bb8TNBkAE0TQtPE/zRNXFx3cs60rAljK2OO7uu1Lf3wxodbHDP4pZveGTRnWtaTtcXD5sqAzQJEETS32iu0RcOqEnTmqO8R3GkZdcVrnrQZ958mUNKA+SZ/1INR2yYVb7zzq7YKWT0Lkv0BoJagVtWXUlD7tknZPlwRpUNDZb4G6a073zevptCsC4vdo/STyPn1hdYUx+YBKY7NA+p3cPlHfe6u0M3fm9FrgUM+PXfdF20cc5v5/eLlC4AxSWbPws2+CGeNVG4F5nd2obXaH5Xi020tdlopiQ+c5bXoEndZWDQvdo9YBWJTewirABJi4sy+uqAVmkB4JDIgEDpweiDet2rJdT12pPnaumRIL6Sgpij60z00+y3B5AA74saG7KdmA9PNnuRIa3XfFtuJZk/NLk+zV64sD5iOH/9W2tPhnEN9onIPI5jzu8varwKsLHatAVi6/aC9Ele6u+BMz0x1pmfeMPretzb8uPmoBSDvBjbGWIuf458120sX8Cjf17D+7bgxZDJ1IzB/T0Lr6pIREwEGxq76cm+NrzOiqvI+VZV1abhjCToIKAAv3/b6ZITvx4M95h6nV1kPnjMtq8l1ds60LDFnWtboOdOy7n351oxyX3XqGuDG4I6YAJR2MWlrjLZECdCAgESaGvII7qz0mT1xY176glPK+n42O3rL0VcpAcfCvPQF/xobtyJlSemIZsVh1TRxOrBWVeVS4O7iRH9AIMYTChtluqd8EZpII/j2gUlZVySlzabL+I/A8dTQdVUq/2hcI/J7+GalwDHBsv6dsmW5MlzXQJy7h9lbMsZRduwTp+WvCvNX0mqOiC5yfl+R4AxFKYAmvNA7AxbFk2Y1eVscmspRrVRLQYu0h3vC6lME0G6OHJW62ft3bdRXAGkrcxblDE+bLBAq8H0g2r+/8CjPOb5N+CRneNojwAP66EEDADxlUY2miQ1FDXgcQNOEGQioqvRqmhgWmT8xCbgUaFXSiUrdlKGjjK3SxXXAleGKGNAnOve2vEonh/f5+reuGH+1jvVlQ4sAyrwJbTLj2hdwpmfG9Ited5VZ8d0OQ+NBKNW+qBXje2r/kVKkv3/Dozmhcu8SWrO7spNOd0VIMYrQc1IiI2RU4GIaebasKxs2GFgz56o32uxI1F1QVVlK0O8EAMXkPUNKk6IEn9VmCGS9dsfz1b7ahM/81T2yLJFbVwQ8MdG6P/IwoNjR48+zTbb+BwU88ZGAlLplY0yf7/9XnnfE+0AGwef9XpX9Wi2w9pk9cVFe+oK3gYuAY5rpZNEp6DN7ouzDxNvz0hc8CDwgkdc+ULGfeAszl2896ba89AXfNnY9miaigDkEtUwX7YhTqbJT2KjQ8dLQxyIhPHeYxLYMVZVbN663j+mTZ9WFREqB9Nj0T0JtR2yr+mytLk2B2z5NMeXURH0AjtNBfLHdbzv3idPyq9rtS2khZ74/4IDtvuhfFCQ6igcwsZcnb0sZdc/bx/j0+IQBsasGNF16Z+weRQF2i+rQWvwm2RPIb1NcuUZwZbjMQCT/2LASir1aNz9/WnxD8vzIbxPuwi9mSpO8qG983sZNJX2YsHbTlJzhad49JRgIhV3JBJ4D3lRVWZ499xoVoLzX13GtSdO8yesIRfEQO8xmCMOLz1+FByREW0u3v3ntsw05k3UZ+sesqdpQPpjUyE0DO3osnZEzn5ppj7aW3/3n9nETIGnCxoqB9gR7gW9g7N8frCsbft/qh07L2TXuckhI7TLPrX0QjaDztB0QotJ0ac7wtLXA02krc3aY7p351EwLHHrEoVuys3KG3zIT0Pa0fu2r1JYMeUtHXiGQZgE+i73kdz1gG+OvTj4fuNRX1ZOg8imogKre7gpEJOUU1foib5a69dMrnzg/v66tOdOy8gi97E2fO2mvfddtel56otavslUOUMp7fVXRmodUR9Nn9sRy4Prlc27+Rd8y+bWrsVullLOAmXnpC3YKy6NpYgSQo6qyUtPEkUCz89CrqiwiuG0KwLpBHlNRor901DLHsyZdfLtukKdknSZigOsGxf598AZ/YOX35QlrqqXZmWqpzdzms5+WPTW708S7dWW4DoaoL6xC9x4eXTxdq0j6m92TEnQqnOmZEyDuM4BVJfuNdqZnTmiJVkUiewnEL+Eaj98sB9dE6I74cDVYj4lRRT0XVCYy2FbVaAiug54uWAlcmDM87RU9yv+Z5e/IQ0SSJLbSc5OEa/eUYAAoAjYBJ2mamAqc06fkhSQAIZVWOaXZRWBxrTQRCnMVlhcfZ3qmFWJGsUt84a7I93fM8A++4xN6RW4ybFhDzHj5AtPfJfudurJ41DFw6Fkg4u3mKg/wCjCvuDb559/dl3RbB5zuTv2dIWnSc0RAuQR4LJDgu/XPE/vPsa1x+ACtx7UTRk7Ykh1zx+K3TpLIkwFPE+vXPsn0uZMWqTd/ubSvX0kd77GcddXTZy8CmDMtywwMM9mLngrUJhwd2i0NgOn+yx64flZjbdEBL3ttElhrEv7QbZUD0M2VhwJLwzSmvU7ByCff37jliOkqcoKys03uIgBNEwcDC4HLgTdUVTboxd9cVFX+S9PES6Z7yoMhUzSxiOD/4upKU8kD1tQvXNXSDMjANp/twc4krE77d283xN8OYrNXKhOeO33rmtCpzr44qFAXr25HKKlmjTn3dXuEE1vy9mTf4HBZl1u9ogpaJ9w1hY5IBYg3+5q8v9NW5miLb0ruU76qT26Ez5egIEwSGRGI9n+SMzztbuCrtJU5O6WjDXmknq5p4gLgYqDIXjYyGiB669Hft2bMR8QUbf66rAc9zJ7l2/32q8Lx4jMsPvv4v0tcDoHepe1X69ClqSyneNRe8cbtzDjTM0cBF0RZplxb6Yt1gKwG8emIxD+0IXE5bz9zxbwum9jEYGfq7wzlDE/7zNe39kqlyPy8dU3ELEBKJNc8v0iY9EUAJhBIISN0W+BYOv8zaa8y4+ULbJusZ48qiyp9/61ZU3d8N9PnTvIDy+dMy7qXYKKCuq3+FiXX2Ru0SWCNLBj/BfBw3MYzy5ss3Lm5Nb/n/AnevDOwIf11Nrn1cqgvBtIJU2YIAFWV9eP7zQBiL/nqC4s1MUtakQJASoEQnccm9OC30q6r0ePvTTZ7iwv8tkOyp2a33WN+76GB9IGwgQyA0JpbMaHY1BvA4hPhiePpjhUKIsruEc3W0reEhZUJXoDFVXHfNKf8QU8WVPx05gn5sdW1cRIJAiFqlAjgJYDsiYNqZUTgK8vGiDnAgrSVOZ5Q1XcImoJcrCu1w4RuqxSI3cJiNYfFlXG1AH6pvBYuLX2srXSGQOf4Af/+E05qsnxnR5emshp/1D4Zh9WZntlvaPxf7lJPwjnQywEEzIr/t8P7fL04t2zwHT/ceX15V7ZRNmiaUNarF5ePGToAuI2gKlDmxqfWLo8dUHnyukXREmlBkVJ4la8h6Cnf2oxQ3Y1yb9xJAWm2jEpeUhzM9roz0+dOWjRnWtaOFO57c6u/ubRJYLXU9Kp74DrbPpQO5cVca+kNM6ju8S9hu88izd+uOe7wXkC2polDVVWWEHI2aQ9UVQY1bV9lzvRXD5RWaRESPyB00LX26re5uDJcApgF5rsdiv/HAyLLznz81PyuJKySO3vKouMeefiJlSWj7khLWPr6l7fd2eybMabCnAAQX2puUXasxihI8kUnF1rMHquu25ou3hrqsrqVNbdCwCr7ea3yB4H4HxJN+MXPQJo/0XuejAxcY95gnwKcKoWsWXpC/wo93v91cvbQ+wueXXUhEPDErN7f5I01DbznglY9HIoDVkvod35TZZvLn9vHRURaKtc9f9Ub3SLUjd1UTYSlytnR42hvguY7qIn2/JXDE7LP+HXbxCFgG7eqZD/6Rq+r6BW50b2lqt/zf866uCCo4DfYl1BqTZ8B1wMWEL45I84w5SQOmHfyukXvC4RKQGhpK3MWaZpIBL7WNHGTqsofOnTQnYDvNp2QCrC5sn+jKbY7aqu/ubRJYO0ze2LNxju+KfdF5k2CiQ+Ea1B7i1Be3iJVlcWXfJX5LAQeOFJWz86dPcW3RmMsQTu9RrNOtceQ9Bqnp3rj5VazY60uzFXT/75xbodOnls/TYkYbo9YurI2egjwarVunvb4qfmdxkShJRTV9vgvcMe2qj4tihLgtegDrT4FXcgt4XDRrnboAwBK4v3O1DC0tytjHGUH/lkdy2hHmaM55ec9OqynDAyJNA8urUl7J+fheqdWAHcDd+cMT4sE1ECK9/+UCvNp1nWOi4CLkmcM3eYbWlVoHdjLEoioarVj0yBbVepaTyQ9LbVhkeGd6ZkOsB3g1W3PhqO9zkBixPZEu6m2Wf/TrsqQOz45DCzzQViKanuIhVuOItJSnu/TbXcD7yy487pWRaEw6D7U2bYC6pvqxNE5cQPOGRqf7djFsRQgheAOUEmHDLTzcQiweU1pWpcNjddmJ2WfY7Mihb/B7DedGU0TdoKxGX8DLqk7PveoM66F2qdUVS4Bjt2bY8qdPWWRMz1zsl7TX/XW9O/wUCuuDFeUIPlDiRgyxlH23Z/VsVdkT83ustsrBTWpVQAlnqQWCdzFCf5TU/OtbOrr9e2WIq0V9NhukQDRFaawaGx3RUAqQJzJV91UWYBtvw1JBqjYkvh+Y2XSVuZUEYwMkKlpwmr7M+q66PdSLNKmX2BdGTlS6R8t/Mt/j/tr/OCl3qHVG+xLYmYKXawIbeM1SR9rzfC1nkgG26vCIsOPSf7l3D8LDrY6zJXdRrNSUJOarUulwdTS3YHhd3442m72fOvzxtfZmutxtqJ3jujz9cXdOXuRQctJW5mzyJmeCcj7QLKqZL+LnOmZr9d/ZqqqXKFp4oA6kwBNEw8Axaoqn+yocXckUZbyE22mmj9/c1/WZe+lNgus1qr+/0OaupzACniAucAqgN5RuRM3VzpZUzriOk0Tc3axMd1rdJZQK8e8M+R8sD0mEakm9GlvnbXxxY4eU1sZFJdjW1uahjNmdc+W1IspN5VJpC4FbXK2qyOiVnEARFabcsPR3q78UR27AeD7iqS/mlllIIC/2t4shx5VlV5UnuAGAGavmnnfECGtqzy9N8IWOSDi19hRBI1G85YdPWCtv0/twohFcY+mrcxp1EThj+rYTQA5NY3HgW0JJhG43CT8HNX/i1/hnHA02eF4A/ZCoHdHjyPcHPPII5GrSva7Exy3+nWzT6D7ZTDWua/Uk/i8IawaNIIKos6m20wDjrT1hFUFGAGEzeSoK3HWUzOHV/oOi3Yl/VbU0WNpC20WWIU0rwVOzEtfoPSZPbHFqb46Ak0TNlWVHmCOpolRJz0+65QtlQccBfD4kvtSQRyYq3a80NgRuDJcVpBusM0MHfIGUJZ15JjCxdD4FfFrS9PoH7M2rSX1HDUmM7DNeWltWHLdV0QFBkRXmqhyBHakogozMaHfzbJhjepVdEzllkTs8RUbmyqraeISgoH63qx7GHj7FR3p2ACeMdUf7v/02nOXntxvqHVV5OHAcabt1tMsm+xHALfnDE/7ybNf5fZAvO9dx4L4rcARhGImlgcsCkCh31bc8svdnd+3jzfbzTV/PnvFW93mARVvK4yoDUS0hxVJh3HGU3deWlQz6EWCnslv+KX1FmAoRkB/g6bRQIay1uw5FJ6qSl3TxBmEZB5NE8MIZtCaGfJR6dYszj9sP4A/th/8aEePpS20WWCtjVnpt5cPt5b2+zitDxM7fcgVTROHAO9pmjiFoHY1q4dj6xZJ3Vab6PTZmtqDWz9Nic7z2h+BmCkg+tXLXtWiEFCdmcXbDs0F+D1/QosE8IAiByo628K1F1sRHTg4utJEUaI/oj0E1iG2yolrPJFSImqbU14xB8YpFj/xg7YWNKP4+YCuqjKj7oCjcKwVwF46cg5AyU2bClVVvgK8svjm5Ajb8sjJltyI8VLIE2x/RU0EzpBIBEICtTnD0yb3vdfXb5M3gv7W6jabCTvTM2NBObDGH/lgW9vqTMTaigZXV/VNbWkM4c6IMz0zEXgMDrk03lZYe3ifr29+89pn61JKdopdJoPOTe7sKYvG3POmblL8FUW1Kcc3dU+EXrDrlA6HAWcA7nYeZmfhEKC2NuD4raMH0hba/HCojcvxAgjdfEBz67jd7glut3um2+3uiLzzZcBGYL2qyirg3NzywbcTNBHw08mzNYUbV4YrwpXhuv678sRNf9XEXG0VgRLgJhA1dLPvo7AmtQagwhcbaEk9j00fXxYb6BWucSQVmjcAxJaZVoSrzfpU6qa+pqDmYXxzypdv7LFN95mWnX/rquZsvR4LnFf/gLXKGQ8QvW3SEk0TJwMbNU2MBqg6qdBfnL6hNn/uyrdG5Kw8oGTGxjNrD9wRBW9HzOPeltrRAEPsVRHNGfOeOCh1wRWAkhyxrdsIPc70zAm55UP7eAIRApgf8qTvcjjTM8UFz970VIS5ajPIi4HZJZ6khHrCqoFBs3CmZ4pyb5zfovi+aukLnKrKV4FBqiq3AWiauFcLplPvlqQ4Nl+YaN++OXf2lA4xdQwXbRZYY/KO/zdAbN7Jzdouvf/+2y8HFgAPAPP3ltCqaaJOQWYB0gil5lJV+e389Fu+BCYD9wCTu7r2ojlc+e/eiZd82Pc/JvQ84BmfVP46PLrotskxRftnT81+inrfR2fNXtVShsQvNwH0j1nTpyX17LWKx+ITS8I1DqtPsQDElpvDvl3tynBN2OqLGOFHUYD5rgxXc+6vASD26H2taUJomrCoqpS7bqEFLGWjJPq2PrMn1hBMsLGKkOMXYAP+C1wK4E2r/jgQ678S2OmFaFlN9HKAZdUxbfYCr/FFnmZRPIxNXbiwrW11IlQQIrTrUbcL1KVwpmc6gf8u3DL5hkR7gX9EwtJJubOnzMy1nz8Gd+xM3LFdUgg36DBidUz2bdV9WrU2q6osB9A00YdgLPSTwzm4zsLoe96KKKhJSeobvX5rR4+lrbTZJEDR7bmhPxt1oA4JpSc7HPmnBwI9hv5zRlpAqOyd7Z/ZmiYCwH3Af4CdQvB0Fmen9mbcmyNiaqRpOsTfDCIx1VK7YZvPftrSqX/t5E0dElK71fcxLH65fXXJSPpEbRjR7EruWKuCiI2sNoUnaQBQHREYGlGj6AJRFa4264hQ/NfU6OY6R4QmzVveeWyoEMrgoba4qqbMeSYBGZomjldVmV3/hDdy08mIgBWOQFVlkaaJOOBq4OtQKmMVWAahbTmVl3OGp/0VGpuWtjJnUXWGazzAdr+tomVXvDt/FR0QbRK+71+46rWuntCkPto/iS90QNE6eDzNZsbLF9jyq3t9qDDxGB2TD+T1B6b8NPeZK+b5cMdOkMjvAZNAeHDHTsZd1q3WHYP2YVBczrC1pWlEWcqbY8rUKKoq8zRNDCcU/krTxKFAjKrKL8Mxzo6mzJtwICD+LDj4sY4eS1tps8DaZ/bEio13fFPjjV57Akx8ZNfzIWH1O8BWXd0DhyN/fXV1Sp+graikJRmHWoumiQkEM2O8pqqylpC2Z1/CleGKH2GvyNBxHA+YQXzZ31r97Bfnrf2qo8e2t/hl68TtAL9vP7jZnug+s36Kxa8QEDJsKYZqIvSDLT5FWO4qC6v3862fpthsIu7smuB91SxzDn+NdbjUFbMjqUn/rAqCgu9qTRMpwH6qKucDmGuTrTUJf9Qvey5QrWniU+BhVZU/7drYrjETe1pqB2312elvrW6W3W1jONMzewCugLTc2ZZ2Ohu5s6csGjTzs8mKCCxIjczbuODO67uEUOdMzzwAznsZxAEDYldtWF82dGLu7BM3wYkA+E3yWFMAi9hZc9wlrs2gY3HGrD1ybWkaE3ppUbtYKbUYVZX1E+HcCozSNDG8o6IFhZlDQr+7/H0Vjjjo+CPyA0iLs+GzUgUZCgYuAtXVqS8L4Z+kKD6voniXu93uvfElJgLrgU7tITdnWtaEOdOy7pgzLStsW2M3fpI6ZHTGfg8DuStqo0/qY60t7GOtOTJ7avYJ+5KwClBQ09MDUOOPap4Nqzt2gtkv3gZQJDeEa8sytsz8tynA5nC0VZ+vypKvLg1YrYNs1a/TTHOOguXOOIDi1b3ebKyMpoloIA44O/TCNxP4QtOEPS99gc1c20NGlIzeYYMYyty2CRgODG7O2FMsnlECyYiISk/TpRtnQs/vZgA4Y1aHTSPeWVj78CkLQXyxqWKQ2Zme2anjsV7/8oXJJz0+awHIxSB6JdgLpo5KWjIgd/aUTfXLmQPia0CXSOhG9vIG7c/v2w+uBthW1WtBmJs+BzhWVaVX04RZ08TFmibarNzrKAbF5Vwbay0uz509pU2a6M5AWARWa1X/b+zlQxvc3oyNzY0LpfyVgBfQ7r33wR913fK4rttdbrc7bM4s9dE0MUTTxHmaJt4CsoE0VZWtzsTT3oSE1CzgQeC7tgqtrgxXyuFvD3vlh4rEVTrcDnwNjPn03HU9vzxvjdb2EXc9hsb/pQP0jV7Xr5lVVP7ZhaiLltBmzAFhV6QI6+LhynD1BHEf8NVaT+T/ZU/NfriZtscDAZBKXZplNE1YNU1M1DRRF8Qgg+D8GRT6PIegl623Jn7pCIEQii9qp8gLqirLAJeqynnNGf+KmuilEmoePTW/TVrn/OqeE22mGjk6eXG3SRhQH59u/RroR93/rRPiTM889sv1py/LLhx7WJ+oDd8Aab+7L3lz13iqmib64i5bJBDzBCIAHGOYAxg0l5La5FiA7MKxYX2uq6r0qKqsywZ1MsH1b68mEQoXzvRMkVfhTOzh2NYt0lOHRWAFNgD989IX7PbWX1bmHAiBGkXxPQRMrqdRfR1QoqK23hWmMezKE8A7wGnA4FDc1U6MVEHWpYE10Urh6KZPUvc/at6QD4H1JQHLpb0ttcuPjC46KXtq9tnZU7OXhmmwXZK0hGU6QM/IvOZ6g2oCoQMIhJcwaX+8Fn2Az6yH1RxgkK3qO4GMAK5vSTay6N6FJwGMOOf7KE0TdY5ShwI/AEeG7FFPA1YS1JqiqnK1qsrfVFXq3qh1JwBU9P7Ksmvbqip9AJomJofswhrFKxUTiGZl5toT68qGp3oC9sxnrpjXye/31tE7KnchwEEpP97S0WOpjzM9c8LIu999avQ9by4BvvLpttKxKQsv+PGu6cflzp5Sumv50HxYp2nilIqowFLAtDXVuzfTYBt0cRLsBaMU4S/NnT2lPe/1Twja7/8XgmExQ2tiV2GQJxDhWF064vmOHkg4CIuauyZ+qSmiZLSjxPneoD5MXFN33O129wdxOpgev+ee+3cSTN1u95rHH7+y1O93XP766+r0Sy/V2vwA1zSRBPhC2p1pwDVAeZ03YGcmMnWxq2rbOEIOFS3aGgt5gp8CDDaReJpEKAKZIREP/ee8tavaZ8RdklqApQUHNc+r1F22yHd/9CpzQCQKxGnh0v74zXKQ1yqL48LRGDDhrbRjKvXIYWMcZT+8ddbGZuWJ1jTRDzBJfcJQc4RHRiRU/grcQvBFbxHBGIULVFWWaZo4kGBKw90eDJHbJ3oATJ6ErEb6sRDMKLcGOL6x8SSZPYPKA7vJvC3CmZ7ZFxgC4oU2NdSJGZvy09Jyb5x/e01qp/GoD4XYyqryRdsBzMKb4ZfWqz668aE9CRLLgMeB+aVx/ojoShOKjgp82/4jNugOJNoLDreZam3t2Ucodut3sCOd+8cE18fT2rPfcGFRvBN9uhVgNz+CrkhYNKzeyI1lAGZP4n71j8fHr30t6FjFnIbqmc2ep2pr4ywbNqhz2xreStOEA/gdeCb09j5RVWVeVxBW50zLclQXuI4yO7b5LVFbnwYmT587qVHh6LZPU8S4N0f0cWW4Tpz49rB/C+RCkLcDZ1gVXZsUU6gum/rXJdlTsw1htR6hLcmAJxDR7IxsUmF4SXygIpxblRE1SlFklSksdleuDNdhlbr5LZBbZTAdaoNomkgIecKiacJEUGCYWbk1ocxfY1sEnA28C6CqslZV5cehFz9UVf6uqjK3oXbNnqQUwBO9bXKDgnJIyzoFOH1P1xFv8g2PNvlj9lSmKQ7r/e1MgBGJf/zRVNmuyjNXzJMV3tj3NpQP7tmJ7FhVwBoKuRXwS+vfe9J6aZpQVFVWqKqcqaqyMr7E/B+J1FO2W/17a8AGXZ/c8kFFFd6YvRYIP2S/fwJwBwRt+zVNDNlb/beGtIRlt9hMNfpBKT+2S8zvvU1YBNbYvJM+BojeevQOR2q32x1ZXt7n8NjYDVvcbneDKR9LSwfUPbSvoJUxWUM5glFVWU0wtutTwA3AA6E3oq5AugxEJPurUydf+fhFN9YXVm/7NMUy4+OeJxzx9rArXRmuRw9+K23RDxUJgRpp2gR8Xhqwni6DqekAAjW6+dunTtv2fYddSSdHISB7R+U6m1M2cF9MqtWnKFav+Hc4xyAQURa/aHNMvKBmXc4HeoBIXFodO7LunKaJCE0TI+sV/xp4EUBVZQC4mKA2dQDBJBofqqrcUr/9kA34Y3u6j/zWorG64t28p7TMqipXqaqs0TRhaWyBX+dx/FXit7TpBWtd6dAREeYq35C4nHA7YXQyRBbQAxjZVMm9hAaEHBn3bDqjaeI8QAvthgEQdWtltQjGAd6vsXoGBrvi022plb5Y695MohF6ec8JfbwTWFbPlKrTsbZsWHSCvXDthzc+3GwlTWcmXDasuaHfznrHLgoEbOba2vhL9lBvfEgDuyPjTUs61TQxGPhN08RBAKoqX1JVuZRg+sjJoTeiTs2rd/xruu7Pu0uvzNItJS/ce9jbwyf+30d93j7i7WEfuzJcP39ZllyeVZGUWRywvgjMqNVNEf2sNav7WasfIej4clS9rFRhs7PsrlhMXnMPx7ZhzSlr0oPZmqKqTGGLprDlxQgzEFMdEbCGoTmV4H0DSFOKufaceudeAubXS5gxE0jfUVGV/9ny65CNIPtH9ihpLGLXfgTttxrVlumWioM9Mauimzne14Dv6jlz7SCAYtERrY7B6kzPFFuq+g2q8Ud+9swV81qUyayrMSh25U8AB6d+f3dHjwWCIbcGxPz9A0CUpezUJhKv6EAVUFr/YI1dL/VY9UntN0qD7sSIu96fBMSDPIiOy/z2NHBNvWxZjcai7wic6ZmxVb7oPlur+r7d0WMJF+EK1VCqC68/YCu5Ni99wU/fDLv7ZzhiBojfPZ7YBm3bQmih6AEC8LUiJmshwYdpJICmiXOBz0MpVxvU6jbFE+ecKABz0sgN0QIZWbDc6QWsiWkb+wlwFOb0KwCsCUPzhiNFRPHq3hsBa/ygLQdIXVhK1/dcDdhindsOlgGTKN+UvAqwxvTdfkjAZ9artiWsBqxRPYsm+GoSLd6K3sNlYAsghRfzpBN+mDJpydAioq2lAZPJ+1u1pex1V/xGxQcfj9JeqLYFHBMBrb4W1pXhmkwoCHt3yUrVXngC9vLsggN/aU7ZiqjAidGVJvwmuTRcN4rPInsDVEQHejla2UYwgoQ88oTBh4j/Ji/UQZoU0C9I2ny9pon7VFUWA88R3OJXgICqyt1sAz0VDhcIbHFVDQZhVVV5p6YJd8iOazfy0hcIC30Dwl4wv5lDfxr4LHR/7kSMydeXf/J8t5g4W9HwUk9iH6C5Y+myzJ95899j7n2zOrd8cKfZjnRYqrYATOilLQ7qCxpGVeX7miY+2HVOeay6ObbcFK/PijlCubfc2CEy2CMBaToqFMe9vrJrrz77QoLq6xCMSgT8pWniRlWVncLBKcWxeXJ+dW9BN7FfhVYKrE+cc+IEQLVE1vw06uKsvMH80ENIi9lc28MJzI8uGZMBYnhsbO5dN974xo6F6Z3HhpqKVvYxeysd1lhnfsyQ+IraddUnvxNQHBc4vJvu6hm5aMBTF/yi6H6TObp3YT97XOWgghX9liEVa1TPosG2mOrBFVsTVsX0KVRriqPXWxwHDCxdl/oNiONXfX7w/fbYkYdVF8Us+e2FE3Ps8RXDTFZfalV+QjZgtUZXD1LMgfjakuj1gNUc4eklhIz0VduLAaswBWKQwhxSOovC5Tu/LBXl7BwJqXjVztk9S9buHJ2rLHfnXYLyvCQpFKkD4wBPbWlUnO43C6kXE9IyAwEiPclMXjMFgpECxgHjhOKVQvFeoAccDoLCfe2caVk77Fy7Y1aq9kN4/dLSLNs/v1me6LHqAdsdFSVNl24evTdbFYD4EvM3rakfCnemAdb+605jgDV/1frYtTH7O0pvGGCrUQhpQ0OxUPdI8ao+MaHf7+16TtNEoqrKojpP/0aIF5iiLLWpzYp5qqryN+C3UPumkGkCAA4l0C9C0Vud+Wtk4h93LtxyFAf3/H5Z0GS2e1PqSZwHnONMzzTnzp7S4bafy4sO+Avgmw2nNKiN1zRxNbBNVeUnu70AuWMnxGEeASAkX+GOnWSEtzLYE55AxOdBvw2pgOgM8Xs3AfcTdMpC00QsUFl/jdvb9ItZf/326lSO6Pu/7O6yJrZYYA0JqwtAmnzVdnI+PBR/4JfcYbHjEEKgSz1iU0H85cLsQSzdcv8T50y5NZTVygZDd2w9luWmUJabgiV6C4E+gyGv/Intnn9CC1ZsTqJi8w4zJyq3JlK5NRGAwhU77ShOBjyVWxNETWEM/lprLyDJV2OLkrriIJjT3Avoikn3AlsArznCU2O2+6J81faFgNeRVD7AZPNFlG/ssQDwRvcuHGSy+Syl63ouBLyx/fMHmqx+Uby692LAEz9oS1/FHPAX/d13OeBNHL4pUZh0T+Hy/hsAb9KIDVahyJqCv5ylgO/m9/67m5ZqzrSsK3X/lhe9FR8RNAEzEVG1/JuYMRue9JT1T6jcNg6gZ1TqkrOrCvbrwQ6TCxmBkRGmVVhNtdZEe4GzOWXjSk01fjM/hrN/c0DEAFh9SmttWFWCmcqQupVD15432DTk7eVvTP38/Va0NSD0e139gyHb1z80TZytqvLTxipXJ/56kKNoHD77tvyWdKppYgrwpKaJw1RVFgDk+2wbTMhW27DmFI/u5TBXVqU6Nu8r90QWcEWUpWwcnVyDEnLyuwjYSjBM0K6o/PMsMrJdGTRJ7uwpi5zpmRcSDF35XhNmKO1OyPzwgXqH3gDiNE1MamyHqr1ZUTQqItpavvmN6f9q0frcmWmNhlUFTCBASmrLI0vyTRsKh8Qe2E9IoZSKKr3MJs22isJVkcml/qpt8T8FvJYyW2xVvCOpfED5puQFAa+lPCKxPCEiqbxfUZmjALjRPjDwWayy4a/iVb1+1n2W6qheRdGOpLK4wpx+yyISKkxJaRuH1ZZGrSpc2Xdjnwk5iWUbeuRFJFR4euyXazFH+AaFbFe7FFE9fzm4cuvBRFgOWqd483qZ/cXfXf7xWyfsXnLSEyHN2vxgrFYhFEvF8L0+4G6Aw1wVmWgvaHor1R1rF4ihFj9hdbgqjvcPSygxUx4dUFrpEq8R1KJaQEqL32E56q8bXXOmZX0I3Dl97qRmC30xfQvOKs9LlFE9S3bNulUK/Av2LKz7IvKPBahM1WrhrJZcw0YgD4ioOyARdn8rbVid6ZkKJO8HfLxrcPruypjkX375s+BgRib+eTec32i4sL3F/j1+HvvH9vGcMOAjO0zZKZ6uqsqApgkVaMx5T5NIXSAUifSJvZCu26Drkzt7yrv735txTZUv6uLhd364rTbg+LyjBVeAkN/AB0BsnbCqacK2N2PBO9MzTRCTBnQb+1VoncCqATWABYRP91qmXPD+c4vy0hdMANTvYxacgNc2zhPd6/Ar3C81Kdm/9trk4ZUbudGUrNROnZ7dYBIBTRP/AQ4ABl04M8cD5Nc79zhwqaaJAXXamq5CwBs93hxRGLhq7p2Dmio7fe6kRXOmZQVtVRXPMbov+uI507K+mD530od7YajdhjJP/KZyT1yT2+Xbk31H9yiwmKojAutba2vaEDUR+ihKoCzWb2uNwFp/HpRG5P/6b9eT3x634dTfeucfcjzI0zNmPfy3yVZ2xoXps3OaastXY+1hifDWXPXUop22rVRVbgZuaqp+9NbJxQDm2h5aS65BVWU2wZ2RHViFnhRr8iW0pJ06hsQvn7C6ZGQyQa3jPsGnN9+3fsy9bxauLHGldPRYAAprekQBfJ93zIHADnMXTROnA1+qqqwhuNO1O+6yRRVPRH4XU2E+utYmz4qYWd7hQodB1yDZsfW7khLXYSDTgRuc6ZmTO1poDQmp79Z9Dr2sva1p4gRVlcsaqRZWRib+ftjyogOiTcLfre6lFkcJuPn9LxYRfNjcA0wOfabP7ImLPu//5BslfuWw+Ph1G91ud7PU0EIE/gZZU1Cw305anlAInDpP6jsJ5jFv6A3lPuCyriasAtQUjbD5axI+a2756XMnLZo+d/LD6LbjQf6ECMx798lrLmvPMXY3JIpPx9TkvNcVeQpAYZK/Vc57jdFzq2UNQFKh5ffWthGcB5Mefm/Mw6k+k4fPB77/KTDIkbzsx8ptB6aV5R7925xpWQ+/cO3ncXtqp6Yw1hsyidmBpolTNE2Mas44lICjL1CYdsO9Ra25jlAcw6c0TfRSkNEpFk+r0jQn2bffAjCpb+ZfranfVSn1JM4r8yQMd6Zntmvw9KZwpmdO2FQx8CiAKl/MZ3Ue26G4vx8RDDO4R2IqzD8BRHiU/7bjUA26GatKXDUg9V2crzobZcCvBJOn7AjF2Z7E2YqvBDim/2cb2ruvvUmrvrib3/9i0c3vf/FwnbBaR37+6PN03YrVWnVjc9sKZrgSG4AdXk6aJiKAhcAsCGpkVFXuZKelaaKvpgmhqrJAVeUHrbmOjmTOtKxEYBAoTWr7dmX63Em1Mf2+u8ASUShK1x3/rznTspzhH2H3JNJSHtXDscXZVLmUfEuVRFbrSjDLSbhQpIgGiKhV2vSCFYrB+lrwk7xr7oQZAy+9/8YjrFFb00B8HHRIEAVv3n/fB3OmZUU00swAYEeO6dBC+jTwUHPG4LcVjA+YK9pyHT0JxmA+ulYq/uU10RWhrG0tYmnB2FiHubLwtenPNy+DWfchC4joF722o/OcqwSdRAFpDX1GVeVKgsqNp5rRRhRQhbusW8SLNNhraCA8BMM6dgbnq91QVfmHqsrTVVVWh+y5f9A0Mb09+/x9+wSrRfGUWU2ebhWTOmySvtvtNgHXAQuuvvrjL1pS12Yr9dpsZePrPoe2jzRCHsW7omkikeAby+OtHnAHEzfgq0sAHMl/rm+iaINcdMcDuRGJKybpfocX+GLOtKzYcI6vuxJtKY+PsxU7myonEGMEYqnz0tqwenmWRwdGAVQ5Ag2GkmoBKjtisGIOfeaKx6aunD530oWOpL9UW2xuScXmw84CVs25+n+Xf/DcJTs0cfMeHdYTSIruU7DDg1FVpU7Q9Oa65gxAisAIT8yq3WKqNvsCVLkKGHjdhv3WgjBLxKHA/JYIrc70THO1P/rAan/Ux60dR1fl8D5fLxEESHFsbdJ8o53RQHpBIpBCIaBpmugLoKryu+bEwy6L8U/wm2S7a54Muheh7f8dO74dbQ7QDKIIOn4XtmcnNf7I/X26Lau72fSHbYHo2fP3WYDTai1/uaV1IyMLLIGApaemiXmaJgYCqKq8TVXlR41UKQYeJRQDrSvirUo9EHQcyX8tbLp0w1x05/0LQJwBcpgtJvf3+gKJQcNsq+69YlXJyD2m88t93S4Cijy4xq5vC3f/Xqs+JqBIIm+rbHXM0RAa/8Qt9bOLZuHSB2b8cNmD1/ZABI4ENiPNL5dtmFz+yu2vXjZnWpaoKYpOA7BEeHfaMlJVWaKqssmXqLz0BWZzbQrWyoGftuUiVFVuTzB5bwl9VGjhtt7o5F+PA2LMildryzi6Im9e++yWWFtp7l9F+3foy2pQSBCToizlJWbFV/LKsacOB/7WtGDijeYgJNEBU8d4Uxt0bXJnT1mUO3vKw11AWEVVZZmqyrNVVb4PoGniYk0TbzaUTKW1XPKva4cCgyItFa02O+ushE1gLSkZcK7VWu7v2fOPFm/PFxcPnuf3O5RAwHIUMHZPZTVNRKqqlKoqn1JV2WVt1qq3j4kGZcU517+2q4d2i5g+d9L82H5Zr3vKnQOL15z45ZxpWTNDEQUMGkT4QezR2dDqFQeYdGEri/XXhLv3xCLzUkWnzYJwMPaumBn8JK5pLGHE9BeO1oAJcc6v79MD1lpP2YBXgWXVhWfeA1C8uvenAK/dccBDb9w7au1LN40/qZlD6CMQZrM3PruNl4JVCQwOaeckLdzWs5tqpgMc0/8/e8WZobNR6kl8r8YfuZ8zPTOqI8eRO3vKokpf7M0+3Zb45JJZ+QTNAJo9N2IqzOttXqVNqXkNDLogPYC+BB3Zw8L26p53AvSNXt+ha0J7EBaB1e12j6mtjR/k80Xeeeml3zU7dEMo3/mFIRtW/vjjsuP2ZI+qaeJsgm/unSbDS2uYMy1LEEwK0GL71Ya48I4Hr1QsFZ8EPAlHEowFN98QWhsmzlaUkGjfvscUer22WnsDJBSbXwx3/wIRKxCl4Wgr3uT9G6CH2bPHmK7T506SF6Q/cq+/JjkReAjkSBkwHwFgi7n8lqcvmjm1ZG3P9KKVfQdWbE58PxRreY9UJf94OIAnam2btrZcGS7LNl9EzxjF94dDCTwITG5Jtrbf8g+xR5ircp+/6vXlbRlHV8Uk/N8B5uEJy87u6LHE2Yo+BenNr+55garKO0MmJs2lFxCHO9ZYtwz2GVRVPk4wjbweckL9KBQHu1U40zMnrCgefQFIVha7ru+glLXtRpsFVrfbPQECbwC1Uppaag5wFfBW//4/9AJwOAoPaaL8KuB7oEt7viWlvTsB6BGZsqQ0XG3qvuglBFNmKfUdHwx2JtZWkhxlLe/ZRLExgLT6lLBvqdTa9DSvRQ9LptdRjvK+AMMjKpvl1T997iQ/UAnoUi8FrKBEn4lwvBH0shWAaNbcCVgqjgSoTv65TQKrQB4FJJTrVvfPF+Xc/Vz/v34OZYlpEmd6ps0vLQfX+CP/05YxdGWmDPzwN7Pw4TBXTevosTx95NQZB/T42eoN2M+d8fIFlqZrhHDHTpDIsRLpBOYbQqvBvkS9F7s0YCIQ3frW9MtAmEJreWeNmtBq2iSwBoVVmQXK6JCQ1GQwe00TiqaJOoFhDjBRSuUHAF1XGnyzqAsDoaryT1WVF6iqbDieXxehunDEwQC2mI1h0bCG+A7q0mhKQSf0luwMbCgftGRD+eA9auMqIwNn+8yyEHdZZbj795uls9aux4WjrfUex0qAv2si81pQTQPhlXoZwhSNEGKKYlkXisAhALPJGnvq9LcevCfrDfcjBzfWSPSW47ZIpN9S3fuXNlwCQ+xVT1uF7gW+Dh3KAL4MedPukYNSF5wDRMRaizt1pqf25Nkr3i6KsFQtW1owtjPYr1eP6fFrbpk3XvnP2nMOa0G9owEEAjpvaCIDg3YllE7bqaryZwBNE9dqmji1ufVnvHxhZKy15OJQqvdOGzWhLbRVw6oC1uCDDknzFpo3gSxNE3ZVlT5VlT9u3HjYEiBQWDiieNfCoawR72qauLONY+00VBeM7gV4i1efHrYsStPnTloEQhXm6q0Et5z/CFfb3Qvh5x/v+gax+MSAqshAk57NrSGyStkcVWkKS6isjV5HMK2p397sF7jgPGGy7s/Pl3rND9PnTvrK4lg93GT31CLsD5kdRzxui4qsKd90+JFV2w76ec60rKUv3/rGM+8/c8VOgf4FYqBAbBx+492tdh5zZbjs62odzn7W6pXZU7PrTIn+C7xPaNXdE7o0XSIIcHif//3c2jF0Byq8cR8FpMXlTM9sVeKFcKGq8tGPVk0dCVRKTOe1oGqyQCCRAbrhQ9agfXCmZ05wpmfO7E7b3qEISXXpjC8Gmm3qk7XxhNvLvInWtISlL9N1oia0iLYKrFpIAADEHheakOAJQc/+xwimlwTA7Xb7gQLghKDWdicsQC2NZUnpkshxwB/T504K6zVNnztpkfQ7LgKRAFwYzra7C8kRW1NibcWNB6h3x0bbvIojtsz0Unv0LxCxihQl4Wgr2eyRod89WlKvtuTJn5HV0cjq354458Qe1dtj4x2JFd/c/N6Hd854/cZbr3zyvCGx/bPSgBlApbei3/WFOed9O2fa/N/mTMu67bW7nk3z2woO8dsKW5VKtR4n+FGsazxRdVECUFX5nqrKZ5pj//hb/gSLWfEve+7Kt7q0iVBbibaWLgDEmORf/q8j+tc0MUvTxASAZfddUB1hrvzGongunPHyhU16Pue+bk+WyPOBXwTibmAy7rJu9ZA1CD/O9MwTQC4E+SDwXXcSWiGYzhg4FLgagnHn7/4s6aXRGfvNbijsnzM9s3+FL/YW4JMvb7vzyq4SNaGltNUkYJEQvieDnwIXut3u3b4gTRN2TRNvAtMBVFXOV1X5Wl2O3VA7E0CmgNwfmF9faA1t/19CF465Wp8PnrvEJkyewx3Jf7aXAJ6lWCpXmSMKn/zgualNbqvua8TZi3tEmKoT91BkFIBA/Nke/etCJlVGBlqTlXU3xjjKHQADbdUHtaRe6gFrRgCOuAHb4oEzQYiKzUl31C9z4cyHVk6fO+nZ6XMnHZo4/L3xjqTsF0Ivp4/UFO63QvfE9yuhOnXOtKy+rR2/TQQuIfiiupvGWdOEqmniU00TDWrDnemZkSDG+3Tbl63tv7swqe+Xi22mGnSpXLC3+9Y0EQ9MBU6sOzah5/fLfLotIr+6Z5PB0SNqlFcFIqEgyfcE7rKHDWHVoJmcE7K7FyBtBLWR3YrQDnQZwMKK+Ns/LU29QofbaCBWdc/ITZ8HM34xoyPGurdos9NVjx7L+wH06/fTmvrH3W73BLfbPVPT7t4fiGXPhsQqEHL6CNowaZropWniE00TvUNhrLpFjL7i1SdfKAN2ZMDaLlqh6XMnyZi+33/lr0mKrtw6rkM0Lp2Z1SUjf9pW3afROKMFSb7LAEri/GEPsbP5pYhoRQpTtUMPy9btOo9jC8Dq2sjVLalXlR/nBBCKvsxs914FMufm979oNETcuTe89MulD8y4ZvrcSQeb7UVDEvr+8D8rZraX9k4BNr5y+yslb9zz+L/mTMtqypltBzd+kpqqI04aaq9cnz01299AkQSCTgi9G6o/oed3/weYe0ZuWtzcPrsrz1zxdpVAfr+scO/bsaqqLAFGA+66YxaT91GBXvrzVnXMHiu7Yx09tpsn1Nj1nORrqz9s14EadDe8zbAa6ja8V9x7MyAbSkF7/KMPXb21qq/r4NQfsnJnT9nUUWPcG7RZYK2qSs0DqK2N3ZGi0e2+dwLoP4K8H5T5339/5yOqKh/eQzMaCElwBtaZFowAxgNxbR1jZ2HOtKwJAW/c8wA1xSPObK/QU4rJeyvI3JritEvao/0uzh5tWG0eMcRvkoGy2ECLhMDm0HuL1QGQXGAOi1f7Wk9kBUBxwNrsUHIAFZuTYgG8lRFb/bWWUfGDtu4xLFZ9rnr6rDUTKybfCtDTImZYIrc8JXWLvWr7AdOBzc9P/3LRvNm3v/vOYzcN3lM7iyrjj/dJhXiTr8HQYaoqPwZcqipzGzpf5o0/0SR87N/jl++bO/buTG3A8QWI4c70zMbNXcJIyHn2HE0TSigY+g5b5henvVItUd4HTglqwhtlmkAkRdQqV7T/iA26Ga9RT2iNtxVsC+3I7JX53wFo/5hfyh2JYpzpmY6c4tG3mxXvmtTIzed02Oj2Em0WWCsrU0sAtm8ftcMuz2qtvBUUJRheAYuUwZiPjREyJaggGJd0stvtXqSq8ltgoKrK7hRfUWWHsCR3pNMMN+fd/JwXxBPAhFdnzj2+PfroqvSK3Ngn0lKR1Nj5mAqz1RwQC5yX1rbH63ssQLjisKZaamsBEkzeZms2ARByIEDV9rhBIFDMgVktqV6Z8v2xABFJfy2/8okLb7risakRCP8IYJZi8vQvzT323JK1U/6eMy3r25dueevWD567ZLe4yVW6+TKg7Jeq+JWN9aOq0qtpwhLylrXXP7eiaEy8Lk0/Pn/V6+2a4rCr0MOxZSHA2JQfm5VWNwycALwHnNrQyeAWJY7Den97X0Pnc1+3J/pN8kG/SS7CXdbqbH8G+yah7GpqjLX0BZCrSzxJ92SuO+N4v25K7uixtQfZU7MXxZu80wCG2Kp+qItVHWUpfwjo79et//fMFfPCnuims9FmgdVk8tTFTNyh5fF6o3sF33xks0IrvP76pBQgJjY2N0dVZ/XWNHEa/OMx143QQK9zJgnQjt6wJlvp64ql0i9101tG9qt/iLMXJZkVX8MZQNyxJoI2rH+2R98FSb4RACVx/rCk4dvfUe4XSPrZalpkwxrTp/Ais93jR4qTgD8vuW/pDy3s+kCAmoQ/d5hWTH/hmJzpcyfNShjySe/4QZ+fCOIhoJ+vsvejBSsuWDVn2rdfz5mWdemLN3yYcPK7A28AeRjIGODbhpwI6jEBeA44ve6AMz0zHjhAosxv4bi7LRN6ar86zJWyzBN/7F7qMhM4HvikoZPjUhd8FWMt8a0pHXZUQ+cTik13mwPCvrWn9+32HKRB9yV39pRFy+678BpQ9leE/umHqy61Prb4gQ+c6ZlH3OmePi/7njEvdKeYvuOjSl+PUvxVRX5rNMBRsx+7ucoXOSPJvu3P3NlTWrqGd0naLLDGx687Qgg/brdbB5g16+79gINBzAVxDyGN6Z7aqKmJGw5gt5cVA9cAN9XFXu1OTJ87aZEtdv0zAOaIgttDIYbahWnPnF5lidyyyFM2KBG4HyP7FQArivZfUOZJKGro3KY+nslARHG8v7o9+vZZQprNyEBYnOEePTVfArVrax05LalXUxzlk7riBQ42R3g+b2m/UflHFEhkGSKwmy3w2ddlyPNvfSpz+txJdwPDEoZ8fI4jccXnoAwBXvN5YgvTls14akjBWCx++272WLuiqvIHYKyqynfqjk3s/c0NgDI4LufPlo69u/LMFfMCtYGIz1aXjkx0pmeKpmu0Dk0TNk0TKSG/gq8a8y145op5gXJv3HPbqvqm7RZuyx3riKkwn6sLqfW9vPb59hqrwb5B7uwpVScNfP/McakL5v9d4hp6gFj13V3y/fNHiNxpuhTfdReh9dFT82VlwPxOsd822pn+2bw1pWmPSRQKa1OGd7coCY3R5ow7VVU9NgD7132Oi8v9qLS0f0BK811ut7tBwWBXtm8fZQfIzx/9cVrap3cA0S1M69dl8JQNegu4yV/ToyXB3lvXV+nQHwhmzjDxj2Cwr3vh+mlk3kdVmkYB1ETo7RLDttdW60aAPpttP4arTYmoqdAtLYo44auKiAQcAInD8r5pRbcDBWL9qCte26PZxPS5kyRM+gD44O5XVdPK8l6vxZUPvHhI0f56vxKX4hc+8uJWmGJjtgyaMy0ravrcSQ0malBV+RuAponeQGle5ZMHWxSvHJn4Z2vG3m3Rpekbglv0A4G17dTNLOAyTRMjVFU2YY4h3gVusiq1ZwNz6456rPpNNq+SokhxVjuN0WAf45kr5kngqBPveurL28R7x9nxIQQEpLB9FTgovfq+o784Vf81WYHvumIkCmd65mDgvOj4k88m9T8OJSLvXL3GWXe6zrywy11XS2mzwFpTk1gKlAO43e5UGDA4Pn790hkz3mqWsBpE9gNBdHRevqpKD/XMC7oheQCKpWrgXugrE+SdBL0LjYDcQP+YNf22VvZtMGJFfKk5HvD33mJtsdaxmcSFfpeGq0ETumIS8khXhmtCnV3Tnnj5lnFWSO4HAqHov184M2dBS/v024om6KbqNU2XDOLKcMX1d1T/tcFc1FtJWPbW6uTF04ZtP/iCJE/Slc7qvgdQMvr/gPOfv+arr+MGfL3ObC996OzrXt9p/dA0kQAsA95cXza0D/DNM1e8XdXSsXdnnDGrf84tH8LBPb+/HaZc2U7dvAkUNy2sAvBbrK24IsFW+BAhgTX3dXt8L2mZVeUIbIy8rbLFc8/AYDfcsQI4XCJn/McsjpMSdARI8GFGC4w6+QHl9ZMBPJgD991z3cse57bs3lEbX7/x7F86rdmhMz0ztU/U+hkgrgVnFIC/evCfZhgz0vn239k5dzkJKqL2mWd7mGxY9ToNzzWgKCUlg85tSRupqX/eCDpjxrx5eFvH09lJHplRJBQPkT3+bHYGi9Yyfe6kReaIQp/ZkV8BTG5PE4SuQpytOFEIaW3k9BggB3dZu7wwlcT5xwEUJfjCYnLgynBNCCBivVIZSQOx+RoiIrFiAgTNbaSutNh+cOVT9ykmb0ycL3JjoJljHAn8usEbkTousuSDY2MLpmrXfF39ovu+lx98+PqDkgd/blUslUcCryHkkSVrT7qpYPn5m+ZMy3rnxZveO/+D5y6NBVBVWQzclbXxhPeAkUBWS8fe3RmdvPiPaEuZb0tlvwPC3Xa99NgrVFU+2pw6ubOnyL5Rud+vLx8SN+SOj3sC9N1kvczqU5TSuMDscI/RYB/DHevYPsfxfK1NLwI0gTiiKirwwcOOk6+63X/l3BXSOdcufIfMsP57jknoKAJM6KbYgGfaR6sumfPSspurnOmZXxz2wL+efOy9w95+/bMhe4rPvVc45pFHEy967oZXXffMWwJszqsckB6QJmVI3IoXgX45sy7dP0rxb8ujPMGW8vkMumlGq8Zos4Y1OnrLobW1cSkPPXTzsRB5KygL3G53i0ICVVamVlitlQGTyfd6W8fT2Tn7ugz5wvWfFdaWDG5rlqBmIXXLchlwYAirQZYWjPuBeiYs9fFa9GNq7frysET1b4CASQ6QSCqi9dIwrYxq8JcAsEcp/ltu+zTlzJBta4NUbE7cESHBHOFpcWrgqPwjpwAisuDQJrVj0/7d+3GF+Ok6ohSE+uqZebuZQpx9XUad86H2wXOX3Oj3xE4vWXPScOAMf3WP84r+Pp3nr/nqXalb58H8Vzfs98ljAPv3+Hk5TGnp8Ls1z1wxTzrTM9+v8MUe40zPFLmzp4Ql0kUoS+HbmiY2qqpMb0ndv4oOuA040afbzsYd+5IJcQvwXe8ra14Ix9gM9j02vmo/tO8m66kC8X89CizxVY5ArceqX2/zKq9E31JZc9eOksH3qp7u2PMAJDJgFrp3XMxv1xT3KLj2x82TS/IqBwzJqxwwZc6fM7Eo3nNmLcqc70paUnb8gE/GlnriD7zj/O9KQ6Hb2s1E8eZXz4nLLjzgolUl+6kwYsqqkpG2GGtJOfAg8O6iu6ft8FEIKiXMSYDZmrDwWWvCwknN2VnrLrRZYK2uTtwYCNisgYAlExQTyPGhpAFNfokhm7SEysp7a4CfuktygKbQvdHZuje6MS1fWAl44lYCLfIi7+Y0aMNa9WhUj0ifyVwRHchur46Tiiw5wFjnpbXN0k42Aw1EDWADKSp18+mLKuO3uDJc1wMfZ0/N3q2f6oK4BABzhKdmxhvfbGxJZ3npCyYAdQHer89LX/BJn9kTd7vPXRkuk0A+KEm4uZeltmy733rgHxcv39JU+2df94YPeBpgzrSs6+IGfDXdU973/JqikccB5wlTraf/xnFiGB4uSlx4zZxpWS5AM17GdiILuFAR/pFAo8kgWogJKCFk+tUScmdPyXGmf7E0wlx9RXmU/6iYSnOqRN7Xbl5hBt2ToOPUpT6TflDfgHUMoAMf+01yTkGy//tGwxC6Y83AycAfAvEhoKm3/7ZIhTfqioy//8W+B/T4+cHF2w6NLKjpOSy7cOyx2YVjUYR/+0vpmQsO73193LcbTjzgg78v+5dXt82fNvrR/BhradF3G09Y8+GND7dIkA05R6kCfYFEiQDOt5rOvtAbsJuBfBBzRyUt/nZA7OrMkF3urqiENBQg7TGK/xL2AdvVOtossHq9MZWAD2Sd57NC8w2AnwUOA1kNYt+JxScCW2inGKy7YrKWVQR8Ud01mHKLGRy3YsCa0hGmGS9fIOovCJHVpv0AEostb7Zj93GE0X41e2r2IleGazKgRgj9l1GO8ouWVMWqwAcm5LorPurzfZzZd91jp+bvsPUUpsDpMmDCX2NrkaYshMo/SRcaNPS/+ZOUwQrJL+qISTYReH2Uo3zGY6fmt3g3YfrcST6Y9DTw9JxpWVbgqIjEnCfiC0YPP1kqbF105/EgjwXhmTMtyzB3CTEy8Y9flhftz/ieP7jhlDPD0aaqSj8wPaRpbTHjUn/cKPITT4quNI+USATiCdyxf3ZF5xeDDsAdO0EifxAIszkgKI8O/FEeG7iy7+W1S8yAcw9Vt/T0Pthrq7V/rU2/0z6zYl5DZX6++6pNcNWO1K6nPnFPvzh78fTf88f3KPfG7//D5qNHs/kYgGuBa+cuvW1HXWd6Zo3NVCMiLRX2Cm/sBp9uK3aYK02pkZt7b6vq/Ue1P6og3lZo7xezbuDfxSNXQ+QpIM2SHfdSeay15JtRyUu+y6twPvn17emBJnaONIIJE2yAUqmbznFluP6VPTW73RQtnYk2C6yK4ovVdaUy+BKO3kLnnmsDActo0L+02So9zdXMdnWiey90Vmw+pPcHz11iCWmV2o3I1N/6lG+cFPH+s5emnHP96/nt2VdXIMZaGgtQ43fYgNq647qQBypSACxtr76rHIEDzH5hC2f+zNB2UN09k+XKcJmA06NM/md+roq/VCCP+yrD9QjwSvbU7CoZMB0XKttsp6l6aAQdIncz9HdluCaY0C+OUBKuIKgB+L8lF694rXVXtTPT507yAv9VH1q2ZlOM5+/zK6yLU3XTWIIvx0b0i3pk3nrXitH3vFW5qmRE/7a2pWnCRFDj/ayqytWt3QGLtRXfN86Ue1IwseQ/6bcx/mcGzaA6IvCio8ZkBhAIf2yF+cPYm6uWNKduQrH5zFqb7t2W6vvA2cz+Pr35vo3A7XWfh9350WxPwH5ryPZfT4rY9udBKQtjFm1Vvyj1JPoP7T3/Fm/Axu/5E/7y6TbZK2rjJCkVh0+39jE5Vg+viVqZuKp6iL024NgPMAWXR4ndVP3v2oDjwsX3Xl4LlzdrbP8oKYRqE4EtHml6EPjhuHcGn//V+Wu+bOYldlna7HQVEVHkMps9QwGE8H9CM+KuapoYqmlCqKrc+ssv18aACY8nZigw3+12d/t4Yv7ahB+RZsrzJra75tNT5pwPULr+uLj27qsr8Pv2QxYA/G/DqTtpi0rjAld5Lbofd9n29upbCpJ9lkYdvsJC9tTsQPbU7A8PiSrpvV9E+VUSsRp42ioChVc/M/KnekU/euKcE1t0r4W2/ycTMvSvMwc47O3hx4PUAijTKnWTaaCt6sHsqdlhEVbr0zc69/aAAH/i2nkEXzaalZhkX6PMm/BuYU3qUGd6ZlsVEkOBCwgmb2g1L1/90pLv9dHLPFgkxv/MoCW4Yy9z1JhcEillMxMR1at7kN2jDLR5xO3OS2tbrRjyBCI+A+EhOHc9hTWp174w7bUhf866+Mbc2VNuvXjE3KjLXc/0WvHAOSe+cdyJp941/rYVd0+45S77sHsuc/R/JdWS+GOEue/rXlvKF1cDNcF2RE1twPFE7uwptXvufXeyp2Yvyp6a/fCSi1dkAIdaRaAy32/776Uf9b2tycpdnDYLrLW1cfl+v8ME0KfPL883Q1gdCPwBzATwemOODp4RTQYR7y7UFO73I4CnbEBKe/flKRv4F4C/JrnRdKT7GKF8zDvvLkRXKGa/WbZG69hsoqpMW6OqTHvF9OXRU/Plu2dveCl7avYRFqEf3tvqKfNtTtwheEiklVbca8+OP/Pnxw8+a/F5+10+xpXhen7smyNWlQfM/wUREsSFf40nql1CxWQXHpBqM9VUV/db8Cz1BGfDHGA35gMxPSK2HtKWRlRV5hAUWt9q64B+Uwa+cb73TrHS0uMdYLJhDmCwR9yxE3wPRH8OvAJ8JRCqCCUiau7c8Zvk7UCFQLTp5Tnkgb9jvdnVI19VZZWqyq2hvwOqKg9SVfkgwfVVCZmc2qwJC4fvqZ3WkD01e4MaXXR0nMlXuKQq9iFXhuvipmt1XdpsEhAI2ENvLnqFovi+a0aVXOAugnmogYAjZE6wz7x5C8WzWeo2LJFb0oBf27MvS+TWUl9VT+zxq0bCpH3HTrgR0hKWDswpHs0Rfb6KhSlB20p3rNWC0svi58l27j4WKGvnPnbj94uXLwBSH/7iuMXAWIkkoEjTnwdtmeLKcL2fPTV7XWN1T35vUFxfa81lOTVR/Qr8tkGC5EMkoi5zUYVfit8G2Kqr1nkcI0JbZu1yDwezNyWOAT5/5op5kiuobwphUI9xqT8s/nXb4QyIXTUTaHHKRk0TDuBYVZWfNDPeapMc2ferr75cf9qTF/lvP6ygtufc3HA0atA9Cdqsama/sEqkFIhHcJf9QAvmcsXjUVMjA8oZlY7AkqjbKlvsLLgrIeGypeuNFtTMSisIE3BJ//1ueuf7C/9+uK3jqc8Tp+WvdGW4BhJMk5xx9vvOSR+ck3tJOPvoLLRZwypEIBSEXfnl0ku1Rm2cNE0ITROxqip1VZVP1b2RRESUnG6zlRQSeuvYF2xYE4d/VAHgSF5+Snv3Fdvvu2oA3W+fbqRmhWhreSSARfE66o5VOQL7E9Tu/9mefQcU2as8OtCjPftojHceGyqsPvNYAJFc/sOqQzas+yvRdxCw6tC3h2ee+t6A210ZrpmjMvY75/KP+rx01DtDMl0ZrqXrPRFFP1QkPlHgt80ABkn4bFxkyRvjIkuOAeL/nLr8yM/OXbc/CJXQPdweYVZGJS8eB/QC3Yi/2gQf3PDIulhr8fYVxaNbGz3tGuBjTRP7hWtM/11/ZpxE0QtqUgcC8/eVVJIGrUIFLCKomdRpqUmKO3ZCVKXyigAiqxVXR6VmDa2Dk0HcDZxnRtdrdNPiq//d6/x26KsCmNLTUvtHTm301KPmDclwZbi6XTCOcDhd9QoETNhspY1qaULcQtDTdEKdsHr//el9A4Eke0LC6o9mznwmrG8dnRkh/GsRAV/V9tGl7d1X0d9n9ADwVvR1AfP3dY/qX7dN/Am4+NuNJ+9IA1oeE7gsstpEXm9PaZ926nf7HIeSrJutXqve5nuuNQQ8lh1W/b0Gbj3p5uvWlLsyXL2Am6oCphvKA1EnQNCH+5eqeKxC9wHfgfjkoMjS0niT99MnTsvPbaz9XZy/wk60pXwGwLHOz1bDSe3VTbehzJvwLnClMz3Tljt7SksTYTwNLFVVGa6wWAAq/3hGG05XBntCEwgJIBBeWrhjI5GXC0TdOmuiA+da/XXxpk9St/xSGfflj5UJL7oyXBuzp2aHLUV3qC/PbZ+mHCyr+WSbz34x4HdluK7Knprtb7JyF6HNGtZAwC4AEhLWNKV214BPgW316h4DUFw85JG2jqMrcfZ1GRJpyvVX93A0XbptSN12evCvfcdGuAnqjO93CI7xJWabLqTfb6Y5Ji17xJmeOcGZnnn3rhqkHgWWKIEgqcji6Yg3/oIV/cYE/5Lrz7speK9mT83ekj01+xaLkE+BlCFbK92h+F+aHFMYkT01+9jsqdnu187c9PSehNW9we/bx8faTDXFdlON1pHj6EJkARGD41ac0NwKmiYSNE1Eqqr0q6r8Jszj0YJzTMI+Yvpl0Dpy+3t+l0i/LuRiWmjvnPey/QpdcKlEdjoHvydP2/ZDuW4ZBmIzyP9d+GG/K8Ldx6On5vu2+ewnAfcBlzmt1Wtv+CQ1Ltz9dBRtFljrqKpKebmh46HQKKiqXKyq8ob6oVHM5uqzQW4GlodrHF0FoXi2K+bqYe3djzV6Y2zwLxmgE928HcWopCUDAA7tNb9n3TG7RxmpSJHv3GBrdUrLEx57YPCxj8z+EeRC4D6QPx77yMM/XDJnel3ShqNCv48D5u9NofWJc048VAaUiwAUS2C3t/paafoYRJ3XvadaN7/x6Kn54Upu0Gac6ZlKjT/yYE8g4vNGgmkb7MKxzk9+EwSItxXf0IJqrwGLNE2EfRcgd/aURc6Y1RttplqdfSiVpEHLMQU4VSCs21J9i1vknOeO3b/3ZusTPqv0VEXqFxEyUepMDn7ZU7PzgCNiFH/ZX9XRL53+3oCr2qEPmT01+94DHKXzNngj+mnliT+6Mlzu5qTu7uy0SWB9/XV1h41EeXnf3eylNE1YAU3TxIzd6x4ZIaVyTHz8ujK3273PPYQcydk9FUuVq737sURuH6dYKiRwN4ZHNQ5LpR3AZq6JBJDumAkSOVYie9FCQfK6ly7qrT70dLozPfPbFUVjVv1d4jqUHVlIUP4uGTVR23TCr870zCV/mvo+XXecvajpDoauklkgogEik0t2s6H9x9aq/WxQ28JBqQuOARIjzFUtdiDaV3lx2iubo60Va5cWjo1sQbWngSdDiQLCTm750G89gYhthrBqsCd6bbEmAVh8otmp2sufiDoQ+J9AlFi9YljUrZXzcJc93JmE1Tqyp2bnj48qOTTSFNiw2hP5L1eG65z26CfjrE0XWoX+YABlJMh7BXLB5HlDzm2PvvYWbRJYN28++Mh6HxuKoWoB8oDd0jLm5R08PhCwoyiBZk/K7oSvuofmr0kSc6ZlmZou3Xqqth1g0gO2XBBGCkvg563qYoCsjSfmA0gR1HyKoMmEDZi0p/qH3P+CxZmeOcWZnvnul7mnb8wtH/Iw4ARxX6J9+2WhVKl+EDUDY/++RhH+2wF/nqdXXynBLwU+aZKfcPDm9rzOeqj8k52K6sK4Bvuti+3X2YRVAJMITAOY1Pe/yzp6LF2Jcm/ch96AfbQzPTNqT+U0TSgAqio1VZVvtOOQegBRhsOVwZ4w6eI4oDq50NKsmNV5L0ccavOIXwOKtAJHKfeWtyjldEfwxGn568oDllEgFoF857KP+s5tj3480lRFMKETEmHa7re948pwLZzwVto9N36SemSTDXQy2iSw+v22I+p93E1rFIpPdp6qyg/ZhZD9qr+oaGiDpgTdHW9Fv8WhMEDtFot1zrSsM0EZiG51EnS4Mh4Uu9iwKlJ8C3hCNk+KRF6W93LEDfUrONMzhTM9c9xRsx//tswbXw18ARydHJH/xdH9P7sSGJI7e4r7N/elr1NPU5k186YX1j18yqO5s6eMP8ry28ptSkzRq4Epued47zbfWDsjY+ysV2uc6V/c70zPHBMM29QuaPWumYDXktFO/bQbv26baLUqtZvmXPVGs7LbGASxm6o1wOxKWtKoVkXThAX4XtPEle05lqCQqp8IMgYjSoBBYwRDWk2RSAfN2fFyx/buvdnyltkvfFt6eafiLlu9dwbadrKnZpcDx/W21G5ZXBV31YS30m5ph240wAPSD9IrkG8AjkrdPOvb8uSsMRkjV7oyXPcdOW/ohNs+Ten0UQXaaMOq/FLvww77SE0TozRNZGqaaFQYM5urzxXCv8Ttdu/1uJSdAZO9uAAgInFF2ELH1OeD56YKs73wtZCTg+FwFeLAlJ+cABN6ZQ0EwF22SCCOFIg7gXS/mYQ+m61P+e+P+eKlx0846eyn079VCKwCfllbOuzwvtHrt6U68i4Eei26e9opL1/90su5s6fsMGnJnT1lUe7sKQ/vtO3pjo22S//QnrL8hasemDfgdzm097jUH95UhL4ZxB3AH7HWkrITHnvgG2d65kHhFF5vfv+LRbCTMNKuqYDDjTM906JL00Svbs/s6LF0NY5xfrbELHxYFN+ehFEHUAyEJd7qHjgy+IK+U2pWA4NdUQERCmm1x+QmG1+1D5fI+QKRZNLFYX0vr/10r4wwjGRPza52OSpGOBR/VqVufsyV4Qprtqp6obXuAaEum7r8suyp2fur0YWHjY4oezeAkg/cWei3/fRTZbzHlbHf064M1xGhFN+djjYZ10dFbV1dWbnDd6V+DNVBwDD+sefbiVdfPXqU33+os0eP7JVt6b8rE+f81lS08mzscWuPBv4X7vaL1550YaA2IRr0AMEQIfu8wxWA3VSjAFgU3z8RGoJ2TosAnn9p0jeuwspXD/WsPf7CiiVTyvy92WDLz8n39Lpcovz7q9tmlra0z829vNN6b7EqhYm+TUlA7uwpW2HKVABnemaySfhOS4zIfyCnaPQk4FeQG095wr0t0lLx7E9bJr2bO3uK3rarlpvq8leDmP/EOSdODgqynZ9De80/Y+GWyVGJ9vx2TbDRHXn2ireL5t/13u9/bB9naayMqsoyTROn1neGbScqQnNQB2GsRQaNoRHc8bKJ4A7kENyxE3a1RdVnxRyTarZ8IcEEUhXu8i67+/LYqfkVrgzXccCbwCMXfdhvSk+LR3301Pyw3JMNhRx87vStC4GFAK4MV48DHaWzNvvsR5QFLNOAGXYR8Jzy3sDl6zyRbuCb7KnZLU4h2x60SWCNj1/vrBNY6wf8V1X5iaaJL1RVNqjN2bTpkAMBAgHr423pvyvjq0z9CaB0/TGj5kzLmhBO+9I507JiIGE2yD8QgeuRykTAsGEFFm6ZvAzgh7xjN9Qdc6Zn2oETTcI/Fa4/MSAt9BfbVj9vfSpwq+WD4TMs7/W0CqUAKGtNoqqYctNwiaQySv9y1/y4ubOnFAAvAS850zPjgZMd5qqpywvHHOmXlreBR4fe+e/Mw3v/b0WkpXLOM1fMa4WGVBwcCltVX9Me9rkQ2uZVAS1cjjU1fsf5AAf3XPATXBaOJvcpqvzRnwKznOmZCbmzpxTXHdc0EQM8CtytqrKg/Ucix4KoBPEo8K3heGXQIO6yRcIdeyRwm0SeClwKXCzcsf/1m2RleUzggKgKJd8qlYkWHwLwCUSXjzOaPTXb58pwXTjcXrH/n9Wxhy9DPvVlhuvG7KnZ7e6Qnj01eztwNYArwxUtkMf1tdY8st7jGAn8B2TVye8N3B6lBN7Orol5Mntqdml7j6kx2iSwFhUN2Sn2qqaJ64C1qir/25iwGkQcD2wtKhq2z2atKc87vC+A1G1HAxPDGdDfEpX3X19l754g7p7+wrE/AmENUNzFqZuXU53pma7hCcuutCpDR3h1uzUgzduGxv/1v/4x617+ZsPJ/x456y+Z93LELb22WC4HPgsoUtv8qv2Rfv9X+1VLOoyuNPUFljkvrd20p3K5s6eUABlAxnUvXdT7240nTq7xR53i1y1Tv914stUk/Hd/lp75UaJ9e+Zhvb/95pkr5tU0cwhaKGyVhTBq2p3pmSZX0m+9ekdt2P/7TccOgsjZBAN1e53pmWEJXfT79gmRJuFf8fxVr//d9hHveyTYCxYW1yaLA1N+uhKmzK53agJwEcH51q4C6/UvX5RiVU69KCVyy3cL7rzu/vbsy6Ab4C5bhDv2V+BkgVAk0gQcoejURFYpSeaA6Ms/ZgOCbpKEIntqduC2T1NGrq6NfDaAMsOEjLrt05Sr9maIwVDGrA+BD10ZLitwpEMJXFjos52/XjffDaSPydhvwdjI0nyr0B98/owtezUkaZsE1urq5Drp3xMy3p8KrAL+21id118/0qYoh5xkNnu+vOOOx/e5cFb1UEPbYwpIeyi1ZZtuujnTskZD4DHofWjo0L/mTMvKMTSr/9Aveo26sWIwIC8HwariEf5hCcvXryx2TZcoWf+7/fadFoc+V9Q8jjv2GWA68GifPOuXgftinjLp4l7cZRVN9bd9jsOSjHmCQLzZknE+d+VbmwluEb15/csXJpd6Em75Ie+Y/sD5RbU9rvxmw0ly0MzP3gpI8wcENVaNZjO6+f0vFj1xzomTCWk/GzMHcKZnKs6Y1UlpCcsO/Ktof7GpYmBEon374IFxfx+zpiRtW4knyRxhrhoQbS0bVVSTXAOW2OzCA0V24YG7tCTtZuE/hjbO55Dm+9CAND/flnb2ZSb2/mbRV7mn4fHbzwR2CKyqKr/WNNFfVWV7266yeNuh53p1uxgWv3w351sDg0bQBMJDMEWrDzhOubd8kQ0IOWLNJ8wv4J2BR0/ND3yZ4bpWQZYHEOlrPY4jT3h38LD/nrdmr2uRs6dme4Gvga9v+zTlEq08cUKNNJ1sFvqFv1TFTwLOc2W4fo41+b49KLL0h2/LkysJPWPaK9pMmwTWyMj85KqqFEDWqqr0aZqYSBOOXLW1cWfpusWemLhsfVv67gZoBL33IgABequcYeZMyxLxg/9zdfX2UTeBcxCYvHtj+7erUuJJSgrZcgLoOub7v7ztjvv2WMld5gOe3vS6/Zse281POmpMNwLnFT7neK0ySr/LeWltoy9eHpt+hkBEbU/2le8WALWZPHvF2wXA7QDO9MyIQ3pl3bytqvfp68qGnQJcbFE8vmMeeXTtqpKRM4ES4BCC8+vneHtB7PieP4xds//httWlI3Ps5qoDf3n69lkbygeV5Ff3DlgUb5/EiPyDimp61IItOrd8iCm3fMiOvotqe1C0rQdm4asCNgd0c1mcrbhIl6afC2tSlsdai6vH9Pg1dWnB2PxST9K9IG0ghF+apjnTM/8G3q/vlNYSJvb+32ULNh9j6xe97o9WfnX7PM9cMa9myB0fz/+r6IDeAJomegNDQiGs2l1YBdha1fckYN23G096cW/0Z9ANCGpZd7xk72TDuqdz3YCQGcDMqR/2PfD36rijgfddGa7zQgJkhxDS8v4I/Hjbpym3e6Ry0nfliaMl4pSygOWub8uTCckdOuB1ZbjaJZ63kG2wtX/ppRPSt2wZ97DFUsmhhz5hU1XZ5BfqdrsfADkzMXFV7+uue3dbU+W7M3OmZU1ABI5Bms4DegHjp8+dtKI5dT94bqqpYPlFJ4NyO3CwyVaqI8XDAW/sDwRT4Na9fe7zyQLqE7KzrP923vKta3fsOL9Jvm4OiBEeq77W5lXuJ/j/223x9DwU/YrNq/xfRZT/8uhbql4N02UA4EzPtAKTRyT++fiakuEDvLo9IhQVIoTwUS8Ga33MirfWr1s3CwKFg+NW9q/0xfy5tarv71bFUzK+l+bcXt3z55XFo7Id5oqCo/t/XtIc84M6G9YE+3ZTcW2Ps4BRyRFbtyXYC9/6u8RVQgttW4979OFPVpWMPHXKgA/7hDTOBq3AmZ55C/AY8PC1Yx4cOTZ10ZFAf1WVJe3d90GzXrmgoCb1LRCv5s6eEvZUlAYG3RlXhusG4KkIEVhwREzRKY+dmt/u92xLueGT1MO18sSvAyj20CE/cE/21OyHw91XmwTWBx647R6/3zFLUTz07fvzDZde+t0zTdVxu92/ATVut/uwVnfczZgzLasvIvCbyVIRKaX5X7ov6tPGhMw507Js9rg1NwZ8jlm+ql5WYJ1irnomcdjHb5193esloTI7nF8MYXV3wuEclPu63WSvFc+n5FvOEoh4GRIUBaII8PlNMkoiIywBpS48SA3tmCbQmZ5pAV4AeVlQuy4liB+Azw/r/c3ACm/s0qUF45YA248f8O/yF656rbyJJts6HlOKY/N1ld7oJ6r8MQpBSbqWFrwgONMzF4I05c4+cXx7jrW7s9/d71xZ6Yt9MTgnqD3e+fHNL0x77YX27teZnjlBoC+QKCaQHhBHGs5WBgYtY8JbaddX6aZnUi2ebVt99qEhO9NOgSvDZR5kq1q51hM5CKQvtLPro50yJrZaYA1ltfoesIS2WD3AkfWjBezKY49dfX5VVco8m6303zNnPn1mqzruprx+zxOzq7ePuT34SejmiO3ZjsSVheV5h78CrLJEbh0c8EZN133RI4Aka1ReuT1+7dPlm464f/rcSV3eS7LL4o6dBdxFMOkAAvEr8GdFVGCQ2S9GRtQqKQTtD/zAPbjLwv7WWUdYtMdhZsgdH9/v0613hoRoHcRdubOnNPkdONMzownGB30sd/aUO9p/pN2XAemf3yERD4bMYALA3c35H7QF193vpFX4Yj8ERoYO+YF72rtfA4PuyP991OeZX6vipoNYDBzfkZ76dYRitb4BXLi/o+w/f1THzqadbVjbkjhAJegRTHOCQbvd7glVVT0yADye2JMaSOO6T1O9ff8yQinUABHwRg8vzztsMvAu8Juvquf7ui/6cJAJwAxvZZ+4i+6cda8hrHY4XwEewC+CaVlvwF12VfQtlUdF1CqnE9Qq+tkLzgEh4XRHpq2OFlYBfLrtv8EIBVKCUIbFZx/enHpq3y+vA8xpCUv3qhdqd0SilNcLiW2iHZMEONMzk0549MGFVf6o5SAHEJz3e2X+Gxh0V149M28GiLOAA6MVf/bNn6QM78jx3PZpiine5P0MuBC4882zNp6yN9J7t0Vg1QDfPzZzMsCeF6QTQNQ5eSkYmU52RQtpqf1ArQxEHBnT58cowAXMC23nETJqjpw+d9K+HGGh8xDc4t8hJO7mHNDYuXaiwUxbHUidEK0I/Z5UR97Wv0v2O9aZntnk7sr6siFjTcIvB8Su/nIvDLO7E13v7wCwazjgNnP9yxfGDkz/z+3A2hXFo8fvl/hHzv49fnYBR9CJXqAMDLoq2VOzPxliq7yyRip9fqpM+MGV4erVEeNwZbiUlTVRC0oC1ikpZs+L2VOzH9pbfbfJhtXtdk9QFM8MXbedExFRkHn77XNObKzsgw/evNDnizoERADwsnNmLAMatz0NHd9pq9ewTTXoajjTMx3At8CBQ+KWn/9N+m3/3kPZ34Gy3NlTjtxrA+ymhExFfgp99ABhsyV1pmcqvaI2XFPjj3y6pDbJBGQCt+XOntIs51EDA4OWcfGH/ab+UR3zLxDbCdqK5u6tvl0ZLgH8C7hmqL3yi0G26pPDlZGrObRJYK0j5EhV5Xa7G9zumzv3lKnbtu3/RlTUliWVlb0+BjRDWG0ZhiOVQXfAmZ6ZEGUpX+7Xzanjei44+c1rn/181zJjZ72WXFjTIx/EvbmzpxiB5sPAQbNe3l5Q0ys53laQ88esS0aEo80jHnrmpA3lg+8BxiZF5Be5kn574PXpc54OR9sGBgaN48pwjQf5VZQSsB0cVXLK06dtC3t691257dMUsbI28uv1nsijCUYduX1vZOKqT7gE1odA3mazlSfNnPlU6S7nLCB/VxRfz759fx556aVZ+W3u0MDAoMsy/cVLxn236fhvq/2RVSAOyZ09ZaeYzJf869pHtLzjbxubsvDcj2586P2OGmd3wpme+SZwkSICjE1ZOPyDGx5pdeYwZ3rmsL7R6z7bVDFwmEDfLFFmAvNyZ0/RwzdiAwODPTH9415nLKmK/cCjK2UBlMOzp2b/1V59uTJcIsXseTvfbzt/oK1q/jpP5NF7W1iFttmw7iAhYVU2CFNCwur03c/qN4DYT9etlxvCqoGBwZyr3vi12h81AYRNoH9z7UsX7+RAsKJ49CCz4vUnRmzfTftq0GrKAHRp4tdth5/Vmgaufeni4UPu+PhFYHleRf8+B6d+/7+TBr3vyp095S1DWDUw2LvMOX3Lv+1C3z+AUgMsPPDNEa+4Mlxhd2YPmQE8kO+3nZ9s9nw8zF7VIcIqhElgjY7e+h9F8flLSwfstNX02mtHjVMU/yNWa8VPwGfh6MvAwKDrkzt7ynKFwIkmERjwx/bxi0fe/W5U3bnt1b1G+HXrty9Oe6W6I8fYnegVuWEk6IBcAlzpTM80NVWnDmd6ZoTr7ndmfbvhpBy/brkCeEliGvj+DY8e++wVb3e6QOYGBvsK31/49zLgepDRXmn6P5ALXRmuJ10ZrtRw9TEqovxr4A7gpQK/7ay9abO6K2ERWC+99LsqXbdk1tQkjnK73Tvip2zZcuCDUioyNfXP291ut+HVbmBgsIN1s0/+aWKfbx7cXNnPUeWL+bczPdN60uOzBgJpQFZHj6+74EzPnLC1qu/hoeV+NNA3xbH565AzVqPMePkC07GPzJ4JrKzwxd6TYC/86/gBH5+YO3vKNbmzp2zfG2M3MDBokqEE30YhGL/uRl4jruoAAQAASURBVJCbT3x3UJE6b9gMV4YrtjWNujJcE8ZkjMxaVhNz9FB75Qrg6uyp2R26k2Juukiz+Qo4JSYmb3/gd7fbPQUijgLuuOyy+T+GsR8DA4NuwuvT59zjTM/cALwSbS39d7y9aBPAEX2+Wg9TOnh03QZV/qObUECSX91rMqCOuOv99LOGvfH0rIu+3CmeszM9U02wH/1OcW1yT7PwZful5cif7r5ag6v39tgNDAz2jAbCC1hC6bj/b5Ct+swiv/WE0oDlaeCRI94e9ntaROXCv2qi7/7xwpW1jTXkynD1GmCrPi+gcy1E9A+gCJCBdbWOqzpaWIUwOV0BzJ176kHbto35NSKicLnHE/0KKA/punk7iKFut9sblk4MDAy6JQff99KT+dW9b7QoHm9AmoRJ6JNWP3Sa8aIbBnbJgCZBmkDskGDjbEX+cm/c47o0/ZlgLzi+whsz3KfbDlZEYMthvb/9LN5WdN0zV8wLdNgFGBgY7JGQ7apKvSxTIdvTg4DzHYr/6mrdbAXKgY9HRpQvWF0btcYrleOjFZ+lj7X2xDWeSIdPKn0BzOj4EYQSjviBe7KnZnd4lrqwCazBzFXyp3+OCEK5ZY8wQlgZGBjsiRkvXyCW5B/y++ZK5xiC2UhqMYLNh42Q0KoSzHL1DKGYzkPjsv9d4Ysbu7Wq7xDA9E8iGPECcHPu7Ck1HTJgAwODsOH+T6L196q409Z7HceCPANETPBeD1pwWgnIaHPgjyK/9R0z+veA3Y/yP+rFfm/PDFbNJZwmAWooC1M9u1ghgsfp8As1MDDovDxzxTzpTM/8EBhFcA2pS/VsrB1hICT4LwJwpmf+RUgb87/09LpjD4JMD2peZQDYZAirBgbdA/fJRV7gfeD9yz/qc/06j+OLAr/1cIISa8CLcq92wYoH69dxZbgms4vWtqMJp8CqEcyiYiWYrzqAkT/awMCg+XxHcA2pe6vXOnQ03ZT6wms9vgBxI//YwWl7fWAGBgbtzitn5lW6Mlwz2Sl7ptjNyTUkpHYKQbWOsJkEQJ1ZwI5tpySMjFYGBgYtoN7WtWaYA+xdjO/ewGDfoSG7185OWAVWAwMDAwMDAwMDg3ATljisBgYGBgYGBgYGBu2FIbAaGBgYGBgYGBh0agyB1cDAwMDAwMDAoFNjCKwGBgYGBgYGBgadGkNgNTAwMDAwMDAw6NQYAquBgYGBgYGBgUGnxhBYDQwMDAwMDAwMOjWGwGpgYGBgYGBgYNCpMQRWAwMDAwMDAwODTo0hsBoYGBgYGBgYGHRqDIHVwMDAwMDAwMCgU2MIrAYGBgYGBgYGBp0aQ2A1MDAwMDAwMDDo1BgCq4GBgYGBgYGBQafGEFgNDAwMDAwMDAw6NYbAamBgYGBgYGBg0KkxBFYDAwMDAwMDA4NOjSGwGhgYGBgYGBgYdGoMgdXAwMDAwMDAwKBTs08KrEKIS4QQlY19bmWbTiGEFEKMbfsIDbojQghNCPGv1p5vRX9vCCG+2MN5txDir3D1Z2DQXuw6l5ua2wYG7YXxrO849kmB1cDAwMCgY2jli9kM4MI29GkIGQbhYhPQE/izuRXCoRQzAHNHD8DAwKB7IYSwSim9uxwzAwEppeygYRl0YaSUZR09BgMDACllANjW0ePYF+mSGlYR5GYhxGohhEcIkSeEeLje+d5CiPeEECWhn0whxJA29imFENeG2qoWQmwQQjT0xt9fCPFNqMwKIcTRu7RzuBDiFyFErRAiXwjxlBDCWu+8JoR4XgjxkBCiUAixXQjxuBBCqVfGKoR4JHTdVUKIxUKIY9tyfQZ7DbMQ4pl6c/Ox+v/b+gghLgz9bytC8+BDIUTvXcoMF0L8RwhRJoSoFEIsEkK4GmlvtBBiqxDiwV2OXy6E2CiEqBFCfCqESNrl/KWhuVwrhFglhLhxl/kohRDThRAfCyGqgIfqzA1CmoW1gAe4SAhRJISw7dL+PCHEf1r0LRp0SYQQbwBHANND80aGtJ9NrYtNmbcIIcRtQoi1oXmcvcv6vD70e3GoT609rs+gcxN6vs7d0xrc1LordtHWCyHU0OfJoTlcLYRYIoQ4oO488DoQWW/Ou/cwxvFCiKzQs71MCDFfCNErdO44IcSC0LiLhRBfCyHSGhjbGWIPckhXpUsKrMBDwN3Aw8BI4CyCanqEEA7gO6CW4MI4AdgKfBs61xZmAf8BxgAvAW+K3beYHgSeBUYDi4H3hBBRobH1Br4E/gD2B/4POC90HfW5APADhwDXAjcA59Q7/3ro2s4HXEAG8LkQYnQbr8+g/bmA4H03AbgKuJLg/7chrMC9BOfSiUAS8G7dydAi9iMggaOBA4A5gGnXhoQQEwneF49KKe+sd8pJcKv1FOAoYAjwWr16VxC83+4B0oCbgduBa3bp4l7gvwTn45zQsQEE5+hZoWv4JHTtp9RrPxY4DXi1ke/AoHsxA1hEcA3rGfrx0bx1cU88EKo3HRgRqvuiEGJK6Py40O/jQn2e3qarMOjKNLUG73Hd3QMPA+kE1+EiYJ4QQgA/hdqv5p85/3hDDYSe4d8Ba4BDgfHAB/yzGx4JPE1wPqtAGcFnv3WXphqVQ7o0Usou9QNEERRGpzVy/jJgNSDqHTMRnEBnhz5fAlTWO7/T50balcDLuxz7Fng79LczVOaqeud7h44dFvr8IMGJqOzStwdwhD5rwKJd+vkGeCX09yBAB/rtUuZT4PmO/v8YP3ucQxqwape5eReQV+/8v/ZQf3hoPvWpN582ANZGyr8BfEFw0S0HLt7lvBsI1J9LwGGhPoaEPm8ELtql3g3AinqfJfBcA237gJRdjv8L+Kre56sJbq+ZO/r/Y/zsnZ9d53kz18U3gC/qnd/xmeBDvAaYuEs/TwP/Df1dtz6P7ejrN3467qepNbiROruuuzvNJYKCowSOrVfn0F3qXEITMkao3Dzg5xZcT2RoDT9sl7E1Kod05Z+uqGEdAdiA+Y2cP5CgZqcitEVaSfAtJJ6gsNcWFjXwecQux5bV+3tL6HeP0O80gsKoXq/MjwTf6AY30kZdO3VtHAAIYEXd9YWucQptvz6D9udnGVpFQiwCegshYnYtKIQ4QAjxmQian1QAS0Kn+oV+7w/8KHexF92FAwlqNv9PSvlmA+c3Syk31vv8C8EXojQhRDLQl6Cmqv5cm83uc20Ju5Mnpczf5djLwNFCiD6hz5cBGVJK/x6uwaB709x1sTFGAHbgq13m6dUYa6LB7uxxDW7GutsYe3r2N5f9aVy2QQgxSAjxTsj0pRzIJ6gt3nVs4RhLp6MrOl2JJs4rBL33zm3gXHHYR7M7vro/pJQyuCOw48VAEHzTaYj6x30NnKtrQwl9PqiBcjWtGK9BJ0QIEQl8TVCLfxGwneDW1AKCD3Jo+l6AoO3eduAyIcR/pJSeFgyjbs5NI7ittSeqmnNMSrlUCPE7cIkQ4lNgLG3w/jboFjR3XWyMunl6EsEdgfrsukYaGDRKM9fdxqg/1+rmbUuVgk2t6Z8DmwmaMmwmaDq4ooGx7UkO6bJ0RYF1BcGtoskEt/535XeC9k+FUsrSMPc9nnr2faHPOS2ovwI4Wwih1NMmHAZ4gbXNbOMPgpM6VUr5XQv6NugcHCyEEPXe8McDW6SU5aFFpY7hBBfKO6SU6wGEELva3f0OXCga8MqvRzFwMsG39k+EEKftIrT2FkL0lVJuCn0eR3Bhy5FS5gshNgODGtHOtpaXgdsIXt9CKeXfYWzboPPjZWc767aui3XPhP5Syqw99AkN2Hcb7HPsaQ0+kKbX3daw65xvjN+BSQ2dEEIkEtyNmF737A85dnVFOa5VdDmJW0pZATwDPCyC3suDhBDjhBBXh4rMI6gm/0wIcYQQYoAIeqA+IdoYKQA4XQhxhRBiiBBiJkGh+ekW1H8e6AU8L4RICzkEzCZoz1XdnAaklKsIXuMbQogzhRADhRBjhRC3hOnGMmhfegFPCyGGCSHOBG4Fnmqg3EaCD+FrQ//jKcD9u5R5nqBN9wdCiIOEEIOFEOcJIcbULySlLCQ4V/sAH4udvfRrgAwhxBghxARgLpAppax7GXQDt4lgZIBhQoj9hBAXh+Z/a3kXSCW4ZWs4W+175ALjQh7NSbRxXQw9Ex4HHhdCXBa6D8YIIaYJIa4MFdtOcK4fK4RICTn7Geyb7GkNbs662xpyAbsQ4mghRNIeHMAfA/YXQrwkglFdholgFJd+QAlQCFwRmuNHEFyv9xlzqi4nsIaYCTxCMFJADvBvgg9jQgvc4cA64ENgJUEv+niC//C24AbOIGgfcjVwqZRycXMrSyk3A8cTtFP5k6C29l3gjhaO41KCXraPEry+Lwhe84YWtmOw95lH8E37F4KaxldpQGCVUhYAU4FTCWqQ7gVu2qXMZoL/dytBz9I/gOtoYAELCa2TCNqk/rue0JoLvEdwqymL4H1zab16rxC0M70IWEpwa+xK/gkT1GJCAsYHBLUOH7S2HYMuy+ME//crgALAQtvXxbsJrs+3AMsJOqqeQWiehmykrwcuJ2jT91mbr8Kgq9LoGtycdbc1SCl/Iihcvktwzt/WSLk/CUZrGQ78HBrjuYAvtPtwDjAK+ItgNJa7CQrY+wRiZ9tjg8YQQkjgLCnlRx09FgODro4Q4kuCTllXdPRYDAwM9g1EMP7uX1LKazt6LAYtZ5+xfTAwMOh4hBAJBDUIxxCMEWhgYGBgYNAkhsBqYGCwN/kdSCDo1PBXRw/GwMDAwKBrYJgEGBgYGBgYGBgYdGq6qtOVgYGBgYGBgYHBPoIhsBoYGBgYGBgYGHRqDIHVwMDAwMDAwMCgU2MIrAYGBgYGBgYGBp0aQ2A1MDAwMDAwMDDo1BgCq4GBgYGBgYGBQafGEFgNDAwMDAwMDAw6NUbigH0AZ3rmBEAFtNzZUxZ18HAMuhmuDNeO+ZU9Nbvd51fO8LQd/aWtzDHms0GHYaytBvsCnWWed4vEAXvry5zx8gVic2U/85L8w0zJEVst43t+n7CubJh/edH+gQR7gW18z+/7rS0dVvF3icuTFLHNcWDKoiGrSkYUrC8bVp0UsS16TPLikX+XjMzbVDGwKjliW+zIpD/G/F08cu3Wqn6VSRHb4tMSsg/8u2Tkyu3VvaqSIrYlDY5beeCqkpF/FdcmVyXa83sMiF29/+qSEdll3oSaRPv2lD7RuaPXlA5fVuWLqY23Fab0jMobua5sSHatP9IXaytOTY7IH5pbNijPL62jQQqB9JsV/6TVD532Y3t9Rwb7Fq4M12SQXwMmoAbE5PYUWnOGp50HvCmRJoGoBSYbQqtBR+BM//wqUOaAVARSxtsL3y6u7fFJnK1o6yG9viu1KN5Vz1wxTwbLdo4HvoFBQzQ0P53pmfHAAX2i1t+0ubL/8TK4IV8LTO6oOdxlBFZneqblhAEfDd1W1Svx9+2HACQe0ivrxPWlQxK3VvedApgEOon27csKa1OXA+YhccsnlHvjivKre28FzM6Y1QeWe+OKimuTC0Gae0Vu2q/CG1tS4YstB2lOsBc6q32RlbUBRy1Ic4S5KtEbsHkD0iJBWkCYOvI7EAQA4ZMoPkX4iTDVRNQEIkp0aa61KB5zjLU0vswbn+fXrdUR5qqIBHth6tbK3mU65p7/tKKXg/K0SfiWBqRlGMYCatAKbv00xfZTZfx15QHLvUBU8KjUQdyVPTX74XD2lTM8LdKzX+XdSrHlSssWW3zdcYkMCMTdaStzwtqfgUFD1D3UHeaK8tTILbPWlQ1L/OesBMRO5QW6V6LkWpUar0+3jZQICcJDBz7wDQzqc/3LFyZnrjvznoA0Tyc4gWWstWStWfH3L6rtYfmn5I757QfuyZ09pUPW3L1mElBfggeWAklH9PnqwGp/ZPLibRPLgMTRyb8eV+WLjlhTmpYPJKY68g6u9EWbKn2xADH/XX/mTm3+tGXSTp8lgjJv/DAgEvCXeeMTPQG7ieCX7A9IkyLQdaAShD/SUlnml+YtFb7Y9YA/NTJPKalNWre1yrFOQdeHxS8fX1iTsiav0rnOrPjkmORfx+dX9/p7U8XAXJuphgN6/DxuS1XfnA3lgzc6zJXKgSk/HbCpYkBObvmQzTHWUvMBKYtGbCgftHJ92dD8eFuh+cCUnwatKxu2dl3ZsMLkiK3mA1J+7rW6ZMSGdWXDSlMdecqBKYviVpWO2L66ZGRl76gN8oAei6zry4aW/1V0gOeglB/9H974sN7K731+UOCWEpQckHcHpFmEBAyPMz3TWEANmuSfrX/pTzDHzSoPWCKAP0GmAVYQCrAlHH1pmhBRH/Y4P+LH2KMVTKfb/oqK9id5vYEY31tKuflswFZXNBz9GRjsidA6mgXYqv3RIq+yn3dQXM78taVphwAWwGcWvrP80rKtf8ya/XtFbjp+WeHY/CpfdJJEOUIiBAgBWAk+B4311mCv40zPnGBRPCf2i16XuK5s6LmS82J3KSLKvAmDAaxK7d92c427whtbLFE+JTTP6cA1d69oWJ3pmRcBr/P/7J13YBRV18afOzPbN733pSdA6AiRNiQIarBgw44NG3b0/RZr7NFX7CivqBg79kLswABSRJoECJ2E9F4222fmfn/sBkNI3SQsCfvjj+zs3Ln3zLI7c+bec54D6p6hJK22VbI20SGpCwBUxeqPhioYZ+3R+sHrAFSNCd8UTwgt2lZ29noAValx2cy28olhdfaQb/Dvh+lzvprRfLo/6dEV71hF/Xz3bq8+MfnoHbid1dUAVQMEGiLWjtXVvX1xUNkrP9WGX7K+IbifkzI3KYlsn+5fedZLF5eVeDJObmJSIICrKSffSURmGGWoSGTyKSX0XfP5VX+OX1xB3TGsWQD8AcQk7cuVuu9Mffg4mcRHvsy0SZr/c9+7ZABP5WWmP9mRpX5XG7oaIGoAiNAW/joxal36a/M/8X1vffQoBmO2X7Tu2JQE/8O37qwYH2oVdZOa+18scZpkyuqoa4JVgss5nQwgSsE4IMrsNxTsdpf/RkoAhMJLK7M95rAajNlkSszvtx4z9Xs0v35g7L97KAXIrwC+HhO+KUivMNWuK5q5EUBlcui2mh8ffNzhwVi++KBOYDBmTwGwDq4Lr2+Jyke7JGclLwLwDAAGoIhU2Jf8fvXBuwSBXAFgBYDkt8oSEvfZ9F+O1dbhmtCiQTOmy4cEgcwAcCuABTxPKwSBDAdwFoDPeZ5aBIEEwkE04fcPHuQcaFmmOKTtTyTCAdhpG2XaKkbZn9H/HBqNZklWuYlJcwF87uhnvXLkz3krvPCR+DhDMBiziZYzbbKI+gkAZE+W9d33qBn+yppZ9Y6gSZHawp2lltipeZnpph4z3McZxfDHPtU1OANGq1jrxAGB++88WjdQaRX10XB7qBxx2ESqULtX/qFgHB8ffO6S64CTfSiDMZuZHvfTLQWmflceqk1KAhDJQpRkMAwFkQHigBf8hi45rC05ioMe/nayKLN3ULCjAAz1U9TJDJG+qHMEXwTfLOhpg8GYbQawE8CDvv8LH+3hnmFdBUABUCcLOmPnvD0bBYGEAxgJYAPPU8u8L+P+2G4JTOMgfyqCCRmtrc2/KaxwKoBJPE+rBYEsVBxRvxT4etyTUrBzn31Uw4vqbX5xXJkKlJOd1on1sE2sO+ocaB3G81T8+8HQhbqfQl+ADELcjkLSvtxNu87pp2ErFGZngi1/1PfH+nnzs/HRtzEYs+cDeIch4jsy5fLQhYmRe5ddQ46Z+r+7o3zCPIDsZ4nzosPPX3yoWw320ee5Z9m1IYdrEyfvqRodD9BxYZrSyyutEWoKhgCAv7JW1ClMuXpF/a7z+n17nk1SX/LOrgcdgLwaIIrOOJwGYzZLIE0O1ZR/XmGNjPRmLKvHDuvQRz+/3iLqs9DkiRMAAeQNbnlXSiC9dMGAL55/ff7HNb5Z0NOLYY99XhuqKTu49uF7x3vbFh+9g47IVyVnJWsBWuVa/jweqH9rzrycZQCwe+LAaUwt9xtcD6+EgEAMcRxjqxRPEJAvy5buuwDAZTxPL8tNTFKIoY7DXKUyzt29CODxxiSrXTMNv3MF6qmEkvCkfbl1PXryPs5Ibl9688W/5V/0hUwZASDn5mWmdzqPoCUMxuxUgH6pZq3+Z0eveez9BW9ldke/PvoeBmO2ho/9+bJKa8RZu6vG6AGMI5CH039l9Evj/Q6b/ZR1u/PrB35439gnEwYG7v+N5+keQSCDATwH4P94nh7uih/mPnYNABVAqb+y9txdT137W/edaft4nHSl5mwzLKIf4PJOFXB9CGgSHyFRsDWvz/+4BgDcH47PUT1N8FPWgVIS7m07fHQDGQH/JjRm1J2y31hyVrI/gJH9lJZLAjjnDQUODQModP+qaRy/FlwKYJkgEDZgYPQi1VY/BQEhFJRKQc6PkjccntfYMAn4HMDnW+8NP0sVoV/JlanCKKhIXH2dEPCvOKZ5GMAWAHMBvNPzZ+zjTMJgzNYFqqa9r1OY2LHhm+764K43u8VZBYC8zPTVN791++w9VaNXrS44/1mDMVsEsDgvM713yPb46BEMxmw1gBGjwv66wSLqJx6oGcYCGCYUnteoUFQOYOvAoNzcCG1xzp9F57x/0YBPi+cM+tSf52mdIJBAACUAggA8zvP0AIDj2epd8cPcoQLTlYztQYesvCREXfE/gzF7UF5mutiVc+4MHjusdkm1DsB17kzzJjcSYsVpkE3mo21KzbFbADTPEPTR23A5q6vh+s05kBGQhoy6Td3txP6bdAUlQDHl4yGMK+EZOOrQwk90Ik5pAwv6br3EKmyUm9dkhvVrdzeBlmk141Tb/STIAAFxsjWKpc3Hyk1MmqVlg7+gHPW3J5seU+X4rUKzGFY3WylLD8p68f/gc1h9dD+v19qDA4cG/3P9B3e9eaC7O3/vzqWbxj/5bgRA3gfw3xB1+cwRj3/8Ur0jaCx8K5F9ln/l0Rr+soj6egDj4v2OXOGQlGcBMSqAcDsrJkCnqJcB+htAfhwSlFM8KGjv3yuPzN3qeqhJP96fIMz+2f3yPJ6ntYJAkgEc7gnb3d/JSy975eEPtpZNmgfgfwZj9i2n6kHLY4fV7PTf7npFPgHwdhOx2TT4lv57A1UA+nvbCB9d5gIKqiYgoKAKAsIjIwBwPSyyaOrEdoEohfXNEqda3ThryhJqSQ8o09ZL3BNbLYHvPhe3vxQA5XlXjFFyVvJVACkG8NwbCbt3CAIhPE+rBJARABLQggP698IwhXqb39scVDcRiex2DrTcNOrLwq3u3SfZn7Qvl26/Lnq/5u+A2dtviJ425oPitV05Rx8+Gpnz8qNPASk3AeTZn/7zyMc9Nc7fT9xiMhizr/BX1jxXZQs1AuQcABIAh09usG9x77JrVD8cvvJWgHkZoJxF1B3fV9wQ1xDvf9im4SzvWEXdnzH6/F3jIjYcbiw80eigvglAEMgEAFcCeMB9vf2q6Tg8T3s8Jvqr+5+7wWDMLgDwaIL/IQ2Aq3t6TKALDmuMPs+/qMGACG1R9l+P33r8R/XBubPTAYzneeqTSTqN6ed/IKTYHBfXfksfpyt5y9UkjihTGQpQUABgqgPFwXoz86TSyTSKPjeG63TqxicIhAHwhUyxaeGxoUoRmjEEFNSt3VslqmacG1ixudFBbQERwFdvJOzeD+BvANcB+JjnaTH2ori5PbmJSZHqCL/NXJkqQdZKXzAW9saR3x+ztGuokj5IQc/TbA44D4DPYfXRZVKfXzyyqGHUozH6/MqihoSMnh7PPTu16Kynlo0vt0SlwfWg6dHv1sfphcGYrQSQGqIuv80uzb6oMSnKnalPVaz1W7ukWShSRf7qRQubXUvvPP5KEEgcgAqepzYAwwFcD+BVAPk8T987BafSEo/H+x0+O79+4FXnvfhc7c//efjO9g/pGkz7TVpmaMiugQAwLHTHwGa7ygDkdcEmH6eAAFUNdUgq5awXMr1avcuH56js5F2Wkgl2Ff2YElQRECa4lruBAoSCinA5jR0OzREE8j9BIP8DAJ6nskTBLik3zBHBPKci0g8aRpoBkEcBpOXMy9nUhrMKBZG1yZr6qQD+BHA3/g0LOIm9SYnTAOxgy5Th1ol1y4ZtPzA3aV9u+84qgDHvlewnID8DuD43MemUFULx0TcxGLOnHqlL/MkhKc2jwrakn8r4vHJL9GMAkVyhNFSEL6SuV2IwZqtHPZF1Rfp/nznEEmc1gJ+rbGEz4vyOHovW570BwApABIjNLmleystMz2trSV0QyGgA+QDmuN/6GEAMz9P8Hj+ZNsjLTKejw/86N1xbvDW3euQdBmP2VT09pscX+N2VowsAYF91cm7T93mevtFVo3z0PDsrJvwEYOb+muQgAJXetsdHJ8kIiI+E4goAEDl6qdrOaBp3lUY5xyUcU2nRQgyrIBCG56nsfv0MgMk8T3n37hq47pa45atYfZXYb9whuy4WwCt2yj6Yc32ODJe0VZsIArmAYCgaZLbCPdabLbXLTUxibGPrV6rgdx4FPUBAZo75oDinsx+FGO74mitXzrZMrn0IgG9lx4dHNBH4ZylYR/bRy9klp3D8vMz0TcMe++xWs9P/vcFBu3N++7//882u9hIMxmzt1JjfHjtQO3QKEDui1h7qZxO1Upxf3va8+kFPA+T3n//zsM3d9jO0ETbpXt3KBJDH8/QtuCqDGgFsAACep/ZTdV7t8dr8T5xuXfdfAJp1/Zv3RH941+uLe2o8jx3WEnOcDQCKGxJqu80aH6eSKvffEPgc1l5F3nI1a4Aq3505D4WTKMrCncv8TMxytY3ZGFLJ/grgNQCCwNdv5d3HCQK5C8AiQSAJPE9FAMcA7Gl0YnmeGgEgOSs5CAj8DiCx43S1Pyy/rOCBTppYIgNyhVNV0FqD3MSkEABZ6m3+5zkGm49JweKkMR8Ue/Q9tI2v/1K7Jug95WHNJfA5rD48RMHYz3XKysYVJwZeWJLf8/RV70959s1Hj9QNHmwwZqvzMtNtp3J8Hx3n7mXXRRWaDLfuKJ+YDOC8dUUztVquQQTwAYCv/FW1a4SH7zupEFJLmfqCQHQARvA83cTzVHbPqioA12oXgBd7+nw8JS8z3WYwZl8UpinN31wy7b/jnnx/y9YnblrfE2N5HBIQq88LAoAYfb666fuCQOYJAjksCMSvq8b56DlGh2/2A4DJMb+P87YtPjpIRkCKJdNvpSFfdXyZsjLE+VZJlDMw4k7Lrdr/a9jUoJd+11u4CADPUFDBv46td8c/AcABAN8B0AMAz9N3eJ4uaJxxBYAHvo08iwXdDJCJBPSq5ZcVXNQR0wSBDBcEMt/d71aREluDzDa01HbnBfHPUkY+CmAWBb3LMchq8NRZBYDxiyvMxMK8yZWoRuQmJgV72o+PMxsla3e4YwtleFHlpsDU7xZRVgbAFfft4zRi/tu3xhuM2dcbjNk/ZB+5rGBH+cQMgE4C8MGAgH2Xn5Pwgz4vM31+Xmb6r1sen9+Zqp2vAPjV7bgCwLk8T+/v9hPoIfIy0+vGR26YKlOmpNIa8a3BmD2kJ8bxeIZ1cPDuxMIGA4aG7IxvtqsUwGZ0wRn20fMEqqrrAcAuqSO8bYuPthEEwsTlKxf1h+pJrY05HnNcEerU7xlulQCwBle7swxByun+Jg5w/f7YqBLF1voAiQAAz9PfALQq9Dzuw6EjlSRwA0sokSnO2TVv95pOmPkAgJmCQD7jedqgJFSbqG6Y1rzRntGD71ZatQ8DAAW1E5Dt4xdXdFkShYAsB3CPrJIbkxF8+OgUZqd/NAArQJ4H8IcXM/TXEMg71JzlyXuXXfP+a/M/kbxkhw8ABmN2KICLg9UVd9bZ00e73y4IUNZ+PC5yw18OSbUs6643xKZSU+0hCGQigKUALnLHor4K4EMAFgDgedrr/s/fum35LoMxexqADUrGtn7B/244b8ltH2zrzjE8dlhzKsYeAoA9laNP0KfjeforgF+7aJePHmZNwfmbAeDv0ilV7bX14XWUoVXcE8QtyO9WBHhhz3CrH1zB+A8AWAIg16yXv6agcwFQAuKIKlU+GHW79Vh7AyRnJfMA+51ESe1Uv+rbX7ukpF1n1S1SreZ5WgrgXgBanqcNACBSIh62a9XJWckpjVWxchOT9AzYDAoKdzgDi25adk3al7tz99kDq6hKfhY+h9VHJ7l32TWEJZfPkSj3a17m7Ke9aUteZjq9/s171q0rnHVvlS38YQBetedMxGDMPk/FWu4LVlWmAHE6gDC19qD8UWF/b5Eo+/Q/FWdl73hyHgXmtd8ZjselpgIo4Xm6By5xfweAcLgy/ff22MmcQvIy0w+lPv/yFcUNccKmEv53gzF7QF5mek139e/xLGiFNcoVw2qON3WXMT5OKdXuvyFetcJHiwgCOVcQyKeCQEjSXs23AfWcoul+AnIYLkWO5wD8BQA8T03DrnBeaVXLFruSWgF0SH/1tq9jXiGgvwMoFsGMfe2SklYz+pvYx8KlAPBR49g8T8sAV5EBGYQzy9xwAKvcRQcghjk+pqBBxFXKuVMKBh3BGWfL5kpU2r1Jia/lJialdFe/Pvo+Dkk1R6KKqLOjV58WD/BBqqr/UzD2sj+L0mZ625YziTv/d+OQEY9/vBLAT3ZJO7PEEucXpSsQAIyRKdfvmweemfD9widXdlQoXxBI46SgBsA3cCmmgOdpPs/Ts3ie/t0ddidnJackZyUvarzWepPVix5YOyZi8+3VtlAdgB8Nxmxtd/Xt8QxrrP5oaGFDP7hFY48jCOQsuIRsr+J5uqGrBvroMeoIZAwL3TEDSH/Z28b4OO4ENi4HhQMYNWGz3qixMedaVXK12k6CCAgBIAMIdctKPdm8H6WT+ZmVML4jzuqIrOH3UQTdF62w1VWJyslbr99b3VZ7dwEAyvNUEgTyBICi5m1YyBdIrmdhAree5Pbro8drKgIucgyy/KE8qH0cLVeu6hLqf/w+B3A9oeRuAPNzE5PSurN/H32XtYWzRgGAXmF61buWuHht/if2743ZzwN41WDMnpiXmb7Z2zb1ZQzG7GAAC5XMBUaHrGAASgFCACKWmOP/yMtM39HZPgWBLAEwBMAMnqdmQSAzAOzqTrtv+DLOb5sl8CoAbwKUIwBNzkp+BcCuJLUpKJhzYkND8AYA9aO0dVKkwl77S114dc68nOMOt9vJ5QEIjathXeXTexb/z2DMrgboiihd4d/3LrtmzGvzP+myuoHHDuvAoH3DChv6ISl4V1izXdVwSd/UdckyHz1KXma6nPToF06bqPUlx50GCAKJAvAHgBfgimX6JGWjXqNyMEsB/KixMy/CFX+qICeUQj4ZTiI5AC5BRoAKGXUtXiRGZg2fRIFMCjKZg/zjCK1p3n8vLmtz6UYQSDCAzwSBLOF5+gPP0xZnYvurLOqDdj0ayzYnHaPb1Fv8l8taqdgxyHLZyB/z69AD2deSn3gV64rfPe4o98Q4PvoeFlE/A8DWd+5YttvbtjThPY5xPJfgd+QTIH2At43pi9z9znUJhQ2GZcCEiQDR6xSm1fGa8p8P1Q59Gp0sMS8IpD9cFZ+ecyey5gCobqLCsqUrtv7nuwiFVWZmCabQMAATAljnBSYpIPrfFgTUde1bCAC5thNv7TstxyuxS8lZyfU6RuRYQhlAoQFAAOocmTU89Z95u7tlojEvM/3Lixc/nrazYsJtm0um/WAwZp/b1RKuHjusuyrG7QWAfyrG5TV9310W7MauGOXj1GAVdUcO1SaVeNuOMxX3jGo/92+mFK6n7woAGLJP/aTSQR5xcvRvhUiuQEadDRkBx8setzV72qCTavRmljg4+Q1lRsDy5m2Ts5JTCLCeghCAiiKYF9pzVt2Y4VIYCGirUZ2kqAIADSO9aZW5zzM+F+8mIBHEwk4c/3JFjz3ISoHO6YyJBQCxPafeh49Gbl9682BgzkQVazutJNHyMtMbLn3l4R3bys6elPz4J0Nynrpmv7dt6isYjNn+AO5hyWVGiXK6YHXF+mpb2IIdT87Lce/fiA6UmBcEogUguytQTQSQAeAHALt4ni7tio03fxU7TEHodVvMgQonZUazCD1bAqNy766XKTmUrK0/mmvV/+yg7KMAOIA6AXIJgAPjdTVJHKHRmxqCSwD4D9OYUgho+G6r/0EA/qGcI6VGVBgAaAEQgCg5Iq1Jzkp+FsAHOfNyulyY4LuFT90+8en/odQcexuALIMxOxftfKZt4bHDWm0LswFAiTne7GkfPrxONQCfDJD3eBeuzPoB7gueq1JIRsA5kVA8ZNXIlWURzgv73WB3aTG6HM92f+hOhRwBsFCI5GYA1yIjoFksK73a5aweZyrcotTNEQSiALAAwNs8T+2CQKY0lcFqiXJRFQnAZJW5+z74syKTSEFXSSGON4dvOLy1Pds9JTcxKUIBdbgcKK5jaxW/oJvDDXz0XcxOvwcAQvi4X/YCl3nbnBPIrRpxBUCOmhyB96JprU4fHjH12df9o3SFKzgmZYooK3USZb9Pjcv+8P0Fb33TtF1LWqnNEQTSD8BOAPcBWA5XjOpqdxJqp0jOSvZPUFpmhHKO+XusfoyNssOAoBjXXioC2Kll5C+HaWstFU7VssN23faN1+XKTY5fDYAHSNNl/SPNhvm0hXFTAKwCqIIA4Ag96qB4AqBPnP/ZwIpA1vlWjtX/hZx5OR7rAZeaY+9giTNGoorr3KtudoMxO80Tp7ULMax54YUNBvQP2KdqKufg1hE7BOBZnqctVrjxcXoQ53c01Caqm4d0+Ogiroo5Jz+du2dULwfwE8/TegD/A/AzXNmiAICq17VzgsF9TED2a60s3++GhjZjSlsisJYLAwACwqDFpXEy1v1CRPszkZPh0ggsAbCiPWcVAFREGuugzL4Vz0vhlAm8VQxzVNvOqv9PZ8+jk9xGQJRsrWJ+0r7cA+039+HDxfqitBCWOCvVrPVzb9vSnL3PXFlsMGZ/BNAb571590tZd73R3Anx0QFGPP6Jtt4ReCcw4P+OmQaE9vM/UHi0fjCflzl7KzC7w/0IArkTgJPn6TK4StC/A3dcqnvSoV1nNTkrWQFguD/rTI1W2G47atcqATY+36El+Q4t1EQqA7BKQ6SdE/Q11SyhX746p7S+rT7dTmqnHcCceTmbkrOS0wDCU0D467rcTclZyQmhnONBk8TdUeDQZAC4d9yHQ78+W1/zx+uXlKzo7Bh5mel0/JPvOiusUUCr96SO4bHD2i/gQHJhgwGJwbv9m+2yAvgRwEFP+/ZxalCyNlO1LSS6/ZY+Osq/5R2hBmAzGLNTmzityQA+A3AXgCU8TzfDpVkMACh7S3teSB33jcjRKoVIZiKjrtPOKgAQkMaL20mZ+Ld9HXMTEJwC0CUAKUIrgfaCQOJ4nhbwPF0jCGQ0z9OdHR1fSeiEfsqGw4Dmf0QmGq5COWb84gqrJ+fSEf5eGKbTaoMWgaEbh2096HNWfXQYgzFbCTAzJcqsOF31ToeHbnt3d+XYmy2i7l24pJF8dBCDMVs9PHTb6zIdeBNcMnq/Bakrnlvz8P1rO3K8W45qMM/Tfe63LgRgB7DMnfT6UFvH/+e7CLLHqk885tCOJKATohW2mxioNTKIol5SQKRE9mPFPXaRzSCgW87xrzi0eE7ZoS6ccqdonnDVuF0pqj49L6D8vt/qwlIlkBudlLlhjSn0ltEfDntcpMxbAD7NmZfTYbkqs1O/DcAcgEodmCRpla7EsP4DANvLJhY3fd89A3Orp/36OHUcrk0SACR6244+Bg9A7a6Yo+4fsO8RQZj9G8/T13me7hQEMg0uOagTyQhIDAeXJbGoK4lyXhB/s63Ty0qN1PtJE3UNjJWl5Gk0iXdNzkomUQrt83pGlMfpap9445KSFiV8BIHcDeB5QSCjeJ4e6oyzOu7DocF2yjFpLrGWiyhD/zN0774e1RhU7tfexVhYtYWv+aknx/HR95gU/cfNG4pn+IeoyzpTJOOUsvLBxzenPL10z7ays0cZjNnavMx0i7dtOt25Z9m1fn/kXzAf0C/cXTk2up//gZqBgftu/27hU190sqtnANwnCCSa52ktgMsataZbYuG3Ef0LHJrUXJtfNICztEzwuRaZc+tnE5sI0mBQWTYfseuWA9hikbmjf12X2+XCKW2RnJVMZvhXxJc5VYYcq78aQOwITf3lRQ5VCKAaDYAFKJKzkhsPoQBsP9eFp+XMy/kdwO8Lv414tMypeuQfa8BoAG8yoK/N+bxf/iG77lWA+AFY05bCgEX0c2uBk1cAfHPKY1jrHMF2ACi1xPpqHfdeqgFofTWrO0drS/5unK4/LlmUQpNh5qr882feaPxRT8Gsycuk605onRGQYlfI1ytBLiMgMifhrPibbV2aJeREDDXrZav/wobmSSSpJU51eIzCmtmas+rmGwChcBUl6BR2yiaF1FFM+k3dzxlnq7OPaHi1s310htzEJKKE9lIKul/WSZk9OZaPvkeNLXQuxzgwKWb1H8BN3janVUrMcXcCWAuXUv3bXjbntMVgzFaqWct8NTfzNYuoZwGsB3DNmofvFzpyvCCQwQBeAvAgz9MDAD4GsBeADQCaOqvJWcnqFH31pfWSgt9j9dMAmACED3TvpgByQznH1mDOnLPTEvA2gJw/rj7o7I7zTM5Kng5gFoCVAPLO1ldPa5C4+F1WfzOAmH4qS3qDxOorRJUTQMwf9WEnyI/usjZfGCfNN05Ytl88p+wIgJvdY48erG5455BNNwIgr7uPsSZnJae15rRGagsHlVpiEaYpeeHvJ27xuAx3V2JYowobDBgUuJdrXpJMEMjfAHbzPPWpBZzGjA7fHLOjfCLONXwzBEj/x9v29AYMxuzzAXwL1/KSo2nwuDscoNFpkgA8oWAcxo9y7/CDq1rNicHmGQEpFHSV0kk0AEBBrycZ9V1b0s4I4LRgNRQnZqj+57sIAoQ9C5CCIqcmo/lhgkBuhivL9Vaep0UAnvBk+GjGxt/0kwKMkzgkipTxiyu65QLdGmKYg+cqlOMJyILxiytOyyVdH6cve6tHRbNE/P31+R9XeNuWdljPMY6dCuLI7Gf8MZiCWe3F0rGnHfcuu0ZzqDbxcWDMlTZJa9AqGo6lxmW/sbogfXF7UkqCQAYBYHie7gdgAjAKQH8AB9wVqPYmZyUzyEpOHKapv06kzMz9Nj0AjNzUEOwu6EKLAfKXQWlZE6u07v2zIeT9nHk5bcadtsedX0eHrm8ICQEQa1BarqkQlTPMMhfXrNn/AcDGhhNypx2lDqXIEMhwhZxt0zPiaAoYzDKnPPFwCoBQAM4AxvFGnay4EyBtynnlzMvZAWB8clbyY3CpIjAEVA1gOlqJS431y5taZonG2dFr6oBbOvEpnIjHDmu8/5FhhQ0GDAnOUbWw+xsAxS287+M0gmOcZQBQaQ0P9bYtpyNNZ1InRa8aWWaJXggk9ncHjgOgCoDw+PdHmgqAdYcDEACUgvkfgAdbCTbnCYgaACioTEBiu8HsQQDUBOQEoWuTxD4BkAmRCtui368+2JI2azQAA1yxtx7Fm+YmJqXcO5hm9MujkBm6cMQfR3M96aczyMHO5XI9J4GjH/b0WD76FgZj9mAAgyTKveptW9ojLzOdnv/iM7l7q0ePAuhTAB7xNNO6L2EwZnMArtIrZr/W4PQP4hjHP6KsPK/aFv7r+wveanep3a2CshkujeureJ6WCAIx3J0/PBxZyRfGKa1zGdBzAQ0LkIA9Vn+oiAQGdJ0M8nKC0nJksNq87eU5pds6anNyVjIzSV89kCN07FpTSOOM6HQFkYcfsOmLAGoAyMCmRSjzHG0Wi1o3TFP/ZTDnLD5q0x4odGqmWCn3GihVAHQGQNAgc2BBpSiFrbzEqX4PwMYh6oYd+236eLjvcX9et39Tclby12gS09rOqfwBYBFAVSwoiVXaWi2usLtytAmgju8PXz3utS5oY3vssP5TMW4HgMu3tFCLnufpaaVn56Nl/i6dsh4AtpZN9s1MNcPtrK4CoAJANhSnER1nolquIdsi6s4DGJaAgoIITQ5bDRArAEVjYLlF1APAva73IOLEp9Z9OO7dEjs8DERvSlm487qIcgVqA8S8QPd7yVnJjJoEXhvAOi2jtPWvNbZ1V6UTeZ5uh6vE67MdUQFoidzEpBQKutpwgONkQvHLaEYa1tWTaX/MGAXRxjoHW9aN/P5Yq3FlPny0xLiIP5/ZWjYZEdqi37xtS0fIrR65xz0j1qVM677AoIe/nRyiLnuRJZEJElVEW0XN7tS47Df9lHVPvDb/k/ZmVP8DYDrP0/N4njq/+l254MvqaHp3VvKDgaxzNsWQyXCtoKHAoZYjFXa7jpG+NcvcqjDOvnOcri7nxYvLWlw5Ss5KVgOISVSbxgRzzqlbGgILRZDoQFac7qQk0Sy7SmxvOHFGFEftxx3SpGbL8+1AARDtHqv/DC0j8haZa6KRTdz7aTZAnpRA/vnt6oOOpkcnZyXHN93ujNrAvwoD4NWMvCHPoXUmZyUvQjNnd+qzr99ok/qf7/7erurKg5bHDqvZ6e8AgHJLdIv/cY0lHD3t38cpoTEL3afFejI8QDXuHz0lkL9KS1h56+vzP64Z9PC3kxkifmOXNFo0KU2al5m+yWDMPi7u3/ijHPXEh/9Xaw95uX/Avg9WL1p4/IdaHSRmBNWwMgH5L4DvO1JKtT2UDjJSJhS1gdK2wH/fvtRG2QE2ib3uvxeXWYHjNa4/hStONc1dDrYr8ABRNdaNrdeRJclZybu7q9RfK9xBKGGU+3U39+AYPvoox0z9x4Rri81/PX7rKcvK7goUzGq4PBCgExWY+hoGY/YcQPF1qSWOuD8Oo0QVL7Y2oyoIJBAuOcHl9+cPTUnSxF3rx0j+92YNf48jdLKTDh5M3U6iSeIK+qvMRVpG+rzEqf4BIDt+v/qgJTlreIqaSHNrJS50p8X/mmkfDxkmgYysk7gwwFVSuyn7mlWZqpUU3fwpNEIAYByAcRa50Z2j+QDiADAAJIBw/qzzuTDOMWzch0P32Skj+TNitILIBkCpdocEONqKQW3Kgm+ilU5KkjY1BPsBSBimaRjjkMn9B+26EPeYtmHvTjnPfMgYw0C6UUa/tCZOeJcetDx2WGP0eTFFDQYkBf+DFmJYPwAwHkBPT7L46AJTY3+l6wpnYWKUcD6Q/k37R5w5EMhH6fEnVGKjYF9+ff7HNQBw8Lk5fxqM2RMA7GKI+NG9y65JbZTEaUlwemrsbx+sPHL5y2rOdvxpVn7SPy6IssNrgqS9wfeajd1ld1AtxwD4x3CjzQy4yvlpSMirVsrsBchn7vKqtTxPRUEgcwAUdtPQAkAJBYHIArsTCIMenAH6+4GwAB0XfA8k8uPQ3H1He2IMH30XgzE7EIhOAPBfb9vSUfIy0zclPbKimmFku9npf9mZGA4w/flX+gOD38W/hU9EAEzzOFVBIAQAx/PUCVeo1jtfV0fqRJCXc6wBjcfe5KCNLykN4xzmBpk7dNCur9Az4shYpXVunagwj8wapgeYeBt1+aUlzpP809MIKgIklIDaWMgaCcROQYZbZFZx2K4LBxAFAPWyAv8++wBo4kje/21ksIMy49eZQgAgob/KPJMAww7bdRUA4gmC45sWntljbXTOKVwVXqGWaseuAsDIYPNidPmri8zxk9yOfZcetBhPD4zV5w8FgGEhO1va/QtclR98nMboFaYCAKi2hXr8PeiLGIzZhIK5HSAmlkiZAE5awsjLTD8apil5Qqbc1L9KpuxyhxC0yOvzP66RKbt9b9Wo4wHvDCX/R0DkwFq246rVHWMkgOMJdGVO5QtWykan6Gt+fCNhdxSAPXBVZgHP0xyepx3W0msLy/TqSAKCvwYDT1/FSAdiiQM9OAPEVioyicj4WafV9NgYPvouLHGeC9eEzUpv29IZQrXlXKi6QnEmOqu3L715aIPDL5eBqIdLC/WEwifJWckpyVnJi9I/GzALwAEA892H/lglKlIEU0jkv701n4wlpEJU6a0yOx3AFQ0yN6vQoUkwydxQGUw8PIaKAEwKIteriehRuNW/9lIKUAeA+/qpzHMn66vu0TJiKoBJwzX1F03RV10LkEkAzonkbJkiGJGC0QA0RqRM+Mn9AU3CBjiAzkvOSq74oz6sap0p5Be4/Lj/HbVrL6kUlQMBOhRAQrMqicVqWfV9tD2+lMoKSikBpRxiOLmIJc7pAAZseOzONIBMB/A4WriXdgbPdVgrx20FMOvvskknacLxPD3tKob4OJm3bltebTBm2w7UDG9L4uiMY2TYlmf+qThrGoBbDz9/0bLW2lVaIzYBMi21xA5Fu7E5ZAuAqwzGbObPAZcmx0B5KwH5gHmivsv1mhvJf189NAGqqNoA0RyIxooqAReriXQwkBUfgWu1/mMAv3fXmI2UVOpvHADgl3PE3w74qwV0LGjfI3ITk4ga/imySjoq6+RXe2IMH32bWL+8l4oaEiRRVnYmYNDrFJj6bwAQ4W07TjUGY3YocPEXHCOyaQnZd/+ef9FONAm9+s93EfczCHtBBrhjDg3NLB5QSwj++/jHQ14xy0MZB2Wa+TqdihO1wZWMCgAUIDUMqE4GaSnhvBmEA+DnpAycns8Pwm0vAaAE8OpRuw5H7brje3c3k6kqETXNj22pv+OoiCRJlCkUQYQohU00qCxkpyXgW6vMRlNXZcSbAdKYBbZjoNJeXF2eVpRfkj7EBHJRJWSo/fbsRuDWXEZZ/vZjo94oBN6YwfNUADpW6rYjeOywWkWdCAD59QNbjH1zx8hJvjjW055q+GJYj8M/92p4hTXRGKPPqy1qMLzXVlsKhofLCWThSs7i0cqPckhQTtn+muSAQFXVu6b68ElAraIi1Pl2d9bF1TcwEwDAopX3BbosvBEg/S4NLtk4UV8bwvO0HO1UZvGE/3wXQaZUBk8tCIW41189J2deTk8Lm08hICOJnZ0/fnGF7/rio1MYjNmTgIHuOu34vZdl29cBGOxtI04ld79zXQLBFd9TMANEWTlz2R3vrAYAQSCHeJ5WAIBFZm6hrmRXACBFTnUgC8oQQKaAyIA2qBlJ55AZuwQiE1CHHyv5mSW2XARjURBZEcA6I+skRYGTMmY1kTRBnDOmSlQedFDGrCJSuIqRYy0Sc1AEW6pjpIBQhd1Q5FDvdFDWHMA6Q8I4e79Ch8Zkp0w/CqJp65w6Di1hgCr5eHglEQFkDlY32INZZ9hmc9BGAFKS2hQbxDkDNzYE/w1AilJYp5Y41f9xO8wnoGechxpkrh+OK9oQu51y091JVAElTvW5DOhCSnE7XKvwDgY0tx/1K9t99OZqlaSP2SNz6Q5ZDQAHVaz1qRnxK39ectsHx6s2CgJ5PaCWvdb5jF+UQmR+7o78DKALDmu0Pj+uuCGe5mXOPumGIQjkQbhig/QAzF2wz0cPE6Yp9fNX1ZzTPA75TCWvftAzAKUTItfP2/DogvaWcAQADldyFghOVAw4AbukbgAApZ3c0K/eQvJVgdsNdx3b3m2GAwipVoQAQHSJ8pOHvosI8GOC3lQytHCCrnYggOEAVnfneI3ItdzzhjIE7B8g/3kKnFWIkfZP2XKFg8hMr0iW8XHacXl3JYGcauL8joSUW6Ji2m/ZNxj35Pv+anZCDiGyHhTnH828oNFZvQvAYkEgsTxPKwodmoco8JVbatAJkLSd83b32P9pclay1mTnhiepTXeXONUptZJiQF3HEqusDGhphMIe3iCx+02y4oiOEZlohW1Elagsq5YUNhZ0mATGHb5AomR33KkrJAAygJ+/nnv0pHNLzkomAJIMSsuDVpmZ2+isKiEVD9M2HMy3ax6slpTbNl23j7pLsF7vPvR3g9Jy2ezPBqwENP4A4cqcGlsUUVnyqyb8aKmaatara+bsMseOBAisoEjwP3Qgzi/vqT+Lzvl0/7OXUeCyE2xJ2aj/WukgtxGQxwA8hIyA1O5wWj12WKN0hYll5pjW5tU3wiU87pv9OM0hRK6stYX4/p8AjHz8Ix4Ing+Ql95f8NYP7bVvVAWI1BZ9UmqJ7jcz4Xtza45/Xv2gaAB4hPuEKOHED5bp++7pXvMBl+B1ocDXm8sr/LNMskIxVVf1CiF4m+epR9qq7ZGclcxetclvAScDAyzODtXn7gp7ExNvZaFsvGH/lJuYlJa0L7dXOBs+Thsa9SIl9LJs+1BNuba4IV5jMGaT9gTxezsGY7YWiPgRoLr0fl/97/IhWemCgEKep7vhkhx8Cq6kK3x35ZGfGiWW4EE4ktuBO+HY5KxkoiJSUAArzmQIvbHCqRovgQQ1PS63mRpAB9DIIP1KnGoAGANgjFnmcNCuB4CBACC1Gq5ACFyreTzcD1jJWclksLphloZIj3PwixLBGPIcWsQorKYIzv5imah6Z9u8vYeb9mIwZisHD9FfaWesV9dIrERZx+15Di1YZyCcpmEOZ30yJGu8usYVwnAVgJp693Sq2w4xv37QB2sfvu+T1k5S5WDOxr/+Zbc9FHrssOZUjN0iUXZMS/t4nm6Ey2n1cZpTboneDmCot+3wNvcuu0aj4ab+7JSV9RZR/2RHj8vLTN901WsPziu1xK77Lf/iNAC7WmmaczbJwYXsJlAAC9jvL0VGwJvdtVQCAFa1fLHE0mKTxD560Ka/QkmkzUsuKX65u/pvifO3yI9fuI7oKShURcoHchOTsnvKgcxNTBpCQF6hoCCui3qvmh3zcXowy/Ct/de8OYjQFq4rs8Q+0ovCAbCjfGI2gMnoQoGP3sA9y64N0CvO/6PB6T8GIFdfPiTrDwBHAGyFq4pmLoBnmx7TGQ3RpiRnJacQUMEVUgCanJV8PNjUTlmUiz2nCkBAixngQKTCZgvhnGWH7dqvzDK3L1ZhLf+/6MMmnqeNs6Gr4LLPyYKuX/BN9H27LX4TAOXkAzZ9LAOKANa5p0ZS3kll7vvo2nMCHJJqzKGicyYajNlX9Q/Yf4FdUscWNSSIrN/u2BKmwXWOrATZ6Q+uarpFL4ZX1poGZAM4MjZio9JPWbdPKDhvdV5mem0TXfI2q2A1QaCgIgFRuovitNe+Q3jssDpktQzXE+pJuCUl1ACcPE9FT8fwcUpgAcQZjNkpvenC3d38fPSSex2yWj097qeXly9Y0ikR+s/ufWm9wZi9DcDVAF5pqc3kmN+V55blg5DGxUh6wpNyV7E/56dWO4i2Jkg+9F5FfJTJpcm3sDv6bo2HvovwC3AGP8RQ9LgDufW+sGEav8BNxMQ6iEuAmkMvmx3zcXpQZo6uBoAQTeXXfz1+W2+75tW5/wagjzqsBmO2MsF//D9mp1/CNUnvHHx23g8rAApBIJFdXSlqMpO6jYA645XWC0JY9voqSdWo4OJxEl4g67A7KLPFInP/BLEO22C1OSzPrvm9TFQfjFTYakZp6yv/e3FZp1VZcublbEr5KOlCGbjDInNKCfhunSkkhAWlsjNwi2gaujbaGRNLJN1AU13iAgAvrQZOKI1V3BDXEKopdwLIVvjtjgbFdNdFm4JR1EOO/F5bB3ADOPuQ/ioLNpuDngGQ4Je09o7kLKOQl5nTosZ4q2TUbTK/qH9cb2EzzVr5Nf1/GrwbwxqlK4gvt0S2lvaWBlcm8lQA6z0dw0fPYjBmpxDIF9JuqEDRmzEYs+MB9WMAfli+YMkjnvQRrK5YWW0Le2LUEx++V2sPebf552gXNRozXHH4FFQiTeRYuoP9Q2wfjsjRkmqb8rtip3ppgtJSsvKqwz26ynHMoXnZmcBq5hBRIpSwFNTZ2SfpQuP6yQCmABBiM6e0+N3LTUzSaXSB3xIH42fla6/XCkGH4L5w+sIBfHSWnRUTKgBgb9Wo7tIgPmUMC9kRtKdqNCZFrxoCpJd6255uISMgBQB/aIBNkRcjjwS+RX79wISLBny69ZyEH+9sbNYNzupkgApwJxtREOS3WPKUUgJUh3IOvU1mck2yYq+aSHXDNCZDmahaW+jQ7ApkHTXjdXWiSMne1y8p6fa4/TEfjJ6qptxNdfZgmTLicKVSOV4iMqislMSGIU6xfgTEhiEEVDkBwIRjxGkP05ZRAnkrBfNbv4D9jv4BB61CwblfSJTL2/fs5cc/u+Qs4xSAng1XkpqoIeJ7SobydRKXWC6qostFVSqAO1wxs4QCsCdnJaflZXZuBltvYX8BkKm3sJvbbdxBPHZYw7Ulg+vsQepWdh8A8DCAY5727+OUwNPjc370jF1ejfc78luByUAoGI/DSvWK+rxqWyhq7cE3wiVfdYLz/3fZ5JKLuP2QKCwsIc8AELozHCCijKsCgAWhESOsMkuilba7uqvvlkjOSvYD/C5Sx0lbnP2s21RHtHc4BlleGfXjsQ6fU6Fx/bkAfnIv8YuFxvULYjOnnCAjlpuYxAH4jDFzA8RQx9Vjl5Z+5t51xn1PfXQPDJEgUxYEXZDF9BKhmjICACwj9o3EK5ezug4A1++wRnwpbz7nnuR81Ckr3lu++y7phl+y/QDg/H5f6mrtweLG4jQ7AFww4HN9lTXM2dZ2mTnGsaV0igMAQhK5dAcR3ZNslIaxzjINYbLzbAF/scQZHKywTZRl9Q9FeTd+q3KGSsMSsvUF9f3sxRUTnCpNGfGLXqOrre9nN7m3ndFrdIdrh6gMxmw2VFNGUlzbtr1Vo8VY/VFmdMRf2ubbuVUjrYdqkySOcUxQsfbzRZnbZ5c0tdG6YykhmvJZ+6qTK2V1UX9NHI1xEBsYTTEAQKQErMUAe/2wg6IzeF+I3wGVJvKXyGp7wHci4/g7JWT3yAbKasxWv0oAQaFq06xiiYNW9+cYAEH8Jw+MtkgsrJRlAGibTCSzVsrdaT1hrZxaVERW2ynDwNXQU9/A7v7bAfmvjuGxw7qnatQWSeaiW9rH8/QYgOc9tsrHqUJwCy8rASLhDFxeHf1E1jM19v5DhgTt2vjr/y3yWBP1mGlAlPuJtLUfuC6RKUCDiqsIeLiqy78NQSAMXAUACniefslKZGIlR+RilrsewNfvXFrUo5XLWMgPSWDCbJSdLUc4gnFEeweRSXknu5lCQQkBAXU9MC0pNK7f3TjT+vfCMKJI0mxR5epGA1iQ/Ofhz9ruzoeP9jkn4Ychv+bNAR/3y1nABd97257OsLbwXAEA1hXOqvSyKd0FT0FZAgJKCdff1hjxgGd+Onr5M00b/nT08hMO/PHwlZ3arsmfD238uy5lKKogeXl3RsrWhJsB3AwA9a5mFwN439Ls+EprRKe2Cxv6obChX6vboqyEKB+vI4NiczzqHQGUY8S9sl9OFSFSNFwXRlCgjiWyv6zNIwptXqICSLQAsAAAVzWaBbDFEnjCuR626yQlkW0ADgOo0TFimY4RK445tBsB1IzS1g0QKcnfbfX/C0DNVL8qnUhJ/saG4GM583Y7msfNwgPfoDDGHhxbpEJphIOPdJUB7zIeO6yirKRwZ+g1xx3Dqgcg9lR2so+u485ynwfgM5Y4Xzz8/MVn1KyVwZg9FQh9GKDYX5M8uotxvAJAbGjlBz42bMO0IfUFqNfJ1oCumd0IC+AKAPsBfOlnYlWLwgMZEPgBtEed1Ye+i0hiScijQaz9rzXXHNiS+3ySPwAoD2s7+yS9EsBDFFThdlpPKOeqXRP0GGNhR9tGmjaPXlH4VreehI8zlhJzbJX7b68LCcC/MayB3jSiGxHgXnd2gsNmOQlwSTf9Mi5ig9ns1NfmVo/cDwDjI/5MMTn9q/ZVjzgAAGdFrj+71h5UfqBm+CEAmBC5dnK1LbTkYO2wwwAwIWrtlCpreOGh2qSjAHBW4NFpx2rPtlVz1TrZPPDIWYFHE8qU9qNH6wYf4xgHOy5i4+QSc+zh/PqBhUrGxo2J2DypuCHu4DHTgGI1a1GOCt+SUtQQf6DA1L9Ey5nUI8K2TSgwGfYXNRhK9Yo6zfDQHWcdq++fW2yOL/dX1uiGhvwzLq9+4J5Sc2xlgKpanxS8a+yRusG7yy3RIwF6nmtyg8oAeUOnqH9099NXNwBActbT/zqLBE4CnDcroGJLuVMZv80SGAjgPoBe554ckQF8OE5X+4uKyKUbGoL3Aqjdfv0eZ1f+U9yarB6rLgCAwslUA4DaxnRLNUWgCw5rpLYwvsYe0lpIQCBcgvT3AXjN0zF89DzT4376USg4F2MiNk92PVyeUVwJl34q0MWEoUaJK7QSlB7pNPv7EStIrfLtrhgsCGQygB08T82CQGYBqEdGANmo0cb/rtS7W5F3k7OSj/ZUpan1puCFTspgpLb+SQBI2pdbn5uYVEMZ2r8z/cRmTtlUaFy/gIK+RUE5ALRq4Pv2Q8JUEnF74pUM2CcpJ38lxtqvbLczHz46yK6K8ZUAsK96RLG3beks4yPXy3+XTsHIsC0pQPoX3ranG9gKQK5mNAdvtf7HsJ0Obqw3/8xX9z/X7PrVXDIwfXHXtpsz58UTty9ttv/yZtvNL0tXN9u+tsVRXBn3ZDpcMaROACv2PH3V8UTfNpzFowCQnJW8FCCX49/JkXeWX1bQ7dd6T1UXGokoV5QDQGAd122/M48d1hBN+UC7pG5NhMwE4EH4Eq5Oe5YvWGIe+uiK+ry6liuW9WUSg3cN3Fc9AgCV0A1JUG2Vn4sxOZxQAGpZ3OJp/4JADADWAHgBwKM8T+sAwLxFP+hXrVbXpMRzj8UjJ2clGwDuOgDvvTqn9OfG98Ughwog1+YmJmU1JkIVGtcf1zZsLaEqNnPKskLj+t0APpYZm7aB+Xxx4Oux8ymhg0CxjojMteMXV5xx300fPYeCcRCnrARHnF2plekVInVFNQDAEDnS27Z0E/0ICBMiW5/fRoccQEez0Hsx7U1uAG07i90x+3mKOH1iWHOrR26hlLT4g3dLWbXzNOPjdMEi6rdbRH1L6ZJ9mjp7EJSMzeGQVRno4YvkEPXBsZAAq59zb2elpgWBqHie2nme5gkCuRLAr0331wZK8wJsxxNIRPSg3FO0wvZxsVNFAXJcqzY3MSmFhcJd7QurchOT0vwufgdwVdZSAbAVGtenteG0bipYtOpVRla/HrJ0oiTXlyQCgBTqfDX5z8P2lo7x4cNTUuOzB/+aNwdTYn8fB1z8rbft6Qw/Hr6yFIC8o3xin6jyZtJLE/0aWDg5eqi76s33Brp6rl2d/TwV5CXYRUO+CuVhzhnhwIvtH9E+Hj9hypQlFEyrGquCQIIEgfhq1PcK6GECeZC3rTjVlJjjwhyyek1e5uzne/qJPpatMByjofB7sKG+tTZLbl+dsuT21YuW3L46pfE9dwjAEUEgyQDA8/Rrnqcn6MSGVrJDJEKghCQDeBxAWk88dV/5hWFqiVM1KVlj+idnXk7T+D+egFB3HKpaCnJe2xC+VqCgaricWCVcswEtsvOSOGWlaWEapTIUUWNZt6ar5Ei0/J8gkE6XkvHhoy2KTAkVAFDcEFfgbVs6i7u6VT36SAyrRStfCgDF0Y4Sb9vio3vJ62d3UFCqsTIV3dWnxw5ruLY4XqcwtXUz2Q7gVU/793HqGB/5ZzQFE3b3suuivG3LqeL8/z6rBehwuL6nPU5/R6UogpXcMi4n4XZS1wB4BqBr3r7rx2kAcOSP1/xLtt9hKvjz8SEtdpwRkKJysHMKOA4D7CLJOXqs00tEi+fOTlk8d/aixXNnt2hbI3usfg8CMEUoToopFeBa/pHBcEQz4Lo79eXTlO7KzCIAB1qY8d09aYB/bmLS/cq9ukPqP+wXifWHwEWPdSVzEoi2iXUjACR35lx8+GiP3VVjqgFgf01yr3SS9Io6tl/AgTZ/q72F4GrOJBNqSrjJdsTbtvjoXnieUgJi82tguy2G1WOHNUhVZdAr6oPaaPIYgCxP+/dx6rCJWgEAdpafZfCuJaeOWH3e5QDhUqLWOHp8sIwAPpQ2KA0oYwGsaslpZVXV1wNUBYABiEqWVMJbd/500Fo5/PvqA5cNqi+c9mHTmddGRJZeQEHZIgWHWFEC2pjJbAm3k7oawNMAVrXmtI7/cOhUABdQkMxX5pQebbovaV/uJsvkmjvsU9W7dOc+XaSKTYX90K+yLefzxZTSxwGcEA6Qm5gU+c+F8T8QM1sD4GUCcsQZa7uW8x90LxsQS9jwoa8TSqY7B1oT3GWeIQhE0Znz8uGjNVSslQEAJWvruZqbPYiGs8gyZbpJbMS7KEQSw1Cy29t2+Ogx7NR1X+sWPHZYD9QM21Zuidrf2n6epx/zPF3laf8+Th05lWP/AIACU/8zZoZ1T9WoOADQKhp+ba9tV7Er5esIARhXTlRjQtQJsKr6i12vqAQiyv5xa0Epq4Ere55p7TiTXpwog6CI4xDrFDutpUsY+S64yiizbof5pDH+810ECeEcP6iJZEYrqh9k2vgrgyKeHsWoAoLlhvLrHbu//k08LCys3nftvNpVN/nlJiYt+ue8hHv3Jg9ZDiBfcUA7W4yzlzgGWc5P2pfLj/jj6CeUdX4DAIrUK8/xu/gd8DytAAC3GsJeQSADOnNuPny0BB/3yyAAmBS9eqy3bfGECmvUP/n1A4u8bUd3IDF0hJOjvVFezEcHcChk/+pgaUZ39eexw0rBMO3EsAYLAon1tH8fp5TDAOCvrBnhbUNOFUUNhngANauOXdBtZeNaw8nRrQDgTnU/KSFqye2r0x31hkhN6O71AHmMEHlK3NnPRYIqLncVI6AtHoeMAC6wjhuQp2HKREJQFiit7Ez1rOWPjXqbyri6yRgMp7aftEy6uj7kwiKnJmC41vRNzrwcM+DSWhYEcv3aVerzCo3rM8L2PDRL5hpMtYYvL4x/89KPAMy2D2tYqdivHcKY2F8o6LOKo5pXIZLrACwnIENG/pgfO/LH/ONKA4ysjKOQwdkikgGscqsMAEAFgCMA+opYug8vUmDqVw4AhaaE3lqJsQ59IIY1b7k6ipVJcHWw6O9tW3z0DIxM6tU20m0lhD12WEM1ZXEByuq2kqreAfCLp/37OHXkZabX6RT11OB/uLnQXJ+FI84JAN3uTmLoUfQWdg0AbCKJtQDSmjqVWU89qwfo6wptmdkw/aG4YVemLb7zrXM38jwtW7A0dROnrvnarRM7c8HS1ObO6KUEJP4nP20WAJRqSXZHbVo8d/bC6gOxt2tDTaUKvW22Qmt/B4xsEm2qJxfPnX28gl1yVjJrp+zTAA5vNQfe3KQLjrUH/jdyxzM/AXiCgHyksMZEJt/29h8AkLQvVxr1dcEFVEE/JSCEuDS3KNVKbyTty709aV/uwRbM4uFO3kKTGWWep9t5ns7ieVonCIQTBHLGPFj56H72Vo2qAYCDtcO67UZ6KjH4H4z0V9YO9LYdXSW2UBkLADoz87W3bfHRM3ASqdBZ2LLu6s9jh9VfWRvjr6oLbaPJW3DFsfroBbBEOnKkbrDF23acCu5ddq0OwIjR4X+dUimvdY4xu5o6q4JACMPaVwKkvz7q70UM65zH8/SEmFrRFvKn++Xepu/nLVcTq1p+U2Jo4bvaoEMAsN0S+Ed7Nnz638HkrTumfgrgJQBfWCoDDPe8t+qne5b/cRtklgcQzHDimk9eHBIDACM09U/Dlfj06BsJuzWCQB4RBKIc+Mu60QnrPuO0VaNhCd7+AoAbYjOnnPT9YZzMmwCsAEQCYmPMXFti5wIBadTnak2a63EAf7k1aX346DR6RT0HAAyRLneJuPcuNJxFdEhKZfstT284yRXiozezPb7K5cM7UFC7Wy2mW/DYYT1SN2RXgcmws7X9PE9X8zztVRp3ZzL1jqAtDU7/th5A+gwbiqcni1QBUeZ+PBXjFUU7YgFAo6o/rqohCERtq+33h6no7Kna0JxDVz/08hs8T9c1P1ahLRMBQBuaE930/aAa9mKNjQmtCHOuZRg6GKAigDZlehbPnT25Yk/CYWu1/1WqAPP3AK5euGLlcZ3ThStWblcFNtwoS8zg6oPRO168Kv0JU2nQgxEKm3WUtu4LACnqmmFPx6/7aAuADYykM1lC/04f/J97jbGZU1qcqXYXEUiDW26rsahAS8RmTtkkcnV2iasvRLNErSa8AeBenqd5bZ2rDx+tEa3PPxcAZMpcDWBVb3Nac6tHrrZJWtZgzCbttz59MemlNApKAfQJTVkfJ2NTyQPtKnlGa+o4naUrlT5YgLRagUYQSKAgkCRBIL36R3WmoGDs+QCNn/fmPRpv29LTVFojhwNATuW4L0/FeKwEBwBoNbXHk9rKc663F215aBClxGGpTOZbO1Yf9Vc0AKiD958g7xRQz91IQSsJJXdEcLbr1EQiAM5qrR939v8q0arqB1DJXqd9YeGKlSf9fu/6n/CVLrx2haNeF8bIeGLSpmjF1Gr88dHlx+SBv6yrj/nrTVlpSRhJQRkAtw5ZaPypvfNP2pe7KWlf7vNtOasAcOC/i0M5MUBrCd22u7UiAzxPK3ievgMAgkAGCQKZ3974Pnw0pdDUL8AVs00IWklmPM2pheverW+n3WmNyNEZdhWVkVFn9bYtPnqAjIAUtZ1RqeyMHq2o43QWz2Wt1BUxIery8Daa3AnXMma3SRr46DlSotaGAoTRKeone9uWniZQVZUKUBNciTw9jrossAoA4FAeFQRiFAQS47SEP2arHhIHyj28YGlqqxm/1qqkvwDAVDSprvG9+sW6MQAuICBvztANGF7k1ITbKMsCWJWcldzaRYGH6+YMgFCA8K2NaS4L/oeCgoAQRiYYYCFT3LJS0wGmUQpIBtCtWdbaqrOGA4Bf6fQWlQha4D4AzwkCCelOO3z0bSyi/mu4Qk8oerAqXE8xKuyvWAA4J+GHXh3HGljL1nAi8YUD9F14Atc/dNODoccOq44zh/mrasPaaPI9gCtxPDnax+lMlS3sZwDYUjqlz1cW0itMFxr8D0l5mely+627zgE5TgMAjJMtBfBo1f6LH607Nu1RTlPuCB789VttHWurHXQMAJzmqKsadVidCnwiE0ptKnkpXIlKQPsXBcF1f25FcQDA4rmzUxfPTX80sH9JHABQUIDAaSoKvYbnqRMAcV98ZALSEzf6Rge4o8Uc7gWQwvO0CnDFBHezPT76IHmZ6ZsIxE8AihB1+dzeVrdexdlMANDg8Ou9lSQzAggBGcBJZKe3TfHRYwhwFY4BBe2W+wXn6YGFDYb9AKpa28/zdA+APZ727+PUsqdq9CYAqLRG9mktVoMxW0EQr4jWF3Q4o76rVCXUpqEAKEfg8L1//O/ZgZUDnwSgEK0aR/WBy0ajjZrQjMKUKDv9ANCrAXLpN3e/edmcEHZAXYC0OfB+cxmykgW4KkmpACoDRGipn4UrVm56+epznZzGUels0F62cMXKTZ++OFhXXxg2w1wWNJpV228ClHEAaE1+OKnVOqGQCdaNrpLLg+w1Zy+7ifVXXnQP6wgoIGCXAljT2rK9p1gDd92iNBvMCU+nl3ekPc9TEe74N0EgdwBIEQRys9u59uGjVdLif97yx7ELrksO2zYZuPGUxLJ3F3+VTPsTADaVTO+1S+nFUY5B0SVKf4tGqjilma8+Th0ZdZtqXtG9F1TH3V4bKC4Nus/S5ftFV2JYObi955YQBKIXBDJSEIiuC2P4OHWUEsjWEHX5BG8b0sMkUTDKooaE70/FYIJA5hSwgZkAkCwWDCQNuqeoqxgAAMKgnWUSVmm6oklbhR9bvpCAcIF13A0AkDMvZ5OSyLM4yDROYS1rrSzr4rmzw6jEKSW7YiOAya9cO2td2T/9G8xlQd8B9DEqsu6ZdUKoxEDiKAgIyoPsLABeVZ/4AOcIDq+P/emH2Mwpz3W3swoACktsuFNT1CFntQWCAPSJ6j8+eh6dwvQeQ0Trn0VpvTHRtNb9N9CLNnQJmcE5AFATJPkeLvswFp38OgCobWx9d/TXBVmrmsgIbVFMG00mA9gJYKSnY/g4deRlptNwbQkJVlfM9LYtPUk//wOzAUDDmXf21BhLbl+dsuT2VYvcS/g/1RQMLgeAsVINOZ/kcABIW0vzTRGtIbmuV1QikKVhul+mUNANyKg70Nhm2/V71gZxzvVFTo0uOSv5eLnJT/87mCx/bNTkxXNn3wHQvQAgOxWXAXhRFrnwkMRCxJ69d2Xydatf08z6x09kKGRQUAKp1s8paewsiAynUlas1VWkXEuJ84ikqry/Wz8sN4XG9X6cIzhIXZ/0gSfH8zx9DsAlPE+dgkD8BIH4nFcfrfLa/E+sMuV+E2VlWm/Ltp8UvUoNABOjhGnetsVTYouUdgDwr2e/8bYtPnqOmFutuQBKNTbG0B39eRwSoOasgf6q2lZnWAHsAHAZgANttPFxGmETNX9X20Kj22/Ze/FX1c5VsVbMTPh+P3BFt/fvclKpAEAJUOz5fFWRH2MKXo6LYJGDAVAQAKy6ukiyhVzeQjGAE6CySgIgh3JH35vq/7+boxQHWApMQEZASlNN1wpR9VZYjfLzKfsCViz+afZeAPGcOmGuaFO5NfBc9+Tos/aJJdsGJYy59RcVAGTXhpdvqk14sY5yTOT4suKpBZrN2uLAlyI4+x0M1V83to7c9mT5C1EARhCquH7E/Pd7akZklNvIbZ52wPNUcsexfgUgUBDI2TxPfTH0PlrEX1mzvt4RdBEf+zMPpK/xtj0dRc1ZKwHA7NR3m76lFxgMwO7XwLZUQMRHH0ImNIcSnM2237RdPJ5hLbdE5x+sGdZqhh/P0zKep1/zPPWVU+wl1DmCtzhlVYzBmN2VUJHTmj2Vox0cI/7z2vxPesqR4QFwbgeRUtDKUs5JNExjkj8DgECyhWxsz1kFAIWueAph7WVzQxcOjlIeaPzNEzQLJbhiVQx3/qZI+NdoL4WrYMfF+qhqNn5qDtTBpmRNaN0vDCdKVGaUY279pQrAxjy75t2dFv/SOklxJ4D3S0MciY+98uelC1es3NRP13AQAKZVMU5RU/qhpKirAfBZZz6IVasHpKxaPeDhVasHtCtnYor6/R4AaAhft78zYzSH5ykF8CqA13zOqo+2mByzaisAWETdrd62pTOsOjb7KADkVI4r9rYtnmLRSOc4OVqBjDrfb7SPUxUi6gjFoLzl6i4ndPdkDKtCEMg4QSCRXRjDxykkQFldCkA9PuLPwd62pScwGLMniVQx0uz029eDwwgAsQMQAWIrjNn224daDasI3Vzq8jOP6+u3q18KAAxnOytUuycKLgdVhKti1PFQAkEgHABo7dwjjcdQUFrlb/9swLnbR4QNOxa+4O21u62VAWGyTCpLtg6eeHf+cMfbZQlfLS7tf3alqMRkffWLOfN235IzL8fU2Efl3oQfACCg5Lw7lGaD1hy2+YvYzCltraicgMtJpWsB+ixAhVWrB6QIAvEXBHKFIJCTEvtU9YPDJK7emvjAI10WEed5+jPP008BQBDIZEEgiV3t00ff463blq9lIJZsKZ0yupcVD7DCFU4U6GU7PIZQkmjWSX12YsTHvyic5CuGEkQXK5K62pfnslYKU2iMPj++jSaBAP6GKyzARy9gXORGDgAC1VXneNuW7sZ1Q6KrACgAeklP3aDcs6bHKztlO2NUBLJcgwHbACBIecQGALrwHe3HbmUEKOT6KEWEWIaqYOdaAFMb+0VG3SZBILMAVHz07NCnACRRAiqDQmIo2Tys+qa784cH8TytcBUNoGMhMxEg8tpRJlq51+Z3F0DWiZQZ8valRf/XwuiRADDAb/TUBmctXb1p/8cd/QxWrR5AADwKQOGeaebgcriHAFgBYBwACAI5SxBIpSAQXmlOCCWU3SwI5ElBIPHu/TpBIBGCQDy6Trmd+fcAvOOTvPLRHIMxO0UGGwaQIehFFa/yMtOphmtAUvA/ad62xSMyAji1jbB+JvZzb5vio+cJrONWAoDSySS317Y9PHZYOcap9VfWtiXYXQvgQgC9SjLkTKa4Ie5nANhQlNYXMzd5HBfOB4serG6zYGnqpgVLU59fsDR1k8kROJmC2WgvnRDhz5aUhTBFKk5dZbvhqYVtZk3WvqLTmaWgH5xUo3Ay7B8h91h4ga/PE/j6sQJf31jhJlcWmZV1x8IfVeqtto3Dqz7aMbgWv04oQ0WQXakm0g/JWckLrErpYte8LoFMiYKW+QeN0tZ9AuC8nHk5LS4rchr7RZGa/ghWRSG3brNsl61TOnLuq1cH6wDbZgDnuyvhie4ZZwFADoBkAI0laOsAfKmuSa6hoEl2v6OlcIUzNF5XzgVQCmAEAAgCmS4I5GtBINHu7QRBIKmCQFosTuKWvUoHcLU7VMCHj+MMC9l+Nzmu2NG7Kl4pGKfN7PTrrQ9hCQREwcpkt7cN8XFKOExBzVa1fF5XO/I46arOHlxRZw/e2Np+txaiz1ntReRWj9wLQLKI+jhv29IDCHDplarhWloXenrAm5bcOQRIHxMrS4sBLNTo87+oMcddEcIV25snTR0nIyBFYugFShW5q14K8QOAqvjKxhCGagDDAUQAAM/TY4vnzt4B4NrgQUWPHYoTNwC4HKBKAhAHJTYAb64eWy7P+isCjAzIDIXE0qc+u/xYRlu2cxq7PFw1CWZnLfJMuxzowOe1avWAUMBfANhhgO0zQP0mgGkAhLTUw43nevwmxfN0P4A7dr99z3wCwoiakt0AlPg3bmIngLvwb0WyIACJcP0/AsAcAK8ACAVgFwRyO1zVr8bzPDUJApkMYAyAt9wzrEsArOZ5+tXxjzsjIwUuR0XIyMjoVQLyPrpGmLbsV7ZaukKkhKJnCmH0GPWOoIP1jiBPJeC8SnmYMz28QoE6f7HCJ+VxBpBRJze8pJcAdHnl1mOHFe3EsAKAIJBxABp4nvZkzKCPbiIvM9056OFvygJUNZO8bUt3k5eZvslgzL4YwC8AeetUVLcRKXc/AMwN2jID9anoz/zz4xbxxiuSldkBFHR9/WLdIb2Z/YOVicOslaJFlo7yBzuQkcFqrAx26GJLUI0o//i1MwGA56ldEEhS42zhy1efFwGwTwD4+cZndrx0I4DkrOQ0gPAUEHbN270pOSt5mDXE/NGvE8pGR1apURpilyqC7Pb2bI9xTg0PCYjGQdu6tTLoooUrVrb5ea1abRgJsN8CbDRgXZSWWpzp3tXqQ20jmqqxcQAgKWt+cc+Kwn2+h+FyMhu3vwHQNJTiMwD/wOXIA0AxXE5ug3v7QgB3A3gDgAbAHQDuEATC8DylH3884VlgltFdKcyekZGR5nNaexb3sjsPQPBWhSlBICqep3ah4LwDAJa53/6wl1W8qkUv1R0mFGcBQG2gdKhXnoCPTqNwkp9UdnIBMgIYZNR5XGHSY4dVxVr9I3VF/dtp9g2AVQBu9HQcH6eWOL+jKrukGe9tO3qIPwBK4/yOBp6KwTYUpQZyxFmrqhiqg664IVh1ZJoEJYK5QgBg9Q3sEIYihoJCY2U46pr9BQEBBZXqy8fvAWhk5Z5rxmCOq8+mS9v6qGrBVBSqByXHtVHdhQM2Ndnek5yVvKAhyLGqIsihQAe0XwuN68lAv9GzbKLZMUg9ddb0FY+06eCuXh1mBPTPAbQSIFPTUou3dOZzUjX0jwVQHph/xY7OHMfztAxAWZPtHwD80KSJEUCm+zOzCAKZDWAQz1P6wgv3pErSpFsApjEsqnFJuDc5LaclBmM2CyB6QuTa6YTQMZtL+BoA/YJUFbOA0MhGibWBi75xcozE2CRtAwAoGZuWEMrYJY1rm7VpCf7dVrE2HUBhlzRm17ZVB+CEbQpCHZLa4t7WUxC56TZAKMEXjPOX750A6w4lITKAfhcuznByRNy5vTzlBwAH8zLTa0/NJ9Z5+vkfiG9w+vfKhOawSkU9Ba2lBF1SBPHRe1Dbmd8BXAlgILogdeqxw8oQWemnrAtsp9nVAHyyVr2ICmvkzw0O/9netqMnyMtMl4Y99hmCVFXjenos101bMSNAIr87Lf6XAnhmK+b2AwCJMhIAB0tJmsDXTwLwPIAIXvAfQkFXU1AFAXGUOwc5AVJ43aMZ5ub9L77y/PGgoYkBhrItt7ywtc0Lf868nE2umVfXzFZr1bAaqYn76sGggsv894s/5aVlPt+qs+qWq3oE8DsPcDYQmM9PTa3e2s5HcxKUOCeActvjMqd2a5wpz1MZ/86+gudpNgC89NKtM2228F8oZRtjACV0wJH34cIttB8xJnzjJJ2iYdr6opmlAPqFaUqmSJTtB4QRgCj+Km3UtacUIMVWUats0g3VKcx5sX75FXuqRv8NAPH+R4YqWYd2b9WorQCQ4H94OEdEZW71yO2u7UMjGCIz+6pH7AQAg/+hkQCwvyb5HwDoF3BwtEwZ8UDN8BwA6B9wYIwoc46DtcN2A8CAwH3jRFnhCFDWRu2tGimaRf1wt/NMADohp2JsIAUzG66EQQx77HNJxVoLq23hawEcnBLzW5BdUq/eUjp1XV5mugnepcrs1EV42QZPGUxA9htutPniys8Q7Ep5t8rBoDpIvCgY+K+n/XjssFpFnXl35dgNbbXhefqnp/378A4mR+BOANcajNnBeZnp1e21721YRe3RPVWje/zJflL0H5duKJ4RMl2y2wE1A+BQmXnMIgBY33ALW+3PvTT1sRWbIJA6ADYAIjLqNpGMgFS4HUubCp9ytKqmed+L585mAOZ1AGUNxSEdigtqPvPaFprSyXdaRBOK1Kt/a63NqtX9JgNkratkLJEA5UWpqQWddlZ3Lbs5IAjXDTWHr690iSD0PA0NkeMAQtzOigTgDwBP+sIBXLgd0pDk0K3jQtQV52wsnl7pkNVxweryFI5IQ4FIGSDq7eVnNz2szC5pTDH6/NI6e9AKiSoODQ7a3TAgcH/5lpIp67dl3Gh3hwO4lTrgrHMEz/vnoeuafObpzSzpvm13DDPnzq1Ac1sAcv4lgz7K3VU5NvFgzbBIBeNI7B+wf94xU38JLtWP69cXzQSAB1zHryyP9zuidsiqv0rNsWtUrPVovN+R/kfrB6lFWflzT4cXHK0fvAnA0J4co6dwcvJEh5Ju89VsP3MoiXLmxh9TQmLpHHjDYUXHYlhHANDzPG03js3H6UGUrqCyxByHMeEbJwHpfS5pTqZcKU6BfqFV1N1IIGOYtuBCWXZaRFtoLNy/N5ly9IB5RvBUADxP9wLYe/xAVyLWJgCg93wXrwnJPcm5DjCUPluXFzkRwI33ffRrt9RobqTQuH6aGpGG7XV/oKIg7LXWW4pPAcrG5XQKYCKATlcLCsi/9GpCWSgs0bs8MtgjmDUArABVAsSBPuysthYzajBmBwwO2jMiRp9//rayFHO9IygsQFk9VqOwjCWIlikYbU7lCQsR1VZRWxXvd7TCIup+aHD674nzO1I7LGRnfaHJIKx86LEWZhxPdCDdceTHZ/pPcczoAwAuFgRyPs9TU8u2pANAk2I4cxrjsHHei8/5x/sdnbm7anRQUUNCqJYzjwJwbqU1fByAc+ySBgdrhzU2f9BgzE7r4fOrA+BnMGazeZnpvUZ8v+ZVnX+QyOlqgpxWn8N65mC40WaSnvLfF1rJdWllwmOHlSWiyhBwcODJT7Un8BSAfgBGejqOj1PLyLC/TSXmOPgp62egD6o8BKkqGVFW9HhhhO3lKQF6OHc5KpOGasN2rxFtoQJcM6lKgHXYawd80tbxS25fHQj4M5aK5BP0T9+4JdVfFoMeVAebTLZqvw+7225JUbdYsqssR0z/yEBbMWYKmzuZX/Q0w7rQuD6Fhd9rAKBqGHhLoXH9p7GZU3rcicnIyNiUkZGRBhAefVgdwGDMTiGQBQrCAUQe8siX20LUlSPKLNEiwPkdqBmGAzXHnSyTVdSVhOtKah2S6vdqW9j2ME1JxdiIjfYKa5Tw9f3Pdktol9uJ88bnXQDgKIDj4TWdseXn/zxcD1fJ35MwGLP9Vaz1JbukvsU1c9/z8dBjIzYO3lZ2Ni7o/3kskJ7fU+N0N0G1XD8ACK9QvO9tW3ycWliZuOQOMwIIMuo8Cgfx2GGlAKtXmPzbafZIV8bwceopNcesAoC1hbN6pWRKe8Toj4UUNiRE9+QYBmP2TAATh9o0awGWs1SMzFiwNHXTkttXH5/R6UBZ1gEAIIva3KZvOkzaNwFwCp31hYUrVnqcbdkSB1547UWtc8zYfPFPKAJrSu5burbFmZtVqwewABkH4He4ZlWbylZ1Bp6CcuTE4gKnxJlxO6l90lEFAIMxW6lirW/aJU1j3Chjl9QDNApzQ6im7M8yS8xGnaK+eHLMKqbWHrz2r5JphQeeu6SFm8gtp9Tu7kYQCMfzVOR5+gWAL3pijLzM9HqDMXs5gGtxPMSgZ+OhnbKiEABKzHHt3YNPNxonC3wJV2cYFo10TGtlwwtj7ENjgT2e9OGxMylTjv5TcVZ7MaweGeXDe3y38Kk6gzG7BCADvG1LT3CwdujPdknVY7XD3bNaP1EwJEoi0yTQahZkM3C8ClaHnCS/mA3nm4omQROypwxIBQAsnjt7CoDrAFBrZeAji+fOXt2e3FRHKTSuT9Fg9AMUFPHcBFRq9x9rrS2B6RoKvzBA+jgtNc/jWV67/ki+sqEfoaAgvUwH83Qm5emlg4G4j+ySZgxA3Q8dxAEwF64yPtjs+3LVqTfwFCEIJA7A74JA7uJ5+kdPjnWqwx12VYzfDABbyybdYjBmf95bJLmqgp1XhlQrUO8nHeltnraPrlEdLFZoi1iwErkAHjqsHlW6MhizGbgyFtqMnREEMlAQyIWejOHDe/gpa2uC1eWTvW1HT2CX1MUAURuM2doeGuIKCsJyFDA4WVITUORcsDTVk5nQ8QCgC8s5LgHCaW03uF82XXbsLngCwhIQMIRBvJR6uLWGFOx8gIKgflVXBlQ29IsnIJCUNe8BSDsV4QB9nStfe8hYaw/eRyAPBXA5QKYA5DEAPR1TeToiAyiBq1paj5OXmb4pLzP9+VPzOdNY94sF6EVlZdVWZqjIyJK/iR3ubVt8nFq0Flcp3qhSJetpHx7NsE6KXqXYUJyGxOBdg9qJYb0KwFOCQBRNBcF9nN7E+x1RFZj6GbxtR0+Q4H9IkV8/EBMi1w4A0nO6s2+DMZsDMAsgMIiMrARhbErLck/6MhVNqgJo8dz73jkeO6jQ2s2iRQ2Ayt1dmYdCFlzqPoBMZUiy2GK83qrVAwigiQDoutTU6iJPxys0rmcIyHwAaw1PXdS7151PAwzGbAWA5wF+YaS2sH5a7C8XLb39fcG9+4xyVAWBMAAoz9MiQSCpfbEsb6S26KpSSyzgKjPdOzSEMwJSdGAHw/XAvQoZAWktVvvz0ScJvtdciYyAIwBGedqHRzOsas6qBAANZ25vlup9uEojdmusnY+e5VBt0mf1jiDWYMzWeNuW7qZ/wAEdAByqTVrU3bMSyaHbPgaQBOCxCTbFThnUFFsx+HEPuxsIkENN37BWBhS6XpGnAaR1VzgAANT0/6SBgKCS3Y11VR/Lf5Z/810rTRMBMghgVnRlvLrYlfcD6C8paj1y6H38y4L/3TAxRF12BMBCAG+VWmIjmjirZyKvAninsaKZt43pCSTKugtmUBG9R0OYh8vn6IkVIh+9AJtKLnEo5BmeHu/RDOuqY7NlANhRntLmDZPnaREAj2dhfHgHu6RpTPTpDw9jTU5X1hfOOAYAVbbwuQAu7i75mQlPvTO20jpi7uCg3ceu4IoXO+rPXUQUzp/ueONCpyf9MYqGsQpNZXM5uCEAyhauWJnRVXubE5h3RQgAHKjYU1nPHi1buGJNKzd62xJXQS7apd+1um7IzZKijtbFf/cNcEFXujqjMRiz0xXMhV+wRNL2Czhw75pF97/ubZu8iVtvtR6A0104ok9SYY2qAlAFkMXwYpnbTiJQl7KIL2b9DKXeX7KEVygCy5dow8MXWDqd2O3RDCv+dXTbi2GNEgRyuSCQIA/H8eEFBgTsqwSAsREbZ3nblu5GpMow90sG3fSUbzBmK8osMf+TKVvVP+DALI2kuIXKKm1A/JpD7R99Mh8//3Cw7NRrVAFHT6gypQ4yzVb5m9ssk+opjKwaCAA1ltpge53u65bauCpbqaa75KzIZ+5KV8cxGLNTDMbsdmeuC43ro1WmQYOJrHxtxPz3vF0xqFeS+MiX0wY//PVfAFY6ZeWBlGhhms9ZJYTnKeV5+iiAB71tT09CIA8AsP/Uxcx2Axl1m2QCya6iRwH4wgHOQEKquNcBILxCMcST4z1yWPnYnwMAYHjI9vb0LMfAJSXS47qXPrqPYaE7jgIAgXyWt23pAX53xYBSALRbnvIjtEUvAhhLwdyx9Pb39tUeOT8RkK2MwuxRRY+6/BnxAFBfMH05AESu2clHrtm56Ih2SKBCZ+uRUsd2v4PnUEiSRaxnAGxppRnvWs0jQBNn32DMThn1RNZWgG4A8DTaSQKhkG4BwDKSZkk3nsIZQz/jjyl2SS04ZPVZLhUAct/yBUvWedsubyIIZCSA7YJABgNAXw0FaCRQXT15SFBOqLft6BQZAQxLCaO2Mx/7nNUzE1Ym290vR3tyvEcOK8eISgBQc1ZVO03XAxgO4BRWsfHRVQjoIYDWbS2b3CPOkTfJy0zflBT8z5cAQbi2+Omuzk7c/NbtF1Vaw++L8zu6Iy8z/cslt69mAMwBmJ+uvO8dT0vbDnT/PZS6ZtmLAF0DSp9Zce4tyv0xyWWCQPp3xeaWkDnLVCtXylJQRI45dLSVZgJc8egU7rg5l2NK19XaQ8e6RdObJoGcxK5lNykkVc1jTk3R/tjMKR7NQJ/pUDA30eOXbkIBnN1W+zMEFVzfTXN7DXs7BmO2osYWzMiU3eltWzqJDq6n3W6tzuejV1EiMtRqU8r/QUZAp3NIPHJY/zh2QQMAbC2b9Fdb7Xie1vM83cPz1OrJOD68w2vzP6EAOYx/Hac+RYU16laA2sotMZFd6cdgzFasOjb7CZaRGkaGbbkSAIIGfj8PQJTSr2C1p/3qozZfTgEsvkR/QS7GPgQAIISRWBbmAepzAVwNAIJAlIJAlgsC6bIEmbomucZssVcyCrH6mv/bt7elNq7iAM5jgGQBkOYuFsADxH0doQDocWe2pT78imddwtlDOWvwjm+7avMZTOPvsjcl3PQI7phV8DzdAmCcO2+irxMPMORg7dBfvG1IZyiMsRsAoDLEafCuJT68yERWhlrlIDFwKUV0ymn1NIa1UUervRhWnSCQaxqXaXz0HiK0RXY/Ze0Eb9vRE2x94qZ6gPwC0Esvf2WRp78BEMgPA2S0Q1LPe/PWDw8AgL22/2UgTvjHrfWorG3kmp0pPxiSp2alaahFoXxKAfsmADZQmbKSBMZOnwLQmFkfA2AWgFgAEAQyQBDIMUEgM93bOvd7bZ5joXE9S8AMJLLKL5TtX7t47uw2LiKSDaC0SWUrAYAdLucJkdpCEqopTW9t5lphjb4bgMm/aHZ2xz4RH01Z8L8bxhHI09Sc+RsAj+PM1FcFcFy+6gtBIAuAvh8G0IifsjbR/fKIVw3pJAonEwgAMuObYT2D4Qlc/+BBDolHN+spMb9FAMCosL/ac0T9AHwMIM2TcXx4jxj9Mdns9Auc9txrfbK0blLwP38DJCZQXeWRBuitb8+/ghCa4aes/SkvM/0bAFhy+2piqUweAsr+Ovee9ws622fkmp0pAF2zIS42siBETQC86oBmEkBSxx9Zv/uK7PfplIJfX2icReJ5epTnaTT+LTnJwhWGU+zengrgEIApACAIZJAgkPmCQAKbjuvQ5c0DoAhRRammRFzWP0QVs6Y1p3Vb2VkHvz90gdwYo+p2ltIAPB6qKZOi9IXYoLhPRkbAouZPzweff2chBZ0EQA/gt0Lj+l4hdn46cbB2qBEASY37+dVelXDTM6gAKPHvBMoZwciwv68EgJkJ31m8bUtniChX2AAgvELRXP3Ex5mDgH9lTju9OuSRw8oQWQkAStbR3oWiAkAiXE6rj17E9vKUD2TKIr9+YJy3bekJhgTv/pAloryrYhzf2WMNxmzl2sJZz2g4s3Na7K/3Ht9BxGQAAwCmxSz7DsADULpCQUEBlJdOH0VLp4/axP/++8GY0sIDV//nwEnhNY3yPTxPD/A8vYbn6W73rl1wFYPf4d6eCeAdAFoAEARysSCQz4isTAEAQhgwhEG4Oq7FJ9+05xdf+fY/N83+4cgsfzRJrGqs8FNpjVyvr9TuVDrIbwCeRZMln4JFwjiVqf+LjZ8UfDqMncZgzFYeqBk2mSHSL2/dtny9t+3xJm5FACuAOQDe8LY9p5KDNUNFAknScJad3ralkzRWY/XNsJ6pZNRtsqqlQpGVzfBAKcIjh3Vt4blVALCldMq2ttrxPJV4nu7neeqTrul9NCbEDPCqFT3Eq7d8WihRLrvMEpPaESmmZjxslzSDLE795W/e+uHxxCH/mI2vAjIU+mJPl7uPgIKAUrAypTjx6XMUALnt5foT4XlaxPP0PZ6njTeIt+H6/yxxb4cBGJlfXrqRUgpKKWQqo9x2zAlAEAQy9MrXHrqyn/HHR25ccmdxQUPCZxSEuC4b9CSHk4GMO9nvhwNEiSZOaaFx/TRC2dVE5irxb/jAGR176QkKxn4FgAiJKl7zti3eRBDIOQB+FgQSyPNUPlNCARops8RoKdijr83/xCONZ29RGuGYDAAlkY5AL5viw4vIDBi7ilo8UYro0RhWABAEclV3JIX4OLUMDdlRAgBjwjde4m1bepCdACIA+gw6WI975guZjwHy44D829HMC75vus9cMWKwyv9Y2a0vXVvc2vFtMch2+AVWAibvteG6NfX0sRUukYGXrz5vMkD7AzQRwKrOOK1Ncd/cjzTe4HmeLiv+e1Dytsrf7qiyFzkk4jDvUryzrcpePH3sHdn7DtUk7tlWdvZnFOSZNQXpUQHKanBEBOP62Z/gcF666OVzlikW8ynsPk6iDCiFBMBZ6Dd1ACXiHxS0kIAdQ0Cmwx17GZs55Uxezu40kbqiJX7K2loAv3nbFi8TBiAEZ2gFRY5xJBLIrSl5nLYonEQBADKDKm/b4sN76Cxsic7Cbm+/5cl4FJ84Jeb3hPVF52BcxIZBQHp7zRcD+AnAn56M5cM7DArMPXSgeji1iPo+qRQAABzjYERZAVeWO1UChEcb9bgNxuyZwPCn3JtTDcbslMYYwiW3rx4IBMZI9sD7PbFl5JofUsrUAxIm77Fg+m5b49uN9pzn1j5tupTeLc6ew6T5ACDjHZqiPzkaOzlqRPGtFz67brsgEP89VaPgdH0+AKg8NmLzseTQ/Thcm2zYXj5iTsbZC+4WBJw34JBqxzuaoM/8JTsed87Dbtkg3cD99sdUOWkjrbjoCYf+mM2hP3pu0n1PNFa+8zmqnaT/ou/nybS//8DAvatynrrmjHTUGuF5+qkgkBU8T9udMOmLcMSZHKypjGx6/ekNhFQrSgEgplh5wNu2+PAqfgCOeXKghzOsVAEALBE7shQzAa4a1z56Ea/N/0QSqWL/vuoRDd62pacQZWU2ALu7chMLoK61tmc9+e6lAL50bREAhEOTJXFWVXOt+6VHck1liH+UkakpZb+t0RlxwD2DSSX2V/d7MrpxKX3x3Nmh1QdjLlQHm0q0cQUrAYAydgFwSdLtrhyd73ZWJYDYf8u7+OrE4OIv0/v/jscmLtYAsPc7ohocU6T8XMPYFFc5HsGH0kxsp0Mc+eI9e0zSnAzKOrZag7cPSLrviWOAq1rWqtUDFjWvkuWjdQzG7BSZcu8CwKHaoWd3MnylTyAIRCMI5CdBIKmAK9zM2zZ5g37GHy+3STpSbo0KQwdXhU4j/Nx/fSGCZzAOhWyo95PiPTnWI4d1fdHMYgD4q3RauwUBeJ4W8Dxt1RHwcVpzGH00hhVozHAn0wGSCeAoA+m1G5cseL5pG4Mx23/mCy/8XW6N+gqQagDSYgwmp6leqPQrqFuwNDW/s3akrXnnYgDnB4n1b6udIsNpKvYBSFuwNLVx9mQ9XF61ACBt4YqV3TKrotBZl1FK9LZa3Qx92bR3ACBsz0NHC43rUwzG7AsO1g5L6Oe/PwcgjwFIWzbzfgDkfgAgsvz56G0BEQnHVHMZSv6uDhaHbacDHTquYe9TgQe3z6F+D1jCNpG8aZetHH7nq6WCQNSrV/v9BtD1cFfD8jmtHYYHaKPW7ZmarBYEl3xbgLcN8SYUTIbrFel1iYtVwc5zZEIpXHHsPs5QWIkoJJZ6FH/tqWRRZ2JY0wHoeJ5+0V5bH6cX/QL2c4Umw7B7l11DXMUE+h7uJbVN4598d7GKsx0RCs41Gow/SgBjBmQTwDx0oGZY7NjwjZtj/PLP/eHwVUPhukkITcIBYoABel3E9s86O/6CNbcTM/gsPWqdt6wtqgCi4Bez8ZmrH3ztuFO6cMVK+vLV58E/tlJzy4t/d8lZFQTiD8Be8OfQ653mfheHjzzijDs718n9sigRAOVs4ckVkFezgF0Cdh6tHzIxLzPdDgCrVt+zKKDeyYRUORFS7VD5m+l5Ikvf4SRy9/PspaNkcMpLOElMrR07yRK8/Uj5sP9eLitNpatXBydQxBoBbob7Rgt0c2hDH0cgoDJ1ha7IABG8bdCphudpsSCQMTxPRW/b4i1uWnLnvUD6UFdJaULQyxIXFU5Gkhk4mcfq+uS9xEcHyAggLAgTVMut9eRwjxzWyTF/DP6zaAYmRgn9OxDDejtcAuc+h7WXEaKuKD9aN4QtbDAYAPS6IP/O8PcTt1Te/+5VA4tM8T8C7COuCU0GAI4BZPLXDzy7CQBedzlYzZ2siwDAXDbm6c6O+w3mz6Jg/cdh9TJl9agpAAprDl30afN2hMDuaFDXdLb/pggCGQRgu+Rk76k5GvmMQmuTtaF1Q3ieHi38Zf1lFBQUIM/CoiagCoBc3eisAsCgww2VMcU2hnHfbo5Fc0fjb626DQAOPPfqIACYYIseAWCptnrMAocywA+y/mGAPAQwBMAagKa4wyl61c3Wm+Rlpm86++m3Hig2J7weoKp57Z8nrz9jnHxBIDcAGAPg/jPZWTUYs9lg9VkPB6kqJYmys+sdQWPR5KG5N+BvYkvwr0a0jzMTNVw3Vo/CQjwKCZBktvG4jlxA5gGY7sk4PrzL1rLJnwPAtrKzo7xty6nglVs+K6dgf3SVFyVwOa14r72bAququQWQDixYmprbmfEi1+xkKNjnAORN2md+EqDnAvhmwdLUk2YgZJGttlYFdPpi7640d5178xCAJfu/SxnsbNCEs0rnbZfeWtT4ICIAsK+AA1sh41K/Y1vyMtNPOJ+4ImsE4/5kAFCHUtlv9erw5YXG9Yqz7ZEvAkCIquLDgzMuf2r/zCvfAXAUYP8DOHMJauempR5OBUgq3CoBTapl+WiHYnPCewBQZw850+L/EgEkwXNFm77C9dW2sHCWEe/Y9dS1v/XSohH+8GmwntEUxNrjAc/L83p0EdhUMv0YAGwu4fe115bnabUvhrXXctj9t88qBbTAKgA2d6KRFcDvbTVe8frNAyWH/2i/2I2VnR1oKn54FsBoBexPJTTUPAgQZVD/lXtaaW4DoOlIv4JAgppszgNwA+AqXVmwIekja6X/AgC/2Wr93mtsFJs5ZdM7sN/+NuxyCljbAtOwQQdfeHNc037rAiSDy42nMgBbbQCtpVQ/ry5qw4Zqe3C0loh2y7RFuTKjOQqobwboXwDGpaUWDktNrfoCANJSD29KSz38vM9Z7Rx5mekWArlIy5lGeduWUwnPUyOAdJ73LOatL3DPsusiCORMAJsrrZHvetseTzHppYlmrXRGTH74aBmF01VlUWbgUTL3qdBhPVsQyAMejuPDi/QP2JcPyBgV9tfV3rblVOFOxEprTDRqbxajMvfKKaAs3DeUDhO5Zie3Cym3R+KY/UJ88HFdfmo/wtpMnKZ6eUvtlf7mKH1U1dT2+nX/1o4JAmlMTrkKwDmN+61V/j8QhvppQuoeXLhi5fGZ3HuWXRv2naJisQxamgbFFLB2lcISvXn32/eObmwTUMfGyKA1AJ4gQJpsG3u2whLpLB26fHyu/0HEBh5VAXgewGaCuhvSUo+cl5Z6uM3iIj46ToL/YV2IpuKc9lv2bgSBhAoC+VEQyAAA4Hnq8LZN3qS4IfZLCiZ8UOCep/Iy03tt/KfCSUQA1d62w4f3iCxT2gEgvEKxwZPjPXJYz45ePQwAJkWvMnSg+UwAiwWBnOlLOr2O1YsW2vyU9ZYqW1hQ+637Do2lRju05EbZmwDU1RdO6+wM63W1CAt0QnHz0BWXs7KoTaOS+rMr7v6gxZkkKrJVDrP6pIu9IJBgQSCPCQLp735rDYCX4F6553la1Vi6dfHc2dNMRaH99VHV39/51vqcpv1sL0v5rMHpFzI97ufMWzLTttbF/XAr4/SXAvIv/aTQuD4EGQH9CMgsBuR1klH/TKFtZWBkzn0bwvZfoaRERLElHNG6UgC4NS31KJ+aWpnVyc/DRzvYJM3G4oa4M0GD1QBgNIBwL9vhdQzG7LitZWefleB/aMfvxv/87G17uoLazjToLOw/3rbDh1dplDY7dTOsTlnhLnZOOiJP8SIAPdwBgT56FyZH4F8Fpv5nwk2y07x914/TADoZoP4AVi25fXWHZJruXHOHH4H8FICtVYj61C9mw20A9IS1fdfaMU6LOt9Rr6sCXHXU3dn+gCtM4HEAaQDA83QHz9MneZ7WNj1+8dzZCgBvAcgzFYWeMGNuMGZfWthgSAtUVS9dvmDJGwCQfPubnzOyaiYB6U+J9HNlMD6koKjWJnx15KlPvgDwEyOrg+x+RVKt3V+2iFpE68tkAKEd+Qx8dJ5Sc+xaiSoCDMbsQG/b0pPwPN0KYCDPU1/YCPA8wND8+oFzvG1IN+CLYT3DKY1wpLj/hnhyvEcO69+lU44AwMbi1MPtteV5auF5aj7T6j33IQ6hD2uxdgWGs1/pLiLQKU3ECsQsp2Bik7D11dLpo6gsqu9kFA00NPGLdW0cZgWoWhAIgUulYCkA8DwtAhDL83RZW2MGDSz+GsBQwkr3LVyx0tL4/tRnX7uJQP4EQG6NPfSepsfEZk5ZS4nzalBxfGC1frKFDHGY6v67VWmJv5y6nz911UkoboimABClK/Vl/vcgas58FAD6B+wf421begJBIA8LArkZAHie2tpr39e5bektNwK4RsOZ38rLTO+0vvPphsTQyOogMcnbdvjwHpxIVAAgM/BI8eZUxLAOEQTyqCCQM355pzeSHLpVDyDs7neui/G2Lacboi1wp+sVldBBmabINTv1G3AuH4X8vKHY+umS21crzGVjwhjWnn3F3R+YWzpGEMjIupG6GX+fnTL+SrpjIoBPAKxs3M/ztKytMRfPnR1beyTyXF1kdekDn/78feP7BmN2SoGp/7sURAXQfgDGNT827vnUb5R+72/j0ACr/SoVI2kUdt2RT4krIU3U1A1yHCwZ+w8AENhv9iVT9Rx87K8SAMT5Hb3I27Z0N4JAWABTAExxP5Sd0RiM2WRL6eRH/ZW18oyEH1/ytj1dpfYVHcvKhDAyirxtiw/vEVqlKAaA6BJlpxR1GvHIYU2JWjMaAKbG/toRJ2YIXJVt4jwZy4d30XCW/QBwtG5wordtOf1g3Mtb5A2cWJmqLf4rgwspQcJzS6YvpQCmASRItIW817SRIBDt82tmKm5a8+ANz9E3v1g28f8gJKcrAKy6ku7YyvP0JK3WNniFyoxkrfKf1Oz9cykIaanUbFOCHduDRBoGmzwGBERWmfvvhisE4XEAaeuqBx1UMA7zwdqoztjko5NIlF0DABuLp4/qZSU528VdavUCALf6VuMAAJfX2ML6O2XFXW/M/6jE28Z0lcA6Tu/++5e3bfHhVbpUntejwgE2SSMCgCSz1g40/wmA8kyWJenNbCmd+gOAjN1VY86oxKuOoA3NmWapTIZCW5Zx68tXtSvdNnTNr+cB4bcDoAB5LXLNzt3Phe7OsFYlOkC5XyPX7EzRwjSnH/YmBOK5i/9CmlWEMgCQXeqnhACgSoDw6GCFqOWPjboHiL0MwGP3f/zLkWa7ZXduVqszxMfeU8+IJ6r+dc6rJYClje1iM6ccL6BQZ6x/AcAOj6qhZQSkwF05DBl1vtnZNvg9/6JEANQpK6fAVUe+XRWL0x23EkAGgAU8T33xjQDuWXZtAEsue1miin+sou4db9vTTXTJUfHRN6gMcaaFVilQGOMwx3pwvEcO647yiYcBYEPxjML22p7J1Un6CO44ZeqLY20GozCfxXAWdMRZBQAG0r1uB5EAUBCZTnfUx4/Xhu4pX5Q6fRSAPy3QM3swAUpYHTqY/hyEXduKYcgpleNWyCzHEEpBScdKcy6eO1ul1Ie8oPSzOEDx3+b7o/X5F5eZo+skqngRwJqWnJ/IUsXlFFQ26RU3og6x+NdZBQDcu+wawpArRnJE+qYjNjVFfNr/fNYV2kAJiB0ZAWk+p7VNeNcfQgCqgUuurLd/XuPgUpIJhy8hBwCwr3r4TxJVxETr8t/f+Nid7Ybd9QYKYu0j4wpVKI1wDI70tjE+vIbGwgTJoDS2SDkWHly7TkUMa7AgkCcFgfTJRIG+Tl5mer2WaxCHh26/3tu2nG40lEzIl0V1u8UzGqlEtMUllkFFAM4JB2xVksNfaasZ+DBczoh7eZ7KDmie3D89bfbK6fc/cc3S94qu/OE9wopO9Mvfj4eWPtrRIR9yNGjU2rC6e+9+b/UJih5pmS/pKyyRI4eH7ijIy0x/rsWZuoyAqUoncy0BWRe76PWPYjOnPN/UWQUAiXJJMuX8x0Zu8D/p+HYgFOcSEEJAGHQiae0MRgCozfUdIgDIzQZj9lletqlL8DxdAZciwCFv23I6YDBmX3WgZvjZAEWxOeHBvhL6obWwBAA4keR52RQf3iIjIEVnZScwrqXCVe7VtU7hkcN6VuS6swAgNS47rAPNtXDFuo1ur6GP0xOtoqGsuCHujE+EOBkSCzAdyt6NXLOTABgLkHUAeRxA2jn/WIcAcMii7nu4luNtAES45OLWNDmcjyk7RhOKjqAuIIRFBxy7t++anATQRwB8dfPz25Y233+4Nukcp6wildbwx1vsICMghYL+AdfvN6W1i8v6whmxAFBrC/muPZuaw8pkt/tlh5PWzmSaFLV4GJDvBkAAuvGyVxYJ9y67pkNV0E4H3LJsLwkCmQQAPE99y8QArn3j/qcB+oH7YQToQw9xIdWcHQBCqxQ+HdYzFx7/TnZ69N32yGG1ilobAIiU60gMaxEAlufpe+229HFaUmmNFKpt4Vpv23G6wXCWJKVfQYc0as/Hx7MBxMfjwO+l00c9//ruVzZz6qo7lfrC/QuWptaXTh+1CU0SmdzbjQgAsceU5tOqoHA0hOoM7Y1HWHkNYWUOwP2tNJkDoLqowbCylf08XBcVUNBWneQ6R/A5AJBbPbK2PZuaY1PJte7+3wHgCwfoAP8WtbjgTQAjBgbuy9laNnnayiNXbDIYs3uLZFAQgAvRpALbmYzBmM2OfiJryZ9FMx71V9bU4fiDa596iPPFsPoQKChxSyJ69N32yGHNqRx3CADWFc4qb68tz1PaWGnHR6/lMEDjU59frPa2IacLn750n04WtTp14JEOfSb5GHIhAIzExl8BwFR09lTRFqLShO7d2NimdPqoTaXTRz3fzFnFwhUrNwFIC0fhSgAo9Yu59aNnh85rbazFc89/yFwaHKENrdu4cMXKk+LMb1t6i1bFWq8K1xZvzctMby0ZUgBAKSgISIsXF9dyJb3fXRNkRWeXL2uCxFkAUBDn+MznrHaevMz02j+MD46O1BbeJFEuFqDbL1yc8e69y65h2z/ae/A8rQYwHsBT3rbF24x84qNgACtr7KF3RuoKf+Hjfh0AIBXuB9fenlTXSEmk41wAKIi1671tiw/vYFXLuwkI7CqaAw8nKDxKukInYlgBQBBIBoB/eJ5+6+F4PrzIxCghcHMJT4YE7+EB/OJte04Hag5dGA4ApqKzOyTltAfjBwA0Z9n0V/8GAFvtoJkApLq8mY905PiFK1ZuGrrm1ytAaX1RbAIp/9Pw0uK5swcByAawGUBEYL/S80Wb4hogeDoAmMuCxy+eOzvF7fAeJ79+wKV2ScMNC1mzpY0htxMQCcAGAItaurgQyGkUhG22fNnhi1BAHVsBAAon2d/RY3yczObHb1tuMGb/HKSq+n5XxfibC+r7nWUwZqfnZaYXeNu2pggCOQvAxQAe5XnaoUTFvsyNSxZcwJLxXwGUAchtmx+77R3gNrzu+g31CUe1Ea2FMQEAK5F2E7V99E00NmYwAKjtTIanExQezbCOj1yfAgAzE77za6+tm1sATPVkLB/eR6bMZgDYXz3MV/zhX+IAgMqKdmNYI9fs9AcwBSA/A8AXb8wjINLlAIQFS1OrOjrg3umzbCDk7z2G0UdBmVBXjCrdCNA6ACW1RyPfaygJSYXbg0QrcUL7qkdMAmDeXjbxudbGqgh1pgLg7Ep5eWsXFwoGjUli8GCJR2t1yWRFlSorOnOcj5PJy0wvnRr728SxERvfrLGH9AOQM/yxT18yGFcuOo0Sdy4EcCWAQC/b4VUMxuwUgzH70zUF533hkJRkRvyPt+dlpvcV+aoWCajnqgEgukTZ6zVlfXiGTOhw90uPigYAHjqsDQ5/MwDYJXVHYljB8zSW52lrsXQ+TnO2lE5dAwBH6hIDvG3L6YI+euMMANBFbG93pigVXz8MgEvGpm0AIEvq2aDsIL/ojZ3OjB6IXeVWjXaQk2UbNVRBWPkIgHvVQaY5muD6awFY0UoM3Lw37+YAejGAn/556rpWf78iR68CgLII57E2zDkfQCFAHoMHy5dOjiZQ0Bpk1PmE4ruB1+Z/Qr++/9m7ATKSQCpocAYsBPAcgLUGY3a6t+0D8BiA8e6QgDOSs556Zw6B/CeAqwCiNDv9Lnn3zv/1+fwOCuoPwI6MOoe3bfHhHapCxFtlQlEa4WiuB95hPAoJyK0eeQgA1hae69PNOzMoA6hZydp7S1JHj0PcT4uakD3tzrDuw5iRKljFwdj1IwDUHD7vSgBwmCM2tn3kycTiyI5DzIiLS8NjxbiSfAYgTiqxdzRd9l88d/YRuMX4m4cDKFn7LQCJGB66bSfQug8TUaawUdAGmWl51vTWt2+9HrgoJVRT9vjWJ25qdaa2Lcw6iVc6SIAvm697yctMP9LP+OPnAH3aXW1CAdAfpz/3So2Ks729r3rE4rzMdI9qeXcWQSAcgMUAFvM8PQagwysKfQn3LPcCBv/P3nnHR1F1ffx3ZrbvJpveaKHX0BFBxQEES2yPXbChoigqPvKowYJrJfraFUVRsSv2QuzAYMOGIL0TSnrdJNtn5r5/zAYjQkiDTbnfzyewM3Pn3jO7U86ce0ryeUxP4wYAGoOQgTplltsr5XFKZnSVaDRGWhBOxIiqFkXFwEpTrvMFDt/64BwtH9brAZgliT3RxPE4ESQ3O5Mde98LgsNUdQ6A6yMtT2ugOu+4fIBVXnjToqL62unprLoPBvDJ/PHP++bPWDYGiL4YAALungvmz1i2rYElXQEAMs5+DsC9y8ee9splHz6/BwdRSsPLB+3zr5JRxwmkaN2jt71W3zgCo6EAfk+f5j+o9XN96bCrzaKPjUld/gpwZUPF/wd2j1jMiJU2aWdOvTAIywDcCd0tRIk1l35bFXSeUlbV504At/W/a/H3x6T8uFEgzbV872l9EX7BOQJBPn0BXAHgTwD1nnPtifSsHBFAOoD+vWI23gr0Px4gQfu7WhyhfWUBqBerTygFqDLScnAihyUgxAJY0Zw+mqSwjkj++bhVRWNxavcPxfqsNHU4CYAdAFdY2ygMtDGvphsvUvI3XQA6bFCLHe4rPXCmAdgKAEZbYVbIm3Kgj2mDlYTC8UNLU5av2VSUmNZ19uIl1zVG4PSsHALSjgfw1TPXvJF3qHa5iyzWbjANC5jZ6wdLgZCelZMCdD2WoD1bXz+Hw6iQEaAGF17gNJzc7MyV6Vk5ExFWRFffe8XKWQun0uc7LxypMfFiBrp6xb5TJgJsOnQLrEBgSnpWzmUAPs3NzmyQu9fhkCS2QZaptySxw2aUaYukZ+UYJnb9/MSqQOwxvxcdLwAYkGAtPFWkeKfKjAIAbK8cgHAmDUAPZHwZwB4cmReEVonNJ7oBtKogQM7Ro+xpmzUOhl4Eeq85/TRJYa0KOqsAQNXEBvmjSBI7pynjcFoPRd5OywHcmJ6VI+RmZ3b4NGVGW9GxJCiHs66OITjCwRTslu5f/fnV7apxcvjhpeAQ6aIOR1+srtqD3qfOXD5DnD9+QYNLN/aPWyNtKh+aDuCB+toZFDqVQIbyuJA37SDbHcaqW2pC0QYG4ZlGiv4PNGIpmoBVTZ3m4dRPWBnarxA9Nf0t9hTwO4DfL3/2xtv8ivXSXwtPnAHgGIDAQEYA7wBA/7ve88aYy30Fni7fANg1KGGVOdZctueHvMlfANiTm51Z771flukMAE5JYm+2B2X14qf+Z1tZML4HgAH94taer2jGIdsr+wcA9F2654y6M927DaQUDoj/a8O60pGLAGy0GjwxPsX+EfQX1BCA1zuKoloLA3MCqOLVZzomXpt2cnw5CYXJQUdzrF5NelZsqxi4AwC+2X02d6DuMGg7AMHcLXp7DwAdvoyiGrLFWuO31KuwApAYhLC/Ghm6FwXvUAPxFrNz56MBd49y6FkCGv3gikHpj1swbPTvmDACQH2pqf6B3VjjIqg4rtOyZfXNjHTOM8UAQFS1+NKB225aeEkU0amzu0Tt2vnDnTdsa6zsteQuslBXmOIqYpWeDSmXx2lZXrvhGQXAovSsnM0AlgLMBEAFaB4AtZNj95meUFQygGMBXLC+dEStG9hTALRBd7/td5iqKws9nb8DkDsi+WeHWfRv/Dl/wnd9Y9ftmzMa12woHdLzyjmfdtOYYVlbUdAq70m9qEK0nrfEPog9VnLNFoAGOIzu473KuP2n6ebyDMRbikMA+xKgJb1jN9R0j96++5vdZ32Sm51Zc7B+61q728p30ZJ4bdooxcBqeNRuxyS2wpAMAMTwbXP6aY4PK2uopW3nq+Y7rH7hrNRC0/98Fu3XouSQ0e4R1MRSo+azaKhvudKpUGWMaoipFJUYt4E1ZdnuEccaFIwl0DKeoLxpTOj6RfSyPaejd8zG0wE8GWl5Isn8GcssQJTRUzjycNMbMkD6XCBjyjHb/BKAT69++OpbmzP+r5j0HIDZe9BnOBqhsP5VMiotzlK29c0bn9x1mKYjAFRH1YjrDtzw7e4zz/cpdmFo4m/zGyf1P0ksMcQIjBBTKSpwOcfw6zIy/O06QBL+oUxl3l/bJj0rxzC52yejSn3Jvf4sHmMAkJ7m2HteuT/BBj3JfadVRWP3G8+2VGQoNyx9U6sJRRsB4X4ArgnzHt1EoHU73P3WA/CNTVs2otyfsH1z+eBNAPwTui7pV+xN3bm+dESuQIp/crdPE0p9Kfl/FB1X6jSV+/rEbgy8/995TZ7ZCQc97T/GmxZemrx0T2Z3TyiqbyfH7klWg+ekBLemvW3ypkarXlxdtRLLSVL/ZH23GYXQ5uFJKzdvKh/8iicUvdppqti6ynVlHZeJw7vFHWjt7miYgkI1Ma3DGzo6Kg6PmAKAJReblh+2cT00SWEdmvjrCWtLRzTMuu9yjukO8/2kR0Z+b/ULSN9t3r/5cMsxbgNi3IZmLQNAuBwYU++L3lPjUK1WnyCbQsImr1X1V8Sq9phK8Vu7V9wOoBgut9LAr6LD4AlFLQOAdaUj+Awu0Dn8f70+Wcfgu7W/YSIALL9m9eqMlPK0eAi4uQXG3wWwAjP8EwEsaMgO6Vk5FwDmXmX+pMP6kfvN2hmChj2mO6v/oSDoPrD26wFs+iFv8pNNkjyM3SueCQBGRTgewFK4nLw0a4Q4nDKVm52pAAe2ybyn9lN6Vo75lPSPjhtRWTSpu1B4Tk7VxD++F/ueWhOi2HATQ25V7wyNGTJq9/k5f8I/xli25/T9nzVmwFe55+5fdgfj8HvR8eiR9ZmiQawhaIFYS2m8X7EVeRVHkYFCSpfoXb0q/XHbKgIJe82ij/WJ3TCoyJu2ttiblmsWvZ0JlosZiABiPed87FbZRbWyIb+mSyjZlq9eZvxqNxFSCYAFQfUd8wP3ml3l94PTbIwKwaiIGyItBycyKCIbKarIJVdVs3zjm6R8uIOx5WhghgD8M3G5phFbXpqgqDavsM3hEfMVkZnL45Rj7R5hi90rFoYMmrUiVj3GUSNssvnE4qBRs1XGqKMcNcJGm08sCRo1R2WMOiKqWlxv9QtlAZMW7Xaqw6KqxbVWv1DhN2sxVdHqkOgq8S9LQKhURHaKqOJ40tO7gAGCQaEoY4gmADjf5hPJ5hMB4C59O2OhB6OYQaENAqM9PoumVkepztgKw0dGhXa5oxVvZYxaHlduWBf1v5oOo9j+WnDiGgBKkbdTXKRliTQx6V9PqMw9GY7UXzTdwHRwEpE/HiCaXPybN3lbr0RHpx+XXHb33Nzmjl84fig7cfkifwnS/tOQ9uESqm+Gk/xfl56V8/6hpiWrH3UYbCGhc0WssibhgG3Hd/r2kh/zJo0gqNfvyj6zWblTg0YtyxgihF9kGx18xmk95GZnBuCa4mNgtwEQJhq2dluknHrjfbjsKYT9NjVmmAjgVwAmi+i1Tuj6Rbd91d3Y2tJRiln02cZ1/mbknqoeVVsqMqrMot8xOuV7aU9198Lcqt4VZtEXlZGwamJeTbe9BZ4uFSYxGJNizz++wNNpr1dxVBNpMYpmMAZUSwIAp6IZHblVvdK8IUc3AIaAajPVEZcAyhudsuKPEl/KBzvdfWUGYecvc69V4LptDAP7iQFEoKAZ6ndH/9tsnzCwKAA13Ie1YxI0aSeFjKyquS4hTVJYd7n77ALgb2BzmUABhG9cAqO7k2Z69z+YDADqlk8yHrBsOsyy+YBlS/hvf/8u53IAS2vHN2h0oeG2Gn18l9NYnBjqGTBro9PyTdWiRkk1Du3YoIkdG1cu5gHoZApSz8QSQxSBTgQAZ5UBzioDGJgGl7M4aNQCPqtmja4SPyVQvjtaMdY4NLVTvukzAPnVDrW4PSi2udmZSo+sz/Zajd6hkZYl0qghWw8AMEfvrbdqy2qcEAsAqet7DQewrTrv+PNaSgYjgl+VI/m67st/7Lpr/PH1JfcHdGWw9lqvVzmMqhH7AaDYCsPTB24r8qTdYzPUsJO6ff6BXrSoaZQ/ZbdFa2Jf6NFnKjpQep92jFRrFAAgXmn4KuE+5bKD+W369b/zD8gDe97v/1w+950DtjfZ0tk96/PjGOhbAEaAQiozXrP45kf+ff673CuV+6PeMKrCZQBO5xb/liF3kcWcDrOtODE0lJdK7IC4nAYrBFETNLm5XTXHh7VhFlaXeyVczv03rqN+E6hvfJc7lARshv4HAIg6YIpVBLD3JYulyz5zPIC0srjQ2JCRjUgpMuUCSFUMbIwxRPEEOhNAkrPKQHoOBdwNAI4agQUfjFJNIWEtgIJqh2oPmLVgQpnxIwD5JQkh5rNqe7vuNW9o7a4I3Z3bonyK7cRIyxFpqvNOcAJA2Zbz6/298tE9GQAS3ZQGsJNnLpjQ5ITJB7Ieo18GcJ0PjodTlq95unD80PquKxl65avaKGW5nrYXAICo0T9eSNOzcjoDA9ITrYWvPz39zWaVUo2rMPwHAHkt6j02v6jLw5WDto4MQIN+ywzhbyU14r/rruwzfmpo0JNRFb4EcBkAXi64hYitEKMAwOKnf/nEczoE3QlkdHjEr5rbUZMU1oyEP8Ztr+znaPAO+sMocjeuZo7f5Wq/H0AegLx4PS3Mfv5RpcflNOalBfsRw4C0ApMfQGpljDqZGLqZ3EIhgE4Wv9DPUSNYAEwGgMTS/RlRNLicxX6zJoaMrCaqRvwOQH5pfCheFbEvudi4FBG22HpCjh+LfSmT0rNyKDc7s0OW09QT/+PqcGqqL+bPWDbxUJH+nd1VZ5VZHIixbi2++ulrv2lhUaxhGS4E6KyU5WsmHkppDQfW3AXgYYBmHPKB7XKOYWB3AgCBXoHLubuOInk9QFTiS3W1gOzTAey0+cUH4HJ3+BRp7QKXe2XNI45lDq84KWTQzjDeVR1xRbUuDVWePTa1yO4VUR6rjIsDuILVAjirDDYAiK428O+zA1JjV8c6PCJUgW0WD9+8XpqksFYG4ko0JjbUJaDj4HKHOuk3uf0XZuwBFlsjgLKn7ab4ckMigLSipNAkUUVqQpmxAkBqyMgmGUPkgD7nmpRQZvyH24+jRkDogWifUaFNAAoqYpRUADtjKw3fAcjPTw3aGGF9p3zTlpa22BZ6O/8A4GwAceigJRYBSAATwv6gFhxien3+jGXjDZLj+DhFRcDdK3r+jGVjmpLC6lDEoujKCuiZQtAAH9A0+56N+Z6u6OncXF1PVLMEQCAQ6vZ508JLYq2GM2+1Grwr/3Rdkdscufe8bJncFeYTvVbtUdvt1VxZbUd4HNp2h1ecVBavVLXVCiNl8Uq+3SsiaNJOAtCsTBgcnYBJizMHBWjEaoTDN+e0Mzx27SKHR0Rep+Ders3sq0kK697qHrsBDG7m2B2W+Js8QYQttskHWGyj6i64nMY9XQIZVp/QKbHUKABILYtXzjMHBMFYI/oAdLJ7hAxjiIYDOA8A0gr2xxdocDmLPTbVQQy7bD7xFwD5hcnBHsaQ8Gt8ueFXVWD5e7sEy9Kn+Rs0VW0z1OzxKg70itk0HMhsVj61NowMUABgVujKYv6BDRY/Nb2nYMz8tNzhRLcSBQAZ0MJBRVWIDf9mTG1IAYLBiX848z1d0TV653AAHx2imUx6JZ7907oAsLp49AyfYjeMTVv2vl5ls+nEVhiu0YihJDH0erdm9cRpbSQXGz8GcF1Kkcl22MatFE3AVgbmSS4y8qpMLURJYmhU5zwzClJDvTpFWhjOUSeuXPSqAivvepV/X3P7OvI+rJym43KHuuo1uP+sXZVwgMXWBMDziMNo94pJDCwtPy10dlS1gOhqg8rA0hQDO9PqE5wAzmRgSSlFJgJwKQCIGqHbbhPU+6KrRI22a8SKK2LVdHOAfnZ4xN8UkRUXpAYdFr/wa2KpMeljW+KZc6pnwuHYcybQvATAbZWZCyasnD9j2USATgFwPYBb5s9Y9s7MBROCADB/xrJOgvGM5QFmjqqyi4jdFdBwBIKKVJiGAtgM0OsA5MP4sGJj2ZC/AGBV0djcQzbS/b2XQE99cDJc7pV6KqseFwFsrcNY/a9ArEbhcpqiII5jYB93u9LPpwfbH7XBf10iKkUzSJ/mZ3A5dwLoHmlZ2gvRVYYaALD6BJ7WqgNiVISuqKPDNIcmKawD4teckF/ThQf8tRLst9WEAOQRkNepjsWWANRNI1H+tN1U41AzYisMMdHVoiNo1LpXxqj/cdQIXotfAICuUdVCP2OI+gG40qASuuzTc+IyMPQJluAt00O4p3hqhy5YEp7aXzl/xnerAOHTqM4/fAZMOGXBrI/6AzFfaiFHTO6wnXcByQ9oovoRgMdb0h3g6uW3ZACXHWtH1YM7xo+b15B99lT3LAaAqmCMqb52VVFqnNUniMa7qlYCQK+YTf/ZXtl/MEBXPzX9reamsrrQFBISCbSwOf1wWiflsUp+XIUBpfGhcxOANyMtT1MJmLQqYhhZ74XCaTDR1WIIAOIqDDsiLQvn6JK7yELdYBqkinijJRK4N8mlpMIfVxRUTQctQcdpHcgyCeH/zbJM58gy9Yu/yRPc1SOw+88RnptkqSpkurP6yY0DfVf/NtpzyvcnVr8t3FM18Ofjavp9P64aq4d6bqqxq+NzuwVeKo9R3ACY7iypIEPbOzCyR9c6mLngpM/sSat3V+8bM3nBrA+/YaphHUiJBiCV9Ml1AEB0/0+XtKSyCgDlSLwFAMbj4wZXuYo1l1YBgM1QPTVc9eegqCJzMGL77y0Cqc/aDDWq01T+dnNkhss5RiO2ICRqAQAtHYDGaQXEzfJUKyILmYL7Cwa0SaqjVKuoUkruIgtPG9oCBI1aMgAoIquOtCycowsxjCaQpTQhZG+J/pqksBZ4uu7zKlGlLSEAp/HIMo2QZeod/kyyTE/LMp0XXjbJMlUByAo3FwF8CKA2ybwPQDr+dpfNAzAbwKrw8g4mIMEdo8533Fojp0/zT4+rNJxKID8ARYWgLadBHdrCWhe/u9ssQCQ1EDtJU+yiNW7LvTMXTPjzd4wPAoAPthZ3nfgZp6QaENxthu/zhu5TGYgbBjB4FcdYAEsPpbTGVhr+MIWEMgBIz8pJ31oxMLlL1K6cv+67tOkVSvTsA8ssQdFmUMkA4Jgm98Vp1RhU2hBdbfBEWo7mEFNpeFvUCOm7zXwWsQWoiFUmAkBepyCPuepgpOWbEgDA4hc+aIn+mnoCcR/WFkSWKVGWqXOd5etkmS6os7xClunROrt8BeC/ACBJjEEP+x4YXg4CeA5h1wBJYl4AwwA8H172SBIbIklsce12SWKPSxLbGF5WJImVSRL7O4JbT200EcDce6zn5P1Bvbl/Vxg1EDcAoNrvSvGVDbQBQBXi0wCUvjP+vn8FZTWHlOVrnABNUGB6b/74BQ2eomcQJP3TPzIAHI4bAGJbKjJmNl7SfyARyKyPTqyBY3PaJnvRhn1YAcCg0pbwRxdczkPORnAaRlS1mAcAgvbvAFVO+8ao6Ia1GLfhx5bor0luBX1i14+tDMTFt4QAbZ2M1zLGQH8AlwJIACA/0239LwDsksRqAECWaTIAhySxj8LLTwEQJYndEO7ma+jR5rUFta8BsBPAe+HlVQC21Rn2AuiWUQCAJLGedWWSJJZ1wPKaZh0ksD+X7bL7FiZXBWNnpWfl2HOzM9u0JaWFkAGEK7n9Ha0fhYpRQZibHRV5IMfhyzt+wqnGZOz9GhjaSDkpAMCs528l+WCNqqLU/laf4Jz1wrQkg3DmTAL7bNtD5zTrOCqdiuB0iwRAowZkNOC0XSqditNRIw5oCX+1SBE0akmmkAAGdg2BLofLOZEXtmg6Np/oB+AL5zPndCD8JvVcU1DwC6BeaIFiHE26r1T44wv9qrVD+fdkvJZxIoDzAWwfaK2KNhLrucbrDAC4GmGzFcAYQP713qhfB9mq4/F36q8bAHTF3+mEFOhVYWq5B0Bd5e9YSWL7U01JErulriySxJa32IE1kmJv2i8AZgHoAZ5Yu07WAL2KTq2/qghlUB9szgXGtuh4eUg/JQrl2vHIkYEzGrxfuHjAeIvoedGvWgdN7vZpD+DfBQQEDQmCxszdKv0vKJrJMqnbZ18B5zRLZoNC16oiGIBHDSo+4Q//9osqsgKDSmL5U/bYuFmeisPv0foQVerGwEAgAQ3Iccypn5CBJRsUeDqUwsABXM4JZgjHhZeWtsSLX5MU1hJfaiH2K2ntn8x3el4LWBfUHvIGX/QhWhIBzPpeeap9Z8C24sbXMuYAkJ/phmugW+EAAJLEZtfdS5LY5wcst1gJz5YmwVq4r9SXgr6x604AMju8wgr8nTWgdjll+RobkCia4V/SkuOkLF9zItC/H6B+Pn/8gka75ORmZ6688cVLT1+6J3PLin0nz0nPynk3Nzvz735czjEOiL0ZgzjL++3ZfwmD82yGmuZF9Luckx0Qu3hs6jz7bTV3NKsvTqsnvtz4KYAL4yoMqQDapsKq0VcM7A7oz0cNfEagWdQ41HEWv+C0RloQztHmEQA4sBBNczpsog8rE/WE5e2bjNcyxmS8lvHs3qClbv5J1ULq86c4iwcAOAF6EFP4u2AMACpU06hvqxJvANgDAJbeuHtQd0libfLmfSBjUlfkA0CspeyUSMvSiukFAEXo0mJWmZTla8YA7GsAJkA8RV9uPM9c88ZurxI1LaBaBwK49oDNEmMQiAADFAyjnSmf7phybFNlzl1kMTKw/wOwy+4V721qP5w2RW3C/eYWtYkcLvdKAkkAdjEwdU+XVms/aBPYPcI+g0K8EEMHwv24/UYAIwikQJ9RbhFXsCYprD2cW0d1icrt39zBWzNh39RlAGYyCEYAQehffNDPxDf+7+yiTesuX/cj9GCkuwFcA9CdAI0F8HjYT7DulFK74JlrXt8pQK3+o2hsYaRlaa30xyoJAJKxt8Vu0iJCkwCY9y8275x6VyB1mUEIPn7ji5fur1iXx+JXBmEAY/qN4VetH5ozjjlA8wk0uNqhPg6Xmz/1OwAFKcEaAChMDp4faVmahcv9U7VDPU0TYIkrN3wKl5NHuDcRU0hQjVxh7TDkv2AdaveIT/ksWgGA8QDmAmgRP/Cm+rAWMZCxuYO3ciSAmcI14zWAXoFeyUVed/m6/V98+PM/foiM1zJAwCwGiABTDhXg0lbRIG7VNJFX1jwEMSg5FQDG4qvdjfEzrQ8NQt8652Kz3lZzszPZdS9cOe/b3Wd8uzJfeic9K+fNKGOlqTr0zLThtJWmiV/iDMOvyBB2aX+o/Zo2jstpTSbjWT6LVlIWrzwfdfg9OO2AgJltYmCwecU2PwMc9b+azaXP2B5PKDPOBnAzgMcjLFKbRCXWlRgUweUcw/3X2zkup5gK4xOMECxJDF3S9Sr/jwBaJEMA0NTCAYGE0spAfEFLCdFKkenvwCgVwOvrLl83r66yeijWXb5uJQOdC4AB1O7K0TlN5RVWQ82wSMvRWvkdEwoFKOXPj5+fd/jWhydl+ZpJDOIUAJ8AdBeAiYcrxXo4nr/2le+MQvCdUn/KAIA9VB2KcQGa+ifrM+5m5YaxO7TUbXcZ3gzlWqY01TJyk8AoyeoXzk+f5m/37kMcnfRp/gCB8qKrxWCkZWkJEsqMtwL4jIE9VPmEvcnuMR0Wl3OMwJBOupvUUp4mrH2jEbuVQJLA6LquV/mXtXT/TVJYCZqBoLXrh1BY6bxLX6KrG6KoHkCx7tPKRgBsadjFoF3QK3aTNaBaE2ctnNrmrShHAgWmHhoMm1qirxnLb+jnQOUSIwI7AUwtHD90XnOV1Vp8iiMsIwFgTCDt1dzszB92ZJ+5sqdQcIpAmlgVpX7f2H49jzgu0MAe0MB+hsu9oiVk5bQp9qCN52Ldj8vNAExXRTBjiJblLrK0SMWeDoQE7A+8sWjEmpdyhNNq2fuSZSqAeUGj9h2AV4/EGE1SWDtH7R7c3blt8OFbtnm2hv9f24R9xwMQGpmovU2ws7LvYo2J+HTHlPvqK/PZUTHDOyQOReXN7Sdl+RpainMX+mEzTsbi2wrHD/W2hHx1+A560KACkF9jhu/2b3G5dxYnKcuiq8Xu/nlRUxvco8t5jc0rvEuAgYCR3KLS8XBHK/F+s3Z8pOVoMVzu4qLk0ON2r2jttts0J9LitDFkAvkAaAyMwPC/iiftX8LljIm0YJwWxOW0p+WbHlAMLFCQGro2/KLX4jRJYXUHYovdgdh270SdbPCPA4BEQ2BcE3YfVGu5aq7PYWujIpCghD/egnrKfHZErlk+KykAm7MvVpsP3/qw3FiN2OMZ6L8vj3/8wxbo7x/kZmfur2AGYGJ4eT8+q3YuA1trCQjZcDnrdUPNXWTp5MuOeh/AAgBEoNo8llJLy81p9Ww3BUmEy9luUh92usZ3J4BFBJrDX8Iawd9VEu/yWbXLK2PVHTGV4skAdij3R9+eu8jC3dvbB4+JGnUzhYRTu13p33mkBmmSwloVjHGX+ZNaxD+vtZLxWsaYYsV8AwCUKKZHGzOlf/a7PbIBXAzgfT1zACY2waWgNZOiZ0FAu8uC0Fw+w7RTAOAvjP21Of1cufx/FxDUxwC2RIXx6cPv0TRyszNX5mZnzjtQWQWA9Gl+H4GuYWCdauzqG4fsxOU8o1OecZvFT+dpYB+GLSotlsqE07ZwVhm+FhiJABIjLUsLc7MqsGK/WVu661VzUqSFaTO43Cvhcs+z3V7zetwsTy8CDQewyqBSdkqhsTz0QNTlPAtD2yXvReuDAK7ViD0Gl/uIFjVqog+rahRIOSIm31aExEBhCwGZTKQ98r9PkpMPt9OU97pdsytguz3Z4N8E4OKGBmq1Mb4i3T8X4ErJfsK5URcCgBfRtzU1V2rK8jX2n3HygmhUCCdj8azC8UMjd6253L9WxKq/2z3CWcXzbWfX3bT7FUuGdm/0hwA+EzTat69z8CrBVXU+6lhteVRwh2QvAGjE2m4u1oPhclcVpAbnmQNkTcs3PRlpcdosLvcauNyT89KCWcRQalSEVwH8Wv6U/aJIi8ZpJC5nakqh8b8em+rd0zXoOtLDEWONfxaOvu9Ff4y5vOzr27M6HQGZWgVhi+pSAKbwKtEmKIpXE2cBtBZ60QB53eXrVt72STKpDN3lqvgzghAetpBaeWJ0+bBHzy5qt5kU+t+1+Haf4sgGcGduduZDkZanNZCyfM0cgN0PkBh2BbmzcPzQeU3o50WAXd0fq6YuH3/1O0dC1saQu8jSpese0xqB0R4AowCoAZN2g6jSU6IKjUD3APg/uNztIjKc0zzyXrRe0CnftNhjVVfYfeKc9vbSwlzRjxHoFgCnweX+MtLytGlcThHAVI3YPIFRmsembrB7xQvhcre77DrtDpdzLPTgqq5VUeqY6Nk1q4/0kE2ysFYHneVl/sQj5qfQGghbRWuLApwwPqr0KhHYAtB8gH0PsIcA9lPGaxmFX7oTg99UJe0IQnwSILOfGZxfu5PSI3oARxif4ngUwD6AtZ/giuYjAwgCDKRbn+XGdnDm8kfvAjAdoIdbg7IKAOnT/HsFRtcAGKoR+wHAb+ag8LRiYDv3dQ6eDpf7Qa6scmqJLzXEAIDNJ4xDO0xlRKA7Gdh6VWCLd79i6RVpedo0LrcKl/v1PV2Dg4qSQl/avEJXAGtDD0S/tfsVC0+d2ErxPuyYwcB+BNAbAEVXi5ajMW6TFFav4vCU+lL2tbQwrY11l69bWTul//Q5Ba9Ua4YMAK8BoHD0PwHIM5P2bJIhsFFP6g5AL8ggRUbqo0NudqaaHr1tBYGdOvOFK0ZGWp7WgJ5uiiYK0H5nEPwAVjVm/+OWv9l7PUbfl4ZdFdCn1FsT+QxMExgdy8BGAnjEEhD6dLna/1WkBeO0LixB4QoAIN2lqv35uLvc/vy00D3EEJVUbMiBy8kDsZpJ+jR/RfL13tMI1APA0wYFF3XeZ/pTuzf6IbicE/l3HHlyF1mMnkccU+Fyfmvzic8jrARB1yOloyFDk31YDULHM6isu3wdA/AC9geVkA/ADX9ctvG/xYr5aoAC6EDBJgPi/1rIIGBV0ZhLIi1La6Fw/NCVGsQHAFgBHNfQ/VKWrzHswKBXfLB5R2DFuYXjh4aOnJRNQkLYaRl6IY1KuNzaoZtzOiK5iyzdGdgIBqaiHd8LO13j+yhkYO9a/WIfAA+gHVqSI4LLXQqX+797uwQnBMzaTwKjOQC+Y2APMrBl/DuOAC6nEy7nzakFxiq7V3wTQD8AzwPw4yhf401SWGPMFZ37xq4f1dLCtAXquArMRZ3o/0Otb888d+2iFQCWF3o7n5GelcOjPMPY4V4uQNWG4KcGW0ljUPowgOMZxGsXjn/yiEZaNhGZQEEASvh/OcLycFohMRXiGwQy+SzaC2jngXfmkFCbp5tnS2lhul7lX2G7veZ4AM8xsFprvQXAe+p90Q/tW2i5JneRpSVSB3IOwd6XLJMqnrT/wsDyADwBYHd+avBxAD3gcl9PoAk4ytd4k4Ku+tz5YXmMufyX3+ZOP+0IyMRpQ6Rn5VwC4A2bofptrxL17MHSI3VEhi7/tLwS8SY/HJMOV5nq0uVzZnyH855PwV559fizxx8tGRuNbt2QAMjtVQnhNI3SZ2xDE8qMcxnYfwAgnNqs3SqrAOCfF3WmJSB8ysAYgfxo58cbEVzOMQxsKQAzAI1AmxjYQAIJGrEagdGXAZP2Q2FK6OduV/ob5YLF+Te5iyxi1z2mUwRGNwA4RSMGxcA+MYWE++Fy/xlp+ZqksKZn5RQC+Cw3O/OalhepfRFOqi8BkNujMtfrjo/HK5oxXDNYf0i1x+NsDOF0ViugW138ACYcSmlNWb5mMsDes6JaOAWL+z4/fn67zSzBaYe4nANr7OqLdo8wFoAaLhZB0KcK58LlbnSWjLZC3ovWTp3yTfv8ZnWVJSDeyJXVI8QBL8p7X7J0E1WalVJojBMYTQKQBgAasU0CoyU1dvXn0gRlafo0f3UkxW5TuJxRPos2C8Bcq18wAihQBfbivs7B97pd6d8YafFqMTRtN80qkDYsPStnTEsoJ7MWTqU1JceIu6t6GY7v9K01wVoc9cn2qR4AhtEpK+LircWxX+w6vwiAYWTyTymxlrL4b3efuRuAYXjSyq4x5vKEZXsztwAwDEv6pZfdWB3/Y96kDQAMQxJ/6281eON+KZD+AmDISFiVYRb90X8UHbcGgGFA/OqhRiHk+KvkmDUADH1j1w0TSLVsKh+6DoChV8ymYQAzbq8csAGAobtz61CNCbS7qtc2AIYuUbsGKZqBFXi67AZgSLHt6xvSjGqZP7kAQDTAeuhHSSw9K2dt16id8SoTKvJq0v8C4BmUsGpQULUUbq0Y+AcAz7Gp8kBvyL5vbemovwB4x3f5orMn5Mj7rXDcTgDe07q/D6MQKntq+lutwsdR0UxjddfGf5Sg7eg3bgn73W2YJQl5twJD/1FDe+byGbQRI+4DRt4BkOBDdOBjTE9/HuAKK6d143KO8VnU/5qCQlcRNNruEXxl8coqq1d4wu4TF0K/D7RL39W6dMo3eQDAEhALIy1Lu0Z/Edj/TOlytX839CqLgMtJ+anB04whmpZYaowFcLPDI95q9QmMuaKXEOgrd7SywnmLZwOfIfo3e162TIgvM8y0Q5xk9QtRHptaWpwYWphUYnSJc6uC3SIt4AE02sKqWwzZz+HdNZuhenuirSg5r7rbVoUZmd1YlRBlqkor9qbu1phIVoMnxmLwxlf644sYBNEoBBwGQbH7FJsHIANBMzIIrcX/UREpJIiksqBmqQag2Aw1DpFUVIecRQCUGHNZokCaVu5P3A1ASbbldQGgFHk7bQOgdIna2Vtjgj+vJn0zgJ4AGxhW5hiAXan2vbFexa64A3E1AOxm0Z8YUM30d8Bdg/EDzBtjLncqmrG0JhS9D2Dens4t/atD0TuKvWlbBFL9QxJ/G17mS1q/p7rnJqMQCB6b+n1GoafT2m2VA7bbDDXBEzp/2zmvpuvW9aUj8hzGKt+ErjkagZU/Nf0t9XAChK3HjwM4FnogThDcwlprYV0KMBPARBGqpsJ4FwBY4Nnqh70PwC4DqF8dZV8BMLcpeVs5nKOGy3kCA5PDllQoAnMTcIuo0Z9VUWpxVLXQjUAS/lZW9c+tXUFwOSm3W8BkDJGhU76JARD3dAk4TUFCSpEpAEDc2zmQmlBiHGANCMdqxCqqHep/nNWGQQA0AAFwl4DI43I6CpODs6w+4SRnlaEbgO4AEDRoPpMiGAEIDEzz2NWXHB7DUgBqQUpwsClIRfHlxl0A1Ly04ABzgAoTyoz7AKh7Owd6WX1CcUKZsRCAuqdLoLPVJ5QllhrLNGLq3i7BOJtXcCeWGqsVkan7OgfNVp/gTS42BooTQ8rGgT4mSU2Yyj4S/K20ewBMZmCZjABieJNAz8Dl/i2yAtZPUxTWOXoOUl0JMwr+4k6Ovea8mq7rQprZE2Mui02yFXTd5e79R0gzexOshQnJtvz0rRUDfwppZl+qfW9ysi0/fX3ZsBWKZvJ3idqZlmLP7/pn0bHLVGYIdXdu6ZRiy++8skBaCpDSJ3ZDpyRbfsqPeZNWAFAGxK9JS7IWJMj7Tv0ZgDI44Y/UeGtx9PK9p/0JQBme9HNinKXM8t2eMzYBUEanrohxmiqEb3afvQeAMjZtqcVhrGHf7D6rHIAyvssXiDZVBj/dMUXJzc5s0ZMqrNAtxd8Wh4Mqc+lZObUO5bbM7u/3zvd0EVcXHxsAYBvf5YsTCjydPJvLh1QAmu3Y1O9PK/B0Ltld1auUoNkHxK+ZXOJNLS72pVYSVEeaY++IykC82xOKCgKawyQEE4Jak1Kk+QSofqelItoXsuX5VVuxSfSrXaN29SjxJa91B+ICADsZgAhAA+hFAK93dGW1lrDSKnXCzp356HY3gzjw7yB7AoAfOmP7rn3oeQFABoTPj8P5u3I4EcXlvAvAfQAoHAzzj80aMRDDLgJVMbAMAAKBFAAfVUWpMYqBJcRVGFYBEKsdaj9VZDExbsMaAGKNXe2nCcwRXW1YD0D02NS+jGBxeMQtAESvVe3FCCa7V9wFQPBZtO4ARKtfyAMgBkxaZwBkDgolAMSgUUsmRsyoUBUAURFZDDEwUaMAAFEjZiG2P/1Wo9HAQEDtd9DuXSDaHC4nAehVlBR6IK7McIJRpdRIicLANAIpDExVRVgFDV6BkY+BaUETizcoVC5qVKMRQ8DM0owhKjSoVKkKzOCzaunmgLDbqFC5IjKT16b1tvpom1ERykIGZvXY1b42r7DRFBLKgkbN7rFr/e0e4S9TSCgPmLToGofaP6paXGUKCWYGdh4AMXzOlnut2rsliaEXu13p/ytS301jaKKF9fBKGEenNfiwhiP4LXGWkqjRqd/32loxQNlR2V+LMZfFDU/6Zcz2yv5Fe6p7+KJNFUkD4v86cae7T26xN83rMFYld4veMXZvdXpuVTA2aBG9ifHWkgGlvqSSgGp1AixGV76YCtDdudmZ/GZ9EFKWr7kbwL0ACGCMwB4rGD/81vC2/ecHV1Y5rR7dQrMUgJGBhWrs2swoj7gJQKeKGGW8KrIhCWXGPQDGMLDudRRavyowaAIzGhWhBIAaMrBoTWAmc1DYB716WrwmwGT1CzsBqH6zlqYJzGjziVsAqF6r2k0TIDo84kYAao1d7ckIFFUjrgegVkWp/QBo0dXiXwBUd7QyCEDIWWX4C4BaEaMMIQZ/jFtfLo9VhgkaamLchrUAtNL40AhRJXdspWEdALU4MTTKoFBZXIVhIwDVa1GvsvqFEWEFV2VgrxDoEtR5FnILayvl7/PWxMAUn1W72eYTfwQg7usUGGjxCzUJZcYSAGJeWnC4xS9UxJcbisLLY2xeoTi20lDAwAwFqaETbF4hL8ZtKNCImYuTQifYvOKe6GqxQBWYpTRBGWfzCruiasRCVWC2snjleLtH2Gn3isWKyGyVMcpxNq+w3eYTSxWR2d1O9Vi7R9hmCQgVisgc1VHqCJtX2GEOCm5FZFEeuzrY6hN2mkJCjSKyKJ9V62v1CXsMKvlUgTn8Fq27xS/kixoFVYHZQ0aWagpSqcBI1YhZFQOLM4aoikBmBmYhUK0CfQ9c7gci+rs0kqYGXUVcCeNEFv7i0nD+dhH4+7viyimnzdIQX8A6ii3aizJ3sGPSkdAW3B46Oh3dh7UdXJNNUlg5HIC/uDQGbknldDjao4LQHo+J03Fo4+cvV1g5HA6Hw+FwOK2a1hKdz+FwOBwOh8PhHBSusHI4HA6Hw+FwWjVcYeVwOBwOh8PhtGq4wsrhcDgcDofDadVwhZXD4XA4HA6H06rhCiuHw+FwOBwOp1XDFVYOh8PhcDgcTquGK6wcDofD4XA4nFYNV1g5HA6Hw+FwOK0arrByOBwOh8PhcFo1XGHlcDgcDofD4bRquMLK4XA4HA6Hw2nVcIWVw+FwOBwOh9Oq4Qorh8PhcDgcDqdVwxVWDofD4XA4HE6rhiusHA6Hw+FwOJxWDVdYORwOh8PhcDitGq6wcjgcDofD4XBaNVxh5XA4HA6Hw+G0aiKusBKRRESMiBIiMLaLiNYfZF1RWKYrDrWuAX3nEtH/Wl5qDuefEJFMRM+2UF/XENEeItKIyHWodRwOh8NpHbTkM6A1YziagxGRDGA9Y+yGozluPTwK4JnaBSIaBOAeAOcAWAnAfbB1LTFw+MF/HmNsUEv0x+nQnAMg1NxOiCgWwHwAtwD4AED1wdY1dxwOh8PpCBDRqwASGGOnt1B/VwB4ljHmaIn+2hpHVWFtbTDGagDU1FnVK/z/J4wxBgBE9K917RkiEgAQY0yNtCychsEYK69vOxGZGGPBBnTVDfo9YQljrCC879AD13E4HA7n6EJExkjLEGmOmktA+E3jRAAzw1PrjIjS6zQZQkS/EpGXiP4gouEH7D+WiFaEt+cR0fNEFH2YMQcQUQ4RVRNRMRG9Q0QpdbbvdwkIWzw/Dm/SwvL9a12dfacR0UYi8hPRViL6b1jZa8h3cQV0q+3AOt/FFeFtXYno47DM1UT0ERF1Dm9zEFGIiEbX6WsfEW2qszyJiDy1JzcROYnoxfDxV4e/w5F1ZSGiGiI6LfxdBAH0b8hxcI4ORGQnotfDv1MREc0hoiXha+pf00FhdxQXEb1CRJUA3gqvzyaiLUTkC7d5hIgs4W1XAFgd7mJnnXPywHXp4fZnENGq8Pm/i4geJCLTkf82OO0VIhpHRL+Ez3N3+HkwqPYedUDbf7iS1bmPTSSi9eF74HIi6h6Zo+G0Ng51ftXZXq+OQUSnENEPRFRBROVE9DURHfJZGdYfLgeQWec5LxFRevjzyAPaMyI6L/y5ts3FRLSMiHwArgWwCIC9Tn+uQ4xtIqKHw/qBh4h+J6KTm/H1tQqOpg/rLOhT6osApIb/9tbZPg9AFoDhAMoAvEVEBABElAHgGwCfARgCfQp0KIBXDjUYEaUC+B7AegDHADgJgAPAZ4dQLB8FMD38uVa+g60DEU0H8BCAudCVu9kAbgdwfQO+BwBYDOAxAFvq9Ls4fLyfAEgGMAHAeABpAD4hIgpbhP8MrwcR9QbgBJAePl4AkAD8zBgLhfvLAdAJwOkAhoW/k2V12gOABcBd0C+IAQB2N/A4OEeHx6C/7P0H+nkxBMAJh9nnFgCbAYwEcEd4nQfAldDP2esBXATgzvC2xQBOCX8+Bvo5+f5B1u0N3/jeAvAsgIHhPs+Dfk1wOI2GiAwAPgXwI/TzezSApwA0ZqbHDGAO9PNxDIAYAAtaVFBOm+Rw51cDdQw7gCeh3wsl6O6Bn9fzov4ogPcAfIe/n/M/N1L0eQCeg/5c/gzAzQC8+KeOcjAWQX9mTAGQAeC1sKxDGjl+64IxdtT+AMjQ/S/qrpMAMAAn11l3XHhd5/Dy6wBePmC/oeE2SYcY6z4ASw9YFxve55jwsgu6T23t9vP0r+Qf+xxs3R4Alx6w7mYAG+ss5wL4Xz3fxT/GDq+bBP0CSq+zrgcADcBJ4eWHAXwd/jwdwJcAVgC4OLzuJwB3hj9PgO7yYD1gnDUAbgt/viL8nYw4mucC/2vYH/SXrCCAi+qsswOoAPBqePkf11X43Pu8AX3PALC9zvLI8LmQfph13wO4+4C+zg6faxTp74z/tb0/AHHh8+zEg2y7AkDNAetqnxsJddowAH3rtJkavnaESB8f/4vsX33nV3h7U3QMe/h5fXw9474K3Z2q7rr0cL8jD1jPoMe11G0z+4A2/7oWwuv3PwMA9AzrDF0PaPMJgOci/Vs05681+bCurfM5P/x/EoB9AEYA6EVEF9ZpQ+H/ewIoPkh/IwCMO3Aqqc4+vzVFSCJKBNAFwAtE9HydTYY6MjWV/gDyGWO5tSsYYzuJKB/6G9Z30E/MmaRP+UsAlkO/cCQi+hTAKAC3hXcfAcAGoCRsrK7FAv07qEWBrsRyWh89ARhR53xljHnogOwWB+GPA1eEp5tuhu6r7QAghv8aywgAxxDR7XXWCQCsAFIAcF9XTqNgjJWHXVy+JqKlAJYCeJ8xtrf+Pf9BgDG2pc5yPvRrJwZAvX7enPZNA86vw+oYRNQTwP3QrbOJ0O95AoCuR1D0f93HG8Bw6LJvPOC5bwawrCWEihStSWGtG+Vc6ysq1Pn/JQBPHGS/vEP0J0CfDj9Yaqmipgh4gEwz0Hjz/uEg/H3sB1K7/gfoJ94o6Cb/J6ErHy9At0yH8LdyI0A/1oNNH1fV+RxgPMiqtVJ7x2lswJ/nH50QHQvgXQD3AvgvgEoAZ+LQU0r1IYT7ef8g20qa0B+HA8bYNCJ6ErobypkAHiSis6Fbiw40BhwsAEU5sMvw/xFP38iJPIc6vxhjX6NhOsbn4c/Xhv9XAGwE0FjffS38//5zmg4dUOU5xPr6EKCf+6Pw7+wxvib012o42gprEE2z6PwJYCBjbHsj97kAwG7GWLNT/tTCGCsiojwAPRljrzejq4N9FxsBdCKi9ForKxH1gO7HujE8fg0R/QngGgBR0I/TCP0tbyrC/qvh/v6E7g+rMcZ2NkNWTuTYDv2mcwyAXQBARDYAgwDsaEQ/xwHIY4zdX7uCiLo1UaY/AfRr5PXI4RwWxthfAP4C8DARfQk9aOUNADYiimaM1b5oD42QiJw2zCHOr69xGB2DiOKhz4DOZIwtD68bjsPrUAd7zte+1NeNIxnawENoiA61GroynFIra3vhaL955kKfSkwnooRDBD8djIfD+y0gomFE1IuITieiF+rZZz70gKTFRDSaiHoQ0UmkR8xHNfM4XABuIz0zQF/SI1kvI6I5jegjF0A3Ihoe/i7M0Kf8/4IecDYiHEX4FvSLqa4pXwZwCYAfGGMqY8wP4NfwOrlOu++g+7R+SkSnElF3IhpDRPcS0eGCdjitAKYH2r0C/QY7kYgGQLcE1L5FN5St0F+GpoavhesAXNxEse4DMIWI7guf+/2I6DwieqSJ/XE6OOF7UzbpkdrdiGg8gMHQX9R/hW5pmhe+95+Lhge4cjiHO7+Aw+sYFQBKAUwPbzsRekDfgVb9A8kFMCisJyQQkZEx5gPwC4DbiWggEY1Fw2e6cgFYSM8GlBA2XvwDxthW6HrDq+H7cg8iGklE/yOicxo4TqvkaCusj0J/Q9gI/S2jQb4fjLG1AMZBd0ReAV2pm4d6pvYZY/nQrUoagK8AbICuxAbCf02GMfYS9EjUS8Oy/ADd4rmrEd18COAL6L40JdCDphj04JUS6IrncgCFAM4Ob6tlOfS3LLm+deF9ToOu7C6EnpXgPQB98befMKf18z/o59hn0H/ntdB9m/wN7YAx9jmA/4PuQrIWeoDf3KYIE55Cy4SereK38F8W9GBEDqcpeAH0ge5mshV6VPNbAB5mep7hqdDP2XXQ77V3R0hOTtvkkOcXcHgdgzGmAbgQupK7HroucTcOr0ssBLAJ+v26BLpOAuj6AwD8Dt2d766GHARj7GfoivI74f5uO0TTadAzBTwCPVvMkvDxtekMQPRPPYjD4bR2wtb43QD+jzH2WKTl4XA4HA7nSNOagq44HM5BIKJh0P2nfoPut3x7+P/FkZSLw+FwOJyjBVdYOZy2wS3QXTlqU5CNY4zti6hEHA6Hw+EcJbhLAIfD4XA4HA6nVcPz03E4HA6Hw+FwWjVcYeVwOBwOh8PhtGq4wsrhcDgcDofDadVwhZXD4XA4HA6H06rhCiuHw+FwOBwOp1XDFVYOh8PhcDgcTquGK6wcDofD4XA4nFYNLxzQQObPWDYGgARAnrlgwsoIi8PhtGkeu/D0/dfT7MVL+PXEaTbpWTn7z6nc7Ex+TnHaFPz8PTy8cMDhcDnHbPJOuGxZ1cyrGMgAIEQgiSutHE7TCCurywBmAhAAaCJXWjnNIT0r5zgAy6HPGgYBTOQPfU5bID0rRwBwKUF7iYEIIH7+HgJuYa0Pl3MMgKUeLdYCgAgEDcxUJGqXAeAnE4fTSF6eM8ICpD4IwAIQAGYF2LOPXXh6FgAvgHHgVldOI0m27XuwyNvZGF40QrdU8XOI0+pIz8ohAH2GJP42qzronAT0jQMQx/Z7aDIzQJPBz99/wRXW+pEYmKWzaT39BgYNDCqA1SYl0nJxOG2OV+4YPslXHv0pACsAFWCkb6G+AL4BGKD/43/swtO51ZXTYGqC0enh80cBKARAjqhAHE4d0rNyugyIX301GE0FhlgA6vRXyTGINZeqBgq9rTDjToDNAWAESADYTec/mZWeZt97/VPT3/JFWv7WAldY68Fn0X4xBQgJxh0QEIJXDOAjqzmQb2CvR1o2Dqet8NiFpxsA/A9IvU80h1h8vz33lW3u+hVAEnTFYjVIWwRGFwFEYVcBCdzCwGkA6Vk5o4HobgCeBFAM7gPIiTDpWTkJPZ2bL7Ybq6/dUDbMBhi6bywbBoexitmN1V95QtH3xZpLvx/X+ZstT01/i4X3+Rr6fa80yuS+8ffCE66wiN5T0rNybgbwfm52phbBQ2oVcB/WepBl6hJXZnirZsPklNX5s3uPjXmCPSMcc/plk+fmAugjSeyTCIvI4bRaHrvw9DFGu+9qgP0n5LHFAvgAwHWzFy8pPVhbAEuhW181o33ILUbbmBRNsX3G/cU59ZEx960vq4POsQB1zs3OrI60PJyORThYanKUsVLtFbv57E1lg6P9qq03AJhFH6wGz2+VgYR3bYYaeVK3z9Y+Nf0t9XB9zlo4lSr8Cbd/nzdpCkAZNkP19jFp8osvX7/g/474AbViuMLaAG674ZvfOyk08rrki/0mCq3+/oQqtyaiL4C+ksRCkZaPw4kkB8ugEVZA5bC1FJYY74vx/XosqNjxH9IUW7wtYd1wo71ojLKpX40hFOgbjDNEBQ3FXbylO4kpeVZT1KUQDAmAHpQ1niutnINx/QtXjP0q95yfBsSvWbHkf3OlSMvD6VjoyiqTATIBgAgFsdayraW+5DcEqEvP6Ll4TXOm9NOzckQAU52m8hfdwTgzwL4FKCs3O/PPljqGtgRXWA+BLFMnAP6ctddXJW4+K1hhDNTMi71kGoD3K53KtrWDvSeMm8iKIi0nhxNJwsrqcoAZAcZI9C9mqq2KeT8/OxDYlqK3Ihgsx8FgPeZf+5OmwhiqhjFUw5BUXeX1x/3oK383UzD2gcl+KgDGALpz5oIJ847qgXHaBD3nfPqkyoQbM7t/OGb+ta/+Fml5OB2LY+578Ytib9qpegApVIGU+3fOO+velh7nuheujP6j8Lj/lfhSrgcQ3yd2/fbuzm1XvzDjpRUtPVZrhvuwHpp7AfxHq+7ytl0zoCZu/Wrc4/6g5Fnb54mlxjNG/mGfK4t0A4BUSWL5kRaWw4kQFwEw6zdsAlOtF5OmuhGyxAAAmL4lrWYXnAU7QiZvtWAO1YjGYDVMoWoYFJ+eKwCMIDIPqcLen4b03uoObunDLMcxEqMJAFdEOP8iPSsnGjBcCWAxV1Y5R5v0rJxhhJQJ4WA/FaCgxgzfHImxnr/2lSoAc9Ozch7rErXzmV3u3pdurRi4ND0rZwGA+3OzMzuE8YwrrIfmCQBLA2V9H9HAkBS1+1oA8Ni1s5xu7QObT7y+W66py+704ChZpv6SxCojKy6Hc/Qx2Ip6K94kAFABhEgITj7xl1kX/JWUekNJlA3dSyoR6/MVRqf+FRSrTL+IlcYdamxICw71dBbW2/Oo2jibgRlBIGhUBuDi4Rt3OZf37wpUvEtazOno5V7x/uqLLtts2mJ7QfCJfwLYAmAEwm4I/Tdv4u4CHZChib8+u6ZkdJRA6uORloXTsRh09zs9gOgvGMRigjaTgQbhKAT75WZnugFcdskzNz/0Y96kWQBmiKRMP/+JOSs3lA09c+MDF1YdyfEjDXcJqIern7u2T+f1528RgH1znzupy/4NLqcZwLcMbMz6Qb7vyxKUkyWJHTLX1VNXTDpPC4mTNMXwKk/Vw2kvvPfM5VSZe3KABL8vWJ2eDUCeIM/cqRFWfTcwvVOy28OG7C3xA5h4KKVyU7/++/1f+2/etHJTv/60emT0pQWhhFcBECAiyjwex/3xAgRNz4LFwDToCeIZgertn9M+Sc/KMUSbKqpiLWXBFXfMiom0PJyOww0vXtbrl4IT11f44xWVGY/Jzc7cGClZ0rNy+vSO3fDVtoqB3QGUArg/3lL8wirXtECkZDqSCIdv0rGQZSJZprtkmfqw6rTnEjUBBmvpkn80crkDNXb1goCZsX6brcdLcnTnQ/X32IWnj1F8pvc0RbwGwNJwMAqH0+Yp2XD54JAnxSiaPE/PXDBh3mjTRbuYQfu2zG6NV0QR9kDoTRxGmey/edPK/ps3zatt03/zJlYQSuykbyUAmuajAOQTnn5lU99LLgEwVYtRtupbiQBY1Sjl7T9uSD5/U7/+Yzb16z8nrARz2jfnVAVjrX7FekOkBeF0HNKzcmxf7jr37Qp/vHFC1y9vj6SyCgC52Zlbv739th5Wg2cMgHUAntKYUH3WY/fcG66g1a5odwfUAvQGcLfG6IRg8ZBjASDVVvjsgY0ct9YUlsUrpxoU+BSRLf3xW+ErWSbzQfqTAFC4qk9tBRYOpz1wHgDNVzbwmU39+ptMm22roVHGriGmfSRoytbU+BlNtHzK4eTvAKAIxs4AGaYVpI5ZuEyav0usNF5JIB8AlYEpgk9It38X9x6AHwE8AGApV1rbL7MWTiWAzQawvcjb6Z1Iy8PpGFz13AwTwN5RmWGkxsTzF173wvxIy1TLpgcu+AXAxBFJP19nNvhCf5UcMxfAnwPvfucM/XppH3CF9QAkiW0F0PkW+dWdaX67PWh2e6bdf/OGg7XtdI1vKYHOE1Wk999kOdkYpF51t8syiZ3HbrRAr20NgBTwCiycdsB7z1xOorniOsFYvWqCPLMUwCvGPdYU34iqBRWh6GRbortw9uIl3qb0HXabeRAARPOojwRDKqC/8RkBSGEleCKAuwk0zjOpvLtm1JZCv58JDMwM/mLYbvEq9ukAHdPDueX93OzMw+a05HCay6yFU6nEm7oaoDMFUmftyj7jo0jLdCC52Znsw1seXFDo6RIFYCqAaE8o+rM1JceU9pjz2b9TtLRBuMJ6ECSJlaQYqh7prApAIPqZehu73N+VJijPx5cbMeQv24GpdzKTh+yaG9s7r7aPh7kPK6etkJ6VMyY9K2dOODH2P/gpJNygBmLjvZ1WVChJgVcBTN3u7LTgtpg5QTVgivIUxbpq22a8ljEm47WMORmvZTTY6hnbK88OALYENT88O6EB2F9ys64rwagnSnKFkHA3A/MxPWJXYMR+bcahc1oxvxaMu8gs+kKDEv58ItKycDoGn+6Ycufa0pEDRiT9vHLnvDPr1wkiTG52ppabnfk2gH5jUpe/V+DpbNaY+Gt6Vs7SgXe/+/zB7udtBZ4loA6yTP8FMO7ldTddZ648aaQAgkmvzlMviTd4b/BlR8U6POKU4vm21zYO9E2TJKYB+BzABF+p80cQ+68jtWz0ET8IDqcF6H3HR5cC5lcAGAAN/e9cXOZTHUVGU6E1KnF5+hBPGmnQULb758mGYjO+GmplC8drM4buWgIGA94/sfzR114deke0wdcZMBoBYgACGa9lTFx3+brDvrRpihgAgJA3NU1fQ28DeO5QBQTCAVsTVWfov6LbeD4YMgEsa6nvg9M6SM/K6QnESgCyn57+ZkmExeF0APre+cF0wHo/gDdWFY+9PNLyNJTc7MwgkHlhelZOFIAnAHaVJ+SYQNCuSs/KObEtli/mCus/0QCoP+RNPuusoAkwV2oIxDSoooTVL1zmN2u9E0sMl6XlGR2yTOeHldblkgQ8e43kUwOmfkdUeg6nGaRn5ZgI2tldonY9F9J6xgOAYM2F0fknBLHaYrcUdhJMFc4QgB47T4Oibcel37uxsYuIV47r5tOCFlvXYg+KogC32j0G1YipMBcywVRCIBBjMEF1nA7gsDdKd26KAgBKgF1g0D3DzwXwXH37hF0FVm7q1/8FADdvHNTXTorwGs8g0H5Is+95JN/TRQHoX3EFHE5LM23+9XeH1FPusxo8P/kU+1W52ZltLq1SbnZmdXpWzg7ouWJFprtWTUUD7sOtDe4SUAdJYk9JEjvPyDC9e0hgFlvRspkLJjTsBHW5VVHFBI9dQ4+dlv84qoXdskxn1G4OuB0f+8qi+QsCp9Ux84UrRmb+3/2fAdjNICwu9SUJfWLW/yBYtwds3RbAFPsbKGqTXTBVbO9nqXl5oj/1lThfCgZuXw0GoN9eNXDxl4k3G3af6U/0aNhlHKlqBede7s+bepXB02tVnaFEf8mkO4bd85qSMfetb9Kzcm4dde9Lp9y08NLk2gbzZywb8/S0Z14E6B4AULxfC5qSD4T9Vxt4SB8yMAEKXcvAeABWO2H689d2LvMnnjMg7q/c3OxMXqyFc0RJz8oZJe89dU6Crch9UrfPz8/NzmzLZdhlgIIAFH22i025+Kn/jYq0UI2FK6xhZJl6AsA1z0+/oKsijDCCyF/R95HG9GG8q7qmLF4ZLWioyFhnS0oqMtRN4rsOQOfHLjw9tiXl5nCawqyFU6l71ucT07NyPvxi17m/biwbeoZZ9G0AcJpXiUr4Juv2cdZO731P4fhSIigAPnz/wl1XZ+w+WwTTkFi6GgRAAMT/7PwhYXLxsmcBQIV4ydaHzn09NzvzFS1u5Ue6NwAAQItxrv8pxZ6XVxOM7g3gkRJf6pef7zi/sOecTzdNuuXLzzVoP6jKvukAC9+bNGihvf/wX20AI6DnaAUAE3gAVrvg291nTgmoViTYimZHWhZO+2b8Q09kAMhhEAqLvWn9npn+RkGkZWoO4en/iQDmAphiFgO27ZX9f7zwqdu6HGbXVgW3+AGQZUoDsEWW6ba1JQvGDlUIDJqHIDS6Tm+3K/2/5b9gnZlcZHyn227zh7mLLD3Tp/ndUZ1Lyqv3JSKh/57zAbzY8kfB4dRP2Nn+lBhzaTejMP5iBsEEoMws+p+e0PWLj567dtEPtW0zXssYIxgxCHrdQRV1FMZAaa9jnVU7YA5WaQDtVya7aHse0WDY+vHzd75bZ9i1+n+MEVEgYNt265fXfbQyLE/C8KSVFxBp/1lVNDaUoAkTtOAuUQvqSTmY/sfcMbS+TFPv+9Qe/GVmww5VJt2aYCaemaNdkJ6VYwRwE4Clr9/w9OeRlofTfpmx4Kp+VcHjVhmFQDCkmY/Pzc4sjLRMLUFYaV0JANOfvzZ+6e7MJ0t8Ke+kZ+VMys3O9EVYvAbBFVadKgA37ajss7zI0+nuvgqDI+mvsivumx1sbEeyTBegL76rila39dti7a2VYRlczpG2hLQ11fsSEay2ZhwB+TmcetGVVSYDZKoMJCDBWlg9LOmXx1YXH3vf5gfP9wPn72+rR/PrbQGmAPQSgNfXXb5u5Yuz3x7MhJS+SSWrGYHOA9APgPznNG0fWyMe7+xW/PMBQ2foUf54AsAHdQOucrMzS4HM5x678PRF46y/X2CwmMf6PX/vyABsjOqL5daMwUDwAwBlx96/oCTFlp+7pmT0MwB+z83O/FfgTf/Nm1Zu7N/vdmL0JBPYfwds3NzmfLU4/2Rs2tKHf86f2MlhdPNCAZwjRnpWjgM4+02RVGFi1y9mvXjdi1sjLdORYOF1L8xPz8opAbDYLPrem7Vw6tlPTX+r1aeI4worAEliNQCeu+P+529MVcUYk2oG08SnG9uPLFNnAG8DyO53cbCP+3H7y84qw5UA7i5a0/N+ABVV+xKNLSw+h3NYkm37ni7ydjaFF9VSX8q8P+656sA0bLVI0H1GAV3b3FOraNpj1i2orElCXPX6r/tv3vRx7Q5fXzb5UqYJEE3K87XrbvskWXQIcVkKo1W/X7bxH9O4j114upA4KPeG6vz4s4CokYrPHK2FDKpg7MW00BYNYBCAYL/gllOrkk3WVUXHdQNwjKIZz19Tckw/AKcAwJC5b3hiLWU7cqt6vwrAI5CSpjHD15/08fYyb7Ej1MvbvfnfHieSpGflUKxl8EWJ1oLA2LTlnwNTIi0Spx0ya+FUq0AXfKgxwzCVCWe/eN2L7dqSn5ud+d6Qe97o7w7EuXKrev8MoNVnMerwCqss01gAKQA+NYlP3NdXC6gMJs1bOvilxvYlSWyfLNMIAHsAYF2Gb9bADdaxsZWGey8dt8z4xvcT1gHgFlbOUSU9K2c60HkkQQMDKeEqUnI9u8gAqQAMYUf9/W39eQOHOt07gVHb3q67g7FauAQGzTPyo8AuPKCv2x2wTq3RDM4xjvJfatu9csfwEyt2pJ0CYGrJ+vQugkHRAPa6wWr42Gi/8n3BoCz3FG6eC11plm9//fO61tEXAFw18t5Xokt9ycMANjrZnn/D3uruXQE8DgAaE3Hqrp/vMm2xEwAYt9pmberX/2OeKaBNM67Cn5hqEvzXtwUrEKftkZ6VQwPj+63RmKGPSfBfv/Whc9u1slqL1Pmr+7ZV9j/lr5JRx6Zn5czKzc58KtIy1Qcx1uayNLQoskyvA5h447I3J1YHYzbN8oZUC+i3654+a2wj+xEliakHrLMLKv4avNbWM7pKxFtl/deWlsUOSh660zDl1q0d+4vnHBWOvf+FrEJP53kAvgTwMICxAOTD5eDLeC3jKwCjAJxea11dOO2jAUFzzIb0vZ/vzsx5Ir227eoR/U78vnt3OdntweC9xUyND/mFasOOQoeQ5jchxmw2hPYaEoM+s2j1Gc0GYgyxXl91WmV1eUrArVCUklJomlCzLX1KcsauJypiQhtMhiLTVlJJ0RxKrBqtphoKTVtJI0VzKHFqtJpiKDRtJo00NUqJ16LU5PLK5KpKU1SqRQmgS00xCGFHBD1V3V39N286lDWZ08rpNeeTHIUZjwHQta342nHaFulZOfcDuGtE8k/LPvzvQxMjLc/RJD0rRwTwPoCzu0Vvv27FHbNeiLRMh4JnCQCmAZCqgzGXx6nQTMFoMSpt5Z7GdCDLJABYIcuUVXe9JDGPJmKw26n2ZYT8gUJlb00xCDUFcQNa8gA4nINx7uN3Lij0dJ4Xbar4BcB/crMzV+RmZ85rSMLoZKO/i1MM+ev6nEYrWx8DgOiKfXPrtt3exfmwIopw+MMu3xppISOrLoqhWJ/ZXP6Xs6u53GGL8hlMhs6BMu/xvs2Vx+zJ+6Nrac1GkVhZhbNnMDftjBhToNIbW7lpO7NoXhArB1DKDKwyvFwKoJQZmZtZNC+AMgClMOjLZjW0p9pk00Sm7VdWGQANYI8Pu7BrW67u0pGZmP3oLIWJp6XZd//FlVXOkWDIPW/MBnAXgJdXFR13UqTlOdqEyxtPdZrLd+6r7rpg2D2vvtda75cd3sIK6L4rX+WeU3icx1Y4wm/uY0/5ve8Vrtsb7Gwty2QH8BSAFZLE3jhYm92vWDLFzQnvLd491BYTXXXFVQu/f62l5Odw6hK+2dwO4KzOUbu2D0/6ZfjT09+sbkwfk9/uXSyA0VdTticCwO+zE2lD+f9pohrEyN+eEPtv3qQBwGMXnj4GjP0EgATGMHpHQSDW6x//8P01d6zyxpx+yS/x3xnKHbUPAQXA3NmLl+y3ds6fsWwMwJYDZIaebeDEQ1WzashxT9r9+2U3r35vGsCMGgnCs0P+g6/Tx6gAggAmtsXqLh2VcKDg99Bd1/wATeC/H6cluezZm+79Yd9Jcx2m6p+rgzEn5mZnKpGWKVKMuf/5Cws8XcIZXsiHVni/7LA+rLJMJgDfAfi/Et8tgwOqJXqQqlQB5lWNUVYB3ZIK4Op6x+qBhU5zWR52o3d3e/mTcDnfgsvdYS8OzpFBf8hr3wOCAYC6r7r7VT/eeUOjlFUAKAhZ8hD2xQaAqk2Tpnu6dkWa8YNdtcoqAICx8QAIRNAAbUOnhEVPn1f4i8UXNSrF6C+2+EVNAQP0Kiv/8J2dP2OZAaTcBSaaw50RQBKaWIFFv7lmrtzUb/HrAKQnjj9rwnfxx54EQMTfhQda1Q2YUy8SQLXPKAP478dpQdKzcsYCk29LshUUH5u64uynp7/ZoZ/HBZ6uPaCnMBQBmNEKr7eO7BKQBv0hFvo5f8KxToTKzSFrZ7Nz52+N6USW6WRZpl71tZEkFgRwkbuT/3irzQevxxYD4LEmS87hHAKjEDitzkOeATiuiV05oad7AwCUWYbdCQBFvszb6jbqU1imK6+MAUSBKpv5dQAn+pmYXByw3KZ4rQMB+hGguwFMnL14ycr5M5aNWTDro7cAbAQznKbLyf6l0DaV/ps3rey/edO87+KPmwtQIJzRVWiJvjlHD5GU78O/HUPjCkdwOPVy/pNZxwPsc4D2FXvTBj09/c1/pcfrgMgAgvr1xoRuUdtbXf7ZDquwShLLlSQ2Zvo3H60DcNoYNbgZEOBI+eO7hvYhyyQCeB6HqXEeHu97SWLFsIS25AeivABuqnjS/njTj4DD+TchzRgV9uBsbHWof2AmNa2LyZcMAJ9cOWtWSeKwrmAMqsH6uj6Nr7sJpBrL7wARzDE1GxBWSK2kPggw/3G77KkAOhkdqT+njOjXzZ4y7dz5M5Z9CbCf1EDMFID1AjAHoONqFdqmugMcjPB01vhEa+FugIRhSb+0qaouHZ3J6Z/aAUKKfd+faIXTk5y2yZSnZ/fdXtlftog+C4CTD5bLuSNSWw0r2lT5ogCVeRTHOZGW6UA6pEuALFMcAJ8kMV9GwqoFfxaPEfrUxAUAtksw+D4+bAdhJImp4bRYUQ0cl4z2Uaaqcod1Uyh6d79K93/LnrZviL/J83JTj4XDqSU9K8cCCOcD+BOgD9CAbAAHI+O1DCIIJq8m9Mx4LWPMnZjyCGj/u+3+qXXLqqjT92m9owDAaB+62+wcfuIDt7xx0wmWq8dG+xPgKN04D9gMwXDubZU7TQhbytzYH8APFQCFldQjoozkZmeuvGnhJaO+2HXu2tXFxz6cnpXTB8BSrvy0fn7JP7ETAHSJyr3rl7tn8N+L02zSs3KigfGLRVLUk7otufaFGS/tjLRMrYnaaljpWZ/7Sn0pN6Vn5QzIzc7cGGm5aumoFta7Aexc9Glv69aKgSf0dOwsNzMaC9CnF9z4WoOi0MLWVUgSK5Qktq0h+6x6PvPYqn2JXQGBvtg+OC3XH10YX254HC7nwGYcC4cDABiV8sOzANKMQjCrodkADsF4BqIyxZyeUCkuq2Z9TbquyRTUsdoWY5xra4/xAICQ56TTgtVd5jm9KefHelPhMVZAUTYjEG12G8z+/8T3fe/U+H7vRwM4LezQ35B8sC3C09PfLFE00yMA0gF2H4ClrTUKlvM3FYGEfgBCvxeesCzSsnDaPrMWXmI3CsElAA1UmfGsF2a89GakZWq9CA8CzBNjLmtVKa46qsL6EYB59658cmxNKNo5IkQrATI7Un9rjP/q07JM78ky0eGb7kcC29/c+M2+fm8C8GrEvtr9ioWnuuI0mfSsHOPm8oyLu0Ttqjmt+wcNdms5BFPD/wsX/H6COWiOQXzZ+pcBmovwtP2ac7ucVBnTZzhTywCyAGTVBGP10y+NvvXexcMewpqkNzWDqqDQWpI94+mzP7novwu+uujmBTVha+pEAPv7aqasDcWi+0MSAazWSsw5EricY+By3gmXs1kvBQ6je7yBQptzszMbXSKbw6lLelaOsKVi4OqQZjrBYXTfkJud+VWkZWrN5GZnlg5N/E2uDMQfP23+zCsjLU8tHdIlQJLYDwB+MHzz8fuKZqroUR1nZgZv0Bq3+aNGdLMXQJUkNSovmAzdqdkMkIDEmhODRu08g0I/xJcZfoTLmQaX29+YY+FwwkytDsbYrKLvoqemv9WsXHVdjd4Re0JWHLPFqgqWk8WYsvUYsn7BFAATaytGkUIvi/BAU8tAYhyIhIAWino31uS7tEwxaqN223YyYp27Fdn+VTnlSLoA1INMYCEGMkIvJiAf5fHbNy5njNeqnhEysHuiIfYg3evjTricE+FyN/q3nrVwKjGcPrJf/NqtwNktLi6nw/H65vLBvXvFbPzxu6xbW5XVsLXSNXrnVRvKhm5bvvfUK9KzchblZmdGPAdqh7OwyjJdLcuUesOLl/UCo/N6OzetUb0pwzXF9u4FN74aaGg/ksSyJYnNaczYsxcvCVuX6C5zTM0eT1HsyFeKM8qLk0IPOzxiLICX4XI2xmLL4WDWwqlGgnYngDXFvtT3mttfpWZMjheD5ZO3nKaqohm9d3wM/O27ik39+p9r3GLrEnSYyphWBgL9jrC1NEYMnZUghNTECkvP6LSygtmLl7SKZO+52ZkrGYRTAWgAvct9WJuJy3k8c0UvrHzc/lfwwaitAMpsPvH1qBqxJ3QfZWJgphq7enFTus/ZdV5nTyiaqoPO91tUbk6Ho3vW57Ogzxqx7ZUDRnB3oIbx9PQ3S0KaeQ5AJwDIjLQ8QAdTWMPppxYCuOCHfZMuUJgR49TA7wDiAHzawD6GyjKd2FQZZi9esnL24iXzDJbgSWAUAsM3Kdf55kCvtDHFY1OfbWrfnI6JOxD7KIPQq0/s+lea+xac8VpGcpVqTDlpRZ8fyxKON6Xm/6TZvYX7fVc39es/BsC7BKJgyBELFoCm5L1eO7W/O2ANJudFbVODRmKMHmyBw2sxcrMzlwL4QaTQsEjL0qZxOccDWEGgq51V4mBGiAXwAIBxDJAo7KPMCLStt/8cWaZGz+Qpmmk4AOyu6vVFywrP6WhEmyvm6e5AINR58eY0iJcsorcg0Vr49qyFU42RFqZDKaySxLYD6OMJ2V91B+MuBvB7N6ZNIiGIqM4/LG9gN3MAvCfLZG2OLDOe+nlbbM+C7zxFcZ1fnTvkTgAPeWzqCrtXvL54vu3+5vTN6TikZ+UIP+ePPy3GXFbRP27tYdOrHQ4DtElWP0OP6pPOELSQlli27iyE/U3D7gASAzMAgMckCADgSCkvAoCM1zLMCoQu3XbFqAAqavLjD1r1LZIMT1pZqTJjxvUvTBsUaVnaIrmLLLFBo/YJ0/PaAoBiDgqPw+W+By73D+I9VSsQ9lGujlJPd8eoZ0oSU2SZSJbJ1tBxukTtPCucmm3tkTgOTseg/12Lx7kD8VYCU6FX2uP5fBtBbnZmaHTq9++W+FKiVhZI10Vang6lsAKAJLFtr2+4fhKAQcS0l2oKRqUYbcXrLrvrnooGdnEFgFMkiTV7qtNbGn22weovrc6Pf+DzPoa+JYnKGX6ztjOxxHArXM5jm9s/p0NwRlCz9KoMxN/41PS31OZ21svimXvZjz1QETOY4hK+3Xj8zx8u6b9507xa31WEb/YqEfxiCABAhkkGABhgrR4jqiQmVhsHGu3+5bMXL2l1wTIOU9WrALAyXzohwqK0PVxOc6c80+fGEEVDf/grdLBMDy73Srjc85y3eL6UJPZneO0NAFbLMiU3ZCiL6DstyVag5GZnelrwCDgdDJ/iyAJQyiBMQvjFm7sDNQ5vyPE/gP1R7E2bradOjBwdRmGVZbpClukFWSaLR3HcbxL8uAZlO5hmSg3WdH66AfsLskyCJDGfJLHVLSHTzAUrQiaH/6pgtQ35v/Z9IH2av9oSEEYTKI+BfVbzf44r4XLOaW60Lad9MmvhVIoxlz0tQN0FYHFz+8t4LYOMW20pUdo5MKpuP9Iqjz+wTVhxrS5KHbWTaeUAWRHyjHt5/oxlY2LE0Lmdi60gVRRiuhe2yofC9/tO/gxAcUUg4V/HxqkHl9MIYLFRoeOCJjaLQOMQVgAaGFS1FsAKAMUNGW57ZX/Vp9i+abrAnI7OJc/cfCaAUwE8kZudubyZqf46LO//d54GUBaArt2dW7IjKUuHUVgBdAYw8Prv3jGuLx3eJcZc8VUSBS4MJzP/vAH7XwHgD1mmpJYU6rpnf/wsqlPpNk9xzLkv3TZqNFzuUo3Y6aqAOLtHeJmB3Q9gKVdaOQeSX9P1uspAfNexnZatyM3ObHYd7B7u0LDT/zwtqiaqK1RmfvSCGxe5D2yzqV9/IpC1KOGYytoMAdAj76U/PE5f9wIbY2DFBkvwX9kBWgO52ZmaQMq3IimnX/7sjR0yS0pjyV1kMVc6le0AzgJwg/mO6qdrragNzQAgSWyFJLFrJIkxWaZ4WaanZJkOWnAlPSsniUFIqw7GyC14GJwORrE39RmL6MXolBWvRFqWtk5udubSbtHbC4s9aTdd+syslEjJ0WEUVkliDwAY51WiLgDIXuxLvZ9pxqnmmJ01MxdMKGpAF+UAtgNo8TJutkT3fwDmU4MGedl3YmfhnqpNQZP2DQAQSAR3FOccQHpWDv1edPwUkZSCeEvpDS3R53lre3xVkXQqAAbNYJldW4K1Lt4TKpwADDbaXsHUMghiPFDrFxYw9u9SbAOB3pty69ZQS8h0JDi+01K3ygzRZjEwJdKytHpcTrHrHtOiGLeha1FS6DO43PNboNcJAKYD6HWwjcOSfjkbAJJteVtaYCxOByQ9K6f/1oqBXZLt+W8vvvmRwkjL0x7o6dxyg0eJoh/yJrfI86YpdAiFVZYpFgAkiWmJ1oL7LaJ3z38rLXsDVek2MCxqSB+SxD6RJHZBI/OuNohL5mzaYI72zaspiLds/2LUFACw+cX7CaQAANMdxuWWHpfTdiGo4wAcpzLDg09Nf7PZfn6b+vUfYCsZkwgihCunHvQlidm1bgBgTlzVDQjC4qyqQDilVd9S0yRRI7Inl7fqqVyL6HsSYEzee3LPSMvSmsldZBEZ2AsCo4s1YnOTr/ee1RL9ShJ7H0D3WteqcOaV/en8akKOywFAYxTxqGROm+V2gPy7q3rdHGlB2guvzHzuQwDvALglPSsnNRIytHuFVZYpHsA+WaYbJj/88NgSX2rqsKRf1xhAZwJAwN2z3shqWaY4WabLa0uxHin8lY6HjDb/Pl951Ly3HunbKTzVNlkl5gmaGOV2C7Saer6cyJKelTPGaa7IMQl+L4BmT3dt6tdf0ICXFBFgevqXQ0bTWlfEhADAnZf4BwAogajnZy6YsPLWT5KdSflRZtUWRHSX0ladiujF6xZuA2hVULNMjLQsrRaXkxw1wp8Eukoj9pBwT1WLZi6RJFYEALJMIwGsAnANoJ/b2yoGjgYYSnxpb/GcmZzGct0LVx5H0C6LMZe9l5ud2eIzoh2cuwmaeVD8n19GYvB2r7BCT8D2fwDkrRWDzgdYqDIQN9Pk2HcTib69MxdMONy00xUAFgHocySFnL14iRrbK/9uxWcS/OVRObJMMXC5lxekhe41BwVTpzyT60iOz2kb6A9wtrwykGAPaSYzgKHN7dM/omqRAIzZnZqIoOjLRz1lUwWf6ACACrBkAFD8RgYA67Z3GZxWYkWlVflmyq1bm52t4EjjMLp/JGhjbnzx0m6RlqXVoRcv+b+EMuPg0vjQ73u6Bu86gqOtBnAzgLf0RSYBJNRn5edw6uOv4lG3C6TRcWnLeE7zFiY3O3PH4MQ/1m8oGzq4z50f9j3a47d7hVWSWLkkMdd9Kx/dDrDLAPrkYr8WCHqS+zhSVuU3oIsnAYyRJLbpCIuKS+/c+KrJ4f+gMjdpSMmGrlcDQOfpvv8DsMio0I1wOXnCc44EkAkAGASGZj7QNw7q29m8zjF1Xy+NmbV0OJNXl85cMGHewZRVAAj29fStsJnhNQXGA4AaWH3rYxeePqZPsXW6yAilNvXl5shztBibJm9jEITKQPy1kZaltREyaI8CmA3g2YQy4+j0af4jVpJRkpgqSewZSWI1skyGW0a4ziJoFE70znNmchpFelZOar6n62SNCS/Pv/bVPyItT3tke2W/kxkEb1C1HPV88e1aYZVlGizLdLwsE3WJys0GKK53zMZPq/PHTgQzIljd+e7D7G+QJKZJEvv1aMkcrLFeQwR30V/db3n7//rUuiHMZmBlfrP2Ve4iS7MKFnDaPHL4Yc7QzAf6pn79iRRhPoIU/GhcumJgJoiquV4XAyUpOKTMUfcUZEYAUrIfl1bZQljfo+qTpspzNLEaPIsIWs0PeZMSIy1La6LkWdsSoyLcEjJo7wKYBZf7aNYPdwxOXFXTM2YzokyVIfCcmZxG4jSX3wswI4MQ0fRL7ZkN919cCOAxAOdf/NT/zjmaY7drhRXA/6CXXDWvLh49LtpU6R0Qv+ZdAGcDKA5UpS871I6yTEMA7JJlOuboiKoze/GSirg+eR8E3I5UX3nU47JMFrjcFQWpoVctASEprtzw2NGUh9O6OL3HezUAUaK1YCOa+UAPDKiZDeDMGgtle5T+evWqopFv17eP9RfnVmsghPCULaAHBv5lLopGSecq/Hz96lZXLOBgPDX9LR+D8A2Ak9OzcuiwO3QEXM7ZiaXGzEqnsjGvU+gyuNza0RxeklglgMnbK/vnVAdj1r56yukOWSZekYzTIG588bIefsU6vYdzy4bc7MztkZanPZPm2P2Ew1il5Xu6LDya98/2rrBeB+C0K75akloVjB1WFYx5+Di/0UKi71xT1N4/Zy6YcDhfu3UAth0FOf+ByeG7VjCFVlfnx9/kd9vuBoC0a323KyL7IrpavBIu5xH1p+W0Xn7Ol8YCQL+4dXc3R1ndMLzPacbt1keUmFDNjBtFJbWqF/mN7pKZCybUG6RAIcHhsZgABiaaj4HBemI2gHQCYVNiYGfGaxltJkgmxb7vdwBdYsxlr3To4B6Xc0zwgajlAB4F8H6M2zAkfZo/ImnJJIlpf78M4UkAz9fNIMDhHIovd50zLaBa0Stm85H0ueYA+Pmu6yu7Ru9csLuqVxyAyUdr3HatsEoS80gS+zXZlpcVLhCwyFsy6FymWg325D9/O8y+f0kSO02SWENLtrYYU27dqmpB4+Wq36jt+GLU0Nr1BpWuAuBTRPZO7iLLEc1awGmdlPuTjgVQ/kPe5E+b2semfv3HCF7xMwoKJLgN5u4FuD+lugd2xa2LP5zCGeziH1wY44Al1l9qtB0Pe1J8tWIP3FrhCKLUGUoHsLStKK0W0VsOAJWBuMsBLO2QSqvLOYaBfW9SBImBaQCehsvd7CIUzSHRWtjJaapMBDARwKXhYgNmWSZ7JOXitF7Ss3KiFGacCeDTF69b+Fmk5ekIbCwbeguAXQCy07Nyjoou2S4VVlkmUZZpsSzThFkLp5r9qvXqHs6tRbnZmXs9xcNHA/BW7zv+oD4u4RKs18kyOY6y2P9g9uIl6xyp5cv8lfbTXr9/0OWyTASXu7AiRnnWoNJwq49ejaR8nKPPrIVTySAEMwVSl+dmZzZ5upaBTQAgEAhgJA7emyaYVAvyonYAhwniqowzjK6xmGCJD/4CAGbnLycZPOb0XaleQL+ftJnI7tyqPvG6KzAR2pDcLYwEoPblVwNwQuRE0XGay9PspqoESWKFksRyw6sfA/CbLJMtgqJxWilDEn97AUCsQOpDkZalo5CbnRmIMlU+CGDouE7fHJXKhu1SYQXQBcAIAHGf77xgkjsQJzjNFU+898zlBLCzAHx97ZPn+w6x71gAz0H3c40ojrTyywSjWlW1N+FpTRVmAoDbqc71WbQtScXGs+Fydo20jJyjR0gzTVY0U+LYtGWHOncPiywTVd6wL5MJTAGgMIJaHqt7mBRE7wziMEFcBeWpATAGf/kYFwDs2Y1oANidWsNQT/7WVoocnn7W0LbkbklkAvkR/u2qotQ/Iy3Q9soBv+fXdDswK8vHAN6SJOaNhEyc1kt6Vo51e2W/87o7t5TvnHdmvTOnnJZlQpcvXk2x7fP+UTR2SnpWjulIj9cuFdbwW3kfAB9rzHAVgOLVxcc+qSn2SwDqZE/5Y309+/7Z20AMAAEAAElEQVQIYCT0ig4RJTvZlL66W82SgNsRvXv54OMBIH2an1n9wqkEEhjY87mLLNy/q4OwbM9p/QCAgOaUx7QFB3n2VF9Y9ASAuU+eLeQYqZcWMLprPObKCesuX3dQv9iM1zLGZLw6aE5ptLVfjNfvAU7eBwDMXzTaa1LU3vuibkA4f+uh+mhtvHrK6b8AGos2lW9AR41I1wuUTAQwd/0g309/jvA8IMutr8KUJLGlksQeAgBZpv6yTC9wFwFOmGmeULSRMeGqSAvS0Xhq+ltqiS/lPK/iiANwxFMEGo70AEeb8JSRX5KYdsOLl2cQtDOtBu9zGx+4MLjw1tLjAY1Z47a8foh9jZLEQpLEVgFAxmsZBCAzSghNiTeEcnODtqUAjENt7gEimGOVN2YLAONga9UQgFnX+pwbARgHWqtHaQyGTf6ojQCMfS01xyiMaEfAvgmAsafZMyrEiO0J2rYBMHY1eYcHmRAqDFn2ADCkGv2DalQRgDFhdW83S6w0a9iVfP5b2f0enJq1eR1c7l2Bh6IeMgeFB0xBegZAxGr7co4eftV2IoDcH/ImNTnNmiQxD4CLZBB9MMRk+csdXzn1j+5CTPyWwvqUVYDJsdVGU8BgRFplhemz1NvXDt89HdaAQgyiOHBn9OODdjrHz168pM0ofR9vm2ICBOoZs2Xvx7c80GbkbnF0pXVlmUwbASRCt7ZGjERrQeegZo6rp8k4AGcCuBdAs8sSc9ou1zw/3QKcdRtAP+dW9W6yXz+n6ajM8BWA5QIp99648NIPnpn+RsGRGqvdKawA7gBwoSzT4D3V99zJIAjjOn+zBLgQweouYwB8f+FNL/8r5cW9n8UPSDbal776fpdvylVTN58m9AMsVgDR1ZoR1UEjAMwBgDVe5z/2XeuL/sfyBl/UP5a3+e1M0AMajgEQKgiZo0h/KMQBCNWohgQGBAC4AaY4BCWpWjVUAiAQhF8Glqn/+SFNrNqX8Kos012SxL4sSA09klhi+F9KofEyuJz3wuXmJejaMbMWTjUa6PxTTGLg440PXNik3JiyTKcBWCtJbJ8kMfbM4u4XWb1pJmMoCgF3en0+SBIA0/CtdoAxdC/y0o0fmZJ+GLIHgH6SaoCpxJRwGYA2o/h9umOKAQBWF49ZEWlZWgOSxPY/8GWZBD1i/+gTba5M9oXsUYfaLknsBVmmdySJVYUzCIyTJMZ/ww6IT7E9C1C37s6tc5fP+e/RzBnMCZObnckueDLrmd8KT/gov6bLm9BnbI4I7VFh/RUArvhqiV+07TjOmrRk70/W36peu3feEGB0RlD0ZV36ftezzaSd/qsnpgqgQRZSx/hZWm2Q1WUGaP5kYyAIsM0AjQQgAEwD6CUAr46wVSZZBI1+qonbBiA02l7hNAta6Pvq+AIAobGOctEqqIGlVYmedZeva1SZSlmmgQDW/FQd+9q75Z2uAWCssquhSrvyLpXETKvclTwPEr5Mn+YPweU8Hnppw6cATGmpL5DT+thUNvhuhRmtfaLXN+malWUyQy8x/AOA8wBgq99x4kB3by8Am+JLqK829F9ghLRSG+JrfLAoKkJM00hMFYE10MCgkkgr4o+7Oj0r5w8A345JXV76zqxHW7u/Ya3PVZvIHXu0kGU6AcALskwnSxLbe7TH31HZfxWAlPraSBKrCn88C8DHskxnSRLj0eEdiPSsHNEsnjA5wVpUPjjhjzciLU9H5r2bsz8efd+Lv64qGntselbOAwByjoSLVbtTWCWJfQ7gc9OfM68zxf7cGaQwgP3why1X7IfReH/w/2VX77eQMj+ADTZB/XGguVrZ5He86NUMqxUIeV9N2c7C6XmWAjACFALw6pHyz5Nl6iJJbK8ksQ2yTMOOi6rY8G55p8XQrVtybLVpDQnaSbny4JS3S/rYp9y21QOXewNzRT9AoHvzX7BuSrvWd9RLpXGOPHq6pYFZALCxfOiZ6Vk5Yxp7M5AkFpBlOhbhMlnnLe5uA+z/6Vvdxy8YfCFNse481L6xYhBUYYeomZBSWakBEATGgoIhxQoAO6JTscY+BoWWFAOAlwBgZcF49L3zg0BAte4AUNA7dkMnxoSd2yv7LwNQ2Ctm44Adlf08DMLySPmOjuv8ddL3+07GwPjV3YDMSIjQWikEUAmgLVTV+xzAlQCWAHqGGElijTIScNos5wRUa5eAz3rhU9Pf4tbVCFPk7fQ4gMXQZ7lvSc/KafG4gHalsMoynQFguSSxmgRz2X1VpIAIBECMLRkGj60gWG0puy/JENgzxFaV59HE7184N0+RZboUgHygNWHd5etWZryWMRFhpfEIKqvnAnhHlmmcJLFfJImtB4B1+vSqPublwGuuwQtKN3V90FMSs1CWaY4ksd37OgcfjS8z3JFYYrgDLudTcLmr6hmK0zaRAApfq2TQlxs+9V7HN3tX7boEQ3DuFuaITqzpolriNu+bdt/sQ97we1k809SCJIA0xFkrPwLE894ZcfzqFNBYAMg19VcLLckAmALQnQDcI5J/OrfEm0J7qnt6AKSW+pJ6VAViewE4DQC2Vw5AWHf2HYkbW0MwkBIFAA5Tlfloj92akSS2TZbpOEliEVECkmz5XYJqvT6s+wkrp4sAQJYpBsD3skz3SRL74AiKyIkwsxZOJYcx81FPKGorg/BhpOXhAAB6/p0mkBkBktDCLmLtRmGVZeoB4DMAd6Rn5Sww2o6Ltdg3MUDV7CGrkFTVCwThkXWXr3vwgP1iATwP4BUANx3Yb1hJPdIP028BPA69stYhudy19qGnrpg0uTov/oKA23aMLNMA6WrmLXvafq7VJ3wG4GHo1b047Qs5XPiCwpZ+ucE76j5+ObJMGyWJ3Vy7foMv6pjEYGyQAnEmb0n0I/X1sd1nx4QCGxNE7cdVvXrtlPJ2YbuYPjY1nGTk+Cg5ZzP6/QJA/lvxzHzpwH7CJfyiATYXwC3hlFJmNFIBbymW7c2sAoBfC0786WiP3doJJ+s3AXgQwDeSxL49WmNHGasSvWQ7pA9rPZgBFAHIa2GROK2MEl/K7JqQs+vxnb5d+OaNT3KLeutAJjCF6UYVDUcgTWB7Smu1C8Bx0Kckp4S8PcRg5chpAO6+1N9rG0EgkPqvKMJwJauBAO47msLKMp0qy/R+eAqrSpJYVjiCu14Un/lypgmhbTmj3JLEggAQf5Mnh0BPAphR8qxt6pGWnXN0yc3OXJlsy/PGmMv9aHz6JRHAKgD781pmvJbhqFSNx6YXjfkRAMAM9QasGMocg6O8RspzKj++Zr4wAABdqwrD+fYB6y62JDc7c97h5MrNzmS52ZlugD4AyAf9dVxItuVFql4892GtHwN0i/i4oznoDne/Pws8Xbc0dj9JYkUAJksSWwkAskyXyzL1b3EBORElPSuHfs6f8B+DECyKt5TMirQ8HJ3c7MyVRjE4WXe1pKVHYtas3SisksSYJLGfP942pVSk0PUA/txy88uvrbt8/Txb0WiHwVKmJg54c5Us0zGyTCIAhC0IkCS2W5JY6VEWORlAbwAJjdlp9uIlu61x1S8G3I7hr983yFVn09yASfM5asRFpc/YIlqli9PyFHk77a0JRX3bBN9VRZLYHEliL9Su62zyXQnAOiSY1I0MPj/qKLMHkvFaxpguRdY+GjHIw4pvrui+cm+xNQbdqwpQ5/bRqJma8DFMBHB3rKVka7E3dcqZj7rubkwfLcGYtGU9AWB40srOR3vstkA4Sf9oSWJH+7eJAZDSlFK5tW4M4RytDyGc2YXTrhgHYKyime5/avpbTS6iwml5tj547nKA3gbYCWPuf77F8yS3C4VVluk/skz3yzJZ/Kp1qsqMA4Yl/fIbAMyfsczqLcmIITH4SVLG630B/ATgtvBU6TeyTE8cRTm7yzKdGF58DcAxYatAo4hJL7zDaPdXlm9Pu2npN4YvZZkEuNyesngly+oXjAllxrtaVnJO5KE4RTM1Kr+dLNN5skwjD1xvIm1OtBBSzVXdEyzOXYUzF0w4dPoiBim90I6CeD8CJmY0xf2UsM+ZgN6e3WAgBgCO1LLejT2a3OzMlbnZmQ+e0Om7Y2MtZdvWlo6cm56Vc3Jj+2kOIqnRAGA31rSL++CRQJJYDQDIMvWUZbr8SI+nK6lsLMA6AVjaFKUV2J9veBSAGwFAlimel3VtH3SL3v6uSfRXQ3fj47Qy+sau+wYgR5/YjQ+0dN/t5UY9GnqqnsD3+yadJJIS6uzIzQ5vmwiQLeRJfVGS2GYA06FXCjIA+BmH8RttYV4B8LIskyFsEW7SVOSU27Z6Qh7LOWrAFJv3a7/+AGIBIO1a39PQXSL+p90b/S9FhdM2mbVwKhG0xDTHbktD95FlEgA8AOAfmSMyXsuI3RmwJaQF479TAzFOX9mAp+vrZ/iWmIJorxG7Uj0M4fKlO6M6sVR3BQRBJQAw2v1NLhH89PQ3K8r9iaMA2gCwj66cf/1lTe2rsfyYN2kvAPyQNyni5UjbAFkAHpVlch62ZfOQ9P8IADP9vdyEjiSWL0nMHTZOvA1gefi64LRRhsx9Y+zuql4pwxJ//T43O5NbV1sh/eLWfWQ3VvnXloxs0stmfbSLi1eSWBaA4Vd8tcTmUxz/UZnhnWeueWM3AFjiNt8OUrwIOwBLEnu1Tg6/QgBHNH+bLJMlnAMT0JXlSZLEml1JZvbiJctJVN8v2dC1y75f+g6vs+lWVWA1fou2IneRpS2kpeEcBo0JnRkEoVvUzpiG7hNO+n4M9HOuLmcDZOi5dcoP4eXv6+tn8M6okzQwhAzaJgATqzdlr94VlUaixsA0YwAAKrZ3+qXBB3MQdL9WnBJjLqdfCk5cNOye1wY3p79GUHtdBo7SeG2Z2QBGShJzH+FxZOz/PahFAjfCbgKPA3g6UsUQOC2DOxh3K4CKdaXDL460LJyD89T0t0KeUPT8ikDCiPSsnPiW7LvNK6x1/FB9gxP+uANANEF9CQDmz1gmhmrSjrUnriuduWBCsM4+pwC4C3rC/VOOoGxW6NHPD4dl3F43tVBzSR6y8wHBoFLlzpRnli+jGbJMBJe7sjAl9LzNJ9o65Zm4/1Y74POdF5kA4M/iMQ1KjC7LFC3LROFgvn11t8WJwVtEaHv6WasvItGvAvjrUP08ccnJJwI0lQCMW5PY94ovukHq/GXX3Gg9pzsx1KY9EptyXHXJzc4sPDZVPi2gWiorAgk56Vk5XZrb5+EYlfLDYAAYnbqiUX7kHZHwubQbAGSZJoatli2O7t9MEwDsBdiulgrckCT2tSSxtwBAlulkWaYXw/dnThvhoqduPQnA2QCe3vjARdURFodTP28BMKTY981oyU7btMIqy+QAsFeWaToAVATirk+0FobO7Ln4x3CT0Wow2hCo7nJfnX0IeqqWydAtBp8fKfkkifmgp9o6Iilhpt6+ZS0J7PaA29G3YmfqfAAZANDpGt8cAO8bFbodLufjcDlb3DTPOarEA0BAtTTU33kxgE8OXDn9g849K1XjoAxb9V5/ed94kyN/98wFEw5p7dcUMUsvvEoQGEQAkigoXfZGJUEjQBBCZgCwp5T3a/wh/ZsFM16RVWaYACDaInp/umnhJY32jW0MAjQ7ANgMnmbPeHQUZJlOAvAdgCNm4crNzlzZJ3b9RwD1ue6FaWccgSGGQp994LQhqoIxL5pEP/rFrX3h8K05EWZNorXAZxICt7Vkp21aYQVgA/AhgLXpWTn99lb3iDGJgafrVL04C4Ci+BL2JxYOTw9JAC6RJLYKAGSZ+skyvVJn6r7JyDLZZZmel2XqEx7vHkliOc3t91CoAdMTAFu9e/lgd95vfUrqbHqVgZkY2H8Z2FKutLZdhiT+NgIA+sWtPex0ZviF7GOEK//U5RdP7MkaCPaygY+oQWdqwN3jX7lSa3nswtNTwYRxADQNDIygApCX7jmjOiQa4XOKftL0RKpGayCtqcd2ILnZmX+lR2+7RGGGLr8UnPhDelbOEct48WvhidsAYPne07YfqTHaIUsBXArgvSM5SN+49S8RNPxZNLbFFVZJYg8DOFaSmE+WySTLxMuctXLSs3J6biwb0q2zI/ezr26b06jgU87RJzc7k8VZSj/YU90zOj0rp1tL9dumFVZJYsWSxK6XJPYrgKsAKHk13f6vdrvBWny90Va0eeaCCZWAXk89PFVaLUlsR52ujgVwKoCWePDGAjgXzQgWaAyzFy9RoruUztUUMdZXGv2xLFNtDe4hABj9Mzk7pw3iMFYNBID06O2H9bUMB/O9KEls4UE2XwRgw7DNV9amGzmk/6otqXKJXq0EF/3V2+3/fmjph7MXL1kJPeUQ/H77StIEDQAqd6X+2rgjqh/5jps/H5H0y5xib2oigA/Ts3JMh92paXAf1kYSPr/elCSmyDI5ZJmij8Q4z0x/Yz2D8E2RN+2kcMGJFkWSmD/88VoAS2SZRrT0GJwW5XaAQjvd/Vp0iplz5NhSkTE3/HFKS/XZZhVWWaYeskx9AWDWwkvsVoPnphhz6c+52ZlFALBg1oeXK74kh9FeUPdt7EEAsiyTsW5fksReBdC31r+0Nk9rI2QhWabx4b72AegjSezFJh9cI5n+6K9LrAlVy927k0Z5y6L2yDKNgx6s4GdgCCut8tGSh9Oy/JR/kgIA3+w+s97zUpZpiizTuQfzL7zl45SRAE5IMAS+M9oLXSAFJAQOmj/1uetPONVbHDM8pkfhb7MXL3l/be/KYHGnqioAGJb0yygA8DmEXQJTBeiprVq8Yt7imx/OBmg6gMldonb9PGvh1Gb7yR5IevTWTABItBYc29J9t3fC99CVAI7k9OzbALr3i1t7JC2gzwM4q85sGy/T28q44cXLRgqkXmU3VC/Ozc7k1tU2Qm52Zq5BCP5uN1bdMGvh1BZ56WyzCiuAOwH8Ictk3Vg+eJpPsZuGJ//yHQDMn7FsjBqIfQkAvCVDT5g/Y1ntdPgGACsliYUO7Kw2c4As080Avm5kzr5zASyTZTot3FdlUw+qqfhKnecDqNj59fBiNSRugsu9kkATCfQNAEGj/ZkROG2IcB7KmQCgMcMnh8pLGVZSpwO4/mDbdwWsVwPAhLxTdvjKBvQGE8E085d1rg0AwGMXnm7wlTmzAZZnjvaeDQAW0qJ6mL0jAcAkBLsAgNLH4wfTAALZkyuOSDWh3OzMVzIS/nhrb3X3Eb8XHv9BS1ra0rNyxuyu6nUWAJT4Ul5tar7Pjkr4HjofR1BhHZH8c45RCMIs+h86UmOEC2t8BgCyTL0A7AgH5XJaCetLh98DQDixy9cHmzXitCI29es/ZlO//nM29es/BgBGp/yw3ROKTqsMxJ3ZEv23ZYX1DgAXSBLzbasYmAmwfapmmAcAgqnqYoDVWn0MCE+HSxJbFE6BVR/lAErRgHKNdSy1HwO4HMBXjT+MlmH24iVlBmvwnoDb0WnvjwMfBAC43CtVgU3ViKkVseriSMnGaRYSwMLWRWbEIVw7wr7ZkwBcVFvtpy7bA47hAFsVt/Ps3npNVd399MD+zDE1dwIYDNDNl8zZVAoAQSZ484OWjQDwa+G47QCgWPAFMQ0EgmgOJbfEgR6MHs6tlybb8t7K93Q9G3pmj5ZCYhDC9z/af4/oSOy585txe+csm7sv64emJudfIElMBgBZpha3sn/43wdLE6xFv60rHd45PSvHePg9mo0fwJ+op/Ib5+iSnpWTmFvVe6JA6tvPXbvox8PvwYkUm/r1H8vAfmBgDzKwpZv69R9jEgN3AkxZse+U41tijDarsEoSK5Ik9uX4eU/0BtjJAL3y2g3PKABgsheco7diKoBQTPev98gynd+QVCySxF4HcHHYRytKlinqYO1kma4AsEaWKVqSmCpJ7PVI5/hLHLh7gTWuqrJie+qUb3IsObJMg8S5VaVup7ohtkLsC5ezRXOicY4KMunnMQAcNC+lLFOSLJM5bC0qOXD7iNcH9AIwCqB3DdbiEdCzUSkIFwKobffmvP79Fa/Z9f/snXd4FdXWh989c2p6I3SI1ASIICqKCo5gD/aC14Zd7AVL7LESC3otXFFsXMUr31UvKrEDo6iIYg0QpIYeQhLST5/9/XEmEJCSckISmJeHJ5kze/asOZmyZu+1fsuVUFVIOJkRgBAiUBZy1JUujgeM2j+6fy6klBhCBpcnrIvIke6C56+eLjfXdr0U+DfwyAXP3/lWJPpVRXAeSEH4y9jhe9jfWZ89b/jae798X4Sc3yBtDwOzm+q0Aui6uBz4xVRtiSibaro/YUhbInB8pPveGU2T6zVNnl5Pvuu+uuRZi31PWnbecFUEPgBcQcPx6F43sGhtjgVUgRCYgyHjBv6rEMTnwD/SsvOaHdbV7hxWM170eV0XwwBS3JtfEUjRK/6v/wBMHj/nEO/Wfl2ccat/APEAMLrrEU8dTXjqqkFVWjRNStO5/QT4ZDeO7grgLyKgQRkpLrxzWcizNUYzgqp744L+I4AMgMRy28WKFDb+LiJv0cYpzM2ab1MCZ4aXxFu70aV8Dfhxd1V8BrmrJgMc6+v4Xcgfe5Qrcdla4EFg9A1TRm3rb/Mfve4K+W1GfFrx9RNmzNo2SiuQarQSjAHok1Aw3KF4AweXrhomMIRAiJQqz9l1U0AtQWFulgFc1Sv+rw0LNo0cN+iBdy9qbp/H9fh0CAjinWWfAaMjpffZ1jEd07nCcJ1TJ1kGuGjeCHOh+b8lRkE/F4Qqu0Sv3aea0rouugC30YLyXRa7xyzROyckbSPC7+nhao4WbRodCJl5M4FQXPAHYOEJPT/aDHTVun+2y3C1xtDuHFagJ3ARMCAtO0/9o3jYoM4x61bPuef2pZPHzxHA0yDKfJW9sm6YMmqi+UC+CRjRmNhSc1r1JeCluilWXRdH6bq4wlz/nabJszVNbo30ATaHCe99+geIF0r/6hazdt6AcAJBTkU+MNsQ8jar+lX7Y/kTZ+cBvwG70zt9Cfjn7kb4l3pjMjravEUZv957qAy5ccRuvKXetQHApLFjhiPFZSAmXXxPwWf1t3cJI+YgZ+1QAIHsGGWvAdCQRvgTEdZobe5x7onC3KzAoJRfB9uUwMLqQPwbadl5o5vT36KSoYcpIiRHdv3ymgPFWQWQInCSRDrFdmdVAsIXs7LJ1cU0Tc7VNHlGS9wLC3OzfINSfttY6k0dcc5z97aIIsGu0DS5ETiYcKIuui7SdF00uDSyRbPRzlN0xy3qhwwVy+ukKC3aMBlLC+YLxPMCgRTygpKnVqwCyk5Km/mZU/VI5/pht/7r+s/mTB4/p8kDZ+3OYdU0WQh0A/4DHO83nB02Vve8GyCxz8f3AqMVe3XuDVNGleu6UMyp0pCmycVN2Nf7mibfB9B1cQTwMHBnXXWttkpy/3UTbW6/rFyX+sLsr2wn6broVtTR/5UiRarDLya2tn0Wjadn3IoVigiOuP6VyzrtvE7T5JeaJqftarvMaZkDaw1b980B92PAdcAvl9z76Mz6bd59up/dGVfzqVBDpcDfpt58UqnZ4HctBlhePmBVuS95KaDXxbBKZd+oULxw9TulAcN5IvCXKgJ517x89SVN7auoptuhhlTnvnjN2xsiaGKbx5P459ECgQyHmfiAV/zu9ZscNd0vWPb0c6c0p29dF8m6Lt7TdRGRQhJ1+EPOB30hF79sPvrUSPa7NzRNbjRDw+zAZ9QLk7FoWR61vVH2lH2qcovtA6Y7JioP2qaV7H0ri9bGO7TyWwDPMeUjNU2u0zR5wrmnFH9wWHXMgsytXXsZhuM4iXy1qU5ru3JY6+SmNE16NU36klxb7gVZCnw8efwcW+W6ETfZo4oCyf0+fNnc5DygQNfFQc3YZ6qui17Ap4QTsY7UNLnXhKzW5LJH/ih2JVTf5auITixd2u0TINvrks8EbLK4U5H9qNa2z6Lx9I7/60dD2sTK8vRtQuq6Li7RdXHnnmTYEtTAeJDGNaVHRwEDbe4tb+/cpmxZ1wm+yuiE5H4bpk+YMetvJQ8NRHBryFFqLnYH4k458xkM1VEJgpJo96cZSwv2yShlYW7W1sM6fn9uvLNc/Wb9Sa+mZec1OsZwzNOPZgCDgBYr6NEWWZ89z+4qH5QZcG4uBR4AjuuWO+K6mk7fjJDC2BxVetgb67PnPdqMeFYXcAxwSMSMBv7amvkBsIEI6jk2BlMR4Q7MEtsWLc950V+eKQQoApzCz5jOs85qbZss9k6ws/9rqUrDsSJqh9La6QFbIlA3q0OtkFc2pf925bACd+i6WKDrImr8lCvTK3wJIw9JXbC6MDfLB1wW8iV2DAVixp1/01s1ZvtNhLUC1zZlZ+ZI6o/AM8BY4EpNkxWROJCWpnpT8rPA1+u+H+BfPz/95bTLvSF7UDymSHE4OfFHtLZ9Fo1jzrqsfwHev7ZmDqr38SjgNMwgr525a2ZHoSCv7e7wlriLh56n2GpkQs/Z0+u3mTR2TIqvMvoukN/Yo7237qofBanGKsE4M67sEJAHAbMDQg2CwGu3lUfkIBvI+7c9sSw9Kf9YX8hVBXyTlp03sTGyVPHOrQ8AHNvt819bzMi2yQWK4exo93W8rHvuyIndckfMB8i8dspKxXBlA50k8j6amISlaXID0FfT5H8iaXRhbpbRwV30tUJozI2vXtonkn03FE2TeZomvwXQdXGTrot/7aznbRE5QoocIpFIZBCk3+UVLwDouug+8vEXTk7LzrvHkqJrexw+aUuNCIkfbZuc3ep/vjqq3Acgwwm/LLUHNzal//bmsK4H/tQ0Wft54VlZIWkn1lFxz/+9dEkqIvg4MN8IxLxX11jT5LeaJi/StG1Z1g2iLsnKHEm9F8jRNPm1pskiM+nrLl0XHSJ5YJFmwoxZ0uby3wJE1ZbEfazrwr6um+//DCFrq2JCVi3mdkZhbpYX+BbkCXWfaZq8HDh1VzJWAF9VpBxaFnLYU73J7/sqeg8xQs5/jb311R2m1lwJ1dNAxoG48cI7l+2yH6cwYno6a4ewLY4sLIllOHzxoBCdXDGk+UfYON69edIPIO4E2QlkNhjfNPQB9nvxsC7RtqqyBGfZNy1tZ1vhz6lXqCF7xZOS0GJ2PbLcWSKlQAi5B/m0vaFp0gOg6+JYXRcR0V4EGNpx/ucGqlhRnnFNpPpsBh0Jh6UFW9uQ/ZKc+M5RHqVD0Cb/JxAPKggtbkLN5wDz1o9+f21Vr89APg7MsZzWNsl8iTz0t3903Rbz/VfC5t++dAcotIXkl+6Af3ZU8Ok9dbA72pXDqmlyuqbJq8MC4uIq4Id/3/jC176KXu8ibakxnX98+oYpo6QpR3VrU4LkdV2kArN1XRxv7vM9TZN/1mvSH8gBLo3EMbUkt0z7cklc95KvqtZ36FWxpkP+yj6+R8uSggXRNcrg6qdjerW2fRaNY2DyrxtAZDw+ffSYuhcmTZPVu2sfRBkLBAb/dlc5YEfaJtdf/+b9Q87ylkefGte95McJM2Yt2l0/PqnUrPe78wEdRN3LX8Bm86oCgSKMBqlvtABdACPsQCt2YGpadl7vPW2Qlp3nrgnGDqsJxk5//urpu3TQ90fsNT2y1UB858pun87tljtiV8ets10+LUgzYpLNF/7HgfsbIiXYEFyqZwbIgqVlB7d6VTJNk/cDZ5lqMsm6Lqzp6sgyTiBUe1C5m5yKieRUbAs3mrniQlMjVwjAFWsv/2zs83c92oLlmy0aiWdYRa1AOENJwbF1n22oTgv86QzJ92MCU/90hrSmJrq2G4dV18WRdeLUx3X/9AogPc6xdfrk8XM6Va4bOdwRt+bXcQ/d+z+z+VnAc4Tj1BpLDRDDbmQ0NE0uBYYAzzah731O5drUs4DCwrmDE4M+25dqSFwmJEZMjXpVa9tm0Tg6RW/4CKAmEPMi8Nuekv/umtlRdYrQFQ6YG6UG7nLErF9zw5RR2wTRJ40do5Qt75YtVGNrVGr52N31A+EY1vKQfat5k/k34czyE/EkLQeBd3P8X5E5wkajg/CBrNOU7aUQ+uvsZ+//6ZCctxJ2tcGA5N8vBNwC44CJX12fPU/EFo0+w1B8G0LOkjt21aZb7oj5AuVmAIG4uy5coCmYI/7nA6N3N/rfWMIvF+JdYMSgB95Ni0SfzaHerN1dwHu6Lrrvqb1Fwyh80yV8DuMBn8MoIKdi+c7rS70dXwHhAYIggwhiFmw69n5gfa97Pp503StXnLjvrT4wScvOG76r0Ix1qUlzAQpXZo5Ky877xxGPvPI+yKtM3esmJ8pCO3FYdV10A74H7gEorOx9jUutRev+xQfAwyAc/sqe2x66pvj/IE2TCxvYv8OMS7JrmqwhnFj139211zS5zHy77qLr4hNTs69NMmHGrFqQNwc9ztQ1+sEXJt5as0ggPpLIa8qej95lUQSLtsnstad9DGz+eOXYxcDte0r+qwrZLvNJNenk8oNl0JNqc6cs2TGuUBhXAMNkSL35orv+2mOmvIJU49RAPMDA5F/LAHFiz5leKRQ/CBQpW6X+uulAjwbxIGHR6j7pyfnLfi0+8vCt3g7L0rLzxqdl5+1Qgcmu+G9xKF5O6z3jx9awuZUYDRyuGM5HDr76Dd8e2n0CYCj+v5Wubixmhn2VrgtbpEqd9o5f+j+AGHvV521oKvgBwo75OgBdF/tMemt/JLnUdprTr0SVJQW/3dX67dc8D4IYOar7p263reY0YJ6U4pbPVp/zxcAH/vNbWnbehWnZeZYMWRPZucTqzpjX31zgcZDfDX/05cpe93y0LC07r+IW25NzSlzxFAdTLwXe3Vzb7ZzwVruurtgYIl5Or4UoAs4Bfk3LzouH/oPsiu/No2qihpViXKM6K98Y//zZKwB0Xbg1TXoaKWN1PPACsA6Y2YiKVT2AoYQzp5sURLwvmDAj75NXbjmqqGJN6umfTE++o29/jy/9L3eyz2lMph2ENliEKczNkmnZeV/XBGJP/t/yC8/QtN23/a46aQhIX6e/LlaAzRWFJz5Ut276k/17qY6eU4QiC4Ie5/Td9xLGKYyYHg7PYIAkV2kxwFZfcm9bdEkq1QquxOohzTuypmM+wOqNBmYN6H/f+4f5Qu5ngJdTozY+e/4/777j/2598l9p2XlC4dD4OGf5/BeufqddJE82l//e//rVDkfgpS6hDp7OodS/SZ/l5OQMJ/wA0S/oqCyILj6G2pQFl8Hol3du20RuBJ7TdXGIpsnfm9PRyor0OJAU1XbtD8xOy85r9YIP5kvjdwC6LjTgQ10XWZomDxht30gSW62eC1Qml9pu312bHa/5LIBZwKzrX7l80BZPx9yfi47JAKbbFH/Nmc8+sGxVef/L/nzk4j936CQnftt5Xz/kwAL+OL3HGXYR9T4SRSB8BekZo+urwNw89eLkjlEj/7u5tovTdEJFTSDG4VK9K2uDMZ93jNro9yZw1vDi/DhgpE3xdw8a9pmEndVmVRVsFw6rpskgMBNAfP7xeIkaFTCcL1eu1V5WbF6Z2DvvSTgbXRf9gR90XfxD0+SXe+tX10UnTZNFmiY/1XVxeENHZOvZ9aOui96aJr1mf05Nk3sawWg9hBwtQ8rCjT/1vyn2zPnLeq5xbu2wxX4sOfGCnIoDJpavPaPr4tLLB5445s3FN8d7Q+5zgRm7apc5LdMGnN/R0/E7xXAcD/KJG6aM3jYau2Vxz4dCPruaOnj1Q5fcu2Svf3ufVGrW+t1/AszbcMJnwJM/F42QpzpXxwoE0th1ha3W4q/Hz12Ylp133NDU+XcVVvZ55KeikZPTsvNOBWOegdqj3Jf83t57af/89/7Xr16irn9VIvnNVoTNpvypTvxQGoYaCARiSoE4kIPNeEDvexXG6Mtt1SXOqj7NHmGtxxSgsLnOqokGwiA8M+gML9OWnI3VhBPa8lvbkPbI5n9FdUrFdq5ATHPcV1Xb2O3/de2bi4Axadl5CjCqR+zqF//cctgQQ9r+SMvO+35A0u9f9UkseOmFDZ/0I+w0qYCfnPjRB5rTquvCCYRMneEjgDuBGzRNbjZcxjgkNrHjiOh8gLTsPE1w/hsStavAMCTCABGo9Cft8PL46/KH+rqK4k9/33uZctg/t3xpFnrRAL05L5lt6kGzK3RdjNJ1caP5BdM5esPTCc7SzRPKXTGB2o6HGiH7vWNvfn2Z2TwAfA383oB+bwWW6rroCdBYZ7WOes7q+cDithrLdO0/5y8B8Wh1UVKPFZ8f+qHbq9xmC4kehKdXLNoHvQal/FYCsGDTyN3GZw+PKbsRSD2p9IiDEIZI6ve/mXXrJo0dc0jI57gYxIuX3Ltkt2Ev9TEQwcqQvdxcXGf+7O6t6PszKAS2Rq3bzaatRmFulvzw9seeFMg4wjdjDZTc8Fp5cxuaUm4xPMJznkSagyCgoHRwOqt6OBw1qWaTBMLPgG21v9VA4s92T+eoSNlgambPBNB10bUuD6GJ6IAPpASpZCT93jcSNkYKTZNrNE1eommy2gyFmKzrYo9JgBbbkUI+KxDukuTArOb0U5ibZRTmZn09557bMxKcWzsDd4LsuKRsSM7nq8/aNDd08FQpcQBqcxQx2gu6LhJ0XVxY55voujiOcK5OXQKjm3BVt04ASo36GtulEgOAftOrl3QfnfvM98BciWp0iV57mkQ5BrPE985OqAiKdwFcP8ZnQnhUvDA3a2JzZ0TavMMKnAHcDYQOfvCdwzbW9Ijpn7Bojs1W+zKwFmn/Z11DTZOrNE2O1TRZ3IB+PwJeJqzVGglWEX6zLotQfy3BJEdMrcdTEv/8nOQo3RCy3OcwHmttoywahqbJnGT3lnRgcbkvebfZ0hv9rvPdEuleNyrO5ipd8I/bX1oI8O7T/VRHjOd/IMsI32gahIK0xauBuiTEClUEQsmuzTd5FCXFUOwYqqvNxkL/knO5rzA36xmB8TzUDSYLG/v5QwrALd3/VVEQElQU+oY63z106Ouphx8+JS0nJ0cjXOLaTGAJP5gkcqVE9vlz6hURye6vw4zzzwfua2ofdfGLNiXwWIp7s3fZ1oGXpmXnHR4xIyNLOuFCB62uatBeSCmxD/E5jOLqGOPTSPX5a85lmwtzs545o/d/+h3f4+NbEu1b5/QRGwdKIIggKFTbolR3W35mNwhdF1F18dNmsaOZui7qKtd1BKYT1u0GKAAmEg61RNOkrmmyn6bJPwAG5635VCCmABgO47xTznwm6cs1Z/y5qrzfUalRG98GDv7hgetm7ckJdf0W9zEQVMvtgyN5nG3eYdU0eQswVNNksNKfOA7wjfa4qo1gdP/YrvOm3zBllNfURr1d10XHPfVlvmVMMvtdrWnynkhVrdI0uVDT5FmaJmvMJK4ekeg3kkyYMcsf2630Ln+12762tMMna3v4E5x+5Yi1r7usUdY2jK6L7rouBkA4PEYVwdkC49ibp178NyWLzGmZjjX+qIx+m7TvBUpK0JP6cN266k1JD/ir3T2T+6+fOWHGrPKG7t8pjOjuDk+muXhkSNpUZ3WnnnaUDKk4CDhTu0weP6dNj1hKlFnbs4ubF0fVXjjvsSunniQPCgwmtTY91PWa8x67cqqmyeo6rdScnJz5IMwEFkbn5OTMr+48u4tAxArDEVHZO02TG4GnCT84m0xhbtb8FU+c9WD/xEWZIWlbB8xKy85rciXDlkLT5CKgj6bJ6QC6LgbXzRJa7IKc+MG2kMhw+pXH0i73RjxE7fmrp8vXrn/lhfnK7T91V0rIcw8qmKqcyFjvg5y2duqkzAenv3vtlKtapZJaYzFLzl+q62KEuRwNVBGOFweoBHoDdXKDK4BM4D0AMwzyAU2TK3a3D8+wip8B3jzy+BeBWb6Qa/2x3b686KcHr760MDdrr+EaGUsLPFKV+UZ08KQmHuYuadMOaz0B/y03T704UWBcapf8L7D22JNU59Y1roRVD5hNBwJPAWfvpcuDgWFN0WdtJC8TjqVtcyNPlz38x0vAf0oLuvdfVp00QSKD3dc5zmxtuyz2yCPAj3Vv0Md2/7xEothrAzHX7txQIE8EEg4vOyRdqN4i4AuASWPHJFRtSLlOsQV/d8R6xjdm5z6pVK/xuX83FzUQsntQNWealbrqJVrTDm3fsGN28d+nsPZHvvnafWnnQFf7gOigft5jV07dVZucnJz5OTk5E8POKyiB6G8BokoOj/gLt6bJiXUPyT1JsjWE6Tc/twLEqWA4E50lv9306qVpETEygmiaLIXwlCwwB/hXqxrUhqmODj0skT6a+UKzR3LiMxUp7gHeOS37+wFLO9uVPzlohER5vzYQc/4XhWdN73XPx7+lZeddO+D+Ga2q9mBqyXert/yuroscADMp/GngMnO5hnDY02xz2atpMlPTZJ2DGtI0uaih+TVp2Xni5g4P24JCIbbIOEgQegTEoW/d+NK7jTkG/4BqVQSUQ36e0CFiL2pt1mE130YX67q4GKDcl/SYRIm7xCh3gOgR8iVefv5N00Kw7W02A3htF/0MrBudAu4HjquLO21BngMe1jT5t7rsbYQJQjHkymUHZUvJu8Dl5MQntLZRFrvlTuAfmiYrAVyq92WBEfx2/Ymddm7Yx1nzz46e1ICtKi0ltusPv90wZZQBoDoCTwIdjKDtygvvXNaoym8GIlRl2CvNRR0IrLMZZpCTwAx30pt2aPuOSMVRtRdc5ZndhbTjLhv8YUO3iS4ZPhvAWdUvdW9tm4qui6eBWbrevGS9wtysglHdP7uvyh8fP3fdyTPTsvPa5Aimpsly4ArgCdg+EGMRZtMUd4zTp5xenhDaTE5Fi0zPF77pcta6Q3MNIauA2yA86rpi4pnfFeZmXXbfEXeed3HGFKJjF3d1JM+dEnQUlZ381MTf0rLzhoULFbUsui7O1HVxRf2PgNfrLQeA+vftw4BtAw+aJp/VNLmguXZc/8rlQwTGR+vtXaauj+3gydrw/aLVuac/VJib1eiZaFGjvi38ClFfJw1srl11tFmHlbBw/xLMGNMfNh43OEWtKk+pTThDdVR8d8OUUXMhHLsBoGlyuabJHbJbzQD/T4CXzDZBU3GgRTHfZqaaNmTquojYHywSTJgxa1Ni76K82uLEDm8WZx62qTYuenNq4K3WtstiR+rNMJRomtwmdP+va98skSh/+g3n+fWThzKnZUat8kV1P2KTVg7SH/ImXgPwzsSMs0MB9Rp3cuWXE2bM+rWxdgikwylCIzOnZQ4vzM2a71C8p22yBfglZfU6Kf2IwNaQd2u7qKNxQNHpjwf/ABAofxNg3wOrAYKOrQe3iFFh/iIcz6o2t6M3bvjX5BhH5dXVgfjBwOv7wrloCpomP9I0udJcfEnXxT8txzVM5yLHafagEIYiH9h766aRWmx7KMqjJhd1CvybnIqSndf3Slg+UyTMf4iu0+McHb7A2eMNZaU3ZhCwAORv5//z7n/f9OolPRuzz8xpmcMzp2Xekzktc7iui3hdF9viOXVd5Oi6qK9kdCEwod7yw8CkugVNk+M0TT5ab3ndzv5Oc0jLzhPDHpk6Ye66U34TwjgFuLN7ZfHrUTX+3k0dIXWsivoAQPEpwyJlZ5t1WM04i3M1Tc5Oy87rGzQcR59Y41orQ041odfnT0FYcxVYouui/h8aXRfRui6E6ZxeQPhk2OeYN6S3gbfb2s2pbHnX5wBZXpYw4P/WZeJZn3gSOfHNfoBYRJSLdF18qutih1jVsJMqDwY6g6xfT/tUEXI5Om0+MgrE+5c9MmH9pLFjRPGfB92hqIY3vufm6xtrQOa0zOESonxSGQLMzpyWOXzZE+d82Tlm/Yo1td4oGdqEoQRUYPaksWPadBzrgUZNhx8vASjv+X5pQ7fpljuiJujYavjilp3TUnZpmnxN0+SESD1wf3/40tcIJ3NdNDR1/txI9NlSmM+BABCIVBWw/YArgdXJZfZ3WqT3nPg+UR71VkPIPL9D3rarJpom5czyzgHALgQgQoaz27THgfFO1ev8qWjkJXmrz1uWlp33Vp97Zh59UPYnu6zyVMeQaQNPE8jvQD4KzP6lJm4K4TDBOp+rGFhXzy+4mnDIYp09HzdEmjMSHPnIK+nAV8W1XZ6JsVeuPilt5kmFuVnP+IdvDQiEW3iVpt4LCqUqtwZT/edGytY2qcOq66ITYNRl+/dLXPzMlpKBRhdv7ADg1QtufeUTs6mdsD7rz/W27QJ8Q7h06suaJn/ap8bXw6yGdX7d761lx24YEZaHESJkKMbmygRXWkr16cD/9rqlxb7CQfgc31nkXmP76NQ2nTynCF3er+Qwj4Ia7U5e/J6ZFHqhNJTh0lCuuejuv1Y1wQYt/GNHTb6N1T0nHVr768vbM+931OuzaF10XYgU+83nG6pHGraqJY3b2ljpquhf0zKWbUfXRTrhUaRL6+I9m8HEQSm/XPJr8fBj+9/3/vi/Hj93SgRMjDjmc+DWOkdF10UG0L9O+utAY+3rrhE9cI72Oo1nXfdUNbRgT4NZ/H92pY/DNdPhFwFFimv3ktClC7bd0fxC9X1hhg+9cu2Uqy6avTbrOEOq5welfVw4DEpKEIFhj0ydeEjqgsVfFJ71HVBSmJsVcCvGKdWGrc45tX9ekVq8ftOpD3208oJ7jM/z5hTmyh3imTVN7tNCJqajfVzP2OXDy7w9ssCoAWX8Fk/nqS9f+6YBIG3yXeA216+xTYpnz1haIP/I6ulTKmwjImV3m3RYgXuBy3RddL533r/8Vf5up54lq4XA5QOxrWKPGdN3607bFhF2WBftO3N3j6bJOo3YOu3XbzVNNnpatgXQCV91ChDsHFW5tSYq9PLPuvhsH8T4WjQATZNv6Lp4cxcvOzrhbPdtlUPumNmxa8hIOfWQ4uEBe9Tm8phOC2e9eNWo04TqfFNKVmCor+/cfwPRQQQJ3yuCbI9V/XiDq8vLSOp0PkO0gzjWAwiXsyJ9i1R8tQdf/UajXpZt/uQFQMQeMnsgGhhMOKO5WQ5rYW6WvGXqu0OXlA752Bdyv5SWnbe6MDfri4hY2QLUu6bvAU7SdTG7Dec8tBjxFepNEsnmjoEZjZpvbyCpxfbnnX5lYHGHwMupN9TusQR1/rj8+cPfTp9dY6jHSZTR+ePyt718vzL+tenA9LTsvFuTXMWfl3k7HG0W3HAU13Z56IvCs7b10+/eDzwx8eerdPow7NKiKN5Np43+35bR/QAVjIeOz33qPyvKB34KMDR1frpd8TsWFB37J8ChHb/PUEVI/alo5CKAwzp+N0AIKX4uGrEYYFinbwcZUjUWbj56CcARnb45OCjt/l82H7UU4MjO+mBfyOX5rfjIZQDDO88d4glG1fy+5YjlAH0TFo+BjLGg2NdU9aVL9JrSQSm/nfzqdVN30KKPmpf4C7BJ3WrPpImo5ba31VLHnQXpGckZSwua+1KKkG1u4G/bm/fhmibfTsvOO6NLUJl5UbWT2C4/5F364P1jzDaXAb9omszXdZEEPA7cq2lyayuavlvMDO98IE/TZKOnZluCl67RrvdVxEy2uXxPnnfUd4d32eQYVZDumZhxgf/e1rbtQMbMDh2oaXK3D9y07LxcwvrEpxfmZn1y5NsZV0VX9J569qLbAW7wbn32N5DzqKvmgtAmzJjVpNHPzGmDzgXx3+6O2jmf/mPlNgm0ox+bXHneb99GhWw1quocMu3Wfz92WVP6t2gZ1t0zdzVS/al77sixjdlu7b1fPS4MZ3Zlt1kxA298ytNS9kHkqwOmZefFgfzOrgTSR/XIu+iV8a81qDhGa2EmF/fRNLnYHHXt0EAd8fZPOAStUCIXi5zKk1ug/64SuSRgl4UbuwSGNEQuK3Na5gdARv64/AG7a2OOTs4mPGAQ7B67amKP2FW27zcevxFI7RX/10ghjJ6bO77TK+Tr5GXLiTZPTf9mqWK0IAZwf2Fu1sRdrVwyMP0jFHn4gPy/ujSl84L0DA2YC5yasbTgs6abGaZNxrBqmlyqafJtACRXjfLYAkL1bXUlrrwctsWuTsTM9iP8hn4JcHRr2NsQzNHgI4GboW1kivoqYt4CCHqd1UGbvDykyFDvlc7+rWyWRfi8/sgMjdklPWJX1gIMSv51CUCNYTvr4KKRHpA1wDvAiSDU8PCnUGiG7FT+uEXvd3d4KipD9iMyp2VuO2/dttr/Kw+F456jUqvahYbhgcKfU69wg0ir6fhtox801Z1ndxAIxbBVH9USttVH06TP1NG+StfFYc3trzA3q/LEnh9dFmWvVr5Zd9LUtOy8bnvfqvXQNOnTNLnYXLwC+MsME9jvCSnyZKCbQOxScq05FL7pEoaQUwXC7ggoZzdU29UujF4qxuY99r2jRN6oeffd9Mj0m597sDA3a0phbtYjc+65/fjZ2Xf0tauBopSYwm8LHrjdqYrgSMJFOkIgfT3jVtwCDAAGHN3l61Fa989OqFs+putXo4/t9vnxdcsju355/MiuX25bPrbb58cf0/Wr0XXLWvfPTji6y9ej6paP6/7piUd1mXNc3fKoHrNOOrLzXK1uOS1u2W2EJcSCgI89zIx5h1YKEVA6L7y1Q1NHWRdKpPT3rh3XxO13oM2FBOi6uAeYqWmy4IZXLju0f+D8MZ1DKhL1zvNvenMLgKZJj66LQZgOqqbJn3VdpGma/Fv2X1tC0+QmAF0X8cD7ui4e0jT5Q2vZM2HGrNpJF5y62eYKHNrjSu9j5MS/rBri2uqnY6ZF1SqvKA9Vtppt+zPmG7rG7usq30v4GijaXR894lb3XVvVm57xK+Ju+1+n3q5Aj5N6lR2sxnRamD8u5+7K5y5+spMRsEN4qr7ZQvlbg/a7qg3bK4Snir8FWFE+4NnBatGVsYC3LEGdPH6OuGHKqLY3ZXMA4k1Y/KCQKiLk+qax29q8HT4Hro7ZfOy+0qKMBh4AvgKuam5nr1439dfjJj43cnVFv8+BvLTsvBGFuVmVe92w9ZkLvAks21vD/YGq2NArMdWqzxYSn+y9deNw+MVzihSn1ESFcqPvql659y3CRCmhzE52X+He2pn37T3OWKXa/HF2YRwOsHLiGfPSsvNGE9ax1r+595Z622YV7Lhlyy+nZectYM/PIAAUj/omcJr7m8QMwjPEjSJjaUF1vtbLJwLiuMZuuyvalMOq66In8BDhqg0FBVuGXjfK6wBHxRb88W+ZbaJNodwrgFxdFwdrmlzc1p3VnYgBOgPJrW2IO7nKxfaSbfOAG6NrlEuBC8iJ18ipsJJoIkRadp4KnA7yP4Bdca8JDphy8huqe8O/88flzzdH3VVzinTenvpasOmYYoAvVp/V/dik2Wf323KEqhgObO6Se999up9TdXS/SnUESgI1Uc8CelPDAeqoNmzTgWdAXoHpsAIFQVUtsYeUlFDAo6gO+hGWLLJoZdylhykA0SVHNLrMZVTpsB8B7J4uux3hjySaJqt1XYwE1keqz7n33PZDWnbeuSA/TXVvXNHrno9eNKTt67aswatpchVwO2wrNvAKcLemycJWNKtlyIlPjUftvDUxNC/plpqIVJus13dKJ2G/pNYd2rKxS+Chvg3cLHNapgI23Ero+0iYUR6y/eI3lA51yw1xcvcVDbXFuSjmM8CveNTDgP9ryr6Urfb3hE+cXZCeoWQsLWhWYl2bclg1Ta7RddEV8KVl5ylH+Pqek2goJPbQX7zwjufrRHNn6rooBa4BNhPWam1XaJrcoOtiSJ0mrK6LGE2T1a1hS8hn/z5Q46rTSestkQgEElk3jdwmLrD2Qlp23jGqCJzdL3FRVIU/qWhjdc94p+oZFO8oHynoqAxAsQ1V/eTHLGJF5w8cYIyXUhmv/fP66rjgQyt6JSzrNHFBbm7PuJVlxbWdv/l9yxHrCnOzZL3+hwuMcRLnVQCGa8N/164/suLk9ScaErn4orufnvXcxfkXGgGbLan/+pcuf2TOLmOTGkv+uPyak97tO39L0HHpHTM73vfMmZs3FOZmycevebciepM/pcJRhlA9o7Ec1jZBTNFxNQCG6mmMBmsdRRLDF3QVDyNcta/F0TS5BrbNPg3TNPlVc/sszM368uSnnvhsadngMSAfAe5Py847sTA3q9Gjzq3AQMLTzp2BwtY1pUW4RCCUpK2261qg7+cUKWKjPOrQvhdXN8YZTgWhFgVcEVEWqjVsK4E+keirtchYWuBdcnD/JYbTGAPc1ZQ+FJ+iE67KlU4z/bU2F8OqabJU02T1QOemCw/3OhIqhZFvc5Y/BqDrIhs4HvhG02Slpsl/t0G5qAZRz1kdARTqumiV+Ft/VdQP0lBSJo0dE0142jhkOq2BoCrntYVY2/ZCWnZeFvCtdG28baUov3Yz1Q+pMQXjHSmzD7d3et9xVsfPgi8RxVWhZJ6pPJoMT0+EACEMShPnxayM/W7wZ5WJnVb43P/8cm3Wv3/fcsQaoLrffR+sPj73meKM+2d8AXwrEdeCUBX3Gg5K+Mpx2l/XdnCFohWQGS9d+/VwI2C7BVhR9le3xyJ5fH1d1e8FpCJ+r4m/uO6zrs71C+Jqa5BGGe7kJXdGcn8WTccfu/K8kK2a8rT3Gj3z1C13hBGI2kDQXXRiS9i2F54FPtxZe7ipLC0b/ANIw5SycNgU/5xTnnpidlp2XkMH3loFTZPfA2maJucD6LrQmlvOtq1Q+KZLhBR5o0TOJ6eiYO9bNJwNr7ofAC42hHyKnIpGKQX1cNT2A4hSglsiYUui6g8KZKe7ZnZs189QX3pNSPEoGT9P6BDdlO0DXb2/A3iHVF3dXFvajMOq6+I6XRef6LqIBhjkV95ySVCEcdX5N02rc0qLgH8Db7WWnS3AMuBrWmlkyubyrQOI7bZlKDkV8wXiLoHA4ww9/t2IqslAiwmI70/c9OqlaS61ZobiXiWier6CO+UrhqbM45KoDa6HagbFv7b2Fm7f/A+XHRsqCnZpk4Nr+gdBBkH6Y5XAu4pr8zeO5G+DUT1fIz79ARnT++m/3J3+90tS3CJfTSAq2hOMGgnYwg9fiTP+J3n02tNR5bZ6D4pi++52YBhC/nPCjFmNKsG6N76pSnkLWLw56Nym4TJw47oZ0b4ASD/ezT1TJo+f065vzvsDui4UYdgHBV1bahoraVWHEoz6xVmR3hoyS/cAJ0ZQ7UUHYSaYSF+X6HUlS8syjwWWHZT9ydfjXrop95apF7XVkq7VALouDiIc39tilaD2JWqIq1VDpG3uGIis9GROfFxqsf2OWnfIt7aH/8nGbt7D4T0eYFh0eVQkzOntqu0kEaoBTdIxbSuoW+2viaBC9GfJTarY6RtSvchwh6RSpTZ7UK7NOKyYer2aJmsefHjSsV229lTLEtbII84/KUnXxcm6Lk4mXB3iMk2TLSq1si/RNLlZ0+QFmiZLdF0oui5asiTi30jqt0ECOONqs8yPXpXIoN8pDwXWAC0uIN7e+Sn7m+N6FZ7/85hQbPQ1jkpy197EB8ue5bnCu7iq+GwOrx64KjYU84Y3dtnb0szOVBDe+FDM9SAe7OusOeeJ7n99+2LPRSeMiCntfExM6cMuJfimcJRiS1wwoqbT+/29PSfXRPd+6mtb3O9+NSY/FNf9VeOMTYeLjjVpGIQwwmWmA9L48RjV6ZddDls2I9LHmT8uXwJvAEdc+H89RwLELHbao33hgkXBkC8mqqbo7cnj51gVr1oXp7Oyb5Uw7Av33nTX2PzJCxXD1XV99rx9+gKiabK43qhis6dTd8zoFsd9e9/NHSVKd+ABu+If/M36k+/OW33uhrTsvJy07Lyuzd1fS6BpcjVwLvAMbCs53m7pusFxlCGk1+uKeCnWifagiBVSnJR2ubfRL1uLPTFVAGVBR0TC4Fb7or4A+LYq2RWJ/loL+zrXJwDCEE26rx8+aUtIeJQvHCuj3M21pc2c+JompwBTAGTx4EkSKIouuwR4AignnOncGficeuV19jPuAh42E8n2yYhr0OOcDbB1ZeewY5pTUV39TEyNLShO1DQZsy9saM/8mf3NyFTE7HONOCEQhCqOYbVzA58nfC+XRK0IxLrKrnjy6lnTw61HsD573su+mNUXbBn4zOWZifml+Zqcaoa6PAJ89a9zNq4Ccur6v/r9bodJuPnnmoQYxVE+yt31PUe0L4FTl15LoqcjBak/TC+KXV01qGgkiaVb5gQ96gxnnG/qP+5Y3iJJiIOjKj7Ir42bRHjq9jCgX7QvHCZmhLZSGzXwQuDsyePnjL5hyigr/rkVSFlyq00JxMcIw97k7z/oKNts8yfFVHWa3RNGFEbQvAah6+IYYO79H3XI+ai8kwHo9YXcG8POCSaFuVmbgMdumXrR0+W+pHu/WX/SMOBBgfHAiU8+WbShqufVNcHYzwtzsyJeeampaJr8CEDXhQp8qutiwWWfz/qUBmR6tyly4mMVxLnA9LTLvXuUj2oMm6a4r+yM43rgOXd2VZNilLeGHHGA8acnrsGqAnuiNOhYCeAx1BTacWx/xtKCDUsy+28JJQcuBJ5vSh8CMR/IKUjPiMtYWtBkxY424bCab9IrNU3Kl8Z/fWgnlEN/d/o3T33gjum6fuc3hKughIAumibbzE2kBXgVqGQfyppc/thvGyeNHVMW8jm2jS44/GKqwy8mkBOfomuVZYQVGZZqmvxuX9nVHuh77/+OuUtVZ58cSgg7qxh8kzhvydOdZlyF+SDZ+SHbLXfEfF0f+SthKZ/fzY+fBGaZWcI7MPXc9QuBSwEyp2Xa+lf2mTVs2aUn2QwHeelTjA0Jyxbnj8ufCDBp7JjJIAK+yuiHdu4nUrxz3to1o6f3+2WxJ/agzGmZjv8D3e0P+oTEKUNlIITAKtPaqkjVqwmEqOw8Jw6apsde0/EbV/y6swg5S0YRHlXf1/w4ryrxnY/KOz5sLvszp2WObqrTuiuev3q6j7AqDWnZeb0GJv8+dWVF/2M8weg8YMUJTz71Vf/ERc++dM2/V0RqnxFABZa9ueiGLmxXEvGnZeeNbg9O65aUwKMdSuzRIUW+qe69eYPwPRHrThS2l7xOI6AYPNDUQN94NTCoKmQr+WPcomAk7Ops91ZvCrjo5awZDEREeaC1CBzk8aibHUObur2/b+1qx/IoUXtM+eU00emFNhASoOsiBVgM3Pt/L44TStKKn2uFpMvgV2LNJiVAQNOkf7+U96iHpskyTZP/0jQpdV300HWRtfetmo9iD260ub11SgE4/coHIlx2bhTgwiyVuy9saS+kZecNtxt2/dBQvA0gRAhDBOWIiiOvyR+XPz9/XP7E3T1cTbHwq4DVui5iCUtZ7TWe654to3O0JdeNMkRIzhz0z+CGhGXbRJ+nP9m/j1BD4x2xtbMnzJi1W/3WSFAcdD5oIJKAMRlLC+Z/1GvETcKwI0NlAEikpJm6rxZNJ2QvHweg+uO/bGof9pqenwLEbjglonHQDeWTrand3i/rYha/QGX7S1CLUJibtWrWnQ+M9gSj44CLBUbx8q0Dr/ts9Tl/pWXnTUvLzjsyLTuv1eOzH//xycG5Pz1x+jfrT7mC8PfS4t9NJImqVS7yuAzfuu7+iGl8O/3Kgy6f4qqID93kuK+qySFsiWrgmI52X8RmFQe5q7wAHWz+dh8ipRY5X1Er7LaC9IwmFeLw96n9FsC22XF4c+xodYcVqAVuAt4vW37mWbKsn/gpqpZuiUuPN9ffC/xZl4x1AJELvGk6NC1KdGp5rFBk/UoWCw0hPRVxwVs1TdYCI1Ov7/96QXrGvQXpGS1e/aY9IGDc3apUk4EXO/6H9xK+K/Eo/mMPeuL4xrxJn014RP3XvakxTB4/++atK8bc54pd55t/0Aenb40qehDYNuJUvqrzLTKkKom9il5t8kE1nC8VZHG84n8qc1rmPW+M6Dp0eWxXKXzrEKEAG4RXfTrBc1ladt6DZpEEi31IVMmRWwFiikd+u7e2u+2jbOgfAGowrnuk7GoomdMyO/9aG58PsjNIP+GKPM0uftEQCnOzfIW5WdNX55529MlpH54bY6+cQfg6nd85el31SU/mTkzLztvnoVJHPvJKelp23rTl5QN+XFXer2ta3LL5hCsn7bPvptnkxA+IrlVTFIOJDa08tTeqn445BrgTeL3j9bWvNKevDQHX1uqQrclx3zuzMeBaAvBrbXxEQgxaE7XS9rX5a9PiWJ/bsgYocCyPSmiOHa0eEqBpslbXxdfSUN8MBd3dyxRD/mpT3vrvWQV1o1M/AXazWMCBxHjgIE2TEc3ULUjPUHyDqlOCnX3prp/jAmq5PVoZ3HFrAFfPz7VD3+xZVFscTE5Jj0oIuJUa9ciNr6b/2sHeLw2DOpkZb0F6xqiMpQVtfvqpJbnIXTR2tKcfb3b4iE8TvydQfljO3dn371Hsvz6Tx88Z7ox77djOhz9LVErB7Nrig5XJ4+cYHQZOA2DL4nAlO6F6RsiQ80lQjhRKIC+u+3fjPrrpP6XArLq+Jo0d44KY80B+cfG9S2ZG9kj/Tv64/OAZ7/UqWuWLOhjko67OHwQr1h1rBGqDatfNPyI7DVfcIf81HhUJIru9TFfuL9g9nVOkCJZ3n3hckzPtu+WO8Ky9d3ZJ0FW8T+X2Mqdl9gK+Kg061BGxZdnfViXPYzfhNS3NlPGvfwB8kJadF9s3Ycm9VYG4W//ampkNXH/wg+98lBq16c8V5QPstGAMaVp2Xre+CYv/r9jTfzhIL4hnheBJ/d7bShpQMa+tcSUQcPqVf0Wis8I3Xe4O0vZlUJVeW0jc0dz+AlJJCUil2fq/dbx3fqEnc1pmRUAqSZHqsxX5XSoyGOjluRr4bxP7mA+cUZCeITKWFjTphaVVHVZdF4cDvYAFW1edMhLDwbdRPmJcZdPq2mianEW9h/OBgqbJSuAPAF0X44CgpsnpAD9P6CAQsqvzz9ho+1pXVLCDv5s/vWak46/oYluxQ4TiA2nBbr5j7Wtc65Rqm2I4Q91ktNFXKbd5BCLGuShGOBeFBwm2RjmpNKJBERR06HhZXOXGQEKFUeWXhNwKqmKT5YYii2GbLqKNAzw+8Z0XJzx0uee0hF+jCvhv8pcIZMiR+HODy1iaWfTf+CoPshfOfhHgVvP/Nke1DhmqS6yUQWk4Jp5/05ulO/fnTq641VMa3xHEpKYdUePZ6HfNAw4GoQohZXTK4qVKadTAYOpPa1FG9Dhry1re7dRZgHSA0DiAz5d9TcixdZRhq9nl7Nnk8XOOA44C5uwtKS4QXeiQQu6zEfJb/tf5TIdIetMvFUMijpt89sYF5qpWPXcKc7OqIOuetOy8ewmPMF1X5Y+9qNKfeInZRGY+OL04xb05sLqi/1dAcXrSn4mJzlLP/E3HfQ4UH9lZ93WLWbPumSv/r0EJJze+Om7g54VnjgfH1SvKM9SDOyzMd9tqz33vlqe35Te0pcpJe6PwTVd0V5vj5qBNLnRnV0VE57THWscERQr3xs7+J7pc6ylvTl/XfNA1DpIS49RAREv4OkWoNlYNDolkn61BxtIC/58nHFSjVKmHNLUP34DqMueSmOSaE0pHAbOb0kerOay6LqIIByJXbPrlpoEVazWjxFmtVMRv9mpd9G91/dJ+hIsETNU0GWgtO5tDQXrGtjfgnUckf57QQTj+iopzrIiKN9yhFO+RFSNthW6PY7U7YLhCnfwZtafa1juL1S12X2KfHmNEQMQsvqXf04pPdUSTnCDCsV0A2LY4sG3ZHmquVNiC9pBQCShxwHoExcFUv9smma9uta8IJQSC/gE1Peyr3d8uiel6tFS4GhCGIkLz+3R9aML/5U0kJ76uzOb/FbzX5Q/CJ5id9jL9FAly4ocDFwPv1JWoXZ89L2Ygp99aTZCnu76FFFICfhr3nWhsC8eR0h61uQBhzI7t8uOYoCdlVSgYVVlTdNgfwDEgRxMuLwAwkp2C9999up8wgl1znHE11b7K6K/ZR3ilOp1wMp5dIINxjvL/g6iHyx0V90dXFL58kD0hOslTQZk7TiEch26xD9B1ofb0vR9Xa9+yefL4OfcAujt50YhATefzgt7kOJD9zKaevSk52Lyps5VA7LDdrY8UmdMyhwOX2Ei6yq2ElA4235GfX7giYlOzkcKsOPcD8MOA+98rrg3G3Ba+NkFKYa/2xzmBk4AOS8sOtpub3QLw4yYNgPez8yqBLalRG6PcttraNZV95gJbDu7wcyen4iv+efMxm+yKb6yUZwwPSZsBvClRHv1owsNr9u3RRpbOm+z324PCVh0T+qPZ2kYAOfHpCuIB4L9drvXc19zuopXQoQADXNUd9ta2MaTY/DGqkIMi2WdrYdvgfFUY4taC9AxXxtICb2O3D3X0z2MJd9hXuYfRnhzWgvSM4fFDumbXnlhqD/Ty3li2/MwbAOWLqFpqq+IeGj/pV1fxM+q1qPI214/xXxWMzyjzDC+Pky7DHTU3qRxQPcPLU6VNOqLmJZYAiufIim6o0u7+PmEToHiOqDgIgc39Y/w6c31/Qgj3z/GF5vqBIiik65e4VYDiGVYxRPiVkOv32OWA6jm84lDFo/qci2KWA6r3sMojRI1a4yyIDi8PrTxKqVYrHcvM5UOqjlEq1TLHyqiVgOrvVTvGjvtggVAk0vjzuF6VSq2yVa2wByUyMVpJ7iCMcNii4lGJmrt91kDxqjj/iAFVVgvEJvtq1/JAT2+aERtaJnzKYhyy2jO4MsNW7FhgX+NebEQHqz3DK+Jtm5yLnYtj1gtEzYCFyxs05P7l2DHLQV5JOHg/iBC6uWp5wCYrPe7QHRlLC/oUpGeMZjfO935JTvxwifxWIGwSeZXIidfIqZhfIwJvJUtbwhNxC5eU26oGKMi3DMTURk5X6oSdXDuIQKC201UDLxhdCYwB7tM0uQDqRmLF0ezhRWHTL31PQgpnfFrR8zdOnbvP5N7yx+XPz5yWOXqgu+r2k+KLz0lWon9ent+F2tKElFgRvKcmNumFa1d+ysSBxwqEeD4tO29RO5m2bNekFNwUZ/emsrE8sQPIx0EIT2nd87KuKqAApAt4aPL4OQ/vzmlVAwl/AGeuz57n7JY7wtcS9prO6lzAGUTIeDU4/rM26KzuTG0w9n3gOsxrszoQP2bRoxfOB0jLzhMnp33YrSYQ03PehhMl0OHQjj+c6A26kheXDi0COtgV/4gqf3w84Ws+5c8th297FgcMJ2DI3vFLb5t9z50v7PujizA58cOdKHcBJJbbLiUnflrdAEBT+Otdh61blOMbt0fxKlLcFAkTF1QnqgDr/K4vItFfHcVB57ygFD0j2WdrIQzxA+F44aGEX9waRdTcpDygyrEyqkmJW9AKDmtBesY1wCvO32Nw/h6DzxE/XTnCp6aULuL1JW9AWOLnydQ7tlXOWwbgnp+wQz9/W/4xfsflBfGNW//TTss/77jsWrjjjK/r152Wf9shN0raV7u3JdEIhKpUqVHSbRQBfwrEVm9m1SClWl3sWBn1M7C1VivrqWy1L3L9EbvMiAqV1R63tfrwSVt2cEB0XTiBD4GPNE3eTQSYMGPW/GcvPPlfMmS7SbGFzrlt+ufhG0lOhaz+Z/TauEq1HznxasbSinYz/RQJJPJ6tl8fNkBb8mL25XEy65w38LK2x9sOt2HIY+NKb3j6zM2NKmRxw5RR8yePn7PtBSDsMEh0XfSrK9m7+3bbmTR2zHAQLwIlFYWd9nkVnPxx+fPNcJXv6O75EmSZYg8Nrojpc5WQlS/ERaVxzMZ8vut6sBUWsI+w13YZAlAdErsICZDSCG4KGYH1NsXeTSi2ricAI3c30uqPXlvqqOkhqjrNPgxGtIgsT7QSPL/GUJ1hJ1qE1gfcyS2xn0hTmJs1Py07b9u1Wf9lLDwSm7UOWLd9i6yZu+srLTtPOfWg//bU1518V20w9mpABSW0smLAfpFoLJEaoIjwLFGzJe+6r3PcG+VRUzd29r/S5VpPRLRcqwxbB4ANAffiSPRXR0AqG4BDI9lnaxHs7PvZtsmJd3DVLTTBYc1YWhAqSM/4SSKPbKoNrTHC2kcipUAIiWTFoNN8UlHdBUqRKDo0IzD6lyU50mXYgj28PYzoULzrt7jvgZAvo7qfjDKiXL/ELQBCvszqftJpOFwL434BQt4hVf2kw1DdP8X/DoS8h1b2karE/VP8IsDwDKvohSDkXhD/F2B4hpf3RIqA+8f4VYBRe0x5VxEUXveP8RuAUO2xWzsKv/C65ycUA6Ha48oShU/xun9IKAdCNceXRguv6o36LqEGMKqzSgQQjMlLCWYsLZBmOMC2aXS12jY6Y2GzRybDNTkholq0MmTbBGAEbTsM0yeW2x4H/kP4gvspkvtsy6x7zXVBF+G4UJFIiTQAf1XwnNWxG0558A/h5fv4hUUbQyS6BDMb66zWYToIO5wPmiaDplrANUClpsn/7Kod1DmrUgfhCJd3FYfuql1LY6pIPA+w5P9GuIQiz7zupVGXPXv/8z+Wicwjr/4ll97lG6QzFCiBfaLSdkATiNpwNkCNEZJ109VACEKqEdqAv+qD8GdeFUfseYpi62zf3ctEbcoCv6OmByFHxShaSEfSjnF0eHJHhkC0q3CjSMWQhgsUZK1Oy877NzCO/Sz0qjrG2BhbrWI+95t3XDnxPaNQ7zKE/MrvkNdFysauds9hGwJuEtTAxkj1CdDR5lU3B52pd83sqD515uZWkYiLFJlzV21YdGQfr1piz2hqH76Mar9jafTQJZn9HxUB5dPGzta2hsP6P+AmKaSzOrpLsDjuSPfmhHWb/504qlP/xPwpmVf/Lx94EzhO02R+C9qx8w34t52WdxbvX7/TctkuezXTXjKWFsyP9DS6pkmvrovTNC08tafrIkXTZLPjA11JVf28ZTHSrLldn9kAEnmiOFAc1pz4zl0Ux4tBuwwF7PLymBq1R8Do9ENF8PKXfMjggzKAz718okA875Xqf1rAAgW4iHAZ4j31fxZQF7gsaOVEOF0XcVEpB0dVrE0NAThLMs+S0thY3nGYGLv8A5uA5wvSMxYdEOEkrYhSNuA4ADuqsLm2eIUSuDHoTS5wxq++tLZETwLOC7cM4a/+BNWZoUQlr3H/+9GbrzUC6kWKIzjt0vsXv67rQnSteOkLgPi1Zx22Pnve8G65IyL6t8uclnkYOA5TMWaEUP6gFZQA2hJ7GrVtz0hBNYDPIWe6/OLppoYDFL7pEp2c9plOn5CKFFdHShoLIMkW0LYEnQyP2VoRqT4Beji98ZuDLhGS9GYfFgRqKdRy+wdquf3kgvSMe2iCXyM86kohBTLAvcCEgvSM0Y3pY587rKYjNwqJ9vvBt5xuIAb+n5GaigJ/bc286vX8m3+6MvOFj4Cl+9q2SGP+ISJ606nnrPYFftR1cbemydea06cztnaIv8olbnvnix1vADkVWzy5saVBm7w9Fh5rzj7aBTnxbmCmagi3DHGk896qX3VdDOuw6JoF8evhYWo2lyIXHdpp7jkrvNEhA/F5pE3QNBnSdXEahG/yu2LS2DGdgAvDSzIEorFJXxFH02Tlm18fMifocY6aNHZM7IQZs4pevmTahqJOR3brveoTVMNvVb9qQd577rqo2Mr+embt0IESyfAY1S+VDsf3nHhc3Yv5D5PG5g0HxoTjVxWh2BVC3oVUbeCBqg1mmJ2QR/zrupFrB4wlUNrvlVldf3oJgTgNOGF99rzRkXJa75rZUThF8ms+qW4JoVybPy4/oo5Ce6U9Zf43lLgqNRXA5VduIqdiQ1P7ia5RnnT5lCFbUgJvdrixNqJJaEu9MWulJPmpMzdHNA9gUW3sx8A5X1amRqqwV2tTBCQDjwL+xjqcjkJ3NYBAKDQhPGSfFw7QdZGwecrSP3697PSqgCP2yEVRVYVeZZsd9nkbTuyuafLK9qoMsA8pBN6lidl29alcn/KnEbTtsjqS12X8GlOtxJMTv1/EU+0OmRM33Os0Nkjk4cBFtgcqfwVI/mv8zfHrT2dJh2/98zA6Dkj+5b8b/a5Dejg8Jfnj8iOqkVuHpskK03FN0HWRrevb4xGnP9m/pyO2tgBkEoirCWfKjp4wY1arP+TKVnR+GcCdUnGIrgu1NG75yqAtisUZ4yiP6xViP5nibGtMHj9neOlf5/5kLxtyuBDh6riKEIoqbSPrtzPPkdEg7nPEnl/tiL76hb6n/agl9qnzIQRIYXPEeq4F5kYXjygiHIIkpJSONdVLcsKhKM1na9D+gk+qgwe4qt6ynNX9m5AiD5bIaqDp0+058R1TSmxX+e1GQU20cXXkrAsTkEpKEGV1pPv1SLXu4kqNdN+tgeEOJZi/NrXCWt2srUETwl5ao9LVXdJQ1taWDsi1uYuDf8SVpIXviTKoiiA9Ylf90go2tTs0TQY0Td6kaXI1gK6LY5ralwypTqTYpf5cYrntGfNtaERT+2/zhOWrvnH5lETCJ2MxwPrseX0TVv/jDIkx/7bS/ktj7RXlRR0+nFtt2GIL/e4H94Fl5xB+kx0KMGnsmKjiRWkzAzWuhJSBa3MmzJj12oQZsya2BWcVoOPBhUGAlIx1/wLmFXeJCiIlJSmD+fWQ25ijTW5lC/cvXr3j7dNfvX36epDfg4gTttr7BGKP1Y8mzJg135V4e65i6+oGquO6ldampK//HfCYKgIKiiwrW97lsfUbqn+XMmQYMkRIBtXllQtPAGY312nNnJYZ82NNwjlxamBdT6fn3ub0ZdH28TpD/wjYpQNocrKNIeTLAhHlCChnpV3ujXgsqFOE+sergSblI+yJXs4aL0CsErjbVMRo1wiv8rok/I8mOJw1J5T+BBDq6F8JNGp0FlonhvXjot+uS/NXdf/HuoS1U4u8na/uGLX+nQTn1tB5/aZd2idxqTdcqdWioei6OAv40IxvbXSRBUeMp08ooO7uXJgnkb6gjTPsEPEp8DaCJhB1x28A2p9Tr1wU6zr5e5s3NfgovmdqDPcHGO4bYkUwC4QE8TFAvWozFUACMDeCsWdvAN9rmlw6aeyYY4Cpht/eX3X5Lx33YP7bEdpHxFBsobkgZeXaDutSB63xO7YMdErCI36Ev1+N/Wy6s7WYPH7OUdBlJuFh0RCIy06YdOqc9dnz5mLGQO5u+r7DwLfjtiy+RI3p/GOf3984oU/I51gErLFHeY4P1LqjK1Z3urpidSeglM2ud42OrrTazZ7CqFLfJkEEsryBbBCdK0P2o9t7IorFXsiJHx6FGkc4zn42OfGjGxvDuuFV95NdpeOsWnfon1F3V/8VaRPvmtlRhGRKh54OT0qk+/YYam+AKsN2MqBlTssc3Z7jtAcULJ1fkJ4xAzgXOK2xDqd0hCuWSof8vin5DPt8hHXNt48tKlt+1giJ/Pk92WEQsG5zbbervrg7+7I+iUt7a5pscv3rA5iPgauAT5uysc3t7+OM9exaTianwlMdY1QE7MZlTTevzaMDIYC6LNaYTce/bvd26lDZ/ZMX1yf9/IZD9XqAtzrafXcn2/wb88flF6Vl5w0XGPNAPgFMJhznO9t0YpuNpklpOqtHgfwWSAeCIa9jRST6jzQX3vVXBYg1FWs6bgXOXCGcf2wXtJD7TdZzG+Ha7QUlFAkcAdAtd8T8brkjJu4p1tRX1TURwFv+5xEhn/09wsUxzjBCimqP3q4Hntx/3amuwXPjl5TPP77Utykideuz/tP7OoFxr1OEvssfl99oaRyLdocmENKUtHLS2CnknPjEzpvsV3hcRllxarBFRuNnV6YkB1Eo9LtnRrrvTQHXYeHfRP2XvfbOS4AaTPH3buyGh0/aEgIC9nWuXYYg7o196rDqurjC5ir7CkS3Dd1/LEAwPMVd9NJbJ49xAtRNb1s0Dk2TIU2Tr2uaNHRdJOm6uN6UR2oQtSVxKz1lMbtVAQja5GdRHtUVeiSuU2QsbmPkVMyvjAkVhhTDAEav987q5Kjtdl7IVjXl8tL+65aUDYkf1ulbd+eBd3TYHHDFdLF7zZKRUpMI1axCBeHRLgcRvikJNTSW7TupUwRokwg1tFqxBw/RNCm9nX8jWL4IgI6eOS/vrRSoRcMRqmco4fCVRjuRlWtHCWlUUb2pur6AdzDkcz5y8xtfC+BmANUVeLrT0JVzDr0ubwMwGniQZsRLZ07LHL7W735JIoRfKsOu/aDrtjrEui7izOqHFvsXOuCTSCmRytb4YGNzIZ5WpEh0e5UT0i73RnzKHsAvlS4AlSF7S2Tx1+nEhth/pMp+MGKCQSMx2KSwOIn0SUU2qeDZPgsJ0HXRPehNeK1i7SjpSlpaOMt70FHxzjLfnYc9MAtYr+viGk2T7+0re/ZjrgUeAr6moTIaUkRJqa7c3erEctuLwDjVEKOB6ZEwsq2hSIoMhQ5LOv5DTSgM/ltI28Kzg7xbGuwyByTfbTjB67atuskWVUi+J84sBbitKpgBsq7Uqlrv8z1SL5ygrv3ffi/MzZovQ+p7IK8hfL226ZteXLeSxKqNyenvPt1PjCgZfMzAohiWJQ4m7c9vry9Iz/ivJWvVfN57bvzZMnT+IHdSwRxPWcbX7KKoxJ6QhjfOX/MpyG0P0Z3Pq5diupTeVfxn2sC4biX58T22FE+YMWutrosf61RKmsi5UJdAKO0xSvApYJq57h2gO3AIgK6L/wBuTZNnmstPAYamyWxz+UagVtPkG+byGKBK0+Q35vIAc3mduWwHgnuzf0/ltC2aQE7FfHLiRwdVzpJC3hZXpV5LTvw/yanYqxzj+qnuO7vhuNIQ8hnloXASbEuQ7qoattQbSzeHZ5d5HM2hn6s6fZk3BoF8VCK+bM/hAHVkLC0w/jwp7Rv7CvcxBekZ0RlLC2oas72MNqIDB3lGN2Xf+2yEVdPkuhWfvfaODLrk/zy9cqsC8X0qfAk3dIzeVErYCWoRYeoDkCeBYZomG/y2qNiDnZxxNbF7aPK7RG71Oo0Lmm9e2ySmRt1kCzg3RW8+9kOp+GJqUuZfVYo8BrCZVXhsNlvlOcBf+ePyl8I2CZoK4CcQ18TYK+eal1T3ve3PdFbnAo+D/A7kD2ZowXcg54HcFl4QHtESo2jmCNe+wF/jyjMCNor/PKhLl19CZT6zcFF1dPe6GFaLZlK2/MzTEMFATOefr7lhyqiJjR25tkW99ZEMbsCV2Hvurs6rCTNmyagOFUcixcoVecOSfnk5K1bXhQ2Yp+vi8maY/j7gBYISfH6p1K/O9jrwTL3lheyo/ZwA1C8/OBY4o97yROCWessfAk/XW/4LeKtuQdfFN7oucuotv77gwaRH2XZNMtt0Xi2aS07FfPsDlXcpUhytGiIWeJec+D3LPOXEH9d5k/1hn8MIrO3hf6IlzYtXg8cApLuqdysl2FQMKQbHKEHjz3GLHt4fnNU67GvcjwspnMDJjd44KCrVYvvOuvYNYp+NsL733PiTQr5zL5Tw6sroygkEo1aB8m9TvipiFSsOdDRNGsCfALouTgGOA+7e08iCEDLelVjdebed5lSEyv8ZXR1Vq5xS+KZLRFKwuQ3hKg9ek+TwdetQkzI/u/8dd/1Bdl6UmTktbGqVUBylaemuar3+RjH2ClvH6I3O2dl3TE3LznsDWAjymcteuvHLt258qXwP+9NAmiUp66b7t/2umEXNtlUhMp2JNn/D85TE68B9Ib89p7Bjhs0TcywABRnj1IpNvUqaXCLFAoDJ4+ekgOMC4I3zb3prt7Miu+OFK++8MVDt6ak4MoCTj3MliodvmDJq4s7tLrl3yYZJY8ecD3K+Pcr70x9vHj89bdQfIr7nlgoAXReisaOt+ePy52dOyxwFaCD0F8/etO181jT5Uf22miYn7bR8zU7LO6uW7PzgvAGoLzv3T6C+dudf7CizNMixyt2NcJyhkEiHQGi0g2uuvWB7oPIncuJvBKZWxAZ/jM+J/xDQtyVh5cTbijsEhtgC4qpE1KtUQ6iKH1/aGmc6Lfh3+KkmoRCgJOiI+CjuCl90eXgwYr9jnhSy1EgK3AB80JgNFZ9SphQ7m1TwaJ+MsOq6uMBf3eVzxeZRl2V8oniC0X2P6PRt3lsnj7nDFMC3aBmOIxx7ttu4oUljx4iQ3xaqXJ/y5Z46UgymOf2K2mOtIz3SRrY267PnDV9v3HFqTeiU1A0YH/a/464nITyCmuwq9iQ6S6pGDnosaCCoNlS9/rYO1R8MGnan2T6U4i7KBtG9Jhg7cy+71QVShsMQ8ZlVxoKAHwiY8pfQhqf/d4kwYsK/yCtjQ/knBkPhEC5DsYXWdxsV8SzcA43oTj9PBlzAC43ddtLYMYmBmpWPCiUOe9QozOl5bXftJ8yY9WtUx61fBmrdaUGv494Vnw475Jcpp2wyV1+t6+IjXRd7mpn5G/nj8ufnj8ufGOnRJk2TGzRNbqi3PFvT5E/1ll+o7xRrmrxG0+Sr9ZaPcC2My5FChlULBAbt7dprD+RUvFYZE1obX2U7TCIfl8h51U9FlxkPx60CPKlb7D8nlduuFQgVwPyptaRJEtEZKH77vLXevTZuPH1AtMkk2eaQsbQg6B9QUyKqbcf9fHuH+L1vsR0ppF+qskm67vvEYS1bcdqIqg3HoLpLXvp40/FHum01m8emv/EicB9w+r6w4QDlbuBYTZPVui7U+gL09XCAsMmQWr6njuIrbW8AKFIc3wJ2thrrs+cNN5C69B+rSgxy8WTVz/Iv9XZcWmkr/fNnv2IDWOuP2kFPr8zbYdmayj5r65YXPnTlF73il/61sOio4WnZeT12t9/C3Kz53WILnwWBgnE/4ZeLB8M/xbEgfiLssZZH/qhbDiE4eNtvGCIYXB8WiRatX42rvTN5/By7d2vfM93JS0pvmDJqSWO2nTQ2a7hiD/yK9Mfao0+VQjglDYiHrt2c+IP58hTOcpaKZq6yERYPr4bwiGsjD6fNkbG0YH4oOfAPACM69I4Vw9oyRNcqb0kkInxOqY6AEhO0yZXA016ncUtZQuAZifQSAVWKhpBs8x8RpQRrI93vHTM7dgA693DU7p9FkCRPKT6F6M+SR+698XZCHf09A2meJoXbtLjDOnn818M3LbzldJBbXhQdfwAx2BOMvvPsk0uWA70JywFZtACmLFK16ai+Bryy84Mlqd/6DgBRHcoT9thZTsVqQ8h1Htd+J2+lCXCYsisMQv2b9IgtZnky27P0d15fw04j2Ksq0k+UYamhWXuSuFpX1eteoNxAzSzMzZpfmJs10fw5HxhjEwFfz7gV+i1TL2pHzoBcaP40JCI4J64TtYrxFDDaUgloNueGfAkOI+i8uTEbmUL/3xoBexpIAVLYo4p+pEF/E6GDqNNK3eY8aJr8F3Capkmp6yIe+EnX2//LbOZ3Kz8AitVqm7HXxhZNQjXE53UFLgTC4wgoxzruqzqBnIp7XfdUvZB0a+2dol5sdWN1WxuLDdm3o90XcYWKsqD9MICuDm+LVERsbZxLYt4ByoUU5zZmO1GjblBL7Zv23vLvtKjDOnn8nOHhBBLRDUjobt861aXWrn9o+K2fAmia3KxpsiWG4S12RAIbgHU7x53Zo3xdAdxJVR321snWxGCVPSCGFr3sdraMma3CTwASA0mI3wnu8Eaf4CzpFOfv4ADqpux3WN8tdnW3Du5NA3fqs2tYLYBMkHN357QW5mb53baaz20icP7NUy+O3WndlmGd5326prJP6tx1p4yNwHHuE6ShmsLe4oP8nv3/syg6ld/TP3/Lclabh3kvfRJY66vo3Vg1FY3waCgghBFca8SnfX1hQ/4mE2bMmm+Prl0olJCfnRL+6t1LUgm/0G2F9j/aKoXcKFV5qpV01UKEHdBtMmm7dEhzKuaTUzGxpZ1VgM1BR806n7vRBXf2xs81iVEA86uT9ktlnYylBX4jNqhLuzH25wkdGjzFr1bZNqrl9iaVY25Rh1Wx15wEigogQY2tSYke3kX/5KD4FT+ZMiUW+wDzwfKApslHAHRddNb1cIzQ5t97VwGUreiyxxhWAKdP+actJOi02XFYixq8D6nqNOccgUBVZ8u/1HfJxzi7fqUql80bG2skOql3g60ff2cXAa/fcO6c8aqx/drao1j0UV3mLg5Ku6vUk/q38m7+kONCkIsq/YnPpmXnPRCpggQtSXSnsp4Azvjqj+P6FPcBiLFX2lvXqvZN2Fk1dBDdQXbBLBLQCHQQ5oihilBSvxt78xuFDd3YEetxSkNxCMXYZWa3psnlwOGaJuvKaj+q6+Kl3YQgtWlMJ3UwITpLpKUU0FLsQ4d0T2ROy3SA6BBEWbP31o2mj/lzv4thrcN7SFW+CChOW5HjsoZuIxUZbJMxrHZ38XeYiSUhEBvV0OrhXebeRbjk5FctuW+LHakbDTGn735ke9JGDIAMqXvVoIupUd8nPFp7QguZuc9xVvY7yx+13hfreNlXJrbQI3blqvrri2q6LV9V0f+33SWLrK7s91OFL2lnHTqd8EgshEdl9d3tP9lV/KzAqPh+4+i/JdC/f9vEAIgpQGeQOUSwilZLEZVSOQQgrntJ8lZv8moAu+rfs4SNxd7QQNh3XG44E2bMmq/YgqWKXZQ4Ys8TqiPtxYZuO2nsmOE1RUkDQSAN5SszvODvBu44c+MEXKZiSXtDQ4IZIrS/VCay2A1HRm8dBNDd4Ym48k0vZ83ZThHy5I/Lj7i+a5tB8LREVrt+iRvS0E0CaZ6BoVT/zrOSDaJFHdarnrrya1B+CgijfEaMX6yzy+xrzlpSrWnycU2TlsPaCmiarCAs8fIaQHzPzekAsV1L9l55Iqdia8BmLPe4jCta0sZ9xfrseQMctd062XzJOXZp4MPOgOQ/+jWym1ggqb4jGR6hFZeFl8Tj9Udsd+apKz6olSgfAGekZee5dtEkzkx6UWgHD9CtKzsXAVRvTPr556Jj5gPMXXvKlta1qt2jb48jFY1OQnn36X6qlCLVlZiYYnMl0GHg9NmN2FzDzNimgeefpsk7gasBdF2k6bqYr+siszE2tyK6ML9r0YTv2qJ9oQo5GCDNEfGcK6pDti6JtkDkO25DHPpKUZVAfAKcWZCe0SCZVLXcvkKpsJU2ZX8t5rDquhig60JzJS/pU27zJ/hjN1a9duIZsboutJbap0XD0DT5nKbJ3wBiu5WcC+BOrtwWlzpp7Jjhk8aOuWdXoynlCaEtLq/oXvpCVPK+s7hlkBhXAEEl5H7DhiF82MkvGbrD23Cso7xnjL3y8F2NbKZl5w0XGOeAdIHcYfSzb8LiXwB6xy/d6zXWKXr9Z0BsB/emT3axHx0ImfJX+/QBmpadNzwtO++enW3a3ecAQY/TCZA6eHX3k9JmXgxQG4zdH3V79xlmrOlHQC1NSF4r+rV3NxlS8VcP9qnOyk/Pv+nNrQ3fWurhKm4SwpJrekO2qjfi2pWw4H8j9tl6ZCwtmB9yhxZKIcuB0ZZSwP7N99VJ1QA/1SR8Eum+i4NOURRw5UW637ZGoLv3GyClduTWGxvSXi2zr1FqVV9T9tWSI6y3AB+X1Xb2BQwnfRMKnrUpoTuA8S24T4tGoOtiYMhnGwNQ/OdBQajLKJbfAY8Bs3d2WuMr1EcFguQy+1H73uLI8efUK9yGvepWf3ThohUnj9yiYDgHikKu5MsjdF3coeuiW1p23vAqf3xSdSC2I7uejtckwhT5FzuMPqUnLQoBpEZv3OvIUrk3aQtItng6Hb/zfszR2ntNkYI79jRaG0lMG+YAjwmMedoTz32flp2Xk5ad95rAmAfy8Z2ddAB3UmV/gOjU8uQkV8mRAEM6LLBqxDeT6E4L0xR7lbMpyWvSUE8HkBJnoKbTc43Z1pVYnQoCZ3zNAppQZU3T5PfAQE2T6yFcUUrXxYTG9LGvMZIDA4M9vNJyVg8IugD4pLoukp1mTsuMIvyytt/Gr9bhO6TqA2k3pH2V+6SGtJeqkSSRqU2JD29Jh/XW6kDMySWBuASbpHb+puMeAYYCf0susWgdfnk5K27Twn51kjVvmc7qGeb08y6noB0BRSc80tOu41hjNp1wrhqIVz2Jf34w8pvYYxTgSGUJ44LfPBpXoT4NDCN87JLdx7P9Zq4z2Gn088+SQzcBLCw6+ve92eINRR1lOr27288UkKGecSuObdxRNovjCAvUKxJFLazsdxTwEHClRFFNXU7nzrY6E2qOANiyuOdrKyvS3wXoGrsmZh/avV8S8sWWSsPWaD1H85p+FiDk+Qbv1hc8jdneuzX2EqDUCKpaU0sC14uftxMusdqoYgP7Gtsmp1epslmlwg8ADnLWjlaQIaAskv2OjC0dBTDAVdUe47gbxeFPlZSIgPKhfb1rSEF6xh59yoL0jOEY4kQgjiaUP24xh1XTpGf6kmsvCkFULMamt04eg6ZJj6ZJK56t7aCZjgeAK6HXpmeFsu36CrGrKeicCp/HZaz0Otu3Hqujttv5wKb49afnKlIcK0EqAgRSHbTI/bimyXDZwO0VqP72XSS5ttQFjk8GRtcf/VxT2ccLGAHD2RAJsLp+dynmXpibVZkWt7LaH3Ke1tjjbCr9E/84xjTJADzAUYW5WQI4ylzGzDzfwdbKdSlLQdZe+sAi/4+bRn4H8GXhGcX7yu79Fe/W/stlyL1zcl9D0Nh2nzeAYIM1XN+4b2gGyDOB129+Y3az5Qc1TQY0TZ4D1KmVHK3r4jNdF12a23ekKEjPcIiQSFHL7Atb2xaLlkcg+8WpASN/XH5Ew5ZKg/b+AEk2f6PLJ7dTPgA6GTHBvQ2qNCupMeIOq64LoeviP3lfxWQtKj3kEpetlqSEZb2Bue1dn28/RAf8plNC9aakI20u/xVg1AJT2c0UYFVsaKXLp8RWPBvdZ+d17YHFL901UCJPBd7qljsiCMyW4AtKBQMl5AgoeVA3Hb9dzmrn6fg4R/l9Sa5iD3DLzusKc7OkKgL+rjGFf8v+35nC3Kz5gqCR4Chduqv9AHiCUa9tqunuTsvO69TkA28gadl5HVdVpB/XKWpdFXB/fZu2fydyhUJw/c62GgG7U6hGra6LBanuoiSAgLE/yfa2O3RQgubovQTOf/GqUV9Pf7J/971t6K92TgdUe0zt4kgaVE89oCvQHWgzWdS+QdUZgAjFBZtU69yifbHKF72pPGRfEOl+F3viFIDvqpO/iHTfbZFQUuBTqRrS38szaS9NdbPCWYMq7e1MS4ywdgaGvlNw7VlV/oTYJEMW+Ws6e8uWn7ZgZ9F6i9bFdEZHg7gfxOVBj31roNbdAUQUMG5326VusT8EEF9pO2Zf2RpJlKD7GYFQKrvmfQpATsX870ODzn82eB6PBC6dVF8bsH4Fqvp9pGXndS6s7JOQGlX0aWFu1i7P62h7tSPJVbJXh/Xc5+6xS2xKWvyKVbuLUd1c26VOfPrEhh5nM3g2YDiV6kDckYW5Y/527IW5WfMP7Th/uURJu2XqRb3rr7NHe/rZnAEBeOKc5fEAh6b+0CTNPYvtxHT6abhir0ps7HYTZsyab485a5HqGlYCYqTqCDzhr3aNLinosdhMrtyWYDlp7Ji4aQ9n3vfyjce8P2nsmMU1RUmHAASqo6bsTs6qOWia/D/g4LpqfLouZuq6OC/S+2kMoRT/KADf0ErrLevAoCuIDS3Qbx+gNH9cfrtINmwug35YURHs5F/uWBrdoyA9Y7cDk95DKl0AEvk/mpDUGHGHVdPkxrxV5x7648ZjT+oZUJY4/LGpIV+ia9Mvt94YFsC2aEtMmDFr/oQZsyZOmDHrLVBeNSWUAOlSbMHdxakuAoolst3Fsa7PnidiNmv9g87iZQNuyv2u7vMJ9st++FfoDGZwzLAGap2eC0IsLTv4wd01qPLHr11ccsjve+to4eZjXAC/bzlC30OzP+yKr6JH7MpbGmBbk7nwhdtvAi4Echc9euFu69XbRPBdicK8DSfsIGJvj/INsLn9Dk2TWrKruAtAp5j1lsPaTIK+hC3SsDU6s3bG81cdptp7DI3tkvLxhBmffHfr21/cl5pZeG3Qay8H5oH8NpxAx3fA1pIlPR+rLYk7G4gGsaf47YhQb7Q1CegI7F1erwVx/RznAVA3Oxsj/WXRDrlrZkehYhzUze6J+MtJV7vnjBSbr9Ex5+0Z+wbXE4pfSQZe2l1sqnTImwFqTyp7uilJjRF1WHVduHVdqBuru02RqN2OlbVL6mq00w40JC34CIQHpCFUg+hOW3/bZaucCqMqJrQuaJNjC990tbcwj2OEtB1k86U+Uf/DmkDMEABfyH0cDRDoj3WUX6+I0OLC3KzdOnUSJWSgDm6AA1yXRb9bzb7C3Cyjb+KS0hJPx8Fp2XktIsR/yEPTXEvLMp9OcW/2JzpLJu6p7YKikf8FvGXeDofX/9xTGrfOVxn1C8APG4+zYlgjhHdrv2oZcsvGvvSXF46+HRSECG27li+5b8mrSCUT5CIQtnAcuxSAHtu15MJOQ1d2AP4BeNlN/Hak0TRZAhwNvAOg6+IfpqLAPn3ZUWpsqQDOguil+3K/Fvue8pCtcwjFlmpvksLSHikLOaJilNDmiHfcttkkkUjk9RL5za6cVtcvsVGGM7ThsOeLf2zKDiI9wnpbIGRfuWDTsSekuIvWp9bGP8tuarBbtD3qhwiojqB2zaQFn5gxyX8TtK+NMubbg4qaXGprbJnIVmN99rzhQXvZ25KQF3i//rqaQOwwc3RZsJeXq/FTrjyyyp+QfnjH73Y7lRR2UmUvkAPYiwN8XPdP0wAGd/ipx57sX1vZ67HaYIxKWG0j4mz1pdxb5k11HhS/7KbfHh63xySbwtwsnyKCP7vU2lPrfy4Uo0N8j+KjdF0Mkqhh8VgrhrVZmE7qGSCjQM5uqNM6efyc4UFPxwsAPGUDnqq/3YQZsypAXAfSBzIIwgvcf82zP/7norv+Kt1+LwjHbzdVIaAxaJo06o24dgfS2Zbgt28IpviHSZtRmrG0IPJejEWbYn51UgLAr7UJMyLZb+a0TLfHUGML/VH/i2S/7YBDAUMgEGGZxw8XD+l32c8TOrgBCtIz7CKoHK341I+auoNIO6y/zPjrimVBaU8t8XS6/MYpx+9w02uKhqDFvqUuROCWt7761vzoEWDOziMdHYvtTwLEVqvtQo91ffa84RI5Ww0k9gThBA7esYXQt1cT2vPL1eeFZ40AcNq8uw0HIOzwCjO8Yo8OcMBwxAO4bbV7nEKqDsTPIuxVn7yndk1Be+KfQ4Fs4J3/3pr7akO2OTT1x5Av5Op306uX9Nz2oSBRqEYVsKJvwuKe4XZWDGsz0UCq5vS8CxjVkI1s7i2Pw7Yprr+dg2EnVBwHYpdOab1woX1+39Y0+RQwUtOkoesiStfF57oujm7p/cro0PBgR7/1hnVg0NX8GekY1oPMn/u9ButO6ALhk8igRPoBr+JV33R/H1+1+LC+9wY6+x4Bog1n00eeI+qwfrj8oh+/3zhquE3x/wTMhnCVlhumjJpoOavtll+BX9h5pCOnYj2w1BDylNYwqgloAuEMh6gIg50e3oW5WfPtiu8+gF7xS1/fs0C/uAD4+d83vrCn7FKd8OwC4VjA3TvA3204vhzgx03aHqdJCnOztsQ7y9Z1jl7XoIoiDeWWqRcJEHOcqkcCDRZ194Zcr0kUvlpz+iEA7z7dTxhBxVWzOaHml5ezDkmN2tQDrBjWCKADXpDSnAEYM3n8nLg9bfDmA88NCPljtbCU1e5nuFrTKd0bmibrXiB7Ar2BFgmFqY9tnatCLbd9u/eWFu2dg92VJwEMdFdVR7Lfo2LKLgAYFr3VH8l+2zpmTOpogXhQIDSgt+eo8vulQxYp1bbH7Zuc2RKJ8Cn3NKVoAETQYdV1kVVY2ecZTzA6Ruv2xXu7y5y2aF9omvyfpsmbzJGOVF0XSXXryhKDFVJwfOGbrjYtBG6iY4anCMQuS0yeetAHL0Tbq6Qidp9Mdu2Uq0YBQxOcpXssuWdWqDoOWA9ywxm9392TM7rXGNY6esf/tbqopkuHIx55NWlvbRvKrFXnX1ZY2Sf+0I7zpxfmZjU43jS/5LAPgYA3FHV7Wnbe8E2/9D0WqeCriO4OzK5c2mkDQN6q860Y1mYQftkXo0HcB+SCPNwetXn1jOevHrar9pPHz1Frtwx+WRp2jzvpr/G08xkuTZMFQIamyW8BzEp0j+i6iOiAS0F6hiIM0UWpsUVUxsuibRKQoidAd4enMJL9LvNEpwOs9kWF9tZ2fyNjacH8jKUFE82fxtA3Nj2e+e3KbsAUiZRmuICNJuYzReSC13XR1RdyfrKsbOAFdsX3w2vXT2lU+T+Lto/5cMgDPq7T0w3a5AeqIehUZG/z8lbdckfsEJ5iLu/A81dP90gp3lpRnt4zLTtvlyNY66t6jgc4usucvdaILszNmp8Wt/wlEGk1gdjbdtdueOe5hwIc2VlP3lufvxYPv1+iis21XY/bW9uGkJadlxKStqeB73/YOOqqRm4+JDxVLUcAs7fYUy4AjLo44B6edf0iYaPFDjNV98R1/+bGkD8mqXTZWZ9NHj/nkJ3bClvNFGAkUp10xRM3vLI/zHBpmgzWW+wPDKgX7xoRPMMqegPOYAd/m9GFtWg5CryxxUDZ02dujpj0VOa0zOElIedZAFuCzncyp2Vaykhh/i3CcfLNymeK1BvqxkkLH57iDUXFBAznPRHq06INYT4cHgAeqtPTTd1ifwUIuXxKm3dYIey0dssdMXFXzmodtcGYV0G4gHN2tX5x6dBDwViTt/o8e0P2eXCHhVPctprAj5tGXpKWnXfPzslXadl5YkN1j4EAm2q67lXMHfgRqAAZkTjWvomLvwKZAIwvzM1qrAOgAUqd9NEfcQdL6iVZFqUkOwESXVvaxfnRXrjkvkemuJP/OkaGXDXA91Nu/vDzl2/635OTx8958V/X562WwairwqHO3LE/SglqmryasIoBui4667qYpeuib3P7NWJCIwD8A2ocze3Lol3QlcjHr2ogbebvljKSSV24AOaAUVMkrSBCDuuHyy9K2Vjd49pU96blhblZVvzPfoqmyc81Tc4G0HVxoq5VuiTyp6Aqz2ht2yLIgihbVWn32FVP7LzikIfeehzoBUp3GiB9BfDC1e9UeILR71UH4oeAfAKM79Oy835Jy87LH3D/e15BKLS2qvflAGsq+z6xtz4Lc7OC3WNXrYt3br0sHHvadA5/+LWTlm8dOGRo6vyfC3OzFjWhCx0Imc5RoCA2/d+YN6Xf4zJv+UU97ESArd6UfzdQ29aigVz28B3fA9eDdIX8CScZgfi7gCvlNkWGltVPbW00TdYlKGYAh2AG6zaHqG8TagHsK9yzmtuXRdsn2eY/KtXmi2iCXUeb1yzFKptUyWl/pn64QFP7aLbDquvi1Cp//EfVgTjl4A4Ln2lufxZtH10XCcAM4OktHYI+NcTANW+40lrXqshQmJslM5L//GNd1UGdemV//GSdo3XZ5BvPrPQn3Gs6ZwqNcwY2hn8IzOnyJGB5p+iNPye7tqxg+8O2QbE9naI3fFfhS7LlrTr3haY6gmnZeY4tns7PgVzTKXpjVlP6MON0vwFRjFm+tS6JZ17yMV1AMZNkmh6zZLFHMtl27sgQ8BgoF4a1lA8MKUFNk3OAgzRNrgTQdfGUrosrm9KXCCrdAOwbXH9F0ESLNkp1SIkPSBEbyWn7IEoSCOLV4HvA6Pxx+e06FKet0WyHtdyXeMyCTSOOAPnFa9dPaZAcjkX7RtNkOXAKcLOQTBEIum5wHNnKZkWMXzYfPQUEBsqdAuPbQQ9Mf0Ffd/Jbigh5aZqY+keEVRaCpjNxYWFu1tlz7rl9RIm30zgaqVX8c9GILwCC0n4DyAaN9O5M99hVzwMZIK7717VvljV2+zoSnCWKy1bj3VlVwaF466RdQhwAjlMroRNOIAyaP+easaoHlJSgpkk/gK4LO3AYYf3WRhPo6h0pVVmbsbSgIpL2WbQ9MqdlDvdJm2NryNEZ5JxIOa2lQcdIYEtFyH6x5axGnmY7rK/+MaFHbTBWAfFQJAyyaB9omvxR02SF12V8ZCADwuAucuL3l2nfPoAEISSKrTqQcBOI+IDhEiBuxnQG9ix9tR2z3TYnov52e1q3BzLq7APcUbbqqxtzcEc/NvmaDdU9xneOXrumMDfrs8ZsuzMdozb1iXdUdKz/2fWvXNZbEcalya7NKwnHPTf4u7JoOLtzTg9UKUEzTGA0cB+Aroshui7e0XXRoSHbS5dxeCjFH/Fy5RZtEo3tM1uuJNX/r8xpmbY9tN8rd83saFeQWSA/yx+XH9GEQIswzfoDXfD8nR1WVx7+jz4JBcVfZ9+xJ01Ki/0Uh1+cKcAuJIcAs8mJH01ORXt/UOqEdS/t4ZKVQjGdQxVIKczN2mPZ0l1hOmy7/F72tG4v9rkAURuMviwtO88vMP4nUYYCemFu1vxbpl7k/mHjqB5bPJ26dolee2jXmLWn/bllqOEzeo4E2FTTvVNadt7w5jiThZV9fg8atv71P5u9dsyNvpBLaN0/v2PK+NdnNrVvi71jOqXt/XqLGGZCaJ3+5RBgJOER/r1iX+kuxi7/aCHTLNoWOuAD6RCgloUcQ4CfMqdlXpM/Ln9hUzqsNZQrDUTc8JiykkgaarGdJr9N6rpwpUYVrfQEo5V459YmxQxZtH86FjsOwizHxn6S5LF91FM8CMp1RECOI5LUs+8+ECeAeB7kVRLxOcjHge96ZX9U8vHKsbVbPJ2WArM31vR4auHm4SOC0n5o2PkWgFBp5t/LF3J7Q9K+zSFIy87r4gu5x4N423JWLVoTTZNvAX01TZabJaZf13Vx0u7aC0QPEVAOtOpEByTmdP1oEA9IxFHAeUAnkD/94/96/nbSu33jG9vngurEPiCNODX4QsQNtgCaMcL6+eozu36++kxHvLPs+w9ue9zKqjxw0QXCR9hZbRMOXSSoP+qZlp23iLBjp7eVqe2dRmW/HvjAf2JqArFXmSPBgFh/WMf5i0q9Hb5aVdH/+xh75drRPWZt+mjlhUMIV6GLyN8r0bWlgzcYta1wRJ+Egv+sKE+3g8hpTr8WFpFA06RZbY4OwFGEq/b9jYU3duwcTVJCoIvXt6v1FvsfptO67X6eOS3zqwxX9TeLPLFDQCzKnJZ5Y/64/AbVvQ/HwKoXAn8+c+bmNS1k8gFPkx3WleXpr/kNlzOKmtsjaZBFOyOnYj458aMxHbr9IBzgbzRhyn6fUxOIewO4CNMRNVCv++9tE3ey+R88D/PTsvO2/b2a64DH2Coz/CFnUlp23vDusavKN1T3HXlwh4WLP56Qs6o5/VpYRBJNk8W6Lg7GjFvUdTEGGAHkaJr0iBCHAwR6ea0Y1gOU/HH5FcCQIdMGDg8hXgFmnv5er/UHOT1nPn/Wpl2+6ABkTss8CqQOwg6yQ+a0zOFWwlXLIKRsfAXVx6aPzpy2+IaF3WNXb5hzz4ReLWCXhYVFIzHVAjT20UhweH9yHqCa6gc6yONGdP3q0Ldven5JS+/fwqKp6Lp4BDgLGKppMlCQnjEG+MSIDo4Y+Mvy71rZPItWJnNapr2fq3rqal/UuKAUNRJxLzA5f1x+CODOmR3ja0LqLfOrE3sEUc4HzFkmGQLxQP64/EbnOVjsnSY5rKc89fiSgrIhGbGO8mvyH7loagvYZWFh0cZJy867B3gcEKY+rQTxbmFu1sWta5mFxd7RdRGlabJW14Uj7rXOv7sXxmcAp2UsLbBC3CwAOO0/vQcW+qMmASfFKMHikCTfI22qQB4hEW4F6TUQ80EeTfjF3Y+lv9piNNphTcvOGwXhakfmqIolWWNhcQBijujOBulkewKnB4R1T7BoN/x6eeeLXAvi38EAYT7TmlONx2L/InNapnCL0GMeqdxrVpCTID86Jqbslxg19OLTZ26uMHVcNUC3nNWWoykxrEeACBGW+KnLCrf+QBYWBxiFuVlmPKx4COQJYfkv655g0b5wz0/oIZEhEVbNsM5fix3IH5cvM6dlVpvV5FQgBOKnl8/ZOLFemzaf57A/0JQAc52wzl2bkfmxsLBoHcyR1IcJK0VY9wSL9ogutlUMs85fi12iY50jrU6TYlj3dXKHhYVF28a6J1i0ZwrSM7adv1Y4gMWusKb9W58mOawWFhYWFhYWFhYW+wpLc87CwsLCwsLCwqJNYzmsFhYWFhYWFhYWbRrLYbWwsLCwsLCwsGjTWA6rhYWFhYWFhYVFm8ZyWC0sLCwsLCwsLNo0lsNqYWFhYWFhYWHRprEcVgsLCwsLCwsLizaN5bBaWFhYWFhYWFi0aSyH1cLCwsLCwsLCok1jOawWFhYWFhYWFhZtGsthtbCwsLCwsLCwaNNYDquFhYWFhYWFhUWbxnJYLSwsLCwsLCws2jSWw2phYWFhYWFhYdGmsRxWCwsLCwsLCwuLNo3lsFpYWFhYWFhYWLRpLIfVwsLCwsLCwsKiTWM5rBYWFhYWFhYWFm0ay2G1sLCwsLCwsLBo01gOKyCE0IUQL7W2HRYWkUAIIYUQ57bV/iws6tMS918hxGHmeZsWyX4tLFoSIcQZQojlQoigEOItIYRmnscprW1bW8ByWC0sLCwsLCwsWp/XgA+AnsAtrWxLm8PW2gbsrwgh7FLKQGvbYWFhYWFhYdG2EUIkACnAF1LKDeZnrWpTW8MaYd2OIoR4QghRIoQoFkI8I4RQAIQQFwshfhZCVJnr/iuE6Fq3Yb1h+1OFED8JIfzASUKIHCHEIiHEVUKItUIIjxBipjW8b9FcRJgJ5vSRTwixXggxcTdtM4UQX5vnX5k51RS/U5txQoh8s6/NQoi39rDvu83r5IgIH5bFgYtNCPG8EGKr+f/pevdfhxDiSfMcrzHvxSfV31gIcbIQYqkQwiuEmAf0a5WjsGh19nRvFELkCiH+Mu+FhUKIp4QQrnrb1j2zx5nrq4UQb5rn4PVCiHVCiFIhxLN156e5XaIQYpp57nrM++3AeusvE0JU72Tntul+IYQGbDVXzTE/13ZxbMlCiP+Yx+QRQiwWQly+U5toIcS/Tds3CyHuEULMqn9Pb8g11RaxHNbtXAQEgaOAG4FbgbHmOgfwEDAYGEP4Leg/u+jjSeB+IB1YYH6WBlwMnAEcD/QF3mgB+y0OLJ4AHgAmAgOB84B1OzcSQkQBnwPVwDDgLMLn+Bv12lwLvAK8CRwMnAos3kVfQgjxDHATcKyUcsHObSwsmshFhJ9Hw4FrgWsI34MhfF4eC1wIZALTgE+EEIMBhBDdgZnAV8AQ4EXgqX1muUVbY0/3xhrgCiADuB64ALhvp+3TCD+vxwDnmNt/BBwOnAhcRfgeeFa9bd4CjjC3GwbUAp8LIdwNtPkH01bMfXY2P9sZF/CradtA4HngFSHE6HptJhG+Xs4CRhH2W0bs1M8er6k2i5TygP8P6MD8nT77CnhtN+3TAQl0M5c1c/mcndrlACGgR73PjjHb9m3t47b+t8//QAzgBcbvZr0EzjV/vxqoAGLrra87X/uYy+uB3D3sTxJ+eXsTWAaktfZ3YP3ff/6b999lgKj32f3medkbMOrfQ831M4F/mb8/sZvtpXWuHlj/93Zv3EX78cCKess5gAeIr/fZ+8AWwFHvMx14yfy9r3mujay3Pt68715lLl8GVO+077r7cIq5nGIua7trs5tjeK/OVzGP3w9cUG99NOHR27fM5b1eU231vxXDup0/d1reCKQCCCGGEh5hHQIkAXWBJT0I31TrWLiLfjdIKdfWW15A+GTJAJY322qLA5EBgBOY3YC2GcCfUsqqep/9QPgcHCCEqAS6NqCvZwjPQBwhpSxuvMkWFnvkR2k+NU3mA48SfsEXwBKxYzyfE5hj/p6xm+0tDjz2eG8UYbWTW4E+hJ071fxfn7VSyop6y5uBZVJK/06fpZq/ZxC+n24756SUFUKIfNOeiCGEUIFswgMIXQkfq4OwAw1hZ9QO/FTPlhohxKJ63Qxl79dUm8RyWLezc4KUJBzXGg18AXwNXAIUE34Tmkf4RKlPTUsbaWHB9hemhraVu1knG9HXV8A/CIcLvNWI/VtYNBdJeDp253u0x/xpZaZY1LHbc0EIcSTh0ciHgduAcuB0wi/j9dmVL7Crz+oc3T2df3X3XmMX7ex72G533AFMIKwgkE841OsJtjvPdfvY3T0fwqE3e7um2iRWDOveSSfsoN4rpfxWSrmU7SdHQ+hqxljVMYzw914QQRstDiyWAD5g9N4amm0HCyFi6312FOY5KKXcDGxoQF+fEo7lelkIMa7xJltY7JEjxI7DPUcSnuWaT/gh3ElKuWKn/xvMtkt2s73Fgcee7o1HE57xfFRK+bOUcjlh+ahI7LMu/hoAIUQc4djQJeZHW4Ao8/M6hjRhX8cAn0gp35ZS/g6sZMcEwxWEndBh9WyJAgbVa/Mbe7+m2iSWw7p31hK+AG4UQvQSQmQRnqpqKB5gmhBiiBBiODAFyDMvFguLRmNO7z8PTBRCXC6E6C2EGCaEuG4XzacTHvn/twirBYwknGD1oZRyhdnmceBWIcRtQoh+5rk6YRf7nUXYaZ0ihLi0RQ7O4kClC/BPIUR/c9r2TuA5KeUywufwW0KIc8178GFCiDuEEGeb204hnChTf/vxrXEQFq3LXu6NywgPIF1knkfXEZ41au4+lxNOynpFCDFCCJEJvANUAu+azRYQvg9PFEL0EUKcQzjpq7EsA0YLIY4RQqQDLwEH1bOlmnBC7ZNCiNFCiAGEtV3rRlVp4DXVJrEc1r0gpdwCjAPOJPy29BBweyO6KCQ8DfEJ4fiQVcDle9rAwqIB3ENYleIBwqP1HwDddm4kpawFTgLiCMc1fUR41OqKem1eBm4gnKC1iLCqwMCd+zLbzgLOJ3xztpxWi0gxnfAU6wJgKvA68Jy57nLCCX9PAUuBWcBIYA2AmSNwNnAy8Afh6d7sfWi7Rdtil/dGKeUnwNPAPwnnrJwAPBihfV5O+P76sfkzCjhZSukBkFKWEVbCOIHwVP41pn2N5TGz/8+Abwk7wdN3anMH4ZDFj4G5hI91IeFktPr27vaaaquIHePULSKJECKHcLb2oL21tbCwsLCwsLCIJEIIJ2FH9Gkp5aTWtqc5WElXFhYWFhYWFhb7AUKIQwgrF/wExAJ3mz9ntKZdkcByWC0sLCwsLCws9h9uB/oTliL8nbBG7Po9btEOsEICLCwsLCwsLCws2jRW0pWFhYWFhYWFhUWbxnJYLSwsLCwsLCws2jSWw2phYWFhYWFhYdGmsRxWCwsLCwsLCwuLNo3lsFpYWFhYWFhYWLRpLIfVwsLCwsLCwsKiTWM5rBYWFhYWFhYWFm2aA7JwQFp23vGKCJ1kSPXDwtys+a1tj4VFHWnZeUcDp9uE/+fusatTNtb0SPeF3O8X5mZ919q2WVhYRJ70+/57QdCwDwhK+2fW86jtM2nsmKsRxkVIZfqEGbOmNnS7TnN/Hw4cD3xddNwQ6+/cBA64wgFp2XnDAR1wgAR4F8RrwPeFuVn+1rTN4sDmpCcnPvLX1sz7QYidVnmBUdbDzMJi/yLr6cdOW1I6+GOJAIQHGG1d522XSWPHTASZDeFbtOrwvx7yO66bMGNWYE/bhZ1V+S0IG+ABRltOa+M5EEdYNUDdvijGAhc6FG9Qe+Kfqwor+z4FfFaYm7WxdcyzONBIy86LU0RooiEHXb/907o3SSEIX6caYN3gLCzaObounMBATZO/Li4dclj4UwFgx7rO2yyTxo4ZDtxd56wChPyOK4Ern73wlMLYLmUBf7Xrv96tsV8q9sAfRsCeQfjvqUeNv+v2WuLq/C3r79xEDkSHVQf8gB1EADhNYMT0T1r8+PKtGV2B1wCOfOSVKoT8vaimW1AgH1ide9r3rWizxX7ILVMvEptrOz8M2pWGVDvHOrZ+VeVPGAHYQITMZioQIHzetjvMGQ0N0K2RI4v9mbTsvGOAC1URWHxcj8/E+qq0TUvLDt7ittWoR3edPXBd5UEb/9qaWXL9kKMfiHeUH//Cs/ddBEcNCm8tJWCAKD/koWknHNrph/4ry/uvXV3RvzzFXeQekvpT3+VbB6xZU9mnIspWNdRt8xxW6k2dbF1T+w5HXM09/spo01utm5kOL8qQmla5rgPAvcC9RsBe18aojIn3hwzVGc4YktL0O/RI22eGHGiAvr+O3h5wIQGw+4doWnaeAAbFOsrPMwzl7ppgnKNuXd+ExVVV/rjpRbXdS4BPrRuFRXNIy85LS3CWzCj3pQyLsVeurg7EjS3Mzfq5/rlpNtVoJ85eWnaeenjH7/omuEpHfLfh+FpPMPpIkNcRdrpDIN7uEr12c++EpUl/lhz2VYUvaUPfhCXe/kn5tUU1XVe+f9vEv02rWQ6vRVsmLTtPxDvKjk12b359VUV6r/qjby2P9IE4zrouWp5JY8dcAPIdwvcyA8CZUP3Oja98M+7txwZeX12UOLl2SwIg16qO4HtSyjFGwD7AECrvnX4lGzr3rOvqX8A7kXYozZAD3Qw58LGfhhwckA7r3rh88g0Tv1l/4gRD2uzhTwzsip+A4aLural3fMFts++584VWNNOiHXLL1IvcC4pG5hTVdLsRpDwkdcH/esSuuur5q6f7Wtu2vZGWnRffJ6FgYI/YVcf/WnxkTbkvOTnRWXJInLN8+PqqntUhae/I32ZtJOGHuASEwZ6VSSrcthp/kmtL1Kaa7j8YUpUgR5vb+EBYcbwWrUb9l6dT0j5IWLo18+LVFf2OBHopIigNqQrzXA+lujd9keQueXtp2cHFh3X8vueoHnlvlHpSP3x90a2To+2V9uGdvxm4uqLvppUV6e/G2Ctqj+z87QOrK/quXVmRXpboLHEd2nF++ory9DWFlX23JruKXYekLkhfXp5RuKayzykgrwyHCskQiAcKc7MmtuoXsx/z7tP9RNmyro/7KqPvAeYptmCuEbQNBvQJM2bNB9B10UMazFz99SHfbF3Z+QIQncyRVPHtsONZMFTDFvQbQdVejBBdi44bYkTazu5zF7wawHG1+cIUBB4sOm7IfndeWA5rPdKy8xzAk8CtKe4iT4mnozDfWAJgTANxNQg1/PCV2JXAzJC0Pbxq4um/t6rhFm0e82F3Sbyj7OIKf1KsKoJ5IWm7vjA3a20bsEsD5gHrO0ZtSO+ftOj0gtKDa7d4Ose4bdUZ8Y7yI4o9nYOGVKN32jxoE4HirrFrosu9Sd9V+JP+SHZtLh/cYaF7dWXfL1b/P3vnGRhF1YXh586W9J6QAAFCb4YiiAREJ4CgBhV7QQXxo6uoWGJfeyyoWBBBRewVG7GgsEMTFIFA6DVAAgkhvW22zP1+7AYjphIklDx/yM7cuXNm2Z09c+457ynoFAB8jztnywEMHdhi0Z5gr9zOv+y9vNSpm0M6h6T2CvPJ7rvygLpJooQ299vfy9dY0mVXQec0EO1BhlZyeDWzwXbt9meuyj5x71ATTRz5niwCvHB/IIVARyJ+BfGxQTgzXNJ45LN+eftPHr6i4ycGVZUvAWiaOBdYrapSrzTnIGCpIlzX7n7usi/rYYfVY4cdUJse4v4bpl83wuDfIkcrPhB2nsHL/qOr3HzVtM8X2Koaq2nuQtn0lV0iijODD5Rkhhn2RHfgqxFj6LZ7rX1ndDdzt8Nriy/8/sfgaZ8vcFU1x7Ey2To5ZAE3b7HjEwlSB9EUYT3dmTRr7Hm/7rv0dadu7mVU7DMvaft14ve7bjiLfy7PLgJpEki9uV/6ygMlrXqDCOwWllLWwm//Xe9MnjW70S6giZMWz4/MUsAIkm6h6z+4v98jY1S18b58MYnJQcAjIO/hSNTzX8uZhw3CeaB98NaIgvKQ5VmlLf/0NxVkDWihmbPLIpeuO9R/d1pSQo0334Ys6f/tJEizx2lVjIpDdgrZtGJzTu/rmwojmzhRnG2Z+2muLeL6iu+Ij7FYG9z6x7veHD9vfcWYyp/19y8acTMwGOihqrJK9ZmYxOQXgLuA8LSkhMK62tL+wW+vdEnT177Gwlc2P33DPcd8UU1Uy/TrRvgAnwAjA1sdWu4Xma/eeN/2Ojmab98VNyKzoM0P719zO35lxQx2zl/8RbPJg6/88UPa79v2FXDTtM8XHLcVtYusr69KYdC5Co7dOqZ3aMphPb3p/PBXVytC/1yXil7u8rkuLSlhflXjjv7xnTjrtlYO3fzTnwcHdS9yBKHgWp7Q/suV8dE/P3blxdlVPok1cebR/8m3t2WWRnfyvHQCjzXGMl5MYrIwCkdc59CN72/NjY1xSaOp0pK9BDHfpNhnX9jme+HQTX/OmTQ770TbWIXNR75zrQN22wLM+V9uyunVFhSnQJ97UdtvPnxrwntNBZFN/CfEJCYbgPtAPs2R/EV3BOvIA5gl6DybWb9pW5eyPnmhrltUVW7RNBEIlKmqrFbuqO8T75YahCvjj8fGd6yPTXe9c2OLb3eOyujfXFvw2dQXLz32q2uiKj5+vkunnO0tf3UUe7cCcde0zxfUK/UvyppiaJ69Lzc7OCrwvDW/jSrvb3h2NWr0xLkvPeRTXva8X2ReoaPEa5S92DeWSqkFx0KUNeUCkFaPmsy4zPhe7xzrXKcCZ7TDOvz5JK9tebHPA1N9jUXb1Va/jJ85Ye6S+s5z55ybIhbvSxhr18332V3eYW0Cd+JjLJ0aYCp848u7nzvu+SpNnDq0TfxhrER5V6BLiXB5KkRPqNbi5LfHtN1b2OG+TTm9zwe6m5RyZ4fgralbcnu+hrsIoGLJ/pTQgIxJTG4LPCDQb1OEbgw05/+QVx7+EdCepuKsJo4TU94e02/VwQs+yLE16wx8ZRT2d53S3JvKnzFLUBywRCJNUiD3tbZPi7nV9kptc5/75OyuWaUtN/eNXP7JV3c/N6o+dk2dM0p8t+t6Z5h39uw1lrGTjuXamqia6deNuFoYnO9LKfwCmufdNf7lVTPqO8dl1pesfzJUvXjx1wyUP454YsibcyXKn+nx/UZ8+HT3jw+ltrkRhPTk9NuBIcfitCZYXw1dwwVrQMT4UCw7siFoYfzkovrOcypxJspaAXDT63efU+zoYAX8gNdKnQH3z5ww95jC9K+N+ygbeL7fk3Ne6RXx5+drsgZcvLeww4wAc/6jj36QUO5vKuz2wA3L6rzk08TpQdvEHy6TKHNALjQZ7M/aXd4DOAEOlTsqKVUQecBARVxxgy6NBkW41ujSMM6he3320/0PFXvGbuMUq8JPS0rYA0yc9Pat7+wrbD9jU06vYcCluKt3y2MSk08Jx7uJkxNPVP92o7jsaoMizeE+mVMPl0W9vvO5KyTwc+WxupCXKlKYBAKkdMXs9fKuyzmySlsOA/gr67zH6mvfjHEfy+8Sk3NybJH1PbSJGph+3YhLgC+lywBgL8oI/7O+czS3rhksGazGOlbuO2v7utabup9zowPvCJVvs6Afrc7b/Gjp4cBexQdDuwEGkOaQ9gcf0zRxnarKevkILozLQcQANGdv8unurMIZ6rDGJCZfAUPmehlsXhdE/5w07/bXHzwe8/752Dg7jLvCs4x0FTD9w82To4PMuYfeSkye9op6S06Id+4qVZVpx+N8TZy8jHtrwhSDctHrQIpTN1+1/ZmrioF6R+/ri8dZ1YAKSbYSP1PxJwNaWJPfnvjO50eP9zh2p6Rz99aEuX8BA2MSk58G+TAIBaQJhMopek1NNC5tE3+IA7EUhNEpzXpr/+13LH7wnjeqG1/sp98UUKwAuEQ99DUNwjHSJU1b0pISdh2LnQbhKPI2lrWpfWQTdcXka0tylFbU1KFQT3H/KGtKJBg+BrlVMelxwJJtwT3iQEpfil/QNGECfojqvStn58EwG2BESNksNk3F44tpmvBVVVlah3NdBOd1VXDpOgZlN92n1fuCT0Fqkpg57Zg65ya/S158ZjkwH8QOp27sfLyc1cqkJSW40pISviiyB7ce0nqBRSLSgDce+/21T5J3X7Xnjtk3twTQNHFGvf9nCjGJybGL9iU8H+yVV35J269vSEtKKD6Bp1dxNx7AI0b+QuqTo26pylk9jUgWSKfnb51TtMlCE41PpG/GOx5lGEDouws6B1Q3VloC4wKLDa0KA1ypAvEoMARLQa0Ojuf+r3YPW5t5rHa28E9v1sz34LnHenwT/+TNCRf4uezG7riT+p3Us1nLFOskU0t2rwIZDOLaX+Kn5PuEFWzLiGrd1qA7V78X/9I2Tz7zc0FtshNxF+Q9hlQu8G+eF6OqMtcz1ZeaJr6q6VxR1pQQ4F2Q20yU27wpWZ4Z32v7MVz2KccZEWH1LPFcYVZGXmvXfdrEBO74KTvysyTFWHJd7LxHtdTRqf9JNCYtKUFCwhMxiclPAoNMiuO1L7ff2tMgHNtXWObOfTwu6HJNE6NUVS79L87fxImn5+MftofQX3RpyM+3hQ58bdxHe0+wCZqnKKSik9uvJ/j8J5y0pISVbRN/UIEFIHY2pQM0cSzEJCYPgeguR+Wba1UOtgQZBOIN4EBQkXEgloI6L8euODBkiEuaCPbK/fhYbS0oD95od3kFH+vxTfwTW37AGEDxCip+sLzAX1DPYqhVDH05g3Yx5/PD+1/EP5oKUNLVOzsrIpohOfNDNa2fqqpSU1X5EYCqAkdFbz3SWAtxC/9XvJ4CfKWq8sjDTWfWLd9Gz8iWpP2UQbvbhvLlUhjYgKs/dTjtHda/l0iF2a770Nx3/6s5Ld/9QkEuBxQQZbHzYof8V04rVDiuLAV6jX9r3Khf9152Za4tYvJ9S98VvSP+fOfZP56/5KFzE32BKOC3ylp9TZw63D77li4m5YL1BuFwuKSp/87nRp5oZ5W0pISV7h9eVAWXtjvpsjPCeduTdOmKmMTkF4FnRrz0ZL8F9z5W7/yzJs5cujz8ZVvw/RzEVom4E+hHDXnd2eGOtyIOm84GbqiPswqQa4sYDOStODB03rHaW2gP2cmZ4qX8x7x9d5wBwu4BVpUX+D8/7fMF9apEj7KmnA/tJ/tQ/F0EGWMrtq/sMsQfoPe+3zsQzm3UErH1yBxWLvI6C3gdsAHvaJpQpsifRuXQu1t/FlpXMayNwJURRO6T9bH3VOa0d1ib+WS8eKisZUU+n+tgaatDAe5lU8WTq2KinrkqDWH2pDkfAx/HJCZ3bR2w+9PVmQN76iibp/9l2T2q6+y2UX4HgoEyTRNKk+N66hCTmBygiKs/UdCNg1v/OHXOpNkbG8uWtKSElZomPgbCQJ4RDitAp5CNH+3K7/KMUXHMAs5ubHuaODW4c85NYcHeg1KzS03CJU0j05ISduBuElAlricDw0OEcWxhgCs/N9T5eUw9zjV1ziiTQVxzuS4NP+1JutRZ+xFV42cqLC9z+kUc6/FN/I0Q+gdAO6NP+WdT3/+1Xs7qROvtXUzcPN+B164y/G9+M36WBNA0Efi7cW1EQHG+jT/N+zibMfW1S1VlqqaJTkAGwE551jgbvm+YKE/dTN97gHUSwyNvxr910ndJPF6ctjmUMYnJcTGJyXMPlbXoD7rEneNmx/2UowG6p81qvXJVjhdpSQlbfku8r1eId05HELNTD/eJeXDZW+bHf391VUxick/gN00Tz55ou5qoP1Pn3OQH+je6NPRwStPlcybNntXYNuEWvT5jnFWAhQ88sK+F/741G7LP6RiTmHx0V64mmvgXMYnJ4uc9V76dWdLC74JWvyR5nNUaMejiOYMLafPWr4y51VYvB6fU6T/aJU3Bg6J/PXzsVkO30A3tdWnwnzpnlKkh85zpTL9uRFxRRvgNIHGWme+eft2IuLoeG2VNUdYx6CcgrBfLJ2XG9yoC0DQRUCr9/lBwDWtduHOnkEqnjFWdex+Lfaoqd6iqLJ1inSg+4J5HbPgoAnljB1LfNeDgJqb/XPsspw+npcP6dxqAHOOuHFamgngMGPL+RSM2vN5m49PeQt8GYh/wn6YD1MYay60705ISbu8buaL72c3+WLW/qG0HIOWJ31/u+FdmXA8ATRMGTRPjNU0EN5adTVTNNa88qGzP67YZlCEKrnFpSQkLGtsmAFWVj6iq/Lqx7TjR7C9qd7cuDf7A9Y1tSxOnBNPsutdVIB56b/JbT9U2OO9Vv4sk8jaBeK3ZlFJrfU+2ZP+wTiB1f1Ph9GMz1016cZtlACsODAluyDxnMlHWlLgFQ655IiOytfB0261Yba0r9+6lc0wn1r/yc/ztRyLyqiqLVjPYqGM0tJHbvwPI3tTmqfo4w0ezm+5Pbqd3dG+Wf2XHe08q/budy2+MEB816HN0qnFaOqy4P3QV7RxdgH9aUsJznnykNkCLIIPD7Kc4SxvTWa3MV3c/t+vre56J06UhGng0vbhNyBspDyd0efjLP+duvP0uKXkbGApHHNh/9dFs4sQSk5gsVmedN2NLbs/W5zZf8uPupMvmNrZNldE04dXYNjQCyw3CuTXQnPf41Dmjmr4jTVRJTGJyXL8n5/wE+gsG4fgGRFJtxxx428dotouvnEbswBPHcl677j0cxLKZE95vUH77wZJW2wEOl0U+4CkqbqIeRFlT4oAlWzr0GPrFiFvJiGylU4/V1sutL14L8lngq030mwagaeImTRNtAX7hulxfivSOi7b/CkiX3TQcWHQsTmuUNeWydQy615vi3W3YfhNwowMv71ICrgKmes7tr2lihaaJIfWd/1TidHVYtUoyNwBHll9UVW4GuvsoenCQwRF94k2rmbSkhLy0pISnL247v23PiD/ft7l8WyxJv+il+5e+c/iDTZPOjUlMVoDxwF+aJkIb294zlZjE5DiDcCwCbgde/uPgBSMa26bKaJq4Hyg905zWtKQE2b+5llJoD2mVXRZ1TWPb08TJh8fBW3yotPlFgAjyynvHUxhbI80Pmsb6lRr8csIcM7EU1LsRzG0zJ54D9PAzFVabH1tXfI1FHg1WeTewqMlprR/BZI8GaUII4TIY2NOp/UHq2HHqUuvLLbbT85MgcmzA/zLje0lNE2HAa8B9UdYU4266ty/D71NzqXOA5zDB3/UydcbtWMv5gLcN/xbzGdfXTNk9wIYUzvtGVeV6z9CWgDdQCrDzuVkJaY/Pn52euOy0+lyclg5rWlLCSonyiOelUaC/fcGzr742/fMBHTVNGFVV6hkO79Qsh9e2RjW0Bl4b91H2d9OeuBVoL3CNd0lDwOL9CfcCG99eP62rw2XaDuQBaJq4TNNEz0Y1+AwiJjE5TqAvc0lTvCeC/3VdfvBOMCuAxzkDCiuPJsgr726BXvL7gcGXNLYtTZyUqBxZgROuXFuz2u+dlqAwgXgOWBqVZT4mkfZiR+AdABdEL1x9LMdXJtCc73kYEwrH4Aid6cSw5Qbc3cl0g8tFS3var3VxVqOsKWI1g9/KJ1wO5OdJn4nepQCqKnOAQbgjnnFAmET5FtDctTLHVi8TTsadIAyel8YIMu6z49OlPwtXZcb3OvKbo6pyG9AXWJWeuCzOq7Dz98byiHESqZ1OTutp6bB6UAAdBBIh9hZ2vGNmygPbnln1fO6Nr02br7u8fF0ojsY2sjbSkhLK9yRdNmdQy1+DQr2z/wc4Vx6Mv+P+pXOuTvrz2ennPf2mL+4nuyPSFpp25APexH/DUPn3TUQCFzSmMVWhqnKFqsqnVVWWNLYtJ5qZE97PlCgfANfHJCaHNbY9TZx0aCCFu7GGqCjErZG8YOdCiQwGbsdScEwPp38cPD/cKBx7TYr9l2M5vjJZpS3K3PbLeovcn+lEWVMiNtLfrw1by0MKDs+4dsFc2v6RVqfiJR+K7wcukyj33iKm/wKs1jQxBkBV5SZVlY4+aC8acOgRZCyc9vmClSb/svVC0cuoYwS3MoWEdvY4vC7AcZioACN2W3PS/tXSV1Wl9EhjqUhDRTpURceu04LT2WHVcAvwOoEys2K7Ozog7dvDZZGu3w8MvqK8NKafbmveJ/axj9+7bebEhye9PTawcc2tmRnjPi5faxnzLtCzZ8Tq2/3NRaVbc3vcnV4cs/vBZW99tS23+/MAmibCgf2aJq5sXItPazydpKhZXLyR0TThpWnijKyWDzDnzwG8zola9k5j29LEycWIdp87QYhmvge2AkNqazTheDrw3OB8w9k5Yc71WApSj+WcbtUKMdgpTd/MGPdxg1ZjYhKT/SWG3iC+qCgmbmqWUXcE+h1OzIZ8Im7+32czPmyZtR/cWqc1MtZ67xg7XkkhHFqOO0iUB+wC/tGxbBu92kWzOyM1PqEQwFHsu0zqBlt9ndUoa8p5dnx6g3gTdye1q3VM5zsxz34rfmZWDYf+KRACkPVpF3wqcNouF1YWUAehbX/2qpXAqwCT3751UKo546cSp493gcP/pkX7LjWBfDgmMXlRS/+9q3s3+2PRG+PnrWhM+6vD0z3rzZjE5JnA+cBDB0taTXt17WP3PL/6u2dv7nrR1/Gtf14GbAfQNNEBtyblt6oq7Y1o+mlDiNfhG/LLgw9IjG9Qg7h4Y+LJXS0DHgOebmRzTjipT45aN+iZ1/M25/S8ICYxWUlLSmjSNG4CAG3/xYMAzgpfd/t7k8fX/N21BCkmxAyJzAKGH+s5B7RYfNfvBwZ7RfmmLz7WOSo4J3L5HauzzvMKNOfN3fDkTQ2O1p4OeNK0BkuUxUffjz35vSqgXTw8ebcPNzzswnC4gLD5EbF7xmSntiW8675ONc0fZU0JVrj+SX8KSx5m4kfRYo+fqspi4KqjxnWG4Ihigqf8vVUWAYGfvNhJ3Hjf9jo9rEyxThThXP5+DpGHJMr9mfG9SodZ3/pkA3Fm4K2aji2Kso4MyIxHCudsIY3zopMGnXS/T8fKaeuwgttpBVZqmmijadwFvKOqsnjmhLnLes/r/qc0lwQktPtyWE5ZxNgVB4a2ARIyituMyChu88SCxAWbQfzYJXT9X51DNi+YMe6jk2pp1ZMzuQRYMv6tcTevzz5nalZpy4fnbb797lUH1d87BG/x8rR/Gw3cD0QD2ZomDKoqXY1m+CnOza/fNSSv/MKO/ZtrCz6b+uJzjW1PdaiqLNc08QDuXNYzkvSimMkS5VNgGHBG6RU2UT3FjsCLgK3vTX6rVucxL9j5ZEi+8VyBGB1+R2n2sZ4zq7T5CG9DqTy3+bLFMOFYpwGg0B50vY+xhPhWPy2Fmxo016lOTGKyP/AgyAcligBJTGLy3kBzXlEL//1BO/O7rAFzAu7VZPuaovN+KQ0IUAby0+qv4x90zfnRzwbgKDMfqO4cza1r40CZo2Ns0YmUa6LFni9w/54+evRYf/KvKyYY4IeKba3aZMTv3xttuLA4byh1bJW9h27/O0zz9oP44Ysv4x8tjbKmGILoeGU7NuX9Hj9qa03HehW1v8Lhc8Be1OKXST3GvXey1VY0iNPaYa3ESOBF4CugGMDpzl91vjbuozxgOkBMYvLU4THfXLi/qO1Vm3N6tQOmbs3tadqd39n1XWLyd0By72arlq071D8czxPbyRBdmz1pzofAhzGJyd18jcVP7MjvevX2vK5/xCQmz/U1fvrizKE3fK2qsuJm+4WmiWJVlaMb0+ZTlWUZF14K0u5vKrq7sW2pDVWVLza2DY2JRJkPHDIrtrtoclibACa/Paa14KrBRsUxo7axOa/5Ng8sNjxU4uvK8Ss1fHis53Qru3SNEbjmNzTwEZOYbIDY5l6Gsvkzxn1c1pC5TmUufemJoQL5qqBPjESpnPYkgUKDcJlzyppFOXXTRbiL0pBCeqf7dBpqwOGKIONOgMJ9zXIBCtKidlZ1nihrSpyAZYABpOMvBmcCF+Pe9i/CyZzmT0FhSvzl+wGwBMV1tEX13w/4uPSfcl/1/ca3zPCgd7myq7pc6ChrioDzJxhwpDfjQEWr14QCwr38KZhc0/uSnrisrZnWLXVDmeV0c1bhDHFYVVXO0DTxg6rK9Iptfoozxq4robHzYuMqtFg9y+0LgYXgfnpTW/2YuD33rD4HSlr3A65cd6g/LUSebGEoYp8rxB6TmBx/MjitAGlJCZuBaya/fet5v+0dMdquG24udfqPff7PZ9Kn//Xk6Gl9H18CpOBeKsaj5ToR+E5VZbVPmE24iUlM9gFuATH/ncmzqrzBnUx40gKaqarc39i2NAZpSQn2i194ZvXW3NiEyW+PGTBzwvu/N7ZNTTQuxY7A+ySKIb7Vz5uh5jT/sFzTIxIpsyKd4/3uL27Ij//ZQJTE8F0D5qigHxBR7vL56jjMdUpx55ybI//KHDDmQEnrq6DvOSbFTnRA2or9Re0+APEqYPLUFExY98TolfC3hBlIb1dzP6Ebjf6ixPnLrBFvVNy/vT3/VpfDenmlAlsFUFVVVrmyFmVNiYDOAd34a37FtjJv/Uqzwb2gadcNhtB809XA1UBm6fP+GcX++oFm2aYXgTVAT0BN6G4RyeHxfVyYxrwZ/5bnAUdOAZGRQfsPanqPJPJmgZCKy+ek0gQ/Xpz2DqumCeGpnttdsS12XmycwNDJcwdaFDsvtspuV2lJCcWQ8Ai4ReKj/NL7hkrbV31c+a0NQtLFcMhrrRL8/tQ5N519MqUMzJwwdzmwPCYx+dHOIRvf21XQ+SK7y9s65ucFC1r6752x4pHJv3mGdgJm4q4gmulRF5CqKpvy/apgYItFz684MCQk3CfzmKMtJ5jngds0TQR6qkfPONoG7Xh2S26PS7T9F18NNDmsZzjL0i+MMgpHro+x5P2axrmeDDzbgJgoEG9GjyubX9PY2ji72e/PrT0UR5h3doPzTWPD/3pq4+GzdS+D7bRfMaiUe3oAZJzZMHKc3eWtAJuAOzuHbPxiwX2PZnnGplLFqqenlmWwFMT7dnE9UwiY1ucOv3DjC3vbB2+7pn/XffE5W1rTrMfuyGrMOAtA4AJwSQxaDSZfAkJs5pwjLdV3t7O1NB12CQC7y2gr8it5NKDEWALEGVxiZLNsUx/gUvfcUnGhiO0+bQlzZefnGCI+AhhnvWsojBnWmm2z/4y/zlnlmYENc8aKAO9LHkI4d7Z9/Pp9Ndh5ynI6qwSgacIEpGiaGHvUruvcv94C6qhhl5aUIFc9OmF1O2f5j4pbUw0FicHu22nB7qt3xCQmj49JTDYfT/sbSlpSQuYvDyReEuyVGwE8BnJARnGbXwc+PfNATGLyhWN+XrAd6ABUOGCXAzs0TbRrNKNPYrblnZUQ5n2o/NpO758qPxafAXfg+aCfibijqsoPpU7/UTGJyWdUE4Um/klMYrK3RLnIKU1fzhj3cbV5/PoTgQOdBrnCJaQNd9Fig9hV0KVLC7/9h9dYbj3U0Ln2F7Xt1Tpwd+7WZ67Ja+hcJzOeIqqlnm5S74O4Ncw7e8mFbb6bAMSmJSW8XuGsgtsxrdTN8h+kJSWstA9rsaXQFE57map3Ma77MK2wQ+tf0kZqKw6r3QDezZs04ujmC09aL30E5CUgPgHxsMSgZsb3qnY1NZjsWwX6AWBdxbbsZs7R+yLkNwA/5rb/a/Zf8SuwFLyFpeAWr4eKAvOCna2Ay3CnGIhvml3IDr8YpmR8sC0zvpcL4E8G36rglL1ZPrOm98z/4IVDTbZIr7KQ1IW1vsGnKKe1wwoE466WPyI7cd+3kSECOdLzG15vDbvuzVcuFUIikQgojwpIm+6Spn3A2z7G4qwbX5v2/snmuP752LictKSEpzqFbGoX19z63aHSKC9gIcg/5268Y+w3O24s9QzNw700sRdA08RFmibObyy7TyZiEpO7Hi6LbJdrC3/s/huWnRIRaFWVq1RVvn+mR8wF+kygWa+IPxIb25YmGo+45tYpgH9oTZFOS1CckFi9HIq3IvECujbknDGJyS0LykOjD5S0frkh83jmap9fHha2t7D9Mw2d62QmJjE5CJgjUTzygVIHklY+OnHwnEmzZ9e3SUuUNUVIlEQAX1H82MIHHrilffC2bhLl54N6yyEAWSJyCpU6hmma6LuCi57yo1AM5Mf7Dsaf/WxNzupk6+SgMvwu6MWKvKME/R1bdrZdBpBXGDiAo9qzhtxVko6l4AfgIYcwlb0Ycys9irYxYc/3XdPneI+Psqb4ZtH6Eh3jF2/Hv77+32f+G3Np9LVASeCBi07b+9xp7bCqqsxWVXmNqsofK7bts/toEtHGV3Em4n56rjIdoDq6dv02TVEcLoE8IAR3zEl85l4gziCcl4R6H1Z+PzB4NLAjJjF5/PDnk06qiM7CBx4o+HTqSyMdulcLYLy3oazVkvThD/2SNnJ3TGLyE2N+XjBwzM8LXqmkIvA47mVl4EjE+ozEy1A2BXBIlPcb25a6omnCoGminadt4BnLZe0/+y3MO8t52NZsamPb0kTjsb+ozW1GYafc5VVTW1VV4L7PCYRbhL0B+BhLRnr+/KGmcXVBoF/m+avBc52sTJj1vyvNBtsmoAvgcDdGEOU0oGhyOJ/dCfQT6NmpxL0E8PP9D25JS0q4MsSZ9xeASxgVkGY8/983yL+C1zOQ1uyY/XX8Q7XWd3zPmPPK8UXCDABNE5GaJtbuf8d7QpjdNco9qoauZJaClVN6T03e59OC8/LXJjnNurHFAfPbN2V/9T7uwFuN0dXUtycFS/TrgK+jkwYV1+V9OR5EWVPioqwpD7pbyP73nLYOq6aJDpommlfeFjsv9rLNZQE9OnkXW/+4ecvzqaNTn6uPswqwevXEC3XdbAAlCphhsVji0pIS5K7nLv+pb+TvwQGmgsuBg8DbWaXNiy964bmkky3impaUUJ6WlDBneMy3bQa2WPSyzeXjxJ0y8JRA/z0m8YcZMYnJsQXlwUOAmwE0TfgAuzVNTGxU4xuBO+fcFGQUzsltAnduTUtKaPCy3gmkGW5h6+sa25DGZMa4j11eRtur6UVtQ2ISk2Mb254mTjwxickD0ovbdXVKkyxxBP5w9PJvBWXergLPnzrHoYNUtP/eR4LMeTbceZcNok3grodDvA7npSUl7GroXCcjbRN/uHnRvoQvvQy2SJNSPgS44Hg0RthMn6kAoWR9kRnfq7zyvrOCUlwATnddlTK553PDFlgDW0mUF4C9W+hbp4dcJ+ZLgeIUBn2AJci37W6vAa3TzB2i080zo3wKz3aPcneroorPVCfrIt8lAeeNjGFrwcxWNzyUGeXo6VT4a4N37DUx9jTHi+mPLK/p/Ioj4AmBElDY4ucTVgDudlLlItw634tOhNN6OhddTQf6aJpoo6rSdf5HnVuD+T1g3Xab/8XHMuHcuYMHl5X1t7iVM/7xtLQSwNPB5PuYxOQf+kSumJRZ0vK5rbk9HgBuONvy/muDWv4262Qqzpox7uNyYFpMYnIO8BQIxZPbeydw5wNLZ5e1Ctizb8zPyS/Etbhn7YQeLycDmwE0TUQBl/f7w3+Hb5lyLqBhKTgp1BKON9b9F19d4gwQfQN/P9W6JmUBt3IGa7FWcKC4TRLufN5JQI3SME2cllzu/kcIjrpvV6YoQL/Cx2bAYdRfMzmVLxpyT4tJTPZRROfQdkHbfl//5E0NKnrs8vCXIeWu9qHdw9f9VvvoU4tJb48N/CXt8pckxnEKcuUF0QsnvDF+XkVHsQb9pkRZU3pDx7YKTgbwy/tuRaq/CSgt2VpG0Lk6yjsg/reroIuaGdXhUxC9wzkwcWP8JX+rB1iCKorAlgLppT6uswqCXFcF5JttoWd/O7Zn8VbbvC33l4KitNn39+KqLg2YhJN2/rm/bStq9kRVHa8KCZsMGDuTMmlV/PWSeNvOrgu1u/JMwcuTtr9surTUujd9jneP6HG2KnOXAw4OjXUZi/OdPgfnNOT9qicq4OP+U5pBqDTw/6s2TmeHdRrQSVWl6/5vI00BBv+UQpfJ34W4IXV0anmtRx+FxWIJMpt7fSWEFLhbvhrwPC3tf9B6uW4ou9zgDHgvOmnQco881syYxOS3cHdHseTaIl5akj7subaJ398pMbyXlpRwMnWdsuK+pgpZkBuAkNaBuxP3FbZrBby78sBgtuT0LAn3yYod83PyK8+c1yqmq+vAiz5loiI/shxL0JDT0WktsgffAuxckj78jca2pT54clffb2w7TgbSkhJy+ljmLiqyB42/Y/bNz7w+/sOMxrapiRNHtP+ezPTitrjzIatvVxmWY4ywm/Rd5oePi85yvC4N5p353ZIaOpHN5XsRIDYe7vP4cbDrpCHuqVmdFNF3rS6NfsDzdt3rkTfGz6u2Er6+eFPyuA0/BHwzJ/7VvzRNdASKVVUeBBCKHoiQ9rTnLx136UtP9P9l3+VnKR0C+0YZ9hbeyYMfaFrCp8AXqhaYKZFL8fhMAoFvmQHfMgPr/DvJXFOIGJq/PLfYXz+oK67NwfnGb4SOjyJ5Ndfu4x3uXUpC9Na9I9j2Lxu7W38KguYPAj//EH/PpxXb80zBE5CyKE4uXBZUYLgkqMCwEEvQ5VgK/pGikJ64rLmCzwVAUo9x753IpkAemVAJCDsnoAXsaZsSoKpyZ0Xu6q8F4ffvs/uGnOOX/1Hq6NR/f2JqYe7ceC9FsX9rtwcEtmmz5BUQ8XjyX/9nGwJSzDc4A26VyIXpicuOhMXTkhJkWlLCz0Dc4FbJj0gp9ksMbwE7rnz5kZlT59x0UvR59yy3DMFzTWlJCd+lJSW8v/CBB7rYXL7+wFkG4bwn3CereE9Bxz7Alw8vn/nChvWX6MIdaVZ0iVeq3vaWxryO/4LRb9wxGDgf5JxTsb2npomWmiZ6N7YdJwN9In//0q57GVIPn90UYT3DiAnaWQwQ4ZP5E9UtMVuCmht00dPsUI6LhmWwV84tIEtwdyRsEN7GkmtBZgN/Ntyyk4OYxOSLD5a0WnmotLmhS+j6DwH9rLC1l2iaaF0xRtOEqmliYKXXEzRNXFPp9SuaJu6o9HqhpomnAMZZ7xpcjvflAC6MFY0i/gIeqBjv5V92hVB08ycvdbw3JmjnMHM7QakhyCuzPPr6dmKLHegDROKOJirCXawtgW90IYfta1WuXt77jSSQ+s9tu/Tb0LO098bYsvOWDyoaani88G2BGHy43NcZai4D+B+wyBOpPUJHNn4HhAaSa6nYNtF6eycF140+ouSLzhMzE6RgpEB0lcjV6XO8/5HiVRq67gncvlyNGq3HkyhrivCi7E4QmLEtBobUVJR2vDjtIqyaJiKAZ4BnVVWmxc6L7QeKBfhiVUnIbccyZ1FRi2W6bj7Hyyv/vltu+f0lz+aVAOmJyx4ERQB4kvVVjgqLeyKuz8QkJj8LDPM2lL609lDcpM05Pa+LSUx+CJjb2BHXija2VWyXuPOvNgGvxCQmm4Bzgsx5I8uE6R4AlxTYMSkWxy23rklM/uBkaaRwPCgoD0kyCAcXt/1mAYxobHOOheeAC4A2jW1IY+NjLJ0H8o60wk6XxyQmP1LfauMmTl2WZ1x4CCC7rPljaUkJa6sakxfsvDMk34hLkQsMVQ2oB1PnjBIw/OqOIZuzfn3g/upE6es6l4/g8pFdQjds+vn+h075ttpT54wypRe3WQgDLgCR6tDNT23N7fkZYNiad5a+IfvsNaq7QQK4O1RmA5d4Xk8G9gBfel53w51vXMEe3KlQLOTamyUGotkp0+mw1LN/LLAbYPp1I+IQzUHCwdWdngroKPcUx0falGybd8iGPZPHOBf0AkanJSWsRAuKE+7iL5NwR+hfVB4vXNkasFtTZgDLv4x/dJ+mPSaA64HDAPP292hV5jIbDcKFqCKNMMqaEm5APbcTKXuWxo/5o+Ii0uhi0TEYBvPNd3AeyuOF32EJGug0yhXND5o/czwV0MXkUuxSGjSj4c1R5QE7i9s/fGu9g3HHygB+fuF3Luor0LmYT+99O/61dbUf1XBOxwhrP2AU4HPvt5EtAxTHYgWZBUxIHZ1a7x8oi8UyITe34zlRUSkH4uJmfFLFEM1TTSqpJUnfE3H9ZXjMtz2GtF7wcLnLexcwy6SU7xv12t0fTZj1P9/62neiSUtKcKQlJfxeYA+1NFdy9wO87hzJKPtDrJGdDTSwqvZkIiYx2Tslu1+7IK987Y3x8zY3tj3HyKvAmEa24aTAnWMuZgLdo/33XFLrAU2cTgR7/s2vboCiM9rmpbv2t7JvaOjJftxzVc/88jCDSXG839C5Fu+/ZFCZ0w8/U/Gp0rCkWmISk8N/3HP1wjVZA9WOwZvXA3FARzy+iFM3ye923lhZvukm3HnnFZwDXFHxQlXlcFWV0yq9nqCq8o0oa0pUOT43ALRi53sVUlOqKr8G0jRNvCoMrqFIdI/Epde6LnEvScXgHX1g854SZ8AIkE9TIXXlTnU7sgpZkfo23jp1ANCzBXtWeuaXqioXqapcP/26EXG5JQGfAmzMjyKjNKCqoqsHXJjM2+l1JBoSZU0xpHBenBnbynfjp/+tCGEpWH+ghSNOIveZXIoFeNoh2y42l0b7IpUT1oY7ypoSkMq5dwIIdO1EOatwGjqsqiqTgShVlVv+KA55p1g3+g0KyHk6dXRqfn3nmj593FXAG0K4fu3c+ftw4P6jx2T0nbZe4pAuU8FGYEh00qBao4szxn0s35381rMS5VzgohDvHLHiwNBRv6SN3BKTmDzhZFMVOJqbX586DeRGPxsxGTLU9qrratta2anemranAFeCCMu1RZyyuoeqKteqqrQ2th0nC4Hm/E/Nis1lc/p8VF2leBOnHz3C/xoI0DdyRdUrWZYg38BCQzDwecyttgZH3h261wiAzTm9Xm/oXEX24IuB8jVZA99s6FyNRUxiclyPxz76CORGh26Oi/A5eG+3sPVnpyUllAKaQHcBCKRrV0GX9yqOU1W5TVXl3kqv7XXp2teVNbNBeAEFK7norqN2nwtMaNZjT65HMksvCAgR66P6t4mQB34uyA78zD3sKBkqS8FKLAXPVa7T2EPXGwD6sOQ3TRPXa5p4sEL+MSbq4LO6FAqAjtDX5bX4jUrO7jjrXWcLXHeC/CgzvteRgIhAvxiIseP9ytHX1WasLdWoK+9IpASUEle8F7hcXsXtTmR9xaNFhJgBdIzzTuB5Ty+HVdOEL4CqyqLYebE35btMF5mEfPqNKw/Oqu9cs2dfEl9WFvqlyVRyWErD1ULIWOBf4s+K02+swGTIj/nCVhdntTIVEde45lpUTOCOG0EcBGYFmvMKrnrloVknk+Mak5gcF5OY/PRZj36yalnGsJcGGdcGxisppS1FrhXEYP7Ofz1t0gGa++1/wctQlgksbmxbjhVNE36ePLBmjW3LyUChPbinXTeLw7bIYCoJhTdxeiPdEm+09N+bXc2QIQLh411+fHSWA815Y0xK+Ya0pITM2kdXz9Q5o4SXoex6g3AucbcKP/Vwf8fk0kJ78Cjc+aATVz/+v+keVR3SkhJWtvDfNwkgwJz/bkN/Q862fhOSRudL3a/k3Mz4XsUAmiZCAFRV/gy0uylx65u4o6aPLFQv3adIXYxa9aaz3OXzA4iK1IsagzCp9O8Mcuuc+Fd/w516dQXgxBIU3lYUeXJvpQRRvq2w2ROVnd00uryjoJuH8/k//JN2bJrjQ3Ex8G01p/0NsOlSocx1gZDmfRuikwbl1uMtOmYutr7WH+TdAAYcui+FDWpbXF9OG4dV04QC/Klp4qV7volSFeRsYLldKk/Udy6LxRJy4MA5s3TdYGvefO11FoulUFXldlWV/+rPG7L7RhuAT07fY27hN2Pcx1J76K5Pgbg2gTtvCDTnO9dkDZwA7Ojw0DeTGrs4y3PDWQI8XOwIPPcqv5/XfmCc7m8Uuq9EXpjmfSPVtcU7VRny3PSzD5a0atkr4s+UU7HYqhJtcKtADG5sQ04SVPdtTwAcEQpv4vQm9XDf3UCxR8rvXxQEOhN1dyvWBhdI/W/mhC5F9qD2vZv9WZ1zXGfKXd4jyl0+Uf2ba4cbOlcjogIGz3fOBTQ/ekBGccy7QEGhPbTBbaQP0HZ8Gf4AXMSn3wNomhgJ7NE00ROgQiVg2ucLVm6a2HlvWsvOrfulaWXG9crFd+x5y9fbUPoFSOlnKry0ut+1KGtKkPvaxPeeOScB8aoqpU1X3k7JiTYZDK4iEE8AQyrLWUVZU9qlcm5sMzK+nRefdGR7G+vvHXZxVtRZ/PFHZnwvR5UXaClYKRBDipQB+3SCsYesWJGeuCwuPXHZg5WLvo83U6wTRSGhyWbKFZCyHZt37Y4/v6YmHMed08ZhxR26/6JMV1atKw383Evo3n398qekjk6tl0TG3LnxPkK45oNoq+vmYe3aLd6raWKmpokqi1a8C7tEAfjm9l7W0AtIS0qQSx6a+lmfyJWBAv0i4KBTN89cmn5hQd8n3r2/sSKuzXwzHsX9/gLCpdq3Z3u6goD7LqQ2hl3/JbsKutwI0nmorPmExralgewGhuJ+Km8CNJCeHwLp4vRKYWmieoKpLn/VEqT4lip9C4Jch7EUNLj49bd9l8VJFEodfs81dK6Fey+LBTApjudrG3sSo4GwAc7q5I/SkhKkQF9vVmwNcrj6Wz/1qYgAhnBozfvxL1SkQ60CvgbSKo+PsqaIpVx2tw9Fjhhlax8QW4Fvrs3/onuULUsMavlbtcGiwXz9OGDqxurfNU2EAqiqLDn8uu/9q7LbXJln9yW0a/qT0z5fUIX2qrSAcBwk5h+KJeX4TgDhWs2QmhV3LAUri8umpirkE5mbFS3RNYl8Clj0Xzmt8xl/xS7OCg0iZyMIsYOe9/4X56mJ08ZhVVVZrqryyfv3dzv7sNOrWSuvsnvnXr2/XsnzFotFFBW1+FNKg2ow2KZYLJblQG9gNNW8V6Whaya4TPn50UmDjltDgBnjPpZ7ki79BYg7P/qX+0wGe87hsqjngZ2Dn3v5qRMZcY1JTI7KLo0c4H4lnYA9VuwuFgghkbo4QfprJ5IbZtzrC3IMiG+tD979r6j6qYSqSpunCOBUjtAcN9KSElY290u/CaBLSOqq02lVoInqaR2wq3+wV453Nbv7mJyKOaDIcLw0TkcAGRtzzm5wKpEujQnA2vdvf6PBhWCNRRWyiVV+53pGrPYH0XPqnFHH3AK8DTveAREJoKA/r2niLk0TQlVlpqrK21RVFhx1yPBigvqWEXDvy7e9uwWwgAwIOlza44qD35G7IbpHdefaTN+zfSlyPMAdCrBP00Sf/Ff8Wuzd0zJpTW5LQH57y6MbXzr6uP9Z775MIG9uRvrnmfG9DlZs72z9bRjotwNLMuN7VdsOdv+Diy/Y88TnCyU+CTrB5DumjhQoZoEwAD5SON7c9MZ90ze9cV/r4xV5jbKm+EqUV4DUYoL2g8ylAe1yj5XTwmHVNNFJ08T5N3/ZeizIROCdr6/b86980zpwe25ux7PCwrYte/TRpDkAqiq/BSJUVe6p4rxeBntodFnIxuAGXUA1pCUlyA9uf+2lQ6UtooCLBPrB3QWdH1m075JDJ6I4KyYx2QB8LDGaQYwC8dgbEU982EbJuhL4TSAeoVIS+emC2VCeBCKsS+iG7xrbluOBpok+mibiG9uOk4V+Ucu+NgpHWVZpi/TGtqWJE4NTGgN9jSXVpfZcCuhGl2jw9/3OOTcFGBX7pSHe2SsbKps2+e1bu4KMCzTnnfJFk2lJCStrSxuzuXy+t+teLE0f1vVYzhFlTTH+wZAhAF6UZb7KZeHAS7iDTv9iinWSKYC8OSB3AxV5pB3BrRxgRKdH7sa7Z9/T/4qjj42yppgyadOzFP+Pi7eHGw781WHFmlkXj/9sbf80LaOzJ61BDJ9+3Yh/OYrLueQeM+WuAfz8TKX54goJTQbFG/Tzqmtzmp64LA5pWGwqa3FhxTYfZQXuVFsdkDpSdAtKv+yewPRL04DlEvm0RDYo8no2S74FWoeS9aQLY0J3/tyTGd/rhEtxni46rPcUuwy37S73NYQYHCV5LvNd9Z3g2WfvGQmBrwLf5eR0vhLA82QmVVWWVnVM6I6xZnNxG5fiMr9X1f7jhefG98vUOaMWFtmDEn8/EH89MEugPzrqtXus4T6HJv4XLV/PiVz+y+qs8wYruG7bnXTZJ/oTgZ31UjaW+uo2IbnC94HiU7IIoDbWZMUNCjTnF3cO2fhp7aNPCSxAK6BX45pxcjBj3Mfyu8TkLXnl4WGNbUsTJ4YDxW0OAVV2Nyvz1qcKyR7vB4tyGn6eVqOcutnUO+LPzQ1Vkztc1mwiCBHXQlvrVnc6vdma2+MbwJJXHn4WcCwR5ats+EUC9EVbbRKOWcByVZWpVQ3eR4ekIkKi4/lm+qfxT1Q4X5pHOcDkQhgNwhlYlBE+/43x6u7yAv8XEDLcLzLPNTRqeKvf+l8ePHLxx9embe81BkBBLzNJafJ0fiIjspV5bWzc4y9aU56oENWPsqacAxEXAI/Pin9jZyVzVOmOkOJRJ1Cpus2p6skFRiIJMHyVEWya17Jc70K5HqsbyJ29q03wXYozYHTQ3quulcghAoFE+kj0C6uZs0airX+2kwwY0p0/9+6hS5AdbyI42GD1i2PhtIiwFrqM9zx7oMOqIpfR2dO38H+po1Pr5by9886wES6X13yjsWwvcJPFYql4Ek/SNPGDp6DrX4TuGhMjUAymspYnpIp8xriP5XtTZj5nc/n2Ai4K8sqzrzgw5KYFu6/eebwjrm0Tv1f/yhowuFtYyp5L238+F0tQsCLF9wYXeXkhzvNPV2c1JjG5U7EjqFehPfjZGeM+PuVFuj3cC1zd2EacTJiU8n0mxd6tse1o4oQRTBU5rKXP+7f3sSmBhYGuKp2a+vJX1nndQNoK7MHTGzrXn5nntxK4Dnobyk6XB+fa2ALSHu6TeWHtQ//JFOtE4UvhMwAmymV3Vj/sCTZV+f8aZU3xWc2Q63wo2hJK1n0V2z25pkOAx/7o0Lvw565DHKEdM74rL/ANA2YhebokM/S5PN/wyQaXg+7lf+VGxO75rV27tGsmn7XMa3Cr7ZlAWUZkK9fnl441bG0fOxRYVBExDeHQ2yBzcOtjV2YpCAHImloH49Z9t4NbAszbsKqlREovZasz0PhluZ9x0Qc9xr1XftakGbMF4lGgzCOBhUC5Oj1xWXh931sn5ldcGMsE+tBSAq8B0jRGnrCuWpU5LRzWZw50mFCkm86TiAdev/Lg5/U51mKxhKen939dCL28RYs1N1oslsqOWCaw19OT/V/ktn//SYCSiBUHq9r/X1Ehh3VB9C/t+0Yun+ySpjRglo+x5NCNr93zQUMd15jE5GYSwycSZbtTN/a+2/i1sdTHtVwi2wnEVdHjbH8dnys5+YjyS3/Mk6t7XNozngx4tAx31j7yzKFHxF/NdKm0mjpnlFdj29LEf4+3oTS6Q/Dmlkdv9y0zXATQLNuU2NBzxCQmC2AEiN++vvvZBlVPxyQmewPDJYZvK+SfTnfSkhIcLf33OQPMhZfV99gCwu4tJbA9QA9+3z9YfFNlNL0CBefdQMsyAia9GT/rH+/vtM8XrJz2+YLnths6z99b2s71hPPpK0B5GU+qgETKbZ3OKm1l2JkWe8mSyNbnbV54mc++G8wugbH94SkghvzeJ/53l8EIQhjwaLneYH18fB7NevfnVy0zvtc/Ph/nsLgFgMD1OTW0OY1OGrTSaSxYA1IGGN5TvJStAE7gHY5Kz4tOGrRSIIYIxMMC8TDQSQrHX6lvT6qzYszF1tcmAZeBeDKG7V4gLzRi/6yiEcOJ5pR2WDVN+H+00CfLIZWXgwyOtcCMWg+qxDvvDPcF+TUozZ1OH3Xs2N9WVd6vqvIVVZW3VzuBNIyUwkl54I4T6sBNv25E3PTrRjzY+reC/l/d/dxbwACDcF4c5p0tfj8w5GZgZ0xi8oThzyfV+8d46pxRhpb+aX+ADAWuXfjAAwVhOcaPfcsM3Q+HO9/FUtBgNYSTlYmzbvMvtgfe2Clkc2ZD9RNPJjRNRGqauKlJi/VvcssifnJJI9b9F7eufXQTpzLXvPKgUu7yNvkYS/8laSWRlwHbsRQ0uK3l8JhvRgBt2wZtb3Dnn/Ojf5kK+LYK2H3a3m+rosgesC6toINvffSRNU34/YV6pKq+gLCbVVVWq0s60Xp7JzPlT4dzYHVmfK9qZcyK7MGrQfgDLYBfgXLAeTg0srzYO8g3ja7PAR0GrPA/YNDFlQLxWKv/2eZP+3zByrTWndKOBEw9Wq5WRt5iojynBWnjjj6XQE5VcDKS9xKrc1YB9j9oHWhwBg4ERLHrZmHXuyLcJ9qnqYUBntb0R4hOGrQyOmnQc9FJg56VuIboBlvLwP0jFu5/cNGA6s5RwXnWD7z302FGOAfLgFd30u01EEo7NjVaAe8p7bAesHt1mXc4OtwsdNe5fvm3pI5OrbNe5ty5qigpiUgBcb4QrrEWi+WPyvs1TbTVNFGjJlzQvpFWKZy7eox797jnj1bH9OsSBoBcikfCYvp1I+LSkhLkrucu/7lP5O/BAeb8y3Dnas3KKm1RctELzz0fk5g8KCYx+cG63AT+OHj+ixnFMTEDWyz6Ii0pYQOWoBsDig3XlHnr8yNuL534n19gI/JL2siEYkegCDDnn1SdrWLnxQ6MnRf7YOy82GNNmu8IfEg1xQdnInsKOy0HKLSHxDSyKU38x6zOOs9fopB6uO8/pN3S5no3l4JhecHOvdUdWx925HVNAOgWuv77hs61v6jtcLNik72b/fFjwy07NYhJTI4rtIf2kyjewOK6Oq0r5PDX84k4CyCKvQeXx9+ytKbxi7nygXJ8RH9+faqmcS3892YA9G62cljlVIGVQy6oaJe6oO1uL19FF+/qQqYCzwNMsU7yM+BIAJnvyTdNBEJADHTg9cjM+Jl5R59rNWqALyXr34p/s8bPojTvmSQQuCO9Bsr1WB1wlPi6VgOfA9WmorRKUlcURidfInTvg0KaF6UnLvtXMVlldtLj7sO0MHVn9UNAn630UUGynd5PVVcU9l9zSjuszx3sMCbT4a2U6MaE6VdkbqrPsXv3XjAtL69Dx4iIzUsef/ypTyrv83TM2gAk1TSHwRkQo+jeq+tv+bHjE1r0Gggj/L3UULFvxriPZeqTo34ABvSJXDHJ31RUsjW3x/3AEpDPCvQVbRO/nxmTmHz9xS88e9mUt8f0u+DZGUcK72ISkydklkZPNSrlS8N9Do1On+N9g0S+Byz1sSk3nMjrbAwkynggbU3WwNmNbUsFsfNiLwGWVfS1PkandQ3QhdNMfqwh+BhLdgG09E/r39i2NPGfE+z+Rx9Y2QlqccA0RZECobP2eJxkd0GX7sC6Nye836AVt5jEZLGnoFMnu+717WvjPjpahul0RuWITyK9qUXfuyKg9BM3HlFAyaTNPTUdE2VNaV9I6M0SZc478a/8UNPY3s3+2AfgbbBdCH+nCpSF+Vzcno18Jno/HpllmqXoeGW0tFuwFDgB8gl/0oUpdCA/TQdyjdjVKPZ+5kPxIeBfBdpR1pSWEkOPYoJqzlW2BA0Mk3OvdL+QEpRyA7mzgSF+9xf/BgwH7q5pitiJb/6q6OazgfUS+fXm1x75uqpx0dY/WgGPAN98Hv/Yq8AN7mIwAUf5HSeSU9ZhnfZN5JsgppiF643U0am/1OfYJ5549H4QLwCLs7O7VZXPoQN34n5iqZLff2g/FGhbGvanoV6GN4Dp143wKsv1b+leZpBOqmkbl5aUIL+++9lZ6cUxwRz5gggkQkgMk4BPt+T2/C55zzV/7C3sYItJTN4b+9hHGSBnAYpT9zqnbE+Hi5sdMs2zm6XiMOrXHg9B7ZOZibNuGwIMDjAVfHySdbaKAyncN4vab+JVoaqyzJPHWmWXnzORYW2+O2BU7ET6Hry0sW1p4r+lpX/aRe6/xBXAkpjE5EtKnw8YbHYoiQDBhcY7sQQ1KGI04Km3moEcACxoqL2KcPUGWlZ0UDqD0AC7p5UpwV7Vrzxrmrga+Hmg9aM+O+kR494qs4AaW4W2ZPcnnsYhltqMMQpnCsjilQfVI+oRUdaUqH109OvCur1t0swh3uXKBVLwRKv/2Y6cV+Oys70pyYli//OdWL/WifmKTNoExLFwflVSUGezdBpAILnV+jH2ZwImAIt9xPp0iS51Q9mfoMT7PT1/UkXeqqrKP1VV5miaUDRNzNM0cW1Vc0UnDcp2mnMH20I2HAg8MPzK/YlLPktPXPZQZdmrjmxcpuA0A/cARLMjwZPeUK3fUVeirClxUdaUB48lSntKOqyx82JbrigOnRxtLmNwYM5D9Tl2+vT/TZRSed7tBBAHnHv0GI/Y+lxVldU+eRvLIu8HcHof3lhf+xvAJFCiQEwF8RhHtXs7Go8c1jtARZeRMtxdj846J3L5nedELZuNO4q8RNcNvhXHmXGYHjV+NNPkEK7sCMeNpkeKsv7by2p89hR0vFcRLs5v9cuXjW3LUfwIlHmkUgQQEzsvtt7tCzVNXK5posk58zBj3Mcugcxcn903uD75ck2cOlSkQmUUx/SucIIAE+jffy/PXSShItjQ4IhRh+CtFhBKr4g/GrzidnazldNBJ9p/T70CMac6FQ0GjIrjSdAP5peHj4pJTK5OetMA+KXT/khE8VwWba5JGzTB+uqlGbTr149Fq2sS5q/AXewmtoDoUnkaEGLgnoyZbdK8LgW2GnTxdMXOKGtKBxcm1Ybfq2/Gv+Vow7YKfVcO0rrKephCgq8I4ZDrQr5Y/6+dliBDzmu+S8wOZZYu5EpFiP66sVSUha71ik4aVN1vvx/QHqg2Pz/myctLy0LXtpU4vxIo11XWam1j/X3IFvq0OQfrssz4XmmdrYtaHaBd245s2I6n+UNNebY14XFSFwNPU0k9oa6ccjqssfNiDSA/KNMN5VcFHrz/voT8oroea7FYhBBRHgf3H6HtI2++polwYBjwbXX6qwCRGx79BrgwMOOSj4/lOurLx893bqOY2j7vF5lHp0v/LFFV+VpdjktLSlgZk5g8BPd1an8LNyf8I4XC86O9CHTTU8b3RCvlcBsQ10WPs311fK/k5CMmMdkLYvuaFPuCN8fP+/dNoxFJHZ268orP2l3T2bv4+7WlgWkHHT7jW5vLYu7/NnLECyOzqu41XTX34y4aqHEZ7EzB/Xn3igCigEUxicnVduBp4tTD/f8rlwDC3YJXOEAaQDj8TUXLvi0eeuHlhvWYcABCzzAHrK2y93Yd2ZjTu7OPsaSsTeCuBuecbss7q22U74Gs5Y/cfkLVZ04GPN/BlTGJySnAN1F++x8FHgfQNOENdFdVuUZV5efXWJ/eVI63J6gkXWFk3lXdvFHWFAHqvQqu3JbsqXN6W4RPZn6xw/9IUCuanfcU6BGFY/b9mCRASGRbgTgHjw/Rjb9mbOZsHZT3ANJpH1tx7Bb6/mvlLsqa4gWx4d6UfHS0WgGWoADg47Bc0/k5oY7UogD94phbbWXioUWHvPNjd1Rns6rKIk+jGCe463GA/aoq/9Gmvse49xzpicvWSuSVAqFIpHeZwuByfG8A0rbRKwGggLApgMyl2YjM+F7VnrcuCPTBnhxlqML/qo1TLsLaw6fwSxCDdcSU+xLy6+S0VeJ/UhpbAXaqD21fAXwMtKtpIsXp1wkoBf7VAeu/oHBfsxd0h8Hcou+ODcD2+hxbly4jFU+3z/u/vvY64xJDQaDzSywFXzTU7lMBgX45EO7QzW82ti1V8c31u5MvCs6+cHR4Rmy0qeyrfXafYX+VBC2NnRdbHxWIq3F39GnCjQqy4v7XaDlZTfxnxCs+ezGHaSg++w0C3dTcb7/sGpry+ZDWP14R0WZTi2ddN7w8y3VZ1rX2x8wXl734U8/HP5wTk5jcvr4niklMPi/XFjGgzOm3qKHazTGJydFF9uA2maXRrzRkntOA71r47dtbUB7y6OS3x3T0bHsNWKRpIhSgDL/3QXjauIqv34t/qdpmA96UjATO1zE8+lb8m3V+EGgbtF2WOf0DR79xR8Q11qeDDtGy20XFvwQKEAKBpx2qCtDT+oN5Hx2GdSElKzO+14GLra/7ZBH9SMVccfxyZRWnOA+Evw3/f+SS7nvX+zyHUW4CLgFuD7uztEfMrbYyAEU3HzY4gmpcZVNV6VBVKTVNBAErgJnVDNWAcule7hdP9cuIA7oDd22Nv7DsFuuD4SAnAF9vir+4Qc4qQDgH7nT/9bd6Qn2OP6UirP0/7DqgTA+4ordvAVeHHqyXmPJ77w3tJ0T/16VUrKA8jCfiaLFYjnbi3gU2qKqsdqlf00SLFmHT7zKUhxe3f+SW/zzfcfp1I1pB0OXC4PpsxA25/1nxU5r3jV7SKfuUect1eSGuG4L+qxOdZET6ZrydY2tW7tC96hytP9GoqlwMMAquueKzdrN3lvuNA5bHzotNBn5JHZ1a41OqqsozLlpTC5pAetaJaxTqbuIUI3ZerNKiXfNWheYsATpmacSQdfn6/OJuXQ+WtB69NbfH5RLli+Z++7/pF7Xsfl/b3rHNi/X7dhV0HgPc1scyN6WZ78E1W3J7ZgBrhrX51pZdFmVed6h/KRBwXsvfhmSXRpZvy4vNBroK9DESRQDDYhKT4xoSqQ/xOnx9Xnk4nOErIWlJCXLirNvu/CVt5Dc/7bnqHmAS8CTwo6rK3ChrSqjg/CONP/womFXdXFOsk7yCuORTI46cYoLn1MeO9dnnvAsMW5J+UWtb95YtAAbmbFgjEH0AF5WcrixajQSMRQTfDbCOQbcBhv788thazn+yFP+ngX84pmex6rHN9HXpGP9uPmQJmtBSmN+QAkOZt36FT2LRP1oG64YSXSr2Osnxqaos0DTxGLCqqv3RSYNWpicuGwKMOWwW45cHtE3oQOqhncR+D1CG3ywQwbGs/LChjRLbWH8PKye6QlrxYcBa39SCU8ZhjZ0XGwDGD3wUV8H1YRlBvooegjvCWSsWi0X4+HSZJ4TuFR39x2O33fbrSqoJQ3uaBPxR1b5K9DUXtaM8cOcJ0eo0eNlfdpWbCe144MX/6hzpc7wHtMT8tUBs97EJNeZW2+nS5alG2iV+d4VOq2B3jhu/nsxLw5omLgaunRrF2Dv2nnUQ5GNAX+D+2HmxQ2pyWjVNdAauBGapqvyXrMqZRlpSwspuj3z2Wakz4EZg2Mn6f95E3bh9fosgl+Tuv0qC24NhaJHXwSjhaZEpcbr05l9/Mcy+49Ws0haTVh1U+wA3HSxpNX5J+nBHfnnodBBXArnA+DKH78NbcnsekYBbuHfkP861PGNo5ZdSUiF/KBUQKsfQ/rKCUJ/s+4WQ5bm2iC3HOsfpwqyJ734/6JnXf0wvipnQ7sHvZu1+Tq4H0j27p0gMPgJdRrGvfAA/a3BBlfP8zA3jSgj0GszXr34S/1R90qgod/lUBK7uE2VOH+ltKLzk0Ip2TkVPN+rKTED7W6xfjgexN4N2X0VZU/xwV9kvWcXwpyPZN3A9AwZFWVMeBxZWOGrptO/Rlq05K+JvKtn7nne/FhmmJ00owxUJSMqNNuXQ0TbZ/fe2ELq5zs2BVFW+U/G3ponbgSWVO4B5cmFX3vX56gQ7xpZqSeqdy0fcLKOsKQYjF/ZvRnr6r/GTGvwAVY7PfoAW7JmxNv6KZ49ljlMmJSDSWP4DyLY2XUnwVfSOqipr7GRxFLeUlYV3MZuLH7/ttl+XVzdI08QETRMP16a/2uHnpSuN9jB8c/q8XQ8bjomPnu16tavcdHVAy8PLYuI3/Klp4t7jfY6ypICA0Fzjby4DQbqQl2MpaFCXllMJHaOnSbcQnPxLw62AgUAE7kK6ikISL2q3uxPwLLWkupxJlDoDUjx/ptQwrImTlGnfRHYa/HGnqbHzYucvKQo9uLw47HGHVK4BlhnQn8JTbCoEdkCbMe7jss+mvvhyWlLCKCByYIvfXvMylO8AcR+QGuZ9aGOviD8623SfGXCku6Ee4XNwaZ/IFdOAeKDv4NYLBl8Q/Us3IAD3km4Z7qLWBkXqYxKT/Xfndw4J8cpZ7CmYPeOZevZT2/1MRaKl/77fps4ZJQAmWydHmClLBL1Aoohcmt3zr/xPD1HWFL8SAh8GVi7mqgePwYQwkEjktShc1qlsc3GgTQ85HOFchqXguQpndZz1rsEghrRh28+Z8b1c5/LrZ0CkGdujmfG9ZBat54PwxV20tMhTKd8+n4hgR1nom9ISOKvVfvMfBpcYBsij0w0qYyptucZU0qreK2ae9IBEYPLR+2KtyYOXNzO1vCnNzk3bQ271bB7pxKvlIaKn1vdcR3OF9fnhIHwA1sZfcdexznNKRFiv/6LNE1nOwAu6ehd9/8V1aSvqc+y77w7rCf1ngLLcZgt9upbhcUBLVZU1Csfriu0GRfdGSGO9ntaOhawNbccLg14W1jn9HtzCxdpxPYElSPFBmSuRXgdaOB5qOb6swXkqpxIG4Qh2SZPkqOWdk5T3gHdUVerMi9UAm1vqSijA5lqOXQj4q6o8YU0uTnYifTN8s0pbEhu+JgQSims/oonG5uJPOpyV7vAZLpAjIeI86X5gywDx/gD/3D2BBuesF0dmFQHEzov9CU/q19GrD2lJCcWQMBXcrai9DGU3+RhLnkjJPvd6QLpXXKQE7NllzRNXP/6/SscnVJ7q96qLWo+JCyWKcVdBl/9sJe1UQNOEee+SZy4rOdSrF/KDr8/u9mPrpenDry53eY8F3t1N16ft+PiaKM924JVfjm+1fe278+e7m+gXBVx9LO1EDcIx1CVNyCCTkF5Ghu1c6SuRNr8Swx2Vx/2FOlrBRS9WvB1l7Rxs5ryhHVmftSx+dEWnsjDciZsKnsBIrC01LNU7ls9S731EICj1cSW7FPltYLHxNc+YKn+PDI6gDNy62vXCkx7QD8gB0DThpaqyfIp1ksnMhQt8KSwelZGT4lc6cGB64rLw0OGlL+YTtlfH+F0tU9fKSob/DNCVNbc1JLXgpHdYY+fFtoPAu/0V55YJzfa20zRxs6rKD+tyrMViEYGBrZIVxRXk43N40n33zawx31RV5RhNEzWG2vcnanFCGGYASGRSeuKyP2uQl2gQ068bMRSUC6WLe6+akJ4KpNZ6UD0pN+vPe9mVqwRiWsvxZS8f7/lPZqbOGSX8TBerAeb8fRnFbd+m4T84/ykVVZ6aJgyvt2H9HXvPGoK7SPCOAMV53/3fRn7/wsisKm/KHg3WJh3WSnQM2dI2q7Ql0QFpLYD9jW1PE/8mdl6sglt68LIQg/32PJePP4BEbOjoXfxtlKn8s2VFYV+kjk791+fe46TW+n1OS0o4BLwMvNz54a87lbu8bzAK+2Sn9GoGugnEvd0f+ezLIW0W/FSVkH9FZXtDrzXcJ2vc4bKIAlCqXQU83Xlz4uLzvYJmf11e0C7cvUUknrPp0oeXB5Z3MhdGP/3ilEWtUq847zKzwXbAhbFFB1KTl8ffXOVDeB/r1y0Pc9a1XVh7QIsfW69AVwUuadoB4GrmLYWui0mZ3/kKhDXg3uLK2qxmiLkY+PY7xnoD8+34eO+nw8BKU2mK1O0STAKpz978xDkfhI24IsY7nZA92VaiGOd3f/E+ACxBm/A8AP2dbvA3Tq9DJoM9JPRYrkdV5QE40hxpsaaJBd+zKteBl4/Kt6+GlA6ZDWz8rWXJ3Fyi2g5iwVdfxj/SoPTAKGvKET1Ya/xt/2qcUB9Oaof1vm8jfQyEf+VC0Xv4Ft5sEDwKZNdjiusLC1u1DA3dMe/OOz+uUS9V04SiqlJXVVmjQL5uKr5EcQQCIBBG6inLUFc+ebGTwRwQ/Zmj1OugdBne1DQRB6Soqiw7Xuc4OMvnieZ2871l3vqvPjbljKtKXZo+LLbQHqK0Ddoxf8Ujtz/X2PbUBU0TfrgfXOaljk59Alh5zecxYVttAWMPO03P45avqu7Yu4B0VZWnvVRZXdic0/N3YPTvB+KboqsnEbHzYn2AoW3MpYm+ivmcUt1oAlwCdvTxzd+wpjT4gdTRqWn/xbm3PXPVduCJqXNGPVnm9Lt50b5LznFJ5doSZ8CVv+69jG6PfP5pqdN/DrDkeDYYmTpnlMnmTLioa2jqvp/uf+g/X7k7GXlz4mIVWFxe0F54dKcBDIo0JN1TjNRdZrGxjfkxl0EIs8Ow024y0IW1L8PNVc6XQfuHQOqR7G9IoXIpgLm5oejsgpSAMFehWSLjhSUorsKZDCXzmVyiIoC9IBcD3iBcNvyOqLhkLrmAPwO7i5VBPZUBBSnm1rv2Xzbp8ke4bOlvZGrhaia07GrB47AW1PgAZAve3MYva5DfhjljRY9x7x1r6ogD2LBLdktz4DUDWKIx8p7opF5yj+XLXxZGtB5hkM6SEJE95RjnB2CKdaKAiRUNmOodFT6akzqH9YDde6ELpXeUyXbf21dlrFFVOVJV5c91Ofb55+9oDrwO/JGb2/G2msZqmjABOzRNTKxtXoMjaBmAdOc4/WdLyPlpkXfYi3zDQjtlfNNnUrIf8Dsw7bidwBJ0VlSm6Z4ybz0zK9JxDZaCMy5nKq88fBDA+ux+bzS2LXXFs6T/GfBnxba2XmUTAxRH2uqS4DGx82LDajh8PHDZf23jqUKuLeIwQEF5qKmxbTnTiZ0XG3HlZ22fvPyzdhkgDwPf77f7nN3SZMv0U5xjgYglN23r+v41+6/7r5zVyswY97GcPWn2B7ueG3kH0DKuuXVqdEDaplKn32XAYm9Dae7Ilx/9vd2D3/WMSUyudyOPCmLnxcbFzot98Me86GdsPrvEQd+UA8fYfvl0IA6P3pHHWdWBMpPfgedMXoVFAljZ1UeEFTpxYowC8eM78a8srmqiXtbvYoEJIGZ/Hv/40mM1qGfEn9fpPgbKfPwCh+csr/h/VvDklkZZU+LyaHavx+zJgJfbdgn/zD8ddk7hRvPU/Z/QefMuuSDnPMVhMhO3cR2A2Rlm/371PRHN62KTd373JQIDgfsv9znW6/LIXo3/kGmTQQbdwIz3PxO9gwG+6pz+vtbMzPCs0n2z42f8q+irPuygxyIAM2X5mfG9tjVkLjiJI6yx82IHQ8DAtl4lq++J2mPVNBGhqrLO0VUvr6I/bLbgECkNYy0WS20h7UDcjufu2ua1BW3u4V3QDWAW8NF/kQ4w/boRXhB0F0KuN/vZ7sT9/3QJ9dRfrY6M2T5tWmD6TiCKfGzinJhbbWdSv+oj+JsKRxY7AvaBOCFauscLVZX/6O72wsgsR+y82MuBNQL5CnBLNYf2qm0F4UyidcAu731F7ekUsrE5JKQ0tj1nGtd/0aaft9AfTS0LjALl7B3l/kqgweEKMTi+znOZ39UR2vzr9zT65zUtKcEJCa8Br8UkJvsBl0X5ZSRtOHROfx1DCrDpkhefSYkJ3DHzxz3XSGrJZ9U00Qzwv2PvWZGAFfDyavYjQoBTEocU1th5sfG1SdWdhmi405ZMuGsK5gIfjJ9+08o3Jy7+YUdz44rsIKPokGEnJ9DoD1QbaAjm8E85REoBTzTEoFKHX1tTc4kdGJbzuw4o4p/Fdao7j1rAkQCgBIS9Ysz+d7y9ozFf7ChTyFoTLIvTfcTvt/Qt9y63ecXu3OqUQiqGHFO4349hq7f82PU74KOuW7dU+39vLI/IADDaQwOpo1JSVfS2fjsgk15x/Vi0+XLx/iu4u2DetDjKeJ+QkilbRcf0xGXtopMG1eoXVYW7KcKAeIDzWdDN/TzSME5Kh3XoJx2bgfeHILbvKfeLB74AumuaaOeRnaqRJ5549GopY1pFRGz6ecqUL2srRkFVZQ5QYxS2Aqd31otOWzNswal3dLn7sf9Eg9UruPjx8nz/Nkhx2433bXfh/vL+dDzmPvSmrynAZlgrBcFIOVBYCuujtnDaMHXOKIOUlw45K2zdzgX3PXrKRZc1TQQAwyuW91NHp24Y9FHnt/Nd5imT57fYOvPKA/+SDWlyVv9Jp5BNzfYVtadVwJ7OHKfvVxPVM+Hrlkaz0MemlgWem+M0D4DALgD+inO/XSpPG9G/H+ift7a6POyTgbSkhBLgU+DT2Mc+jiiyB1+j4Lp5c06vUZtzeo0CdJBCIGUfy3vv59girZe1/zQ+2n9v7G/7Rjy+Pe+s/UmDWnzpbSwrV6ThGxcu0xFRLOnWKpFS1rsD0OnAlFmDV745cfGRArYpswavrLyv17cri4KKXYH7fSHIle3sYkj5paoCnhbWNQN0+rTsy+KfFsTf06C24jvyu5eWdwkrAPa3sR0QIMzA6Eq5pcsrRYMdILyB74GkzPheK9Pmeguv7b4709cEtiw+ZAaXoptDHLNX9o8d365k20Gz0/k6CE33cvVVyg0zgMkSOXZLl66Dq3Na7X5pRnNJDCXhf7SEQcckrRllTVEg5iWQ2aEcGg60BbZHWVOCjZzbo7u+YXez8nbN7b7pc3AXex8DchEIAsn97aP4Z46LDvhJ57De/22k8FP8UgQyUiJGpI5OLdE0MQ1oXxdn1WKxhIHhTWBtdnb3Wpc/PTmB4aoq99Y2Nj1xmZevob9eHGUt7XbHc/+Js/rx851jnKUxiT5hhWmTZy5d5LHxFmCZqsoGRwKbZZteAEIPRtnfaT6xrEox4TOBX/de1qvU6S90lDoV8J2EjAOma5roqqpyK0B///yH/ygOHrOqOOTO2Hmxr6WOTv1HbqamiYHAKOAeVZW2RrD5pGLdoXPXAfxx8Py0RjbltOW+byPDttv8rtpd7ncuhIwA0Uy4q+8XATPP889Z+dZVB/5qbDuPhdQnR2UDMzVNrN2e1/WGl1Y/1cuue5/v1n4VIscWORYY+/2uIymUPwIkLpsNgOKzt6dv63eQOBFCIqXnnQEHSO2EX9BJgMdJ/ZejdoU1aVRm0EWBvXbbSGnnTcCeIkOMK8VAPP/4HXa3YDW8CGT+xeBrGmKLpokLTV5f97IFmgKB723e8r5yL1d68N0lR+zrRErWdnqh4Pwhkv1+B4kZDGJ8ZnyvLIDgpUHvH1wV0hIpkEjpaFt296X3f7CkmKBJMf7bPu+6dctzAFu6dFUlUvdIWVXIFFbpsJaFros0l8Rg90/rAqw5lmtrw7Zpe+kcB+LW9+NfSIcX3Pq21nX3OzGbzzb88nppRM+rfbPjBm9644Fh3W9/fmF95v+f9Z7ucMtAgEJCLz4WG6vipMthXVgQMXl3uV/zs30LfkgdnboOQFXlVlWVyXU5PiAgfTHIUGCsxWKpS/L61UCaponYWkfCYMXlowRmXHJt7UOPjcx1Haa47EYCWh6eBqBpIgqYB1zV0LmdTwWOA+4CXm0+sWxcQ+c7lSl1+l8AsDmnV4OqFhuRuUB/4Ehe0IsjswryXOaLHVKJBJ6q4pgOwHVAsyr2nXHk2CLzAYodQYZGNuW04prP27aOnRc7NnZe7He/FYQf2l3u9zZwNYjF3X0KHx8WlN02dXTqhamjU18/FZxVTRMRnt7sFa8na5pYV0mv+/pOIVv+59RNiUAZ6LoinE5fY9GVQKcWfvsGXtjm+9uj/fdcD1wT7pN154AWi7802SOWlu67TeqOYHSnL+XpN/yl21rMEkKeiekANXKY5tP99QLpMAgUXdeLdnsLbf9F/yoIOo/kR4EBwGOZ8b0aJOFX6vCdYgsNDkIIMYCf15ntwmFwiX/kYbZn0wUAQ5i/xoH3+e3ZlF/hrLqeDLzblmO+Ben+mAiEy7zH17+YoIsA1nL+9EpTaQJhr2iRSg21Mb6Hz/0dIDDjomPKLx1vnRqdS0RSFPuygCOSYLdZp/kacUzrwIbCi8Rn/uUBu8aALAtKH/FyeuKyeq3nL+DmjQAd2DAzM76X81jsrIqTKsIaOy/2LBAvAb+sKQ2+0pPr8ziQpKqyVtmZF16YMqq0NLpHRMSmJVOmfLm+jqddjNuJq1FFAKA8YMc0c1G7MoGhykTvhjL9uhFtQNwBfHDzw5vnezZnAe2BBlUy73/H+7aWunm2wyj/NDnFfQ219VQnxDv7+qLy4N07nxt5SqZEeLpV/asjW+ro1GU95p01S8LU2+c33/DGlQfnVtr9garKeSfOypObDsFblJ35XWkbtL3tUdqaTdST2HmxXYDLwoz223Odfq08m/dHmOzJ7b1Kli0vDpuROjr1pE1J8fSnL1RV6dQ0cT5wB3CbqspC3DnhL2maCFNVmYu7I9Z2wBsoA54BntiddFmeW5NVUXWpaJufvr7C6dyBu2i2Mq/HJCbHGRS71WDO87JlXupwFPe4c8cjD54xjuqbExfHUcXy/9FEWVN6QM/IdmLTD9uiu13aIaskbZ9TphcQ+nhMYnII8HNaUsLKs75dY5KBfR6IdGU6x35jaPHm54vjapq3NuZuvPMNV6T35T6uYn1QXsq3Bl34BBQbVlces5bzHQDrGFR0mObm2K3bvtoyqavF5+Lsjm2CuLGk1GCXSDPgrMh99adgZgn+qQfj+1R07aLr1i0rt3TpOkS4m1hcQQ0ShKayFlkABkfQMRVdfc+YewBxHj9Omxv/0pEIdSl+LzoxN2tB2gPAi6G7b+mfIXLMB5X87q30MCuJy+LrUrMTZU3p50mToCe/3159SUX9OWkc1gEfdhnmLcR35dJQLhGjU0en6h4pp7HAa7Udb7FYLoSImaDv8fU9XOdfH48jPKO2cVtfeVLxtvcYUhK5lMzej+vRHP80K/+o3AXFWSEKUjxayT5JHYrBasQS1DIa83N2syzNjHLc0Gas7bg98ZyKjH9rnHepY/g53cJSNsHIxjbnmNE0YcDdX3u3qsp3K7YPC8p+emVxyLiU0qAXY+fFflzhKHg+S0146Byy0bQzvyst/PbVZXWlCdxV7bidjKWAaGkqu9MmDZeDu1Vkqcuws5dvoXW/3fvhw06vVQtv3HHSfeY0TbQGbsL9AJeuaeJq4EugJ7ABCPH83QwoxN3/fS1QAqCq8jPcSh14Xh8pBq6PJmtA1wfwQYhy3Wh3Fnc9o9oDvzlx8XnAYpBGkPKt23/4QXf6ZZh8s1qaA9Jjy3K6bNKdfrrRO6d57LkhvbaGh+kRaa0G7O4guGCDq11ogTm4HBFsQDxmlDz2xsRFznPaext/6hvFdSuLMOr2x4AHPn/ttgcie7wXCTyjqrJM04QXYD/6Xljpc62ljk5dqWnC9GdOcqje3Zsyu/795B3JgaAI3A8rAGia6NCW5y/MohWHad5bkS79rnc/HA8S2y/hZF+QU1Se7u3jjLT/Zcrymg9or701OL0Uv17noP0Off7xnnic1v9J5Ag9wDURt6rLv7AFbXZ5F3TDFrS5Ewyq1/seZU3pDuJOYM7c+Jc+rrRdGLjsvADysrqsKXlfK378ljVeS58swmEASGWf10Bn51ui6/bZrgikXFRdB7Jj5aRwWN0fFuOPIAwCacDdPjJLVeV3miaiVFXWWMVusVjiQP4EGEDx2rv3gh7U4Y3VNDEc94fXWttY/6z4cwBKw9akq6o87jp5r982pJ+9OOSs4LZZq25L+utINFnTxFPAAlWV/4qm1YWil/x9AjB8IxA+XnbRr81YW8Oc39OA3/Ze2kvHQJEj6K3GtqUhqKp0aZoYBPhX3v7SyKyMiz/pcFu6w+d94AE86QGeJczXgeWeH90zmjWH+u8FWJM1YENj23IqEDsv9jx3IQWe5iqCDIe3s425rMDLpM884PB+589bNu9rVCM5Iop+AbBFVWWaponuuIvqJqiq/AmIwh0VTcHdm341bsnAwwCqKr8DjnT3UVWZBqQdTxs9DpJWBmahOFz+HV6wV6cnerrx+Wu3RsIN74PRxFmTFwABAABJREFU5InECd3pcwlQ6LQFAwRJ3SSAohw/c+imZmHmnvuKDm1q6R/Q+pCDqHwXh4yurExFCXUCupAoRnnwt54hoc3zyl0dD9gDPN3/TPbi5gnAebhbooJ7xXaipolwVZX6rJ/8b07Ob3YL+A0GqQDld85vfueVoTweHp2TlWFqgU923oasSEev1vu92NKl7JUsTXyiqvIQMLwZGTeC7vKn8Jq2WfvyA4pLQkEgdUmOFpYqEP1NWV7Xdt26ZQ9AsnXV9TpGZDVBsq5bt+RuuCjmoJJrum31tIgp50zP/pevURq2Wvcu6Ibdb9/Z9Xnfp1gnitYMXnSAtmVOTA9X3hede+j69NBmPfrtTS1Wir0zAVGMw51SIUCXOpsM6Qyu5RwjrK+86O5gDJnxvX6pj3114aRwWIFLcScbI9093VVNE+tUVdpqc1YBTKai0Q6Hv6FCaJi6V1g+iltC49w6jL0ccDXbfG/POoytN/Zin6dA5lIp5KdpIhL3jTSLKpZ/ayNtrrcINBk2Au0kcqSwFG46XvaeyugYBgPsKej0RWPbchwYUtUD1E837pwXOy/2YpCPTPi65e9vX5WxSFWl1DQxGM8P85lOZkmrEgCby7cph7UG7vkmqufa0qCxYB7jqZLG07b0MxCTFtyw64TK4nkevCIBqaoyS9NEIPAh8JGqyi+BINwFTnfglj46CCwB8jxTrAUCVFUWA3gKbk90l79hFe+lRFRIYZ32EdaZU36MNPmdvxOEP0i727EUDhBDqlq+72f94geBMzonJvONYjo92eGg4yXg3n0G5WWrj+M1kGYQODoEtHKZFLodSv1E0O4KPK1NC/cNfoIBz6yuKNhOzm92KNPhtS6lNOixFp90vPWgI6a1PKKbKgDpleUwv70mq++yLO+YQbh02Fzy4G8+w3PHouEyyANAxVL8Zxm0fRyUiGKCfc4p/WK1gPM9GqzlUpHnSIP8rvuGbUeKpe14DwfyVjNkPtXgCnG+Z0rzsfguClGBX4/e73u43x6AgINDw9ITl8XVVVpzKZfemk3LyPP54dMv4h89bLFYbvLyyn9ISkO0odOFAd72cjofTC8NCdv/R05O5wekwKxIsUxKaZBQnqMUVdsCFyDKmmKA+HsBRjBvaENasFbHSeGw+inOXiW6ARAuwGFAXwKs0TTx3dGak1XhcPhFuf+SLv6pkVYbw4CWdRno9MqeiFQ2xTw5Mrf20fVj9j39R0P4MBB335b01xEZDs/NOIRj/H9qs9d8j0C0OxThWNRsSmmD+wGfLkT4HLylyB60a+sz19Sna9pJSYWzqmkiQFVlUeV9vorzLl2Ka/aW+3wdOy82NHV0qq6qslvjWHry0TkktWxbXiytAvZ0bGxbTjZi58UK3D++UxTCr9HdwYA/gN7uSJRwAK+njk79z5xVTRPGSu2IHwG2eRxSBdiH28lMxJ3fH83fKw2ZuKNqmwA8eadHwpeeORu1u1kzo23EIacXFb95/EcNaE4m3py4uBN4/2wvijaFdFjwRN7Oy3+hhhzWKGtKM+g0VMH1nhnbnf4U2OK2yjeBe89xSD+rD0NAqK5In416O7+vvQ/lmVakRd2Y7Vv+9UWl5o1eiF/c87pXpft+0O1Gu4x4xbNGPTjHaSwZFpiNXSpzrUXh14P0EqBstgWy0eHdx9XShCEvH1PwEtNqp3noWCdIwXrgduA+VZU5t1t/OgxEGHWn897d33bIIgi9VVm2XmrYYcwxD7C3LU2puJ4p1okGM6OvMuLUdscPqjYtz3tdwIvAvYrNcB1VOKzehV3PAhDSeCEwKD1x2ZDanNYoa4o/tHwCZMqAPSmPWpY8/iOIi8vLg8jz8WNvWBTn2q1/PPbgC/0rH7fiofm/HVYK+60zpiVYLJYaz2HA8boLE0bsGe/Ev7KoprHHSqM7rPd8E9WzXIZd3Nxk237QvYSpvdpmcwrwLVBrBanFYmkNyiW484zWAFptb2wFqipLcSfE18j2F6f39i3vF5LdZUZImnZFL1WVKXWZvy68+2AfxVES8JbJ12ZzlHr/a4n6mHvAW4KGC8QLuN+X/0zV4FTj8ukWn/zynp27h69dBw1SPTlp0DRxJfCRpomzVFUeSfn44+YtmTd/2frVlNKge4CJwMxGM/Ik5JcHEl3tEr/D7jIPi0lMjjuTcgirI3ZebGAPn8LpIQbva/Nc5kAQec1NZV939il5a8YVBxe5l7KFiifX73idV9PEhYBJVeWPntd/4r43j/IMuRm3FNaXnlSY2/AUynqiZ0cSAj35icfUO/5EMPKzdpdmO337tjGXbdtr953HcX4vTzbenLg4zuR3cBoi4mKksRRpOP/Ge2dUdOqr9roDyXmwkDAviZi/kx5je7Hs+/Ci7nsN5gKHd8jOO9OeuK89sDLKmjIbIMo7Iy7P4D1mu9ln/E6vkoEXRP9ihL8dYQHnyYq/wCVRXhwRcmg3YLUWhc8BoY4IztR/3HXdufawnCuktzc+xR9hjljK78iLUg6akcaSfDy5zAAGXe+EApccXmo0ZjlbANja2Fb7Lg+5WCLx2umbuKVL11+7bt2ysoCwq+34BAzkm/Sack+7bt1Suvmszj+gi1Gbu3feL1zKwqM0WVWJRLhXo+uk2RvDltlpdI0ett/6VcnBdhUNiCQIsSG6ky6krpvMJdcffVxz77JWLV1BJZfX4lNNsk6OdDF+EoAT81k1jW0Ije6wLioMv1UHvatP8aSFN+6sXH3/cLUHVSI4OO2L/PzWCij3WCyWOuVPaZpQcIs/v6uqslZ9Md+cfoMBSsP/WoT76f24kb+7+SjAJ6T9gefGPrv2iGPqWfb6DPcy1w/1mXPfu95DWxjMCxSdbYoUY5pNKf1PNGNPRdZnnzMGYGde128b15LjyirgPeBfVdgppUH3ArHA8+d80G3Bi623nAPcCFx9phdhxSQmx4GBrNIWrYBFMYnJQ85Up/XO+c2vXFIUNhzEqA1lgX5RJltpEI47Clymd3++cWdZxTiPY1Xv90jTRAsgSlXlWs/rF4AWqipv8gx5CLf+5I+e158DlWV7uldEWwFUVZ6S+smx82K9wO8FAzKji0/xBQtu2NUgYfuTHbcSgFzsKInyBhCKfezkmRf9Wdtxt1sntHBy09S2bN66h25DAUcKgyb8PKuXfOf+93aU5XYKAbjNes8IuPl/Cq43V11+0youZ1VMYvL7Qea8ZOv+Sx7u+ND8WIfuNTEtKeGgTRo+BMbgSRewS2WhqsqVAKmQrmli//e7rt2ff+hifCKdB5B6C3PZOo9GrjT85e3N0DzjE71HOo9IW2UpLQ0AIw8tpizbLDFIYUz3igSEcDvGRxzK37imM0jpwPRCbddvb19W4LXNz1u6c24f2NKl65BKTqsGUpfulQanQGg1zXWlNan/fjnkhs75O4va7S68y+BdftjXN/vVgoKYh8tMJtP2yFZGf1vZD19d8kja0cdKxRXlNObU6j8s4uqVAK3YsWp1/DX5tY0/VhpVhzV2XmyUjpgA4sMZV2QuBtA00dmjDlArzzxzb+uCglb9QkN3ba+rs+qhBe4Ei5r6rldmJLB+4Ii0oaoqj5vDOv26Ed7A08CavF0tHjlqdxjQHXeuVt2xBAW2zDC/IwVKerR9ApaCRl36OplwOyhuxYliR1Ci5/Upj6rKA6oqb1dVmX70vtTRqRKYYEB6NTfb/tAlYbhl0vxOuKEnH0Pc0ZZ/RCrOGGLnxZpj58Xe0O/DbinWovCvJdwKfGlEP/fXG3f4Lb9p6xupo1PLap3Ig6aJ4Ep/X6tponJEP4lKhUxAEVA5nWAMlbTFVFVOr+yUVnZWT2UCDY7ngS4uxP9eGpl1WjurHlR3rq4nqqmb29XloO8Zc3MpAaIjqW8ZcIwT6F9nxvfKBCgvjPlMdwQ0f3Pi4qCNnPuyDyViBB8eadOalpSw6vzohdGtAnbPdOhew4Etl7705MuD7T3+xN216TFgSOWodtvEHwaO+XnBe/N33EK3sJQ9vs2dgVFyZ6lBFrhAYgC9r80GlYrvJlmnNK/4Oz53FaXZXggf13Zzmu8dgA1w8s90jwQQf3wV/2/H8GjMO3wzqoiiAhCdNGily5w7SSAQiDcq0gEsFkucxWJ50F2E7jnh3M/ELluvzxQX9Nu63Qw8YLOFNr/77vefAYZs6RK+12Uw4OeT8xhV4FXc9pB3YWetqn0VRFlTYgoJbQvQj8VDa7u2htCoEdZO3sWfbrf5eYF4ptLm+4BrNU20qEiKrw6Hw/9ekC6n06teovoeKZMu1MFh3zB7fJcQRp1nC978aX0lJGojuN3Bj/N3N28tFP3Wez798R9PMaoqDwNnVRKnrh1L0ADgXYMuokEOa32bbdlxNfjUR3XLqPzzybcxDTqeaJroBgSrqvyH5mPq6NQ9t37VKvmvkuCR9+3vVrLmlk29GsfCk4so3/0HMktbAVKvZ+77KU3/D7vGdPAu+cgkAno4pBJQpiu7evsWzI8wlj8w/YqsnXWZQ9NED2AE8Lxnif5x4BFNE76evOpOuItnDaoqXcCruFcBAFBV+Y/GFnXpNHiqc+f85lcUu8KmNjfZfl94446fG9ueE4SGu7W4AsJOHb5j7h70PncCi0vx6+vC5HcRn1jhSFH8aoAlfRyT99K5YzPSX5odP+Mfgv4zxn1cBkyJSUx+1c9U9Gnq4T53pxe3HlFku9ESYM5v28znYJuYxOTBQLdAc16CJDjIc6gr1RR3t0OEfhsh0l/s6FXi2lHunxjjLC/UEaaYW21HVkEXyaubI8CoOzGUO18pyzfdXd6zOLv3p+krt3TpOhhPfm7XrVtWjrdO7Qpj+kWx/7W6FCMJXSwCnsD9Y/Wve5PRHj4HuBN38xgsFstQINn9+0a5xWIZAmQGRraan+Xdpc356Stt7UJWXzhp0jfLK+aYdcHIdSZsETFsSVsVf0N1Sikh/F2sWB0VRWXT3ox/q0HNGmqj0SKs537YNWq3zff8zt4le1JHp1bOI70LSKjNWX3zzas7gxwPYt4997y3pa7n1TRh0DShqKqUnhtpjfgePnekQOFw11dv0DQxua7nqY3p140ILdwXMcIvMi/7nk9/rLYRQZ2XbS1BcRK5FOgC6AZdlB4nU08nNHfzQwmnWaFDpRSS6VXt/6sk+GpgtV0qr8TOi63rysJpTbewDYEAzXwP/gyc1ukA938babjm85ixsfNivyvRjbs2lAYObG6yHQYuAtHpg2v2XVXZWdU0Eapp4hJNEwGe15drmtinaaKiSLUfbmmoitcLcUuomQBUVT6tqrJbxT1WVeVaVT0z240CxM6LNWhFYQ8ZhSzt7lM0prHtOVFMmTV4pVfIjj9BB/ShdRHyP4dFzwMtBK7nl5Nwti9Fu/wonFOxP7Tjt1slsK2FdyKQcYjox6ubKy0pYcfQ1j+cE9fc+naeLTwK+LjIHjxuV0HXCbhXNwc6dVMZf+uqSz3EPAYgm+j3d5T7fQ9S7jSaQ8ZFRfh55MgAOLtk/QcAAwrW/bprfvNkoQuMmebXwK2p2nXrlucqlvHTaX8TCM5mSa3pEBXHu/ydS6SiO6UihxyVw0p00iBp89u59JAoOG/mq2MyQf8JMHvkvHwUpXyxU7DzrzadewU4CgsygpsFVXZWPdzkwDswja5jq7Jhw5yxQgpnhC1wS2h1dg6zzqyc9/pKXa6tITSaw1qqG6c5Edh15erK21VVFquqrDUyqOumT0F6+fllVvkDXQMjgT2aJtrXZbB3Yaf+Ej29PHDHi7hFpY8XD+lOo9Fe4j386B2aJhRNE2s1TVT5QaqGwbglvcD9VKYeBxtPK9KSElZKlGUgDnKaOSieB5vRwGVV7U8dneoC/iekDB2iFx7e9YHX0SkoZxyL9ycUAkgp7j6dPguViZ0XGxo7L/aeZUWhh7faAt4FGQc8H2JwdLiv+e6Br7fZ+LunSUtXTRPfaZqokO3rByTjFtAHOID7Aa9iVe5TwF9V5T4AVZUrVVW+7ClkbeLf3CkRfe1S+d8rV2TWWuh7OmEw2KRiKnVMmTX06G5f/yLKmmLYTbf/tWRXKWAHcVYpAc9VFqC/YdpraStipSvLNyiwbUH2n5nxvWr8zM0Y97H8dOpLE0G8jttzBqRuUEqfGXj2pKGy+edvezf/Shp89kjAEdC8ZICR8mIgyF1gKCRC4BTi799VS1Cg5q92B8gIDHgI9/KrbjzoVWXkfC3ntweZ6UNJnfWv7d1KCoWumEqH5v5DhvCZZ+4b+vTT9y/+xLXn0u+9/iKnoHWkj0/uZvf7JSUIdN3Le32rzkqRjz/nFS75cMWlV/2jvuE56zDFh+LHQKZQTeDGUB4aJKRRcfpkmavaH2VNERsY8CnAMD57MDO+139eE9EoKQFjvmzVFoKmgPjk+xt2rQO3LA/wBWCpTSTfYrFEQcfuAQEHVk+b9k6do6sesnFXkKbVNnDza48EBTBsmEB5T43X76/neapl3hOx50DrO0DMu/PdReuqGBKEO8yeX49pDQKBRLrEGbS8eQyUAvtPRwdFVWVVn6UjpO7Z5/daSKBhTnAwVx8se6q9JagL8CaWgtPuvagjMYCeXdZ8T20DTxW2dOkaB6hLhtgdi853jQf/1iC8dEi9ITTD1s2naNTIoY7FHjH9nbgL8D7FnW/XDqiIpqzELQ2VAqCqcjWVeiyqqvxPl/5OJ+7+JmqQkbCXjEJqNmk44xp2lB6OzaDujRcuz6G5XwxbJ7djy6y9dCpxYv608oBL5qyatLZrqAEp2e8XfsVls1aN+35i/zmx82LjzEIfaZdKKnCwt2/BkHKpRGwuC8gEmrXrZrg4s6SlEIZShLFEEYayhzeUBT1s9Hc/PxiDUpzFxgkz801x0zynWlQcPGqqf/5HEglGpLR7CpxyjYFPV9jTw7B0v7OZ/WalxLC3+5rthUdfUJQ1xQgMB/HNm/Gzal3VrcC83fcj4HK/hWEReNSM3PmpPgvdXbek7OxsceAcZ/ucj+SyiaAv8+TjU+jlI9e27iTaHUonZmt5Dlf/c+6N9Essw7/VBXz33efxj1fpaAalX+4P4J+lJle135/8acUEA/BBfFJSXa+rITSKw+qQymcCfJqbbC9V2twB6MqRJ6AauRcUY1FR9Kjah/4TVZVLcbcVrBVpKLtPIHwKWn2zd6d2vjheVdXlBX6fC4Nu9g0vfLYaG/OAOuflps31Fm0wXyoQ+wTibcB6BjshNRLhc7CjLpW65wWfYnjyWJ8BJquqPHjUbnV8foH+q6+f8lRYGN9kHBzlK+WVWIKGnImfl2j/tMGHy5rlb33mmuPeue5EUtFW8uZljtIEwXSkMPRfYsbaEs7uWHBwbWnwxc+32roLd5FTd2AxsAu3sP5qAFWVO3CrSeB5XcBJLA11qhA7L1b4KyGvKEKKQQG5D7x8ReaZqMwRCuTUNmiKdaKACYkgdhYQ+ksBYTPPZunqBfF3/yOCuifSNM3jl+FSJCXe4qrYebEbBXK5XYojq8brSivSUtGBHIdiM4b7pR8+XBaViUtu7+p3SDnk8GqZ6zL3BRQhdJzhEfGeGgcAU1ngReGdS95Jyys3t0/Kzv0t/v7MlYfe9B2+PGT4lIpBd0xe3BFhbOtoY6sycj6cz8b9wvXBnVm3tj5i+oZ803rPn52Aiuj0FRVOKeAqF4413pgv9VVcL5bqhooVVtfK9mcpAknc7k2YTKXnHz33Iq4abMaWE05mYg0mhHj+/Zf2/GTrpIBiJrzoedmlzhfVQE54SkDsvNiI1LKAHq3MZet/uXFHxX9IRXSovedJvlree29INyFcdwrh/MJisdRraUXTRCdPV5Q64Zc1qKuulNsPd3njZv5Z4XrMTL9uRO+ijPC2fs0Kvp342ooqCxw0TVQZgq8Oo5P/CUTfgkDn51gKnj0TnY+6YjLYQ/3NRf61jzxlcQBxuB/+jkbzlqL8icO5HDAZeT0kCIk0c4amjwihd430O3BKd7nyOKuLQD5ToiivCikMCmByot+1u2DNrRHpt6WOTl3vqQnwVVX5OoCni+AbqirrVGTVxDEzulg39nFK5Y6Xr8isU/7i6YbB+/C5Bq+8jm6Jq+opIegeEOe0Yeu8PJrdqmOQ++j4j361t1nvuTLPX7QTukToEoMOfjb5NfC4dHfNAneR15xevgUXDA3M7gSYU0enNlt209bQpbesb7Z5wi89No3Trv7yurQrc13mu3DrnDsBh24IrygwOlLhn+Hw2R3jcLrOt5XuOfSmr+Jbqnz5TdRgBcDLXr5XSPGb0BVh2uMT41nh+Afb6XmBglN246/6+hB7pJC6vV1p5TSvrp5rdIJw2E15czOUw5TqhgHu4lHp3BcS4doT0VL0yV+zI8iR/7XdHhhvsViOiI5HWVN6ghhix/vFmoqkipr/djZAScTv/1KU0Rj5EUAw2bmZ8b22Hb3/v6IxclinSYTXPrvvkWRdTRNRnkKoWsPlhYWtpkupmKKj/5h3DOd+B7DWZWB64jKD0R42SNG95kuDYzrw/jGc7x9Mv26EAF4EcooPho6paoymCRNwUNNEnVMQmh0yXeVSpCMvxFXffN4zjgPFbfbsLexQ40PRqYwnUhatqvLfhXzuB5khPRxlrusKi/g4MIANXmaFRm7VunpahN+mPp2itnTpev2WLl1fr+qm/1+wv6hdyf7CtgtOxLn+Q1TAG4Qo8vE0l0TqCpQHLw+6Q1XlT0cGupuQNHGCmPZNVHcD+hsgl+uIfzWFORN4c+LiOJctLNBVHhwGLKrJaf2d4df7U1B+FqvfdRdUk7whfsQRZyjKmmJYyfBX/Cnk+mWF+sAdBQfO3lU+Ptd/TDtgOG5H1Ylbj3ruh9fsW/rKFZk7PPn7VeKRtjoidRVitMWFkLm74nVmfK+VIFu1cDoNOWHOLs2yTbc6y4MCrCHuhlDN8zMNeFaqhbu9vHr0OfbQtZuOcclb8W/ur89713XrFqcrzOFEuOUR3n33wnjQExTFMb/CPqXFMn41byBI+riQYrjdYHxiYfdzDxpw7G0b9mdfXfe6AVglhGveu+9eOBigM+s+NOAsB2bXbIFsCeDwOWirvDXKmhKRS+RlAOezoH9VR/5XnNCUgGnfRHYyEHE3yK9SRm/aCkeqm7/D/aOZUNPxFoslHGIGGY1l399226/HIgtyP+780Fqx++6731zaOkKib1JVeSzO8b+IOCvtweyNMUMM3vbEu+YtrK6loTcwizp0+QLAEtTajDIUeCXmVtuZoOvXULw4ls5hpxCqKp3SEniBy8BlRpf46h8Rd0vByvzXfQ2TCnPQfH2whIeJzzMyZ5gtQRuri8xX5EXikWipaszGAR28DLmmEHv70laONrbe3msDcg35Jm9Hi/LOrublA8yb/XYoZQZvV5Cjox7o6m484HVQuESAVGSEvx5+9IrCbUcJZR93YhKTTUBLHcPuWgef3GjuQgtERAFOiVQwyudwiuT/8v1rona22vy+BPwG+Oc9/vZVGWdq8xa18hI71UgJRllT+kBoX+CBUvwfAdEsllXzj1pCvyOXyNZnZeU81yFTPNghkykrBl93y56ywCv8FWdysW5Mwl38VK/OYRXNMM61ft51L8194/jlz2/iL3oO4P5vI4WR8A5RThf+Zco24IVPoy7Z7hSmTgBh3hlCIh0CYZBIebSI/9nWb9pB21jccp31xpBrWmg8bG5rsVjiTKYec4XQRXT0qifHjl203mKxXHrgQJ8vDIpDv7h0gNEf7yvH9ZYmp8HYBhjxavy7hcTDa6/deFthYauN2dndvjz3h+/P2e8fe1ZvVmxIjp9ao1xVwMELDwAE77vqHysDAeSlFrmzBd6fHT/jhBYQnlCHdU+57ys6mAcH5hztAL5CFV16jkYI1zQpDb5Op8+Dx3J+VZWr6jIuPXFZnInop6Vb6uKRHUkz/8/eecdHUXUN+LmzNb0SQg89AQIBRURFN4mKCvaCHbsglk/x1aCCsb1iQUVFUWyoqLw2VGInu4oKCmogQOiEHgjpZbNt7vfHTjDEEJIQSGGe32/Jzp1775xdZmfOnHvKX33Tbvv6UOPqY8a4sQZjQKdJpmCnJ7r/9pcP1k+rB9+gKl8A5UG+p4MqFCEQB51T5x9CzMVdwszF7TtgJD1sJOAw+EAiJ4paPqpRBcanBOL+qfsKuT02hieiIiyVivLwt3MTH6l9oc+JTxgphfwJiVEgfKuT+v3m7eLqb9xp2aVUGczSqHZEEG3wmAAwbwrEvClw/3jTLgumXRakkCcCBcKluBE+KU3qNuEz7FQjPIonrqqzeUWwV/Eqo/Gv+hzxHLmndf126E87zlJ6h631HOI5uVWTPT57yUnvxasmIUtH/6XsEYi9CavWHvMZIFqaxLmJ50NgQmeT89XXLt550LSFxwAO/EvrJpBeDlKVKZrdz+0jtgTE7KWc/ksY+0r6kfVu9f4b7PeeLLjyvxLl63ErNqpu+vJh0uP/V+IMPS3OXLm6u8V50ayLdrmB2qmbGsxW+tsAljB6f5qsIq+pqxfF2Mnrw+xWrpZIy/M9xq8DckF23RjabwEKH0opf/F0dWUN+WHLAdesvmQ/souenMCiPxrjv1qNUMXafdFRZyJlpscTYgXp3bZtVKBWHGCBqpoUifCUiyql0myduC4omF7u3Zt/G332/kCpO+/8YM1LL11+d0FB/AvGSuVjNdgot9N7XAMOXy1wH2AzwHD7x8eX0be6mNHERn+gw+SouQQkzk2M2uAKPtWqqBkvXJi3/8vU8qF+ZLPJz+ob/9ZbKb0UxXt/QMC+penp6Wsac2yHQwiHQ9zT0FRWwFgQilZazVzZ4ffPtXKuh8PVXqels9dpvu7K+9YfVGFyOESvhh5r9+yACGuVcllJmG8n6SXtPvF2cyCQAcHm0vZe5ckGSO38tVBrmUoK1gKc6nQyotIpPwsJVr4NCjwDWFQzz2BOfMJJ0qDOF1KYtIorRuFSkpRyQygGCbBeWmSma0DFMm8H9/PAJF+U+9bK04oe8nStOh3o741xd6pIKQwYkLM2KGFtTveBWev7DP5+S8TArPWjE9bm3DDo103XDZ2380zFqzxGDV8yjnCWC1UajgPoGbahTT+8JM5NNJWpRtGt1JcZ4Ka/t7NrxaFH6RxJ7vqsUxeQrwIrd3kC7mppeVqSSbNTlpgC99wGEBiT9UtdeVjH2++3FRBz6nE4VgJ9nYQklhD9cHVEfaw9S+Qw7FMzVdberPq/KkvRtU5jGSXW/NMAX6478FZNWT0sBL6z8Wfn2W81XFoREQkQ6/Vi9ImAVZ3D15cZA08MY99yEMYSotcOWLP2VyHFLvN2q6m2O9MKRvYMoaisGxuaVMTH3afSvbdDjBn/yiuatdoG6liQCgikxJCnFMmX+lnxKIK0Ne5Ftee5446PZlaZlVnbI2KGxTj3rqnpalEXO9IWj5Sod0gkErlgR9rikQDb6bsM4CS++TQvOamqvjmOBEfNwqog71URQU7VcH91m8MheuH3H3nPZpP1fvjdu4fd4fNZRFTUn4esw1sHffD7jpbhj46tF4kcLv5x3vZKxfVfm002eUnng6f7Rwil91NSVZZJ38HTmjgcwgKsxl8+9P6D9aumU575ckC4zfKQfXX8lLojSkoLI5r8FN5GcAhEFWAVCEUiq2qmRagMUG8JrvTHGg1yudTfA6wGhNhv2Vw+qWN/a1bw3QbMg4VPKZJC+pBIgfAIKc5K/Glzs1s+E9bmLMmJT0jlEK4HzcXinWdUAdi3n7XgSB7nKNADhGHUX8IA4BpQ3qBVJJ0jR57H8r2ATpFG92WOq9a16QwUzYGnsuObRmvhs+7S7hF17f+Oy68QSE83Nk/cTdwLu4irBFFzFfaaLQzoOIRfX/0uedKGpxd8HFwQvL3a00ACp3KYGS0m2ScGmbnm3DjW/vpT8g01Mzl0A4j1+VCRRWm97rNLlPh+rNi0jFS6sKkyJ/6KkUAs/pLvi6rdmfwVuzoMBd6pmUe2ITgcQthsUkqDtMbs3YvB58OnKCCEDyEc4eG59xcX9wKkD4Q3P6yj+KazyXzjJhfD9kT+UNecm040dHQLM6eszh702J+ZL/t81nnp6ekHu86Oq2G0MwG2Efb5faA/AJ3Y2hALbbNzVCyskz/v2Mco1PtjjK6l2eOzV9fYdTnwMmjJvA5Cenp6uMcTfAPw6U03fb+gscevDkTBn2+wXla9cveDAnGGz1D+ITBVoCQnXf/Ro409Zk2qSoLek6rSMSwu76XJ8xfWp/gqwK3A/ENOmh6m4C/Ntjwm33TM5fY7DNq9D2t1cBXwsFeRO71G+czWt6xJ/n1hJwVVKkkAAoHNWYXBb9X09syT3tdnes8JWhT5tnAaBklFTgG6CSlGCcQ04Ij6ldauDnOEiQNUnzTtOArHOmL0tlScDDAg2xAskfmGQtMhr3E6R47EuYmnrakKGdDXWuFwXLWuvT8YN4hJs1OktypyjrcqavCsCZkHxJDE2rM6gbhOorxRQmR5Pp1PT+LXLXnJScUAI+0fdMHvMvjbCk6+fdaEzIBAV0RYftB2/Mpa86zGLOHMZBeBxLDrANe/M2TJDQCdvF4EBG1Uh5wEcnU4BVUAg/1eSzaJrNalqt2Z6MXqC4FAoFHuhA6HOBf4w+EQgeZ1gdboggJsdgeJq1apJ/zxx9vp6elLnM6oCIPBVQVM9VrU0TOHGqrCPN6K6za7y1SDM33lnBtDas4Za88yLBWnj+zk2V4aU1KKz2edBCzSXAsOYEfaYiswVsvr7gU85SbXL1vpX+2icXZj8sk2J0fFwrqkPPIOtzSIQYFFta2jTwKf2mwyr77xoaHbXy4t7RYKPFZfv/qoIyflv9iRtjgw1HDWHR7rbmdZl+9uLez7lhmI3+jAeigL8MGYMW5sFHQaZQmtWHHTU8vfO4SMTuDd+vpUs6uT+77Ou83xLrN6i+WBsmMxt1+TMAhPcM+wjT3bst9ig/ArrUt2v2H9u8tO8xddd5jfdT8RUmBCnKYt71Oxz+Trssck/2up+FQpMZzdY4MpFBjkC/VOd55S/OLw5/KrfzNLOIL+pC1BXOiGs/dUdirPeXzcYS8ltiSRRveYzVWBRJYxTCAyhn5wzAb3tDiJcxMDgDnAlvVVwWNbWp5WxhfAvYqxfO6sCZlPVbsGJPHLh1mcZALlWTsXjgMIpuSe6kEqynIgUqC+tDt5mPrur4+cXbZjlJIfvB0Q/wW+aUyA1cHYRc9TAO9ixr5Us93gEQONJkmUT2WnJUYpMYUMAaZmcuE+gFWM+AkyYhD4kBgk0lsdeBXBvvtNuDiVr349lP+qFnxusNmkFyjCH9MTIxBbAaILCnzRBQVu4N309HQLhA3T3j95gv1/j+URHXo6Hz8rQrqvU0oGzLGUxH+PP71hNed5sHTpvLNiHogr8BvHqlMaHvD9VUYt/zqw4PjewL0CYQYc56Uo+2+YeclJTQl4bxaOuIU1cW5iZJlqvB74ZOaFuxdUt1ebvG02Wa8vxWOPpZ1VVhZ7ZVBQ3r709PRG+2c5HCLF4RAfOBwitgHdH1Z8gR2NVTFnD775zTLgDPxO3P0be9waPAgi2FUadMgiBw6HON3hEB0aMml4seFat0n17e7k+eAwZDumiEvLEKo0GIJMZdaWluVo0e2mqoVCMt2gikSzR7GhLaRV7jP5tmVGK/nZoca45ZZx3bYqIe5ezg+AuEF/bJhSQ1ltl7hVc7fogL3elpbjcFlZGVrQZ7f0KKqIcPevaGzVP51mJDGg9Hugr0Dekj0+u037Rjc/qgSJ6g06Hy29Vaw9K3wNx588kOXbgK3AbcBPnyQ/+D1ArP2ve7cSHwsgUd6OtWeNVIzOcQDFQduKs8dnT2sOZRXAhOt8kL/kJSeV1Wz/WwncEuP1SQW8C2JSBUAvVn3hwxQLyO303ZawNmeJkOJeAIG4p3qFaCUnRoSzb8W85MeL6zu2wyGs+K3EDwLYbPIX4BSbTea6Est7AEiT+jzaCldw8K4LgGDgq1h7Vodt9LvdgMceRsF9fabc+oYzfNWioH0nnrgjbfG51ceIZM/TCr6tQ3ZsfNUf/Ab+vK0HWqe3PPLR2ICCYckV0UtXdZ0+akbX6aOePH50yKpSIh8EGMN7dZb+PloccYU1zlz5MhAC7F9W13w1/3Q4xOUHHYi/DJnPZ/1SSpOoqOgYWpf5ugF0w18Xu7i+TqteveNiiXqvRL7VbbrtJ635B+BcoFFBXtW8/2TCKIT6f8YA1yeT5y9cXV9fh0MEAd8A99TXD4D0sAGBTkOC0Ssejbu+Sr8wNhyjRGFF/gkNqnTWXhCIcg6sIKdW7LGoqAiBQCBU4RNPDvk696qEtTkHS7fWrthV3sO9vaxXnSUH2xIuaeg6YoNaKpG4ezs/b2l5jlWGzB00dJUz5OR4a9mGleNX/djS8rQ+lFMBSQ2fSGCiG6txG30vSebzqUCPKPLeAoi1Z4WC8kyNCYwCNbkk9/Qgr1JFD19QsxX8mGiflOTBEn8iP5TX3rfHaAwoV5QVwLTXu1+0tyPbCn5Lvjq7C5tGmqgqzUtOqvZR/kT7KzT5+3qw9Miny5yDHdfhEGHgL+IBrMKvtKO1+VdNVeKkkFScWfhQtSJssZQ/oCgeYmKyf4pi9+sgg32YJlX7yQYUDxoLZEnk22ufe6L/JfYnLi2kY5+T+Wb5f6c+9GtwcN5EgNDQ7Rk1fVi3PbDobJOzy/sgd7rC1qVUt/dgXfX9MuvN5BlfNea7bW6OqMJ66fy4jrs9lst7Wyp2ZI/Pzq6xKwrIo46SX7Ww4T+5AaHQhIo8Wg7VvvUt6e9IW2wIzB/5imoqFSXdP3+0xtgCm00utNlkkxznizZ1ekQokuj47Q2ps1uFv3b3G4fq6FPkvYBLkcdmMurDwKL9bd8+rP/GgRaBLxAu4HWfS5mE/70XcAmf0tYT6DcYLQdrVxpe37zVEiB8w5I2YhSI5cOfy9ctrC1A4txEo4p4QyL2OlXDyS0tTyvFoV1vACiLLFkuUO8Gvt2QnLx8DcddHs4+n40vPgboRO6f/wyVPiNuMXHvO6kScY5BtXDCysmBh6qc1VAWcfEIACuVr9XeF6x4jwuxutyxp/30yV5jx0576P4kQBDlQ2PYaarRdac0qR5X/4rrAfqyYiKAEfc3tecEcDjEdcA2h0N0BrDZ5CSbTb5Tu59ldfBuIUXe8Bn5LoD09HRRWNgr2mwuy1qa0O/8QjpeMIDlP+UlJ+3/7XedPqoKuFwq7jBTedzy/NLR04yqWhnNrkkAKQXnZoCUEc4enXekLX52R9rijNyHMiqEavoaCBMYoiM3je8D0NP+S9xW+idpU5/T8G/1yHBEFda1VSG3uaRBRBvdt9Rst9nkLptNnmOzye/rGx8SsrPU/06qNMG5WjO1//O0cnAmmCu7xXgCd9436Lbnt2pjhcMhrnE4RI/GHLOaGePGHucuC0yWqnjyqrS1fx+qv80mfTab/N1mk/VmMdj6lrUPcH1piO9P0kvymyLbsYqt2zdRAAOj/u7V0rIcVf4JwpoGJJNeMjH2y+1zgGSt7YgGU7U2Urt/dTygJESuaIlKf83GfQs6mkyVdO6aL8O2dSD70CN0jgT9rOVvAMOA2xdesUm/JteB5rOagvDmgJecvlUvSZQOQ/j1nVh7VvweuvcvI+zRWcmvOpPsX9yym7g+2tArQEy9jakfd8/pMkoghECgSEXQTCWlS4m0AXkOLjhgxeWaj7srlaohMMzorYgk71ateT7Aegbv2kPX/amqEtbmSF+kp8hQYIoGUFGu7ch2947kE/YXJnE4RLDDIaK0zZ+B9zl0/vlOwK4a2wOlNHaucEXN/p7L7jThKulP1vjag7pOH7WuKnzVwgK1R/CGEMOgK7Z6Av7z86nrdqQtzo+RYXkB0iIszk4nAJOALkLIAvwZFwD2V+yqIuAngIH8kZ2XnNTibmJH7II9/N0B4cBdwOdvXLJj/1OGwyF6OxwisiFzGAyuRACzufxNILWeFAwH4zOHQ3xcX4c1L6UNlMgngR+sJQNrljbtjj8A6uxGHpMPnuknDFb36yD3IZWnGjLG4RC3OBxi8KH6ddlhmmJQBaqQXzZWrmMdg/CFAASaytt0/fgmkV6yhPSSJ2sWEDjKUfmthjJ3WAJAbNDOFi1Je7h8W9JhbMJWgSIFb4xWrqqZQ1fn6DD2w95DNrsCx/e0VGwHPm1peVozk2anLAmIWjN3W7TV+FOn/v2jS7xyzMf9tplx/h/g8WF67UL7U/3z6PEaQAR7RuclJ32Ul5z0ZPgnd91ZsXcIEhUVHzRTdoBJ9okmI+6xJqoy85KTDjBsZVWGdVQRYrUz5BMT7tu7s74gLzlJyyoiOnux5Nbsb9xjWWDcZw7t99Xi4E0MCpE1sv1obpCrgGcBbDa5WbOq1nsN8kV6TvB2dFWvDBISsut2gPnDU4NADHcTcPurybN21jU2sPC4Pz7sYUJIGLfVLRSfxSqF7wtgsmIuLckLXbnHGfF3cNfpo5IMnrBxWirE/Xmwx9hfOF9i6A7Qg/WpDfpCjzBHTGGNDyj/FAgLEL4nau2aBfyuRcXVS3Fxr74g1zzwwIxbmqCsAnwP1FtlxFTZ5XupeIK95sLbu04fVfOE3Q7E04SLkKfSMsVXZR4W3nPPl5PnLyw9VH+HQ4Tg/14urK+f+/GQGUZVuQGQ4aXGh7WKRjoNZNG2sRUAy/JG/dbSsui0HH/knSoB7NvPadMPfRKRlLRZUmGB9V1oksuUTtNJnJsotroDX/BJUdbbUnle9vhsPVvLIVgSfHzc+7YQqiwKRcEGsbKX4S4Dvlt6smYlMHAJo9cC9GDdBznJo/evwEqfdTaq2VDY/eu8Zd2/xhn7+zV1FSFoLE4Cr/ZiDh5FRl2KY3cAV/Dphj10t4Sz70OAm+x3BwMdurGxdv/VQGR0ceHFIMz5dH7H4RDDAWw26QL+C7zeGPlElRKqhns94I/pqaoKuY6gcrc3QH0qiJKVwLyDjc0KV5Z/0dXMmXkeYl04je7o5G5P2m7qOn3Uc4p1X6lbNVj73n+nD6Dr9FE1V+FSnxw9b+mf2Bb4Z1LveSv52VaxcnBE0lolzk0MNxJyUk9LxY4vL9/8Z63d/wF6HGqZPj09PQw4FcSM+vrVh80mX6hv/460xecFkNS5osOvn/WfnLa+1lgVqDeDQV3MGDfWAN2vMJg9ewIiS+9soJxlWhaDuh8g0sOCS0K9v4R5jUMkEi0t0REvX9kOOVZ9WHUOJA5/EFqbzsGq+OS3QzbLadlxoCrKEa8OpnMgYQbP/5X4TDaJuOX5C/OyWlqetsCyvlZ82l1OFbChs/kyJ8HCQqUD5CJ/zJJkK/33lxp/e9qMTyDpIhAyfPvomJLEFxg+4Nu/G1HB/KB8yxU9QEojnudr7zs+qHjs8opwvGFnnAuoKznpG4BsRowDCKWgW83+VcNKy61/hRIbuPm/W+ninINtIPCiwyGSbDa5wmaTjVJWc+ITTAoGk3ld0BdawPkijyfYsrjHYOmUweIcMe+/bybPOKgeddOIoCEAp+71vgR8qCmlAJSVdV0IHJD8X9u/BOAru7GGm4FyQKqvluRIWVjv9KJYt7oC/5UCwWaT2TabPGSAR6dOfz4MGMPDm1ZVx+EQpzgc4qAK+Y60xdVWzVVB+Sf/K1uBwyHGOxzi9CYc+loQg3xu0+31lWCtjRbgdeBTTHrYSNLDZgKrQksNg4vDvH8BTo5S+cr2xildfugNMCzmtyb5Jeu0D/qErzk/yFTmzJ0+pk3nYJ2bUWKILoMVvQSBwntRc6X40Tk0d38em+RSlRmRBvcGGhAoq+MnL9LozzMuJQLpzQu10LHIq67l+MnVpavwV5i0zZqQKV6ZlPFI5d6hF2vtQkhF6Zg/bIvNJv9l3mwKKsYzQSx7N3l6bu19ZT5jR7e5L06l0xkgBfBJrD3r5q3EzwJYzQmnx9qz9q9y+qI9SySwPnBg536sKAoUFe8CN+O3vDaFjvi/lF34jVOWfUFhrOncS3QqLlj6ZvKMgxYYmmSfGGDAOxmwX3/3SXfWVFY1dgKR6enpAbXHxtqzrG4C3gE4jS8eyktOajXp/5rdwnrvgo7dFDrcqyK+XDF+1f5gI82COAV4ymaTuw4+g5/i4h5DDYYqT1jYtkZVidCO1R9YjN+H9sW6+lREL10UuG9EF4G4rOv0UXVlAXgU+AlocIqSeU/3jzJau78qVSXH5zY12JXA4RBP9VlvKY7ZaxrjM0jXd+bgLqtNlm7nWEwBSS63EAgpEHeG313xsuYGYAMcNf0RdQ7NjrK4oQCl7vCuLS2LTstR5g6LCDMXtfl0cGqg7z6ArF4KlVKYDtVfp3lInJsoFKIfBXwnBRVNnHnhbt0VoOHsRQgCKbXHiJ1LcoMSHigJ+kdTRUpVgDfIW/UryNelL+AmxVj5s+oNGC6RJlXxGUvDN6zXXApvARbYbHJPUwSZaL89Dm44MZyCmXXtX1cVHFoVlaxqZaurVzUv5p/MRdXBSUsAyi/K37hr82B1nzVG8aJMt9lkCYfxMOOOc15nzg3A06UqHvh4d2iELzP+eMXk9XDc1nUP+9PE100RHZ7xYYwdwQ9P1VW0ICJik7WoqDedOy87Dn+u+f0M5rcvVnISAD9x/n+bKv+RoFkV1sS5iSM7GMPeVREhw4OK3qy1+xT8ZUdfrmPoAaSnpxshejDw0fXXO5qSUioXuIiDLJdve2DR8ED1hOGVHZau7j/5voMpff3x549tMEUbO03xVlksMYlbZl3z0OoGXcQcDhEcVmy4qcsuc4RAiCyDmfSoaHzA5yHBvJG3lyEul08g/LJoFYwaI5cOxKVljIS+DwFsLB5wU1xaxrzc6WP07/EYZE9lF4nfv71NY1kREuEL8u0qCDVG4L97tWiOxGOIi1XEuUDazAt3L2ppYdoYowEqCb3Vx57FNXeMX1TKtg4GpcderyGufN93PiKswOOqN3AacKIrdPO133T/YkKP2L/34XfreQG/FbJJpdPz6XQTKOIkvsuprfz5AxjlpV5jZwW/96IPITzApyCTQZhB+jqy/XeHY+gtwBybTXquXj6zEIguJjq3KTJVkxOfMNKEdRqAcadlUr7XnPNV0ilGVRhQpE9+lXRK2cHGxtqzhIFzR4VQtLcrm+pczrdaSwoBvF5rb2oorLH2rBg46Uxt87jagWgtTbO5BGgRqovyveY+IOWyiogDlrdtNvkJ0MlmkxsONZfVWpgCRNLEC7DNJl02m/y8rpKvO9IWGxXV/JpAyVO8gafVM0fVv5bo62HGuLHRrpLgm0F+ec1Dq2c1QtbypKzAZ9ESuy+zWqQPQAi8QrDMapUCoS//Hz429j+gyf31nnWOLeLSMoy0gxysOfEJQYpbOcFQYfgwwuBeH27wXNvSMh0LTP68Y1yA4nvfJNQcoMnxFccqXdg80YIzD+iynb4d/a1Sjv29fHb3fR71lBwX3Qp8Rp8r3AqqD/h60uwUOWl2ypJ3Bs78ck9ILltdAe/ZbHIL/oJATS7X/gtjOgnU4gAq5tbeF2FwT/Kauio+S28s5XbVUrn0RyA1LzlpzgCWvwIwgOWvzhTn9wReA06ItWeNXDRsVDRSgpTza7oLNAGbwO/SKBBKQVjEJSqKAFBRVOq/f53qwzS4jIips5Jn++rqsHv3sO8A9u5NrOUWpb4F0ImthXnJSX8dhvxHhOb0YbUBFr/lXBzwhWopHbDZZFFDJgoO3vOoED4iIzfUG+FfFw6HGOJwiNu0ylH/ojLyz1eAocCdfe+/veAgc1zocIj7G5LJoBprePmrIINBpDVWZoFwCIQb8PZxuz0IgZASo5TEeTwLgFR9+f+wcQBuf6o5qQhUR8uKo9MSnBX32QmAYUiHP/7lu9WWcA0qvwYwqxbfD70slVuLfaawS+b37HPIgTqHxbKK8BddqmI5Objwkezx2a3Gt68tkGx/07KP2IEJLC/An/+zGt/yvla0wgJaRT4BKJIDFbOBAHu81mWwPx5GOhwiyuEQiY2RJdaeJYCzJMoPs5Jf/VcQbqVq6OYMPhNUN8Eln7hCC155JC85aYnDIUQSv+YBrGH4d8BcYLjNJn8XqKdLBP6YaMwchlFECumQ/rSoEvBs7xi7FSHQrL1e6jFgdWXjqwY8RcB79RyiOhVWl+qGK+wPnwnKGIBYto1qquxHkuZUWB0gNW1e7v9CHQ6hAH87HCK9oRMVFfXqZLUWb7zzznl1KpSH4Hz8uc7+9dk2PPVyvLV44M1VYWt28U8ptboYDdzYgIIDAMx9JPFkV2ngJSFdClZMnr+wUdVmHA7xmcNW2hctpURmrOkbgBFVVcsvLSu/5Yz78i7SldXDR1v+T40J2P0nKIRbm3Jq6bR18iq69AQINZfktrAoh4dggjSrVKYWLf27MmwawLqqYL3K0hEkcW5iapHPfK5APvvSRbsPGvCiUzc5HDfSRaDYRdxWkBfiV069IDxaMFYq/rRP1RX4DlhZ7GyqOtck1OLs8dm1K2R+BnzqcIgG59c+m3nnAZ27s752FiMS5yZ2dYqQk9zBJ8tB6m8VF4cW3JU9PnvJoszeN/jUnlMGsPJ2ravVZpNem00uB5AoOxACoaooUtarVB6KytMLwwVC+MI9v1YEm0eXdLNcHeQtLTthyxpO3f3bw3nJSXXqBMn2N4/bQZ+E4dhX5iUnOes5RKmieL3h4ZvPrW5YRnIGgILvzW+S72hSOfojTbMprNnjs5f0s1R8D9Dd7LyjRsSqFf/S/iGrPQGkp6f39vks3Z3OqEP6utaFzSYfBfrbbPIAH48daYtFQNGQZ4VqdjojVl5cK+dq7TkmAIdM4l/NvjXd75BSuIJiiq9vjKwOhwgEooGQ6sTuvxiDIgMVb1VCt/wR99+59aB1iHUaT+70MUv2OjufDlQVVXW4uqXl0Tn6ZOWPMAEs3nlGnSUT2wrmVUFB0qT+Ovy5/BIVkQ3sBZqS1USnAfxnQccoi/DNA7nBhzKtpeVpo4wG2Eu3c6LZnYffcXQa/qX2JZNmpyyZNDtlIjUq8NXMtVqliuMDFa+5jgIZ9wCX22yyzuXvuthOn/MBhvLLv4Kqu5mdLwSE2QyqsIirDAuCTgvxvLwos0c28CaIxywyKAZgML8NrDXUCHDpogzu/fDVuQdTKhuCeXXQKICqE0qnXPfMkwP30Tng7IrP1w7bvoEzKheWH2xcDsfdBNJlwnVDffOnp6dLk6myyusNiADoZP/zrHLCjQAWKic3Ve4jTbMGXW1xBy4CxpT7jAuq22w2WQnc39A5goL23FRR0REOI4DAZpPba7d5LfuuMbqixwiUyYkTZi1twBxVDTnWjHFjh4MYh+TRq9LWrmiknJXAqdXbiXMTjWBJBD68Z0yJ2pi5dBpG7vQxxXFpGZ8LfFffOefqB168+f2SlpZJ56hyCv5lts5AvWWQWys58Qm9BaKPqDC+CJA9Plsd/UHfrSU+4+X3Leh47dMX7GlVgRLtgc2uwI9d0tBxeFDRg29dsqM+y5XOQQgnf2IxHbBSvu8UvrbNTn55I3UU9tGU1AOUPb+Sag7E/9tdlDg3MbXaKGazyf1WUodDxNhscu+hZFnFiO4gs19LfvEAC+uIdxPOcsmAiytizmCAzKY72/EHWBkHaV0UMy4TQEd2DVqU2WskCBvgGCTuu3U9gz03/fieULtUHVZlKNMu61Bg3dgLv18KvA2siF4VMA34Ji9vSJ1psgbZv46BzteBeO/j5Kmb6+pTE5crdJnLFWqJtWcZwfANQBK/vP9t8u2t9p7YrHlYPVKxAhT6zKUADoeIdzjE8Y0SSPHeGhBQ4EpPTz/kF14bh0O86HCIf2UTXvn6Td2Qyttey74dHCTNVY05hjsc4i2HQxwy9dEHz/QTAVGlXwuDrxSt5Foj5T3ARzbG6EoBwoFGp/LSaTgnd/7xN4khtNgV2aToUp22SVxaxkiBeoOWU/E7f+aItodrUPk9AGqw94fqts7mquUVqtH4Y2n0LL1Ea/OSODfxhvVVQbZQxfPrW5fsqJ39RqcB9LL/PKaYDmEgqSI4eAE3dWjkFDYQ0u8gWnfQrMMhLge2HKrEeaw9KxgYBeLbmu2JcxNPrZTGheFhx1GmRDNaLsSvH4PfeVSqIDHhEQBdZOE44DeQTwCL9tG5Wwy7CoTFt8G0zdrg+Jfa/HlrbIhEngZ8N4BlU4E+wMN4zR4An89apyW5D9kfANaObGvo6vROoMvJfL0/6CyLU25sqtxHg2ZVWLuYnAP8/6lUR55NARYdLACqNunp6WFlZZ1DDAbP5409tqb8RePPLnAA4bmXTzW4w0VZp0VpXaePOpSjfBwwFjikhXVfTreLnQWh0RG9d38zef7Cg6aZqEfeLIdD/Ke6rZO56mEFyaCA0p8aM5dO44gO2Puq1VBZuGRX8pCWlkXnqGKTCKElKG+zmSKUMsMYX6THW3la8f5KfMsrwr8H8EjlVvwWKF1pbQZOfj9+NMg3QIhS1TRM/16bRiWhQwGp/faMNP635wDpBhB+vcVRR59F+POe1mvsOp2P7wXMA/kjq7rtzs86jbMIX0ac2WtQQ0fTQe5hKH+iyTvbn3NVnALigWIixwKUEKKt5AqhogQUyI5RO2Sv+cZ887dKhaFTTnxCg31qD0Bwm0AEFJ1ctTuPbg90ZnM58GV4+JYYgPDwLf9S9mPtWdY/OW14T3K2rUg+r0ErvWFhuZEeo+j+K+dcCWDCdVleclKrLqbSrAprhNEzyCpUpUZN5TuB82w22dAk3aNBGMvLYxucFqoam01Km01eCdxbs31H2uKRimq5SaDMTJzw8kHr7taY52Ogo80m66otvJ8Z48YaPRUBjwAbKvPDrmmsvPh9e/8AtlU3rKkM7m4RatEqZ6ge7XsEmXnzPF+VL/Blj2o+NS4to3tLy6Nz1Fih3YBU2miluJz4BLNpa0C0Um54Z/iM/P1L/wbUE7W3Cm1YGW9NJM5NNArJ//inBJP+vTadRfiNQE2q0uhf/hfJoYqnVPErrv9aFrfZZL7NJu+y2WS5FuxdJ39zcqqCV26l357EuYnGxLmJDzrKoj4wIAPjw7qr60UCo/kaBRVwL0tN2TQxNWWTTE3ZtCQ1ZdOT74krfwTYITqvAuEEfLvpJD3CbLiO2Zc4E3173T3VgD2PumYsyuzd6Accy98hfaQifbdc/LqrkFhjNzY9mJecJIOC8rsABAXt7VTHsCs9WEO3kFCv72pNjMaqPb/HJQoAAx55Hm/XF4jeKmhWhXW1M+RPl1R2V2/bbLLEZpMNthYGBubfLoSvhCYkxnc4RLB2zP0X8ZVzbgjwWPdkSOHZA0xt6FwNyQ4Q0mXfI8AAIG3S7J8aXdzAZpNOm03ebLPJ+QCJcxMv9GDo6pSGMHQLydHgHUDER66c3tKC6Bwdwi0FvbW3s4DUNlo44mQgSLiVL2s29rZWxPvfSR9tVBlvTSTOTRTArBLVFCr8pUL1ctiHgRaAlEqNIKvGzpE9PntJqWo63YdiBW4/WD+HQ0QCDodD/Cs3caw9a2QBnU9WMVIuQzKktf9a4HHgkzs6Vo7bYj1LsUgnp5KJEHjAfFftOQawzC3woSIt2mea+hvDFwD0Y0NE0QTv4/vu8eKL4k5gUWOVVkOJMcWtmHNLjOH3Ab//zhkvAezenbQCIC8v6QBlfZJ9ggigfBrIFdThE3ww1pkHbFjVpRcA0ew+fVby7Fbv+96sCqtEBEpEucMhwhwO8ZXDIY5r6Nhnn73F6HYHnxIenluQnp7e4Gg/AM3fNN/hEFfUbA/aY5tuquoYUdr16ze6Th910Mi6GvMEORziZ4dDnF1fvzn3jghxFgbfb40sKwYa7b6gHSv0AFkVz9Oav4xuITkK5E4fs6Vn6PqiPRWdL4pLy2jW34FO6yQmcPeUMHOhG7irjSqruAaUPyQVqapBPnvN9j0ea4AZXxWaQlAjS4tOE4gyul/AX/rzSYkYhf69HjZ5yUlL8pKTnjyc6Pns8dnLgIUK8v57F3TscpBupdrrX4YkgXoeWrJ4wOIx9+0JXLFy/KpxPlOPE5ZyCqfiIIhKFcSbqSmb/iXrrOTZUmKo/BPbX9VW17/ECK8Bj2qiciCSHAyAENXlXG0N/XwrU3veCvT65qTTenlMpthzfv/x4+pqU6pqVgF8PssB+lEJUWlOgnucysLFjalM9XuvQfcDhFeW7rvwp7/aRCBhs96oo4zu/kGK1wz0pa4CtvVQXt75RK83QLjdQc804dAq8AqwrLphR9ri3pbynrdI4fly4KRnG2pd7QAY+MfTuk5Kt3e4w+u0GoI6FP/f5PkLG/1UovmvbnA4xLMAV3/cPdGpGvsI/3H1J/mjhEu1pBe5oi3UyNSg0z6JS8uwbixOiIwKyP81d/qYVm9JOBjGXZbB3i6uooF/rt//AJ44N9FQ4jMd58bwv+zxq/6rK1WHxzUfd59V4DXfGWV0fwc8mD0+e0n2+Own9e+1dTAyuPBdFRH6V0VYnSuRNpv0AufabPLD2vsSvd8mANpChE/tEBByQ/b47I8Avmbs6V5h4kwywJ8L9t16xKjC79YHwDb6Rfow/X1NytJcFHELKtVaRIPv5TnxCWal2DjDZTQy76wLxKBNa7ln7pvm6v3h4Zs7AkREbI6pOe5HLk4xU1XYgV0NLloUa88aud3YKwzg7OylUcCi9PT0Vr+q26wKa5Di7Rlh8ERoiXR71kw30QDOBbwVFbH/OskOhc0md9lscrLNJjcCrJxzg/CaC+dLpEdI022NmCfXZpMn22zy24P1mTFubAcgDVhw3aMr/lXSrYGYgaeB7wBWVIbdroKnk6nqevQn+aPGrvIeb+B/Em+w349OmyVZlQbL5pL+TXkgbhXkxCd0NhSboo3bLU/XbO9jKT8DiAIOet3SaRiJcxPPzaoMndDRVLVheFDxhTXiMXRaCUvKI3eAVPO95v7AT4PnDvqXwaHarc/hEOc/szD8ncS5iVNOfb//K9vKCs8HCKxa8T0YTvnlrAfmAsTasyxZDB86RP5FZ3bOAlLrsq5WE0CZuSc5Q8C/JA9yKFqu+dSUTUtCPldWal0/r2+eWjxpqDAGfTXqdN++iCjGL/zEZZD/KLtBQfs6AwQG5sdWt8XaswaDcrob6zOzkl9tUKyQJu93APG7cwmrqmy0JbilaNY8rNvcAevNQlY5HEJoTzkNxmwuu1lKkf3gg882KgeYwyG6ARE2m6w+QTBVdnnW6I48rqLDr6/1n5y2s57hjSa0+97vSrd1CBaKnNLUOWw26UKrQ500d2AcKDeAeO27Kzc2VQHWaQK508dUjnh0jqOgKvqqO16/ZspLt7zXrOeKTuuhQ0DeDfnOjhUg7Ifu3TqRyNECgaiVjifE4PuPQHJaSMEfLSVbe+CGT7peDuFvgfhrj8ea/MwFG9rEMukxiM2f4goAk0Womed82HvOdnfgNsCRPT57SeLcRCvQ4dyw6Ie+KYk5HqQs8pmF19LDqUiPc/M5N4yuOeEZfPzqD+JSzpIvk5qy5aD+sdUEUGG04IwB8GAeASLyBH4U1QvLpgJnZcDvVpwj1MsyM6NmpaQU/FbffFkXd7vTQvA9pSHWN+ZcdPklnfPzCo9fu/rqhLU5+5XdXbuOy9L+Zle3dWXDJzvp5ZUY/mrA9wZAER1eABECMGLzGvD7aLeJVd3m9t0L7mWpGIK/VFqDefHFq5Pc7pCIyMjNW5pwzNuBvxwOEQWwI21xZPDuM67xmgs3uULX39GYiRwO8a3DIR472P7nrjinT+n2DkNCu+evvufDr9c2Qdbq4wxyOIQVoK+14msFqRhRn2zqfDpNZ0iHP77wqmYlc/s577TVvJw69XPXnKuERzVd2C9idWnu9DENKgjSGvH0dT6sBvqcQHbN9tXOkIhgxbflpYt2t8lCCK2Biz7qefxqZ8gHIYrPA4zJHp99yJgHnRbDgT91phek2yhUdbs7cALwX5C/DZ07QAJOYNtXJbHHe1Hw529FdZoTClVhOqDqZqw9S2yQQ8d3ljtIZPn/GiJAIbGb1jJsFcBKTkoAsOLcH/CklBkWhH5lBBWjKAms1xD19+VdB5s2B7zgi3Lve+a/l3Z0Gy3hXTusnlZTWQWQ0iD9f40SoKv9j3N30KevRDECC2LtWYe8f8XaswIyufhOgH75ud8HeN0ATwKp6enprX5Vt1kV1gChdhZQQv2+H/+isLDPaQAlJd3+lfS/ATwDXGizyQIAifqsQEQY3ZEXDb75rQZH72t+pdvwlzisE6kq/0UKZ9nOqDOaIGf1cQzAL8DMpLkDe66rCu4fby1f8ff41bp1rwX4Yet5OSBlhSf0dGCRrrS2P77afNngYleUAX+d8jZJTnyCwZRrjfF2cq1NWJuzf5k6cW5ipFsqQ8pU4/stKV9bJnFuYqcNruBP3FIpOzG46MLs8dmHrJSk03Jo7nJaxgFhK1eNj+CPYwGQEUbvLgPqNOCWaKPraX/+VukT4DMYgroksTis5nxnyq9vzhV9FH8qK2dDy6sbgIGx9qyRucT3AOTPnPtF9U7zpsDdhiJB0CKDVEPMfX7/T9/xdU2SE59gtmaFzBFuxbnx1LBrfjWeNbIDO3O+TJ78rxScERGbOvn/buwI4MV8wz/xYw1e0r+n+s35exb0MRorPenp6VPbgrIKzewSoAgZpgh22WyysZHz5wI5aWkzG2211PKlfgWw6pW77gznkus91rw5PdMvXXmIobXnkfijQuvknWlDLodulwLp93zwTV5j5ayBAK4BdvlQHgQ8a6pCzj2M+XQOA4liw+8eL0BatDJ7beLHq9MwVGk8F2B90aBXW1qWw+B64VECzJsCP63Z2N9afuO6qmDFJNTvW0qwtsy9Czp2MYnoHz1SifZKxfbchXnLW1omnUOjKa1LABLnJgI8CJhAePK9lktqxoAkzk1c0MdSMWFUBNc+LQJQMTqq9y3K7D2ymMmvBspyTsGBJGQIh7j++y2Zsj8gQCwy4l7pxbQuL3loTR/S7hJJyHcGUXmyinOYOhU4wNKaE58wUhrU54VPOUH4xKUTznxrMBCdT5fz6zqulGKE/6/hROATkDGaa0SDlvQn2O8YCDc+DmCl4gZXWdRUk6lyR31jWhvNZmF1OEQfp2rwrnMG/XDo3v/w9tsp3YTwpQYH71rVhGNOdDjEOQA70hZbQneMney17HOWdfm20f6l9SUanjFurKjcF/qK0epSgzsVvNDYuWtis0mvzSa/+riwkxXkeOD17PHZunW15XAAruqUYiGm4kY96Oi0fsItBTdaDM7s3Olj9rS0LE0hJz5hJPCqRCKRD2nbAAjkTQHCJ1ND9y2rZwqdOkicm2heVRmy3CdFfITBfXX2+GxdWW2DHGhx/XfAcvb47CWfX755/I/m/7sDYCUj97ss7qDz5OWMUJJZhNVf3PJfuVvrwIZfWQUwGXEPH8Byc60+ixB4FKcg+BtF+jrSOzMzen8Uf058wkgp5M/Cp4yQSN/GgTFVVioeC6RscV5y0r/8XdPT00cWF/e8GaC4OO72+56fdpYRz8hYtiylgblt1zJ0PoBALe+cXzzX7Q7p4HRGZzTg87Yamk1h9UpxtYowWxW1UUn0i4p6XiilgbCw7Q1OeAv7Fcz/Ay7TmqYoqrW70RV94eCb3yxozFwaLzoc4mAXrLHOgrCIgKiy5299YUmjgsJq43CIsQ6H6LXHY3nDiDQeH1T8yuHMp3N4aPk4U6Os+R8BapknfGxLy6TTfFz78p39i11RcUM6LGuTyqqGTSIV4b9BmtGW/hLnJoq1VcGRXsmmb0tihrWkgG2NxLmJCvDOTk9A7NDAkhd/vnrdgpaWSafpNCT12GYGxAKkcZvX4RCxAAu4rI8EzuCbxhzOgT/9JCC9VQQrKoYfa3ZIWJuzREhxmjSqfwX9rCDcvipJyPWLMnsrOfEJAnhcSFG9wi0/PWXs1CqCzKfx5ZsHOaYN9vc3bw7vcaMXsxjE8v81JLdtrD0rcS3DBgIMY/Ft523+Pg4Ipo6KYa2ZZlNYPy7sNAsgyugOaMy40tJuw4GCnTtHzGnMOJtNqsBA4J7s2bedLfE9JPF91HX6qO8aM08N/gC+rt044/Ixp+CvT7y1bGd0kzMDADgcwgzM3+oKeHhdVVDfjibXl29fsr3JwVs6zUPu9DFL/ky//goQLwIT+kxZcHJLy6TTPPy8Y/QpACWuiIMGU7YBHALhkkgVf35Ih9Z+MYhoD4Ze6NXxGkzi3MSRgYo3C7gCmPLOpdv/Vc1Ip/3RlY1XRrJHTRJLvgZmxtqzAn/npF7Hs4wO5MOhc68C1VW7hKYLiPcA1jLs49r9EtbmLBFeZZTiVTaEzje5QOmHW97g6Vr1C5CCVkGtIiDI831iSoKCN+Pt5GcOFqDlANwgVRAiLyLsOKD0Ry49pMHLn8ZKfQcggr2bM5Lvei8ycuNVALGxfzW6SmdL0iwKq8MhhFVRYwA6mlxRDR339ts2E8hzgK8bW90K/Mvrfb79uSho76hXVWOlUtzzo8cbO0eNud612eS0mm0zxo0diT8PWgzITsDxTZ1fwwMkvbq3RyAIz05PwITDnE+neZlqMTgLIwPyf7hrztVBLS2MTrNwLrB9XVHi4pYWpKlo0cKpAvGQQKTumb32D4dD9LMI3+laF706XgPxK/VycaVqTPTf/Glw6XCdts0mBvkUfCuB64C7j8P+lCoMIaOpXhUXyQ3NmdqXFZ8ABFB2udb0d139EtbmVLriK+4K+EMJM+RJj1Ip5hjzLCd5ejjfAkYB06bce/cXqsEQomI8aIEjLSgqFeQ0k7mkdFdAlzhF9WXmJSe5DyVrGREPgTIMoIiYcwH27evXH6C4uEdxQz5va+GwFVYtPdPyOHPlaQB/VEQ02Lbu9VpvAhEZHZ2zoZHHjHI4xB8Oh7AB15sru/bwmYvuT7x1dpPM2w6HsDocwlLHrmT80YDg/65sTZm/GptNyi+KOnatVA0Xhxo8H2WPz959OPPpNC+508eUj+zseHlvZeeARdvGNLhqiE7r5M45V4cZFffYDgG7f2/L1a3Ar7QmrM15UlNenwWW9LOWa65PUqWN5FFsSYa/OyAMeBVE9TVdRVfyjwli7VkGJ8Hd9tH5R5tNZlwu/969jX7ju7HBE88awJ/wv6HzLU4enxtKoctJSEgEe315yUkHdUNMWrDtW18Hz7fhH5lMajgU3OqVlcNNSxPW5ix58dXUDzd1jrs8jpy1eclJdSq91aSnpy9JT3/0idw+oU9XmgPEKTv/6NGAz236gUsfBgih8LO85KQ16enpI93usMsBqqqi3msLFa6qaQ4LawegqMBrrjYtN6jaAsC+ffHHgaoGBeW/08hjdgJkQMGwaIk6A1hsruw+o5Fz1OQSoMzhEH1qtbs0x2ofiMO+ITgc4o4trsAXDEhGBBW/cDhz6RwZ3pn08sPAJ+We0P/EpWX0bWl5dJrO1tLeV3pVsyGxw59ZLS1LMzMLmLLJFfQxgID56NXx6mXip51vMSvqHpCD8Cv33ua4puu0DQbxexJgMVOVozWl5NMl5BzmGUQT5ywl8lsAA95DVvQ05Vl+ER4kKrgHSFFxmvrKoszeI7/i2lucBDOA5Q1O6flLh5OjkZKe2wqT3nhj9JWH6H6zRDEApPB5OoAQ3jNBVj+0tamVmcNWWG02ud1mk6fnugOKAeKtZWGHGLIflyv8JFDs11+fub2Rx1xls8kREZuueQrhC3cFb7mr6/RR6qFHHpRV+K0WuTUbDWbPeSD3AQ8DqZPnL2zyDcHhEKa9HvMTm12BiT7EzOcuzFtxGPLqHFnuAumOCdz1zV1zrmrq9UynhVmRf8JgkBV5FV2fb2lZmhObTW602eTrlaqx2o3qU11ZrZvEuYmmxLmJj/1SHvmqAamMCCq+GjgNvQT2MUVHtl8GcDqfaIY1eZcBb9EJZD5S3WdRZu/GWhpXA+yjc71VrDQyXf216p8CUFDy6HSOF/MdwMdvJc9ocLGlImJGGaX3z1BRLPfti382PT29Tj3uFvtd3fE/3GLA8+hryS9lA4SE7LT5hWh7KzOHpbA6HKKXwyHCAIIUX3eAjiZ37fQOdfLyy+OOAxLQcqg24pjBDocw70hbfEZg4XG9nBErv+j90LX1mtIPhc0ms2w2+UDNcrLzpsfbfG7jqWE99i6bPH/hE4ejrGrH8Ly4p+dPEqok4qnDmUvnyJI7fcyukzrbv9pb2bl3TuHgB1paHp3GE5eWIYCxIL7/+j8PVra0PEeCM0P3JgBcEJGn+8LXwd2fxyaHGjxrgYdAvCcg+o1LdnzUkIhynfbFMpIFSCkRX99qvzNFIM/tzJYvrLJDzexEixqjtPYhuxtANzbEHapvwtqcJWqwnITUsgsIKT8Sl54JMgh4pP7R/3C5PX0AcJxPMXxmMlX+X1VVRCfgprr6biRxfyC7D9MzAOnp6dGlpd2Hmkzl60E8RBupcFXN4VpYXwOWOhxC/FYeuRngp7Ko3xsy0GDwPADQpcvSBtfA1fg/4bPslKivAesDC4+7/JAj6sHhEMLhEH1r52Hds7Ln+YAaEFl2UEfoxvB/n8eeXuozju1nrfg9e3z24RQe0DkKdAjIu9asVP29vmjQ3XFpGdEtLY9O4+gbvupBoGts4I6mpLhrE/gQXoAqVclvaVlaE4lzE0Xi3MTrHKVR33lUpWeYwXND9vjs6366el1pS8um0zKUEtUDxOa3k58p+I3RNwpUmcSvM/HHqVTTqOXxDuzqBGDEE9iQ/ic+vmEOBnkqqLKQ4FVZjDh+EH9szUtOanDsjUSkAYzh/TWVlR1eBn4C+dSbb57Zr2a/WHtWrzUcfybAcDJfyktO0koNy4dBBHs8wRemp6c/2ZaUVTh8hfV+4D9alajqqOoG+bDm58fHGI3O3Tff/G1jo3d/jth0bbRA6SmFZ2LX6aMOtzZ4L2A9sL8k24xxYwOkz3AtiM+vSlt7SP+UhrDNFfCSAan2tFTe0Rzz6RxZZt48z+dWrdcCYRZD5f/i0jKm6GVb2wZxaRkjNxQPTAdJXmWXq9vr/9svZZGbAH4s7bAAwOEQx3xmi8mfd4yzCN8C4G0V8cdJIYUjf7l67dstLZdOy2KlYoSFyk2x9qzQfLqcq2L8cE7yC1nAj/6iMRIauTz+N6fsBthCQoMfhFJTNi8BZcV8bgj1YEEgLzv0qH/4jbM6WKjMt1D5RXp6ugwM3HuPEGp4eXnHhTX7GfDMBDDirujOhskAb755xtkgbzebS/+Xnp6+pjHHbS0clsJqs8m/bDa5ECDeWjYUYHBAySGjcdPT08NU1Xyi1xvwXmOP2efbn4siNl+pVkYt29DtyZRGFRs4CEXAjcCi6obwnrsfASKFojZLKceR7yUkbHQFxfcPKP/j2Qv2NLqil07LkDt9zKqOgTt+cvkCk0E+Dixqr8pPO2OsPxJcoCXbtrWwPEcElzSoAB6p+BwO8QCwzOEQoS0sVosx7N2ByUsrItZ7pHIu8ICKOO2FC/MatOKn036ZZJ8Y5MHSYwi/BfVg7RQgBJgJ+zMDLAd2AqmNyRRQRdAA7e3wxsizh5jdSzkpDsT7PyRPaHCFulh7VoAHy2kuAufPSp4tAe6775W/wsK2fVNU1Ltvenr6KQDX2e+b6MM0FsCL+bJZya96APbsGTLVYPCosbErHm2MvK2JJimsDofo7HCIZxwO0bG6zaKo3QA6mV3OQ42PjNwwATAaDK5/Jeqvj58WmZNVxf2WwFBoLR7YLIqDzSYLbTb5ls0mc6vbqopCbrSEVrhjh21sDoWYaKP7Q8C9wx1wUXPMp3P0KKzq8Kv/6Vso1KgypNN6ibDkD9csJg2qsd1WGWAtiwToY6noAvwG2IHDXXFqc1w2P86cODfxvx6pLHKpSv5pIQXXaz6qjc7trdP+yOCq3j6M5NP580pCJndlY0lectIf//QQlSA2NkZZnWSfGCDwDdHG95hgvz2+oWO/5czTVQwigb8aFQw6nEU3AwHBFB9QHKm4uOelwHbg1RtefMWcyUVpAEGUrAF/Ca/09PQz3O7gkT6fOe2GGxa12WJFTVJYQ96LnRL8v5i7w2d2vWb5XTEnrTqhb5c9O0I3B1RJUn8V7pVn9jRq5cfqRFUNNxuNTtm169KlDTleTnzCyDUJ8Q+Erzg/U1HNxwP3dH9idLP4pjkc4oSaiveMcWOPqyoOjpTwxJX/WX/YuRtT5vVL3OoOGJIYULbil6vX6nlX2xge1fItCE0JkIbe4WsG1D9CpyW54ZWJCRWe0DO6hWzOBaYCqVr53XZHrNlfpKWjydXNZpMOm01Ostmk2+HYn2e03XP9J91GFvtMhcAU4C2XNPR/8aLdB6sWpHMMUkXwAIAtJFjy6WLqyI7nDuzh7QLeBmc38s8ZcI7EYBzE0hUAf3NKg0ojx9qzuiwSY42jcPCQfPTGxgR5uQi4wUIlY3nv55rt6enpFYrivhsY5I5wrXBj7Q7QjY0f5SUnybfftpmMRucbILeAeKkRH7PVYTx0lwPJiU8YGUj47drmM5acYABefK36YTZib3XfNQnxPmmSBuEWxQLhUS0+sy9QBlUkX6rE7s0rH/7Fjo3Z7/UKN+6yrATcvih3jC/UF2neErAU8Hg7ubpKo9rZREAXQ8fBSsjuW3EFbPRY3H3eP8zPDfgDroCF2usGrXkiUOkuDZrZHMfI91ruM6L6xobv+fHQvXVaG7nTxyyJS8tIAUZHWPbduql4wNUnPDpnyx/Tbp52yME6R53MbWNvAakOiFp53eIH72zXVYwWl0VuBFhaHr7fWuRwiE7AQodDPGazyQUtJduRJnFuogBugLAXLUI1jwwunP76xTsPq3S2TvukO+vP2kZfFcRZwM4/sT15YA+1M6iNCsj7hqtCAMoIvwf4cSvxvRs49AFVGuQFfCLAcBtw46LM3od0RYi1ZwkYGRVI+fcvJL/5L1m7dfvts92FicU/dr3Ab+mVkvUyaVrKR5/knlPQ5xKvN6B7aOjWd++55+02vQLTFAurDX+FECRS9XZ0/SlN6u3fn+Zb/0EqqvP40m+kQaYDj3m7uP7nTqhYDrwHfKpGepfl9Y7c4zGblQ579q2RVjVfmtVKwAkoqCJIcSpB+AOhBimlhnjDXnNXJaKXMfCE2xQUE+aq7iZXzheTc+ITGpQ+qwFcjObPMu+p/nHC4LvBElZunzx/YcnhTnzZ/LgTQF45LKhkcyeza89hS6rTIuROH7Mkd/qY9FFdf4yPtOb/srey89S4tIzpWuoknVZCXFpGZ2AiiLmvTXijXSurAB6paH4Pyvn+kqOA3yd/H+3YNSB1Xr+LQxXPXuANEL/7pOipK6s6ByOQ8jONeBRgVDAlb+clJ3kO7GHaCpaG5FLdj4ohCajcSvxPINeZqTrlUGNusd95osB362D+Xh/DXmhcSeUhILpWEvJRXTuvv94h7d1P/CdbiBBIhDG4wvVueXnX80BSWtr90rZU1aouGm1hxe8P5gJMAuEx7rHckbA2Z8kDH/WakO9VvI9dvfOc+gb/+Px1X1Oidvr7uGGjz0//8pBKYU58wkhjj/ifEMIkhEBKA6i+Z4ApK87tsc4b454T+Gv4Owlrcxq9fK9lN9ifpaB4S+yt0mcQYT32vtvYuerCh/jIJKRYXxV8qs0m9VRWbZwXb36/JC4twwa8DNw/ICrrgrvmfDBk5s3zXC0smg4wKPrPBav3DTVJlMdbWpajQZTRdUqB1wLIK0BclDg3MTV7vFzicIiztGsbDocQ1e/bOiPeS0isVI2TwTze3yK9IB76e/zqHS0rmU5rZh1DnBIDJlyczsfv+etG1ESYgUblao4i75wqAnI3JZ/mS7W/bthO79Mn2SeI6mCouuUY+rwBn+FaXtb6yAZXWxvCr9NWcBJm6o77ibVnxRI9sC+AovqQCATSG1lZZgdStRiMauW4zbpINdrCqtWyTkWrFKJts8kVtLbUZ9pY39j09PSR5eUdUwICCirS09MbZMFMWJuzRFiCJyGlR0rpQyhOFOO90qQ6TLnWkYG/hr8FbFqTEP/E8jtizm7MZ3E4xAiHQ5wCMGPcWKWqKORi4LdrHlzzv8bMUxeJcxPj11cF9ehpqfxx8dVrdWW1nZA7fYwPuG1YzG/frylI6v/1lku+jEvLaFAePp0jR58HPu+aUzDkuEHRf2/InT5mc0vLczQo9Zm61AgI3G+pqaGsXgl82pZ9WhPnJnYZMnfQvafP61dRqRpXAteCkFoGCPi39qGjs59Ye1aAxNATQEF9f3byy+v/3UuNAneDc22fb39GqSS4Tz9WSgCJ+K6UKOVHLu1ajxw915F0fDCl78dS4ARvBYhpNDAzQR7dT+7GxrJtySfWuVIrUHMAotz7/jp1/YrZURWls1XFcGpcQd7D+A2MXtpBAGqTgq4S1uYsSVib82S1sqoRTD05WDVTdKbPF2BxOqOtjTFN9/r4kTlCMZwmhJgqhEjt/cUzMwZkr7u44ozCzr4Q7wRgA5K0oB+ivl49rN+GnPiEu3PiEzo1YOopwBsAQbGF44C+wCsNlesQTAPhvDZqR2eHQzzdTHPqtAJyp4+Rn93zxOhAY/n/eVTzGSB/uPGViT1aWq5jGa9qnuKTRnVbWc8xLS3L0cIjlQz8mRCg7ptRMBCp/W0zJM5NDBv/cbdZKfP6bQK2q4hnPFKUDgksmQeci9/doV3cgHWOLCP5LgXtycZFwDN195Kh4Dmoslmb3zmjp5NgsYX4OQBrGP4BQAlRxx1sjIJ3GgifWwZMAVMPMM5PTdn0ZEOU1Vh7VuweusXspOezde2/yv5QukQJBygwR4/8aOINE1edZ5uYl5y0RCsMsN/A2NYKBdSmKS4BdRJtdA0AvPV0seFPC4RmEbDRCNN01+mjltTuP/y5/N34q2299ufEjgNFheEx67LQHsBzEjlj5VlxhUqB6UFDmfGDhLU5ZXVMOwGIBRBCzjBY3D6DyftJQ2U6GHd91ukciLrcJOTzYUavF1hxuHPqtD7WPD5uZlxaxg5FqPNX7Ru27uLnHxj66d3/zWlpuY41rnv59iQ46yYQb6545JpNLS3P0SJ7fPaSxLmJtwJvgJyZPX7VAddHm02+7nCIN2022erTO/1nQceQQq/pnj8qIgYB5/5VGW6JMLjdAvm4RLz/09Xr9lvGEucmpuK/fzj08qo69WGl8nyArmzatTz54pV191LKILAxKSyHAhTT4VdtOwukL4q8MyBpQe3Op9jfvV0y6LoodjleZEIkmKKAX2v3q4dzAFSMX9TeEWvPMsIlDwMksHy0Pfkmd+0+mpLaLn4nzaawAiGBiq/84Lulg/0WXeGmmZ+Mj3t1z2rgIoCc+IR4d//Kp4y7LWcYyoyzgeezT+v1t7tf5Q+BiyOeyLTNSgYuCe91z69dTnju7xnjxnaHyNguVUVbhqwrGsZh/uducAU9aRZS2EL2vWazyTqWIHTaC7nTx3x60yu33vvTjrOe2lPZ6bu4tIzRudPH6ErrUaTQFT3PIHzmfhGrX4BjxsBazVshiue/QQbfbfhXjA7AZpM+rQLWK8BzNptsNQ/P9y3oaPixNPpUj1SuMBJ9lRclUEEWqojXIw3uT0YEFy9++oI9//IJ1JTUdnED1jmy/MLZoQChFHx/8F7Cgj/wu0HE89dV60hSJcoqgLzkJOcw++eeQMrHAZNq9o21Z50EiTMBCuh04nKGPXk82QjK6nWfrElfVjy8i7iyCsLqUriXAARTvMGefFM9n7F9cLilWfezz2vJ3+YOPGikXWDgvkgQBAQULOUIm6YT1uasTfpi2/mGUmMQcDLwjlJqHBG4OOLh4rDee5HqN8DNxZvPfqfgsztWdKkqWYpE9N1c2gtYlBOf0ORIusS5iQO2uwMSLcL3yrkRe0u11Fk67Zg3bnvtBY9qHgHCLFB/u+mVW29saZmOFeLSMnqszD++b/eQzZnf3PdAm02I3VSyx2fLPtZKe57HGnrye/EHywUZAtj2ZI+/YdaEzPRZEzJbJFI4cW7iyMS5iVMS5yZeder7/V/7rTzC5ZFKJnCVIvh6VHDBtDPD8rtmj8++86er1/1cl7Kqo9NQYu1ZIz1YLwFYwwnjYu1Z/zrvMzMjBWAB3+kNzYnqwnp8LNvceclJ+zNxSIRjMwkmf/opP5PsEwTIGf4VZX/VvQ0MHgiqRxLsqXPyf38G6xYSOvVk7bq85KQDfg/H2z85DzgeoJzwgQ2Zr63TnBbWIOrxYa2s7HAZUOp0Rqemp6c3KiKvqWiZA34Dfls2ucN/LCuCL95jPW4yyMEASMFu17m4AnZ3CvSYwBgFnr2HFUmnINNVREWZanoYWAb8DIxvlg+k02rJnT4mKy4t46QwS9HKn3aMfmPQ1A8KVz125ectLVd7RiuTOxMEW0r7HbO/sb8rwyYBF5WqppcS5ybeW71Mft+CjgIwflMyqOj6Nbffai7p87VWAey+B+577bK9Jzy2zSxU6+LyqELAOCKoqKsiZMCS8shdgGF4UFFfwLysIiIXMB4XWDxQguGvyvBNgHFYYMkQrxRipTN0A2AYElgy3CMV3xpnyDrAODig9MQqqbjWVwWvB3oI5A0SFBAU+Uy+Hmbn3m5m55xVztCn/7x29UHvHTo6TcRW432d93VJ2Mn+d8pQYFFDcqJuYYBRwXeA6+Bu4hYAZwFPxdqzPs9LTlqynT6LQZyoZQNASJ/veJb1AEU29FiAzYvZtIoRD9dsTLJ/cWEefT4DOJmvZ3ya/ECDFOC2TrMprGahxnQ2VXWra9+cOWfHwgmXgnj3aCmrtRk+I78CeHfxhMwNSLkI6QtQVB/R299jW5gTb+gZLB3Rh4iiNUYzRUrmhEzDpNkpjfL9uuvzTudJoi7tYnJ+kNZ5UyHwKKCnXDlGyJ0+ZvNtr10/InPbOZ+We8I+jkvLuCF3+phmSZGmcyB+ZVXaAQvgA9GNY/e31g9QQJ4E/JY4N9ENGCBmf3aArLC1nFDSB4FAxRewI3ztV39XRBwwye+1tpfV2v6zMvyA7b8qDywOtKLW9kpn6AHbfvOQAFBBTF94xaaHGvbxdHSahANw41dWDxKgp4wCKUEIGpD2KdaeFQvEqhj+PGAWPG4VEyDvBXF7rD3rLTj95CR+yVnBSTcGyIrR9/L4f/qynoYeC8CE60IPlkpgv4+t31LcXVOYJb9x1qf1zdGeaDaF1SuFMVDxHeBioGUCsIWHdxgFIiAmZlWL+1hMmp2yZNaEzNSQsp3X9t3w8fU5HarMAS4jQzd/fN+ugcOvz48e3sfnG/A4cNNbD770TVDHrOfG3flmg/xNlpaH32oQ0jswoOxhm02qwNtH9tPotDZeufXt1XFpGcOBz4G542bed+n8u54+t6XlaofcAFj8CpCENp5f8DCx+f8I/DdflgK/9LJU9A5SfKHZztBfKk1lnYFJ0l/zxeM2OJ8fYC0zWBWf+a/K8GWAd3BAaW+zohqWV4T/DXiHBRb3NAop/6iIWAN4hwcVdVXA93tFxEbAOzK4sKOUwrW0ImIn4DsluCBUgHtxeVQB4E0O2WdSEe6fyqIqgeEgfuQf5SHjqH5DOscceclJS2LtWfsD9PKSk+q6PjhAuAArSAHCUd+cfVg5ZSODiWanFZL2t0uUzlqKOQHSAmIS8KEL6zXvy0tV8D4MxkD+CUw/ZIaLSfYJIoQLbwyjYOuS5CtrFAKR92uB64DwSYSNY+TaJ2Qz5JROnJtoxp/r66Hs8dlPwD9prAALSGEwOAu7dv0j+vrrHS3ul+RwiFDggYo5gwrXens8FVZZ9fJNX/14B8CsCZkm4HxQ7wDlVKF4fFI1zQVenjQ75e+DzZk4N3EQsBJ4Mnt89oMOhxgObLLZZOHR+Ew6rYu4tAxL/4jsteuKEuME6kcSJRuwt9e69keLu+ZcFfBH3qiXd1d0u97fIlUtiDP1WP1utSpXi/hHGUytK3p+1sTvnAaTc5PPHXrzpNkpR/270uS0oUf367Qi/L6r3rfB0F9QMjYlpaDOh6lYe9ZIgbpYohhAVoFIqVaC/VZP6dCKEGCmcrmbwJPykpM8izJ7TwMeAd9jYPgG7TdwKHeAfvbMoaVE/nU89hcXJt99F8BN9rvPXcj4L/09pARRBaQeRBlvdzSXhbU6z1/NLAE2kGb/E4fA5wtc0hqUVY2+wD17exnKxUbVVxJoTa/eMWl2igf4BPjko+cnXFSyLWWc1xl9OXDDG2lzSo3Wwqcq8oY/O2l2ygHpIzoaXW/u8ZorQDynBVp9if8J6oqj9ql0Wg2508e47przQZ+NxfEf+6TpcpCXC6Q7Li3DdqwqVodLXFpGXEyg7be9lZ07WY0VH1Z5g94AMQJwHMvfqZbe6tCpnqRJ+NymhS2hrIIe3a/TOklN2bQkMzPyAknYCknonRzc+m+TKFpQlThgSV+z5k4FngKIJ+s/3yff5snM7PAChN4FvAuGh1NTNkka+BsoJfJsgOUkTwd/ABaashrFrs0FdHqDg1uO2yXNkiXg5ODC7gADrGU1fVgd/JPUGmBWcxyrObDZ5J8bMoZ3KtrYKTi4U+GGyfMXFtTV7/K7Z3926/OXjQO6BETlPK96ggIq8oY/AWx77f8+ee6jF24ZBnDNx92T93gtJwwJLP07e3x2Af61uUsAvWDAMczMm+f5fNK0DL/PHhLFrOB9My4to09Ly9bW6PPA51cAK/IrY4NP7frdC2sfv+zK3OljMnOnj3nyWFZWq8ken70ke3z2kwdTVt974mEFsAhDVavPyaqjc7RJSSlcC0o6KGcuyux9sOppDvwrGOBf2ndU7zjF/t6lwGNArsAnKwj55PvMviMkIXeAqwSqbtWU1QYTQPnloP6Zl5y0G8CC84/qfQV0TshLHvrksaSsQjMprD6IAAhQfPsvhv60VXIOgKK43Onp6d80x7Gai9JtMZdL1WAq2xl97aH6TpqdUnzDE5PuCYhcZwXOBpZ7qyLuLlh36Z+zJn7/acn2UdOElBUdjO7xADabVG02+avNJg/qQqBzzOAAXP5IUdWnYowDcpKffP67218fP6BlRWv9DJr6QdCYZx5b61XNH4BcI1GGvHv7i3e3tFxtDUvotgiAkC6/DW1pWXR0WikvgMwDz4eZmZH/Kmecl5y0JJat9wL0YeV71criOPujV22n9/+CKdoLHHciP364icSo3xn5LbBV4Dw+NWVnVe356uMW+10JVQQmjmBRCcC59hmzXQQkartj8pKT/lUg4FigWRTWpeWRcQB/VobnV7f5fViVmwBU1SwaU4r1SGO3ixeMAa6pwPLJ8xcua+i4ax58RJ00O+XbSbNTxkbF/y85IHLdQlUqZ4xef6Nt/IoHxLCcmx6YNSEz6ONXrpjyxv1vvthS+Q51Wg+a9S/VXzdaGQX0CjCWz9ta2vvMb7dc+HdcWsZDcWkZQS0tZ2skLi1jaLkn7M/VBUP7Hd/xl18To/86LXf6mC0tLVdbpDxvmAnAXdY1+1B9Z03IHDlrQuYU/fqlcyyRmrLJKSj7CkydJNZ76upzIj98D1BMdFKsPWtkrD3rmp849w0D3rJUPjsnLzmp8FL53v1d5VbvB4wP20C/S1JSChpcJKCa77nsZImCEc8LsfasPstIvRXgbOZdlZeclH+o8e2Vww660hzptfQy0gPitOzx2UvS09On4DeRG/Cbz6elp6c/edgSHyYOhzCU7Yr0rv9iJOE98567cfryyYcz38Xz4rebdp0Sm7z3FK+3rLsVZDnCF4xUJChVQGpL+YzptF4mvnbDWT9uPXeSRzWPNQhv/omdHN9GB+y9eebN81wtLVtLc9ecq8Teyk6fLtl92lhQ8oGrc6ePsbe0XG2ZWRMyu+BP+3XLpNkpc+rpNxJkphY84kK/fukcQ2RmRpok4X+BCAbiU1M2HXA91ooP/ObPCCDRCgIAVAEp8+TFf4Dn93UMOu5R8V+G8Oui75Innd5YOWLtWZ8AI7uwOW4nvdwA4eQ/sjb5jPTD+4Rtm+awsNpAmvxvhQnkR4lzE+8oDty9Cn8ONC8NSOFwtLDZpG9jxvAvhMHntIRVPHE4cw19d2DSeq+pq6HH9z9HdLcHGsylNhCbkQbwO2dXO2br6BzAq7e+9e2G/154LnByVMBe96+7Tr/my02Xr4xLyzg/Li3jmK2OFpeW0WHh5su+XbI7+cK40E07gCG6snr4mILyQgEUU7n3EF1vBaz47w369UvnmCIlpdAD4m4gDrxpdXSx+f/sV1SrMWr7ngbTcf3JnjaYJRtXMSKlr93eKNevSfaJQQY8YwMoX7SXLk4AE66tx7qyCs2jsDr8ecykz/8SbuDFzI6/frmq6w+luwJ2fVlsLr7gSJZibQwzxo0dq3qN50qfYcHVU3IOK+WUVypTgZKVzrBLLrtjrpzw4gU/ARO0VBOtSlHXaZ3kTh/z28hOjm69w9beKv0VUBZEWPL3Hv/Im59plZyOGa58cfJtIFf6pPG0KOueB4d0WNY7d/qYfS0tV3sgtOvPCQBh3eu+ef7vpfHi3cce+wTktSAk/oBZ/fqlc8yRmrLpR3CvB/Hwosy4p2uVbHUATsDr13uEC+1ef698+BzgHuDj1JTtj4Wxb7QPQ2kZES/ULNl6KIqJnuDDZDHgPd2DxQBwHm/3bL5P2HZprjysB+TXG/7ugEHxAeWvrHUG96+ShhiQ7jizc2+wwTtnlTN0Rvb47BYpwzdj3NiRCPVXpCLQTPiT5y9skiJ98yddz1taEfEF8Ej2+Oz0mvs03y8b4NCX03QaSlxahjHYVDyz3BN2m/b0Lg3C893JXTI3AS+9e/uL61pYxCNCXFqGqVPQ9jfyKrpcG2gq313hCT0rd/qYlS0tV3virQdfPt1ZMOCHwOjs669//K53au6bNSEzwGgt/NRbFXm2JXzTX67i3pOBkejXL51jlEWZndPA+iSwP9dpdd5UzS3AhvYwFyn3nX8js09J4i+tzKtwVvePtWfdDrzUiS0zd9NzDw1IQxVr/3smiDurt0/ly77/S57WaD/Y9kizKKwHI3FuogCODzN4JkrJ+FLVpAAVJqF+NyKoaPWfFeF2pzScyFFKJD1j3NgpIP+rKQNeYNrk+Qub5Fd7/ke9tu9yW7sMCCjrPPfS7XnNKqjOMUtcWsYUkI+BMABS4PNIDGZt96pQc9Efx3f8bXuVz/ryB3c+16atj3FpGSMFvkskhrOAAb3C1i0eFP3XhS/e/H6daeZ0ms6sCZmn4b/Bpk6anbK/zOPr974f5ynv/DFwnDV8w+yQLr9NuuyOua0lX7aOTouwKLP3FOAJQGjV46ampmw+wIUwMzOyl8TyDgScAMIIUtHKrnqBaakpm56MtWcZw9lTWExMCP4S0m7qSfTvt8TKMhDVgbgX5SUnfX7EPmgbo9lKs9ZF9vhsCSwDlt23oOOtP5RGj/JK5TIpufqX8qiLQE7195Ty9Hl9S/O9ll9UREUHoyu6g9Edm1MV/KNEOLuZnTExRlfsn5Vh34Ko6m2piOlocoX/Vh75E+AcYC0L72ByW34qi8oCqoYFFhujjW7P96UxeUBV9vhsVRPJoT39/Ku2cGOqsCTOTUyCoK7dzZVzdWVVp5lxaBc1E+AxKr4zU7p/Gbdo69juXmlKLveEXpu5fYwR5INxaRm/xwbuyB7c4c/s3RVd3/jq3mmtPtXJf966NPiLTZcPcvusl4L8P4miaMELD2ROuafFgzLbK8bAvZHeyhgMlqL9PqwfPHPPNarn5LfB5wLD+TdOv/Urvwurjs4xjwOoAmn1K6Gu2xdl9p6ZmrKpfFFm7wDgDgifCgSD93swzQYxj1q6RV5ykneQ/evvgYs1I8QBBQdqY2PBeQ4uCALoyqa/lydfrCurNTiiFtaD8Z8FHQOWVYR9XuC1nIn/CYYQxesuU41rQARYhS/GKGRYuWooB2EFzIeasz4UpGoSKi5pyO9YYJHdi0yhxR0q5IYwuRKoilDcvYpUU/dqy2tHY9WjiYFl856/MK/OFDqJcxM/B5KBuOzx2cWHI5uOTm0031UbdVRwunPO1WElrohrf9pxVifgdJDDtRryFSB+6h22doMQvryNxQOtwI+508f8cvQ/gZ+75lwlPKr51F93pfQucUUODjKVneHyWgd4q2M090fZSh+IqbnTx+gK6xHinWnPvFux97hrAjusmHr9Y3c/PmtC5nUgXzMG7POFdbdffvnds79saRl1dFoTmu+qDSqTISAF2AQeJxh7gRICMkNQ9mpKSn7Ggf0PLLuquRA4ADNI4vlriiP5xum1j9fJ/tdIifJb9fbFvGaelfyqp3a/Y5kWUVih4fWvAe5b0NEgIfzbkhgJBAwLLO4cZvDG2suidwPWxIDS/sEGb+cl5ZFrgYB4a9ngAEXt9Hdl2ErA2stSMcws1A5rq0JWAgFdTM7BBiHDtrkDNwLWAOEd6pSG4FpRfwC7gFW9LRWEGrw5f1eGvRdnrjg/1x00NVB4P/r92hy97KpOi3LH69fG7aroNu7PPSd1B04H+tXcL/BKk8Hrdfus+4DK6IC8KIF05js75QCVvcLW9lWloSi3tO9fQOWQDn8Mcvsse3IKhywHKk/qnBnv9Abu+nvviauAytTuC2PLPSF5v+8+bRtQcV7vD70CWf7FpitPNAjPOf0iVkfsc3b05Ds79VGE7yRVGiI1UZxGxb1ycPSfSok7/N1NxQnbgQ+p8fvXK1YdGbRUVT9pWVw8irk0T3WHdcN//b1s0uyUwwo+1dFp7yzK7P1/wPP+LQmI21JTNr3a0PGx9qyRAt9VgZRP8GDGTcB/ginp1Z11oWsYvhNECsgRNXQQN2A71ipZHYoWU1ihccvwR0GOauXZ29tS/pYAy0ZXsAlINKAm+fbXEAb/CUsViJSWlFtHpzaDp70/q9QdPgGEAqhR1j2bI6wFWzcWD9gCBPYMW3+i0xug5lV0ywMCI617+7t8AWqFJ8QNBAIBjT+qKv1p3KotpgCsFah/nNQ50+hRLfP+yBv1Q+70MQdYC+qzJOs0H7MmZNbMia0hfSBsk2antJgFXkenraD5tGq/IekFMS01ZVOjV4Rutv/f8RlcPV/F2OufVukDsRdkpxrXTxV4KC85SV91qsER9WE9FJqy1+I3quzx2UsS5yamot08F1y+5QCZ/rOgo2VTVWDiBlfw/wFXaMpAdd61FpdfR6eaUnfE+8D1aJbLgqqO1/6ZfkONc3RMvePvmnOVYUd5j6A/95xsBgJHx30+YE9FZ5GVP6IcCDyt67en7a3sVJ5TOCQfCDwh9uez1hQMji33hA/x+3pJ1WpwPrP2iUu1HIbnHvRYmpKq/36OPA78FhuLFhiClrpqFKArrDo6h8aB/zdkAtHkdG9zkl9YHmvPeheYBiggVQPex3yYvgehFWAC9JRyddKiFta2RmPcGHR0WoqjbbnUjnfA70K3mLYutFR71+J/mDGg/T/paat0dBrGwXxUG4vm03rA9TIvOWmJ1n6t1u1d3R3g3+gKayNpLW4MOjqtCX15v22g54jW0Wl5auZy1RXThqMrrDo6Ojo6Ojo6Oq2a5ijNqqOjo6Ojo6Ojo3PE0BVWHR0dHR0dHR2dVo2usOro6Ojo6Ojo6LRqdIVVR0dHR0dHR0enVaMrrDo6Ojo6Ojo6Oq0aXWHV0dHR0dHR0dFp1egKq46Ojo6Ojo6OTqtGV1h1dHR0dHR0dHRaNbrCqqOjo6Ojo6Oj06rRFVYdHR0dHR0dHZ1Wja6w6ujo6Ojo6OjotGp0hVVHR0dHR0dHR6dVoyusOjo6Ojo6Ojo6rRpdYdXR0dHR0dHR0WnV6Aqrjo6Ojo6Ojo5Oq0ZXWHV0dHR0dHR0dFo1usKqo6Ojo6Ojo6PTqtEVVh0dHR0dHR0dnVaNrrDq6Ojo6Ojo6Oi0anSFtQ6EEFIIcYn2Pk7bPr6l5dLRaS6EENcJIcqP4PwOIcTLR2p+HZ1q9HNNp70ihCgXQlxXY3u/blLXdnvH2NIC6OjotAjzga9bWggdHR0dnQbTCShqaSFaCl1h1dE5BpFSOgHnwfYLIYyAT0opa7WbpZTuIy2fjs6hqD5Hj9S8tc99nWMTIYRJSulpaTkApJR5LS1DS3JMugQIP/cJITYJIZxCiGwhxNWHGNZPCPGLEKJKCLFWCHFmrTlPFUL8ru3fI4R4Xghh1vadLYQo0y6ECCH6aqb8V2uMf0II8UOzf1idNol2Pi3VloRKtHNrkLbvWiHEViFEpRBioRBikhBC1hibLoRYVWu+A1wA6thOF0Ks0to3AS4gSDtPJwkhPhNCVAD/1fqfK4T4Uzvft2jnr/kIfy06bQRtmf5VIcQMIUShECJfCHGXEMIihJglhCgWQmwTQlxTY8x0IcQ67ZqcK4R4WghhrbG/znO0jmOnavPfqm13EUJ8JIQo0l4ZQoi+jZ1Xp/2g6QCThRAbhBAuIcQOIcSTNVwArxBCZAohnMCtQghFCDFVCLFd658thDi/1pydhRDzhBAF2rU5SwiRXGP/rUKIjUIIt/b35lrj+2i/myrtdzC2DrnrdQE41Lne1jkmFVbgceBGYBIwAHgSeE0IMaaeMU8DLwJJwA/AF0KILuA/SYBvgL+BodrcV2jzAiwGrEC1H6wN2AfsP5m1NsfhfCid9oH2YPMF8AswBBgBzAR8QogRwDvA6/jPxa+AR5vp0D2BK4FLteNWae0P43cfSARmCSFGA/OAl4GBwA3AJWjKrI6OxlVAGf7zdzrwArAAWI//WjgXeEMI0VnrX4H/XEoAbgMuBx6sNefBzlEAhBAXA58Dt0gpXxNCBAJ2rd9pwEhgN/Cjtq9B8+q0O/4LTMV/jx6I//99e439TwKv4NcPFgB3Af8B7sd/Hfwc+EwIkQQghAgCfgLigAu1Pvuvy0KIC/FfL18ABuG/nr8ihDhX269ocyr4z9EbgHTA0tAP1Ihzve0ipTymXvifnJ3AqFrtLwBfa+8lcIn2Pk7bfrBGXwX/RfdxbfsJYCOg1OhzHf4n9UBt+3dgivZ+Hn4lwInfJyUQcAMnt/T3o79a/gVEaufcaXXs+wD4oVbbG/6f8v7tdGBVrT7XAeX1bKcDHqBjrXESeKlW28/A1FptFwDlgNC2HcDLLf1d6q+WeWn//0tqbAsgH/iyRptJu+5dcpA5JgAba2wf7Bx14FcGbgFKgDNr7LsB2FB9XmptBqAAuKy+efVX+3wBwfiVugl17Ku+30+u1b4TmFarzQG8r72/Gf/DWfRBjvkr8FattneAX7T3Z+J3b+leY/8pmizX1Wjbr5vU3m7Iud7WX8eihXUAfmvnt9pya7m2NDoR6F3PuCXVb6SUKn4FdIDWlID/4qzW6P8LYAb6aNsO/FZU8D/9fAP8obWdjP+C+UdTP5RO+0FKWYj/YvadtqRzjxCim7Y7gRrnokbt7aayQ0q5p4725bW2jwMerPX7+QD/w2BsM8mi0/ZZWf1G+u+ee4HsGm0e/AEkMQBCiEuE3+0qTzunnge615rzYOfo+cAs4Cwp5fc12o/Dbz0tq3GulgARHHi9P9i8Ou2PAfgtl4vq6bP/mieECAU641c6a/IL/+gAQ4GVUsp9B5kv4RDjE4CdUsptNfb/Dqg0nIae622WYzHoqlpJPxfYVmtfUx2rBf4nnbqobncAk4QQA4AQ4E+tLRm/5eE32Uocu3VaHinl9UKIF4CzgPOAJ4QQF+A/1w6FWkc/UwPGVTSwXQEeAT6uo29+A46jc2xQ+3omD9KmCCFOBD7Cf17dDRTjP++frdX/YOfoSm2uG4UQSzUFGfznahZ+94LaFDZgXp32R0OuoXWdD3Xd46vbGjLn4Y4/FA0919ssx6KFdQ3+pfoeUsqNtV5b6xl3YvUbIYQATgByasw5UvNDqeYU/Mtdm7Ttxfif6u7Dvwzg4x+F1Ybuv6pTCynlCinlU1JKG/7zYzz+c+3EWl1rb+cDHbXztJqkZhTtLyC+jt/PRimltxmPo3PscDJ+C9NjUsplUsoNQI9GjN+C/zp6JvB6jXP/L/yrXPvqOFfbxU1cp9FU6wCpDekspSwFduG/p9fkFG0u8J9ng4UQ0QeZJucQ49cAXWqspIFfx2iMjtbuz/VjTmGVUpbhf2p/VghxgxaZlySEmCCEuKWeoRO1Jav++P1dewDVUf6v4F8yeEUIkaAFb03H78NXqR23HP8JdTV+x2jwL+V2wx+U4GjOz6nTdhFC9BT+iOmThBA9tEjTwfgvai8Cpwshpgh/tomb8Tv518SB3w/2ASFEbyHEjfiDopqLR4ErhRCPCiEGCSHitd/G0814DJ1ji/X4b9hXCSF6CSEm4g9cbTBSys34DQBn8Y/SOg/Ygz9I9jTtt3Wq8GcvaDfR0zoNR9MBZgJPCiGu166RJ2jn3MF4BrhXyx7QTwjxKDAKmKHt/wC/y8sCIcQo7Tw7r0aWgGeAa4Q/40pfIcQd+IMSq6+ZPwJrgXc1fWQkfpeYxhgA2v25fswprBpT8Tva3wusxh/1fzH+p/SDkQbcA6zAf0G8UEq5A0BKuRM4G78fSxbwFvAh8ECtOez4naAd2rgqYCn+pz3df1WnmkqgH/4l9/X4o6nnAU9JKZfiz0IxEf8y6EX4z+X9SClztP23aH3OoBkj+KWU3wFj8CsHf2ivNP7tYqOj0yCklF/hv6m/wD/n7LQmzLMJv6X1LOA1/IGtpwKb8f+e1uL/PUVwDCdg12EK8BR+XSAH+BToWk//F/Gfn08Dq/AbCS6WUmYBSCkr8Mem7MSfuWU1fvcWqe1fANyB391lDf6sA7dp5311XMyF+HWy34F38WczcjX0A2nGsXZ9rldH9Oro6LRRtLx8H0spm8MPSkdHR0dHp9VxrFpYdXR0dHR0dHR02gi6wqqjo6Ojo6Ojo9Oq0V0CdHR0dHR0dHR0WjW6hVVHR0dHR0dHR6dVoyusOjo6Ojo6Ojo6rRpdYdXR0dHR0dHR0WnV6Aqrjo6Ojo6Ojo5Oq0ZXWHV0dHR0dHR0dFo1usKqo6Ojo6Ojo6PTqtEVVh0dHR0dHR0dnVaNsaUF0GldxKVljMRfi9uRO33MkhYWR6edoJ1XKUCmfl7ptAdmjBu7/1o5ef5C/ZzWaVPE2rP2n795yUlt4vzVCwfo7EdTKn4CTCDVfhGr/9pa2numyxewJjpgz8Z9zo4D0ZXZY47DfYjRxmcCVsAFJOvnj05b5pWJp97uLAx50b8lqoBUXWnVORSx9qyTgYs6sGPT8ThKfuCyzV7MxkSWdOvE1u4/cFm2RDEN5PfeMeyKs3PhcsCUwJ/9I9jb/TfO/gMw9SMrIYzCLstI+QMw9WbVwEDKOmYz8k/A1J31CVYqo9aTlA2YOpHbz4wrZCv9NwCmMPb1KyEyChQJeMxUXbQt+cSMlvtmGoausOrsZ8Sjr6/ZU9klwb8lAVGrh9T+8V+gdaWjfROXlhHaI2Tju1vLep0PQoJw0wRlMy4tYwrIJ0AIgDBzwT6nN+g1t2rN0M8hnbbEjHFjQ4CpICeDqHap8wFTJ89f+GQLiqbTirnK/lDqNvo8t4EhidXXwWbCA3hMVBnMuIwVhO0FvMEUh1iptOyj8ybAE83uGCsV1h30yQY8IRQllRHe4Z97vEo3Nu/cTp8ngM/ykpP2NKOMzYausOoAEP/gx1OrfIGPClQpUXyAJ8hUen6FJzQP6Bdh2fdgkStqqHaCe4FpudPH6BfodkS1JbV3eE7l9rKeCW6f9SoguObDS4CxfNepXX944LUJb8xt6LyXPD/lkpX5wz92qyZVm0dBf/DRaUPMGDdWRPXf/nRxbsfbfC5zIPAVyDNAWAEpjN6z7pn37fctLadO6+EW+109MrnwwnLCxwEnCnxIFPzXQKnGsvWnImKecxFYNYjfI7qxMeIHLsnyYnEP4+eQrmwK/JqrNngxe47HburKJmUBN+0FPCP4wduVTd5ZybObpMBp7gCL8K+mevvz99od9I6tICwWpNqD9QXh7PvfCk5+Ii85aXfzfSuHh66w6hCXlnE/MN1icH4uES+4fdaTqbX8qykz2gmOB13RaFdo/792kBb/BdXnA8M8UB2gzMJ/YZMWg9Pg8gUqwLfAY7nTx/zWkPkvfSHt0qy9J8R7VEtnkLdqVgb9wUen1TNj3NgE4GUgxRpR5lRMvgsmvvTL934fVjkeuCWkS8HWsp3RvSbPX6jfUI9hYu1ZBuAMC5UTVAzne7AArDLgfbcLm3dto98catxDW9J3tLYPa6w9SwADw8m/wYrztjy6WwBpwLP0JL7bZcKV/kHyY6taSl7QFdZjnnEv3Pf173mnnQ3yIxDX5E4f4z1YXz0gq/0Sl5bxMjDJvyVlkKls5urHrrhb27f///3c3h/lLt5xxqRiV9QtQIe40A0FMYG77/7f/z31Xl3zOhwi0GaTlTWOMxL4GX/ApxP9wUenlfLuo4OiPZXWjOItHY8DUYZQH+x03MY5V/5nvadmv7ceGPZD0abOpyPkdZM/ymjwyoNO+yHWnpVwHI7X13D8ECfBIUDhQP7I6cKWF79n3Md5yUlS69dmAp2625cOdGO9OIjSGysI7a41/xZJ3nen8PW3rye/+MfRlklXWI9h4tIW3g9iekLkim2dg7f1ffO22e6WlkmnZTj1iZmrt5X1HgDCSwMs6HFpGUH9IlY9s7ui661l7nAF+CnUXDS9zB1WIlFsgOOds8ZmAWuAV202+XT12JQnn/10c0nCRT1CN9700wN3vXlkP5mOTuPQov/vAHk6iA7BnQqyyndHnTl5/sL8g/Q34A8qPA4YOnn+wg1HU16dlmGi/fa4rfS97y9OGwaMEPhkb9bs3EjiXUBGXnKSq6VlbC5usE8+62uuPh7EJcAQAAXvMhXj/Gh2LViVfM6moyGHrrAeo/R74NMH3ar1cZAfnd/7w+tm3jyv3fy4dBpHXFqGxWJwlnYM3LVvW1nvl2mEBf3Mp54KWl806EbgfqCzQEUifCDcsYE7zp1+6oQxwBc2m/ypesylL6TduSxv1MxBUX+dv/A/U788Mp9KR6dxzBg3trM1suTlqsLQCzVfa6mYPJPufv+7VxswthtCrrKEVHoj++7sfuV96yuOvMQ6R5tu9t9P8WC+EUQ3Ba9NxWgw4M3xYZxjpuqDbckntspgpebkevt/UncRd/MKTu4HDAXozJbiXfT8L/AJEMsRsiLrCusxyGUv3L/wj7xTx5gU12ce1TKuPjcAnfZPXFrGxcAnBuE9e9OT53/bxDmssYE7luZVdhlyqMC8uLSMRGAlcFnu9DEfH47sOjqHw7uPDeqlegyPFW7s3FP6DCcCokaQoReY1tDo/7mPJD65b02PNHOw86073lx04xEUW6cFGGGff882+s6QWr0lKxVfpfLph1YqP2pq8FNbJ9ae1ftEvn9uHUlDi4jp5m9V0bLKVNHMfrp64YBjDH+A1alj+kdkb46PzL5y5s3zdGX1GEfBd72KYbdPGn9o6hy508dUxaVlTEQLzFOETz2586LtMKau7jv8f2TXph5PR6epzHuqf7fCDV0ucJcFngM9zgBhMFjcu30+QzrIdSDe5p/AGEdD5x3/cPaU5648O8pdHnDzjHFj/zd5/sLvjtBH0DmKxNqzrMBU6JdWo9lbRdCSN5Of+7Cl5GoN5CUnbYKk8wFi7VlxCp7XVIxnakG1AcCVQLMprHpp1mOIEx6d8zQwHfhoXVFif90NQOf218cPQMgxfcPX/Jk7fYzvcObS3AhSLQbnY/cPf6D8xsQXTzlI12KT4pJDY36/8nCOp6PTUGaOPyNoxrix42ZcPuaLPVm9t7nLAl8E+oN4usOg3AtiEnO7TJ6/8NHJ8zPmA6nANJpQDED6DHeBXC0Mvv/Neyp+4JH4LDpHj/H2tInh5OcBD4D4Fn+gaLWfv6MlZWtt5CUn5aqY0kE48ecmlqBOvMD+9KLr7f+xNscxdJeAY4TzZzz80Yr8E8aFWwq+L3ZFjdHdAHQAhqW/PbWwKubR0XGfn/fahDe+aq55HQ4RASg2myyoa3/itHkFgcaKtb9Pu+Xk5jqmjk41WuBUKuAO6lh0feW+0L7SZzAAu4NiC7MDo0rn5a+Oe+9IpKF6e2rSGUWbOn1vCa3cWFUU0n/y/IVqcx9Dp35y4hP2R+MnrM1ptIUv1p4Vit+4MzGKPG8ke8YvTh7/QVuK8m8panxHf/bnrxfXMay/QF0uUa7OS05adzhz6wprO0dLIzQNOKtn2PpVg6OXH69bVnWqiUvL+AtQc6ePOb455nM4RBhQarPVf2GJS8vIBCy508foCqtOszJj3JiRwC+AAgIUX1Vol4KNpTs63I4Uv0yev/CwVhIawqt3nPx45d6IB4HJk+cvfO5IH0/nH9YkxJ8ipFgEGAA3kNoYpfVq+4PpP3HuJA/WKJAzz+OdJ19Pnrn3iAnczom3/zC+mA7PgQw8kR8+7cLm8bOSZzfpN6j7sLZj/Mqq/AmECfBtKek30T7lbl1Z1QFg5GOv3gHdhwLNckN1OIQAvgE2AdccovsOkKc1x3F1dGpiCqp6yVMR8E/ZVNXw+M3P/vHE0ZShcm/EVGAgyOnvPDxk63WPrPj0aB7/WCQnPuEsX6jncWFUhgqPofr/34Tf2ndIhTXWnhUjUF+UXDquAzvL8+kyMi956O9aILwOTcsjuzb5jLmx9qzvO7Lj+6WceZWV8mGf2rO+BL5orJVaV1jbMQHG8oud3iCTtimBUfgtDzrHOHFpGSMFXV/wnxbcFpeW8UkzJPBXgI+AfYfqmBSztEd2/vHd75pzlWHmzfOOuMVL59hgxrixl0DAcSBVQAXhwZ8j9agyef5C+fzVZ92oGH27y3ZGffDKpFEdbpu1uPRoy3GskBOfcBLwtaHUJCQSifQBBgSKkMJR39hJ9gliL11nwpgrJUpoJHueO5WF02Ylv6qnJtOItWcZOrL9RkGXWRJhAOHrb//xu96s7r6WYasrCSGCvd0j2Ru/jb6bPViMAZTHWKnsWEx0GSgBe+hmAagiOAFIAO6MtWc1KouArrC2Y5zeoL7+d9KnXbgdLSmPTqvCJhGKlr7HSAOtEPVOaJM+4MWG9HV5rX/5pPHUNQVJXYGth3NcHR2AuY8kXg3d54BYAmIKcBLgaGzgVHNx9/vfFs59NPHufau7v0RZ4Ezg+paQ41hAKnKcUIUAEP7iJ294Y1znGPdauntjXV3qGqNZCy8I4KqznYQkRrB3SxExp61JHr0aRh9N8VsVsfasIGBwZ7akxrDzyhyGeSGwzx66BdToZiwh8qx1JCkurDFASRUBBi8mk4KvCigMoGJfVzaVuwhYXElIQWe2hEhI3k1cPxAKjbB+V6P7sLZT4tIyTgCWAh8CqziS5VTTw/YvE5BeojuitwE03+Zf8GusVRxmiVSHQ1wOlAMZh/Jf1Y5/HvAFMAuYp5dn1TkcXroxpY/qNa4TiuryVFp7HKwqVUswY9zYR4BppsCqm+98+8c3Wlqe9kjW+d2+sawLPksifQLhBlLLz9m3JujbqGVCFWHAq8B31b6snex/jZSIn0EYAbqz/rPh2C+flfyqp57DtDtutd+R+DejBmyjX88AykeGUHzWXrqYtLRUBFEqjbizS4heZKayyo11sl/ZFB6akGNVe0hYxD9p4xo1h66wtkPumnOV4Y+8Ufv2OWPwqJYeudPHHLGlKJkeOhL4Wfh/+E4gVVda2wb9H/gk2ycNHbzSfOFhKqsCv/JbBZzeQIV1PPCOf+lWuDhMhVnn2GXGuLHhwK8ItVvHIVsuv3pKztctLVNNZowbazQFVq32eYz9YgblJl+VttbR0jK1N1ad1OdrUaakCI/yiEDszwyQE59wo0S+AUihJbJPfvXD7HDyNxbToaM23AdMzUtOalCBiLZIrD3LYMDT5zS+nLiBwVHb6dsB5FAQMf/0klvi+dvixfTDRhI/M+LOOp+3ttcsitAcWRIOZw7dJaAdsnjnGbcXVnUIP7Xrd7Pfvf3FI+o3lRfreSo2z1R9HjXaxK/TcnQP3Rxd7gkJXTJ14uG6AkiHQ9iAqIYoqwARlvzUIlcHmro0pKMD8PzVo08TBmWe9BlikcoZV0/Jsbe0TLWZPH+h9/3p8dfnZ8fZ87J6PTtj3NiRk+cvPKYseUcaQ6GpL/Btwtqc2kpnDH5lVQCmXdExFwGvFxPdQaD6pL8iU7twl6tWBA14lvowVQJJiSy9dRdxkRDbwYcpMJOLUfCqwEoQX4/gB7MB7w+/cfaCvOShxf8OMDvhgC1NwTys6/ThzKErrO2MuLSMCOjwIMhfIywFtx3p47nM8jNglERK0U5++McKuyu6/e3yWeMPZw6HQ4QDFTab9AB5DR0nhFzlfyfV9nLD0Dm6+HOtGjP9Dz3So5WCbJVcnbb2txnjxl4FfAzyEeCBlpapvZB1SbceFoL7AK/XsduhWVZNPkXwzHU33QWyDMRZElFOO8mpGmvPSgG+A2n01VDr1jPYE83uvfi/m6xRLNwbw86f/wkoS2oBaZuOrrC2M7qFbH53e1nPKBC3z7x53hHx93A4hAIMstnkSgGLBIKKAN/qIKfhlvbgDvDG/XOucpd3SZA+a8ak2Slt/vMcjHJPaD4w4DCneREY7HCI42022eBiFIVVMTn+d+JVdB9WnaZhY3+1RiFo5Vb6yfMXfvL81We9p3oMU959bFDhtVNXPdvSMrVFEucm7l9Szh6fvcQX6bkFoPLUoqLafRPW5ixZMSjx9J+HnpD+ue3M04t7maoGs+S075Nv0x6YW+/50hAm2ScYdtD7OTj9er8/rgCkBOYBU10Ebv0z+eIaekBSywjaTOgKazvikucfOH1H2YljB0X9/dfC/0zNOoKHuhd4zOEQSadtC+kEIBUeaIvK6qwJmdUXvyVAV8Vc/Ijq7t1LS/d0/6yJ39846dUz321JGY8U4ZaCgHJPSOhhTvMxsLwxyipAkLGsY4U3BIPwPL/pyQs2HaYMOscmOVqWC5U2UiozZvCWuws3dL40f023aZrvbUZLZTFoC9RUTocFFjtLfcaZEHQKCAm4E+cmpn64IiRaCulTg30f1x4/0T6p23cvvfJoJSGpIN8/l7l3zUl+ofBof44jQaw9yxbM5W+VE97TSvnWKoLNgEFbsXolLzkpt4VFbHaUQ3fRaQvEpWWI5XtOniaELOkZtuHSI3y4OcBkYK1ADAYIrjD8doSP2ez4lVVpB/lf/1/eU92hkX5lVUv3JI1z30ibU/rKbd9cP2tCZkD9M7Yt4kI39jUpnojDmcNmk1/ZbLJBqaxqMiRm2VkAo+MWHM7hdY5hQrrmp/rfyReA1Lag+F1137oCd1nAraiGEPxuAYu0MrI6tfArq3IRyCeAX/+qDP97oyv4VPx6iwEwAzZDiXGgkOKP4c/ll9QcH2vPSviZsWurCEg14Pk/ENe2B2X1Zvv/nR5v//EnwF5OmOFUvnpuDO/3BJLxV7VsdPR+W0G3sLYTTIrrKo9qGaVK460v3fLu5uaeX3MDuBZ4z2aTRcDLAOXLgs8PcCqFhmmlddaMb+XYALO2jAIwB5R3gB/R0m4ERK36xV3R+XipWt4CZrz14Mu/B3bIfrFg7bhibbyjrboNbC7pt8TpDRzYlLEOh0jF704wW/NfbRS5JX3yAUyKZ0dTjq+j43OZLjOHVrjvmGOf3NKyNAqpdNF8txWQFhA22vjS9BHCBlj97h5Sgvimi8n5xU5PwAsgrYAh3uvMk8I0HIN8tebAWHvWRcDcYqKrzuR/97+T/PTLLSB/sxJrzzoT5DTB1SeZ8UiQD4B44X/JU50As/znULs+j3QLazvgtteuiw0wVr4Tai7KBd48Qoc5G3gbuKBmo6IyrDzY11YrFWVpF0MVhBN4e9LslN+AVLQn1RueuPNMX1VkFJCM8C5yFvY9q2DtuK/xp3F6DFikuRW0OUrdEXtBmOLSMppyHbgYuBPNFN1YdlV0jwBcX2y6clhTxusc28wYNzasMj8sQvUYj9T17kjiAFzaQ7JCG3BlaCEWA0Jb8aoCHvv2yo2vASkRBs+nBiR9V5pmCinMuQM8/QEm2SeazrPP+BX4FFjtwzSkPSircfZfRwPfgjhZYlA7sv3avOShT+YlJzlbWrajia6wtgMc28/+f/bOO76KKv3Dz5lb0xMSegugQtSIBQvWQ1BXBbsrdkR/aJS1sirWvVZYXXTVRbGLHXsBO+FYsRcihE7oJUB6cuuc3x8zwYCEtJsG9/Hjh8zMmXPOJPfOvPOe9/2+t5QF0xyHdf/ynsJJI1rEeJRSz8Racnh7605fiiuu2nAlVDpebokxW5q4TgXS+kn8Dxhe4ykdNzVnzripORNrbetxU3PUuMeP/3tG1uv7CMM/m63LUtqN5QnocHSJXxsPcGj3LxKacPo44AgpdbCxJ1pFC/RZlneJWXYRgxgxGsOJIFzhas9LbT2RxmKFLojhhis8237fa9JL325AN+tXI14EhuePzp8DkD86f86XFyw8K+cP88lzPxNJAD3neU64c+zh17zFZR/8wPDD9+Pb+RmsPWb9sP13iRWcFDa/CNr+nAi9kr36tO2M2oZYSEAHJ3PCzEGQmAs89+QVT0bV22CHAdwLPC2lXiqlVts1GSgQLmeEH6M5bmthRjxXupNW+sc+cPE1DT1n1NXPzJ+Sm3erHfPqAe0A0eHidwEGpC4YsLGqB+nejRlAeUPOUUrEA24pdQmwsSnjxjkrzq4OJzjs53RMgzVGo4nvUnJr9ZakCh12fN/Wc2kK46fPmDN51MiTgZWgb2S7lasYEG+Eb68yHctAjMkfnf8XR8zeS0Rfw7QS4B0mBLw9/g1COAlc8emwK6e2+oRbiO6zfz5e06ezwDQ1osMkGLYEMQ9rB+aap84X3eJXvy8w/cDNLTBEH2AsddxMizJCowDKkiIdLst7Sm7ewEBp/0TDVfVUY8+1PK9imCtxzWw7W/XKKbl5He67VLB58DcA3687pjEZ/uOBJUqJzk0dtzqcaGu/6gi78c03RtOYPGqky78lcVBS9y1rx0+f0VHDkRg/fUalN638LRCnvjQx68S2nk974rTX+t9RZTr36++uKtyRsQpQksBbISdEBIQd8OPeQz3AuNXDDt1ljNVus39L1jieBhZojBx28aSq+oh5WDswC7ZkX7G+qteeQ3vkvf3q1ZM3RKtfpYSQUmspdaFSYl9gh30bpjjcFJotncJzm6uN1AbcBGj/lkGfNeVkO1wgZ0pu3g3A/a6EdZuBFi/UEE1KAumbATb7u7gacdr7gCmlblKt9v4T3h8KjhNATAMWAiqmwRqjkRxthp3O8jXpE9p6Is0ltd+GBzeUxV9avKTHFcBHbT2f9oClDhB/B2iWBeMPz56WPbQmHKA2/3xp/lNnPXDzBQNWLzv6l0GHkD8oJwI0+UW6PZLFz58XcGBPEEesH7b/d8AXbT2ntqTDeYViWGROmBm3sDj7RqcILeybtOz8aPWrlHAAzyglLgeQUq+vq9xm+hZnQGh+zxzj71CB31Ou+PQI0GPsmKDpzUya+o87adXHocruV7x43+0PRmuOrUGaZ9M+1r818kD1I6X+XUp9b1PGu+ap8x1dE9Z84nb4S4B/FE4aMTFmrMZoPPpUoFqbxidtPZPmcv5NCxboiOPxYEXcCZNHjezR1vNpJ0gQdsiQcFJHjsCls8eP+mbImQdPO+1mnT9oeBhEkF1otWa/2TNOKeCggw9m9k+2sbrbEzNYOyjJ7uJ7gL5h7cqdNOadaJYkdGDVX+7agLaDBWJuFMduFZzeksvsmyH8GUPZJMZNzdEpfWaf5U5cvbRspfzHlNy8o6M0zRYlc8LMoSWBTtcBFAfS/1df4pNSYpBSYrJdirVJqFUnXLGusk/SYd2/eKVw0oiKpvYTY/fllQf2Eg5PMNfhDZQBg9t6PlHiQdAOb2rFpLaeSDtBWeFCGqvk7l+N0G6zfxugOOWFVLa43FSfxS62VN5t9m/JG+n1qMBc3I2Vf2vr+bQXYgZrB+SKqZccXRVOuL5X4vKfCieNUNHoUynhUErE2Vnfp0mp79pZ+5XPePcEepQlRUp31q49Eq7OyLd+ik4M5dlXPV8ZrOh1MIhloN955YHrj2z2JFseqRE1ZS3r9GLUIge4BMvAbzSZE2amlAY73Q58m+bZ/I+m9BEjxsa5mZdEAh5XxO/uwi4iuj9++oxlid23LA9Wei58adKgXm09n7Ymf3T+nL08lW+CoI+7+oHtwwG6zf6tG/BpJUkVh/HZyJXDhr69ftj+E3cVYxWgO4Uvg+6tMUY/Ney/JW09n/ZCzGDtgHy64tQbtBahwZ1/uiKK3T4DfKCUcDakzKbXbxwJUJ4UWRPFObQWdka8+A+15Kyaw7ipOcXASMNZlVix/qBZz93+UJfm9tnCKBAB60chgC931lhK/RjQvymxq5kTZg5NdhfPAd0ZuPrhsS/vMMQkRoz6iATd3QHT/sw2a3WkPeFNq7jRDLnY8OuA89p6Lu2BREf4WtCRlcH4bfJsrpg9rncqRb+A7grGic8Ne6DDh4Vsgy9l6MzH//ZFj9KKkX1Z+POuZIRHg5jB2sHInDDzhIh2joxo1x1TLn/+pyh2PQvIa2hN+C5FrmSAnmvdz0dxDq1CfOe5w0HjSV5xezSrVI2bmrMktd+n14Uquzqqiga/NiU3zx2tvqONHTs63GkEXwfE0T0/PWtH7ZQShlIiE8CucNZgjrnvYWfmhJmXgv6yLJiaJSyh9Hb7O4nRvlFKOJN7b8wHAkCYXUhhYvS/8t8GPgNx7eRRIz1tPZ+2ZtrfV60HkQ96zNAXs44G6Db7N+83nPhlOandh/Lpja+JA35USvRTSnSCrfeqfZUSXexth1LiUKVED3vbrZTIUUr0tre9SolTau5vSolEpcR5Son+9naKUmKsUmIPeztDKXGtUmJPe7u7UuJWpcRe9nZfpcR9tY7vqZR4pNb2PkqJZ2r1d5BS4rWa8VY97b0sAt+cuOG7o9+cez1dSoPZ3Wb/1uFXEKJJzGDtQOROvTQx1bP5dZcRXAk81Nz+lBJOpcRAACn1i1Lq+xpx+n5AEXUoCLRrhDnQ4SmJ/N/9YxpdUrQ+zh3/6GNgjAGGGe6yF15/dHS7FQUvnDRizoh+b57XOW6d/9eiQ0btqOJVn0L3HX1WuJeseTLukvr6y5wwU2ROmLln5oSZVxx+z2O/bajsEQCetkIOBLaGoMSXMhRfys34UmI34xiN4bg9R/74Ttf9l47Hjlm0RPh3DQxXeDLQPW2PNQ+39VzaGkspQO8LonuV6cjb54WDjwReLaJH5vn896d3ht30mN10GVCjo+0E8rGkGAHigO+AmqTkJCzHzOn2dhrwHnCCvZ0BvAwcY293AZ4EDrW3u2E9d2tip7sD9wCDam3/E+hX6/wL7fMA0oG/2eMCJAMHAAkAyWWOQ4RVrxe3GWRoye+7zApCtIjJWnUg5hYNuaskkJ6U02fGv5+98vFAFLq8D7hcKTFISr2uMSdWxZmngi6Ov6miwy3vVm3cfx00vkJTQxk3NefFJ8e/MjRU2e2Kig0H9JiSm/cRoKLpzY0WD499OdL/5vfHmtrxIjAtc8LMx7Zm7vtSDu+H5w676f/wpRTgK93mGjInzMwAcronrBqT5ok7tjiQ4QTYVNV148BO8xYvKR70xj7mihtOcXznMhH6VNfXF2mt7wNMgQjgSxm+fZ8xYtRBPnBbr6ELnr3g5oJo3P/aFV0HL/u0eGn3qvK16aMmjxp55fjpM8y2nlMbIrGzYk0gIWnf6Zuhx+F8PP0k8cp/4WWk1FopcTHwu31OGPg7MM/ergZOwpLPAyjDMkZrdMM3AUOAFfb2Gizjc729XQj0BrbY2wuATkClvf0b4LHHRUr9HbVWkKTU3/CncYqU+kugV63t2cDAmm1XyHjFNMQlwtTCQLM4vk+YXWQFIVoIvWPFohjtjMwJM3sCCw0RVssmnjoyGn3aSyMjpNSNE1r2pThMoYMlqZHvOl1TeUQ05tKaTMnNyweWjpuac1pLjfHivf8y/CX9FgfL+/QHIkCQKMXLRpvMCTOPBL4ELQRaa4zJwFPLPeddKwQ1cdJh4I5M/ysPAUdkxG04x20Ezltb2TsOhBBEyvdMKyivDCU9uaai7yvAksJJIzS+lKEavq1xM2t0ucAqp1jTJ77Sia16wTFitFP+e9HxF0YC7heA08dPn/FuW8+nrbA8rMwCXBoHJV1vdQ72rJk1c9i1x7b13FoKpURm2hbHW54VA4r6lxUdvznRXeHwlqV2GVe1O7+4bEMsJKCD0Mlb9Dxop6mdVzenHzsM4Dy7OMCqRhurFnsYWhidip2NrhLVHhCO6j09qUtbNJbywlvvNIPlfV6wNx207wSRo7ASWdBWMss/gYUzGZKrAVNjBrTTuNzIvcUgUgZ8vqm6y8UuRzDUL3nxc8BQjaPTpzfd1POb2668s3DSiMWFk0ZoAI2WsPWtOCwQL2Pr1bALxSDGaFmUEocrJY5WSrTbEJtoEAm4XwWWI8xbXnlgr136WneGrQwwPBB38CclXW91ejxdX8xkwXFtPa+WREpdOPiM8EGDrlt4wpYu1U93L69O6lLkur6t59WeiIUEdABG/++q3C3+E47dN+PnGTP+eceyZnZ3IfAssJp6MsN3wn72vx1Og/Wl+25L0pEcjydpdWsM9yno27EM1jAI1RqDNgGF5QF2gQgBF4GZfoBjydT8cCYfRw41vjOz+EXvmdg9fvX366p63w3iiy9uuaZeLVVhXbPf6psQ8AIwWKP7CcQZsXCAGA3kFqzl2j3beiItyfjpM8JPXDf0nYq16ddHAq4rgSltPae2Yt8+Z1w4m9NHAG+FYcyUYVN3ieVgW/NaUqvKn1LiKGCulLoUoNsG9+VYMbX3mXcmf2b8q+z3uvrbnYh5WNs5mRNmOr9Y/bdxHkf1pv4piy6OQpfTgOPteJomsSk9lKvRlCdGCqIwn1aldGVOV4CyVcdMb+mxxk3NmROX8cetIHAnF37cHsMB4E/FAOxElsJJI94s9F7wRU+zhHlG788fi5wa+UXvBYjwuqre7xVOGjGzocL/SpbN1eitfeMrnbO5U7gM6FbYNzC/xS4qxq7GKOD0uqru7Uokdt9yn+EK+zct6HVmW8+lreg++5eTvuCU3P7MK96DuResH7Z/pK3nFA0yJ8w8GvgK9D3Hip/UH3fs97h/YpLESv56fGtDX6kGLosYuiLk0t9H7kq+M5akGjNYOwD6ShD7BiJxlz0y9qXNTelBKeFSStyvlOgipTal1J81Z0bxVUZ6wKNLk/5Z0aFKstr0tP9tFf3YS+655t+IyJxgWb99puTmtdvvW+GkEXO2K5V6GsB3wexHsbyvTZUReuELWf4gvtKJNd7UiEN/JRCkb3YeFJ3Zx9jVkVJXSqnz23oercH5Ny7cbIac95kh17DJo0bu29bzaW26zf5tqMZ400T8lsUv+3w97KJoVnJsa44GHAeJRcaT7ofc+4gVud6A8fFeC73XAdsW6/GVbipLjkz3BA2PYXI7MGt3N1rb7QM0BvzjydF7ex3VDyW5S34E3m1GV/sA44ATozGv+GpHijdgfBSNvlqbpF5fHg+Q2GNOVasNqh2PA3sKh394q43ZTKq95tUhp7n44fsmvs+23tfGeonfxvLqb6VLkesVgKQKxx5RmWyMXRalhFBKPKWUiMq9qwPxGOjquE5lj9ffdNfh/2Zfd4qHKiUw14JxwjPDJjdKvaYDMAuoPtSYj8YufwGe9M3Oe/st83i3b5xW4lyp0VrsYoUymkrMYG3HfLX6uLuDpkcc2WPWv2qSWJqClPo3YC8p9bT62tZH+O7kFCCTDhi/CqAj7kwAb+rSFfU0jSZvGs6qYFz6gmdaccwmU/JQwoA4v9F9S6fIctih97XBSKlf3kFiX6FGl4Qderf2FsRoEOnAMP7UttwtGD99xuaUvhsXVhcnHvnMhCF7t/V8WoNus3/r+ylnP+el2nESL128ftj+G9t6TtGmJvxqvTN5RhAnYQQmaFdQ9Oy9yv0dvpQJ+FJqG64KWzZLo3f7JNWYwdpOyZww89DSYNoZpjb+83jus432ZtpVPV5TSpwGIKWOyhL4uu7B8wA2dAl1SB3EinWHFQEVo65+ttVKyo6bmlMdlzH/+6qN+/WckpvXrf4z2pbUUufxACmljhua049SorNSIvUvB3yluiLRjPi95t+b03+MXR8p9SasRKsOqUjSHFzxgf9Di0jJ8m7/19ZzaWm6zf6tM/BpkDgjgbKhzwx78Ou2nlNLUThpxJwH73zw5Gnm8Vc9FDpLX+O4tHhBD9exQvMJMDFi6GVrnoy7t/A5r8BXOqckJfIjQNCtT9/dk1RjBms75Jqnznclu4ung14H4u4mduMB+mIJH0eNlFJnT4Cg22xy0lYb0wtLIaFVqVw/ZCwYBjCmtcduAqcBi7wBo7kxg+OB9UqJv0iIacE3CZWGG1+Kq5ljxNhFsUttCim1llJHvSpde2e0b+7PIF4FLps8amRavSd0UK6YPa57D5YvEZiZwMm/DDv9x7aeU2uQe/cr/5sSOf2SDyqHd7qx7JpHr+158mnA8SGXTuy51n1L3xXuT/Gl7O0Kix8AypIju7WxCjGDtV1SWLbH/WXBtL5H9Jj1RuGkEeWNOdf2rDql1OXA0VLqR6M5t+Ryx96Av/dqT4c0NNyJq490J65u9bmPm5qzEPRs4Qhc9fbTI9utnNzKZ7x9TKGPL0+MzLUzVZvDG8A4Kf9aVSy53DFdIFz8WdYwxq5EdMrvHgssU0pkRWtaHQ2nN/AQkJA2YO2rbT2XlqDb7N+Ofo+Lv11Hn+RjefPf64ftv8t6VmujlEhXSmQWThrx/EFdv/nmj00HZX2w9Oz/ZfpfGZJT+dDJVXGROwViiEbP9fjFxQCdN7kObONptzkxg7WdkTlhZqffiw65MN5Z8XtG3MZrG3OuUsLAMhJesD0T0fVK+FKGavRpgJcOmrEYCSUmOeO2tIm6QUrmpz/piKd7oLT/hLYYvyGkljjPMLSgNCX8SXP7klL/LKWuK273V4CquMiw5o4To5WxjNFb8aWctPop74hNj8afhy/lTHwplxf9L/7DqkmJXwNfAffSvPtEFVb5y+VRmnmH45ppn/0S37lkXemKLkdMHjUyrq3nE026zf5tKJBn4srUGMHPOLtDJvI2kZuAAqVE516JK44BM8/EeSVw99pw94/2Lp7+CbBnwG3OcUZEqkYDfNgRn7nRJGawtjNcRnAikFYVThz98NiXG+XhklKbwDfANy2hV+j3mFcKtlaa6XAZi1Ny84xIINVdVbTfB20xvjthw53CCJRtWXLyIW0xfkNILnccDqzvtcbzbHP6seNXD1ZK7NCbXdg3sCRiaKrizY4QIhGjBuul9SvgHmBmrzWeGRmbXS8DbwJTO29ynegNGIdhFcsQGh0XcJsXN2UoKfXXUurTpdS7kqxRo6kqSj3PDDsTgdFtPZcoI2t+ENp0eyu/udMuybo78AiQK6UuenjsyxEBP9n7/6yK6Cvd5A06PgRMgYAO+MyNNjGDtR1x2eNjzw6bzst6JKx8v3DSiAZXtlBKeJQSmQBS6vul1C1SHcUVEskajUZH6JhlNU/Equ7WomVZ6+Lsq56v1KbnMbRjxJTcvF5tMYedsW5qXKJGnwi8h6+0ufWrTwF+oI7s7swx/lDEoRenljhjdbI7ENXeyLUC4bA3Tb/HnL2hSygXGAz0XNMjmGhocRRQrdEmgDsozmmsZ0gp0V8pkRTd2XdYvgB+FI7Ira88sFeHDMWqAwUE0aapdRhv+Wc5oGftDkarlHp1bdUepxH+4M+K1ds8W5VABGi6DvYuRcxgbSdkTpgp1KoTb/A4/IGDus65rpGnPwF83aI3eF9KnMMURwvEZwJxO3bVohYbL8pMyc0bCubb1pZ5tbXdJjwFGAndfnqkjcavE9PgeoFI3Ng5FA2B9g+As4DFdTVwh4xPnRGxJ76U2H2og+AOGJ1rvbQGvAHj1q5XVj2Br3QuvtK1PS+rrrTvC8MF4jZTcJ5AFAGzK/+d+Ggj4lqnAh3m/tKSjJ8+Q6ftsXaGjjh6hao8k9p6PtFi/bD956Ajw+PKP16eunESruBSh4A40BLAXqHZv21nGV1OvP/eky957IpfT5t8x+m19y++7/SvnUZwvUNEFlJb79r+LlGrUmCrT7od0W6TP3ZDzg+aniHA2Ecve6Gwkec+AHxhJ1q1CJs7hW5J3+JK1eiJwlc2u6XGaUEkCPvzLhzWdus/EMdNzVn27K3/2+wv3uOkKbl5znFTc8KtPYe6yNjkzI4YOlgVb77Q3L6k1BuBt3bWJuzQ+c6ISNqUHjooA6KeGTx51MitNbvHT5+xW9/oo4IvpbcDcRTwKpAPqDofoNb+OQ7rvM9CDvPHhGrHP2wRdD++lPoevj6sWuoxAG9qxUSHJzhuU0HvYZNHjRTjp8/o8CVqb3y3q+uYQNyT8/1JA4AIaJxCO87utLZG2eYeoAtwAIBS4kqgWErdoRLQbI+x9K8fuSlcfPiUBVuyXRrjlcwJM3Nqa1uHTc8vQM+/6F3b36XWnXX7JObZaAdc9eSFPeOclVMdIvQr0KDYQaWEt5bG6jwp9XMtOUdPwBhX7TVDK/oGVUuO04IoEHa2ugjThksrYX/adZFAqgc4qa3m8Bd8KQ5P0DjaYYp3Msf4m/Xio5RIUEqcr5TosrN267oHSwGCbn1+c8bbEZaxqr/AeujNso3XGM2gNDn8mEYbwM21S+3Wi690k8MUz2s0dgy8m3pi8aTU30qp32/2pHcRzrthUSgScN+ONg7AKqTQocmelu3+pLTzK/P9Sftmx5V9Cxwl4I6LM1Z9fFhiySK7WS5wWeaEmcdlTpg5derv432/bjzk0po+lBJvKSXG19qOb+XLqJf9p+17DHbMtzACUzTCpa3wbifbfQeS3cVFhggPvOap88WO+ooRM1jbBXM3DXmkOpyQMLzPzEcKJ41oaEzfdcDbSomWr4LiS8lKrHSkmYZ+JHOMv0O+2Y+bmjMHuMDe/Le93SaEKru/BqwFndtWc9ieLWnhk7G8Ge9GobshwEv2v3UScfCBRoe7bGyRsDyJlaRgEEtWaDbVk5KSEyodJ5WkRtbgK210lbiAx1xo/6iBIDt5YVRKXKWU6N+0me7SvCAMs9ibVt6hiyhc9063LgI9w0Sc5RLmLa+cveKI/NH5c+aO/uO+/eLLT5JS/9duuuryz14/AvSnwOXfrZOdH/7l9iMzJ8wcqpQQ1LJflBIOYINS4g57WygljlVKtKl+7Z7eilvsFT3DmbjQAG3asaoRtvsO7JPxa5Kpnd6Idu62Mm71ETNY25jMCTOzVpTtcYrXUfXyk1c89XwjTp0MnCClnt9CU6vN/wGhhCrH/a0wVouR2n/mzwBJvb7s05bzGDc1J+RNW/wZ6BOnPzz2yLacSw0Rh77FFJqVvQPRKAjxDVYSzk77yhzjrxSIuc5Ii7x0KeufvyQxxGgCcX7jYmdEGFrQpJesgEc/oEFr9IPsJBZPKdEPeJj2tPrQThg/fYY/td/6H/3FSf2nXnVEu7hvNJYTX92j6/zqpKVYGruX/HLRvIm1j9eo2ygl9pu3aXBhIBL3ENQ4HAWA2+3wH2cXkzhdSj3ZPugBJvLnPacn8Blwnt1filLiDqXEni16gdvRyRGyJdl0xBG/MuhK/nW8Q4R1n6RlJdsv/a8sG/A2wOcrRnZqzTl2JGIGaxtyzVPnC6+j6mmg0h+Jv76+9kqJOKXEJKVEopQ6KKX+tKXnuGyaJzns0Ff5Pea3+Eo7dG1nV9zmzQBmKLHNM20Tu/30GEDZqqMvauu54EsR6ZudXYJu/WufS/1rm9udlDospZ4rpa6or23IaS6OGPqwwue80V4G+x6IgCC+S/GNsRjWpqN9yUdgxZTO7XRN5YeN7sCXMiK11NlrS3r4feEr++fOQgmk1MuxqvO92NT57spoLS4GXVG5Me2Ktp5LY8ielj00e1r2xNXBuO/WhzzewxOL/50/Or/OMLZAxLPx5YLLkv40Vrdm0IvDuis/gO1BnaGU6CmlrgKeAzYrJZzAJqxkpffsDvbG+gz3t88drJT4SCmxj73ttL22USWI8SNAohF+Cxi++JY7/rtX2rwPV5b375I5YeY+tduuqej7C4A/Ep8Z7XnsKsQM1jakJNBpkj8Sf/igTnOnFU4a0RBjcChwPa0Yw5S+2XmpMyJcmzLCHV7U+eyrni8HgpUbDlzV1nMZdc1TP4DxQbCi55lTcvNubUPVAoC9DS36egPGE9HoTClxk1LigIa03ZwexmGKJKE5OBpj1+BOqkq3l+JwesK7tY5ns7Ay+hWQptGDGi1c7ktJAKYA8zM2u85uyClS6jVS6tLGTnV34NKJP68D8SToUY9fdUSHqBJnJR3pPNATgEwTcc3UM9fcXFf7zAkzh9729f9mra3sm4wl5xQBwkmu0l8MIvxRdNCozAkzb/5g6dkHYZXarrRPPReYCyTb2r0ZwP1KCa+Ueg5WVb1ltmGaBvTAKk4B8HdgS00oilKip1JioFLCaErVNqXEQUqJU7W2SqMflFD6Wv7o/DkABVv2Hw2iErh9u9OWg9Z9k5fkNHSc3Y2YwdpGZE6YKb9Y/bfLE5xlmwem/XFjQ86RUucBe0qpW034PqXMebJGL3cHxQOtNWYLUw60F33HL4BOoO8CZrWV0VqSEq75/DU7ycVOtLoPOLoh7eOqjWkAvVe5ezR37Nqk9V93WM3PZas6J0Sz790MiSVmDtbzQjbm5M2dQh8DfYFcfKV/KdFbG6XEMUqJl5QS3Zowz90GV0L1IwjtEOj3J48aeXMHSCiUgMfyluoIkFJXw8wJM4eC/qKouvveAlMD4w7p9uVnNwy5bfGjwy84xhDmy1sCnQ8E7n5r8UX/uvjjGVdIqUvs098GzgaK7e0uQDYQsLevwKqchpRaAY8CV9nHlmPdj8vs7UuBgkO+T5TAbI2+R6OV9iVbv+v6jdhrgcfnVSdtBviiPOP7mgOFk0ZsdhuBqaDPzp166cm19vsTXWVmZSjhVOv3EGN7YgZrG2B/GD8FkVIZTk58b+l5ddYIVkrEKyXeVkocCSClbnTCQ1Mpm5wwGBgmEE93GVe1Swi8O72b4+Iz8o9p63lYaI+1zCXaNDHI4xdnBVxmEMhsbl+2nFUK1vJcvaSUOb8ETENHV2+xYn2n2sUhWjVubRdDCUtVA4FoVCxw5K7kwZ22OI/YkhZeiK/0qwackgkcCcS8qzvh6mdnrfCmVC6q3Ji2J3A37V8FQ2F5SaGehDss+UEXgEZEgPQr979/yj4Zv88BAmG9NZrrz4pQNSdKXSilfqMmDlZK/T8pdXatqo/PA2NqbQ8EDrXbfoflzf3aPvYy8G3AYz4GeIR1j3ZXe/X72pd8l0Z/pdH3afQsfCljd2C8XgIM92tHjXNkc+2LPD7z3ac8Dr8o2LLf3TX7MifMHFoRShabqrt1AmbFjNa/EjNY2wQtYes3r0YTtC6SsJYyMlt2Tn8l4NFPaDTliZGXW3vslkIY4apIKLGtp2EjZgNmmyYG+VJOiQs44t0h4aJ5dd+3IqWukFKX1d8S8JVWhh16VbXXPKW549amckOaC0A4IuH4ziV/j2bfuxVWvKldcIObGi5llWI4TPEEsEkL3aAQJrvyT38pdXWT5rob4S9JWm3Hd/7FcGtvWEvhYgZQAWJ4zdJ4HSj7XxP7BUlKPUNKfamUOjSo09xsO5610ZWfpNS/S6lfr7V9g5T6iFpNHgNus48tzShyklhuDLQLZVhV20IiQyBuFwiHQCAQccDj2C8OVf9OylFKuKXUISl1wR6eymFOzHD+6PxArXH432UvLHIZwUdWlO2xX+aEmTVJp9JyXsTKsNZFzGBtA7rGrw3ZyyOaOr50drlVIaXeAOwvpX6pVSfpS3Gnb3YOrEwwC5L+WdFqXt2WJlTVdUGgtF+7SB6zpLXErfYNanwbSW2dC9ToYzb7Jmln4o5qzDnlSRHTMNmvOeNuj8Md6gPgTqxeFiiLb/Mku45C5oSZQzMnzLx5q3fHlzJUo88C0Oj7G/pCU5wa/g9wqEBcn3511br62islPABS6l1iJaclsTWGpf2iC5b3UrXZhBqAR0RSDPSyeoxVCieNmOMQIZ0et76Q2hWfAKVEYoKrYr9OniJA3LH98eYipc6TUr8JgC9l6L7z4g9xRQyAsEA8uax/4PZvjig/HUseMVTrVIf9v6s0JXwP8JtSwgsQQaTHGZEIO6AilHI34BdEXsucMHNomrfI9qTUbRfs7sQqXbUBG6p69gMddBqhB8Kme+b2Xzr7w/4h8AvwTyn1TmO/WohTDC1SEysdURd1b2PKsGKb2guPg77bk7LsCMh5vLUHr4iP9EmoMrCXfZt1k7STGUYBecD0hp6XUGk85w4Zd+FL6RItJYqknptOLSnsSqA0YTqIWyePGukZP31GoP4zd1/2vm36MEH8LI0QIMKZE2a+OCVp8IEnhX53AGgt3D+5+9z00CPjX/p2bc48oOK4vu/reGdF0cNjXw7YRq48zZu38D8Ox7XliZENSRWOhq7OvKOUKJNSn9NiF7gLMHnUSC/C/A96qyfOBJ5r7yoYqY7w0HhHuEGhHgLMTp4t83/+16XbX1PlouJ9SjwO/7zCSSMm7vDk6CGx7SNh/Z5XDrgoMHEAQA7gS1kGXKzRYwVC2EUxIgGPfh2Is5O+WB6IX7OTMfYE7dYY2aC/LvZn1KgURIBrommM7yrEPKytzEG+5zzAuSDeWnLf6bfV8aEMYAWH/9qqk6s9Abd5i0avBj5pqzm0BHHp8/u74je0fLGFBjJuak6pN21xpdbOM9pkAoIB1V6zmijUqra1EffBUrJoMO6QURM3NikaIQkAFevTtBA6AMIEDNCT2nmcX5sTMl1jNIawDSEnMOaZitMH+7WLsDYI4DYmVlxy6rdrc94A5gMrP1txyqr3lp7nz5wwMwB8A/re4yL5rxsRI1ySGj4fX2lDC43Moh7d3t2dp28aMgL4GW0cjlXKNIz1rGh2KeWWZlPYFayMOBtUfjmsXcHFJXsXbL//vu8nJZcHU1I2VXf7BCxt1WjPsxZKo7WuK1zLuk8W1tpjAs9ljvH/V0pd25jOYLv41VpI6x8BYECNrJaoOS/GdsQM1lZm34xf7gHS+qcsnLH9MbukZVf7wX+9lLpNYkdXP+U93BM0DijqHF6Mr3SHyxkdFi02t58YVgsdcT8XLOsbNyU3r3urDuxLEYmVDm+c33ixUaU260FKHaq/1Z9otNP+92KiEEc7edTIoeFq72HadHhA32Lvvpb2n5zSpoRMT83fLQxUA0ccN+S5/X+N63n+at35wbcjR12c3HPplft3/v4fWKEkYw/u9tUbe6TOfwn4DjTHGHPFCMf3jtfCw+YfteStvIaOLaWeLKV+LPpX1fGZPGqk+/GrjnyldEWXGcIR6QKcAOKommXx9u5dzZ6W7YlgJG8Me35oTj+ZyUvOBCGO7PmZQykxDChUShxR74lNwVc6pzI+Uhp06SB1v8grYSWGAYQX7lUdsDVgt5LsCO3T01WdXscoyi4XHgYRwEpIa/ZK165MLCSglfllw2Ej3IY/vKq838odHJ4OZColDmjsQz+a9FzjPkmjzaBb/7Ot5tBSVG/J+h7Yv63nUZtAWeY0LIPqb1iZrK3FACBFIBrk+agPpcQtWBqIExpznkAMqVVnviaOtskPYYcneHYk4HL8mZSisX/2Yi3otesHfFvhdVTt4494F4HxPKAKJ42Yo9TI94PpZBbC4PPlIv3X+KART4MV+3q4+GP2w87/eVab6fjCowfHOSu/vmLqJfc8nvvsTjWcbaPjOyn1rvVyHAUeuuCEA8D5XNXG1MGJ3TfnJ3bfcvL5Ny2sySnoEJ/jfu6qAcuD8XhFpKgh7R0i5O3k3XxW5oSZ79Regfxh/ZFDAJaX7rkaS291BrCoRSYNxPkdvwhNep0v8r7SOfhSZgGHzNun+ttNncNHUCuwGCBgGt5ursgOQ5EKJ42Ykzlh5nCs+52yd0vs7150rmLXYpc2WG98t6urLOJM+KaikwA8RyRu6b0sED9kXcjbA/iwvgDwaJM5YaaE1CysD/WnmRNmbh80Pgno2ZbGKr4Up0BcAnzUa2z1L202j5ajDEiYkpvnGDc1p708IH8XRnCLO2nNP2hFg3VDl9CYrhtdlKSEl6RGp8s+WILcjUXx542+Wd6FyaNGGu7E8DmRgAtL89GSZMIyhA1nfPWFr9w/8LHzblxYvJNudjuueeqCBFOfcejgzj/99t74O2svaT4KpNeSAtohhd7zMMFpAMlUhs9yfPnIW/rwqz9dceqH/Se8/4CJ467CSSP+UvnMrjT0NXAlVrZ1DGDyqJGulMz175rhLieC3gDilMv/O6fV9LejSR9P1THLg/EcnFhSb8lRKw7aKYqqu2ZiSTsNtw27oZA+FmBNReYjF388Y17hpBEXAiglDCBNSl3X0nuTcJgiyLbJVX/B747s54wYYp95cfd+IcsLar90ZU/LdoDDucifWGdFSvv5X9sGiBmqO6FVDFar0gVnd3X61w6Mq6z4sjx9CeDJ8pYPSnKEe/9QmfY74NnTU5Ed74j0/L0q5RfAk+mu2t9jmJ0X+hN/B7w9XP59ncJMXRmMXwh4053BPQQ6flPYsx7wxBvhrqYWbr92BAAPdNnm+r6p2Ob7cutxL+/5Xaan+u3vKtMezx+dX0nLc6L971ZPklLiD+AwKfVnUuqv6z61dVjXLXhr9/Xu7gG3+aKnrSfTAiT1+mpQ+eqjyNj7pR6Q0+YVrwDGTc3Rz/v+vbl6894HPHPzVOelE3PD9Z/VfDwBcaApNCWpkR9To9CflLpJdebxlc4RvpQfsOp/n93M0ISbgxXx3Typ5S8ESpIWUMtz4U6q3CtYHn/x5kU9f5w8auRB46fPiOl92sxaOeKAoOnB1NsmSUmpP6vvXKWEOMpIOs5hippgPO5zPbOprMfm/eesPeb+zf6uN4A+b9R/b5zWLWHNbQ+Pfbm28bsUq8rQF9G8no6KHbJyNnBCaWG3QUk9N61wJ1Udc/GdczusUssf1ckhgE0hd0O0eCWImiURFyD7TXjf1cm7+f0t/s41z/PtV2GmAEcrJQ6RUkftOR5wm50Nk9QdSYxUPJDYLbHScYEHozuAQMySKnk4chuDM82+jqga0rszLW6w2saqAtwbwl42lHu3Hivwb1twaHFga2zhKUBoddCLy9AG0B0IlEccKV5DuIBkIOBAV3iNSBDIB/ydncH+HsN0LPInfgME9vJW7OkWpv6jOvlbIJDmCJ5XHHEdaQU3azaE3UPXh71Dgfuyp2V/mx1XVh5vRF77vjJtev7o/KgbDQPT8qsWFmcDeqvGHHAXcIVSor+Uutl13JtLcpnjvIDbjKzrHno3s60n0wLoiHsNQLCsd3Jbz6U2gbK+E81QwrP+4r0OAb5tjTFTS50u4KfMMf7WeFnbKZXxkQpPwEh13l7WZGP12VsPvAi63wXi1UBJ0sXjp8+obRjNAXj6piErSwu73gLMnjxq5Anjp89oFxJnbU1FyKrgk7/poBdhq+JDLvC2La23Myb9sW/VyP3mxgeEJfoeAtT/Lps2DxiROWHm0ARXxUvfrz/mlhTPlpGZE2aeWzhpxHwAO5v6zRa7sA6ELVf1FVATznLLZQ9+19LZ8C3O5rA7GaDAn5TfgOYKCID2Yv0ertA47isPpgQF2tRWEuX2qzCvYyVAVW3fWXMIOc0BrpCRYN6ZfMSmjLDRpcg1EDjc7zH/nhhwbDVWBAKNdgmEpJaH9KjEzft9VZHOvnFlsQSqKNEaHlYJ2mnrjpoZzuAnm8Ke+4DAvnFliV1dAdesss4LgcCB8SV0cQUDH5d2Kc0fnR91Pb7sadm/Y2WjukCEkhzh01McgdRVwbgDDfTf/qhOOkYjRgKP7Tdt3y+HJJQGNEz5qTJV5Y/Ob2i2a50YwiwESHaXvF4WTHvEihEjH/iwPRir+FL6JODYI2Lo+zPH+HdJCaCKdYf+CFC2+phm/z2jSbiqy7vA01he+JY3WH0pAjgQeCMa3SklxgGnAyc1RYatKt50xVcZiRunxLu6jKtqdEjMk9cf1qt6S6dnXQmBqlCl9/LtjNWt/N+/f/rX5FEjvwP9lsMbXP7wxce9EK72vNDeE1damlTP5tPKgynLl048tcY4HYwlpO6n/qplXxd3ijiAt6iJx6vlJS+cNGLONU+dP2hNRZ8nftpwxOnA7wff+cwrVx9492u9k1b0AV6IFQsA0Jfzp7HaKqssrUGqI7RvacRZrRH1rmjYy/9XA0/YjqVeICaGTM89WJ9JyXYxnlLq2cBsAKVEV2BTs+OhfSlDE3CkYC0YfN2laKufdbNp6OVFGaHlnTe5PgYe0mjnjqrAVZqOLgDxRqSkWXOJsZXWMFiVgIgGQ0BkU9hzd32xoy1VtD5/dP6c7GnZW4Ocv7lgQc08pgM3jX+n614/VaYesSXiPtQp9MgfK1N7AmcC6w5+Ye9v948v2xLQxn9f+PvK+U0Zv2DL4BBAl/h1/3kk58JTleInKXUFUO+yW2tgCv1/hhbCrlCzq1JTgaldeVjHTc0pfuLaN5YIRyAXuL2lx1vZO3BUn1WetOLUcElTgk53QACoaKpmcMYm56sCcXSXIlcXYGfahX9h8qiRh0PG86B1l/2WX3rhrfPLd9Z+/PQZH029+vAHKzek3YrlRRw9edTIdp9t3VJc89T5jlDk5KFZneYugVMBkFL/ppQYBKze0Tm2B7aflHqZlPoD4ANbpGeHv8OHx74cAi7JnDDzJkFkUlF1t0sm/3TXRX/f6/nqfTN+fbEFLqtDMXnUyGwQf7dE43WERpbBbc90dgaGO4R2qvMXNtRJkIElE+XA0iQtL5w0ogrrs1Xnd1Qp0Qn4CXgNuKF5s0ba+qtotK6Mi/wc5zcuMLRYFH9ThY63Gwlfym/s4CUN4Jeq1EqAHyrTYnJtUaJJBusfh+yRa1Q6e4uImJG1oGCnN/n80flzjn5p4EXFEferBvrnCGJnzVsc21je4Zwnn75hEVbW4XMA17/T7civyjtl+7Xj6AhixHeVaUnA2Oxp2QtTHaFf9o0rW7El4n5o+tmFDVpWNEQkw9QOzst66gDgZiyN02+icmHNpPA5r6u7y3VzxGEuir+porCt59NSpA34oEfx0pNJ2+P9oyDnu7aeT23iO+evKFsl93r21kd7XXLvVTs0FKJFYoXjEIDKhMhv0TBYpdRPY3mIm4RA1BipPWmEwfrguScdDuILEE4QoY1z+zcoLrlyQ6dKOzTHANw0U5mgIzNj2dmDItopKkJJ23hSpdQLd3LaFcBkpcTBUuo/GjpW4aQRRcClYx+/7OuvVh93w1P547ME5kczl42d/OmK04rYDbOkX540KNvh6fNNJOAqAXEOsC+gdpUXqMJAnB9EUfa07KENTHRWttyTqzGGu5R6i1LicWBm02dbew4EAJdAhBKqHVfjK936fVBK3AGkI7lOSl3XNdXIWcViWKNEo3VYCwZlHWuUOR8nwi0aPatgUFa9uobFEfdKgAjiUAP9xfmv9z2zKZNtbR48ff3XP140//H80fnnHpu8KS0nadNZoMcDy8ojjrO+rkifML86cV32tOzvj39lz+fHvd3j+iNfGuStq789UgsuBpj4/b8XAgOl1O3CWAXoudp1gydoOANu3a6MuGhjhuNWAwTLe7QXhYCtlK0+6maA6s37NKj2enPoVOzMAEK91njerrdxPdjetmaxJS3sB9jYOZTTmPNSB6zzBVI7OwMZPYjEJRg0vLSssh+G2ALsqjHj7kpEtPMogMKyPd8AUEqMUko8ppSI38lpbwD3YRUQaDRPXfHkc/5IfDaQ6zRCQz5bcfJ7dvzm3VjZ4buFXu7kUSPjNy3o/a6OGEmd91lx9fjpMz4YP33GxF3FWM2elj00hGPPkJWcNMvOadkp9svKcOxiJo15eZFS3yel/h1AKZHZxGnXFAbYOocdJIKmAZ12Vkp4v7iyEwEOii/5izpGjKbRlMIBBwNaIBAIT7hr4GylRH1K7McApl3JwRXWVq1xpYRre6Hd9sr9p22IPHzGurfyR//xYP7o/JOOS9mUdnBC8RgQ9wCh9SHPRV+Wp08ujbiKs6dlf3raa/2fHvd2j3MsaQtLrmNR8T77gSZkuj+5+OMZXdv4kv7ElzLUFTHuBkgrdZ4drWpD7ZHSFccuBKjcMKT9yRppx6/ARv5Uk2hJDgLy8ZVGI1b5NKXEKqXEnk3toCIxshZAaPZqzHlFwQM+D3brSzCjO1V9BzkqMrP6+Xy+hPrOGz99xpyErlvuAkjquemNXcVAaArdE1ad7xShLVgZ+2Dp8w7FKh6wDUqJ45UShpS6SEp9984e2DtDKfHk8yeMvL5w0ogn/pb57uAkd2khiK012Wn4i0eHZfKokQYwLVzt6edJqbr4ojv+eKut59QCSFuxTtiJVLIhJxVOGjGncNKIiU31tCsl/g4salZhAV/pnLoKqkiprwNG7+z0jSF3d4HWP1el7NHkOcTYhqYYrEog/FifQsN/UPmlWMH2Oz0Hy70eNqF6dcg7xd5/Pla1it5NmEeb8sBpGyqfPWv18/mj8/+VPzr/yONTinrv7S0fB0wFui8NJFz6ZXn6q8DG7GnZb3bOfOwpd5eZhhG3AtrZDTngNq/hz89Cu5pbC1AT35i001ZtwLipOaY3dckyw1V+9uuPXrwjNZWoUPicV4QdOqc0ORytxLoirLKaTZYJ67PKUwCEOm9y1ZeRjlKiq1LibqWEERDp/YCtVQ11XMJYYOPkyWPzH3/8jNt9Pl+dKx7lnbKWBtK7UVrZd+/duQJWdTj+sD3SCqoKJ43QYHmpgCHba68qJY7CCmMa05zxbN3MDOw48v9d9sKSylBSTczhjrLAd0mS+2z8DDgLGH/lY19Oa+v5tBAK8P9ptNJaqhyfYKXD/BTNTpUShyklBgLs7GUte1r20PVh7+EaIUA0yLMco34abbDaMavDgTtMb2R5wuedkrw/JH8LoJRwKiX+ksxix63Y7nUx/JsLFtRo7i0DPsQO7FdKnKmUGN7Ea2lT/nPahjXTRxU+lj86/7r80fnZxyUX7Zfprvon8B7oo/xxK/dxd/paxPd5BiOuMEI7uiGHHfp4jUZbS6O79MMifeAb1QDJvb8Y0dZz2RGe1OVfm6EkR/naoce01BidtjgGOiPCCLr13Gj0J6X+Wkp9vi1R1DR8pSawDiuGtT5OBa4H9nYXb7RCUbUGbeIs3viuYYRerq5O22fDhv3uAjb4fP96/sknR9783HPD4rYO5/MNrdS9Xgh27kll10EHRuISZu+ORmvmhJl9SgLpzqKqrk8AKCXiAOrIsv4aOAdolnElpTal1GdgLbcCMKzPR90AMuLWf0Qjl4E7Io+MOXZc2couOcm9i+YC/23r+bQU1rNfDHeiJ2LFqd+TPS27V0uPK6Uuk1LfKqUOKCXilBJ9mtunHfr0KPBm/WFQOge0w97Y1Z1ArUZTPKxkLSiYk7Wg4J5qWXK6dmp/8vPdLy4YlJUG/BP4QynRZftz8kfnz8kfnT+xdtC1lPpLKfVltd7kbwNuqjmulHA3ZX7tgQdPX5//wblLJ+ePzr8E+C9oS1ZbhExv1w+eazc3ZF/K4QnVjrRqr/mWsGtTR6umfHvknOser0KEI8GK7u1SNL608LhJgPYX79kyNbKB5HLnPgCdN7meaW5fSglDKREVb7XfY+rK+MjROxnLCSClfhLIklL/4Srd/EL8yoW4i9YQv3JRIG79yvvvuOPey3r2/DHO4yk9FXhLCH3m2rVD7lu58ogNPp9v6t13TxgO5hWA23KACMLxSbvrQ+UogM3+rjPt3+9ipcQ2KhVKiQuVEn2k1FpKPV1K3SzJpZrPS20P7tKSgR6AvdLm399u7o0txORRI4eFqrz/FY6ISuhSfFhdEmy7Cvmj8+f8OnreLcDfQCdmOAO/3fBu1/R6T4werwKfKyWaVQvH/ryOBC6sr/LbXp6KzjVSnuziTqDWpEkGaw1D/rvxd6PKkSNM0VOjXxF+4yvgNSn1RmhSMsZQ4P/sc1OA1UqJi5szx/aBUCACQFgIHRia8UdDKn60Fj6gKN7vGF1XvM4uh3Zu8Rfv1S4zN8dNzdkM/IAIj2ypMUyhD8bSeWyIkHd97AOUKCVObW5HAY8ZcUTEDss3KiVygHk1iRRS6pVgxaK6IyWkOQqIcxadWBOLOmbM7MDNNz/0vs/nu6RPn6969Ojx473Ax8CFkYj3cxAXArZnVuOsKt8tHyr9UxZe5hChaqza7F6s0sBbEy+VEunAI8CEaIxnS2UVKSVOrr1/eelAJ8C3a3N2xXLQgFUY4JFLhj+LEfkQ9CIdcZx23o2Ldhv92fzR+fOOSCyevDnsTv+2PO3l7GnZrSUZNBG4RUrd5BCoGmNXSr1BSv1bfe03hL29HZhhl9D3AcNbuwz8rkqzDFawvK3aoa8WiBOSp3W/X0p9I4BSojsw1457ahBSan/NgwiIA97BfqgqJTKVEmNqlqw6ErVDIq7ssmL+hRlr/qWUcNR3Xkuz+ilvLnCc32M+ga+0zasdtSLloNtdDGsNid2/K0IbQ6Y/PLbJSUw7oyIx8n9VcWYVvtKmL+H/SQlWZvevze0opcz5gTdgGHZRg+3ZgBUy8Bed10jItbp6U8pLVz2dN3tH/Y4ZM7v8sstm3vavf91zNtDF4yn9HKiJe9VGdeX3jurKYbtj4lVZMPXAzOSllYWTRkSk1BVS6ttql2O167MfDlwXpSGrseL8f6y902kEM0GXFE4asUtmVNvhJrNCld4xmIbXk1J5/+5YGnjqmWt8XsP0lZmuvwG3tMaYUurvpdRvAigl9lZKNCU/YJpS4rWGOOGyp2V7SiOunAjGq79cNO/2mLEaPZptsALsPW/B1MA+FQXeX5MOLxiUdZa9OxXr5lRvEsWOkFKvl1JfLqX+2d51NvAU0An+XB7sKNSERGTFVVwNXNTsShxRoHOR64qQ0wyv7xZ6pK3n0pq4k1Z1jcuY125jpZ1xW14Gg9KVMvryVr4UkVDp8IadOhreVaTUq6TUvlovms1hDZBAraIOSokh9jjzgGE7rAinRVVcetlgpcTL9Q3g8/kqw+XO+zE1aK0Bv5mQdN3uaKxmTpiZvqm6a+LK8n6PKiXS7YQSAaCUuEgpMRpASl3QHO9UbaTUK6TU10qp19fe3z9l8Wld49fWmSC3CyABr13FKhIoTezRttNpO6pNx13AS8A9l7/Vs9VKzyolegA/APc28jwB/Az8XF8oAMAAT+UYLPvnlSZMM8ZOiIrBCuBc5zkAS3j7+YJBWftKqQuAQ6XUiwCUEncpJU5rxhAPAIOl1DWi4tOUElEpK9maSKm/lVJ/D1uzZdsGX8qRnqCxnzMsJmSO8Re12TzagEgwodhf0s8xJTevXSbZlCw76Q1gc6iy+5Et0H0fhykSkssd9Rp3DUEpMShaL4+bO4U9AGt6BA+z+z4b+FEpcSxsG/NYG4cn6HUn+rOB8xoyTvfI7PviVy7ACFQ9hhDDfT7fbmes2hwJEDI9s7EkeuYAe9kP6POA86N5j1JK7KGU2GdHx9ZW9KoytbE4WmO1NzwpFRtAC0DboviqjafUZuSPztcDvRWXd3f5K3+oTL1h8LR992uNce2X3WuBhxp5npZSPyClblARTr8pfC4R0U7MqiZMM8ZOiNrNaN9vlwSAs7RDV0dSQz/8eF3nzJoHjFLCC4wA6kyoqA/7QzOv1q5fga3xTkqJ/1NKNCTDuF2glBgPzGorozXkNB/S6A0C8XhbjN9WTMnNGxoJdOquwwmdgVnt0WgdNzUnAuaniPDI1x8dHdXQEb/HrAnR+XmnDRuArb88DytZstkEPGYRgCsk+tm73gX+gV0nvC7cCf50M2wAzK4v1GbyqJHnlBZ2PSgxYe3yOyY98I/d2Fhl7/RfrzZEJIK1PP8UVhnqRfZ9+3TgtKbqrNbBTcB3OwrrqgilJBRVd99li5Z4kqpvxjARRuQ/wG5bBriGN0ctr9rDU3loWIsNJuL97GnZf0nUbgmk1E9LqdcpJYRS4tD62islzmuMclH2tOzj1oTiuoa0QRjj45icVXSJqrGUtaBgbdUxxbcZ5c64eJX2QsGgLAdYsanAYdgxK0qJfZQSZzenQo6U+j9S6ol2f5nAk8C59rYRjeo7LUwR1hLozqrJtAirn4ob5wobQzZlhD/HV7q7vQVKtn7udbvNDE/t/3EJ2plmhuPPiWa/5UmRXI1mbffggih0ZwIXYlU9ajY91rk/B6iOM09RSiRIqYNS6in1hc9UFyf+Wraq8xdS6pydtbXjCF8GIao3pXbbHWWsalNU1W3vHgkrywonjfBLqcux1qvfU0p4pdTVUupo3xtuBc6UUm+TaHTqZF8c0FVgtmg54rZi8qiRe5Wtzuif0Ln04+tf/ejG3d1YreGxM9fOA3Eq6K7JjtDv+0/b545WNPAuB+YoJQ6pq4HtTPqn/X+9XPdOtwzQT1pfI6tIEu30+dJRibp3b8hjG55A6CuNasdRwJ01+6XUoVo6jdcCU6gVq9YcpNSFwJ78Wcv8b8CC5lTeaWmk1C9IqS+QUrd6kkHPNa6zIoYuq0wwr2ntsdsBCswar1G7LclpOKseBiheOmJgNPtNKXU4Qi69tsfl1WXN7UtKXSWlfmW7lY/msBbANPTxWNXxGoY2qkB4lBKfKCXqXu4T+gR2nwIZOyVzwsyEouruGasr+j1xzwedJp85vd9LX5R1OggrR6BFilZIqTdKqT/dfn+vpOUHAxzZc1bflhi3HfAvEP7KDZ0ubuuJtDfyR+f/1N9T9WZZxNUtgvDRwPKtUWAakMt2yX+1sVcXDgcurq+z41/ZM36RP2EhkAk6iPVs2S2VR1qSFlmO3vuPhY9r9FPArT+P7Xb/DppcARwjpS61XfPDm+sRlVIvlVKX2Jt+YCGwAkApIZUSBzen/5ZCKdFHKdGgN7io4Es5RiCkwxT/yhzjb5fSTi3JuKk5czwpyycDOL1bbh83NaddejvOvf6xhcBPZjg+eslhvhThDhkD3CHjk2h0p5Q4XCkRFRFwpYQTX2l12KGDyWWOBVLqDxt6rjupqpMzLtATOB7rZXiHOOMC31o/aU3sYXIo4HRnfFb05pYe1y3yJ5z/ZnH3665fufdNtrc1qiglbqyJRd6e/KKDkgBKAmntSe4vKrx0X9bJoM9zuENPj58+o0kJyLs6ywIJ861KWK3nlbRXEJ6UUmulRDelxN61jysleiglnLZy0U7/btnTsj3rQt43Vwbj0oYmFj8BQmIVxYjJWUWZFoufrDpuy/Whnv6KuDkp1xUMytom0F5KHZZSz7c3RwCfY8VMRQUp9Wwp9SlS6hoJnHuAp2plwLancIHzgDtr9CVbmsr4yCum0MXAE60xXnskUDrgSYCwP724reeyMwxX+WzQQ6c/PDYqnqfNncIDgc4aHS2ty+nAjl5IG4X9sChQShwWduoqT8Bo1H3JnVTdzeEKd8WqfvW/utp13nvl5wCGKzKH3TyO8MAuc24CE2+nr9MiIOzsdW9IG69kT8u+48q3epx/47tdoxI/bWtYXoP1QvEXVpYPSAHI3zRkl4thLV3Z5V+GM0LGPivq/FzGQNmJaACtWgXStgVeB96pSR614+A/wIqh3yk3vNs1zisiM4ATQVz+5JlrcndUJClGdGgxg3XIoxsrIl2CBxEWm4B3CwZlpdbR9COsOLj3wNJvbQGD8iTgfPttyg3MV0pcGuUxmsqDwN52WEOLUvFA4skJVY4eG7uEZuMr3W0Eq3fACtAhh7tscFtPZGek9vt0CQgRDqRcHY3+/F5zNMDqXsFm66/a39HTgUnN7QvYhFWeudwbML5LrHQ0KnayYl3aF4Gy+DVS6oeAq+vSWTzvhkURIGCGnF/vzsYqwMryfn0y4jaW4PB/CFTbFXnCQCVo31cV6S99XpZRkj0t+8UhL+x90fh3uu7R1LFsSaxMLMfBX4hzVNR4XncpqafJo0bu5y9OOgjB/RdMWLDLKiA0F9uwO9HAjPRyVa9vTUPPTjD8B1b1qpoKbiZWsYGdOnWyp2UfOac8bVV8dedjj9g45OMzl5/5RwtPd7enRbVMD3h1zaKCQVlnafTscI/Ajz+O77z3wZOLQrXb2EkSLwEoJRKAb4EPgXHRmoeUugwrmxkgBUthYLU9ZjrWEsT7UurQDjtoQWwvcE3owgAp9dKWGiux0jFeo9cJvStUD2s646bmhJ8c/5J2xRedAUTFGGwJHK7K5xCRB0qWnbjD6k+NpXOR06vRZsil325uX/aN/qfm9GGH6fxkV8azNGdVyhpg/0Z1pI0qwKuU6IwVCnQ3dUnXCB10eoNdmzzpXYDMCTNd0K13srv4rUf6znv+rS3drlXlGemAyh+dP+eSN3tnOoV546+VKd1CcGJAOy74rKwzB7+w9zy/dryR4gjNKo84tYk4uuac+sa0761/ub9mTpg5VBB/sb0kPCNzwszhu0ppVsMZnmSGnaVmyBmNl7pdmvzR+XlnTu83f4k/fu/sadk+4JPWMlyl1HNrfrYVAb6tKTSwI258t6v4vCz9RnBMdFR1FcesOwaB+BtwjM/n251l8lqcFpdUylpQ8I3/kLJXXWu9e3h/SppST/NqYDJW7V+UEo5oe1ul1EVS6vOk1DVxfOcAbwKD7DHbJFxAKXERsFApcWBL9F/yUMLfgWMEYlLXK6uiHqPW8RB/+Ev2+EvVpPbE2Vc9H0I7PgJxwpTcvGZ/Lt0hYy+BmN9/dGBLc/tSSuQoJZpc2MAuCPA9Vjz7VopTw+ka3a3wOW+DK9p5O5V1EY5IKpanNg3LO7JDnN5gQnxGab1yNrsycc7Kg4CE3kmF84G1Z3Za/2HtJcxnz1pV+OSZa6788aL5ZwBdD4gvPWP/+LLZAW1UAv8qjbi+MuFr0PdST5KMUmIvpcRPSomD6mhykkbUhCTsMolwL9679/lm2HliYvctM8dPn9GuQ4/aC4v8iQ+bGA7gdlov+WorSon+WOGJi+pqc8C0fQ7Nr07aHNKOSYDo7O+MsP6LqQK0Aq2iARrpHLrYjI9Md27wjC0YlHVGXe2k1KaU+n9S6q/tXTcCnyklWlL6aSpWAlhN5Z8HlBKvtoHh+j7wL6Ag2h0XPucVjoh4Kugyg1jyX7s9ocruX5ihhO5TcvParnhDA3AnrpkDdEvb4/3TmtNP4XNeYQo9NOzQ0Vq2uh34dzPO/xnLWH2+9s6wU68VCOKrjP4N7cibUtUDiLO9vpexkzKikZBzY9WmlN16eXb/zj/cDBDnrHpHSj1MSl2nnFT+6PzIC39f+c4Lf1+ZM3f0H4cCXVIdQVsXVwggLk6Eb73x3a513S/TsZZY19VxPKWm+hO7UCJc0by+o4Uz4k/ssfnGtp5LB6JGi9WgbYy/mmp9H21/4KI3+hySPS379TDGdxtDHvcenorPgepSV0lEINCxRM5WoVUe1gdPLtJGlWM08L029Es/XdXl5AaeuhFY2QJ6gFuRUkek1F/W2rUF2FSr6MEpSomoLMnWM48SKfW922sURoO+K9zDkiocKWXJkReiVD++wyOMwFLAG9/ltybH5rUGyb2/UAChyi7N0mMVmgMNLdI2ZYSiFQZ0OlbseYNRSjiVEvcqJXrahUCe2P673XmT60OALkWupIb2W7K86x864tCTR40cKqV+CnjTjlX/Czrs2BKu9rRrz3pLs7B434wU95bKfxwwsdG6p/mj8zeVRNy3gqgGIqB1tXaO+KUyZVn2tOy/SLBJqedIqQ/ZUUnda54635HoKrvAaQQLsF6AdolwgMmjRh6mI47jdNhx1/k3LlxT/xkxbJQVGqKhDYw/O4bVAK5SSnjyZqfd+O5nA+654s0B3/xelfy9QI8E7gpqo/s75yw/7ojELVfs5QnkAwjEM0AsHKCFaTXvUtaCgkBwz6rzdXzE4/0h+ZWdJGFtRUr9jJT6EtgqM/Ge7bZvMaTU90mpr7LH7Ay8jeXpbRWUEnsrJb6KmmqAL0UIxJ3AmozNrqui0ucuQNqAD+MAvCnLR7b1XHbGqGue/h3MuRXrDuvWnH56rnH3BfAEjBejMS/7BWthI0/rD1zFzhVBah7wDapaZ4n/iwuw3HSzXr5/4DVYL7o7HMNwhoXDE2yVqjrtkcwJM8UWf+e9+iQvKwLym7KSZIcODAdud6KPPiSh+LWNYXc6MHfIC3vff8O7XdMAlBJpdSXAAawuzxxbEUpOO6JH3meFk0ZM3BWMVQBPasVLCLMYeLSt59KRyB+dP8eJ6U8wIotpZUkopcTBSolkKbW+asW+B35c0vvbsJn27wSDW09J5fBhSRVLj03edGj+6Px/5Y/OLwc4J31tj0NdkWy7i5tjxmrL06rLoYM/WLE0kFU52ih1eoGXCgZlNWb8vYFDaOFEsdpIqYuAA4FHwIq7U0r8vL1mW5SpALoCvaPR2druwWuBIyOGfiDmXf2TcCDlE4DyNUOjWvq0ZTBmAkdMyc1LaWoPzogYDJhpJc7PmzsbpcQxSolxdXkxd9DeBSClXoSliFGnxM/6rsESgCpv5A58KQ2JYZOg7b+hdm+a1yfD3n/Tjhp7Uip7epKr9m3IvHdF+iYvORDIMLXjNeD2mpWkxlIj3fPr6HlfP3PW6nM1Yk9gekA7bviuInXDIS/sfSqWgsSiusrl/rzx8BMFZlGqp/iWJl9QO+OJ64aeHihJHJA2YN3X46fPaPWiMB2dMI6NlaZzTisbqx4slaIXrbhZPTtgxh1oIDAEuASRk1Mdzzx4+vr82udJqSeWlGSuc7kqIj6fb1NrzXd3ptXj9w58ce1LAnENMCLYv+rlhp4npf4cyLQfeiglrlFKRLUKUB3jzq21nJWEtVSxxp7DYKXEoCiPtxIYJKVuvoi2L0WkljjHB9xmZFXv4LPNn92uQ9nKnHmAP1TVrd1njMd1KpgDOFL7fXRDU/vwe8wREUMXRqkU7+lYmfj1qmooJboBPyslzgHYWbwkQNcNru4aTZzfyAZmNcBoVbXnEfZ7PgTOpo5VkWBF3AJ/SeKq+ua9q9I7qfAagK4Jaz6VUr8SrX7zR+dvyB+df9ExSZuvC2ljS7V2vHv76r32WR6Im76jcrl73PxuX2Ckxnjq4bEvVUZrHm1Nxdr0q0FvcCf6L27ruXRQqoEGJ1xGA1t27TSssBQJwr0k4CCsrRIjQmgBWtW0t5PBuwOUlfUOOhyhaJS5jtEA2irh5PFg/6qf3Mviz/nttD7/aOhJ9gerRorqduD/WmqCdYw/W0p9mJS61N41EfjUrjkczXFMuwLYRUqJ1GZ0dWx8tdETuCVzjD+mDFCLcVNzTGGEVjo8Je2yAlptErv/+Llw+M3ytYedOyU3r0mZs4bJAaUpf7Ebmsp1wMAGeudKsGTbNjakY4GQjcm6tfRUxTDQG0H8YuurzrTH/QuRgHuDGXKaOzq2OzC36KDURFepec7AZ1pEPu9/Z6z9b6Xp7ANMKI24Dnp0Q7+bjn15z/eyp2XfWjvre7/OP74oMI1EV+nTO+muQ/HQBX+7DsvgeeWCmwuarcSxO9LFGejVz1N5VGuNVxMSI6X+wZa3UgCFQYd+rMgTqDDNn0EY4L9lVt6Am2flDRgKnA8s/eSTpAPC4bhefn9ag6vyxWgebWKwZi0o0MFBVceaCZGFngUJEwsGZWU15nwp9WZgX6ysepQSg5QS++z8rBZhDHBuLQPzc6XEJVHqexDwHDC2KSfbWeH3AKs8QePhKM1plyIuvSDRcFUd1tbzqI+ieRftryNeHQmk9QdmNdpo9aV0d4cMI67aeCEa87ETpop21kYpsb9SwmuXNjxZSp3XwO6V/W+Ds25to/UFYP/Jo0YmYhnUPyol/vJ7cniDbsMZbvEkyvZKZSjpgIGd/jDcjtCIlhojf3R+8NG+fwRu67F4cTeXv3xD2HsKlkd+Vva07KGZE2a6/9h84AH9Uhav/OPu85a31Dxak8mjRg41Q87JdsJQrhVbHaOxBLWxsSTsahVj3zZWZyoltoYPHZO0uQ8g3CLy8fKgY1iyo/RQCK8H70jsz3DE7FoBPDh//lluwA1/6rjGaFnaTNLn4AeLSo1Kx7FAlXaaM3/8Z0afxpwvpV5fK8P4IeDjhsbURQsp9QYp9Tf2ZgoQwKoWg1LCq5Q4rqneVyl1AXA4li5to3GFxE2GFoeUJodfwlcaaEofuzrh6k6fhSq6iSm5ee09jlX++aP2Uo/XcQecDxDnN9Y3dyJKiQOVEg/XLInV0aYr8DVNqYLlK50TdpiRaq+5DhiOr7RBsWyJ3bb8ALgyslZOAN6wd/8lLMCdVLUvQvfaHQ2Kv/93wt4R7ey1ujzzHqDB4Vg7o1a56+5KiY+VEiPtVaGHuriC2R6h38aStartMT8jGPEmLisdeFk05tBOkCDMXU1PtrUpibiWF0fcJa00nBdLu7msZseqoPcCA41M2ny1FUcrDgYH9t/VAbggYaCU+rb4+E3nA/TqNWd3rhrZqrSpBmXWgoLV4S7BizBFP88fid80MgmrNqOBc6TUQdvTOSCa82wIdtb0CCl1jRfrTOBToMnLG1Lq723vbXKjjHFfiui23nVOyGlWFqdF6hRR390JVvT6GgwX0KiXpTZAAcGaiCpvp4KGf759KUM1usZwfKiBiUw7Iwu4lJ3Er0qpN2CtDNzXtCFEIOTSCxpqrAIk9dw0w3CGIxUbUg+x49xzgPG120weNXJodVFKNzPkNIBZu5vRGuesygXYv8sPC+zqf43CliWrUQDwKCXmAxPsw5uBDCw93BIgG+i3JJDwBH++yIcA5XFU/xNYCnzWzEtqTyggSK3rbMvJdGCqQbdKDKuUulpKfZGU+nGA7GnZYlkgYT8NH08+fcOSWXn9TtAkfQO6M9b9N2x50KvmAWzevJcDzIjDEfq4NeYbo40NVoDsL5d+Etiv4hlXYVwv7CX+xiKl3ljL03kusEAp0dZLvW9iGa1fAiglrldKPKeUaJTKgVIiA5gPNCbh5hqHKQa7wsaUWOxq3Ti9m1cAxGfkH97Wc9kZ46bmWDJCIvIvw1W+xr9l0FlTcvP6NvB0ieUZgCh4fqTULwMpUuptsmLtF8Ubaiq1SalftUuuNhpnRFQklzvqrDazI867cVG1GXa+69+SvPfkUSMFVmLkNr8jV0L1jYBjd/WCrSnvu5/HUc0RPfI+bUh7pUTX7UKtFmCXvLXzCb4AltjbQSn1ECn1G/b2H1LqwloSWHcAw4+sPrh7IBJ30AFd5vxUOGnELhNLbMdOb71OeztGIxngqdwvwxls8fA+pcQ5Solt7g8CfVimO9JnbEagYlbegCfB+BDECkHZiYAE/8uGWBt2GOsLAYLBpL5gzB8zZvYukzTY3mk1iaid4f0taSyW8XzH7ydmrh78UeFTzejuE6xYkx/BWpqXUre6nJN9Q69dsz0RSLPFiVFKHAH8JqXe6YddSr1JKfE8Vsm4egndkyyd8CCAQFyFL+XdxniqdidS+32ycVPBebgS151KlJZIWwrbaJ0zJTfvFeA3RPi11x+9+Oizr3q+vkx9BUQ02iEQUfH87CjrGysk5h9AL+CX5o7RRGYCZ2KYj5YUdsnqltI5Z+m9zz4WLu7yxmdl/7kyVJl4muWlxmQ39IJtrO62Z9/kpRV9kpdv3tFxpUQ20F9K/Z696w0sw77GE30/f+rkIqW+gu2wV7euBh6oUYSwjdY5AHve8vZTBpFwz8SVt0XpstoNtpEau9c2gwrTsbwi4kxoyTGUEknAY8C7wNack2OTK549LsmBS+iz7Jfaj8E4Kydnc80zeo5S4jopdTGAYYQOxnZIxWgd2tzDClYSFnBlJDW02rnW/eTPY7sNb2pfUurNUuq7pNQRpUQiljh2g5UIWgop9V3YYub2F+ZjbMOyAefeJqX+fqeNfClx+FL+4QzznkAIsZt6kRqDMEJzEZHq8tVHdpiM3nFTc5a6EtZOQDsPC5T1+UsJwb/gK50jEF8JxEYaERO6I+ziHR/VXr1QSriUEsJeBj6MnZRFbSghp5m+JS3c6BUSpzdgqXeYYlxJ3qlH9vj+f7jL9rjSY8TnJfr3+nti982znfGBE7GrKu1OXrDcqZf2LQ+mdF9T0fdRKbVZMCjrjHzZ/+XvJqY8UavZNcCztYoJ3E6tv6eU+kkp9cx6hhpCHYmimRNmJodMzzkmjpf/d9kLS5pzPTF2TTaEvAv82hFuyTGk1OXAYODmmn3Z07IdTtz9nEIjhMB+sf1yeM7SSgClRB/73GKAZ5/NyTRNV5eMjAUtalzH2JZ2YbACZC0o8PsPLTsTLSrivkqdUjAoq8ki6bVwAF8Bv0ahr2ZTSwaoAjgRe3lNKZGplJhlezh2iG0Y3KmUuGCbA76U5I1T4t8NO3QR8KhAFGp0SKNjsVT1cPZV0zTasdAMx7f3GNZtSM387LG49HnzylYdI6fk5tUbzuD3mF2CLrM0Cp72rlgVqEwApUQ81orG7QBS6nVS6mYv8wotAq6QaLQQd9jvGWjFmAm6ePu4hTYQQmAIQwxMOeSDy/87J+ea5z7/ZPz0GRN3J2MVQCOuBCGGdp+9sWBQ1lDgTcd693nJr3S7LH9Y/2PtZvcAg2vuU1LqL6TU3zVmHCn1dKDzjvR2B3f+YRKQaIjIY828nBi7LLpFY1iVEskAUupVdqx9DUcW+J0eEHbZZhHBfnYqJQYDy5US59U0XrfuoP4AgUDSG8RoNdpFSEANQx7e+EPBoKwRwCxt6I/mDxo0QyBmZy0oaNLDxdZL3eryt+UrMoAJdSxrtgr2A+HrWrv6YiX+lAAoJfoBYSl1bYHzCDC880ZnFr6U3gG3WeAJGgcAV3cpcqWWJUU2JVYYIw0tvhCIw7A8qyoWDrBzHJ6SDTriOrCt59EYzr5qmp6Sm3cE8Bvw8uNXvb//FY+eUlpX+4hD9w26dXVzJTSk1L8C+9XaVY2VPBNVaSJnRFQkVTia4oFTdo1790b/SkA7tAZTa9ZWLdlta7orJQxTj73CEGHtcgSfB64AEAh0iLBznedg4HMpdWEzxxG25NlfwpwyJ8wUneP6XNgzcUXVkK7f/AinNGeoGLso+8WVHfJHdXJSS/StlPACvyglpkupb619LMEIX1oYdFRvDouRnV36EdBdBSU1L2uFWGGGW1e0QqGELIDS0swGxYPHiA7txsNaQ9aCgi9Nb+QJYYqhWG/8s2yPQDToCfRpS2N1R0ipvwD2qmWg3g38XlsZQEptDv028dZ95sefrNH3uoPiHawAfxV26KHJ4ys6G/8qU/hKNb7SOfhKJ8aM1fpJ6Dw3wYx4u77+6MWtWl2luYybmlMKnAdmn7i0xTtdQYivMtYmVjhUtMZWSuyhlOhiGydjpdQvRqvv5lAr8eX2NHe3B2r2CyDV3aWt4mrbA+5fNhxWHO+sXPD45c+VAEqjtUYjanmSosDDSonXa4UU1ObIoupuiRHtuOPhsS83qRxsjF2fkohrgYngpFf3aCln2svANprQN7zb1QNc0M9Ttfacvy3JE1R8BSIDxN/BcnxJqX014QAAXu+W44WIlAJridFqtDuDFUD4jTX2zVQAHqIUhymlvho4D7bG4/1bKdEuYlC2qxp0GzBaSh0EUEo8r5QY7QkahwNu+/dCwGU+h6/0dOftZY1atovxJ9Ule7yBdlA0/9zebT2XxjJuas6c5N5fzq7ceEC/x678aHRd7QQi2dCiuK7jDcEuR/i7UmIsVgLgtOb0tzPsGNYmvaSOnz5jzvjpMyYelHFcGULYIQGOyMCUgzOiPc+OwtuLz4/b4s/o6XYE/1zVEbaHFb0j47KprAdW11EB7UqgZH1lr8ejOF6MXYyVwfgCgFXBuKg7EOwiJv+SUs+qvV+VpedUmk6R4gjb5cvD/wPQJB2glHhcKTHkr73pY12uSg9W3H6MVqJ9GqwIJaylPQ0YkdTQkB/Hd47KjbWWd/UkrKzmHtHoN5pIqQul1B8AKCXigP5Y8YOqssgVKpqfYBYvjg+undElEEXv825JqKLHTwBo155tPJUmEfan/Q34SpueR6fk5u1Qn9VEZwSd5qHN1GBNARZjlVi9DCtBp0UQWvhdIdEkSaxa1NxDwkKIILtpLLdSIjXFU3yfxuHYv/MP6+zdUmihAQTCbbrMqCSlSqnvk1Jfv/3+K58Ys69DhEd1T1j1WeGkEVU7OjdGDAADS9EnwQjHR7NfpcTdSolDd3TMrx1nAhW/VaU8BJCTs3ke8AOIE4AzsKpObsXn8+X4/Z3ig8EkDzDL5/PFnsGtRLs0WO2Y1eHAbZHE8DeOEtcZ7kXxMwsGZUXNGyClfhoYIKVeDFt12RKj1X+0sMWNjwb+U/BaD1bMznBtmptsbPg51e0vdl9GdEMmdjuc8RuXAsRl/HF8W8+lKYy5+7oIcAGY2pW45uvtQxvMO5OPEOBwhUU2MKsZRuuJwItS6vek1J/a4vwtgjMiKpMqHM2qdd9r0lHb6GLa27sj51aGknIBNvm7TLX3KSyR+4hGayNknPf7SZn5BYOyOjd1EKVEvzpCAfht4yGXRbRTDO784zNN7T/G7sHBCSUHAgxNLI5a8R9by/wS4Ljtj93wbtcEB+Y5TsyZ+aPza1WsMj8CMdjUKScBr2x32jVWoJGoXb0tRivQLg1WsIzWrAUF91UfU3JMcEDVV+7F8ScCjzSjGtZfkFKvh63agS8Df/EOtBfs7OuzMDHsLwtYfz83sS9Mk0nr99FGw1WhHa6KnLaeS1MZNzVnZWr/j54OVfTsVrpSPlr7mKHF0UBNeE2Tbq5KCQeWtubldRkl7ZFek46a02vSURN3Y2MV4PlPCk9ZBHrD3KKDM2Ebh8DtOiFynP/Asi9cy7yDgIL5+wy6sLGrWXb1qwXArdsfy5ww07m2ss9pwOdTc5/5pLkXE2PXpijsng+wIhBXn750g7GLnAwC/rP9sfKI8/oIRsJhicULa+8XYkspCKF10tSI2X+rZ/a556TL4ag61pa9iinxtDLt1mCt4eDJRRH30vhjsD5s/whlVn/74/jOrmiOIaVeChxhj1HjLYiGrFa0yQbQaFOjwVIO2G2XO6PB2VdN02bYs7hi3aHeKbl5HdZTff6Nk8cbzqpXguV9LpmSm3dMrUNKIGp0DRt1c1VKGEoJlx1Gk0Hd8YlRJegyMzZ3Ch/R0uPsDuR+9vohlaHkvYAuwKzMCTOHwlaHwMR9fl4864BX1kiB2B9YLCLiBff8hI1zj+23VyOGCWK90Ly9/YHM5MWjgd5YQu0xYuyUZYGEJQCLA4lR0R7U27cAANrGSURBVGJVSmQpJQwpdfmOCgh9U5G2p4EuT3RE7q91Tgo66LMiEl0HAbNm5Q0YClBS0u+SSCQ+PjV1+WvYqzc+n293fiFuVdq9wQpbCwvcGNyr8i1XYdyhcXNSPi4YlBVto/U7KXWV7UF6FchrT96kn8Z1PQs4DsELAnGbQFyGLYDeVNmvGDAlN28o2jUAxB7ArI5stJrh+MuBJRjBdx+/6v37p+TmDcVXOsfvMe8GKEkOP9VQ5Qj7s/8c8LxSwsBaFvt652dFB0dEVHsCIpZ920yUEuN6JK56rCHLl1kLCuYBR1YfXDrdtcqT6lrt/aVgUNY1BYOyHDtqXxspdaWU+gkp9fztjzlEZFKyuzjUN3nJB828nBi7AS5hBgDijXCzpa2UEl2BH4D7dnQ8e1q2F8RpJuKNB07bsFWKzTTTBmu6uHb0vSkt7Xse6BUJCZsu9vl8E2PGauvSIQxWsIzWwe+vPCvUy/+wY4srB3ijYFCWJ9rj2B6kq4FbpdTarpGeHO1xGot7YfxEMy6iK0/YfEfWgoKJWQsKnrL/jX1hmodka6a09tKBwyvGTc2pcCetmIrpSjVDCTcAakpu3pHru4UeN4VGQL+G9mV/Dwrs/7WU+nYp9QstNffaOEwRTKx0pDYzSWy3xn7hOLc0kNrDWr6sv5BI1oKCyIEvrj1HhI0BWCUn/xvuHtj8+wmZ/ywYlHXzjmLllRK9lRJ/tzUutyFzwsw9lpYOyuiRuOrtL265pkWrF8XYNaiJXT0oofTgKHRXBFwFPL2jg0MSSm4EklIdoZpSxMzKG3CqJuVzMLygg9Ra9r///iuPAo4G8cjYsR8GozC/GI2kXRUOaAj7fb782oJBWUuAR0N9qpf/eH3n7IMfLNphbeymIqX+odbmBcC/lRJH2aEDrU7BoKyhLrx7RNKDDxz8UNGK2scmjxo5FLtIgDftemp+tmvPx6gfBQTs6iqCKIvgtzbB8r4ey0ARAnAjwp99ueq2BcMDM37rYRZ0r+98pURnIF1KvUBKPcnel6qUKItGFat68aUM1eg0gTgEK0msWeVkd1ek1Hro3VMnbPZ3/Qp4GNgAqMJJI+r9XWYtKFhZMChrhH//8jvdC+JvdfiNB7CqmwUKBmVtv6JzDnA/VvGTldt1lQuEF2zZr93mBsRoX2wIeZYArAzENbtctn2/er6u4xtD7r8nGGF9WGLxJ3l5nRI0KfeBcTWYqwQVF2lSA9jP0+E5S+fkz71omd+fagphxpIH24gOZ7ACZC0o+N8vo3vs5/0heaxznWdGwaCs47MWFJS30HDzgBlY1S62VnNpobF2iDb0RGGKjY7N7jtr77eNVYX1dwyZ4bWG4exhAMEpuXnDY0Zr/YybmjNnSm7ecETkFLQjF7hpSm7eO+Om5gTaem5NRIHwYy1jma74DWsr1h88+F3zcNHJuYLq8c++GwynrowEUl+t4/PxBtBDKbG3lLrGK/YMlrTaAS09+bBDn+KMCLBeHmqW4mKf40ailBCdvHc9v6m6i+k0wv8quOfsOiuh7Qg7DOuO+XsPcgjEzYCh0R6BkGz793gQ+EJKvY2xevVTF6S5jDOuFOgPF913Ziy8I0aDWOhPXA2wIhhf0dQ+7CTR94AnauQhtyd7WnYCxPd3Yj5zQnL8SI35MhgeQfkmITa9M2yYqeymcwB8Pl9P6NcnNbXwq2uvndao71KM6NFhQgK258Bpay/TcebFImQcrNGf/jFkz5F1LVs1Byn1L1Lqy6TUEaVEEjBHKfG3aI6xM37O7fZPYYpjQn2qn89aULB9yUMJ2o2tFmCGVrsABzGpjUYxbmrOnHGPH3czcBGwf0LXnz9s6zk1FdsIrZFzkpdNvnCAO2lll95J3zyN1lRXZp4aCaRcBTqvjnjdq4ExtYxVsBQ0Ht1B26gTMXQRWImFxDJwm4RSoldpILVwwZb9MvunLPquscZqbYQpZgB+O8nTCPat3kavWEod2W5FCoA1FX1vC5meuKN7fTq7qWPH2P2IMyI1MaypzeimK5a++s5CBkcC8SekhH8F4w1weECHNQmnCaFv3kH7f4AQJSX9xjRjXjGaSYc1WAH2+WXRNOAs4GCjwvGBRt9Ny+qSpmMZhC3lzd2GgkFZQ+O+Sv2n6Q37A/tW3rODJgqIgAZhCMPVCyuzUcce9E1g3NScDxK7f59fueGgnKf++cKpbT2fpjJuas6ccVNzJtZ4UP/v32M3nZhy/2t7xn2FJSwhoNZLjVJCKiWuApBSz5VSf1O7Pyn121LqZ1tj7p6QEQEQiElALBygaSTPXHZWIKKdjoXF2f/XnI62SmC59D2RlPA61wrvRQWDsk4FUErcqJS4dkfn/bzh8KOcIrQkwVXxcHPGj7F7cUTilkSAfePKj6mvbV1IqdcCBwNv1dWmn6fyfq+IVOYk1RjGNfnVxtFS6m2KWzz33LDOQoSvAvM9n8/XoUPGOjod2mAFyFpQ8G6kc2gWgEA4AK92mKe0xFhS6kLgECn1twBKiauUEue0xFgFg7KGarQSEdHV8DuNxA8z9t2+zfjpM+Y4PKHbQeBKODjiSnKFQOBJXfZRLBygacR1WjQMEV4crOj12JTcvPS2nk+0cIWNQ3q6/9BOwgjCCCJmr6H37K2UuBxLVPvyHSXOKCW6KyXqjX2NFiGnPlKj1+MrvTVmrDaNdxaft1ytOiFdYM4qnDSioLn9ZS0omLN3/sLbnaWugQLxk0a//svoHtdiSQH+pTRl5oSZQ4CDw9r18MNjX27V8KkYHZu1Ie86gFXBuFVNOV8pcYpSIs72/O/ws5c9LTt5RSC+Z6an6g9DMBt0xHb0ONiBo6eqKv0/WjsTevb8MaYj3MZ0eIMVwFnk9gF+QGu0QHDT7yP7vlUwKCs12mPVfAlsqZ+/A6dHe4yCQVmOcOfAs1hFAcD6O8kdte2874qnERozFHEkdvl9snBW/xgoGXDYlNy8vxgfMern7Kue24x2jgLd2XAX503JnXVzR5a6qoXq7l7kP6XTHRyS+Kru4cn/b/WWgYeVrjz6WGAscNSOdAqxSrCuUEpEXZFjR4Rc5siy5MgucV9qC5QSPStCyf8Omt5OsvfH30azbztP4ESzU7jC+0vSQ53uznwSuHD7dnt3+m2aQ4TCwIvRHD/Grs/86qQSgHUhb1ljz1VK9AfeBW6sp+mpJsKxwJ90/fCcpXPA/6DlYa3Ms7b/xOfzGUVF+wx1OPwFTmf1k42dU4zosks8GLIWFMwRiBzg1nCPwJWh/tWr3EvizwCWzztorzt/vL5zk0sO1oWdgZgD/B9YDwqlxIXN1W4tGJTVH/jCWeQZhEDreuRozr9xYZEw0taa4ZW6+5CHJ3TZd9oPQA9hBJq1FLg7M25qzq+e1KWfmsG0/YB76eD6rAC2t3J4SnLB173c88TawH43bF545h6rv71jxLzXZh0IROr47L6EFdPa8klovpS4uGrDLbT4vMXH2nW5r7BsQK7b8K9PdpfcHe3OsxYUFPuHlB2pHXq1a433ta65gw6sfTxzwsy0hcX7DhzUKb+gcNKIWHJKjMbiB4g3wp0ae6KUehnWM/mhnbVzCvNCLEWL7+xdd4CuhKQFO2g+AsSekYj3rjFjVGy1oI3ZJQxW+LNyy355yx8f/P7KvlgZzV8blY474r9MXT8/e+B10dZtlVKHpdQ18azjgCeAno3tp2BQ1tD5gwbd/NupfT7Qhv4D2FcLfQFwhEDcwU6KA0zJzROu+F5ddWSj8Jc4z0/s/sN1rvgNhQ5P+UOvP3pxQlOvbXcnUNL/W2uZSAggznBVXPf6o6PbTSGJJuErnbOxa/jopaGDNmgM7K+/y3BV/A0rG/YvBo6U+g8p9cutNMNzBcJILnfkt9J4uxyvLxz9ydKSLFfQ9P7n4bEvR628ZW0qzihat/mO5W7TE6nShv7s95F9b6uV8HpxRDsd8zYfeFFLjB1j1yZ/dL52CpM9PFWNimFVSrgApNRKSl2nd3b8O137a81xA70VS/JH55tKiTEOY921QD7w95qKVjUkJGx40uEIFrOTeNgYrUeHlLVqCFkLCn4DTv7pyq6XeX9L+qdRYTwIXPvbWb1fdS2K/9AIGkcAKhrC+wWDskTyYd3vrBq+5VPPL0needft1bP8zI1DPXMT10S6hHrFq9SVImy4A1mVmZHOwQHxX6bNBTzBvSoHas0hHhKOBZyehQkinBEodm7y7L93wYIamZidzs/h3bKvWbGPA/6gKD9z0MV3/R56dem457csOtO3ZcnJl9BK2d27HsZsoBpwgzbMUOLfy1Ydc9CU3LzTxk3N6bAGVeYYv15+3YSbgOctaU0iOuL+FEgCtvFs2pViBgHf1xEuED0s/dUnBAKN/pfwpXwRi2H9K1Ny847EUoH4tCZO3faMJwOBpSWTbnCIcPCy/SbnKTUyRUpdascm7w8sk1JvVEokAsOAX6XUq5USnYDTgDwpdaEds3wR8JaUeolSIhP4B/CklHoRcLDZKdyl9LK11yc/2/0B15K4uzU6AiI4eNOi4t8z9vq2cNKI31r1FxNjl0FrKlcHvQ1OblJKpAK/KCVulVK/urO231WkjYhgkOEM1izvH6113H7AYMABOm9W3oCc4TlL50yadM2hfn/Xbl265M+88sq3WuTlL0bj2GUN1hqGPLbhyYJBWU8Bx2qXOdnzR+JNGn0TYGq0+fuIvgXO9e45RqUzHOkU6hXuEsx2LffOMwIOM5Ic7mGmhvZwrvUsFWFDmHGRzjo+0s3Y4tootHBph5mEQRwIHfddioj7LmXruCkv/TVPxVOQAAV/Oj3di/782X5Qm45N7v9kLSjYXoC7TiL+TicJRwThMHV1ceLhSomMbgdwbtmqo1eFqztfNyU3b+q4qTmxL1sj2arPCtJwVXyX1OP7q0pXDhsO/PbYuA9fSN/r7QdHXfN0hzRc94xX6+dXH09f908clPims7t7kUbq8TXHlRKHY5U0PBl4CtgLWNySczKFvlrorfcjJzH91b9gh6XkgXYJI+R755mTHj390g+vxlIvKSoNpC5dWrpX//27/LDi0O5f/YIl3P8E0A3rd3kJVrndHsD7WEVRXra3nwHOxtKb7gFMwqpytgRLJugK4GNgEZZKyorgPpXf4dTPA5cKhEODZ+CWVT2c+2yaBiNa41cSYxckglG6JeJujA6rF/gV2NGS/jaUma6TgaXfVHR6HUBKPWZWXr87+FNjeuu9x+9PuxKoLCnp+5c47Rhtwy5vsMJWEezPfhzfebD3x6TZjo3uYwBDIAzXsrhsYABQbZQ5cGp3iogIDZSLsPCghcCgGijVHrMikhEyRYVzjgiI0kh6OC3cPZDpXhj/hfA7ykI9/enhXoHenrmJXwQOKB/s2OxaEu4STHMtj8t3rvNsCO1RlRTqFUiO/zL1NxEy/IHsCrdR7DzAudrzuEC4BCIENEq3UDiqzyHi/UVHjI1VG9Mygc1CMCux+4/rSpaddHdi9+/vhJxbovwr3S2wPVi20XTq7Cm5eZ2A23XEdfWWxaddPPXqd++JBJPvGzc1p7ot59lY/C7jPICBcV/S3b3IAbyIL+VYfKWFSokBwBfAvZPWDvjWa5jPLwvEZ8xtSYPVl5JjIM7UaK3REft7oFpsvI6LBAwQaNPNpgVnX/Hag1c+3+1A5gMPfbXm2OvCppuNVd3OBrL4M0ZvA3ASMNfeXgkM4c+qbouATKxSlgC/AQlAAEBK/b29jVIiHVglpc4EKCjNAjgPcIUNh7Ggcy9/ZuIvE1vg2mPsJhjokFuYGQ1tL6VeD5xZX7ur3u4+ENKHC/j3I33npdtFgIrA+Ay4HXBi33sef/z0gbDfuSCeuOWWB4ubfjUxoonQrVu0qc2x46xmYelQhthJfGg0UEo4sR4cS6TUO5TAsuckaWSIwvSHL91nU8G5fyT1+ubTovwfPwMeAHqNnz5jzZTcPOFOXlGhwx6Hw1OWeOnE3Fgt7yjx2kO5x5WvPez+YHmf/YFVCV1/eSI+I3/S2VdNi7T13BrCrFvG3bpgy5n3nJp2m9nLMy+s0WHTwL0pI/x6142uC5UsG3XPmj02bgh7Z2K91AaB4fmj86P7PfGlDK32Rq73+I1TDMQiYDxwEKBi4QB/xfaw2vcuU2CEHZjOSjBuWTPg06embxm6FFi0dOKpsqXmoJS4BbgL6Cml3gDW/WuTN+WU+w658MaCTpkPFE4aMaGlxo+x65Pz8l7VSY5w8XvnLOuxs3Z2KMwE4DnbaN0pl77Z65UfKtPOHZa06cwzOq0/HkvDPVNKXTErb8DvQD9g/FdfXvhHXNymV6qr0zNTU5cfcO21L/wWhcuKEQV2maSrhrJVCNuqBNSixqpNBJgKvAbWl8yWxNpmTlkLCiY2di5blpwiwcDhqng0uffG3wDSB626FWCfc4aLTgNmfBOq6ubxF+81KhoXEsPinOumfjb2gYsPAKQwgqWVGw68p3j5iSvs+MJ2z4ItZ64AMHH9F5AlqZGDKhMipV03us4D8qRKDg0ujUzAqhTjAB3VymmFz3mFeWfyaYDy+o2zBLiDTtOHr/RTfKUTY8bqjtm2iplxlDd55d5gfAU83G394JKMkKt7Vvrvb7fwNKYDV9QYq2Ddv+4+9/QBBZ36CqwQhBgxmkyl6VixMeRpiA7rvsCdQIN013+sTO3lEZFVXsN8B/gvcKNtrA4FvR/oJK15NDl54+zq6vRMQJeU9I9r6nXEiD67nYe1rVFKXISle3malHpzc/qakpv3AZAN9EsbkGts+L1/tSvB/9U/nlDDlRKG1kIt/uCl7FBVt/XAvuOm5nQID2BH4vVHRztC1RlTSpafcAra0d1wVn6UtscHD5xz7ZPttiTl4/+YcYsZjr8XSBk3NacMLCOy7wr3JQLxsEYnzI6L45puXRBoBARNhGyKh3Xx0AHH6rRwbkrP6qKuPQPhiKEPNg0OcYX/lNCywwBux1caW0puJFNy80SnPd+ZsnbZiCvcERcC/ajAeA84BFCtUUDkkLuecleHEiq7JqzZ8vmEG7q29Hgxdm2yp2UrwMgfnX90fW1t7dUVUuqdPtuyp2WfDLwHPJM/On9szf5ZeQO6Ap9hPUfRGrOwcH+xelW2wHI23e7z+WL3pXbCbhHD2s4IAsX2/03m9UfHdEac9zdhBJ+5csoIDYsik0eNfD9QknjI5FEjxfjp2lRKjEToM4Fn0wbM+A/kXBeVK4ixFTsMIHdKbt71wHhtuu7YvPDMEx+78uOHtem+c9zUnHYX/5TQ9dczKtYfRMag6eWWbKGlHgA8gy9lD2BC94h1/z+pvJKzKyocg0T1R9qX/L5AzN/cKVRVFW/m917t+RLLMJLAl8AmjR5c1Dk8Lqnc4TVXentGStN76mIXxSu8JMktVXGdA7+XpEYWeKvFrwnVjjMBRyxmtemMm5qj73vl7o3TNpzA6VXiu95h1z9AXwWYIAJTcvOGR8toVUqcjRW/uk1/G6t6nAY4u7C2PsH2GDHqxS0iaETaztooJbpJqdfb2qs7JXta9lDQ74AQAn3RQzNTOu0fX/5/Wqf/G5LOAeG1y5kLMCgt6eoErUEEid2X2hW7XUhAWyOlfk1KfYqU2lRKJCklXldKDGpsP2F/2vVohyut/8e1k2FmAb09qRV722OVZWS9+qI7cU2gfO2hF03JzYv9vVuIcVNzqsZNzbk7feCbQ9xJaz/VpvtqYMm0Oyc+8fqjF7erZSV/8YBSYYQ2nX3VtB0tr7wvENWbHYYJcES1/6V+3qpvwk4CIZceBUxM3+J6uPdqTx5QBXyj0fdp9NfAAoGY3rnIebRhskf5Ku8WbQIIdESYK2al3yt8ZYenX125d8JNFedjSSvdAQyPhQE0nZnLzjo8YGj/a4nhEaCnWnuFEc1QDjtecBJw/Q4OXwksX1qS9VI0xoqxe9Pb7d8z1RHas67jSomBQKFSYjTA6glfjV094auPV0/4amwdpwwDHAAanMXhuGNNnfmWJnkshKqB/UAcE4k475o/76jS6uqEiMMReAAY7vP5YveldkTMgGlb9sZ6oDS6qkfx0hHdEZFyh7v88Zp9nfZcMxcgsWvJVlWAM/5vRrjTXm8vCld37iQc/nozKWM0j1HXPP372PvH/A04wHCVL6lYd+hlWxafVjglN++UKbl57aLwQKiqW6oZSqrcYfUuuyLWj4nuzwGm9Ey4P+3aymN+OajylG+PqFg+N7tqyJoewYu3pIXvA74HS5INq8rCm8BBm9PDSZ5bytPXpkbu0y6N9R8miNl/GSsWs9osJjx3+qCNVd2Py874ZUXhpBFbQLxoeYu2Fr1Q0RjHLkm9H9sZrMdNuv8G4JhUz6Y5hZNGxEKOYjSbTWF3fknEtWVHxyaPGjn012eOP3fL4h6vA18unjTlXo1+Evgb8GQdRquw7lKmOSwxpI9KTHCDOBhCtwoqewzPWbpgeM7SOd9+c17Cli190w3DPOP22yfdFDNW2x8xg7UNseViMqXU3wIoJUYrJfat77wpuXlOECPRjvfPvur5rZJKnpTKbx3uUHnZqoxtRGBTMz+7SBjBQjSTp+TOurnDlxntAIybmvN7+l5vH5Y24P1/RYKJxcB7hqv8h9ceumKHShGtxZQrPj0C9AFAH+oqOesrnfN7FxEE2De+fAts/azus9+ZoZ97XlY9be7gqoeAm7BKKYYFwg88iK/0l4yrqioADnxx7WvB/tWnmEkRfyQjGGyFBMfdCqWE8EfivgyZHuJdFVdDTWKWcQyIzwCHJ7lQRms8KXWFlHprMkzmhJlDF5fsPRE0JYH0MzInzIzdV2I0m9KIa3VI/9U0mTxq5FDQX5lB5x3LPz/grHW/DDjbNAK32C/MNWzjlLnx3a6OPT3hS/+eFii7s3t15alpYYchQvOBfYbnrLwvJ2dLBODJJ0eMBn0D8NQtt0x+vwUvL0YziBmsbYyUugpAKREH3APcXN85qf0+uhhId8Wvn1V7/3k3LNKRoOudUJV3v8mjRm792w4/vuI3b9ri77Tp7Q3cS12GSoyocvZV0/R5N/z3LjCygX+AMXjzwjNfnZL7+XNTcvN2KtnSUrgS1k+2PW8CS9pN7qjd71XJi0EHDVhbs68msUEpMRZYqGTZZmopbtT2lColDgTY/72VH0Q6B2c4Nrm9BYOyklvqunZHvlo93P1J4amOZHfxH9Ovuf/Tmv12zOoJrsQ1BcGKHve98p9rT2/OOEqJZKXEDKXEodsdOhuEw/ooiRrB9RgxmkWCEXYY6MTt9wtH5FjAYd+/XBvn9kvSDv/2qhTblFBNMdwv5nYO9js8IZyc7CQJKj4SVAwZnrN0a3Een88Xt3nzno+73eVmfPzGWBx2OyZmsLYTpNTVwIHANQBKiZ5Kif131DZU1fVcYYRIyfzs4x0cngWkJ/bYvE2GZfWWQfNrLRNGVaYoxs4ZNzUnNG5qzpROe76zpztx7QtgnAd68bS77p3xxHXTT5ySm9cqXu8puXnDQxU9s62EAh3G0iFWO2obxkgHsf7+0zbsKM71c+AlYNmOlvWVEicAPyslTgNwL4t/TCAMoFH1wWPsnCUlWbdWhxM7uR2B/2x/bNzUHDO1b96ZwgiVFy85+f4puXnNeVkYgBW+tNWVdc1T54sEZ9lJ1j2FnX6WYsRoDAM8VXsb6KTt93faY6398qwBInCiY97yQw+s1SQI/FGzkT0t2xB4RzqElW4FmJDwVU7Olu3vaXcHAqlxqakr/3HjjY+VRPdqYkSTmEpAO8KqurGV+4DTlBK9pdRlNTutOMgD+yBCn426+rl12/fRZb9lczfO7Y87wX89tR8g2vE5lve2pmCC2v7cGC3LqKufXQGMnpKbd6czvuiZirVDR4AeAZigI8/d8cD7VUX7v4N26Pguv/VxJ67tWbLspDkACV1+6etK2NC9ZPmJ3wEkdP25nyu+qEvJ8hO+B0jo9mN/l3dLeknh334ESOz2wwCHtySttPD4nwA8KUuGwYAxlkeMIPAs8EJdGeRpjuB+AW0Ed3RMSr2cP1+skoH9pdRf1moy2z4+096eo9F+Mz10DvBB03+DMWpQSiQWlv33ilTP5vARPfJeg0v/0ubsq54rmJKbNwKYjQg/9/qjo8+qI9Fup0ipf7UroG1lY3W32yrDyXsNSCn4aGlp1leAKpw0IhbyEaPZLAvErQpjHJI9Lfvw/NH539bs37ywt11iXGvAbTg7T0hyGGitawxSg21LOp82p9KZdEhCwHLTIAJs99x78MFLRkLv60E8fuWVb8Y0hNs5MYO1/XId8EqNsaqU6CulXoFVcnEPtOvBHZ104a3zf/vvRcevLynsso1HZdzUnDlTcvOGY1fUag19xhg7ZtzUnGXAsCevf/XNUFWXM7HKbRpVGw86EzsGq2rj/lRt3B/gHwCVG7c6Eq4CqNxw0DZ9Vq4/eJvtivWHbLMdKN2j9qYBrNzZZ8BjmHulGuHKBlzOv4GLlBKZUuoipYQhpQ4Aj9Q0yFpQ4J97QmaVqHKcCZzfgD5j1MPzf1z5wIqyPTK6xK995+GxLwfqajduas5XT1z75sSwv9NtwcrurwKNiqFWSriBkJ10BUDmhJleGDYm3lmxat+MX0+fdfM/6xw/RozGYElQuWoKAXyePS17+OsTw/tGkkKXdercZ9OWpHjTUsAAM7SaTeFeRABDa22IP+Xxbny3qyPJ6PTIqqCxXIhKDYn9gYuG5yzdes+7777xfzPNzu86HP7qSCQuFgrQAYiFBLRTpNRbpNSfACglcoClSomT4tL/eAJAGIG/eFdriATc75gh15DJo0a6a+8fNzVnzripORNjxmr7IFTVdTKIaiACOhCXPu9aRGggMDCp5zeHpQ+a/jfA2u711WHpA18/vmY7ufcXQ9MHvnHcn9uzD++015vH1myn9Jl1RKe93h5es+1OWnE56EB9oQA1rA95itcEvZ/urI3NzcAZtrF6DPCrLea9LSbTnRvdnoJBWTFh+WaSOWHmULX6pFyAjVXdT6gv2SltwAc+b9rC1aWFx54xJTdvSCOHuw5YrJTYukQrMP8Jol9VOHHMzozlGDGagATtsH7U7ks+idyg0U8a5c4he63fcoLQOgzaRGAarl4UR0y+rQiz3iiZDQzvNemoOQDrQp5/lpvOniemFq02xOYU0CYETqsZxOfzDQ0GE2eEw3GOSMTrwi4cEKN9E/Owdgx+Af698L3XKsPVGUeARpueV+oSBTec4S/MsPOKlMz1pwJvtP50YzSEbb3eQl1y71W1/pY527Vu9Pai7XYsmpKbl08DPOzZ07IFiC5BLVbv/ApASl0CfGJvHoslffSXut6ulXHPAVfYE321vn5j1I3TCN4ZNmveRUVNPHqdf8+zr5oWmZKbtz/wK/DelNxZT4P4uIEvrvOAGVLqcoB/PHnRwU7jtLsSXOVf/nbn6Fn1nBsjRmNRWC/UHgEcXqB7gCVKlVbl56Dl6379qX+P99Aow9lzX2EEzov0mLOw6oi7r+0ltR9q7l8po5yYK8NaHCdEBHRgFTjPmZXXvwBEnhDn+rR22vaPENTzHYrRPogZrB0A2yi4dd5reXfwZ+JDnQ+qLvst/3H9L3tgOMwriBms7RrbaGiVG2VDxzoycXOPryvSXT1c1Y5GDjEAmA+YOzj2izZ0eaRLcAwxg7XJDLvvwSvD5sDjrC1t0sAqYeOm5myekpt3N5Zm5R2gb5qSmzesPqNVSj0DmFGz/cWqE/6ltaEP76FuhdHNuZQYMf5C/uj8OdnTsocZmJ8CvyZX8yJY6hQCQZfy6mfGT5/xlN18DvAUnAjctbUPA32KiTigr6f6jhGpG4MRsz8Q+QUcfwPuNE1xZ2JisaO8PMMEYRLL6egwxEICOhafAdXUk5V7/k0Llxmu8KLiZd3cOzoeI8bOcAm9D0BfT3VCQ9orJQ5QSlwOXAxIKbVfKWHY1ZEAyFpQEAn1r64QAWNYi0x6NyBzwsyhy8v2etTa0hrEk8DwRiQ7ZWAVcADwADftrJiFUuIgpcRWeaHMCTOPKg+ljAhr1z2PXf7c1029jhgxdkb+6Pw5JsbbJkbW2Tc7nwYuw1rFuSxrQcFTtdsqJY5TSmTWbN/47v+zd97xUVRdA37ubE8vJKEECJ0Ai71gHcAeVCzfi4qKqCiKit3Y1x4LdhRFX429vfbYwbFiRTBI6ISeBEJ6tu/9/tgNRgSSbDbZLMzjL2Zn5s69Z8LsnTPnnpIlMozuV5IM3vrLs1bfKaX5LnCvDimrkmDFK0OPnos3K4p3W6U9vUhAbKArrDFEyBqyLe/lrqwjAa/pA6Ry4IwJ41qldOjoNPF1XTcnwMLGpI9bahvifOAOIC7kyyqAJ4BHmiutSq3hGUOVyVgyNPffPq46rUFtCjgh+PBd28bIfC0UKe0LWZZOtqYuXf3mY1Ny/9VQE0aCWR6eB5g+e6IpyVz1OgTWEwy009HpMFIM3t+BbqMSto7NXVIyO3dJyXE7UFYNBLOOXNa07/u61FPLfdaE4ba6d4RMfSYge10Opr7geSMQEIFAQADC363bhlNuu+3ebx0Ox326sho76AprjNHawClTvPNHwJQ6YOO5nSSazu5DJkBjwLihle2vAA4Oua404Q39bMNYYXkr9HFsewXcQ9GaPgiknzYuY273wnt4fOb8me6afn0rl57+/cypc4/brrkf+D/gAYBVNUMeqPWk9joi+8u3SgvyGttxDTo6LXJAfPUiAE9A2dXzSwKHALMg6LtaFzDl51p8Zf9JMY2SpF4MYiXSddjCBcfE/bnwWENFRd9lwBHHHL3sh46/Cp1Io/uw7qakD13/Q/kfAwj4DGcCT0dbHp3YobvRdVqZz0q84usPLNxZO00T2UB9SFEtbdqvqlJqmriq2efuQGUWQ5dIU6DKl+mZCszeUZ86u6Sq6UOqZYt7qzvzp7Z28E8/5jE/vui4/62GsgOeAj597voX/pfU+9sL/nP5CzWhNFbfAeTkF6XBfufYjA2/p1oqr43Ilejo7AKjkF8ryPLfG1N26tamqjJAMCAZgJG22mmNgbj9L8pwI4TSHaRPSjH9++8uPh04KTFxw9cet//oo49a7u+Ma9CJPLqFdTdl4vVLNyPkzzVrMuOiLYtO7GAvtI8q91kmADQEDK8G8yLulBeAH0NLc/9AVaUMKas24Fvg+dwlJdIzwFltqDKNLBmaq889becywN0zfu3DW92ZCcCJ7e3wPMcN3wIHGMy1/3XX9j2tatVxK56+4r3zX7nv5i9evP2hEwHMiuteINXpiz//sSmvtrnwgI5OW3lgfLkMIOYCRwSj/v+NpokDNU2cqGlC2AvtosJnvjfX6gsAEgRSCjZvzn4ZuBJ4rK6u19jJkzVdWY1h9IfGboz0Gz4Fse+MCePSoi2LTsygSpr8TkVLJXxvAG5SVbnTh0Co5PAMQlZ+0zrr/UqjwQiMiJC8ewQH3PHcyYrwXZpoqpq/saHPDcBKkHdMnz1xp0FTrWXarDHOqY+PvyB1wIe3+ZzphoAn6fmaNaOPbijf++1b75iR75Omi3slrPmktCDvzwhcio5Oq+hucv0F9DgycYu6kyYXA7NDqwFXlnmtidU++bkQwiUlPikVsXHDiL4pKau/Aq5yOBz6y1aMoyusuzG2tNpfAJE2aMNlLTbW0QmiESzdCsH0VNq/GoQCqVRVzldV+X5LHaqqfEZV5TyAmkmbmhLN31syNHeXCe91guTkF43a7Oz+TkAaRZ03eT/ggB7x6x4HsXeNJ+W+SI1z1nWP3gXK0yAkKEiEYX1V7lST4nHvk/nTVZEaR0enNQy31S0AqPKZx++kyTXA2H0Khx8G8iGA7xps6je15ivLNg1e+OfCYwxer/GZ5OQ1x+jK6u6BrrDuxqT0K/tWMfrx1Nn0IBedVlE8qXgeMMZAwJ1ldJWFtrcRUlbf1DRxW1v71jTRXcb7n5FIJDJPIufoSmurUKHJ7UJRAPXA7t89k2bd3PDzpiMn5OQXRXIe/xhwAT4JgaVG0dftt1395EUvrYjgGDo6LWIW8hOQFX86k3a4QqiqsvryNSMWpxi9bzdlzxASk2flwfetWHHQfnV1Gbfn5z82dfJkTVdWdxN0hXU35qzrlzUEfMpn9WVpmdGWRSd2KJ5U/ONga8PyrX5zz8NeGWrd7rAJaCCYD7hNqKosS3wr80VAir9zgartFHdPQCMYtQ+h/MuPTXnVvdWVcZHTF58DnBapgZoyCfgNroL3U6p85Sb3YuDZSPWvo9NaHhhfLkEsAsZt70uvaSJN08T0dKPHscVn6S6QASGF78CKg4S1rm9aRsZfnzocjjt30rVOjKIrrLs9Yg4wdMaEcb2iLYlO7LDElXCtVyrGGr/pqOb7VVV6VFVOBh4Kp1/TGtuLgEsiJaAErP7DdSvrriktyJuXYdu4RhG+ADC9We7VN0GW2Iz1D0+fPdEUqfGmzRoz771eS3uvxBY3uvenz5QW5Pki1beOTmsJKqnyCCBFIL/dTmm1/9mY+Gilz3Qr8G5SwHT0mI1jlmU3ZhsUxZM/bdrbJ0RJbJ0ORFdYd3MSemz9DSBt8Pr8aMuiEztIxNdAjUBus95pmriiqapMKNChzeQuKZknEGMDCb73AIRLOR7QXQN2QciHtV9AGhTgsZz8olEApQV5/sN7fVXk9CVkb3Z2vyeC4/VdXTt4gtng+uC5S595PFL96ui0EZVQWTaJMAJ32wvtCsC7W7v3KdzSG6sIlBzkzrjo1Kp9XkvxpAwDrrjttnv1wha7KbrCupuT2GvLd4rZ62vckrRXtGXRiR2KJxV7ss3OFTbFf+5172dZQrlU7wamtLfv3CUl8wz1pt+AQMg1oKVsBHs6anCq/vffKs26Od9mbCj9cePok3Lyi/6VXiwc4oz1TwPS47deEYn+dHTCRAPhAekj6BIzJs3g+emQl4dO0erSnzaKgEc1ck72xsNfqa3tk5WVteA1h8PxRJRl1ulAdIV1N+es65b5Ax7TB66tSTkzJoxrdwocnT2HnibXp40Bo/J7Q/JRqirLgOEEldZIoIltZUKDfpkR6nd3RAN2+Ld6bMqrfqcv/loQQ4DXmqyv4XLBU1OvbPQlHD8kddF7pQV5a9vTl45OewgFfI4FcRtweJrBc3OV33RAXcD0rIR4j88szKvG/RfEscAFl1zy/sQoi6zTwQgZ3sqeTgwxY8K4S4CnQD4M4p1r3vxYr52s0yL2Qns8sNUk/H95pWHa9hkD2kvIDUAFtNwlJfo9uQtCiqgKaM18WJuOHQLye4ImWA+I6w7o/l15gqmu8et1JywGGo7o9YU31bql+rEpr+40Z25OftFhIN+xGJxxx+Z80PfxKa9U7aytjk40OPKVIe9v9ZtOznBmst+WfYnzxWFQfOffdtu9L0RbNp2OR1dY9wCemDL6Ak9t/HMgJQgXMFZXWnVaIhT08D3BXEqeAEKNtNKq035y8otuBHl3U2qfFmgEGpLM1XFGxevZ6spYBtRn2TYMKXf27EWwaIQHULdXjHV0oo290D4qszHz68PKD7ME90i/QDnc4XDo9+oegO4SsAfgqY3LBEnoYaT7C+q0FhUQIAiAAf2+6apoINwg/QRzqF58cA9t+oHdv70VmARculfGL68PS//jfeAp4H+ZcZtWxpvqNgE1gK3Om9SNkJMsweeC2tkXoaPTEsWTiuftXbn3uwACgUCR6PfqHoMx2gLodAZCI5g304TuL6jTerSQRd4EQr9vuiilBXnzcvKLxoJQ2eYykLddq7ynt9v+x1bI5WAO+hyh08VJ9CU+AYxHv1f3OHSXgD2EGRPGbfOB090BdFpLKPehCmi6O8Duza78ZHV0uhIOh2Pbvaq7A+w56Aqrjo6Ojo6Ojo5Ol0b3YdXR0dHR0dHR0enS6Aqrjo6Ojo6Ojo5Ol0ZXWHV0dHR0dHR0dLo0usKqo6Ojo6Ojo6PTpdEVVh0dHR0dHR0dnS6NrrDq6Ojo6Ojo6Oh0aXSFVUdHR0dHR0dHp0ujK6w6Ojo6Ojo6OjpdGl1h1dHR0dHR0dHR6dLoCquOjo6Ojo6Ojk6XRldYdXR0dHR0dHR0ujS6wqqjo6Ojo6Ojo9Ol0RVWHR0dHR0dHR2dLo2usOro6Ojo6Ojo6HRpdIVVR0dHR0dHR0enS6MrrDo6Ojo6Ojo6Ol0aXWHV0dHR0dHR0dHp0ugKq46Ojo6Ojo6OTpdGV1h1dHR0dHR0dHS6NLrCqqMTowghcoQQUgix/540tk70EUJoQognI9lHa/oUQiwSQjjaM66OTlsRQrwohPh4Z9sdOO7JQojlQgifEOLFjh6vq2OMtgB7OkIIDVgkpbws2rLo6Ojo6Ojo/IvpgIjCuM8BzwNPAPVRGL9LoSusEUAIYZJSerfbZ5ZSeqIlk45Oe9jRPa2js6cjhDACfimljLYsOp2HlLKms8cUQqQA3YDPpZQbOnv8rsge5xIQWnaaJYR4TAhRFfp5UAihhI6fLYT4VQhRJ4SoEEK8LYTo1ex8NbQUeoIQ4hchhAc4NtTv00KIh4QQm4EfQu2PEEL8LIRwCSHKhRCPCCHMoWMvAkcC00J9SiFETmf/TXS6NiLINaGlIbcQYr0Q4r5mTfoKIb4UQjQKIRYLIY5udm7T/dqt2b5/LOfv4p5uadxdjq2z22PcxTxaKoS4tnnjtroRCCEyhRAfCCGcQog1Qojzd9CmjxDivdB8XSeEeFcIkd3suNzRT7PjvYQQbzS7hiIhxKBmxx0hN4TzhBArATcQ37Y/k05nEnrm/iSEqBdC1ISevyNCx84L7T9eCLEkNG99KIRIFkKcHprraoQQLwshbM363KULQGiuvF4IsTJ0vxYLIc5udnzu9ve+ECIpNP6pO+hPBapCm3ND960qhEgXQrwemoudQoi/hBCTdyDLTuftlu75rswep7CGmEjw2kcBFwMXAVeGjpmB24G9gHEE33Be30Ef9wO3AEOBn0P7zia4bHA4cK4IKrqfAn8A+wAXAGcCTTfPdGAe8ALQI/SzLjKXqLMbcS9wK8H7Zjjwf/zzPrkHeJzgPfsr8IYQIiGMcba/p1saN5Jj68Qeu5pHI8GLwEDgKGA8cC6Q03RQCCGA94EsYAwwGugJvB86Bn/Pqz2A3sDvwLeh8+OArwEXQcPBKGAT8FXoWBP9gLMI3v97hdrrdEFE0AL+AfA9wX+rg4DHAH+zZhbgGoL371hgf+AdYBJwGsF7bRxwaRuGvpvg830aMIzgnPmMECIvdHw2cJYQwtLsnDMJLvN/tIP+fiQ45xKSqUdonxWYH5JveOjanhFCjG127k7n7Tbc810TKeUe9QNowDJANNt3C7B+J+2HAhLIDm2roe3TdtDvn9vtuwdYASjN9p1H8C09rtl5T0b776L/dM0fIIHg5DJ1B8dyQvfixc329QrtOyy03XS/dtvBeftv1+a01ozb2rH1n933p6V5FCgFrt3BOU+2ZhsYHLqXDm12vC9BxcMR2j46tJ3TrE1/IAActQOZnwrNx+mh7fOB5dtdgwGoBP4T2nYAXiAr2n9z/adV92Va6L45cifHzwsdH9Js30Oh+6j5HPki8HFrtgla3J3A4duN9SjwSeizBdgCnNHs+M/AQ7u4lm4hWdUWrvkN4LnQ55bm7Rbv+a78s6daWH+SoX+pEPOAXiET/b6hZag1Qog64LdQmz7b9fEb/+b37bZzgXlSykCzfd8TtOIObIf8OnsOwwhOdnN20ebPZp83hn5nhjFW83u6NeNGcmyd2GOn82gE+s4lqHj+0rRDSrmGv++xpjYbpZSlzdqsCrUZ1rwzIcQ0glbSE6WUlaHd+xG0ntaFlonrgRogFRjQ7PT1UsryCFyTTgcjpdxKUJn8PLTUfbUQovd2zdxSyqXNtsuBMinllu32tXYeG0bQ8vlZ030UupcuIXQfSSndwMsEFUaEEMOAA4H/tuX6hBAGIcTNQog/hRCVoXFO5W/9pKV5u7X3fJdED7r6JwL4HPgKOAeoIPiW8x1BJbM5DTs4f/t9guAb0o7QnfZ1WkNrIlO3BUdJKWVoNbTpZbTpZal5P6ad9NP8/m1tROyuxtbZcwnw73toZ/fdjmjN/deq+TW0XDoDOFlKWdKsjQIsAM7Ywflbm33e0Vyv00WRUk4WQjwKHAecBNwjhBgvpfw81MS3/Sk0m8ea7WvtPNbU7kRg7XbHmvf7HPCnEKIPQfeBeVLKxa0co4lrCbozTAeKCboU3MvfynVL35vW3vNdkj31wXJQMx8ngIMJvpUPJKig3iSl/FZKuYT2WYsWA6NEKBAhxGGAB1gZ2vYQNMnr6OyIxQRdSMa21HAnbA797tFs396dMK7O7s8O51EpZS3B+27bPSeEsBJ0r2otJQSfTwc066MPQR/VJhYTtOjmNGvTP9RmcWh7EPA2cF0zhaWJ+QTn/C1SyhXb/XT5h7fOzpFSLpRS3i+lVAm6mkzqwOGa5sq+O7iP1jST6S+CbgBTCMa7tMm6GuIw4CMp5ctSygUE9YjBO5BlZ/N2TN/ze6rC2hN4VAgxRAhxOnAd8AjBtyM3cJkQon/IYfqudozzVGisp4QQuaH+Cgj6aTWG2pQCB4pg5Ha37ZRbnT0cKWUdQcf6+4QQk4UQA4QQBwohLmllFysIOtw7hBCDhRDHEPQ17OhxdXZ/djaPAswFJoYim4cTfDi32sIaWrL9jGBAySghxN4El3qdzZp9BSwEXhVC7CeCWS9eJfhQnhuK8v4w1O5tIUT3pp/Q+a8SXPr9QAhxpBCinwhGmM+IlahpnX8S+jcsEEIcIoToK4QYDYwk9ALTEYTmyoeAh4QQ5wshBgoh9hZCTBVCXLRd89nA9QT9Xt8MY7hlwFghxGFCiKHAkwSX+JvLsqt5O6bv+T3VJeBVglbNnwma/p8HHpFS+oUQkwia2KcR9M+7muDE2WaklBuEEMcDDxI0w1cDrwE3NWv2EFBI8AtlI3jzlYYzns5uy40EU5zcCmQTnHBeas2JUkqvEOIMgi9PCwnehzcBranSEva4OnsEO5xHQ8fuIxiY9wHBZct7+Kd1tDWcR/ABP5dgwModNFvxCrmgjCeYpUIL7f4KuDx0LIugVXcowUjp5ggpZaMQ4giCRoS3gWSCK21f83dKIZ3YopGgxfFtgqul5QTv0/s7eNxbQ2NdCzwN1BKcax/Yrt2bBO/Xt0PKZVu5m6CO8CnBl7cXCV5fc5/tnc7bsX7Pi3/6zO/+CL2ylI6Ojo6Ojk4nI4ToSXAl90gp5Q/RlifW2FMtrDo6Ojo6Ojo6HY4QwkTQp/se4A9dWQ0P3V9SR0dHR0dHR6fjOBRYQ7CQwZQoyxKz7HEuATo6Ojo6Ojo6OrGFbmHV0dHR0dHR0dHp0ugKq46Ojo6Ojo6OTpdGV1h1dHR0dHR0dHS6NLrCqqOjo6Ojo6Oj06XRFVYdHR0dHR0dHZ0uja6w6ujo6Ojo6OjodGl0hVVHR0dHR0dHR6dLo1e6CpOc/KJRgApopQV583bXMXV2jL3Qvu3fonhSsf5vobPb43A4tt3zDodDv+d19nj0Z3LnohcOCIPgTRrQQJhB+ICXc5KWm9NtFb1/Lz/0W4B+yUsHpFoqe86vOOQ7gAHJSwYlW6oy51eM+gFgYErJ4ERzTbc/Kg7+EWBQyl9D4031KQs2H/QTwODURbk2Y2Piws0H/gLQK7708I0NfQ6XQaO4Gxirf0GiQ0hZ1QAD4AHG6kqrzu6Mw+E4AeT7gAGEGxirK606eyo5+UVWYCLIpwka/rwgxpQW5OklVzsQXWFtIzn5RaOB50H2A9G0W0IAgRQSQwBAEBCAkCgR2YaAACGaxkw2b11+UI9vb3n2ktlvdcqF62zDXjjicRCXhzZ9wG3Fk4rvi6ZMOi2jW8XbxpNP/ifJZHLes2XL0P283viD2OZCJn0gbnM4HPo9r7Nbk5NfNEoRvqNSLZVbK11ZHpAH9IhfP7GsoZdVomzvUukSBL4+sPt3widNL/xefsgHpQV57qgIvpuiK6xtYMx9M6atqhnyRFBxlAB+EB46wdoZWnqYA5hBYsBv8Ac9OhYCLxyZ/dlHhZc9saojZdAJYi8c8QSIy4L3gHCiW1i7PCFldS5gQreK75QXXlBNVVUDTq2t7X0CyFNBJBiNjfU+X9y7IM8CYQTpBXGkbmHV2V3JyS8yA7cAN4NUmhmnqrITVtcnmmv+LNm693eAA6QJCIAoMinukd6ApX+orcukuBfslfGrt8aT+szyquEflhbk1XX+1ew+6AprK8nJLzInmGpq671JltDN6we+Au6Ihg/rif3fLP9xo3pGpSvrFGB/g/CSZq38ebOz+73Ap6UFed7OkGlPZNzrA8rXeOIyFWRpAHGWrvh0ffZ/adjTbqlMDX13dat4MxwOhwD2As42Ghsv8/niLEAN8HZa2rK5iYkb35o8WfOHfFhfBroBOQ6Hozp6UuvoRJ6c/KK0kRm/PrOyesiJDd4ky99HZADEw8D1pQV5sln7f/mwXjH77CFfrzt+7zpPykHxprpxTl/coIA0APithsbluel/Nm6qz368rDH7k9KCvM26H2zr0RXWVpKTX3Q/cL0g4JUoAvDSRfxIT3/kxrF+abxvQcWB/SRKN4PwVo3M+G1Vgzfxii9uuOHHaMu3O2EvtJsNyHo/wgSsLZ5U3DfaMum0zImv919W6okfFHrwuNEtrDgcjt4pKavvcrmST3e50uIBr8VSPT8tbcX3lZWDb7nppoddOzhnH5C/Jyev/fSqq17Ii4LYO2TGhHHbHvrXvPnxHv3vqtN2Ln1m8ujPSsefHpDG84C4/slLKysau8+o9ybfSnBVJuzn/eWzz+nxyarT7X5pPCzNunlCnSdpsDcQ1IXNhsYtXr81XSJk07zUFXSKroqusLaCQ++eedqG+px3gFnAS3TRt6Gc/CITcFyvhDV3b2roNTIgjQC/90lc+dk+mT+/8NiUV1dGWcSYx15oPwL4xkjgLx9i2HHJm1MfHF9eE225dHaOvdBuU5AVAURCkuLdUBsw/d+epqw2RfhbLNWLUlNXn1Jebh8kpfFQQMTHl9X5/eYClyvtGYfDUdlSX489ds6K6uq+A+LjK4Zee+2zSzte+l0zY8K4UUipAWbAjRCjdaVVpyVCls1JNmP9fi5f3P6AX6K8ogjfw6vuO/nPZm1UIvi8P/Oxa+PmbRq9N3B4gqnmmnpvUkbzlZ/Sgjx95Wcn6GmtWuCyZ88dWuc55q0kc3VFrSflmtKCvEagS06GITeAj4CPjn/g3uySrXudCkxeWzfg5g31fW76IL/oHeBF4IvSgjxfNGWNVeIU/7jGgBKwx9X9+kdj8nCPFEcQ/JvrdF1OCyASTCLgizP4lR/OWdIlv78dRVBZlV+DMLvdyaKsbB+MRme5z2d0AK9ed92sNr3I2mxb/6+qqv+P9fU9bwMmdojQbSDJ6Tq31moxB0MLpCWp0X0uXXSO1ukajL1vxuUw5DEQwumLp1/yst+GpS+8aOZFhX80bxdSUiN6L70+/aFG4Efgx5z8om9BzuFvK64WybF2N3QL6y7IyS8SgkCREPKYY/u+/5+np/733WjLFA4XPT3lP4sq9/nPxvq+RwLdEk013p4J675cWjXi2tKCvJJoyxdLHPfawFofImBEnrrBa5tjFIFT/zj3r/eiLZfOzjnslaEldX6jJYD4CRhVPKm4X7Rl6iweeeQ8g8eTWOp0pmeHdkmLpeat7t3/OHPyZC3syd/hcNwD3GSzbTnihhue/C4y0obHVwfv/+qfvTPPkoqCEgiw19qK98b8/Nup0ZRJp+uSk190tEF4P/NLo9IVLJu6D2vr0RXWXZCT//F0EI8Cl5cW5D0ZbXnaS05+kbl73PozE801Bcurh2WCUBTh+21UD23Zsqrhb2929shF/9LsFHuhPQlkVX9L4wer3PEXApXAtcWTimdEWzadHTP1f71G/1CfNne/uOpPf29MWQhcC1iLJxX7oy1bR+NwOFKA14HjICBB+EF4iUAOVYfDkWQwuMpttq3u9PRlqe1RfttLydDcD9alJpxU3CeLwRs3M3BzrRsYnbukRJ/HdLYxffZE8dGqCZcFpOERBd/6AIbuIAx0oXgUnV2jl2bdCRfPunCCQfgfsRkb5gIzoy1PJCgtyPP8dNvFhV/mX98DRE/gGpvRmfXDxqPO2uzs/h5wDzAn9Man82+OAKGscsc/WTypeKuBQH0Pk2tstIXS2Tk/1KedANKXYPBfPchabwKMRyZuGRltuTqa558/5mghfL8DR0HgElAOBXEbEUr473A4atPTl79VX98zee3aw05uv8RtR9OE6bvXLD9JRZ6U7qpfDWAMZq02ErRY6egAcOCds82ragb/FZCGx0F+EsBoBzEauA1dWY0ZdB/WHZCTXxRvMRz3QJyp3ndk9ueXPHnRS7udGbq0IK8ceHj67ImPfLf+6Fe3urudAQiQtu5x6x/LyS86qHn6Dh1IM3gmbPWbXCB+BMg0eYRJBA6Ktlw6O8ZeaDcDk0B8+OSpG5dc9L9eW5YD9X7jEOCPFk6PWe6886bjhNi3yGDw+X0+41iH485vQ4ci+lCuqLBfCBwopbHA4XAUORyOzk6lNzj+q7SDUCTGDNedSiDwgtNsRCKlQGidLItOFyUnv6gb9HynorFn7n5ZP85LMNWeWnjZEz6C3wddUY0hdAvrjnnU7bf1rvckHvfkRS8ti7YwHcljU16VW90ZT4BwgfQLJGWNvQ8Avs3JL9rtLVFtwSjk6X3NzsbiScUugK0+0+drPTY9EXQX5aD4qjuBjFSD52WAefVpHwH83pgidnlijOJwOITD4bgyEDAXgVjVo8dvYxwOx7ctnxn2eF4IXA8M6dat5OmOGmdnZE0dmmv9MTlAQPxvry9KXwTWN8YZ/P5kn6zP2/JTZ8uj0/W4eNaFJxuE9w/gYEHgnP9ddc8hIWVVJwbRFdbtmPTk5Q8CF4K8f3XBSXOjLU9nEFoOGQviVkUEDos31V0KDAU5/+QZt/9++bPn9I62jNHGXmjPqvBZrBK2lcJ1S0MxiD72Qrs1mrLp7JhV7rhTkw1e38EJ1U1ZHNaGfveJlkwdxQsvjE5MTV2xFHgE+MDvt+xzwQVffd/R4/bt++3HCQkbq6urcybddVd+ckePB6BpIvmXm9Nuk8g3BEIRAZFXMjR3lDSysi7RXGWsMZniv0jbqzNk0em6DLrp3ZO1dce/ZzM6M4EjVxec+Eq0ZWqJnPyiUTn5RTfqbnk7RldYm5GTX9T3p01HTs9OKG04ecDrd0Zbns6ktCBvXmlB3n0r7zv5h7/uOuNpYEi/5GXf/bl5/32LVv3f7zn5RRNz8ot2S8tUKxkDsNYT99+mHT1NzmpAHBBfdXC0hNLZMfZCe//NPsugOr/x7gfGl/sBiicV15mF3zPIUn9KtOWLJA6Ho/uaNUd8XlU1cFC3bou/Bk53OBz1nTH25MmaNJsbz/D5bEa/33pDZ4wJXIJPuX1L2jBlRb/x1CT1MwFqYs/KXl4raYBPeJUzOkkWnS7G9NkTRU5+0fXegOU9kEuPzP780NKCvJ+jLVdLjLj19cMFgW9B3gt8a7/11Vt1Y9E/0RXWEDn5RUbgVbff6sqM23T4Y1NedUZbpmhSWpC39esbrx49KHXx0QEMpcAr3WxlKy6edWFUAiyiTabRPVlB1gHzm/YNtjbUAhiEPDJqgunsECOBi4FAAPF88/2JBn9jXcCYEh2pIs/s2cdPAPkbiL2E8E247LK3xjgcjkBnynDFFa98DrwK8qonnjhzeCcM+WBF7XEPLhpxiVjb5yj+2OsKw7KBp23xOi3fep0W/ObAtwGr/8Jfr8nYk1+w90gueeb8pOXVuSuA+4G33X7bfjMvfvG3aMvVGnonrr4IMIZSbRnrvCl3frzq/9b2y/9wfk5+0UNj7nt48uXPnrNHV1bUg64ImuFTLFueqXZ3s4M4+92r7469gAxHsgAOI5jIWwIv4ahpt0P5Fzfc8FVOftHcFEvldKc3fsYXpSe/l5Nf9DBwR2lB3h7hv2kvtItkgzK6n6Wx4v0zVm1Lh1TiSvgY4Kf6tD3i7xArXPd+lsWmpF2TYPAs/+Ks5eubH6v0mb8F+kdJtIhSUDD9Ao9n3+eMRme9zxd36O23370gWrKYTI23+nzmswIB44fAgI4YQ9NEd6BRVWXtzDfm1iCkRAgRUEz+9dljurkqF8wDzq/cx1uW+bNljFJrOBco7AhZdLoeOflFPeDU90D0PyDr+69+LT/sjK4eOKxpoj+Qo6py7tKtI54C/g8wAN5+yUsfTzTV2v/cckA8cPmqmiHm1TWD+Ci/aD7wzYj0+Sv7JS8veuKil0qjeAmdyh6vsAZ9RaRW7U43CwJSoqyKtkxhcg7NJmeJvLj60bj3kmuM1ylSrMZRE/YXt7QgLwA8ctmz5xZ9tvrUfJ9UrjEI77nnPnnF66mWyisfm/Jql54UIsCAGr/JaFX8zzTfWe61bgaqgYFRkUpnh/xQlzq+LmA0DLfVvbaDw2uJ8ZRHDodDAe6A1FtMpvolPXv+fvrkyV//FU2Zbr75gdWPPXbOnKqqAUc5HI59HQ7H/JbPajMvA1maJvaBORpCBAADQngAzWDxpPndZlbHdfs0g9rT475L3RddYd0jmPL0RWcITnxIoqQqwv9/b1913zvRlqmVPA/01jQxZFWBnJeTXzSaUBGBr2+8epvBKSe/yHZk9meTyxp6HbG0yp4FXLqocl/Losq9n/wov2gBoO2f9X1Zj/gNbz9x0UuxqsO0yB5fOCAnv+hm4O7glvSBiMlavtKR9LBAXEloPWF7nBb/MinwxLkMHwL1gBauBTYnv+igDFtZ0WZn93RF+L8JSMMsoB+7adEBe6H9YmAWMLR4UvE/aqcf8nLuSqvi98+duGxwdKTT2R57of1jYB+gb/Gk4n9EBP/fmzkvLnElTjo2uSLnofHla6IjYfi88MKYHlVVOb/W1vbpRfBhd6nD4fBEWy4Ah8ORDKwEioExDocjog8XTROjgF6qKt8BeO6G2eU+Z0aq35N05LRZY+a9cl/u8eULBnySPnTtUwe96e0OHAJk5y4p2e2LROzJ7H37S5MavAkvWgzuhnpv0mGlBXkLoi3TztA0IYBTgC9UVdZrmhgC1Kuq3NCWfnLyi6xj+3x0wYrq3H3X1A7MAXkICGtwcVUsBL4ZklqcWFo7sMztt320uzyX93gfVqPizgx9bKoCo0VRnLDQNDF24V6Np0qkV7LtP7/k77cRm9swOM5lGAHcRFBBn4MjOaxIxNKCvJ8P6Tm3R3ZCqSMgDfuCfB3kblt0oIfJdbFJBCqBf6U462F2GTxS2aP9iroS097tuTfI40G+sL2yChCn+NcBbPJYY84q7nA4Tl2z5vAFtbXZvTIzF70OTOkqyiqAw+GoEcJ/J6D26DH/lkj1q2nCBKCqcl6TsgoQ8MVVCINr07RZY+YB+L3GnwFq12XU+Lp5PgK6Nx5WfWmk5NDpWuTkFyk5+UV3VLvTX7QYXEvU3p8d1JWV1RAjgP8BFwGoqlzaVmUVoLQgz/X8pbNmfnPT9AtKC/LG7pXxW9rRfT+4tHv8hieALSCnLq2yT3b7rTcC34QstzHPHq2wXvncWX0sBs/lSeata4Fbid2KF77qVP8Sv8KVwG8+gywTCINA7CzoQAFMtGNp9LEpr3q/v2XaHcDjwT1CtLfProi90K5U+00jB1gaq4snFf/LYrTcFf9Sjd9ktBfaLdGQT+ef1PmNM0AoamLlpzs6Pr8x5WOAP51JcZ0rWftwOByHA++AyAThrqgY8USkLZiRoE+f72dbrVXeysqBVzscjna7nGmaiAN+0zRxyfbHvA09qnzOzJVN25NuK94KbPU22FJch9R8GLAEpGm9ZUJ7ZdDpWuTkF40afNP/7s5OWLWRYKWqF+u9yXs/eVFhVN1idoamiWRNE8cBqKosBo5m23MzMnxwjcM5+5Jnn/7p1ouvKC3IO0oR/ntABkILriaBv+jMx659/8KnLu6U1HMdxR7tw/rZ6lOudvlt4ric9/JnTX3+9WjLEy6qKr/BkewhaB02m/z/1FPr4/xfxDcqRwiEiaBDt59g/WQtAsMXAfkgDbFqoW6BvZwBg2G9x3r/jg5KxHKCLwD9gCWdKlknYi+0CyAvXvGd0cPk2rDCnfARgN1W2zPF4E35rj59McBIW22vJIM3+fvg9nADgRF+xGvFkxZ1+IugvdBuECQNSjZ4Fzxx6qYfdtIsJnOxGgzuE/1+S+iLLQwEXwy73Mv15MlfOx94YNoUlyv1ReBCgq407cEElAArdnAsHtjYfIcw+MsNJt/IAx7YsnXxx0NfN5Xaji8ZmmvOXVLSZSzROuETWsGb6wlYrOvr+zEo5S9tefXw87t4cNX9wDmaJrJVVVapqvyqowcMSOOXQD7B748/1bqlZt6m0SeDLMnJL7oHeK60IM/d0XJEmj1WYc3JL8qBuKnAS7GqrGqaMANnA6+oJKkElVEkUnpN8inzzXWXASQAoeV/FdgCdKMdPqzNKS3Im5eTX/QxwTylx8aohXpXHAVQHzAW7ejgQEvD1hXuePaNqx7HbqCwXv9+lnBLZcTc2m6ZwPBeJudJEvYDqwFEYkPAyAp3AsD1AMXOpH+c/+d2234UQF5mLxxxFYjHdmSljiBHS0TvGr/pmp012Duupry4MUnm2urOBGZ2oCwRxWKp+auxMROQsqu/GDY2ZrwEXADyzueeO/aDCy/8fFO4famqrAF2mFPVlLBxhMm2OS2UIhmA+IyaVK/T3A9ABMRrwFlSyGOAj8OVQafrIPAfJTFYg5ZD6V9ePfyLrqisaprYHyhTVbkeuAt4VlVlVWeNH3oujyUUwDXfcf680fc9fMrqmiFXA08mmqsf+M+j+S/9Unb4FaUFeZ1dUjls9liFtU/iyv+tresHKDdHW5Z2cBLBwIt1BB9gHsAkEF6zV7z6j5ZB5bRDlEmrobHWE7A4V9130u6mrNLT5Lq0xm8s++mcko07Op5jaVy2wh2PRyoxVcbWXmgfBYzLMLo9ORan/Y+GpGofyhAj3fb1oWxbLi/3Whq6m9x+BZYFgoFMSmip6QXgjeG22uxUgy/9+/q0hQB2W22fRIMv+cf6tOHAZLa5HYlHgLPPfrvP2z1N7oeakvlHkl4m54wyr6XGj/LBztq8/H9rA4e8nFu3xWc2RXr8jqSxMfPH4CfxNvCow+Host81h8MhH3roojvq63t+5XIlvwUc3tY+NE1kEKzadZ2qyh0qvH5XcqNicJU23+dpsGqeetu40OaXAUvA48txPoausO4W9E9ZeubK6mGA9INoWlXsUmiaSAW+AV4BLg75qLbZT7W9hIxH2+aJr2+8+r2c/KL3eyWsOU0gX/yl7PCpwNH98z+868QBb7722JRXu7ziukcqrEcVPHT02rrcfffP+uH7d666d33LZ3RZ/kcw9+qPOGokjuRtb1SRsJ62lkGpiw9YUzugW2eN11kc8coQS53f3HuwraF4Z22+qs1YAdQscibFRC7W697Pil/linsD4vNAiM0+C5t9FhRkLfBnvMH/8WBrrWGN2/ZShc/yiw+l/NOzVsiQgjsHMIUsfM8XTyre6T0Wan9Ws/aPGAics7AxuWCl4rvSXmh/GvABX++qn9Zy3GsDe2/yWoeNsNX9+up/1uxy+bcuYPytLmC0tXfMTqbJR/rtrqysNnHttc/OeeihixZs2ZJ7gMPhyHY4HG2dZ/cHTiC4nLpDhTXgiw+4a/r/w2/RUxc3HzhjxoRxSdcsKaldeFKfRaYVcSNKhubG5S4paQzrYnS6BEGL4bDcfknLVq6uHfw8XSgrjaYJIzBGVeUXqiqrNE2cAvwUbbm2J2SNfmf67In/29iQPS4gjXcGMLw4b+PoZw+7e+aV6+tzFgJH0oX+ts3Z4xTWYHnR3NsEgc2ZcRv/L9ryhIumCYOqSj/wt69eB1pRd8Wmht5Lnb64rM4et6Op8psPBgwlzoQ7dtameFKxtBfalwODOk+ytmMvtNuA8w1k3ORH9AymPwGQ/njFP/OIxK1XPjC+fKdLa8WTiufZC+3bXohaUjJ31P6697PurPEbZ/xUnzoOuCO4vI3LXmgf216ldYPXNhGg2m+8uBXN1wLHtGe8ziYz88+BFRUjSU9f0ivasrSW+vqepwBLCWYlOa8t56qq/FTTRF9Vlbt4EZRxIBqa7zHFO7d6G2wk9d5sB34wL4u/FpgL5AFvt+0KdLoKOflFaQRz6i6tdGXuW1qQ19VePq4AZmia2EtV5Z+qKr+ItkC74rEpr8rH4KOc/KKiQ3rOdSzdOmL6+vqcpwAZmpfdOflFXS4IfY/LEtDNVnYOcJhEufWpi18si7Y84RCq+LJS00RetGUB2OLMqvAGLK5oy9EBjAUCEqHtqlF3k8ufoPi6ZDove6E9YdLbvd+3CH8F8KQfsTrb5JwBOAEfCE9DwPjGrpTVJoonFc8rnlR8X2uVy+3bPzi+3P3saRsuk4hnQ76YArAB7Uq5cs7bfRSQFwLfFp25ssUqdcNsdRkC2fO697Pi2zNuZ6Io/mQAs7kxZuZsh8NRqiiep0FOeu65Y1sVra9pYrCmiWMAdqWsvvXEeSYQ1qTe3+zffH9q/zIDgCWpocmx9VuJLAtY/ReEeRk6UWb67Imif/LSeSC7AxP/vHNil1BWNU301jQxNLT5LDCeYA7imKG0IC/w2hUzbqt0ZaYBb4AUIBSC83KXe6mPmckvEkyffXY8iOdSLJVbCfp+xipxwGJ2kBc0GtiMDTZF+A3RliPSdDe5LkszeMqKJxVX76pdhtFT3xAwJJzyRv8uk9pq0tu9u9sL7bcCa+Y3ppycZXK7BFIFDv/0rBXXghhLMCVMu62bYfA1CFdIaQU4zF5oD/v+STL4rgQxIMfcuMPAuO1RkCUSwSp3XIeUEO0Iysr2WQ+wadO+v0dblraQnf3TI0ajS27ZMuQuh8OxszR7zbkNeE3TROKuGjm3Do0H8DZ2W/LP/YlfA2xd0bMGIHdJid+T21gqfOLYX6/K6B3eVehEkx83jrlsVc2QwQd1//bL0oK8LnH/a5owAF8DTwOoqqxXVfmBqsZmJabSgjw/wVRbTv7O3z45J79oRBTF+hd7lMJatPq0i7c4s0x7Z/4yo7Qg719JxWMFVZWrVFWeoKpyebRlARiYUrJ/gql2t/JhPfClYUnlXktKd5N7cUtti51JL0kEK9zxOZ0g2i6xF9ozTnh94Ot/ORM3AXcCP9gU/6FFZ67M+HPSom+aovTbai2NJKExx4K4maBl4vhkg/fj697PCkvhL25MPMEi/L6htvrZrWm/yJn0GcAyV0JaOONFCWvod0ytZJx//tw1IPNdrrRBwPGtOGUKcMyuXQGgftOBFgBn5fB/+LDWbei2CvD73eamgjAEUrxPCJ9C3Depx7X9CnSiSU5+Uf/Nzu73GoTvh+7xG06KtjyaJo7QNCFC7nhTCAaW7hYEl/9FaF4WlwNWRfjmn/PE9Oenz57YmpfNDmePUVhz8otSfQHzzcBX2rrjY670ahOaJs7VNNGlHrSrawZW1HsT3btTlSunNBwhEWKxK7E190pTjsioVU+6+r3u+x36ytD/AmvWeawTeptdaw+KrxpXPKn4pF/OWfxjtOTaGc0U5ovTjZ6Havym4xY7E36zF9rb5FdvL7QfV+U3q25peO/B8eWtTRuzFkAgc9oqd7TIyFi8F0BmZnGX+u63Bp8v7lFghRC+R194YfQOX0o0TQzQNGFWVelUVTm/pT4N5tqE4KfAP3xYr3nzY78w+LeYExsPbNpnm5fyOlCqNBpObcdl6HQy02dPtCSbt34G0u+XxonRjmLXNHECwej/UwBUVX6tqrI0mjJFmtKCvHmlBXn3lRbkPRlvqtunT+Lquu82HHP+ByvPfDEnvyjqLlR7jMKam7bwHZCpwLVdMW9ba9A0kQO8AEzbVbuc/KJROflFN3aUApmTX5Sek1902tEFD3wz8rZX6uu9KUcEpNHGblSa1UDgWILWrBaVvVxr3TqAvWw1Z3a0XNtjL7T3G1k44pm5tem/1fmN5wFvgRj23hmr+j53+vpWLZFHG23i0utG2GrfWuuJGwG82lqlNZiJQH5IMP/wiaHMBC1yUHzVJoB94mrPCVvoTkcmAZhMzi6femZ7HA6HJzV11ZNSGge53Un/soJrmrACXxFMA9QqUvp9ZgdIHVD0r3Ry1tR6m9Hq3aaw5i4pkdIYeEcij/ntiswh4V2FTmezvHrYKzWetEEHdP/+6dKCvDXRkEHTRIKmiaZ77HOCFtU9IkXaX3edsWmvjF+7mxX3vSDOMQjfH1NnXRBVK/cekSVgX8eLg2vcw0aPSP9jxcfX3bow2vKEi6rKUk0TewOlO2sTUhi/AWkEfMc/cO83tZ6ULzfU992Qbq0wjMz4rf+K6qHF6+r6l3ePW6/snflLt5KtI1euqR1Y1SthjW+vjF+UDfU5lQs3H+AqLciTof6OA+pzkpYd6fLFqZAdD7CqZognyVzlDeXlbF7utUtFFoZDmtF7oUkEKj8/a0WLS7A5Fuf6le54f43f1KMzZAOY/m6P41a54+6FuJES4c8wuT8ZYasreOSUsu86S4ZI8vp/1kywF9p/BR7sYXINuu79rEMfHF/ubOE0leA9B8G5TKUV995zp6+v3/+lYQ3rPdaYUf42bx6+FGDDhgN3VPGpy5OUtPZxpzP1qrKyvcY5HI7bgS+a0nOpqnRpmriG7apW7Qpn1WAXgKe+57+KdXjqbJrfY9y7+b5GtfqX+K/SFKXGeAsQQy8qeyY5+UUHw16ndLOVz3n7yoIboyjKW8AwTRODVFV6gRejKEun89iUV72Pwc05+UVzzQZX0Zy1eR8Muul/93sD1hqikPpqj1BYt7oy7gLpjDfVnRxtWcJF04RRVaUvVIt4VxwL0tRUQ7hk615HEarWVOnK5Ot1J2xrWNaYzWel2du2N9T3ZUN9323bOfkf+UCE7hFBae0Ab7+klfXJ5q1P1HjSPvJL469V7oz92ZafM2LlXqPKyMIReRKLtZepsVW1qR8YXy7thfYFpZ64DveLthfa9wZugvTTzUKKRMX7fF3AdPuXZy3v9MTUkaZ4UvFDp73Zb/AyV8IUT4My115oP6J4UvGulEot+Kvt1Z/c0vBXhc8QSytMTT6sMVdOEWDyZE06HI67gOeA24EbHA7HWFW94zdVlV5Vle+2pb/Gir3dAA3l+/0r8NTvNlcDvWZMGHfINW9+/COAtATeCZgDpdafk2KqJO+eyKXPnNdd4dTXAxg2bHFmnd7Z42uaGAGsUFXpAhyAMaSs7rGUFuTNmfbspIPmrj3hHacv4QYgQBRSX8XShB0Wx95fkAf8B8RDb175QEm05QmHUETiT5ombmhF888Bd1OeTQXf4lTLlsOAodkJpQcf3feD83rErzseOKZn/NqJR2Z/9lA3W9klwIVZcRtuG9Xj6w+TzVsLgDutBteCYJcCwA+Gu76+6aq0hXeec2NpQd6PpQV53tDNui3ivKvlbWsr9kL7KIl4F2CDN+7I1i4zE/Rj7TAf1sNfGTL98FeG1AF/AMcakQ+qiVtyfzxnyYXFk4pjXllt4n8TVl/Ux9z4cKXPfDDwlb3Qfssu/g22BO9N8QFtz3awlhjyYU1LW34gQI8e82N5zs4MzUsCMFksNScDyzVNtCYY6x8opvokAKF4/mGFnzFh3CiQZwIGkHOC23DAjM1S8SgvCMThJUNzs3fQpU4XYW3tgK8lIifDtumi0oK86s4cW9PEIGABwbyqqKr8RVVll4sBiAYzLypc6PQlvEDwS6yANBNc1eo0dmsL6/TZE0Wjb9Qb8aZaT4M36cFoy9MObMDvwKqWGoZqCI8mmNuyRwDDFJff9vVhvb6c8crlj94I/LzdKa/trK+c/KLP+Kf19Kudjclu4AYQQg1+EQUEfSNVWnFtAy311pXu+P7XvZ8V/+D48oaW2rcFe6H9QTBdCyCQfok4/Y9Jf325o7YhFw6VLlqppDUUnbnyGnuhHeBqkEcAN+2ouEBvs/PUdR4bCvLWhZMWLWrLGCNstdlLXAmDrn8/S7QmB20XwAZgNDq7RA7KMNGE8AekVBRQvPHxFT8BexFGer7kPppatXIcaYPfywp6LG1DJfi9BWh6oM4DkObAm8Kj3OEaWXcfultAlyQnv+gU2Hfo8PT5nxddd+vnnTFmyCA0TFVlsarK5ZomLiFYRVLn33wN0g1YQSq0kKM80sTy23qLfLjyjNPX1fVLGJ6+4LnSgrz6aMsTLqEcbxerqmxVpZZQpN+9pQV5lx+Q9cMxqdYt3u83HJ2fk1/0WqhiSKvY3aynraGHybU2+ElK2uDikGjwr5II1rptwyIly/XvZ4n/e7Pfh8C1ICQIJEISLFv5L3Lyi/4DfA/cRewHwG1plqfVwg7e5BMU33k24ZfHJm9u88qJK2D41ScVFjkTe7Zf1I5n69ZBSwDWrTu0NtqyhIvD4ZhntVYfoyj+24CxV1zx6vuqKo9XVbmyrX05qwZWAHjqem0fjKOxbYVJSJp9f4f9uXSpr4e70bjJcmzYF6HTYex12yvZBF1Gfv+rct+OD+5xJI/CkXxLRoXxJeBHTROZAKoqZ6uq3Nrh43cA9kL7KHuh/cY2rAy2iVDqqzEJptrvQRFARkeMszN2W4U1J7/IIlHuB4p/KTviimjLEy6aJsZpmgg7svXtq+77tl/SijSCSuf/mRT3ivNnXupo7fnN0lzs9soqQIXX3B0EiYrvv7RhmfmPxuT/ASx2JUbkC2wvtBt/rk95d4kr4cQMo+tPghkLfOxCie5mK/sPwe+0gb8D4GIVDXCFFA/BDq55mSveYFICvz4wvtzf1s5XuOPnAKzz2DotUK6d9AP8wEHRFqQ93HDDk3NOS/Os/b9uDY+tuvP1MS2fsWNcW4fWAtRtOGxT8/3XvPlxUy7Jb0K7/hGkZqg03WXcbM4oGZobtRR0Ov9m+uyJhjRbxQKD8CUBE0sL8jwdOV71w/E3SOR3wF3DFttOzV5nfhDY3JFjdiQhRfVZgmm37gLmdKTSWu9NHgP8BfKxC5+6OLkjxtkRu63Cun/WD4VAP0Hg2lAVh5hD04QRmAk83J5+Xr3iYXdpQd5divAfmGqtNM9dl3d7Tv7Hz+fkFyVFRtLdBz/KROD3kG9oW5T0piIOg9org73QbgPe2eo3j+9hcr24f3zt3jSzdO9MLoPwhcqSygAxHgAXvEYxFsQ7gMgwuns1P24vtKf5UQbV+k0fhjnEWoBExdfl0xw5HI5RIM8GaQDmBLdjk8WP33xb0oYTXkxan3eAqbHXx+vzvwvrWhRjQxqAwVL9LxeJa978eJ4pwXkVYEgdsPEfc6fwKK8BSGSrSsXqdDw5+UWjPlw54cPVNUPSD+7xzVulBXlLO2wwR/J+/juTPk6pNRYQch0RCOPAlVZvZ1ep0jQhNE1YNE2YQ9smTRN7aZrICG3Ha5r4j6aJ/qHtdE0Tt2iasIe2e3/5tfLmWW/1fQPkdyCnEDRUdLjBorQgz9vNVnY9iJwaT+p7HTXO9uyWCmtOflF68ZZ9Tx2QvGTL6oITv4i2POGiqtIHHAhcHon+Vt130h8H9/imR4Kp5nEQ5wkCi86feenVkeh7d+DS//XMA/axKf43wzh9s1kE/LnWunPbI8P172f162lybgB5EnD5F2ctn/zA+HLZmspU5Y3ZPwU/iefYDVw4Qtc6MV7xuWyK/9nmx4ZZ6yYAJCi+X8Pp+6ikzdUAQ2z1/9deOTsBFVCaMn8Qw5ZzgzvtdCGNCAwIRNjXktDjt7EAaQM/2GHauSuen/OHJbm+saE8dXTz/blLStb607yr/d28N4Uzrk5kCbktzZUYTgD8P2wc+2RHjLN+tvXChgcSFgO/GQLi0Aab/0t2tGrlSB4lHUl34UgeBaBpIrvJVSC0PVrTxPBm25domjii2fbjmiZODn02aJr4QtPEuaHtOE0TazRNNOVRTwnJcEloO41gwFfTnJQKvAk0rUQkA3cFJPvYC+0H3rxuyN23rR/yn2Jn0gTAEJwftuncHW6w+O32Cz4ZkLxkyW9lhx6ak1/UryPHamK3VFiBmW6/1bjFmRnN/G3tImRdRVVluarKFoOtWsvjU16pW3TXWdOBQxLMtXFz1+XNsN/2amFXqGIRbTb7zFcrSA5PqGxzwv3iScUyXvFVVvgsYZUXBbAX2nt9UZPxSbnXknJwfPWM4knFbZq8BYGmnKQvxrqy2kTxpGJPf0vje2s9cal7FY44oGm/SQTOVpAclrg1rNriJiFLDUjPandcLAQxaaG0XRDjlnNb1V7PhD76ace1uKr7r0P4vP+5vHCnq2fumvjbPfW2XjMmjBvcfL+3v/MH4xZzXPERA/YLZ2ydiKKCbJozJZF8GXMkCxzJKo7kOdkbLLPNHjHUZ5AOoG/8DfXHCMQYQqtWOGrm4UgeFXITuEUi54SU1p+Be5r1+hZwabPt+4DmFdROA+yhzwEgnr9zRbuBr/k7j3o9cBN/F6epCp3/aWi7/OUtvSZevy63t73QPuratbnM2NT/xTs3Dp4N/FwbME7IMrnXDLbUvQA4QfoAP0iyTc5pnVF2e2XN0KMlio92rgK3lt1OYd3X8cLZICeAoMaT9ngMB548o2niLU0THVLDt7Qg7+fRvT8d0idx5Qd1npRzgIXH3l8Q9VrN0cJeaDcscSUOMYnA3BmnlC8Op48qv1mr9JmtLbf8N5Pf7n04yB/9iF5mIY+bffr669rah9r7s8MAjs15r384MnRVip1JU4GaAGLb3+RPZ5LfKAKLHhxfXhlOnw+ML5d+xIpw/706k1CC/SaL4BVNCfdjkbqen3sAvLZNnwBjswsOD+taPHW9a5HGml23Eq8BUhj8/1j1sP6WdA0QMFaY9VKtUcYgfD8CImQZbP/LWDCQ6sbG+xPurkvwVxNUEHO9RnnThl7eLOOttXfgqAkGLjpq5uGouQ9HTdM9qAJC/DPQ80rgv81GOAFonnFoAJDftKGqspeqyrtDn6WqykNVVT4f2varqjxPVWVRaNurqvI+VZW/hrY9qirfVVW5GuDyNSP2/6Uh5TlnQLkV5A9uaVhZ6ok7L07xO3PMjbc7ei275cruq3td3n3NoyH3qdv6mp1XgMCsBI6gEygtyFuv4L8bGH/ezMvyWzyhnex2CqtJ8dwd+iiI7eWzpUBJR/rVPD7llcpvb75iPDDaKLyWZVXDPziq4MGPc/KLuvxDvANQgV5uaXimpYa7YAXInKNfG2RquenfnPVW31MWuxK+MQuZChz5y7mLw3Jj2dSQXQFQ0dhjU0ttY4niScW1CvIZkKdf8W6P0fZCu1kiDvBIww7TrLUWBbneSKDdPsedQUbGot8BsrIWDo22LO3BG7ehD4ArpfiTcJVVAMXYmI7w77IK3TVvfrzRmlK3xmTzXP/ag4O3vfjnLimpAOZIRU789ZqMDjEI6LQOvzSmgMBmaHyT9roxBS2ic4F745yGmy0uEVeZ5p0J9DfdUntfzmRXS0FVGuCWSCmCgZ4/qqp8W1XlNplUVf6qqrK02XZlqMBAR3AMYAsFnQrg82yTc/D1PVYe+NGZK+9MN3ofBvZWVflnk8vYx2eufArkt6vc8YfbC+2dcm+PG/DWk91sZd4/yg/Kz8kvCnuFsTXsVgprTn6RcXNj95RQSqJdRlR3dVRVPqCq8vbOGKu0IO+b4/v/78Bh6QsWrqgelgfMH3jTewe2eOJuxABLw2NGAm7go3D72CeuJgGEYbit7sjWnmMvtJ9Q7Ex8VUD1EYmVJxZPKv4j3PGXbB1ZAfBHxcG7lcIKMDZpy2sGpNjgtT5wYHzVKYA1w+huqerbLhlqrc+2KIHhLbeMPlZrdTGAy5XSqWlkIo00eOIATA192hWRbU1bdqg5viyzpXa2bnUfeOptpi2L+/zD4uTap+4vERB9hUuZ1B45dNrNmUCl0x9/TnvdmCRytEQ2GVsCJp+4I/2Kxstw1LROoXTUzBOIsSIYAyDqEvzj2iNPezjq1UHxwEkhv9QA4ATuuKHnygeAzzVNWFRVBlRV7qAao3geGGAVfrUzZH18yit1NmPjuTWetGSCFukOY7dSWIG8AMZkUK4nRnOHaprYT9PE6JZbRpYnpry8qei6W/cGjgOZ5A8Yfzr14Vvm5uQXmTtbls7GXmiPX+O2DRlobVhZPKm4pfr1O8VAcGlntTuuV0ttAc5/p/dMkB+CWNwQMA595JSyb1o+a+cYhdcCYBDeDk0JEw0ePqVsYYLB/+4yV/yIKp/pXIC942rD8l9tojZg/LYhYBQHv5zb5f23L7jgqy1AeU1N35guEdltyaUfAFhrh1a3px9Pbe8Nfk/CupbaVa3oeRvg9DZa/9N8v6+7+1GpSL/tp6RD2iOHTvhcMfucLKPwnp5h2/RtaUFeu+/rRltguEAggwYrt0DMaXMnQTeBi+rj/RUWt7h67fPWVuctjxTXvZ+VbFUCa0DuA9wu4FaTkEeHfFILgGmqKndaojle8f3PJAL+vhbnsztrE2m+u/nyN4APQN46eeale3XUOLuVwtrNVna7wF8GPBrDuUNvBF7RNBGVZfnSgrzPR3b7bd9h6QtXza8YNRr4OSe/aGQ0ZOlExvtQjEtdCZe03HTn/NaY8iXAKnf8LvPS2Qvt4tBXht71a0PKpT1M7g3A6OJJxRXtGRvg4J6aCnBczvsxbYXbGTV+000gLMvd8ccI5JqHTylb2J7+1nts3wM0BIy9IyNhh7OaYD7WmKU2+5OhADXZH45oTz8+V7rT70lusSTxNW9+XAvyA0Tg7NceGLztxeSARzavEQHxsdJgzCsZmmvYVR86HcPSrcPP80mTYe/MX9uuWG6PI7l/vNNwsk+RfwI30xRIFSZ1if4bzV5F6b3OPLndsrUBe6Hd8nlNxhtrPLb0g+Orn3ui76KHHu/719iH+yw+AkBV5c+qKj/ZVR8/nVPS0Mfs/GO5K76PvdCe2DmSQ/f4dTcYhS9+ZfWQz3Lyi27siPih3UZhPe/Jy0ZWOjP22S/rpxWlBXm+aMvTDs4Gjt+VX0xOftEhOfkf3zbgxg8O7QgBPrzWUVF03S0DBYHxQE8I/D7h0es/nz57Yof6p0QLBTkZWCMR37ezqwqQ9QYCO83taS+0K8AjtX7TLUkG7+d7xdUOK55UXNfOcQHYWN9nA0BZQ68tkeivq1E8qXhpqsHzEwgjUNPexNhm4d8A0N3ksrfUtiuQmLg+wWyu7ZDvfGfhN1enAEiDq10v5EJxpwqDu1XzfLfcdYuQSpLXZflH1hipyDeBnq596s5qjyw64bG0yn44yPXVrrSn29NP6QtWg88gXwP8xoAYJxy197VHWQXoMdX5X+ArgbgBR3KnrMBc8W6POAX5P4k4Dpgy+/T1FxF0BVgNlLWlr5Xu+CsCCDPwnxYbR4ifbp26tEfC2m/X1g3sTgdVWzRGsrNooq0/fjyA1eiMybyioXrGMqSo/rmzdjn5RWOBL0EIvzTe0S//Q7/EUCcIONNtm7s5fbayBm/SRoPwefolLx9a5UpbUunKKjUbXL7h6Qv2KmvotXBTQ++V8ca6wN6ZP49YX5/zx5ragaUplkq5f9aPfVbVDFq8qmbopm62cu/x/b5b91v5IaPjjA0f/lx25DGCwHcf5Bc9TNDKE7O16ptz9Xvd95J0GzvIUv/Bu2esDrSnr+JJxXLsq4OJU/z/B0zb/vjNH2QkDLIkFC93J+QAj9b6Tdc8OL68XWM2Z1XNkHKA3ysOqY5Un12NDKPnuyq/eZQMpo6ZYy+0t7oa2fYcnrjVOac2g4DkRnuhfX1npIFpDwaDt9TjSRj+0EMXGa+99tmYfCkXfrMn+Lt96cRMcZuHGm2VW+D4VrR1PSwM/hsqS7L/UTa54bjKr+K/SkN4xA3Ay+2RR6dtHHLX05nQ+1gQj7591X3tmgNtTvGy0S8OqknyOZKvbmjRTaS1BIR0KFJ8v7mb9+WMf6auijgnvD7QaBa2pQFEdqLivf7e3kv31zTxiarKjcCFYXT5E8glNhGYDjwfYXF3yrq6AV8BR/DP4gURm1d3CwtrTn6RAbgA+PKVyx8JK5F4F+B8YH5TlYsdMX32REO8qfZlkKHoPynjjI1/Ai8bFe8XGbZNGywG9zqgWoiAyemLi2/0JeQAh/v8phNLKkfuu6mh1yTg7gZf4r0/bDzqrDW1Ax8E3q52p7/z1doTH15VM/QzYOEWZ9biT1af/ntFY8+/SmsHDQCQKAeAfJ3do1Y9AL80pJwiEfSxOJ+KRH+KkEvKvJZ/TcD2Qnvix9VZHyx3J+TsG1f9MXB18aTiiCmrACbFYwOIM9bvdj6sTSxzJ1QHgxBEu7OAfFeXbgFJhc+yNx1YyjBSVFf3+wAUUV/fMzvasoRLaumZvwMkrx8XVuq4JrzObtXexqxFrWl71vXLnNJveFEGDCfMmDBum7vOAQ9v3hyI839l/iu+e8nQ3DZl9tBpH/1Tls0AYcxNW/BZuzpyJPfPrDCd3BDnX1qV6r8zQuIBoNxe+0Ntom9LapXxBBzJHba0bi+0G9Z5bC+tdMdn7x9f/f69vZd+SDAYrdXBu9tTPKlY7hNXu9QpDfYr3+t+XOSkbZGvQPqDacqkjwgHve8WFlY1+9PrtPXH9+lmK3NEW5Z2UAH8Bex0OffPzfs/1+BN6iEI+CVCgvA2+BKntcXSmZNfJABTTtLyhOHd/ui9pHKkb2XNUJEVtyHd3u33vUq27lWxob6vN9O2KWtw2l+jlmwdsXKLs7s7zbq5l0nxjC9v7NmTDnp7igY1ftMpwC+PnlIWkYpoZV7rl8B19kK7qXhSsRdg+ns9hkL6qwHEXiYRuKDw/9b9t4VuwmLfzHmjfy47kqP6fmSA3bbypAbCTfD+a1cWEI9UmpbXmyu/Xfl+DhUQCfTn7+TjMUVN7/eHJa8bT03vD+zZHB6276L0W4W3ofvq1rZXjL7XAj7j5ck5ZbcB1zTtN1SbngA+AI7i74TtOh3Mws37j0yxVNYMTl08N9w+KmbGKRkY/ysQvvhGw1Hxk+sjngLS4lZONfrFt8BlBIsERJS9CkccakQ+40MZPsRa/+ILp6+bDKBpIkdVZVV7+k41em8GeaJWmz4WaN+LQSspLcibd9z9992/pGrkTTlJy97XbroqovPpbqGwLqsaPiHBVBsY3fuzt4OG1thDVeUHBCfOHZKTX3QSDD4v1bLlk2p32t0EH65tXpYvLciTgAfYGvppzvZR6v+wOubkF70KzCECykJX4Ly3ex8DKSNBXhbBbpcDxiyjaxCw+MTXBwyv9Sf9YUAqfsTJ88/9q81VtFrLxobeawEavAkNHTVGtCmeVDzPXmgfS+j+b+cyvhZKWC5DlaS0dgvYgfTo8Xv9pk370b37n+cQzDcZs/gsW7La10MgUTE1tHqFImvvVT9XLs32eurizqaZwgp8Lg2ywZftuhNdYe0UcvKLekGKHbjjsSmvhq1kBhT5hkAc6TXKS0231K6PoIjbsNxU9x2O5E8k8vp1z1sL+1zg2hipvu2F9lECvvGhGAQykJdSfp6miYdUVf7VXmUV4LFTNv1lL7QX+RGT7YX2amBuZ7g9DUlbdMuyquFnldYOjnjwb8y7BOTkF2VtbOgzotEb/8iD579dH2152oqmiW6aJiaHfFh3yFEFD14NgbeBkip3t9NXF5w4LxpZEELjjSVGU4Ztj1cqdytIxiRVfh6pPg9PrLQCDLY2nGIvtO9T6ombUxsweg9P3Hpx8aTi9iuroUouTbWum7Ourn85IOesPXHXKWJ20Ucs0JQku72T7/HJFT+BIMPoKQXC9oXtLMzm+oUQkPX1WTFraDA1NgUEirAVlbeemCQAW0L3+a3ONHDWdcuk9CuPOyuTMmdMGNenaX/ukhK3Z0jDRsMmy76LDhxkC1cmndbTPX7dZQRXNV4PuxNH8oDMCtPJtYn+8g29PLMiJtwO2Jrqe1wgUqwupTCyPcsxMrhaiYTA+1Xd/7vjvKrhEyd8fwLpIO+kk9yeHpvyqgxgeAkYk5Nf1DOSfcfsxNeE2eC60OO3GgMYnou2LGEyCXiA4FLkku0P9sv/aJRk6IxQAuF+IPYmisuWISW1Sz/YW4O90G4QJPZOMXh/euyUTSsi1W9Aiq8B5jcmTwV5M4gtPqns/8Spm0ra3XlQwfwWMEqkrH8wPmBzGeYb/aLRbQ5kfJGUOWyrq5s8WFnytfveQKbTFsi1OZXFJq/Y6jHLDJc1MMToxROPwRiq5OLCkdyu9C+xTLEzsSlS/b2urqwCTJ78tdvhcKypr+8Rs4aGuMoDKgDSV5wftjtA7frDbaDgrunbpjy83kbrUwStq2cC9zftN26yXKN4lA/xKMcD74Yrl07rMIjA5T3i1zXMu3XqsrA6cCQfAryiSOFNqFf2T7rG1WHVIAHSpjd83vBAwl8Zm40H4khOwVFTHYl+j0jcevq3demEfPK9q9zxEddhbAb/CY0+IyAUOtHtKcNW9vZmZ/fbDuz+7eOQd3qk+o3ZiQ9g+uyJIslcfXtW3Ib1pQV5/1L2YoSHgYNUVe5QfonIC/4zCULpfNROlG13ZqxEdK/ymx+KZKc/1KelgqQhYMwGbMBlxZOK26+sBlElsuklU1jcSoMUGAJCGgx+4ZRSIJDCa5SJSkA4lYCod9oCw3xGmWTwi0YlIGqNPgX+vqFiuXRxu1nvsVkANvssLebz7EKsDr64xibVfd4dAVDT+/2wczu7a/rHAbhrc1rtwwpwzZsfrzLFuZabExtvbl6q1VBl+pRgDMGZ4cqk0zpy8osGbajvG59krn41rA4cyaMk8luCmWpMihSdkkM5vtFwjkAkAdMj1ecqd1w/i/A1EFqx7IiX5kqfxRWNyp+/3n7Bou7x62uWVQ0/KJL9xrTCOnfdCUdvcXY39Ute/k60ZQkHTRMmVZVSVeVvO28lVoY++NkN/Ea7Cr3NznsMyHrg4wh3rTZb7vQD7Sr9qWnCrGkiHqAhzv9rQIEAEoFwVqf6L/jhsLp9vz2y7nnjrbX7X6Jc+sXkwDX8cFjdLaZbavebv19D9oJ9Gk/+8dD6MaZbavdNuqY+2epRVIFwEuOliyNBX3NjIkCywRszK00pKasyTKaGiD4EOhOTM3MrgCd+3U5zFbeENWV5KoDRWtlmy1pi9pZfPXVxidWlWduWRnOXlPi8vVy/SmPgtF+vzugRrlw6reI6QC6tsofrHqUSWkYnqL+oEZCpZRw1f/gV+ZlfyJt9dyXdH447laYJm6aJFzVNTDrrrb4nrPfYku1x9XOKJy26pyOUVXuh3QbsA+ItOlAp3hllDdl3VLvTs3Pyi4ZGqs+YVljrPCmTgOqfNqk3RVuWtqJpYh+gVNPELh8+w9IWJAOYFPdz7AZ+o12B418bmFTmtew3xFq/rnhS8U5L3IWJBrgAHwgPrVAINU0ood9C08S1miaOC21bgAbgaoBfD2z4buFejY2V3XwfAmMXD3d+AFwC/ACwqmbI6kZfQoWqyk8BVFXWqKr8UFVl5bbBgsv/2/yQ91R3AIBB1obeALnW+ohNqB2NlMoCrzdBueeea+OiLUs4xG8+LBi0Ivxhp5GK7z5/MEBiz58GtfXc6lXdrwB8zi3JpzTf7x3c+JHwKcJSnLDbpteINv3yPxoFckooLeMbYaZF/BFoKr/aqS/cdQn+7wxSmAx+rgPmhKG0eoA+QI9iZ9IVID0rXXEd5sp4cHzV5YC1p8n5biR8/sPgDSBgNTRGrFpYzCqslz5zXj9B4HSQr5QW5IVd/z2K+IE/gKW7apRsqVIBju774YO6shoZ1ntt471SEVV+01WR7js0KWxTCLefJDRNnKJp4oRm238CswBUVUqCPnbjQttu4Bbg66bt2mR/QsZljSfjqJmnqtKrqnKWqsrlAGbFFS8I+FsUMlgvu93VYGKdRc7EeoDVHlubfCGjSU1NzqcAXm9CTpRFaRcZJVe+Fu659RsPrAVwVg2a39Zzr3r1s0rgE5ATX3tw8DalOe7rtNnAOtM661HhyqWzaxLNNZNCrm0QvjuSEAgE4iU6+YU7pdYoZXB1q9XuVKEVshs0TSSqqvQDR1++ZsRCkMcCpiq/+c2OCoQq81qONYmAHBlXF7Gg4rZQWpC3KTuhdGO8qf7q6bMnipbPaJmYVVirXN0elCjmY/p+8HW0ZQkHVZV/qqocp6qyelftftp05BqQjSbFu6qTRNsTOAdYtclrjUju1eZomtj/ib6LEpveaDVNvKJp4s1mTW4Ermy2/SYhhTTEQFX9O82Wqsr7VVU2Lxlr1TTxhaaJf1U/GZhackiqtTLiqUR2V8q8wZircq+1TWUPo8xqAJOpMewl9WhS3ed/I4K/39sr3D7ctf0EgKtqcFipjJL7lv8IoofPZb6yaV/ukpIA8IZEHvvHxF69wpVNZ+fUepJD7m0ybPe2ram+yyVS+gzyyii8cGsi6O7VFuvuXsC9hCplhZTWA4KHhABpoQPcGuyFdlHqicvxSvHJg+PLayLdf2vpHr/+7UpXpnHO2nERKSkdkwprTn6R+GnTkUMTTDXLnr1kdkxFdWqaUDRNTNM00arKGRKlD4jS9uSr0/mba97L2h/kUb1MTq14UnGb/6aaJrI1TRzebPtmTRPvN2tyI/BYs+2/gOJm2+OBk5s2VFXeo6ry9Wbbu8yhqqrSSXDC/FcOyvKGXqVOX9zm1l2JTi+TsxtAhtEdMz6s2dnzagHS0pbHZICQydmzEsCTuCxsq5I5aU0WgCl+Y8urCTsgrlvtLGHwe6pW9vjHQ9S1b60mEEZpDkQ8QbwOgBLKyiHuIkz3NrNHHNwYF3Aab62tjqxsLVPa1z0/gMRtDixmF9bdkGvXPgCqKn8FhquqbJ4S60vAFZzGhQKMsBfad5rWMkwGAf1BfBLhftvEb+WHOQBPvTfpgUhUxoxJhRU4SKIMr/cmRzTCu5MYBTxJM6VlVySZq/ZPsVTutongO5tFzsSzQZBrq9/hkqSmiXhNEyObbZ+haeIjTRNNSxrXAp8223YCzfP/3kCzAueqKu9TVXl3s+2NIaUzbFRVHquq8l/VsipdmdVOX/z2xSB0dsJAa+MwgFxbfadEGkcCg8G9WAi/t7Y2OybL78ZvHrUJQCp+a0ttt2fm1LmjZk6de6PJumU8QFL2D2nhyHDW9UtrpN/wss9pGTtjwrhtvsC+Hp5PAwm+SsuCxJi0Xnd1esSvO8lqaCwrLci7Iyz3Nkfy4QkNhoy4RqXDiq/sirhGZS8FIapTfN+1YN29AfhZ08RggO0zAAXdxMQYELcA/wPO6mNuXHrt+1kRWx3bL676HoABlobtiwF1NsNBGkCOAtnucu4xqbAOSCl5TBF+F0Gn3phCVeUPwL60MmmyL2Ds1SdxVUwGWHQ17IX2URu91jMUAotPTi3/BkDTxKGaJl7SNJEUajYVWKhpIjW0nQBkAE3/BrOAYwk5YqmqfFhV5dlNY6iqXKGqsrQTLudfmBVXgkH4dEt8K/nLmbAOYIUrPqLJujuSyZM1KaVhudOZHtNzQlbxTY+2pf3MqXOPB74D7mmo2Pf/ABorc5e3Q4RXgISEHpWXNu04YMZmqdQbZypOwwElQ3P1bAERxhsw2/smrWx1dbJ/EAxw+pKg7+j4aBQ9ydxs6gaQVWF+ZUfHNU2YQx9nA9MIVj3cIaHiJ/cUTyo+fbit9vl1HtsArTb9G3uhPSKJ9pe54vexCp97pTs+qeXWHYoKKKHHpZl2uj/EnMK6n+OF5LW1/fcfnr5gTWlBXl205WkLTTe0qso/Qr4suyQnvyih0ZcollUNf6vjpdu9CTm2zwWRJWDYK1t6NUUDZwKjgaZSkR8B/wHcAKoqn1NVeXDTUr2qyiWqKn9QVRnexBsBNE0cqGlitaaJg5vv751Yum/3+PUxm6Ozs9niswQANnqtMeZGESgVwheTVsDqvu+MBKju8799WtP+rScmiVcfuOYRCLxDMJ2RCP3GuWXElnDlSOm/6VtTnMsvA8r12x16AxCefs5rdnSeTnjk5BfFbXFmmtfU9Q+3WpTK34WOTF5j4F8+/J1A03fuX4HSmiaeBN7TNCFUVVaqqpwdCqJtkTf+s+bCnibXuW5p6AP8sd9Lw2aFG4h13ftZ6SMLh79eFzANcEmjmU6qbrULNIL+vhBMpai1p7OYU1grXZlneAMWZYszc2q0ZWkLIQveMk0TbUnx0BfA5Y9rjyVBJ4hK8O0cPyJQ4koYDqCq8j1Vlb2bIu1VVS5TVfm2qsrG6InaIhuBnwkp1U1UOLuvr/WkrI2OSLFHD5OrZ+h3RCJYO4v09BXZiuIb9sILakzJDWBqyK4AcKUsymup7cypc7tvWfqfoupVeVcarFVOkE0PPgXAklQatmvNBff9HjDaPG82lKekzZgwLrNpf+6SkhJfltspPOLicPvW2SEjQAiXL/7XMM/XAI8MBmxh9IkJOJKPiJh0raAu3j/FL6SfoH/o9iwGFvB3jtg28dlZK14GpoHM9EjDxSB/tBfa/zzo5dz3z3m7j3bUq4OushfaDzvilSG9r38/6x9j2Avto+yF9hsPfDn3up/rU8okyhmEHGSJcnGYoOuHmBLcEuG5gjQjZoIN/kZOAfHnpobe0fbNaCtW4HuCQTitYp/Mn9Q/Kg5mYEpJLbQ4v+vsGo1gHjwTCG+t3/RRlOUJG1WV64Eztt9f50mpA6o7XaAYJcfSuNcmr5VcW320l83ahNcb943fbx1ZXj4yHQjbyhgN4rccHMzIIAI79GGdOXXuKJCqMa78IOh+tPTZjNbU5U8k9px33ea/zt0XeA1EDkBS72+dcH7Ysjgrk+4FzgImAE807Zcm+V/Teuu0kqG5/XKXlLSpmpbOjtk74+czF2w+iL5JK8Isx1ozD0fyWIFQCT5D75fILzY9Y7un58XOuyIn6c7GTz49ASU3tDXHe3fSMT8cVncM8K2qyq9UVT4VgVF6Ekx3aSCocMb7pDJqYWNSpkQcCVDlN/NlbTf2KRy+0odSkqB4zQLjWAmKM2AUUvhqB1nqn1/uTphKUFmNenEYq6HxI5c/jp7xa5Pb21dMWVgvnnXhGSD2G5C85PPSgryY8tVTVVmhqvJsVZW/tPYcs8F9IMCQ1EWxlHanS9JSftRYpJnPFAAmxZ1gUtwx9Z2OJoudicsAlrni10RblrZQW5v9NYDLldY32rK0FUnQEypr4W23bH9s5tS5U4DvQNzra+x+MhAH0uiqGrR281/nNr1UbKsK+J/LX2xX0Y9r3vz4L8XkW2ZOcN7QfL9pvbUpmFcvIhAhPH7LgRaDk70zfgm/hPrf+aM/BA532mRD9zLTnZ57EiOWmH57Sl+wWqofiX8OeD2U/xXApAQYA/wfcHQEh9NCxWZ8IFzA2b+f+1fWiSnliTbFPxQ4rq+58b5ca/2vEvEX0LshYBgjEYZgiiwCLml86N0zVl9NF3rWHZvzfrXV0Ehm3Kbj2ttXTFlYfy8/5DSj8AaGpS+MxNtMp6Fp4hyCb2JtejD+vOnIjSB9K6qHLugYyfYsQl/cmFdUATRNXA3crWkiNVRggMy4siE2Y0N9C6fqhKjxm3wA6z22qOUpDAdF8a4OBEzYbJV7ATFT9ACgpu97I1PWnE5Nn/f36Y06p2l/0LLKU/xrSVUowIPBHwkgQwEczJw6d9S0WWPa9X1OySlfunV5rxOfz9/voAsKfv8ZIHdJSelf+wxeJC2BK4GC9vSvE2Tx1r29IOc9NuXVsFKR/QtHzZaKF6wjs9ebPzB7ledxJOcCVYAWsfysjuR9e5hNH1o8Si+fEvjNEBAjCAYOeQ0B8SXwmKrKiM0dxZOK59kL7WMJLuFrTYrmPSdvrr8n6De7FPgc2FbZ0144YhTIuSCMBK2pXzX1RRd51j025VU55OZ3Vi3Zai9vb18xY40JOm1nHeOTpteeuOil0mjL01o0TaQQnIivDeP0viDWfX5DfmS+5Dq7E78CMwBL046trm7lW5xZ4S257YFkGt29AfpZGr0tte1K9O49bzNAYuLGU6MtS1sx1/ctA3Cm/769VUwNpr+BoGLatIDWfCFNELIkNTEnpOiGjc9tuhqkrF7d44Tm+90j65caqk1Zf5yRfVh7+tcJ5k0H9gLxZ0T7nezaYPSLwwmWpr5OIu+VyG9wJI9tT7+lL1jTPfckPgP8avYIw6bunvuMt9UdsK635+rV/dzKioHuh0OVBiP+ohvKHtDqMqrFkxaFUmR1DWvqznD7bYtd/risllvumthRWJOWXwYkEUwZETOEKlkNA+5s67ndbOWHplk3R7rWvc5ugKrK71RV3qqqsrZpn9MX7652p2+KplyxRLbZuQ9AjrkxpnKaTp48d4MQvobq6pyYypICEFd5QEXwkzRvd0gL1ZgHCEBgMcgqEIfEZS7YmY9iu6sETXnwlxUg5gBnz5gwbpsyrNQYr5fIgHVBYiSXfPdIjst5dz8gZUBKSXXEO3fUOIHPJFKGluxNwKcNDyTM2/iMLR9HcptWkaUj6agem0wbzF7lIol8XiBylw51PQ7Q5wLX02v7eo7bkO25LeLX0Q7aquRGgyRzdZVBeAe2t5+YUVgDUrm5m63MRTAXX0zQLI3VOlWVbU6d4/FbuveIXx/pChg6uwmaJgyaJrZFOBuEN85qaIwpN59ostSVUAxSWpVAuwo5RAMpjUs8nsTUllt2LQKKSwHIWui4dLtDP/39OJI3CoM3F0Qq8Hpjxd637qCwGyEFV2uvTHHdar4A+mfaV09p2rf3+2tXCYQGnFkyNDfmsjF0JTY7sw4F6Je0orSDhpgrgj6fPsAtkR9Z3MqBPTeZ7wPW4UieUfdQ/E3+O5MexZF8qvvexIFrn7ceXvVo/Agcyf1c9yUOqnk4/krpSPpNIL40+MWW9b08VwlH7UWaWjsZWKJpojeAqsrPo5nSMFYZlr4gzS9N8Vc+d1Z2e/qJCYU1J79o2Nq6AUndbBUvx0qwVagS0meaJh4P5/yc/CJzrSfF9Ffl3q0qMKCzR/IJ8GHTRqK5tteAlCX2KMoTUzQEjAEQrgfGl8fEnNIcRfFsVBRvbsstuxa1vT8eAVCb/fFeTftCmQG2VYNDBO6VfmuTkrjI1m3Rrd2GvdaPYInjUkvSqu9DDUXqwA/bHXmc1LfiFWHwy9r13U5qvt/bx/kNMKjhqMqz2jvGnszv5YfGAXy19sSOeZYFfVabgoxGC0ftaeuzPSkNcf7zgZ8k8orEeuM9hoCYDvzP4lGW91ln+Ta12lgMrLK6lWXJtcZHgP0An9EvJq4Y5Goqr/0+MBOo6BDZ9xDW1Pb/EOCL0pO6taefmFBYgQsB75KtI2+OtiBtwEDQtyZcv51sQICIqQhmnU7laeDRpo16b2Ltpobs4uiJE1ukGz29DcSmtSQtbWWWlKLPCy+oMbUCY67PKQNo7PbrpZom0mZOnXsoBL4DsS2QRDE2hlL/+V+ZNmvMuPPvvuLuCVf8t9Sauny9MLh6J/X+ThWK93uAqhUntvuZMPH6pZuk3/CGqypx1IwJ47a5KriHN7wiFYm5JP6kXZ2v0yJjCAZEDeuwEf7OIDAPIGeyqy7++voXcNSc4jfwsGRbEv9AQMj3NnX3zK5L8N8AnBcQ8v0mlwKA8kzvzQSVVFRVrlZVeXNTYKtOeGxq6LMAoNGX2K4y2F1eYb1i9tmJZsV1sdXQ+HlpQV7MVKRRVekL+Rg+F875B/fQxgAMS1+gf1F0doiqyvdVVW4rT+wLmANbXZm6D2sryTS6R8Ypflu05QgHlyvlUymNbNy4f0RKOXYWcZX7VwAIKXwEfVAvA6WZ0i0JeBNDidmVf+SstiSXrpd+q8FVPWA/GTCFlEhx2FOXFd3f3uArgqVa0yxJDac37Tjgkc2rREAUmTZYR5UMze3yz8quSLB2vDwKZCrQ7lry4WD0i/ebuwwoUjzYY6rzosRr6x/AUVOoSPFAs+PeynRvGZCoaUJ3r4oQKZYt6wD6JS89tD39dPkv4Yb6Ptd5Ata4Q3vN/SHasrQWTRPHbl82s634AqZhAH0SV+kKiM4O0TQhNE301jSRDSDwWxJMtaZoyxUrrHLHLWoMGGLy+1Vf32MegNebEFO5WAOGRgNA1p+3XPbXG3MqgFGAZJsFbFvNcVL6f/qPMsM1pUc/BVC34bB+02aNqTIlrJ8LIH3W62l/xoAvDRaPz5Tgun+7/a8DvX1Z7qPa0feejBr8FcxfSjSqLv3TZWDs9mmvNLX2p+UDnY82xPmfAsZWZPnOU1V5jqpKX6fLuptyZPYXZSbFTapl65j29NPlFdbfyw89VBH+dQmm2gejLUtrCPmu3gk8EfocFr+VH1oD8FnpqTGjqMca9kK7yV5oP8teaL8jyvWWw0UBlhBKmWZUfAmDU//aa9en6DThlgbpR8Rk3lqTqWEtgNHovMnhcMTMvVub/clwgNpen42My5z/BtBXGJwvgqgMtpDb/te4Zdj2foOLCVar2xfAW99jbnB3+5Wha9782GtNrf+mflNa1owJ41Ka9nt7uT6WxoD0Z3of2sXpOjtHA9GUpyx6VZe2cxnYjuQN2d7zfz2wwRRKVxWTbkJdmcemvCqlVFb/uXn/9e3pp0srrDn5RQOAMQFpeDZiCYc7GFWVkuDb3Jmhz+HSFygrLcjTXQI6juOAV4FbgDmxprSqqvQD5wHPAXgD5sC6un4LoilTLJFs8GbbhD8mLdJSip4g8fmsxwFzYkVpNdcN2AhQadx8bWPFPqeDRPqtZ4Hs9nf58+BzyVObc21zq+m0WWM8priyamvK8nODewxz/7bMygDtVIYaytJuRAoTcFrTvpFzVtf4unv+NJfE9S4ZmqsvEbeRUO34lUAJMLa9teQjiaaJAzVNiFDqyUOAy6Is0m6NT5pW+KRp980SsE/mT/8VBKTNWP9itGVpDZomzKEvQL2qyhXt6atn/NoxadaKmEpoHoM0+dMoRGu5qp2oqnxbVeWinPwiBYSy2dk9Jpe4o0GKwTsk1ejNbLll18Pnizsw+EkIYujejdu6zxaAhs12Y6gQAATlb/pMqLoVoVytavPzTfEV69z12Skzp84V02aNmWe0Vl4JgOKV7a16BfyGkCuMNvf0f4y53nqn8CkpwOh29r9Hkhm3MTE7oTS+iymro4GfgTMBVFWu0i2rHUuataLerLiGtqePLquw5uQXmUoqR+7bL3nZhpK7J7TLjNyJ3Al8r2nC0mLLFmjwJaSnWbfo1tUOJF7xLQh+kgGiuVzVDjRNxGmaGJN/YH5PgBRLpTXaMsUKGzzWZZt95kXRliNMtC6x1NpG/KZaI8CAmoN/SjUIgt894eXv8lahlTTJ9nlWZ06dO6px88j10mezAr0BLn70P8G0gQGzZebUr55ujx/rNW9+LFP7b1rjc1rsr9w77MBmhz6RyDpfN89V4fa9J2MQfp8vYOwS2Sw0TTTNj98AlwDvRlGcPYqBKUsSPQFr4hWzzw47f3SXVViBPJc/LmFVzdDtE0x3ZRYD89qbAiMnv0ipcaeZV1QPey9CcunsgFEJVZsAMo3u3+nCZe1aYDAwJ8NWdhLA0LTiEVGWJ2bwoSheqdS23LLr4XA45imKp1RRPOuAsQ6HIybuXXfiijyAOEU5/tAEhYy4GjcwGsT3wGZzUul1AELx+EARwFaAmVO/PAIC34I8MdhT4Mzg/uYKqpgKfN0epVUx+W4GKF/Yb5s1NXdJicsztLFCqTcc/+vVGYnh9r2nsqmhd3FZY3bUV340TVwI/KVpIlVVZUBV5SxVla5oy9UZlAzNHVUyNPfGkqG5UXMdWlY1/G2AD1eeGfaqVpdVWM0G12XARuDTaMvSWlRVvqSq8toIdJVFMFJWz8HagfzekLwZwCUNz8WosgrBl6Rjv99w1GcAq2oGz4+yPDFDnOLLSjZ4E6ItR7jEx29OjourTIkVZRXAUjcgC0AgFCEEaTJRTJs1Zp4lZeVahD8jufe3zxosVVuA9YAbuBLAnLDxLlCMQXcBidG69bZ3Z5/0gDC4jgrFaBGJ4Kvz7vjzZ+AHEOc0L9WKUd6vuAzEf5rerijnPRQX0BXSxy0E5vH3DbNHEFJSNeAuYE60lNZqd3pJ6GNOuH10SYV12jPnHej1m8YOT5+/oLQgr8unltA0katpYoKmiYj8PY/M/mwswN4ZP3fJf5/dhSq/2Q9Q6zfFXE32JlRVelRVfvHeirPrASoae5ZFW6ZYIU7x98w0utuVyDqaOJ1pvzc2ZkTdctUWDN7kjwEkAUD6KzxG68ypcx0Gc7UVaRDehqxRfnfqYzJgyVGMjb+ieKe89cTkIZ76XsaQm4AfwOdKjytbMPU6KZWKZoFXgGy3e4QpzvUeMDxjxOpTm/ZZFiW8CFQKKc5oT997Iv2Tlw5MsVT2a7ll5NE0cZ6miWsBVFX+qqry7FCQ1R6DP8V7IUEDmIEo+rv3SVxZBjA07c+wfcG7pEL09brjT5EY6JO4+r5oy9JKpgLPAimR6KzGnZoDkG6rKI1Efzo7ZqClIRkg2+xMj7Ys7UHTRP+bD7r2IoButvKuYMmICSp95rI1nriYsU5uj89n2xgIGGPKZzlgaPwKQCreLxY2Bp6u8ktA3tJYsW8eQHXpsWkEc58iDK7eBEyGqlXHPgfKKBCfgvi2KVhL+i0+AuY0xVw/F8CSshIQo6fNGjNP08Q0TROTwpExfei6D4QSwLk16eKmfblLSryBBN9n0iBP+/XqjIz2/RX2LASy0Rswh53isZ0cBRynaaJL+NBGA6XekCqRyODLXtT83ffJ/HmtQfiIM9YfEm4fXU5hzckvMjT6Es4Cvnx66n+/j7Y8reRq4FBVlVsj0dmCzQd5AOasPfGbSPSns2N6m509APqYnVF5+48gx6RYqu4CyE1bGHP15aOFRJg9UqmJthzhYrHUGIXwxdTLVnXOm9USP40Z8+I2UB3aKwwgjARNpMOBTAjgd6f2BYnPmXkYIECOMZir9g+t6PpDwVpawJNUDqAovveaZQo4AzixaVxNE/drmtiWrmpXTLxh6QqgqH5j+ogZE8ZtU3Rc+9f+LPzCZNxkvrx9f4U9i5U1Q39r8CY6O2s8TRPHNBVTAS4Cjg2lANzjKBmamyR8ylEC8alA3AqMzV1SEpWX9MemvOoOSGXN/IpD1obbR5dTWA/I+n4q0EcR/rBKmnYmoUpDFlWVflWVkYw27gvUlBbkxWRASKzwe0PyOoDixqTfoy1LO3n7m/XHHA+wvGrYH9EWJlYwEkjKMLrDjliNNomJG/pKqSS88IIaLetVmxk55b9+qfjqAsb6AzJHPu+FQFMqIamY6uqsqcv+D1CDGRC2pb1qwuz3JCfGZSx4AbgVGDtt1ph5BnNtTwDn1qHbUgmqqjwcOBcgVGLzFEIFBzRNKJomXtM0cfTO5JQB5UWgB81SWQXiA09JZKX1j6TToxm8EoM46SQfVk0T6cD/CN4fqKps3FOVVQD38PqHgESpyNtzl5TcFy1ltQmJUsru5MNa7U67PsFUI08b9PIn0ZalFYwHlmqaGBjJTvsmrchLs1Z0ed/dWKc2YAoA1AWMjdGWpT2oqqz8eFUw9VtZY/b21YF0doIQxHU3uWOqtGlzamuzNVDYuHH/mHIDUQKWdabG7Mq0gUVLQTmcYFJ5RQZMcZ66Xv2ALQRru/sJVrYKIYRibJw5+a5rzp82a8x9TdZUU/ymvQGE4v5HYn9VlY2h3z5VlYMBR+hQd+DA0G80TWRpmvhQ08QBzU7/WBj9nsReW2Y27Ugo6nagQCQDuRIZteCVWGNEt9+HCQJx02dP7LAXqyaLqqrKSuAYQsF6ezIlQ3MV40bL2d5sV92wxUt+jbY8AJlxG702Y7093PO7lMKak1+Utbw6t6fN2PjSg+e/HQslEysIRh2WRrLTGndqXIKpriqSfer8m4GWhnSAvubGtGjL0l7OHTYzD6B7/PqYUl6ihb3QLrxSyKWu+K+jLUu4eDxJGwC83oSkaMvSFgKKp8ZSO2Sjqspnps0a8yNwsGKsq5V+qzHgi7cCTwDTCVrJLoNAU25Wf8CX8Or2/Xnqem8EMMVVnL6rlFaqKr2h3xtVVQ4EXgkd6g0MJfQ81DRx8H6XFL2TlL1lY93G1H4zJoy7bcaEcaMIBqsElS6BlRgp1hBtAlKplShUu9M7xN86VARglaaJ4wFUVc5TVdlpLghdmOMMVSYbkB9tQZrom7jK5PLFJV309JSw7oUupbAC54Ewbnb2iIlgK1WVP6iqPFNVZUStodXudMvaugGfRbJPnX/T2+zMDv3uE21Z2kuvhLUXA0gpzs3JL9ItPy1jAiE80hCzbjdxcRVGgNTUFe0qd9jZuJMX9/FZKkc2bU+bNaZWMbne/7uFtCim2iHTZo25D+j292NKSHagJAZ8cRkAnvrsbGBOa/OwNpXOVlX5m6rKwaoqfw4dSgcGNJQnz0QaTMDtwJzFPdO3AB6JDCDwS0VqbbnucJk+++z4/Rz/PT0nv+jOWPxuL67c5xeAb9YfG9EyyJommiy2PwKPAr9Esv9YRyKvADaa1ltnR1uWJuZXHPSKROGLNeN7hHN+l6mNPH32RJFiOfYWvzT8VXznxKXRlmdXaJqIJ+jMPSvSb3I5+UUpQBIwICe/aFRXKme3u/FLQ8oKgD8ak2Pe7/P54iueAQrKG3uOBubk5Bd1qbrdXY194moS/2hMppfJGbPW9ZSUNRmNjZnEx2/OBX6LtjytxejK+EXxJYzXNPGYqsrpAD5nxmzgLMACAoOl7pyZU+feQDCi2UMwHc/OIpxDUfv/KFMb9r2vqrIIKPr96XE3AQFCpZtLM1K6DdtYOVYgVAJorfUHnD57osXtt/b6rPRUAaTsl/XjPhaDs9+PG8euBlKGpC46xKD4ei2u3HsFkJJh2zQyIA3Jla7MOiAFzoxr1t21MfjdbkrObwMi8oKoaeJ04HJNE8eECvVcH4l+dxd+uzzz+HjSj/X1dM+0z13VZUq8+6VpdehjDrB6F013SJdRWBdV7nNqtTs94Yjsz7+HidEWpyVOAh4mWIv4x0h2PCC55MKVNbmAPA6EGoOTU8zQEDDK0O+Yr3ZS4ewV8qMWChF4aO/uZBjdGQA9za6YzcO6devAHwHKyvaKKb9lk7PXIok8hYBxS9O+abPGzJs5de5ooXjukQHzaG99r0zgjmmzxtwyc+rcsQTvZ61ZFgAA3npikoBt2asinbbna4LFC0wB8H+RMXb4E+Mv2Tii2+9rutnKT6548J5x/oAhzeO3JCRZqkcs3HxgMZCSZq3INSm+XuWNPSuBFDjrH8Upfi//Z1afZVXDpM3YGAC6AdVCSGeKpdJT6cr8GqhOsVSOrXan7RVSyM3E2Hd7QHKJurImlz6JK08CImXtcxF0z0gByiPU526DZUHihdIgpWvvupktt+48hqb9Wblk60j2zvj5OMhrsztWl1FYV1bnngayelX1kKujLUtLqKp8XdPEIlWVxZHuu6KxR6i0ZmSsBTo7Z6ClIWOFO57+loaYjRRvxkvA2QS/0zFTWz5azK3t1gCwsDFpbrRlCReXK7UcwOeLiym/Zb+ppsHgTabXrw8/T7O6UdNmjZn31hOTxtaX77fSuWVEP+DmFx33l0+bdcMT7GQOrN1wyOPBTxIQAWD69kptuFzz5sfzrj53yul1iXGzik323mXWHhOBiYu27LddSyltxgZAJoOollLxJFu2VpU39vgSRHVO0vKUHvHrE+dtGv0RUGXv9pu1Z8I63+elp/wGVEuU+sV3T9hp9aWQG8AckDaQAhQtEtfXGQRlHzIeYG1d/ydy8osWhWuA0TQxFuimqvJNVZUfa5ooanLr0PmbkqG5KUbMxwKFBzy8uaTFEzqRwal/rVyydSQSMTyc87uEwjruoTt7wr6ngXj2+1umdemIbU0TVlWVro5QVgHqvCnfEjQZRDXJ755AL7Or9wp3PNlmV89oy9JeSgvyvsvJLxpDyBKlW+V3jQ/FAuCRhlgI7twhSUnrvbW12SQlrR8abVnaQn3Wt9nJ60/ElVyyD8Hy29v4z+WFcubUuSOB+cCghrIDHn/5ntt+OefmO3/eUV/u6kGXBT+Jpv91i4SMlz97bs7cdSdc2dBz/BSQzQNE/DZjw+tHZH/xYbK5eutWV3rJV2tPKiu5e0Jgp539i7w2yVJakDcvJ79obIqlco5ABv6447xY+m6roISckEVYBpiSobmjJFI1Xx5/qmd4g9Q08baqyoCurO4YXw/3DcZNlniCwYtdisenvFL3Yf7HGxduPjCsVaEuEXSVaK55AoR5WNqCt6Mty67QNNEPWKdpom0zTtto8t8tBHR3gA7kp/qUJQC/NqT8GW1ZIkFpQd680oK8+/R7pmVG2Gp7AfSzNMSwD+tqP4DNVrlvtGVpC5a6/t8DONMW3Luj49NmjakHjmvarl135Gczp879VznHZ65686Jmmz4i8IKfk1+UMOimd2/7au24VQ3ehOnAByDOAOEMjeFx+uKfembqc28/cP47c5679JmNLx43Tmqa6FArd2lB3rxGb8IjVe4MW05+USxlhdDYlppMStr471MyNHesRP4A3JPyRPaIbjcNuF5VZRteDvYsfr0mwyTcyrXenq7K3CUl86Mtz44RlcCR4QQQRl1hzckvEn+UH7xvhq2s7JPrb/422vK0gATmAgs6agA1+9ORAEdkf/67rnh0LG5pkADOgMEdbVl0OpduRk9vgF4mV0QsctGgqqpfKcDmzbl/RVmUNmGtGb4UwNzQd93O2kybNWZVfOb8J4NbIgWYO3PqV3Lm1K8CM6fO9c2cOtfnc2Y8EzwufcBzhAoJhCPTFbPPTj7hwbufBlZ6A5Y7kszVC4/Lee/00oK8s0oL8t4GxgK3sZ0RIVSU4FvgwXDGbQuegHUuwWd22KUtO5vQ32psimXLlkRTDWE8044DhAi6yFkNW02XlwzNjWi2gd2J+E/SjzNsNRn9WZ5Hoy3LjggqqXI4yP4Eg4PbpLR2BZeAg13+uByXM25KtAXZGaE/qgofa6UFeRNabhf+kmytJ9kD4PTGx2zJyFhhoKWh5wp3PIMs9TFrZdMJj2/q0lcD/NyQ+kO0ZQmXa655zuVwODyBgDmmfFi91vKtJlcWSevG7fJv31Cx70aQgVAgIRCQBmvNX35X+m/AAQTLuBJyB1gbjrKak190GHCV2TD+WI/fFm8xOH90+20n/3zbRT8FE8EECc3n/+pfVaVP08Qcwoh4bivxptqfG70Jcnj6gumQFzNpD0sL8uad9JDj3T+3HHDR3re/1H/BHeeuasPp7wLTJNIS2j41YAmsnX9Bjw+k4LL9ntukF9hphpDiCmC99Y+kgmjLshNUQAl9Z9vsIhJ1hTUzbuPtFY09GkC8GW1ZdkQzh3erQPrH3Ddj9qqaoZ8BHNT9m1yAn8uOLAGGQOCeUF1sd7jR/fMrDtkA8Gv5YW35UuuEQXeTq0/IhzUj2rLodC4SYQXwSiWmE4writdttVYPi7YcbaGu16dVaSvPw520fDSwq5zbGgg3SBNIAxiE35U+AmRTYGpTOz9huAIMu+XN0RA/B4Tw+K2B3LSFj396/U3T29qPqkpHW88Jh7/uOrP+kLuertvizBzRGeNFkj+3HPAUcFG1O/1QoNXPttwlJfNKhuZuyxIBdAsk+l62/ZBysUQeUTI01wGsB46E1qca2x35bVrWifGkHRWw+h3DFyzrqoq8FsqnDGG48ETVJeDiWRf2qHalHTui2/x1pQV5ddGUZReoQad7ISSKcVXN0EuAD4APfi47suDnsiMLQtsPgGIKWgNk05tDODQtd3SZ3Gm7Kz83pC4EmFefGlNLqjrtZ6i1biDAEGt9fLRlaQ8mU4PNbK6LKQVm5JTn6wKKy+e3VI3dVbuQxXQsiNtA+W+zB13zYJsA8EI41tUkc9WToWwsgAiUbN2rrK19NKFpQmiaOEPTxOHh9tEaNjb0ea6sMTsjJ7/I0nLrLkUxyOoEU22b4z9yl5TMy11Scl/o90eug2rTfVnuC0XwfnhTIn+QyLuBPbpcrqnUeqM0BWhUq16Ptiy74C+Cb5pfEUaMTlQV1s9LTznZE7ASb6y/OZpy7IrMuA1LABF0GJeenKTl+cB+wH6H9frylMN6fXlKaPs8CISUTBEgTOf/w3p9eQDAmN5FMV99qavjlYoAcEmD/nKwh5Fu9PYH6GVyxbXUtivj8SQuqanp26VS17QKEag01/Vfo2lil8+gabPGzAtVvHqeYO5NHwhP0PKKj2Ce1JfaOnxOflF6eWOPHAhIIhOwZQEKgIvb0Udr+C401v4dPE5EKS3ICwxMWeK0GRtPbW9fB8zY7Ld/s+p5YKQ/3vcpgAi6jVjYQ8vllgzNTTWvjNtbGuRrBzy6eVm05dkZo3sXnQkwPH3+2+GsQEfNJSC01H4LsOLnsiPfi5YcLdEncfU1FY29SDJXvVTrSX1Gu+nKZn/kvOZRePNz8ouWAe+BrCotGBfW0kSNO7UBoNEXX90OsXVawUBLQ/YKdzxDrXXJ0ZZFp3P5oT5tIcA3dekdkp6us5DSsBWIRSvxZktd/8bWRnyHCgs0XxqGnRQTaCW3SoxW4BygD6G4g3DjEFRVukI17deGIUur6Ze07JfVtYPZP+v7GyDvpI4cK9Iowv/BZmf3qYNuerfH8ntP3dTe/nKXlPhLhubeJZGjCSqrij/Re9pvV2S+sP/jFWFby2MRKeSFQgqb4jLcH21ZdsWmht52gP7Jy3aYpq4loqKwBieFgAaKGaQXxMF0weT4R9zzeHZZ4/6H7JXxy9YPrrnjvJbalxbkzTvynsf/u6ZuwI0Xz7pw4jNTn3u1rWMWb9l/HcBPm9QNYYis0wayTO6+K9zx9DS59aCrPQ8rgD9oqYtZLJYaayBg7B5tOdqKO3FlpsGbmNiWc0KKafPnRFjPjKmzLjhaMP5yRfhfWHnf+G1zdCiC+TuCQSGutsYhqKpcDcFc3YCIdNlugK9vumrjvo4X69bV9cuJdN8dzbKqEf8FpnoDlsOBtyLRZ8jHdQwwOmD1D1bqjZOsPyWXlAzNPSJ3SUlMv4y2lr9GDjkcs7wvYJZrR/y6vEunaFyydWQisOmJi14OS85ouQSoIMzNZFCjJMcu2dSQfZPXb2a/rHnXtfac4d3mzzIqnsD88oN3mk2gBZpeIvRl6g7mp/qU+QDf1actbamtzu7FQEtDLsAIW23UU/u1B5utMlNRvD2iLUcYbBD+OJumib6dPfCiLfs+Yja4leP7vffIdodUwLBdlcE2oWkiGSgBbmivnDtjqyvjjfLGXr1z8oti7d79QxBoyLBt+r9Idhrybb13+IJl5zmPrL5SqTO4gZ//GjnkwkiO0xUpGZo7SnjEV4rbYFDqDT1jwId3X4JFQcIiWje8DPrdykDQH6nrVXO69JnzDglIw9RkS9W7t539xX9be95TF7+41hcwF2529hgTToLnQ3rOPRzgmL7vp7f1XJ224Q/d/l6pdNWISp0OItkQ9GHtbXb6oy1Le6it7f2V251cHW052orBm7TY6E71C7+lUy3cOflFR66vzxkeZ2y4/8mLCrcPttQAGYrpCsunVVVlDfBKOOe2ge+AFKuhcWQHjhFxSgvyfP2TlzkNwn9iR42x36yyx4QUe0vkT4pHmb1gfJ8lJUNzY9pPfVdI5KUiZPwTUkAXNf4BXPrM5DRBYMTQtD894fbR6Qrr5c+e09cgfFcDy4LRn12zmtOa2gHPCxEQh/ac+0AYpz8DxPeMX3tFW0/c6upWBVDrSe6qWRN2GwZa6vsCDLfVxlLlGJ0I8Htjym8An/5/e3ce33R9/wH89fl+c6dpeh/QQkoLbSnl9iiHRlCHRsXNc6JDp+KYU+Y8fsGzOpVMh043L9jcOpnD6fBaxAsJiBQ55CiQchRCC7Sld9rc+X4/vz+SYkVKrzRH+TwfDx9p2m++n7chbd75fD+f97stvV8tAqOFKEqbARJzr18iyKsJlfJpux/s95tXXy1aPo/nif9lADUtnpQnT/154H2I7AZIFQbwvqTX08f0emoZYLjdmpK+sQIAJqeXLx6sMQaLR5C/U+fMkuuM5kFr2FFYaa1zGJp+4p5sXy+rVI0B8K21oDB/sMaLlG13ZC4FwTwKKiJEnd4GU1Vr/nkUHJIUjTv6e46wJ6xVbfkfi5Skjk3e8RubyfBMNCarEx5/a9zepokFU9LL979y1z829+MUm9NVxzooyMOLls8jPR/+vcrm8UcAYFPtRU39GJfpg1SpVwcAGVJPzL3hMwPW2R8+ptewxsXVxQOQL1tmiKmNV67kbekA4Fc0FIVrzP0tY98TqGR8mvL4xzaT4bTrS3nib+eJr3ag70sWC1FYLGSxxUImDuQ8p5MVZ9upkrQ79rcUpYX63IPtaEdOZ8mlGYM5zjlLG3yT3j52IQG5DEAGJXT7tjsyXxrMMcPJWlB4i3KD9rf+4Z42Idl3NYJd2KK5Du2+lmIdAGw8Pusf/T1HWBNWndGs39s0qXiU9sDHnzz4yBfhHLs7OqO5RGc0L+7aIowQ+hIF6ciKO9KvEhw2k4GmqWr/XuvIVn586Ia+lh/prMPKLlMPsvKOpE0AYLEnV0U6Fia8RsqcRRyoUDG/gvZ8dPRSq+tTAIDnPcMiHUtfUCIeAQDViZKHjhq/HvR1dzqjWW9tnjAXoDjhyrytu5aQ2ZrDhVmaI6G41K4AcD+AuSE41w+8dOe/qNOv+bjRlVF06ntXDNhKIHpHaA7dGo7BCiutnwGYJGR4naoNCffuHVvwurWgUNHjA6NYxQW5DwEoIyBr+VZJVvE3VR931qmNdGxnQiBOAdAEoNuWzD0JW8J69dLH4wC6DMChqraCG8M17pnojOaZCPSB/j2CfW3vfuPWX7R6kmeNT926Yent7/S7oHxF49RHAThEyvepLt+5Gev1AHBV7kpZD4cyA8cBgACuV6V1mKFDzQkjpESMtU0rP9LQMHY1ANTUzIiptbjK5vEeAJA5ci4HsCYMSevcwGYqAoB0u6Gq1ZNU3exOGXDJJb2etgIo0uvpj5YehMgxAKkAPfneNUjjhJTNZPCMjK9y+kXJJeEas7DSetQ9uT1b0PhfJyK5i4J+s21h+qDO8A6W7TdkvSk5IfuDGOcvB3Bl0dYDjkjH1FuZcTU3ZmsOuW0mQ78nCcL2B5snwucAGa2UdPzaZjI4wzXumWikrTcisCufR3BXqLV5/HNqqR0jNVULzvzoM7OZDHY571rFE/8v7ll2S3ZvH9fkTm0AAIcvLiqeo6EsT+7IBYBipT0u0rEw4bXXrfnOQ/mGSMcxUKIobQl+GVPLWmTOkcnAyYLvA+kM2Fv/AagLEEUCodvGLq2e5Lp2b0JbKAbU62k9AFgsJN1iIdKeju+LFEX96MBX5OR7VyjPP5js3oSy445shc5oDlv963OWNrjGbTmwEMBcSOlYRbn2612X5MRUFQFrQeFDip2a23wjXPudF7TOKay0xkxbaZ3RLKvryFKoJI4dAzlPWBJWndE88bsT559XmLRjr/XpGz4Lx5i9oZW3HA98RUUAPkBsOdSWnz4uecfHf17wVr+nrTtdmPXZFwKVSI91jHi8t4+pai2sBoA11VfEzIsxViVJvNkAkCH1xFqbQ2bg5Ah0ToppCQmHFQCQnFxZEOlY+uh9AC6EabOIzWQoV/CuS68Y9e6JhROe/6C7NapSzkt44gvZJWOLheQCOIgQd8DiOCG4t6LzvSt6N9ucqtmd+lGghTmmh3vswkrrR86LWi6hCvGotEax3FpQ+IK1oDCqr2ZuuT+V7Lxy5EoAfwCwUlqtHHfOCw2xtil7rAie39dS3OeudF0NesKqM5olAP5KwTVYmycOap/lvjrakVMZ+Iq8AtBFGpn9jzzxtn9bd0FIlizcVPjXFVLOs+e7E9PO1RnNvd181VmHNaYu8cWizY7EcgD4wp56PNKxMOGVKXWPVXP+mC93ExdXJwMAmaxjdKRj6Yss08xyALMR3CwSvD+oKp+5bsO1Y94a89DPv+62RrYu/sD4NFXdmBAOewjAUgCfh/CcOOEctiHwFXkTUVpp5ww2EYjCmMTdCyMx+NSXT2zgW6V5AP4M4D5/pqd+66K08yMRS0+sBYUlSkvCdtkB1Q2+LPcGADcXVlpjrkZ7nLRtWvDLftdgBcKQsE5OK/8XgCkA7rGZDM2DPV4fdRbc/hTAK+3eBLVIJSoAE0Jxcr2eUp8ofxnAeADn9eYxk9PKZ3HEj4Gs82B6jQ/esjWsZxk5EdNVnBDzCevx41M2A0Bt7dSDkY6lr7JMM8uzTDOXhCNZ7aTX03YAsFhIpsVCfrRUq8mdVtXmSQxZqTO9nlK9npbq9TSk/d3lvIsP3LpXxliyCpvJ4MzS2Jzt3vhpPR89OAorrZ7CSuu9rqn233PNUq3q86TV1oLCyyMVz+nsLSy4AMB63iGZQEFFyXG5sbDSGpMTWWmq47+TEC8lEAdU2WJQE9b8R97Lq2iccu3ohD11AN4bzLH6Y3zK1qs5IlCATkTwuaAgFKFdD/RvCfF5C5J2/a03Bze5U+sIqxAQFrlyRx4ATFa1xvSuUabvbF7V3ga/vN+bKqOFKMo611vG1BrWSLJYiAzAVgB/OvVnze7UWqc/LuQbWSwWkmqxkNctFjIqFOebOfyLccHbmGoe0KnOMXxZrWNEvM5ojmg5tskrjj0uxvvHEUqOADDvukz37pb7UyO6RMxaUEi235j1OyoXv0LwiisBEYlILohkXP2lM5pLDrUVjPJTKaHgvhzIBsFBS1h1RjPxCMrXfaLUka6uvSQaZwzrnJlpEuLzA6Qh2HHLD5CQrgeymQzt+UkV+w60FObrjOaEno4/Ys87KlAJW78aBom8bzgApEi8kp6OZYYcBYbAGlat9ogjeDsl0rHECr2eegHcjdO0T5Xzbp4n/sH4ACsDcCNCtG7zaIfuOADUtOuOheJ84eYT5V8ikIxFvLpB8ddVewGUCIm+VdLDymuV5drd1oLCiJSJ21tUUAjgU8UOzVJRLgoU1IcYaArQgyu/r9AxsA2Cg5awjknc8xiA2QB5aMU9L+4erHH6S2c0l5xwDi/yigopgJcALEJwPVWoL7HsaZp8q0ClPIBbej6aSsBmWMNiqzNhEwB8bk9jTRrOMkm8NzdF4om5wuunSkg4bAcopFJXXqRjiSV6Pf1Ar6cHAcBiISf3F+QmVE5MkDf3uqpLH8Y7BmCEXk/fCsX5KpvHNwDAvpbimKx0oZJ0bCQQaXHK1vsiHQsAFFZaXePKD17jnmpfyjVLhgHYvmfSmJ+Ea3xrQWHCjmuyN0PEHgSWD94HpRhHQC5EDDQFOJM05fGLgu2OBQww8R6UhHXey/flHW0fWZqprqkHsGwwxhgoBe+8FqCd//9SACk2k2HJYKwHspkM3wHYykG4X2f83xkLPY9P3TpLI20LW7mPs1znv39Mrgti+k9CaIKaE2K+nNltt1koQDoaGwvkpaWlEZ+tiiUWC5FYLOSvAE62OK13DNvX7otvOcPD+k2vp/bguPldk+T+UEnaJYHbjpi8OrT36RvsGeqjHSecmcWRjqWrSSuOPUBAzqGENhEX9+n2G7JWWwsK+Z4f2T87rxzJWwsKFwA4INujnuod66gUEn35hZXWPxVbDvkKK63lsdAUoDtzlz4xrsmden5O/IHDAB7DACcEByVh/eb4xc+4/CphYurm22wmQ1RuaBked+SKwFd0wFl/b4zUHKgSwY8E8DTOUOi50Zl+zCdKOwYzFiYgV+4YAwBT1a0x+Uef6b8TfvnRI15VTL4JdBVMUtUIXFpdw5LW3tPrqR+B5+7kEoAmd9pxr6AYtHa9FguZDmAvgOsHcp5pw9YWBW/HhSKuSKh1ZC+vdw5P1xnNj0VT44PCSutex2VNF3oLnFWKnZo5AFZbCwpDfjVmx/VZN3DtfDuANwBYwWHKxP/WjB1XfrA+1GNFys6GcxcJVOLNS6y8LhQTgiFPWPMWf3A1gOspuNLXfvXm6lCfPxR0RnP2obb8nExVzR6ADDjr741aR/bBwLT4mQtlH3eMOO4WVIPyCZ/5IQ3vzwSAFIk36tZXM4NOAWDQEpMw0iPYvgkxVkA+Styk19OTdbKVEoeMI8JgbrrZBOBhAANqTV7TPuoYAFS35xwNRVCRQeoByABaiijr1nXOCw0N8kr1aAB3AJhJefFgxYzcD60FhQOOce+4/GxrQeFK+S7NSuLkefdU+7MALhy7t3L7gAOPIrmLP8gFcBtA3li+8I1toThnSGeWfv3GrVkq6cXv+kXpEac/7vlQnjvEHqXgUOscYbCZDEfCMaBXVHwB4BEESih1O6NLIMooCFvDGgY7nNpNAK76tC3NGc0vVib0lJyQnhxsHBHjLAhsHpMgtjdmRIReTykAWCxkIgD56IQnJh1qG5MyiOMJCBSAH5B9LeMaAWB/8DZGqU4ziRM1Vz0KK60UwN/2ji3wQyD/4BulVwEwWAsK7yystP69r+ezFhQqPePb35VBfRkF9RKQp0Dxh0krjg3Jrpb5Sbs/3dc8jgpUuiRU5wzpDOu6mjnP2L1ayYzhX5baTAZvKM8dKr96/Zd6AvEOGed+M1zJKgBkaw7VAgAH4SOcYUY3P2n3jDRl3VB4I40FrA7r2YpCHjcEGgeUlpaWA5iF4MaM4H2mDywWwgF4B8Dzxx3Zu11+1aAvybJYyBiLhayyWEhqfx4fJ7VLAUAdvI1Rn5HAkjwEl+ZZIhlMd4hIhgEQSGCXOw/gzV2X6pq235h1p7WgsMe1yFvuTyV7CwuuA1Ap36Ux+Ea5jnuLHFMLK61PjNtyYEgmq7mLPyywNk3IHZeyfYvNZKgN1XlDNsOqM5pnAJpfAPjTsoXL/xGq84aatXnCHyScj7tE99FrwDVhG7cwade0mvZR0Gd/uuvNu1/t9k2lyZV2zOVXDtoib+Z7o+SOgkMeNS7TnmAJ61nGRXlPpVuzLtJxhEIwSWWJaj/p9VS0WMj1AKobXRlPILileZB1tiYdB2BtXx98fqZl7JfVV6Ekc10R8POQdtEKF5vJUK4zmmcBeB8grQC2RDik7lhIoOylFIDPl+b5hGuVXi2tVi4DsHDPpDGfUpmYwrdJ/11YaT35b2ktKCwRFcKtinjNzwklGgC7AMyf8FG1JTL/G+EjUEkpAOfOhnPnhvK8IZlhvXf5zVqNrPUDArEawKOhOOdg0BnNY4/Y886R8d5XX1lQtjOcY1c0TvEDwAln5sYzHdfgymjo8GlD1mmF6Z6aEzoX0rOE9ewzVNawMiGg19Odej1tiZPaFQTioM9a6vW0EoEyV31OVgHAZs+rCdzm1oQ0sDCzmQzrASwAMGpK+saXIx3P6QR36J9sIzx+/aFr/SPcGgTWtyZxLn4x3ya9E8BX1oJCx56po5srpo9qBbCBuLkF/AmZxjvK+T8AUworrZZI/X+Ey62v/OZKADcA+JPNZAhp2bWQJKwVjVNebfcmJF+Uvfp1m8kQ8i4hoSLhvM8AcDh8mifCPXatI1sFALubJp+xuw5HBBmByNawhkGFK/5bAPS5q+vZpquzyN2rhskA8Hlyhy7SsTDRw2IhZGbWF3dJOJ8yHOPp9dRjsRBisZBete3u6mDr2ObgbczXkJ6b+/aqEZoqe2XzuDvHPvpOVHZsO7W81MT3alyFlda/AVhGQTsnPEQA24Uk/xHOwxMAHAEBAfHLDqk2FlZah/z7us5oLtl5YupbMt5Fz8+0vBrq8w84YdUZzcWH28Zcr5K0r3rz7ldDtrg21O56/Y4b/aLs6hztvg9tJkPYF6onyhvzg1+ecfZ0ZPzBc7I0tvwzHcOEDAdWg/Wsw4FqAEDF+WWRjoWJHno9pW2exN0CldCB1kntg58D2GSxEH1fHqSVN8sAgCe+W6Jpd31/vHTnv2iSovEmhy9e4vTHGSMdTx+tJSAeBJr9eAA8OP7zw5O4DskcAC7EfpeqXgu+Dte2eFK1XkEhbqrVjwz1GANKWBctnyeV8e5/AWhx+jULQhTToLDUzLlDxrs945K3PxKJ8UfEH7pULWmnPW1Ga3Gn1LZ7tTHZbi/W5MgdY7nvm0cwZwlLe2AT+C6X9usIh8JEmY3HZ30gUv5k9YAwWIXAJfFvAGDKP4sumL6iYNmksqLrisuKR133jm7CFf/OXTi+bNzzxWXFJ9u6DlNXXwUAApXMR5SVhOqPD+5/ygxgBUB/d+UfnyyKdDy9depygc4Z2O6+P5SppfYbARosCUcoBqHE3oA2XdU5h7/tFRTFBUm7jJ8+tDhqL03ojObzAeVsAA//ecFbYasM0FVVa36dCK7Hyx2tnuQWAFFZYWGoURIxiQMN10wKEz0662y6IxoFE3W0smZVmzeJfPmV9GoJ51fr9fRfgzmeXk/dAJYDQHFZcQkBsXgFKQFwJwBUujVdD7+7uKx4dsX8ivKq1nxd4FvRWRKqP5QSxyM+QXaTX5SaAegiHU9vBZPRHz333X1/KLrgmZezpES7MHh30Jox9Xt2SWc0676tveDyDPXRvfmJu58LZVChlqY6/hYHoRHAnyMVQ4dPq3L51Qd7Oo4jfgVH/GxNZRjsdWu2+MENybIiTPdK4gK94ouU9pBfsmJiW37S7vEAQIHfAlgYrqUBFguZeZGm8S0aaAABgIopEk95usS9BTg523uyMYRXVNYFvzdkLjlbn76+emzyji+szRNGBiaZmFigM5pTq9tzP7X7EmlB0q6lCEEL1u70K2FdtHweAegbABHrHFmXvXTnv6I2wbrij0/ddMI5LO+8Yes22EyGiLU8lXKekUqJo62n4zLVx8aO0u6Pqv7KQxgHViHgrEOAeABQciJbDsL8wOG20TsA4GDL2PkALgrj0gB/Au9TB/NVEYDnpuRjI+cm1rcBxI1TElOlpGM0IDoB/BVh6NQYLrsaz7kWQB2AF3RGM7v6FeXuWfaLUTLO/TWAXJHyl3360MMPhKIFa3f69Qd7f8vY/wLkUjnv/IfNZKgOdVChojOaye7GKXdzEGpTlfW3RjIWjojDC5IqepzRafUkNba4Uw6HI6aznU7mLJIScTDbMDJRaGNHUiMAbHUkbIp0LEx0aXBlNgDAH7Y826jXU5/FQmQWCxn0Ri56PS3f7dJsBygloE8DZPZohXNmsar9cnRZC1kxv6JcZzTf5PKrLwSICsD8wY4tnGwmQweB8BiAkunDvjRFOh6mezqjOWFz3YxtAuXztbKW620mw1eDPWafE1ad0VxibZ7wU4DCIyhvj+bF3mqp/UoA00TwT71854oeZzcHS9Fj/47zCErUOYb3WHPP4dN0NLnTYrq2XqyQc6KWB2VNGs4+iuAtW8PK/ECiokEFAKO0+zorSHwKYFWwG9agavDLLkmReMmC1OoLK+ZXlOv19JBeT30V8yvKK+ZXLJnlHb9JZ/z4dgD/CDyCAF2WCQwVV+W+U5aprnFXNE65W2c0K3p+BBNuOqM5HsDqeucw9YzhXz2686mbPw7HuP35JdQHflEIABK1vyyLls8jWlnrv+OkbW0A3oxkLA5ffAYA1Dqyd/V0LIGgJRAKovmDwFCxzx23zU35lkjHwYTXVHVrEQBMVrVmRjoWJroUJO4uBoCi5B2JwW+9AOAJvZ4O2tIhi4XIi8uKr2wVZJJGvwxvNmZfeOu72Td2Pabw0f9c+s3xWU0A91cAOwEyZEsmvXTnv3xy3n2z3ZuoBrAo0vEwP3Tv8lvSE+WNWwE6FSDXlf3m5WfCNXZ/qgRYgrcUUfzL8pnt6uvcgko1bdia196+94WI7rpPUdT9rNGdAaWkI6O7Y3RGM0cgGim44QCGA/hKZzTPGiprk6IUD7aG9exDoQYAOSf6Ih0KE10OthZsB/Cz3Y2T3ACg19P/DeZ4Fgu5AcDzGs73drsoBUDgoxC2ObU5v1n2izGNrrRfbqq9qAhQXeHyq0AgihTcbxH4u6UHYBmK7xGWh3/7X53R/DFAHy945N0Ut6BaNRT/P2ONzmhWpSr1G1o9iXljk3c+8MmDj3wYzvH7nLDaTIbyMY+8J2plbccbXBnXR+OLSGc084DqcQCVG4/PvieCccQBeBpIXwRQuPzqp3RG89d5CdYDB1sLCwGML0reftfxjmwNkJxOwXXtsKLgiW/F7a/+6rU4afvSaN7YFqtGypxFJ3zyuEjHwYTXVmfCEQAo70g6Y9c55uzT4MpsAoDD9jE/+CBrsZC7AWTp9XRxiIesALA5Repd3+6RPAAQHpSHs/q2W/7nzHsGIAQQ3QBHARAKIgK4wGYyLMEQL5mkknT8x+lXX+kWlA8AuFtnNA+ZzWWxKLg848MGV3puccq2xz9+4Iml4Y6hf3VYKeeLk9ortjxxe1S+eKamf/PU1vrpRQBusJkMYetkFLyMr1dL2q2Fybvu58m5EwUqjTtZqQSQyXnX+oOthSef96rWfJ+cd3cARBmYtD55rMATYdia6iuf54l//odGswnAfwBMxRD+ZB1OXkrSBEBWXFZcUjG/gj2XZw+2hpU5rVRlrbrBlQld/AH1KT8qAJBrsRBer6cDek+xWMi1AIoAPPXOvlszNhy9pLzdp71Lqt4ryLNW8IIjj4sTkrmZo/5jFyn34BdH5lp9ouxzBNarRu1VzVBz+uOyAyW9CEHgd/YiDPEkPVrdu/xmTbbmvF017TkjAXLbxw88URaJOPq1kNwryl2H7WMOhDqYUNAZzdJDbWN+l6mucZ+TvuG9MI5bAmANQJ9x+OPe31o/fUYgWf2heFnrgclp5R8AMADInpn1ZUmbN7EJgBOB1m6dRXcXzsl5P6Mo+bs/CJRTAlih4J2tBOLXAP09hkB3k0gqLisuqfUpc72UlwBYU1xWzJ7Ls8QEVdtUACiJa9b0dCxzdslP2l0IAGOTd6Sf8qP7ARj0lvgSlGoXo1Tbr78X9yy7Jfur6st++/rOB359x+erqlcfvnZNu0/7RwDFxDVqhVbUfieJ2++7+/yFT1875q2t1+eXfXTg2Z9uQJdKAWfRRIUlWNJLBEDiZS3X3bv8ZvY7G2Y6o1m2tvry/9W0j9Kdm/H1cpvJEJFkFRhgp6so9Ytmd6qiMGnnr969b0k41yfqAcgDnwYpALEK4D4cnbinBZTSA63jCIA1Da5MNLgy9QBaRifsSdhwbPYWgBCe+J8WqISPk7ZdkqqsSz3SnnftR1U/v0fKefMQXCrgFlSqLrOwQ6K7SQTp8f0HNvZcnkUEShQAICOUNY1gfmBfc/EOANjZcG5z1+/r9dTrezr+Igq6BgAIiBul2tkobTvj34xFy+dJ9zRN0vtE6Q31jmGTvOJ1k0XKA6AdADaVZK79WiFxvbq25vJv9j97DS0uK80D6P7/tmTOXqw8eElnHdhgknpW/X2ymQzlOqN5NgB9gryxoNWT8ovNdTO/0xnNkyJZU/1sojOaJQDebvdpL0hWnHj4P7/9w5JIxtOvhFUpccSPTrBOC0wSRo+5S0uVwNTHAbLZ2jxhWZiHtwDwAFQKEB9Abgn8kfn+OdIZzRcB9AsAPEBwoPX7lskClTwKAB2+eEoIpRwR7CLlDyXIm/blaA9o9jZNfK/DF68A8DwC/25nzaWhQWIBqAAQCUD9ALFEOiAmPHa74g8AwLr25OORjoWJLg2ujGYAONYx8keTHT6puFTq5zvXbHX7Iffy55/O39s0aQaAS5WSude4/GqeQESaqrY5RXlidbKi4f31xy4ts5kMXuCKHzy2Yn7FwbkrRx2r88nnv9ec8TtYCADM0OtpWMoGRZuuifq1Ly5u2lo/fRGAL3RGs8FmMjSf+dHMQCxaPk+an1i8b19LcQ6A320rve3FSMfUr4TVL0p8bd6E+lAHMxA6o7kkQ53xBkBGpKuOLfr28QVh3aT0/adBokf360tnIZisno5S4hA4Imxq9yZ8l6RoaC1O2aax2fPMm+su2AMgB8CFALkXQMoZxmB6oWJ+RfnVK3OWV3niFg6Tup/57KaD7Lk8e4wJ3k4A+9DHdJGprtHUOrKRo92v+cGETKlWrgQ3nAbapAoE5OSEwTUvPhy/rX76dACXJsgbb231TEoAAA5CfYryxMYRmqrN52V+/dn41G3lej3tcWYwifc9csijLlvXnnLjtUl1RQBut1hIll5Pm0L/fxw73rtvye90RvN6gL6TpGg8cPey+Re/sqBse6TjGop0RjMv4a79p1+U5ZyXue6TdxY9F/FkFehnwuoT5a4j9ryqUAfTX53rR+scWUpAxAlnZkSS6V5ctvkEwIMAlQeS1s7afkTQSFu+TlfXjrPZ81IQWNagXXd0DhDoaY3AUgAAgBcgepasDlyVJ+5lAAuP+5S2SMfChEdxWXEJAb2LBn7/PikuK57NNtwxncYk7hld68hGfuLubADbuvzodgKSBmARBdTvCBce/T/fXTNSn/zb31vc5+YHj3EToLIkc211hvrYyqtyV/6dELyq19OVfYlhqzPhLQC/AbD44Zr8FeNU7QuWXXPsrE5WO9lMhg9uevn+e7fVl7z+5ZErV+uM5uk2kyFqcpGhYNHyeTzBjcv8ouxGCectfWfRc09GOqZO/e3ewQOYGi2bfgjESwAoAkkgJ1Bw+giH1B0/QLwENLg7mXCB/0DafYlffml8MP3gsz8tsJkMCTOHf545R7fqGqWk42oAHwKgwZlZGYA3dEZzabQ8/zHMFrwdFckgmLDS05N/96K38QkTGXubJu4AgO0nzqvr/J7t7wqtR4IX6kh8zblYesUE8ZWn/8931z8BPGf3aqXjU7duzVTXXAsg6cWLbp3870V/nDs3b+W7hOBP6McMfsX8CiojwqcAsttFibG8I+mN4rLiEouFsK58AN6+d+kbWXFHLvEISgmADRMef2typGMaKhYtn0cO20fvpOB+SSA+c/DZn0ZNsgoAhNK+XTkPJEl0Y/DhLkR41+I9y2/J3FI7fV+dM0uDQI06T6RjOp07X1vwqzVHDC+JkMh++BMqAMSLM8TcpQKBNFjigw+W+3Cf6XFMz857q9CRKfVUfXDjofGRjoUZfMFqEBsQSFpdCPZnj2xUTLTQGc0PAngOwAIABxPkTdffyn96129FM7nJ+zDKxcLmgqSKdregeuNw25gym8lwch20xUIMAB4DcHFvLv2fyYSycY+KwO+DkxS0SGlf96u0ah6AfjC7bsUSndFcyBOfRcZ7U0uGrb3zzV+/9rdIxxTLgnnG8wCmT07b+G22xlYSbfXf+9maFegy26cPVTB9pTOak/5Xdf2H9c5hcYVJO98D8CiiMIHTGc0XfVV9+V+6JqvxsuZvCcRpAHkMPcQc/NlsgDyu4J2rAt8lBEOwj3S4aTi/vU2QaCMdBxM2mwDYAWwFS1aZLoKTMU8H7tFlAL5ye+LuuFlchyMkpX4rHT2Vgk9d/dAjurWL71vSNVkN6kxSEzFAIsgaAK7gsjFS6Yqb9nFL2rT7q8c+ykrwBdhMButlOe//TCFxur6qNvxFZzTPiXRMsSp38YfTAboewHQA/u0nzr8v2pJVoN+tWYkbgUK+hEDcENqQeufXb9xWRPCzlRTcGALxp6sfCm+LsN7KMX48hwP9SKDSrpdzBLs36cO+lCrpPDbH+NFTge9QAV0W/jP9U+9XfAbg4kjHwYTHJfENE7+wpyaMVbR/984NNpasMl3pEVjuBgQ2DaxYn3hXfYrL+0AK7fj5/iU/2/aDo0u1JXaNcGt9urdx9M3eR/R6us5iISWdpagGomJ+RXlxWfHsYEwH43nf65/b05IAWgpgcXFZ8Sz2YQv4y4Kyb3RGcw6AzwD60fSnX/nrsQ5dDdim5F7TGc3ZGmnHJ+2+hJP5YHBZZdQ9f32eYQ2+CGYB9G0A3PjUra+EPqwzu+CZl0dvrpuxnef8hQAMh01XRmWyetlzz/wdoJ+I4KWZ6mp74LuUAvCin4kmBT8SQCtAzrYi0oOlCsDw4rJiRY9HMjHvkEc1AQDief+WSMfCRB1LcHmWHyBuk/y1rUke9/1OhdCM0ra1Pzgy0DhgvaadWzCqSrHY93T8DAAIRbLaqWJ+RXnF/IolFfMr3m0RZEsDs62EIDDRpA/VOLHOZjKcAKCPk9prj3WMXAjQZ8Aa6/RKjvHjGwDsavfFywlEIVDiMXpLZvZr05XNZCi3ma6YNymtfOvOhnOLRy3+6OZQB9YdndGcV92e+2WrO9k/K/uTu20mw5fhGrsvdEbzTGvzhFspOAJQb50jaw4AO0A2oZ+J5qLl84iMc18r5Tz1ANayZHXgxivbFAAwS9Ooj3AoTBhUedQZALDJkRi2LnhMbPh+6RUef1zyz0U3kPV/lIgcUbo5zWk6W+kBSAgIOApB6iczBzc6shYgHgBRnVBEis1kaPMIimAHJkIAKNVS++u/WTa/OKKBRSn9s39Kuvz5p6souJUA9gHcOApuZrRPhPW3SgAAgCfCNADrRcov0xnNg/7C+NXrt1/NE385AJWfSqcvW7j8jcEecwBmAEQIrPUlHAWnlxAfl6qsrenvi+GzI3NNXlGh8omyMWCfIENCzQuVAHDcJx8R6ViYcKCTABypmF/RGulImOgTmIwxLPml5NMUEqgiARJIgPSnHGqhoKCglIRhaVbw8v/J9qxsOcCP+UT56uBGcAGggsMXN3714Z/t0BnNrwaXDTAAdEbzDJt99HfWpgk5U9M3rAUw02YyHOx87UdrsgoMMGF9774lPgA3chA6EuRN39yz7JbsEMX1I6MWf3TOuqM/eU8l7dDKOPeFNpMh2gsGWxC49H/yE7Gcd6uHxdUU9PVE1724mNMZzb93+9UPBVuzsg1XIVLekfQ5AFS6NbKejmViX7LEN3eEzMl2WTNnREFPJqQ43YxmaVu5n6eiSyE2AOixRWsodFkiELUJRSR1mSF/DCAzL8tZNTtOZv8vgDsAeuCy5545MP8v91wS4TAjZtHyecqfvfDoeoCuAyAQ0Onv3bdkls1k8EU6tt4aUMIKADaToXb2SPOTdm+CZk214QOd0bw41DN/uYs/uFuk/Ncev7xx5vAvL9n/7DV7Q3n+wdD18hKCU+xOv7ptf0vR5r6cZ8FrdybbvQnVCFRA+F/wEyS7LBQ6JwA4wWqxDnnTVxQom/xSmZyI30U6Fia6VY/w2gkInEpxL7pJSDlK7ARkYziSVaZ3us4SvnbX37/a+eQt1wMYla2xfVjVWpC37uicz3VG86rCR/9zfqRjDSed0Xz9x1U3HPruRMnMUdr9WwFMPGS6KuZet32uw9qdvMWrXvVT+UKAUgLqj5PZb6h4at77fT3Pb5bNL6q258zY1XhOCoDJcdK2Kzp82s7ZLzeAWdE8ZX0mOqO5CcDbNpPhnl4ePwKgHxLQiedlrv9gU63+ZwDOR2Bmle2CDJELV+TbtRKf/aMbD2VFOhZm8BSXFZ8DYDOAayrmV6yKdDxM9BKfjJ/NUfJlh1q4Nu7Bjv+e9qBSbS2Aj1Dadld4o2P6Y97L94385vjFvwRwL4CEHO3+xmp7zvUClVpsJkPUlXAaKJ3RnD0x9dsnjnaMnNvoykgJfJfGdKfMfrVmPR0/ldcg0I2JUBBpuzdhlc5obtBI22pyE63kUGv+X+3exM1aWfOeNm/SRASSrr3nZ1qK7F7tuXubJvEAJgPXD+ty2gMcEZoAmnHK7sjYfLI5ryxJ0ZjRm2Nvf3XhL4HLlwCcgiOCYeWi5z8J/qjXpbCY3pFz4tFGnzwh0nGcSXFZMZFAnCUh9FICus5FJeUpEg83WdWmOeRROw961L5hUjc/TmmP6+n+Pnec44hX5R8pc0ryFR3qU+/vdsV3HPcphDy5QzpK7lCdev87p7a90S8XCxTtshEyl7Kn+5sciXa7IKXjlHb5MKlbcer9de3JbR7KY6KqTZEm8chPvf+5Pa0NwI/uT1W1KpMkXlnX+wkSn/RLe6odAM5Tt6g0vF/SeV9F/Lc7qQQIwZUlZmjjKLkcAOIcvKe7YyionBKcw5VqS9gsa/T7170vHgHwhM5oXnpOxtf/rGiYcrFApV8B2PTTFx5dOUJz+OVorD3aWzqjmcwc/sUst6B4aEvdjBSATN7RcB7UUrs/2GiIBDtr6hGjOUTIZli7dGOSkUCx41cpOI1W3jzb6VOP9Iny4JGUAiDBxgOBICCCguwByHdjEne3ZWts1jXVV6ywmQz2788LKQKXwaN2B1tPih5dKeYlWis+vP/JCd0dozOaS6Sc5/9EkZ+rlnXY7d6E820mgzWccZ5tisuKXwRwJwBNxfyKsP7BeuCD9NT9bnXGYY9ao+L8I8Yp26864lHa6/0KyIg4IkXimdnolzm8lE8AIO/pfExPKAC4AMI2rjCnV6otoaAbAHAk2M3xRwlp4JiNANDtMUxU0xnNCgC38cT/sEAlWfGyljq7N/E1AlEO4H+HTVdG/b/nouXzeJdffeuGY7PHO/1xcwCMAQClxLHH5Ve/pZJ0fOj0xyViiORQIZthtZkM5TqjeTZA9BTkB5er5//lHsm6o3NyAIxPkDc90epJ7qwoICp4xz8v1X30wMt3rmgKfMvQzXlj/zK4069uq2wu/vZ0P7vr9TuGV9tzngQm3OoT5TxAqVrafvuup+axZHXwHQKgVnP+NAD1Az3Z1StHqas86jQA6dPimq+s9clx2KP2ADQjV+6c2+CXOeyClAtcOUhTdz7OKUqw2ZGI4Ie6Rh8lDVJCvfG839ro53mATg98QqYiQD5Rc/5vxio7zqnxKirrfIoTGs6nLlA6phzxKPee8MsbtbxPM0bhmGTzKHc3+OXNibw3Pk/hnHjIo9rV5Je1JvHehFyFc3yVW7WzWZC1pUg8iTlyV/EBt3pHqyC1p0o8yTq5q2ifW/2dXZB2pEs8KSPkrrGVLvW2dlHqyJC607Jl7oK9rrgtDlHiGiZ1ZwyXucfsdmm+dYm8Z7jUlTlM5hm9y6nZ5KG8N0vmGp4p9eTucMZv9FHOP0LmzEqXekdtd8R/4wcnjJQ5R6RJvbptDu3XIgjVyZwjU6XekVscCesBYJTckZMk8WVtdSR8DQC5ckduAu/L2OZM+AYA8uSOvHjel/adM2EjAIyWd4yJ44Wk7U7tJgAXA9RwyobFmP1bwgwqPQLJKgAoAdyLUu0WlLb5uxxzIwAEj2GvpxhkMxncAF5btHzeP1o8yS9sOHrx5QCepOAA0IfzFr9/2E9lm1OUdS1jk3ZJ9rUU/afeOXwngIZILCEITt7pVZKOTRpZW2K9c/jFHLn+GpFK0ghEEcAaGe/+yyUjP9rwyoKy7ac8dkjkUCGbYe2toTRj2lc6o7kNwB4A91868oP9flG6oLz2wnSXP24aQKcG3kyDE9CBjVWP20yGJZGM+Wxwx3tZxm8diUuSec+qJkH+x9PNvAUbC6TPiGua0SpIk3e74l0A0gsU7XNbBSlX51M4AaTLiJDnpTz50SABTckSrwpATZNftg1A3SRV2xinyG/b544rB1D3E+0JqDih8qmrGt2njP+j3xs2Q9h77Pljei0we7oGgDxY0op4ZKLXoRbfTGqRPEBBJxOQVQBS8P0GWDbDGuN0RvPDAH4PgAMoCMQqCh4EYg4Fd3IZEU/87nT1MXrCMWy1n0ordfEH2kcn7m3bePyi9x2++PquyWxnkoleJoo6o1ly6cgPs9u98SnltRf5ASRMH7ZmZrVdl1vTkftzgErw/RVqJ0BXTxv2VU2CvPlPr971jyMhfkqiTtgTVqDv/4hDQbBP9cbAPSIG15TwBKJAwW1SSTrKR8ZXyazN4+9EoP7fWZXMR9Kct/PuOeZTvhzYMAgxXerZWedTHASQkcD7JjlFXuGlnPR0j5UTwS/nxA67IN0BoD5f0ZEFwLbPHbcGQP2MuGYVQPdt6EiurJhfMaDyIcGkSw/AwpKtvmPPH9NrgUYBegDrWrX+8RI/eS7OwWsAtFPQOAJCKKiPgPwNwD9Zshr7uptMW7R8ntIjKKZ9ZrtaRsGNHhl/8Cc8EaYeahtjB0gOvm/nCwDtWllLW4b6qLivpXgtgJ8DVEpABQpuOQD76IS9MwTKaw+15dcA0CYqGsb6BLm8wxcvAlCfGtePUaQo679odGXMtZkMrlA/D9EsIgnr2UhnNC8G6LPfr92l62dlf/KpQuL626t3/f1El+POumQ+0orLih8D8FTnfR6iKIA7CKAuS+pKVHKC/YAnbjWAuomqtnglJxwt70jaBOBExfyKbjdlMAwzhJRqpwFYTkHHki5XwVDaxq6CDRH9mBGVXpD12bmCyJd8c/xiD4C8YerqOS6/KqvFk6LAjzd4+hS8U1BKnGKLJ2UvgLZszaF0pcTl299StBZAW3HK1myFxNW+pW7megCt04d9GX/Enpt+tCPnJZyFV6a7YglrmARnWL8CIA32qz4rX3DRKDjzFvy3oV62IYdhmNMKLBf4CoG2rGwpANMtndE8A8AXAA0mmWQOgPX9Xf/KJrNYwhpW7AUXvdjlYoZheuX75QIWlqwyZ8Le80OLJawMwzAMwzBMVGMFtBmGYRiGYZioxhJWhmEYhmEYJqqxhJVhGIZhGIaJaixhZRiGYRiGYaIaS1gZhmEYhmGYqMYSVoZhGIZhGCaqsYSVYRiGYRiGiWosYWUYhmEYhmGiGktYGYZhGIZhmKjGElaGYRiGYRgmqrGElWEYhmEYholq/w9aGAjJjCxjUAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def draw_sketch(sketch, label=None):\n", + " origin = np.array([[0., 0., 0.]])\n", + " sketch = np.r_[origin, sketch]\n", + " stroke_end_indices = np.argwhere(sketch[:, -1]==1.)[:, 0]\n", + " coordinates = sketch[:, :2].cumsum(axis=0)\n", + " strokes = np.split(coordinates, stroke_end_indices + 1)\n", + " title = class_names[label.numpy()] if label is not None else \"Try to guess\"\n", + " plt.title(title)\n", + " plt.plot(coordinates[:, 0], -coordinates[:, 1], \"y:\")\n", + " for stroke in strokes:\n", + " plt.plot(stroke[:, 0], -stroke[:, 1], \".-\")\n", + " plt.axis(\"off\")\n", + "\n", + "def draw_sketches(sketches, lengths, labels):\n", + " n_sketches = len(sketches)\n", + " n_cols = 4\n", + " n_rows = (n_sketches - 1) // n_cols + 1\n", + " plt.figure(figsize=(n_cols * 3, n_rows * 3.5))\n", + " for index, sketch, length, label in zip(range(n_sketches), sketches, lengths, labels):\n", + " plt.subplot(n_rows, n_cols, index + 1)\n", + " draw_sketch(sketch[:length], label)\n", + " plt.show()\n", + "\n", + "for sketches, lengths, labels in train_set.take(1):\n", + " draw_sketches(sketches, lengths, labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4_TKYZxnnU0o" + }, + "source": [ + "Most sketches are composed of less than 100 points:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xonFMpCNnU0o", + "outputId": "2e4261e9-08cd-4d42-e337-1749b3f8af93" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEOCAYAAAC976FxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZiklEQVR4nO3df7RlZX3f8ffHATVRW0BHMxlIBnWqGe0K0inS2lirks5AdTSpLkiq+KMdSSDGX0kmpjbk1yr+XtJQJoNMhFZFE3U51TFoqYbaFGVARBCREUcZmcCoKWpQceTbP/YePB7uvXPO3HOfc+fO+7XWWefsZz/Pvd+972E+7H32eXaqCkmSFtoDpl2AJOnwYOBIkpowcCRJTRg4kqQmDBxJUhMGjiSpiaaBk2RdkpuT7EyyaYb1SXJ+v/76JCf27Q9O8ukkn01yY5I/GBhzTJKPJbmlfz665TZJkkbTLHCSLAMuANYDa4AzkqwZ6rYeWN0/NgIX9u3fB55eVT8PnACsS3Jyv24TcEVVrQau6JclSYtMyyOck4CdVXVrVd0DXAZsGOqzAbi0OlcBRyVZ0S9/p+9zZP+ogTGX9K8vAZ6zkBshSTo4RzT8XSuB2waWdwNPHqHPSmBPf4R0DfBY4IKq+lTf51FVtQegqvYkeeRMvzzJRrqjJh7ykIf8k8c//vHz3BxJOrxcc801X6+q5Qc7vmXgZIa24Xl1Zu1TVT8ETkhyFPCBJE+sqhtG/eVVtQXYArB27drasWPHqEMlSUCSr8xnfMtTaruB4waWjwVuH7dPVf0/4BPAur7pjiQrAPrnOydWsSRpYloGztXA6iTHJ3kgcDqwbajPNuCF/dVqJwN39afJlvdHNiT5CeCZwBcGxpzZvz4T+OACb4ck6SA0O6VWVfuSnANcDiwDtlbVjUnO6tdvBrYDpwI7gbuBF/fDVwCX9J/jPAB4b1V9qF93HvDeJC8Fvgo8r9U2SZJGl8Px9gR+hiNJ40tyTVWtPdjxzjQgSWrCwJEkNWHgSJKaMHAkSU0YOJKkJgwcSVITBo4kqQkDR5LUhIEjSWrCwJEkNWHgSJKaMHAkSU0YOJKkJgwcSVITBo4kqQkDR5LUhIEjSWrCwJEkNWHgSJKaMHAkSU0YOJKkJgwcSVITBo4kqQkDR5LUhIEjSWrCwJEkNWHgSJKaaBo4SdYluTnJziSbZlifJOf3669PcmLfflySjye5KcmNSX5zYMy5Sb6W5Lr+cWrLbZIkjeaIVr8oyTLgAuAUYDdwdZJtVfX5gW7rgdX948nAhf3zPuDVVXVtkocB1yT52MDYt1bVm1ptiyRpfC2PcE4CdlbVrVV1D3AZsGGozwbg0upcBRyVZEVV7amqawGq6tvATcDKhrVLkuapZeCsBG4bWN7N/UPjgH2SrAKeBHxqoPmc/hTc1iRHT6xiSdLEtAyczNBW4/RJ8lDgfcArqupbffOFwGOAE4A9wJtn/OXJxiQ7kuzYu3fvmKVLkuarZeDsBo4bWD4WuH3UPkmOpAubd1bV+/d3qKo7quqHVXUvcBHdqbv7qaotVbW2qtYuX7583hsjSRpPy8C5Glid5PgkDwROB7YN9dkGvLC/Wu1k4K6q2pMkwMXATVX1lsEBSVYMLD4XuGHhNkGSdLCaXaVWVfuSnANcDiwDtlbVjUnO6tdvBrYDpwI7gbuBF/fDnwK8APhckuv6ttdW1XbgDUlOoDv1tgt4WZMNkiSNJVXDH6MsfWvXrq0dO3ZMuwxJOqQkuaaq1h7seGcakCQ1YeBIkpowcCRJTRg4kqQmDBxJUhMGjiSpCQNHktSEgSNJasLAkSQ1YeBIkpowcCRJTRg4kqQmDBxJUhMGjiSpCQNHktSEgSNJasLAkSQ1YeBIkpowcCRJTRg4kqQmDBxJUhMGjiSpiSOmXYBmt2rTh0fqt+u80xa4EkmaP49wJElNGDiSpCYMHElSEwaOJKkJA0eS1ETTq9SSrAPeBiwD3l5V5w2tT7/+VOBu4EVVdW2S44BLgZ8C7gW2VNXb+jHHAO8BVgG7gOdX1d812aBFwqvZJB0Kmh3hJFkGXACsB9YAZyRZM9RtPbC6f2wELuzb9wGvrqqfA04Gzh4Yuwm4oqpWA1f0y5KkRablKbWTgJ1VdWtV3QNcBmwY6rMBuLQ6VwFHJVlRVXuq6lqAqvo2cBOwcmDMJf3rS4DnLPB2SJIOQsvAWQncNrC8mx+Fxsh9kqwCngR8qm96VFXtAeifHznTL0+yMcmOJDv27t17sNsgSTpILQMnM7TVOH2SPBR4H/CKqvrWOL+8qrZU1dqqWrt8+fJxhkqSJqDlRQO7geMGlo8Fbh+1T5Ij6cLmnVX1/oE+d+w/7ZZkBXDnxCufsFE/5JekpaTlEc7VwOokxyd5IHA6sG2ozzbghemcDNzVB0mAi4GbquotM4w5s399JvDBhdsESdLBanaEU1X7kpwDXE53WfTWqroxyVn9+s3AdrpLonfSXRb94n74U4AXAJ9Lcl3f9tqq2g6cB7w3yUuBrwLPa7RJkqQxNP0eTh8Q24faNg+8LuDsGcZ9kpk/36GqvgE8Y7KVSpImzZkGJElNGDiSpCYMHElSEwaOJKkJA0eS1ISBI0lqwsCRJDUxcuAkafqdHUnS0jLOEc6eJG9K8nMLVo0kacka56jltXRTzbwyyaeBtwPvqarvLEhlmjjvDCppmkY+wqmqi6rqnwNPBD4J/DHdUc/WJE9ZqAIlSUvD2BcNVNVNVfVbdLcOeC3wK8CVSb6Q5KwkXoggSbqfsS8E6G8t8EvAS4Cn0x3tXAz8NPA64Gl0tx6QJOk+IwdOkhPpQuYM4AfApcDZVXXLQJ8rgP896SIlSYe+cY5wPg18DNgIfLCq9s3Q5ybgskkUJklaWsYJnMdU1Vfm6lBVf8+PbpomSdJ9xvmA/+NJHj7cmOSoJLdOsCZJ0hI0TuCsors19LAHASsnUo0kack64Cm1JL80sHhakrsGlpfR3d5514TrkiQtMaN8hvOX/XPRXf486Ad0YfPqCdYkSVqCDhg4VfUAgCRfBv5pVX19wauSJC05I1+lVlXHL2QhkqSlbc7ASfIq4L9W1ff617OqqrdMtDJJ0pJyoCOc3wAuAb7Xv55NAQaOJGlWcwbO4Gk0T6lJkuZjXjM7JzlyUoVIkpa2cW4x/fIkvzywvBX4bpKbkzxuQaqTJC0Z4xzhvBzYC5DkqcDz6O6Fcx3w5lF+QJJ1fUDtTLJphvVJcn6//vp+hur967YmuTPJDUNjzk3ytSTX9Y9Tx9gmSVIj4wTOSn40o8CzgL+oqvcC5wInH2hwkmXABcB6YA1wRpI1Q93WA6v7x0bgwoF17wDWzfLj31pVJ/SP7aNsjCSprXFmi/4WsBz4KnAK8Ma+/QfAg0cYfxKws6puBUhyGbAB+PxAnw3ApVVVwFX9xKArqmpPVV2ZZNUY9eogrdr04ZH67TrvtAWuRNJSMs4RzkeBi5JcDDwW+Ejf/gTgyyOMXwncNrC8m/tP+jlKn5mc05+C25rk6Jk6JNmYZEeSHXv37h3hR0qSJmmcwDkb+D/AI4B/W1Xf7NtPBN49wvjM0FYH0WfYhcBjgBOAPczyeVJVbamqtVW1dvny5Qf4kZKkSRtnaptvMcOXP6vq90f8EbuB4waWjwVuP4g+w7//jv2vk1wEfGjEeiRJDY3zGQ4ASX4aeCRDR0dVde0Bhl4NrE5yPPA14HS6q9wGbaM7PXYZ8GTgrqrac4B6Vgz0eS5ww1z9JUnTMXLgJHkS8N+Bx3P/U1/FzDdn+1GHqn1JzgEu7/turaobk5zVr98MbAdOBXYCdzNwu+ok7waeBjwiyW7g96vqYuANSU7oa9gFvGzUbZIktTPOEc4Wug/0/wPdaa4DfbZyP/0ly9uH2jYPvC66z4pmGnvGLO0vGLcOSVJ74wTOGuBJVfXFhSpGkrR0jXOV2ueAn1qoQiRJS9s4gfNaus9LnpnkUUmOGXwsVIGSpKVhnFNq/7N//ig//vlNGOGiAUnS4W2cwPlXC1aFJGnJG+eLn3+9kIVIkpa2sW7AluQfJ/nTJB9JsqJve07/HR1JkmY1zhc/f5FuJoCPAE8HfqJf9RjgRcBzJlzbIWfUWZYl6XA0zhHOHwGvqqrnAvcMtH+C7tYDkiTNapzAeQJDswT0vgl4WbQkaU7jBM7fMfO9aU6km+VZkqRZjRM47wLemORYuu/dHJHkXwJvAi5diOIkSUvHOIHzH+nu7PkV4KF0t4b+OPBJ4E8mX5okaSkZ53s4PwB+Ncnr6E6jPQD4TFXdslDFaXEb9aq8XeedtsCVSDoUzBk4SbYeYPy6pLs1TlW9ZFJFSZKWngMd4SwfWn4qcC/dzNEAT6Q70rlywnVJkpaYOQOnqp61/3WS3wW+C7y4qv6+b3sIcDE/CiBJkmY0zkUDLwfO3R82AP3rPwJ+Y9KFSZKWlnEC56HAT8/QvgL4ycmUI0laqsYJnPcBf57k9CSr+sfpdKfU3r8w5UmSlopx7ofza8CbgXcAR/Zt++gC5zWTLUuStNSM8z2c7wK/nuS36GaIDrBz8DMdSZJmM84RDnDfhQLXL0AtkqQlbKwbsEmSdLAMHElSEwaOJKkJA0eS1ETTwEmyLsnNSXYm2TTD+iQ5v19/fZITB9ZtTXJnkhuGxhyT5GNJbumfj26xLZKk8TQLnCTLgAuA9cAa4Iwka4a6rQdW94+NwIUD694BrJvhR28Crqiq1cAV/bIkaZFpeYRzEt33dm6tqnuAy4ANQ302AJdW5yrgqCQrAKrqSuCbM/zcDcAl/etLgOcsRPGSpPlpGTgrgdsGlnf3beP2GfaoqtoD0D8/cqZOSTYm2ZFkx969e8cqXJI0fy0DJzO01UH0OShVtaWq1lbV2uXLh2/zI0laaC0DZzdw3MDyscDtB9Fn2B37T7v1z3fOs05J0gIYe2qbebgaWJ3keOBrwOnArwz12Qack+Qy4MnAXftPl81hG3AmcF7//MGJVq15W7XpwyP33XXeaQtYiaRpanaEU1X7gHOAy4GbgPdW1Y1JzkpyVt9tO3ArsBO4CPj1/eOTvBv4v8DjkuxO8tJ+1XnAKUluAU7plyVJi0zLIxyqajtdqAy2bR54XcDZs4w9Y5b2bwDPmGCZkqQF4EwDkqQmDBxJUhMGjiSpCQNHktSEgSNJasLAkSQ1YeBIkpowcCRJTRg4kqQmDBxJUhMGjiSpCQNHktSEgSNJasLAkSQ1YeBIkppoej8c6UBGvTuodwaVDj0e4UiSmjBwJElNGDiSpCYMHElSEwaOJKkJA0eS1ISBI0lqwsCRJDVh4EiSmnCmgRGM+u13SdLsPMKRJDXRNHCSrEtyc5KdSTbNsD5Jzu/XX5/kxAONTXJukq8lua5/nNpqeyRJo2sWOEmWARcA64E1wBlJ1gx1Ww+s7h8bgQtHHPvWqjqhf2xf2C2RJB2Mlp/hnATsrKpbAZJcBmwAPj/QZwNwaVUVcFWSo5KsAFaNMFaHEWeVlg49LU+prQRuG1je3beN0udAY8/pT8FtTXL05EqWJE1Ky8DJDG01Yp+5xl4IPAY4AdgDvHnGX55sTLIjyY69e/eOVLAkaXJaBs5u4LiB5WOB20fsM+vYqrqjqn5YVfcCF9GdurufqtpSVWurau3y5cvntSGSpPG1DJyrgdVJjk/yQOB0YNtQn23AC/ur1U4G7qqqPXON7T/j2e+5wA0LvSGSpPE1u2igqvYlOQe4HFgGbK2qG5Oc1a/fDGwHTgV2AncDL55rbP+j35DkBLpTbLuAl7XaJknS6JrONNBfsrx9qG3zwOsCzh51bN/+ggmXKUlaAM40IElqwsCRJDXh5J1a0vyCqLR4eIQjSWrCwJEkNWHgSJKaMHAkSU0YOJKkJgwcSVITXhYt4eXTUgse4UiSmjBwJElNGDiSpCYMHElSEwaOJKkJA0eS1ISXRUtj8PJp6eB5hCNJasIjHGkBeCQk3Z9HOJKkJgwcSVITh/UptVFPe0iS5u+wDhxp2vysR4cTT6lJkprwCEc6BHgkpKXAIxxJUhMe4UhLiEdCWswMHOkwZDBpGpoGTpJ1wNuAZcDbq+q8ofXp158K3A28qKqunWtskmOA9wCrgF3A86vq71psj7TULcRXBwyxw1ezwEmyDLgAOAXYDVydZFtVfX6g23pgdf94MnAh8OQDjN0EXFFV5yXZ1C//TqvtkjSeaX3/zaCbvpZHOCcBO6vqVoAklwEbgMHA2QBcWlUFXJXkqCQr6I5eZhu7AXhaP/4S4BMYOJKG+EXvmbUM4paBsxK4bWB5N91RzIH6rDzA2EdV1R6AqtqT5JEz/fIkG4GN/eL3k9xwMBvR2COAr0+7iBFY5+QcCjWCdU7a1OrM68fq/rj5/K6WgZMZ2mrEPqOMnVNVbQG2ACTZUVVrxxk/DdY5WYdCnYdCjWCdk3Yo1Tmf8S2/h7MbOG5g+Vjg9hH7zDX2jv60G/3znROsWZI0IS0D52pgdZLjkzwQOB3YNtRnG/DCdE4G7upPl801dhtwZv/6TOCDC70hkqTxNTulVlX7kpwDXE53afPWqroxyVn9+s3AdrpLonfSXRb94rnG9j/6POC9SV4KfBV43gjlbJncli0o65ysQ6HOQ6FGsM5JOyzqTHdBmCRJC8u51CRJTRg4kqQmDqvASbIuyc1JdvazEiwKSY5L8vEkNyW5Mclv9u3nJvlakuv6x6mLoNZdST7X17OjbzsmyceS3NI/Hz3lGh83sM+uS/KtJK9YDPszydYkdw5+D2yu/Zfkd/v3681J/vWU63xjki8kuT7JB5Ic1bevSvLdgf26ecp1zvp3nsb+nKXG9wzUtyvJdX37NPflbP8OTe79WVWHxYPuYoMvAY8GHgh8Flgz7br62lYAJ/avHwZ8EVgDnAu8Ztr1DdW6C3jEUNsbgE39603A66dd59Df/W+Bn10M+xN4KnAicMOB9l//Hvgs8CDg+P79u2yKdf4icET/+vUDda4a7LcI9ueMf+dp7c+Zahxa/2bgPy2CfTnbv0MTe38eTkc4902tU1X3APunx5m6qtpT/SSlVfVt4Ca62RUOFRvophWif37O9Eq5n2cAX6qqr0y7EICquhL45lDzbPtvA3BZVX2/qr5Md/XmSdOqs6o+WlX7+sWr6L4PN1Wz7M/ZTGV/zlVjkgDPB9690HUcyBz/Dk3s/Xk4Bc5s0+YsKklWAU8CPtU3ndOfwtg67VNVvQI+muSadNMFwdD0QsCM0wtNyen8+H/Mi21/wuz7bzG/Z18CfGRg+fgkn0ny10l+YVpFDZjp77wY9+cvAHdU1S0DbVPfl0P/Dk3s/Xk4Bc68p8dZaEkeCrwPeEVVfYtutuzHACcAe+gOvaftKVV1It3M3mcneeq0C5pNui8JPxv4i75pMe7PuSzK92yS3wP2Ae/sm/YAP1NVTwJeBbwryT+YVn3M/ndejPvzDH78f4imvi9n+Hdo1q4ztM25Pw+nwBllap2pSXIk3R/5nVX1foCquqOqflhV9wIX0eh0ylyq6vb++U7gA3Q1LdbphdYD11bVHbA492dvtv236N6zSc4E/g3wq9WfyO9PqXyjf30N3bn8fzStGuf4Oy+q/ZnkCOCX6O7nBUx/X8707xATfH8eToEzytQ6U9Gfx70YuKmq3jLQvmKg23OBqc5wneQhSR62/zXdh8g3sHinF/qx/3tcbPtzwGz7bxtwepIHJTme7j5Rn55CfcB9N0H8HeDZVXX3QPvydPesIsmj6eq8dTpVzvl3XlT7E3gm8IWq2r2/YZr7crZ/h5jk+3MaV0NM60E3bc4X6f6v4femXc9AXf+C7lD0euC6/nEq8N+Az/Xt24AVU67z0XRXpXwWuHH/PgQeDlwB3NI/H7MI9ulPAt8A/uFA29T3J10A7gF+QPd/iC+da/8Bv9e/X28G1k+5zp105+z3v0c3931/uX8/fBa4FnjWlOuc9e88jf05U419+zuAs4b6TnNfzvbv0MTen05tI0lq4nA6pSZJmiIDR5LUhIEjSWrCwJEkNWHgSJKaMHCkg5TkHUk+NO064L5ZvF8z7TqkuRg40iEkyYuSfGfadUgHw8CRJDVh4EgTkM5vJ/lSfwOtzyX5dwPrVyWpJL/c38Tq7iSfT3LK0M85rb+Z1feSXJnk9H7cqiRPA/4ceEjfVknOHRj+4CR/lu6Gc7uT/FaLbZdGZeBIk/HHdNOqnE13Y6r/DPxZktOG+v0JcD7w83Tz+13Wz85Lkp8B3g98uF9/Pt3Nr/b7G+AVwN10N8taAbxpYP0r6aZ0OZHuBmlvSPLPJraF0jwZONI89ROZvgr491X1V1X15ap6F91MxWcPdX9rVf2P6u5/8lrgGLpp9AF+jW6ixldX1c1V9ZfAfbcYru7GgXd1L+tv+8fg5zkfrao/raqdVfVf6OY+e8bkt1g6OEdMuwBpCVgDPBj4qySDkxMeSXdL7kHXD7zeP5X7/htaPR64un58gsNPMbrrh5ZvZ3HdDE+HOQNHmr/9ZwqeBXx1aN0PZluuqupmhL9vfJjfDcGGf1fhWQwtIgaONH+fB74P/GxV/a95/Jyb6O4TP2j4JnH3AMvm8TukqTFwpHmqqm8neRPwpv4mVlcCDwVOBu6tqi0j/qjNwKv6n3UR8ATgZft/Tf+8i+5qtFOAzwB318DN0KTFzMNtaTJeB5wLvIbuBlofo7uZ1pdH/QFV9ZV+zLPpbsD1SuAP+tXf6/v8DV0wvRvYC/z2RKqXGvAGbNIiluQ3gT8Ejq6qe6ddjzQfnlKTFpEkZ9N9P2cv3Sm51wHvMGy0FBg40uLyWLrv5zwc2E13+uwPp1qRNCGeUpMkNeFFA5KkJgwcSVITBo4kqQkDR5LUhIEjSWri/wNWWdbhgFjhIAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lengths = np.concatenate([lengths for _, lengths, _ in train_set.take(1000)])\n", + "plt.hist(lengths, bins=150, density=True)\n", + "plt.axis([0, 200, 0, 0.03])\n", + "plt.xlabel(\"length\")\n", + "plt.ylabel(\"density\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7ajTzxJmnU0o" + }, + "outputs": [], + "source": [ + "def crop_long_sketches(dataset, max_length=100):\n", + " return dataset.map(lambda inks, lengths, labels: (inks[:, :max_length], labels))\n", + "\n", + "cropped_train_set = crop_long_sketches(train_set)\n", + "cropped_valid_set = crop_long_sketches(valid_set)\n", + "cropped_test_set = crop_long_sketches(test_set)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ryr8RgjXnU0o", + "outputId": "fdca3640-4b06-4899-86cc-e16b66c95c8f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2\n", + "107813/107813 [==============================] - 2048s 19ms/step - loss: 4.0817 - accuracy: 0.1705 - sparse_top_k_categorical_accuracy: 0.3747 - val_loss: 3.0628 - val_accuracy: 0.3127 - val_sparse_top_k_categorical_accuracy: 0.5969\n", + "Epoch 2/2\n", + "107813/107813 [==============================] - 3975s 37ms/step - loss: 2.7176 - accuracy: 0.3771 - sparse_top_k_categorical_accuracy: 0.6660 - val_loss: 2.4580 - val_accuracy: 0.4253 - val_sparse_top_k_categorical_accuracy: 0.7143\n" + ] + } + ], + "source": [ + "model = tf.keras.Sequential([\n", + " tf.keras.layers.Conv1D(32, kernel_size=5, strides=2, activation=\"relu\"),\n", + " tf.keras.layers.BatchNormalization(),\n", + " tf.keras.layers.Conv1D(64, kernel_size=5, strides=2, activation=\"relu\"),\n", + " tf.keras.layers.BatchNormalization(),\n", + " tf.keras.layers.Conv1D(128, kernel_size=3, strides=2, activation=\"relu\"),\n", + " tf.keras.layers.BatchNormalization(),\n", + " tf.keras.layers.LSTM(128, return_sequences=True),\n", + " tf.keras.layers.LSTM(128),\n", + " tf.keras.layers.Dense(len(class_names), activation=\"softmax\")\n", + "])\n", + "optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2, clipnorm=1.)\n", + "model.compile(loss=\"sparse_categorical_crossentropy\",\n", + " optimizer=optimizer,\n", + " metrics=[\"accuracy\", \"sparse_top_k_categorical_accuracy\"])\n", + "history = model.fit(cropped_train_set, epochs=2,\n", + " validation_data=cropped_valid_set)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mMb95mFFnU0p", + "outputId": "473b25f9-0b6c-40e5-e797-0a13bb0c8900" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:5 out of the last 18 calls to .predict_function at 0x7fd0e07f7a60> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" + ] + } + ], + "source": [ + "y_test = np.concatenate([labels for _, _, labels in test_set])\n", + "y_probas = model.predict(test_set)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "T9lj5AgXnU0p", + "outputId": "fb57e78b-7c31-42a5-d999-cd1f654fe74d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.60668993" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.mean(tf.keras.metrics.sparse_top_k_categorical_accuracy(y_test, y_probas))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Zlp1x0N7nU0q", + "outputId": "74964be5-da8e-47a9-c643-1cad3c58aa1b" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwlUlEQVR4nO2deZwb1ZXvv7dKe0ut3lcvso2x8QJ4wdgsptmXJiHJhBcS8pKQxDAwScjCS5rJhOmXTAYnk5kJEJIQZzAMkLzJQth6wk5jwGY1NgbjBdvtrfdN3WrtVff9Idk0Hm8tlVTqdn0/H32kkkrnHkk/3Tp1695zhJQSC4uJhGK2AxYWRmOJ2mLCYYnaYsJhidpiwmGJ2mLCYYnaYsJhidpiwjHuRS2EkMe43WdQO/cJIZ4wwpZFbrGZ7YAB1I56fCWw6pDnIqN3FkLYpZSJfDhmYQ7jvqeWUnYeuAGDo58DXMCgEOKzQojnhRAR4CYhxJAQ4tOj7QghLhZCJIQQ1Ye2IYRoBr4INI46AjSkX5svhHhWCBERQvSne3T/0XwWQpwphFgvhIgKId4WQlxxiM2G9HbFqPcE0s8tHvXcHCFEixBiWAjRLYT4vRCiZtTr84UQz6U/77AQYqMQ4vz0a3YhxJ1CiHYhREwIsVcIsfL4v/nCZdyL+ji5HfglMAf4M/B74MuH7PNl4AkpZddh3v8z4A/As6SOArXAWiGEB3gSCAFLgE8CZwH3HskRIYQXeALYAiwCvgv8y1g/kBCiFlgDvJtu+yLACzwmhDjwu/4O6Ei/vgBoBqLp176R9vcaYCbwGWDrWP0oSKSUE+YGfDr1kQ5uBwAJfOeQ/RYDSaA+vV1KKky58ii27yMl+tHPrQCCgG/Ucw3pNk86gp0bgH7APeq5z6Xf03CIjYrDfJbF6e0fAs8dYrs0vc+S9PYQ8MUj+HEn8BwgzP7djL6dKD31m6M3pJRvAptIhRSQEtUA8Ncx2j0FeEdKOTzqubWATuqocDhmA+9KKUfH+q+NsV1I9fLLhRChAzdgb/q1Gen7fwN+mw69vi+EmD3q/fcBpwPbhBB3CyEaR/Xw45oJ8SGOg5HDPPdb4Lr04y8D90kptTHaFaR6xsNxpOeP9p4D6KP2PYD9kH0UoIWUMEffZpIKb5BSNpP6cz1CKix6Rwjx5fRr60n1/n+ftnU/8MxEEPa4/wBZ8CBQL4T4GrAQWH2M/eOAeshzm4HThBC+Uc+dRep7ff8Idt4H5gsh3KOeW3LIPj3p+9GjOKcfss96YC6wW0r5wSG3g0cOKeV2KeWdUspG4D+Ar456bVhK+Ucp5Y1AI3ABcNIR/B4/mB3/GHnjyDH14iPsfz8QA148Dtt/T+rwPguoINVzeoB24C/AfGA5qZOtPx/FjpeUaB8k1YteRCoUksB56X3swB7gYeBk4BJgIx+NqeuA7vQ+ZwLT07Z+A/gAN3A3qfg8kN5nE/Db9Pu/DXyWVAh1EnAHqfMDj9m/Y9Y6MNsBk0W9PP36F47DdiXwNDDMR0/q5pM64YqQisvvA/zHsLUUeDv9h3ob+Ju0zTNH7XMWsCFtdx2pnvQjn4VUqPGndLuR9B/qLsCRvv0O2J1upz0t+OL0e1eQ6u2HSZ1QvgicZfZvaMRNpD/gCYkQ4jPAPUCdlDJsoh9Xkertq6SUvWb5MVGYCFcUx0x6fDlAKqRYlW9BCyG+COwkFc7MA34OPG4J2hhO1BPF75KKUfuBH5nQfjXwAKlw4W5SQ4mfN8GPCckJHX5YTExO1J7aYgJjidpiwmGJ2mLCYYnaYsJhidpiwmGJ2mLCYYnaYsJhidpiwnFCXiYfbwSaWpaRmm3X2raycZ3J7hQ81hXFAmbm3z9cm9CdnwP9JyBUIAni7im+Hb0B/weVb3Wd9cJIwtd/cum7thklW5V17Q2bB2PlQSDctrLxhP1hLVEXADevulYkpe3cF/deVh9KFM8rcfZdokl14XC8JMPwUEqXGhFRzd0OIlTsGHCWuXr9bUMnvQQiVO9tK6/0dJZs6F76V2B4VummiipPh/ul/Zc8B0xWRHKmLm1/GK9HBUvUeSbQ1KJO929ZONnXdt2GniWOYKxsuiKSZ+jS5k3votmV2I6TS99T+6JVD3WOTGoH/p3UwoEEcNXi6pfbK9zd05/dc2V3Und455RvOKXC3TVvzb6LN4LiCxRvP7XE2X/Khp4z3wZ8Ve6OOS5bZNKe4eltgM+pRmqlVNxx3SkO7yWI1Iqyf5QoK9tWNsZz+60YiyVqgxkd/5JeclVkH1p2UsmWv90xONsWShRPIbViBkVoCV2qbzuU6LtLal92DMX9v3un54wX2lY2Ro9k08jeM9DUogLec+ufnuRQY3XP7fnYVcCNgJJajyAAOueUbXhlesm2//uL6+/fZFTbucQStYEEmloagKdA2kEKkBqoKoBLDUuvY3hHb6T6CYG+/pLAo0MuNfLkHSseipnr9Yek/zzP8eFR4R/sSuyKhO68UKDpEvX/KWh3fWzGf712x4qHClY4lqgNINDUMnt+xVv3be47bZEmbekRJUmps3fLQKzyNmD9GdUv7/rjt27Xj2qoADjcUeHGe7580Yt7L706nPReAxTXe3eH7Ur8/7YNzbzz0KNKIWCJOkNuXvX5oo6R+u+93rn8XKBBQdPrvbs794amladHKhLAheP1ZOtwBJpafHPL1/9Td7huRU+kxg30VHnaHz2j+pV77r7hvjePaSBPWKIeI4GmlqnA9U41+vWY5vKpIrFfk/ZfOJTY6m3//KmuE2FMOdDUIoALga+D/nEFiY7yJxB3AS+ZPZxoifo4CDS1qFOLP/icXYn/7IPBUypBSLsSe+bc+mfX+hzB2+9Y8dAJm0X1pnuuO3djzxk37Q9NvRQorXR3BCf72u5f373sL8AyTPhzW6I+Cjfdc928DT1nXN8emvpxYKrPHkzWefc8tnVg/rfaVjbuMdu/QiLQ1OKp8rTfpAj9R50jk1zpp3VS6RnyGoZZoj6E9KH1POBGRWj/S5cqwPPAr+qK9jy69gc3nrC98vFw86prxaM7rrkHxIp0hjUNxA/aVjbeni8fLFGnCTS1lM6vePOn7aHJn+uLVnuAgdqivc+cXvX66l/dcO+TZvs3nkidV8gXAKdA6hLlHKunzhM3r7pWhJNFX2jde9lFCd35N4B7kndXSJO22zpGJv+6bWVj5JhGLA5LoKllmdsW+k0kWTQHxOltKxvzduHmhBR1oKmlCPicQ4l+M6675qgiGdek7T5FaL/eefvH3zbbv4lCoKmlHNgu0DZ8fMZ/XZivCzYFJ+pcDonNuPXRuXPLNzy4uf/UU5K6wwm8u7j6lddri/bedtf1D+w3si2LFGf96Fc/bB+Z8oNqz74XusKTvp+PMKSgRJ0WdCupy7RRDDhr/saqz/v2DE2/ZUPPmecD5yoiqc8s2bJt68C8rwJrzR5TnejM/v4fz4tq7tbUloiQh5GQQlsk0JCaNyEEKWE3kMr4edyM6um3AUuc6ie+HtPcbkVobbpUv2tXkquf+t73rJx1eSKqec4iNbSnkMrE2sAYf9OxUmiibgWpAyqIRGr7+Bl91p2eYaYpQn/2wilPtHrtQ/9yx4qHxlopwCJ7WtPDegrIBIjWXDdYUOEHQKCp5RFSGe0vHethKtDUcivIf0p/gRLET9pWNt6aE0ctjpvLf/rjx9/vP/3KQPH2Fa1//83f5rq9Qlx4GwJ6Moy7WkHEQCZBRCvcnU+3toqZBvtnMUYiyaJ1AF778Cv5aK/gRH1Syeblle6O/1Gg83hI/xEuBHEbcOHPzvvqF4FXWltFsaFOWoyJtqGZnQDv9i08XEEpwym0mJpgrHRYk4fWCzp+0sJeB9DaShfwVEODHDLIPYsM8NqHXKFEMSXOvsx/2DFQcD11T6S2vz9a9YERthoa5M6GBvl7gNZWcWZrq7jRCLsWY2NB1WuLAc6uez6jI/BYKThRk1q/l4vD1N8C32ltFUU5sG1xFHYPTd8GsDN48mA+2iu48KPC3Tm3zNVbmipGZSgrgMqGBjnS2ioEYGtokNaMuzywZ3hGN8D7/aflpbZOwfXUIwlfNJwo2nvsPcdGQ4NMNjTIjvTmj4GW1lbhOtp7LIzB5xh0A1S4O/PSiRacqCPJIm1faFquZ3RtJ3XFsWBWck9kTq98YxHAmTUvVeWjvYILP0B6QOT0MNXQIFeTLtvc2irqAW9Dg9yayzZPZHYNnbQV4IPB2QP5aK+geuqbV12rgnAtqn5lUR6bXQ082doqHHls8/hp9i+j2X8rzf5l47WNfcPTegC2DszPy/z0guqpdwZP9gEMxUq257HZG4HJDQ2y4FJrDf1r0Q0+1LsEQpVIbeDnnmdtmvJ68bC6P6lKe09lYqk3pH7gC6kdCZt09lYklnhD6nZfSO1M2HRXb0XyDN+wutU7onbH7bqnrzy5yDesbvGOqD0xh17UX5ZcWNZvCzlRvgKoQJxm/4U0Bw2dcOR39HuC8TJqPPvsRto9EgUl6k29ix0A2wfn5m2VREOD3AHsAGhtFZ8BShsa5K/z1f5o2la7Ssv7bJf5QuqZEnlFMbaDl/gFQikbtF8OXA5g0wS1nR8eXOzJQ7eVj2w7Eh/ddsY/ug0gke6kTX7L3ux/leagYZOCTq18a+FL+y9mUfW6Srhhh1F2j0RBidqlhr1RzQO5Gac+KulhvquBqtZW8duGBpnMdZttq12ieEg9s2zAtkwiL5siHBcrUgggKhCtQV/yg+Jh9YJ0T50MefUb4w75Snm/LRy360pHbaLKG1KHRm/7htVg2YAtEnXqald1otIfVAdLgrZo2K3beioTFQe2RzyavbciWV7Xbp9mTyoPSKQTEPakcjUwJ/wT7+reiuSqKV+JZn01dmfw5C0AWwfm9Wdr63goKFE3TH5y3pNtn+K8SU+emoNx6qO33SBla6u4BvA0NMhk/Me+S2xJcYYixfNGHo57fuGpqOy1nwtcVme3f96RUDwAArFl2Jt8MuTVn6/rcNxNczDiB9JxboNAtPpuCR30wwFMTdU2P+y2K7V9MI2DJ7W9+8B2UerWBrxFs3+/QDRI5CvANODbnoj6s9oOsVI2F/9QIH4NnMSBxJdj/D72h6b2AnwweEpeUpQVlKj3DE+PA/RFqraZ0X66dx6SzcXL7Iin0k9Hsokzu+/2KFU99tOAyyIufUV5zDYt/dKwprKpsyy+rarb/gPlH4d2FwP/Y+ZVqt3cLoFKt5HO67uGZv9/7quPf6ei1/Y5e1L8UCL/gZRWpECMOe4udfV4B6KVJ2ZMvbnv9CjAu30LTR1eS/daiNRCg+NagTP/3jlJhFCQUt+0Z38NcEnYrX2lJKk2kB5lsifE9r7y5NqiEeVHnoj6nLtpOOHO6SfJkOagnAQ/A35Gs3+OrvD/FJ35Y/k+RjOvfMPpJ2xM7VQjvpjmRhFaXi6nHoV30z+gTirRY+vRdp5/75wkipKagSaEOn9yXfemve3CHVEGB0u0vbGk/IUvpD5g+8FQV2WuPTea5uBmtdl/Qzo0geP4Pg7lnZ5FIwAv7rt0CvCqsQ7+TwpqnHpZbet5AJcGHqkz0w+JDKUfrgaOfagVQknfp7YVBWCJQFSUfnMk4Lsl9DOag1258jfnNAfXCcQ+4B2O5/sYRaCpZVkwXnY9QChRfH96DWlOKaiees/w9F6AnnDN7mPtm0u6qhNfqely0F4bv7vuhsix84BIqSOEyoGlcVLqNAffyLGbeSVu10tiTtk++mT1OGkAaUunILODaCDH5wgF1VPvDM4KArzZdXa7mX74hlWHLqQWd8h3jmf/TV/ebEPXNaSU6Lq26cubC6qzMAiHpspMJoC1ClLDoyL1r2811KvDUFBfvlONlMQ0Nx7bcN7HqUdTFFZdwObAddHjXn0+QYV8EEdCCTqCypjj4baVjetOu+2Ba4LxsoedavS3W358dc6T2RRUT31q5ZsXAVw89XFTL1lL5CxSs/gsPsRG6iRxzATjZY8AoajmycusyIIS9b7hqfsFmmZmcZ+21S6nFJzcW56oMMuHQkRTZHGwODkrk/e2rWyUDiXaUeLsO8Novw5HQR0yO0amBAFTF8mW99lmKlKg6GKtmX4UGkKiaGrmegn4d/iCsZIpRvp0JAqqp3Yo0RKBbmr6XF9InQJQNmBrMdOPQkORQi8bsGUcD/eEq5/qDtfq6aT2OaWgRD2jZOvyCne3qdcn4nb91PRDK6Y+QLNfkEVMDTAQq3hLoriBnP++BSXqjpH69kjSY+pw3rBPuzapSglYSSTT7J0UcwL0lyZPydRGlbujG+DUijeXGuXXkSgoUQ/GKkZCiWJT80T7htWYpso2I+cTj3dULbVAWVcy/0oW1bwSBih19V5skFtHpKBOFG1KvBQpTD1RdCSUSmCNmT4UGnUdDh2gos/+WqY2grGyNQBr2y/I+RGwoHrqCnf3nOkl22ab1X7XLz0+YIouZM5nko0zDkwZzXjhxO++8a9BoDOhO3I+AlJQou6PVIT2DgdG8jHp5XDEHfpFAJ01iVIz2i9U9tfFqwB6yxNZdThF9qG+UmfviRNTB5palsV1V0UkWTQdeM4MYVf02n0Ajrj4a77bLmSExAEgReY9NcDU4p0eBBldwBkLBSNqty10bfrh6NIY+fUhqtQBVPTZ85JHebxQ1+EYAqjstb+VjZ3dQ9MfHoiWi0BTS05XwBSMqAPFO2akHkmNDCaiG0HMoS+RyG6ag8P5brvAyTqmBhhJFL+XqvJATuPqghH1juCsmE3Eh4EfkOda1geIO+SFIa/uzHe7hU57bXwaQHdl4uRs7Ezx7egDWFC17jwj/DoSBTGkF2hqUcB1NvBIPmtYH0rRiKLFnPJls9ovVBT9oE6ymmg2v2J9957hGbhtkeXAvdl7dngKoqc+q+75S4EKrz1oXizb7L9YkaLUHVVMXXVTiNR0OboAqnrsWSUZCiV8b4JMrG2/oOPYe2dOQYhal8oNAOdNejqrE5GMafYvk8jHASTy+pzmrRufHIips8rnff/X7kqCaAOmZ+3RUSgIUb/acZ7drsR3333DfW+a5EIDqXwwkMop12CSHwVJR018DkBndTxrMZa6esKlzt6zsvfqyJgu6tTwjlie0B3/baIbrYAukQBxTBh5KWRU7eBs0axTV0z2tdljmjOn2QJMF/XZdc9+FvBWe/abufr6dYEIC8RbAmF41s/xTlWPfR9ATZcj6+m47/YueCCc9CmBppaclQE0XdTDcf/fCHSW1r5o2iSizur41YAv5tDvtgR9WAyJqQF0aTtQeW3aUXfMAtNF/U7vGSUgN9yx4iHTJhHZkuKLEklnTeIls3woZDqr4wsB2mvjWYcNp5RtHARYXP3y5dnaOhKmijrQ1OIBlknUZ830o6LPXiIFb0/9ctSQ+o0TDVtSJAEUPfuY+uTS93YA6FI99Vj7Zoqpol4+6akbAfs0/9YNpjnR7C8DlihSPG6aDwVORZ+9DaCmy7HnGLsek0/O/F0byOD67mU5y1VtqqjbQ5OXqyLJ/Ir1T5vlQ1dV4juAMuLRrNDjyBgWUzc0SAliJxM1pv5gcE69Jm0v3bniwR6zfHBHxAVJVcqeyqQl6iPQVZVYBrCvPmbIPPOaor1aibMvZ2PVpok60NRSBiwEnjPLB5r9onjYNkXV+FPguqhVU/EI2BMiAqBqwpB0cNWejvhwvNh/9b/fmhP9mSbq8yY9+V1AzK94812zfADmAnXiw6oBFoehbMC2E6C202HI+sKNPUse1KRdvNF1To0R9g7FNFFvHzxlrl2JadP92580y4fuysSPAIa9WqtZPowTDIup0+xK3+dkDohpom4PTZ2Z0J1P37HiQdMynPqG1dlRpz7suyVkLbQ9Cj0ViXMA9k6KGTJVeUHVqwMAS2rWfNIIe4diiqiX//iuacAszI2ni9xRZborpvzGNB/GCe6w4gKoa3fMM8LeZN+uzQKd4bg/JytgTBF1oPiDJoCz6p7fYkb7AHG7fgmpmXlWPH00mv3LvGH1YgBVF381YlrunSseHJYo+97vPy0nR2lTRL2pb0G9U41EK92dpsXTQ8XaP2qKlMNezVrpcnQaJFJNPzZyQfQuchRT5305VyrrZeVpwBN3rHjouDP1G03JoK0q6tK3+24JmZpldRzQCpAuwWfYguhA8XZHX7TyNCNsHUree+p55esXAZMwN56ebtNEbVFYvds0H8YLzcF1mioHEnbZxRgrcx2NYudgz3Dc77rg9n/NpI7MUcm7qP3OgW8DXDz1MdMKgIbd2mfTD00Lf8YNzX6bTVOKHQlltZHTct/pOeMPINgZnG34yWLeRb2+e2mpSw0PeGyh1ny3fYC4Q34t6tSTwHazfBgvxBz6TFJhqtGd0M70veFxdV5FHWhqUSLJoiVRzfPoHSseMidVbrPf4Q+qxUmbfM5K13tseiuS1wC01xpbW2pp7Qt9AGfWvPg5Qw2TZ1EvrFp7KVDmVCMv5rPdQzhLIDzeEfXXJvowbvAHVQ+ApkpDf7NqT8d2VST07kit4cu68ipqu5q4CeCiqY9vzGe7owkVaV+VqWKVz5vlw3jCO6L6gb7JX43uOubOY+COFQ9pmrRv2xU82fARsLwO6b3RebbLqUZ23339/ccujZwjhORTIa8+4rslZGpy9/GCLuRcIdmao+pDOZlXnbeeOtDU4tCl7ayY5jZvhUmzv6YorLoVnftM82GckbTJpQOlWk5qSs4ue6fEpYYNH6vOm6iX1rZeA3hKXT1jLgVsIJcAFIXV/zTRh3FD4p+Kix0JRVE1cnIOZFfi26KaR7ng9n8ztGJX3kQd05yfF2icU/e8afnyQkXaTbqQg8AGs3wYT9iTYhaAf8iWkyT0m3oXPwawMzjL0LHqvIn67e5lblXoG++6/j/b8tXmaLrv9ijOmLI46Nf6aQ7qZvgw3oi49DMAdCFzdaFsJ4BANzSuzouoA00tXmBpUtpNu4JX1WNfaE8K1R1RfmKWD+ONkFe7RiLZNyme9Sryw3FO/TMdAGfWrrnOSLt5EfXZdc/dANgm+3aZlQAS4DIAV0x5xEQfxhX+oBrWVLqnfCUayoX9B7/+826nGonuHpph6EWwvIi6N1J1qU0kWFD16gv5aO9whN3aTXG73kZzsNssH8YbjoRSY9NETjuimObe1DEy2dAaMHkR9daB+ZVJaWu9c8WDfflo71DCP/GWuSNKbdCv7TOj/fFI22qXKpGzNUW25bipXaDPMNJgzkUdaGqpAE4HYdpUU09EPV8gqOi1/b1ZPow3FJ3FAuHsqUyU5LKd0ytfq1WFNuPmVdca1lvnXNTn1D/zfwBmlW4y7SoicCkwJBBmjpGPK6q77FUAzpjyWC7bieuO1zRp553exQGjbOZc1LuHZixwKFF9avEOU3rqttUuEXPoXxzxaG00B41a4j/hccaVKQClg7acZq7a3LfgKYBdwZMNS8Sec1HvHZ4eiOuuv/7mxlXRXLd1OCp6bQucccUR8upmJnUfd0Rc+rkSGQZyWnSIdA4Qnz04xyiDORX1/NsemgrMxMSlW94R9TyA6m77j8zyYTySsOsXhT06uZ5zfsnUR/YLNGaVbbrGKJs5FfXpla//AGBh1dp3ctnO0dCFvALYQnPQKiU3BrwhNWpLipwnzfzNjauiLlu0f2dwlmFH8pyKekv/qVNdtpHoZF9bay7bORJtq12lUnDRQEnSkBxwJwzNfrciRZ0zruSlVEgkWbSxP1rpM8pezkQdaGoRPZGaudFk0aNmpUKo7rI3qLog7tD/bEb745Xe8sRSQESdel7G9RWR3K0I7STD7Bll6FCm+bctBGoxMZ52R5XlQKy622GlFhsDcYe8EqCnMpGXPIeLq9fW61Kt/Maqz5cbYS9noq4t2vc9gPMmPZlV6d9s0BR5lUSuoTmYda2SE4nqLvsQgCMu8lLhIRgrfRbg9Y5zDZmCmjNRv9OzqNxjCw3c/7W7TLngsec/XMtUXUzrrkqallV1vKLqYgawv/qmSM7qsoxm68D8NQCd4Un1RtjLiagDTS1qKOFfGE56H86F/eOhrt2xCEAK+QuzfBivxO362Qmb3pmv9hxKdCdApbtzgRH2ciLqeRVvXQKUKEIzbVaeTRPnA3truhzWqvEx0LbaJRRdTBsq1gxPB3YkLp/2cI9DiVLv3f0JI+zlRNRF9tDXAa6Y9mdTxqf3/tbl0oW8PKnKF62ENWMjsNtZadOE8IbU3+WrzTtWPCRtSnLP9sFTBo2wlxNRr+9a6nHbQnt/cf39ppwkCim+pEjh7q5K5O0QOoGYBeCMK+vz2Wg46d04kig2ZAGu4aIONLU4E7pzSSTp/YvRto+X+v32SRKpScHPzfJhvNJfmmwECBVphiavORYeW6hDQZt586prs04xYrioF1Wt/QzgLrIPmVaXUCAuFYhX66+P7DfLh/GKrsjlupD0ViR3Hntv4zit6vUKHdWlSXVWtraMDz8EXxFoXDD5v18z3PZxMPJT72ckcnHcpu81o/3xTkWfvVdI3g9cF83rNN2ukfonAF7ef1HWIYjhon6ra5ndocbfuev6B/Ivqmb/Mk9YeVAgsCfFp4yoT3ICcrJAvJ/vRncGZ70BMBgrz3qs2lBRB5paikEsiWnuJ4y0OwYaBOLAZ1Iwrj7JCUHbapdbImeOeLScrB4/BrsA6ry7sy7vbKioz6x58XpArfa0m7VsqhXQAEPrk5woOOJiiUAoQ8Va3ktat61sHPE5BvVyV+8l2doyVNQdI5OuVUSScMJjTnGg5uC6sFt7SSIlBtYnOVGo63AUA1R12+8zo/2Ebn9vS/+8rKcJGybqQFPLsj3DM07TpcpwouSxQFOLKfFsxC39SRtYgs6IWQCqLkypbxlNFm1K6M6s1yoa2VNfAggQYGy9vTFR3m97z54UOUmTNdEZ8iU/pSkyTHMwLxOZDqXU2TsA+tTrf7Uiq0v0hol6iu+D4dQjqZMqzN5qlO0x4gOshOoZoGpiWsStG1vcZQzMq1hfBIqiCm1JNnYME3Vt0X47QIW7+2HgwraVjaYc/iMufV7UqXvNaHu8UxRWhXdENW1m5c7grL8APLvnY85s7BhWHuO1zvMiAL2R6r9rW9loWr46XZFVmko0b1PMJgrNfj9QjfGl5Y6b/aGpGwESuiOQjR0jY+ppQBjoMdDmmCkKqx3Fw+oaM30Yj7TXxq8AGChJmrlKaJ9A16b4djRkY8TAmHrH5X5Hf7htZaPZUz2LsWLqMeOIi3kAIa/2gVk+tK1s1MpcPbrHHjonGzuGhR8jCW9lmavX9KVTmiIrR4r0KsOL801wKvrsOqBN3uc0dVHFULxkXX+00p2NDcN66r5otbpr6OScJhM8Ft13exRVF/aYU/eY6cc4ZRawi+agaaMfAAnduUWiZFUuwxBRB5paSgA/0GaEvUyp6rEXAVT22nNSeGciE3Hpl4x4tKTZftQW7RkBKm6650s1mdowRNTnT/7vCwBOq3w9rxV0D8OBqGPYVC/GG81+xRkVXkUTLrNnNp5culkAJHRHxn4YIsKBaPk0gHJXj6n56jpq4jMB+kuTOSlmOYG5SkGo7pgyBXjOTGFv6F7yB4Bndl+VcQU1Q0S9oedMCfD83sZnjLCXKVJQCxB16TmqOjzxaFvtqk4q8lfpTQUTpzgABONl29IPp2dqw6hwIUDqkD9gkL2MqOtw9KTvrXHq46HZ76/usr+u6lRLZAJIYu4UB4B+m0hEpxVvuyxTA4aIelrxto+Xu7oTBTBGfSBzpjVOfSya/WXAM66oqOutSP5AIM4DbsPkKbttKxtlpadTCiHnZmrDkHHqgVi5p9gxaErlrdH0lieWVvTZ6a5M2KrMdqaA2X2va3aVy/6KKyq8AvGpyq+FH0+/VBDTdTtH6p+SKBkvwM26pw40tYjBWLl7z/AM04fRpKACIOrSrZ76SDT7a+r3O550xEVZZ02iiebg48d+U36RKDuBaYGmlozOjYwIP8oBL+k1ZmZS2WvfATBlr3Pizadu9i+j2X9rNiMT8R/7pgAv2jRREXXpV9X+beTfDfTQMKb7tyYA10VTH8uoDkzW4cfFUx+99JndV3FGzUsuaMzWXLb4gDjNwbyvscsFe/7DNcMVVZZW9djnAbdIpA2Qotn/KLBroCQ5TVdkorzfvgYY6alITNEVQtXd9jeBkY6aeLEUDNZ1ONqGvNo1bl3cKZEJgbio6LuhV0z9cEch4N8+sjM4i2jSvRB4b6zvz1rU+4YDVQAe28jmbG1lS7A4eXbRiCoNm9CSB9pWu0Rgt7MOmNNXlvy0orOwdNA2AsyZgvMjOTAEAokUwEWAKBlUi0RqpdHVAJW9H62vWdvpOPi4OKQikZBamJzxGHA+eHHvZX8Efvjy/oszGnjI+vd/v/80G8CL+y57MVtbBlCsqVIvSFE3+9XO6vgZusLltR32EYGYE3Po50/SHJNJr4Er77eRVKWUyHUC8diQLxkOefXuug7He8BDgD29Sv4SmoPrdq92CUdc+Os6HHbA214bn61qoqi6294PeLuqEmfbkqjl/fZZwBXp9BEHUkcUxEnh4dCkrS398AuBppYdY11wYsTvHwAG2lY2Bg2wlRX+IVsQGEzFn+YMS7Wtdvkm7XNMs2lidqhIuzhhl5eUDKrDAnFSTZdj9IqODiHpDvqTQX/Qdq9NExtDRdoHvRXJfYHrohJS1/wPzjZs9l9ISoytBz5ber/B9B49dYec11TDY+n3LgMuJHVhxexx6ONhAamjysUgzgk0tYxpJVXWop7u3/I3I4lis+d8HPjhzpFIBXhJNPvvAd7prI5PVzWxq7LX/jYwuHdSTJGCvVO+Ej3+hC0p2w2MEhTNfl+wOHlm2KNfXd5nizsSyhRNkYum6o76dEhA0YgiY06pJW28Yk/y17Bb6+gvSw4XjaiPlH5zpMdB6iz7AN707fA+BNeRae/aHFx3uD9FAdOQuvvIIu78ibo7XIvfOVAIow0NgEjHnSpwE0BNl+MjO03el+4sm/1RYDDi0ksUnU5nXNkikYP9Zcn5jrjyni+krpfI4ECJ1lCK+kmBsEmkDP+kKOSKqXEVUekfsuEfAonUgK1SsLG3IrnTFVX+5AupawRim+vWoYMrSTzpmylk86fIP10pQUudDJISZSXq1DiivziU8D+UjR2DaAWifBh3NgLb9k6KLfCEFXt5vz0GlHRWxz/mCavDxcPqoESWRF365e6IMkyq0zzJN6zOsCfEKcD/EgjKBj/6FdmTiifm1Dd4IurTmiK37a+Pj+gKrYHrohEbYEiC5RMcRWhn6FKNg7gdeCqvMXWRfah6JFHsxuR51MARD7GT4SPpfGvgYIZ8AZSOek0ADoBmvwDcUadeHnXqn/EPqf8kEDaBiDsS4kLH91O2VcCQclIWB/nGqs/7XerHbqhwd61f8/1vNGdiIytRn133/BVP7/4E59Y/U1wAY9TGHWJTJTXCrtTtZzT7X2H8xKPjmlf2X/CpcNIrpvtf+n2mNrIS9fbBU3wAmlRez8ZOwTO+4tFxTV+0+mpgb+u+y3+eqY2sRi12BWe5Ada2X2j94BZZs/SH93wO5GXAc20rGzMu/Z2VqO1KbCbI3raVjWbkM7aYQASaWj7WGa5/AIQA+dlsEoxmFX5M9rVdFdVcWaWIsjix+dpvvjh/bXvDd6HqGg52skIli6ueWYm6Y2RS3O8c2JGNDYsTk0BTSyXI79qVT3wnqasCeALERaQ0mdVVz4xFHWhqUaCoPJIsejBTGxYnHl/7zRdO2js8/R5YfCYId7Fj4JkltS//y69uuPfZdMjRALRmk2BUSJnZCqzz/vmOwO6hk3aBfBTET8zKcmoxPkjnhvm2KpK36FJxlzj7nx2IVXy9bWWj4QneM+6p3Wp4Rfrhx4BLxjrpxOLE4LKf3l5W7Aj+QRVLl2nS7tGk+qeLpjz+n7+96Z6crbjJWNS7h6enU0OJ0cvqLVFbADCt6fELJMp3Yf4yEMXT/Nt27Qqe/Mm2lVduhCtz2nbGoo4kveuBz5KadD4epjNa5JCb7rmu7K+7PnmaRD2v2NF/naQ0PYNAaC515IYXbv3Wb/LlS8ai9tmD7cMJPwLtlxL191bocWLx9VX/u/a53VcuDie9y4odg58YSVx1ikQF0MMJ7+iaMTKqFZUfwUxOyFjUC6pfPXvNvku5fNrDj//yhvssQU9wbl517bS17Rcs7YnULHKp4cvj+tVzdKkCJCNJ96bTq954bTBW+qsdg6c8kpSOOcBzmLQoIWNR7wrO3AewLxSwitpPQL6x6n/P3dB9xrl7hmfMUUTyAimvmStT10ZiMc35xqLqdWsSumP1xp4lf9z+z58agU+Nfvu6QFPLwRmT+T6KZzykF2hquQm4G6g2s8aLhTH83T1fWvzB4OwLtw7Mnw5yOYjZ6ZfCwCsLq9bFnWr0j+s6zv+vtpWNUTN9PRYZ99Ree7A0lPBT6uoxNUm3xdgJNLWISwN/OadzpL5xY8+SamA5XH0gIeMQiJfmla9/s9LT+dQLe6/4r7aVjYmCmFp8nGQs6rnlG5a/1nke59Y/q8GXDHTJwmgCTS3i/Mn/fcFIwvuZ1zuXFwHLn2r75KTUq7IPxJqZpe+1TCve/srTuz/xp9QMufEj4kPJWNRtQyftBBBIa4ZegRFoalGW1r5wsSLkV9a1NyignPvC3iuqAAR6l0RpneLbsXVO+ca3+iJVT/zxW7fr41nEh5KxqLvC9UEgdseKh8zOdHrCE2hqsc0rX3+h1zH0d+u7lzrBdcarHeeXAthEoiMplaeq3B0bFtWsfcehxJ6b6L9ZxqIusg+VhxNeK542gUBTi2OSt62h3rv72+/2LfBB8fx3+xb6AFxquAN42GcPvnbupKff++UN96398J1fNcnj/JKxqGf4t521KzizyEhnLA5PoKnF7VSjZ51a+cb3tw3MLYeymftCAfe+UACfY7ATeEAR2kuN0/645a7rH9jw4Ts/Z5bLppKxqPcOB3bENKeVESAHBJpafMBZC6pevXX30PQpUDUpprnsb3aeTamrtxu4B1hz4ZTHN/7HTb/e+eE7P26Sx4VFxqIeiFWM8GHKK4ssCDS1lALnzCl/+5s94dq5UFMBqBu6l8hqT3sf8O/AmvkVb73x2C3No64JTJyTOyPJfOqpLVSW0B0FnT2zUAk0tVQB584oef+G4bh/KdR6QYgt/fO1Sd49QZC3g3ixwt312qu33TCqfJ4l4uMhY1HXefcuiCY9Vkx9HASaWuqB5fXeti8kdMf5UOcE2BWcGQ8U7wgF1dIfxzT3M7q0vb7m+18v6Kt144GMRd05MmkPSMex9zyxuHnVteKptk9Mi2qec8td3Z8GeSlU2wE6RiaPTPdvG9Klem9vpPoRXdrWP3/rt60RJIPJWNQjCV8Mk0vMFQI3r7pWrG2/YG5PpOYsj234cod66ceimkcF6I9WDM4s3dzrdQw/tHvopN/rUt34bNMtGeezsDg+Mha1Q42WKkKbEGUoxsLNq65V3+tbcOYHg6csVITWUGS/4pPD8RIFIJz0dk32vbuvpmj/w1v6T71Xomx++nvfs8478kzGoi519k0vcfYXH3vP8c3J3//zcptIfCmc9A0DU922j18ZSXpTs+Glurfa0775pJItz73dvfSXILY/9b2mCX21bjyQsaj7oxW9Uc39jpHOmEmgqcUBzFxc/fKnY5p7wabeRVFgMThnxHEd2G1ftafj1Zqi/W+92tHwb20rG3dbIxKFRzbzqbuAPcA3xtNSrm+s+nxpOOG94Nk9H3MAc+q8u6+Ma65ZvZFqB6nsvAh0JGIHiDjI2alUWCSB29pWNt5upv8WxyYjUaeSjsi1gAQRBQouPUKgqcULzJ5V+u5lXvtQ49vdZ/bpqLNBTk+LFEDz2ELdk3xtcsfg7Ps1aXv35NJ3988u2/TOnSseHEgnVxm9LKngPqfF/yRTUd8K8p/TNTkk8JdF1Wtv+PO3ftxrtIPH4to7v13rsYeufLXjPOdwvGSa39l/jiK0RQPRSvXAPqpIoAi5LaE7NlR52rvnlG2Mv99/6kNd4fr32lY2HvVk16isQRb5I5ue+nnAke71hF2JUenpfKU9NPU2UgIw9Kx//m0PVQ7HS06pdHcsq/fuuWbbwNxYOOmdDNSN2i3qUKK7Tird4u4NV/+lO1L7UpmrZ/slUx/9YOV1f7EuapwgZBNTH+zB5pa/XaYK7aebehdMlqg+VSQ7FlS9ul1K5dt//vaP3xqDTVHh7qw7vfKNz2zpn1+6LxQotynx011qZGko4T9Yp9qpRnAo8R3DCf/LLjX8wVl1L9iH4iWPvtl19sZs8hpbTAwyFvXhCDS1uIFPVLo7/qE3Uj0nvfp4TW3RnsfimnNrX7R6PtB61Yzfvbp1YN7MLf2nTgM5Z1752yv2habaB2Pl5Xy0DEsQ5HvzKtaXxjXn89sG5j1uU+LvXz//3/Z997MvWeO/FofFUFGP5po7/s/cVzsaPg5cB8xMF3uUIKRNiZHUnQcTvntsw0mvY3h/d7jur8Dmc+ufxmmLPv/s7o9vblvZaI37WoyJnIn6AIGmFlHp7vhzT6TmE+n4W5Y6e3dN92975q3us34HvN+2srEnp05YnFDkXNRwMP62hsYs8kJeRA3W0JhF/sibqC0s8kVW1bksLAoRS9QWEw5L1BYTDkvUFhMOS9QWEw5L1BYTDkvUFhMOS9QWEw5L1BYTDkvUFhMOS9QWEw5L1BYTjv8PqQuTpFiCPn8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top-5 predictions:\n", + " 1. popsicle 13.105%\n", + " 2. computer 7.943%\n", + " 3. television 7.032%\n", + " 4. laptop 6.640%\n", + " 5. cell phone 5.520%\n", + "Answer: picture frame\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmuklEQVR4nO2deXhTVf7G35O9W7qkC12gFyiFsu+lgCwiyBB11HGbAURxKogKqKPEdRjcwuioKCBQF2AA/bmiEkURKYvsUva1wC0t3Zd0z35+fyTMVIatzU1Obrif58nT5ubmfN+0b84959xzvodQSiEhEUzIWAuQkBAaydQSQYdkaomgQzK1RNAhmVoi6JBMLRF0SKaWCDpEb2pCCL3KY7lAcZYTQtYJUZaEb1GwFiAAiS1+vwVAzkXHmlueTAhRUkrt/hAmwQbR19SU0tILDwDmlscAaACYCSF/JoT8QghpBjCDEFJHCLmrZTmEkLGEEDshJOHiGISQuQCmANC3uAKM8rzWixDyMyGkmRBS7anRI6+kmRCSSQjZRwixEELyCCETLipzlOd5bIv3cJ5jA1sc604IMRFC6gkh5YSQTwgh7Vq83osQstHzeesJIQcIIaM9rykJIe8SQooJIVZCSCEhxHjtf/nARfSmvkZeB7AYQHcAXwL4BMDUi86ZCmAdpbTsEu9/E8BnAH6G+yqQCGA7ISQUwHoADQAGA7gDwFAAH11OCCEkHMA6AMcBDADwDIA3WvuBCCGJALYAOOyJfROAcADfEkIu/F/XACjxvN4PwFwAFs9rMz167wPQBcC9AE60VkdAQikNmgeAu9wf6T/POQAUwFMXnTcQgANAsud5NNzNlFuuUPZyuE3f8lg2gFoAES2OjfLETLtMOdMAVAMIaXHsL573jLqojNhLfJaBnufzAGy8qOxozzmDPc/rAEy5jI53AWwEQFj/34R+XC819d6WTyilewEcgrtJAbhNVQPgh1aWmwHgIKW0vsWx7QBccF8VLkU3AIcppS3b+rtaGRdw1/IjCCENFx4ACj2vdfb8fAvAB56m1/OEkG4t3r8cQF8AJwkhiwgh+hY1vKgJig9xDTRe4tgHAB70/D4VwHJKqbOV5RK4a8ZLcbnjV3rPBVwtzr2A8qJzZABMcBuz5aML3M0bUErnwv3lWgt3s+ggIWSq57V9cNf+z3nKWgFgQzAYW/QfwAtWAUgmhDwGoD+Aj69yvg2A/KJjRwH0IYREtDg2FO6/67HLlHMMQC9CSEiLY4MvOqfC87PlKE7fi87ZB6AHgAJKaf5Fj/9cOSilpyil71JK9QA+BPDXFq/VU0o/p5Q+AkAP4EYAaZfRLR5Yt3+EfODybeqBlzl/BQArgM3XUPZzcF/euwKIhbvmDAVQDOBrAL0AjIC7s/XlFcoJh9u0q+CuRW+CuylEAYz0nKMEcA7AVwDSAYwDcAC/b1MnASj3nJMJoJOnrGUAIgCEAFgEd/uc85xzCMAHnvc/CeDPcDeh0gAsgLt/EMr6/+i1D1gLYGzqEZ7X77+GsuMA/ASgHr/v1PWCu8PVDHe7fDmAyKuUNQRAnucLlQfgT54yM1ucMxTAfk+5O+CuSX/3WeBuanzhidvs+UK9B0DleawBUOCJU+wxvNbz3my4a/t6uDuUmwEMZf0/FOJBPB/wuoQQci+ApQCSKKVNDHX8Ee7aPp5SWslKR7AQDHcUW41nfJmDu0mR429DE0KmADgDd3OmJ4B3AHwnGVoYrteO4jNwt1GrAbzMIH4CgH/D3VxYBPdQ4iQGOoKS67r5IRGcXK81tUQQI5laIuiQTC0RdEimlgg6JFNLBB2SqSWCDsnUEkGHZGqJoOO6uE3OGUxZcM9Wy+WN+h2M5Uj4mKC/o+g2NN0EQA1QJyBbBODQ8OSfuzTYIs7sr8g8BKB+XOra0CZHeNG28zeV8Ua9g7FsCS+4Hkz9CkCf//0ikqtBm7SqWo2Tyiob7dpzAK1Pjz7Src4Wdby0MeWInDgaBrb7tU9lU8L+07XdjqjklsYRyT9xJY3tDx+p6seHK+vqb+xgshDQugXZq4P7DxyABLWpZ+VMCvvm9L2/ArI+AJwAtQHkNgAnbua+7nu+oQMOVw6wEri0w5N/1p9vSK05U9vVLCeOqO66/X8obUyuqGhObJARZ3R8SElfszWm0eIMlQFUC5CLV8H8DwQuJ4XMLCeOpvjQkrgGmza/3h5ZoFE02tOjjqWXNCbvrmhOPB2prnb2jt3b+Wxtl11FDR35uJAS28CE7eGnzBnH883dy+FejpYJqQl1TQStqTmDifTU7Tt2uKp/Vzmxz3VSpQ0CGWJWzkRCQaKOV/eKOFnTU63TlMX1S9g15FRNd3NBXZpdq6pJzIg5eOOZ2vSiiuZEa6iiITE5vCCruLF9caNdS5UyW5xG0ZTSYNPaKWTqq0ekFP+51JBmAGMkY1+eYDb1kwD+1T9+x6avnnzlRtZ6LgdnMCm76/brOG1+2r6yIbbSphRVSsTZDp0jT2QerBhYUGONlWnkjXdZnKGZHl9TAM/zRv3rjKUHLEE5+tHzxTW3A5FvAPhyX3nWPaz1XAneqLcD+lIApRe9tObCL5zB9CvcS8Y0AEinyONR7tVdEpci6Grq6Useum1T4R/WyojzdLMjvC9v1F8qPYLo8IzijNWqap6XESojxBWXN/cBM2tdgUhQmZozmMYDrk808ubQm1LXDV/48Mo9rDUJzYOLZkzcVDhhBUBW8Ub9A6z1BCJBc0eRM5iGATABsiiLM4yuO3NvUDatPn508WqAvAZgyuB/fDCZtZ5AJGhMHRdSciHTEOBOOjOKnRqf80qUuqqoyRG6YmbO5B6sxQQaQWNqgCa7BwaoA4AdQC5bPb6DN+ptQxI3P9rkCHOtO3P365zB1Jo7S0FPUJiaM5g0Fc1JHQFqAshLuA7GcZdM//BbF1U846LyW/HfRJcSCBJTK2W2WwFoAdk7vFH/erAbugXvqOXNu1Uyywczlj44nLWYQCEoTN0p8uTboYp6C4BNrLX4E96od43pYHqKEEq2FI17jzOYguL/6S2i/yNwBlPUqZqMdqna07t5o761qXhFz+JpH29zuJTZDXZtXwCzWOsJBERvagB3uiCXH6vu+zfWQljhpIqPAfotgfOf05c8dCtrPawRvalDFA3TAHoKF+0WcD3BG/V0VMr6p8OUjfK9ZcM+5AymixO0X1eI2tSPLpvSz+IIHdw/fkcBb9QHz63RNrD8sYUnk8LPPVbZnBAH4AXWelgialNvKLhtLIUMUZrq11hrCQR+mjNnMYCVAH3+zwv+9ifWelghalPbnJp7AOz9aMb719Wox1WYpVWZHfnmbmvGGN8MZy2GBaI19UOLp48BMECjaPyCtZZAgjfqzf3jdxoqmhNVp80Zr7LWwwLRmrraEvcMgQtjOpjWs9YSaCx/bOE7cO/hMrPni2v+wFiO3xGlqTmDieSVZ3ZSyy07Fj284gBrPQHKs2GK+lK5zPnd48smp7IW409EaWoAAwGSZnGGfsBaSKDCG/XNw5I3GuqsUbL1/B3zWevxJ6I0dXdd3tsy4nTAvc+4xGVY9kjOCgrZPLtLfS9nMF03oyGiMzVnMMnP1qYPSIs6VsYb9bWs9YiAVxXEflAjb1r92LIpvViL8QeiMzWA0c2OME2+OWM2ayFigDfq7WNTv33OQRXqX4tH51wPc69FZ2oC5yQAdS4qX8dai1h4f/pHJqXMPqfGEpeJ/+7HHrSIytQzcyZFq+S2+zntqSO8UW9hrUdMNDvC3gSQKyPOhTOWPngDaz2+RFSm3lk86narM4Skak9/xlqL2OCNele/+B0zVTJryP6KQZ8F89xrUX2w8ubEWwGUbi4a/x5rLWLk6ydfOdQp8uTLxQ2p7QA8wVqPrxCNqacveag9QG8B8On1uBhAKI5W9/07gLUAfe2ut58dzVqPLxCNqRvsEfMAohzd/vudrLWIGc8U3WmhikYUN3Qw3fX2sxrWmoRGNKbeVTIyLVTRUK5VmaX2tJfwRn35oHbb5hc3dgjZWzb8edZ6hEYUacc4gykJQBGAebxRP5exnKCBM5g+BnC/DM5hZ4y3Bc0VUBQ1dUbM/rkAiJw41lztXIlWMVslt1RHa6o2zcyZpGMtRihEYWqzVXdfcnhB0+nX/3iStZZggjfqa0ckb3ityhKv+bngln+y1iMUAW9qzmDqWtLYPsLuUr7FWksw8sGMJW8D9J0mR8RUzmAay1qPEAS8qQH8BQAtb0pazFpI8EKeI3CdDFU0fPX4svs51mq8JaBNPStnIolSVz0Zpa46yBv1Jaz1BCu8Ud98U+p386xOTfjesqErWevxloA29dGqPmPNVl14r9jffmOtJdjJeWTZ6jBl/Rslje1v4Aymu1nr8YaANvUpc48JAKyHq/o9xVrL9UCdLfp5AHtkxLns0WVT+rDW01YCdpx6ysLHFZuLbi4CyK+8UR+UqzYCcXvpcfPnDzxbm74nJYIvOlub3kGMSYICtqZWyBxPASShp27fNtZafAFnMOkBuh2grwE012Nw5vw0Z87e9OjDS87WpqcAeIi1nrYQsKbeV545XCWz2jtFnfiItRah8Uz7fMf9jAAgKgArBv7jozHsVP2XI1X9HwXwC0DfvuWNl0XXDAlIU3MGU0iNJW6kzaVe9W72qqBbh9g7du9KAGkAsbXYziO2sjnh5xGvvlfKGUwjWerjjXoXgAdVMpu63q7dMitnoqgSTgakqTtFHp8KIALAatZahGbYK4tGHa7qO7FL1FEewCjPdh4jw5W17Yck5n5T2pikAZDLGdZtmfzerNmzciYyWVPIG/XnBidu/aCgLk377en7ZrPQ0FYCsqM4bv784pLGlPiksEL1j3MMQTN3mjOYtAD2yYkjdELHL4e+9/BK/hLnhAD4q1Jme8nuUsVGqMwn621RTwCogZ87lZ5Ful/Cvb3uAN6oP+yPuN4ScKbmDKZogJZ1iDjz/ZbnZ97OWo9Q5OYSMnvTinVmq248gJG8UX/FDvDMnEkRlc0JC7cXjx4JkFSAUgAUIFb4caMmzmCKkxP7CV1IhTwrcXPSguxVAb+DcCA2P+4EiPJcfedXWAsRkiUH/vaW2aqbkBZ1bM3VDA0A72avql8z819TANIFoF8CIACRAVDCj3tE8kZ9xYiUDYvLm5K0m4vGiSLTU8CZOjak7GmFzFYAIGjuInIGU5edJSP/qtOU5/fQ5U1tzXt5o94OkH8Rd4cScG8WmSu4yCvw8aOLXiBwfmy26h4JlKHHKxFQpv7zgr91r2qO69ovftcZMQ76X4pZOZPCCFyfAsReZYm/cUH2antry+CN+h0UshEADgEgqdp84YVeBQr5bIAWhinrv52ZMynO7wJaQUCZekfJ6PEUMticagNrLUJRWJ+6iULWP0JlnsEb9YVtLcfThr5RI2+y2ZzqX2blTAoTUOa1xK8blbJ+fpM9LPZQ5YBP/Bm7tQSUqQFMBLD3m6f+sZu1ECHgDKZx+8qHDuquy9t3aN7ET70tjzfqK7OSct8qaWyv+e7MPc8JobE1LH9s4fu6kIqVZ2vTx3AG083+jn+tBIyppy95aDyA/olhhT+x1iIE6c99lQBgJYAjR6v6CbYb7cePLnoRwHIXlRs4gylTqHKvlcrmhGkAjsrgXBGoc68DxtR55YNnAy4oZPbjrLV4y6ycifLkCP6ADM4YAPfxRn2zwCFmK4i9IkZT8fPMnEnRApd9RXij3pIcXjAdhCacMmf87M/Y10pAmJozmLLKmlLGAYQW1ndaKoYe9pXYUHDbM2druyZkJeV+4YsbFrxRXzuy/fp/VVviwredv+ltocu/Gr++MGNrRszBL49X9+7MGUz3+Dv+1QgIUwO4A+5xWAI/j8MKDWcwDWhyhP8DoGtjQ8om+irOhzOWvCEnjverLXH3s5grcqSq/30AdgN4f8jLS9v7O/6VCAhTd4s+wLl/o064J/fkslPTdh7PmZwYoTL/TOAqB8hDC7JX+3RY0kkVTwP0jEbR+OXjOZMTfRnrYnij3gHgfjmxa8OU9b+xmqNyKQLC1PX2SJWc2J0y4poLP94CFpo9JcP/3WCLiBrd4Xsjb9RX+zoeb9Q33pC84WWrI0R3tLLv576Od4n4JwYnbv3qtDkjbt2Zu6f5O/7lCIi5H5zBtBtAE2/Uj2Ktpa1wBtNEAKu0qpq3Ds6b5NflZ5nzlq0oa0q+H8AE3qj/wZ+xPXPDfwSQBaAPb9Sf9mf8S8G8ph43f34YQPsBEGXtDADTl0wdReBcCuDXOlv0HH/HL2tKngbgCIHr4xlLH+joz9ieuddTCZyudmFFvwbC3Gvmpk7Vnp4MEMWQxNw61lraAmcwKfdXZH6pUVhCO0cef8jT1vQrvFFviQ8peZgQV8LZ2nS/D7PxRn3hDSk/ryptTEnYWTKS+UQ05qY+XNm/IwDEaCq/Za2ljcwrbUyJyYg58MLGZ586wUrE7r//dXsP3f5vjlX36cRie7loddWjCmL/pqwpeTZnMPX2d/yWMDd1SWP7zgDOLp728RHWWlrLhH++OgmgcwDkfPXkq6+x1nOocuDdcM9uXNLjxU/a+TP2guzV1EGV2QCtCVPWfzczZ1KEP+O3hLmpZcQ5DKCiSyP74KIZnYsaUldEqavNAGYzlgPgwjRVTJERZ3RSeKHfh9l4o75icLutbzbaIzrkmzP+z5+xW8LU1I8sfXCQi8rbDUnczPzL1Ro4g4lsKpzwboNN68pst/Vh3qhvYq3pArxRf2Rwu60/nKrpkfT92bum+Dv+Z7Pnv5kQev6Ho1V9buYMpqH+jg8wNvWukhE9PL8y+1a3BYXM9gRAJrggf2LpIzlfsNZzMTUW3e0Attldqnc4g8nvd/vKmpLvA8g5AteqmTmTE/wdn6mpqy3xvQBYdpaMMrHUca1wBlPWgLkffeJyyf4VoazdCmARa02XwrNY+QEClyopvGALg2ZIXWxI6XQAHfnazhv9GRtgbOoQRcNYOXHs5416G0sd14JnktXGKkv8fS7IEa6qXRjIq3N4o/700KRNa4sbUrm9ZUNf8Hf8vX9/6MfuugObDlYO6sEZTH/wZ2xmpp6+5KFwu0vVq3fcHgUrDa1kFAC1J6OSs6SxQ2fGeq5KbEjZRKXMtvl8AzeHM5j8rvdIVb8JAI4A+LDr81/E+CsuM1PnFo7v7XCp0OwI+zcrDa0k173mlQKADSKYdLUgezW1u1STATjClXVr/X23z7PV9mQCV0LHyFN+W0jNzNQWZ+ggADhe3ftLVhpaA2/U74hSVbtiNBX1ENGkK96oL+wTt3tRg13bs7C+o98TqvNGfd6gdts2Hq/uzaU//6XPpuK2hJmp40JK75ATexlv1J9npaE1cAZTrNmmU4Qomj8Ui6EvwGnzX4gLKdmzr3zIHZzB1N3f8cuakiYA2GVzat7zbB/oU5iZ2uFSDOsSfazV6QIYkgUA5xtSv2ItpLUsyF5NK5oTbwVIPYHr37NyJob4M/7m52Y5ANwP0BB/jMYwMTVnMCXWWGMVZkuMWNrT4LSnJgEuJ4C9rLW0Bd6oL4vRVDxFIetf3Nh+HYP4J7PcozGd88ozX/JlLFY1dSYAlDalfMcofquhIDenhJ+z+GARrd/YN/eBlWlRR4/tKR0+kjOY+vs7vsOpmqiSWbacq+/8DGcwpV3x3JciHa6/R7ocL0W2etYjE1N3jDwxmbhrvTwW8VsLZzApC+o6q+tskaK683kp8s3dhwGkDMBKzmDS+DP250+87rK5NBMB2EIV9V9fbjTG8VKkQ04gJwCRE8hba2wmpna6FKOT3bWehUX8NtAXIJo6W/R61kK8hTfqawD8FUCPvnG7WMy9LuoVu/etJkdEz8L6jpesJGTE7UtCfv/8WvG7qTmDSXmuvpOm2qITzT7jPWN/ywaACJV5F2stQsAb9T/0it17fH/F4GFpz64d5u/4nSJPvtIurGjXvvIht3AG0/9sv+GicAGe5MUtnl8rLGrqXgAJaXJE/MIgdpuwOEJHR6srnYfmTTzHWotQyIlzGADeQZXLOYPJr3n5FmSvpqWNKbcApApwrbp47rViXq3C6YSTUlAnhVMxr7ZVd539buo+cbuzASA+tFgUqXo5g4nkmzNC62yRX7PWIiRrn5pXDZAHAKR1ijzxjb/j80Z9ZaSq5lFA1vN8fer/pJpLc6zZ3sm2Jre1hgYYmLrRHj5cqzK7shJz/Z+Ptm20B5DkpMrNrIUIDW/Ub+4du2f3mdquY7q/8Okn/s6MdWDepK8yYg7s/608K5MzmH6Xb1BB7EoFsbfptr7fTZ1v7q6pt2m/83WiF6HITNz8CAB0ijxxiLUWX8DXpb0IUNrkiLgPoNvGz399811vP3uDZ78Xn3Osus8IgPAAVnAGU/iF48kRBRkpEXyPy7/z8vjV1JzBFAsgjUK23Z9xvaG6OTZTJbPSXrG/iW7J2bVQZ4seAJALHTHZ8ZreI/aWDd8CgO/90upPHlj0qHHSe7PjfRWfN+rrAUwBaMceLTaCrWhqV1XckGJty9XDr8lsJr33xLPbzt/0Wnr04Tt/mjNHFG1UzmDaC9A63njLjay1+IIL88ThzmFoT9WemlVY31HmooqbFcQ+wUGVavdej2R7Uti5vF5xv+2sbo777PMnXm/ViMTVuPOtF3btK88aHKpo+GOTI7wCoNs8g3oWtHICmV/nMlc0tRskgxNpUce3+jNuW/GMCvQFiJG1Fl/BG/U7OINpDDzb2W1+bvYF8yydlTMxpNoSO3Hr+XGdAIwvbuwwq7ixwyyAvsMZTD92izl4NC3q2NcLH1550lsdkeqaGwG6s8kR9lmUurLZbI290Iq4kDD0mk3t15qaM5g2AojijfoBfgvqBVMXzXj8l0L9u911eQ9///QLOaz1sGbG0gd7FtVz9x6sHNgZwDgAOsAFQLYbwPrB7bYciVDVrv1wxpJWr2TytOHnA3jafYRST7PIhkCtqTmDSQ5gMNzZ9UXBufpOfQGA0+YHZHJxf7N42seHARwG3P/PcalrJ5+o6Tm8oC6tO0Bf2F06QqaSW6ycwfQNgPVjU7/dm/PI0qt2sLPfn3YDp834nK/r0nKRLoX7GzOrtVN9/Wbqm7mvb/uRvyO8p25fuXsD1cAn35yRAODY4mnLz7LWEmjwRr0T0C8HsBwAxs7/Z0JSWOGcQ5UD0qqdmhsA3LOh4Db0fHFNUYM9co1abvlpPPf1zpabi3IGkxLAU8CtczXyZlVP3b7FR6v7lLqobJ5nz0gXgNjWavObqc+Y0wcCQHJEwRZ/xfSGu99+VgYMGwoQ0c2fZsGGOc+UAXgScDcleuj2jYhQ1T2TV54ZA+AJq1PzzHr+dvR6afXWelvUpx0jT6Sr5R2mWp0hEQD5Ojmi4Jl1T7+Y7+m4PgtPxxVtWDbnN1OfMvdIBFD5I39Hrr9ieoMupHw8QKL7xO2uEcuVJVBwr7LXbwawGQA4gymiV+xvUwhc0w5VDugAYNHZ2q7wrPm0AeSNjYa/5Xve+7uOa1tWGflx9INmAWRnIKcVaMmx6t79ACA+tPRH1lrEjnssWr8QwEJPh/BNgM72NDFkuGh0w2PkNi+Z88vNF/fWZKRbr9jfxDLVFAV1aZ0AVG8ouM3vyViCGU+l9gVArAAc8MF2KH4x9cHKAUMAIFJdvckf8YSAwDUcwHaxXFnEhKcmHgPgJfhgZb5fmh8FdWndANBt58eKYk3iY8vuT6O4N71f/I6jUnvaN3jbxLgSfqmpFcR+A4DDnvv8Ac/e0mEDAUAtt4o1Efx1jc9NPStnolwpt47uocsTzWW8tCmlFwDnzpJRol+TeD3ic1P/WjymR7MjnMiI06+7RnmDRt50E+DaH0h5pyWuHZ+burI5YQAAHKocuMLXsYRgVs7EEBeVDe4bt0fOWotE2/C5qbWqmvEANQNgtslPa/ilcEIfm0sDh0spNT1Eis9NHapovK1T5AmHZ7+9gKfeFjUYAA5X9V/NWotE2/CpqTmDKaK0KVntonK/p7lqK9HqyttkxFnMG/WFrLVItA1f19SDAUL4ui6f+jiOYFCQUenRh/2+waeEcPjU1Mnh/B2eX3f7Mo5QpD33dXuzVSdvtEeIJtGOxP/iU1OHKJruig8ttnlSXQU8DpcqCwAK6zuJIhG8xKXxmak5g4mcNndTOlyK/0lUEqi0jzjzFwKXFcAB1lok2o4va+rOFLKYaku8aG41u6jspg7aM82enWMlRIrPTN1dt/8vABCprhZFknLOYAo935CqrrVGS+1pkeMzUyuI/S6NvAmjUtYf9lUMgRkEEIXZqhPN7XyJS+MzUx+sHGinINsXZK8WxaU8I+bAXwFALbcEZSam6wmfmNqdBIb0sTpDRLMowOIMGRkXUmI78eqfKllrkfAOn5h6SGLu3QDkSWHnjviifKHhDCZytjY9zGyNkeZ7BAE+MbXVqb4VAPon7BBFDmoA6QBi7C510KXrvR7xianzyrNkBK7TQuRY8wcDE7Y9AgCp2vz9jKVICIDgpvYsgR8ipnS9NVZdZoiiwdU3bvd+1lokvEdwU49LXTsEQLtUbb5o9kc5bc7QNjvC1i/IXu1krUXCewQ3dUVzu3EAkBFzUCydxGgA3QEimiuLxJUR3NR55UOiAdp8rLr350KX7QtGpqyfBgDddXmnWWuREAZfdBSzALLHs8l6wFNYz/UlcCIt6oRoxtQlroygpp6ZMylSRhyDOkaeqBCyXF9yprZbPIV837vZ/y5jrUVCGAQ19Zna9NEuqiDtwwuOClmurxj52gIFQDMBSO3pIEJQUx+uHNAJALacH7dYyHJ9RbeYQ/cAJLRv3C7RXFkkro7QbeohAHjeqC8VuFyfcLy6V08ASAwvktL1BhGCJoiMVFXfHq2pOiZkmb6koC6NA3D+h7N/EsUaSolrQ7CaOuvlJR1rbTHKGE1lnlBl+hoC1zBI6XqDDsFMXdLYfgAA7CvPEkV7+tGlDwygkHUYkLC91dujSQQ2gplaIbMNB2AFsF+oMn3Jb+VZfQFAI28SzRpKiWtDMFMnhRVOTQovaOCNelHUfKWNKT0AWH4tvmktay0SwiKIqTmDSVVUz4WEKhr3CFGeP1DJLGMAukcsX0KJa0eomrqPC3JFvrn7hwKV51Nm5kyKdlJF7/7xO/26N7uEfxDE1DGainGeX0WxaHVL0bj+TqqAw6X4hLUWCeERxNQJocXZkapqJ2/UFwlRnq8xW3UDAeBg5SDJ1EGIIKbON3dTaRTNokhaAwCRqupbZMRxhjfqpZXjQYjXpuYMpgS7S51Y1pQsivnTs3ImEidVDMuIOSiKJPASrcdrU3eKPHErACiIXRTt6XVn7k5rsGtJoz1iFWstEr7Ba1NHa6qmyokdEzp9IYrppk6qHAoAfF2XL1hrkfANXpv6UMUAolE0n3o3e5UoclAnhZ27T0acDQBEM/FKonV4ZWrOYFLYXOrejXataJIqOql8VEftqWaxbKwk0Xq8MvXAhG1jAISGK2tFMTOPM5iiypqS1GZrjCj2SJdoG16ZWi23TgGAESkb8oWR43OGAIRUWeK/Zy1Ewnd4ZeodJaOccuKoVspsvwolyJekRx+eClAKkWysJNE2vDK1i8oznVSxdUH2alFMsrc4QkYmhRVaeKO+nrUWCd/RZlPPWPpAZwBdYkPKjguox2dwBpPiXH2n0MrmeGl8Oshps6kb7Np7AKBv3K5i4eT4lJ4ACbe5NLmshUj4ljabekvRzaEAddbZolYKKchX9IvfMQMAEsMKRTNHRaJteNOmvhkgZbtLR2QIpsaHmK0xg7Uqs3Nwu62nWGuR8C1tMjVnMGUBdBBAEwFsdD8PbM7WdtXW2SLXiqVTK9F22lpTj3L/IASA8r/PAxPOYEoE0FFK13t90FZT5wIEACgAu/t54DI8ecNjANBdt18U23VIeEebTM0b9TsANMKdWHGM53nAcr6hQy8FsdMOEWdyWWuR8D1t7igqZTYlpz1VE+iGBoCztV07Oqjy3Hr+zl6stUj4njabWk4cSq3KHC+kGF+Q8cL/jQVoTwAdIJJOrYR3tNnUFmdo/cHKQQHf8YpU18z3tP9F0amV8J6gznvBGUxEJYtLcPdn4QBIwHdqJbynzaZWyqyalIiCLoBeSD1Cc4PNpUkC8BqABgC5YugDSHhHm00tJ05FuLIuVkgxQqPTlL1SZYmvAcirvFHfxFqPhH/wpk3dcKhyYMDWetnvT+tTY429oV/8rlOSoa8vgrZNvaHg1jsB0Gh11ROstUj4Fy+G9GwhkarqPwTiEBlnMKkAMg0gpo8eXRzwIzQSwtLmCU1OqlTW2qLTEYBjv0OTNr4GIEGrqslhrUXC/3gzoYkG6oSmUzU97tVpyuyj2/9gYq1Fwv+0tU2dCxAbALV7ISvJFU6Sd3AGU3+gXYpKZn16QfZqJ2s9Ev7HmwlNo0MUjY1R6kr6x85rAmZ1tpzYZwJosrnUH7DWIsGGNncUeaN+R9+43Tlma5xqQ8FtAXEH5rFl96fJCJ3CaU/u5o16M2s9EmzwMu/H6GcAnG9yhM8WRo53bD0/dpLdpUK3mMPvsdYiwQ6vTM0b9XaAvgNg9JSFj98ljKS2wRlM8lprzP0ANi+Z/uFXLLVIsMXrrKcTOn6xRiNvQkljilEIQW2lb9yuGQA6AljIUocEe7w29eJpy4uj1NWrTtb04DiDiRNAU5uos0W9GKmqdg1L2vgdKw0SgYEge76UNqU8BxAKYJYQ5bUWzmC650xt1ziV3Lpu9cy3rCw0SAQOhFJhMgb0n7t8fb1NO3Y8t7bzew+v5AUp9ApwBhMBEJ4czv/lfEPqIoDIATRDBGsmJXyLYBOaBrXb9uGP/B0355VnPgEvauyH38/WAcj4qeB2F4CE7rq8EWq5tXte+ZCzABJ0mrIBTqqIA3QUQMj5Bq7l2y/c3ZRMfR0jWE0NAJxh3U8A6QdgAYCNF2rMR5Y+GLXp3IRoizM0PiPmwABdSEXW9uLRp11UHhcfWjxQI7d0O1ffsQIgCQDCL106rQRIqU5TJo8LLVUdr+7zDYDSxLBzXUobUx6gIMSzskWqqa9zBDa1aRaAdzzLp1wAKZITe5yTKkMu85bqUEVDc3xoSWhRPbfRQZVF7SPOKDhtfsiukpFf21zq4oyYA7XtI84WL3skx3KFuFlw19DSyhYJwedTh7oNTQBQGYDaKHXNts5Rx2NP1vQwma2606na/MaeuryGsqbEw1888fpljfpfrn6z0mNkycwSAIQ3dS5AmgEoPU2Bab/NfVAym4RfEbT5AUhNAQn2CG5qCQnWCHLzRUIikJBMLRF0SKaWCDokU0sEHZKpJYIOydQSQYdkaomgQzK1RNAhmVoi6JBMLRF0SKaWCDokU0sEHf8Php9hTgnND9AAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top-5 predictions:\n", + " 1. garden hose 15.217%\n", + " 2. trumpet 10.083%\n", + " 3. rifle 8.203%\n", + " 4. spoon 5.367%\n", + " 5. moustache 4.533%\n", + "Answer: boomerang\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAi70lEQVR4nO2dd3xb1dnHf0dbsmR5xtuR7exNJg6J44QwgsIKtCmvU1KGgZASE0pBQFNoKERtoZAEaBMDBUKghZaXJSB7koRMMkjiLMt727Is2dY87x+SeY2bKV/pStfn+/noI+nqnuc81/r56Lnnnvs8hFIKBkNIiPh2gMHgGiZqhuBgomYIDiZqhuBgomYIDiZqhuBgomYIjogXNSGEXuLxDkf9vEMI+ZILW4zgIuHbAQ5I6fZ6NoDiHts6uu9MCJFSSl2hcIzBDxE/UlNKa7seACzdtwFQALAQQu4ihGwmhHQAeJgQYiWE3NndDiHkOkKIixCS1LMPQshzAOYD0Hf7Bcj3fzaSELKRENJBCGn2j+jai/lMCJlECDlICOkkhBwihNzUw2a+/31CtzY6/7bx3bYNI4SYCCFthJB6QsiHhJDkbp+PJIRs8h9vGyHkMCFkuv8zKSFkBSGkmhDiIIRUEEKMl/+XD18iXtSXyTIAbwAYBuA/AD4EcG+Pfe4F8CWltO487V8C8BGAjfD9CqQA2EUIUQH4BoANwEQAtwOYDODtCzlCCFED+BLASQDjADwB4C9XekCEkBQA2wEc8/c9E4AawOeEkK7v9QMANf7PrwLwHIBO/2eL/P7+AsBAAHMBlFypH2EJpVQwDwB3+g7px/c6ABTAb3rsNx6AG0Ca/30sfGHK7IvYfgc+0XffVgigFYCm27Z8f58DLmDnQQDNAJTdtv2Pv01+DxsJ5zmW8f73SwFs6mE71r/PRP97K4D5F/BjBYBNAAjf3xvXj74yUu/v/oZSuh/AUfhCCsAnqhYAX1+h3aEAjlBK27pt2wXAC9+vwvkYAuAYpbR7rP/dFfYL+Eb5PEKIresBoML/WY7/+a8A3vSHXs8QQoZ0a/8OgDEAThFCXieE6LuN8BGNIA7iMrCfZ9ubAO7xv74XwDuUUs8V2iXwjYzn40LbL9amC2+3fbuQ9thHBMAEnzC7PwbCF96AUvocfP9cn8IXFh0hhNzr/+wgfKP/035b7wLYIARhR/wB9IL3AaQRQn4NYCyAf1xifycAcY9txwGMJoRoum2bDN/f9cQF7JwAMJIQouy2bWKPfRr8z91nccb02OcggOEAyiilZ3o8fvzloJSeppSuoJTqAbwF4P5un7VRSj+mlC4AoAcwA8CAC/gdOfAd/3D5wIVj6vEX2P9dAA4A2y7D9tPw/bwPBpAA38ipAlAN4H8BjASQB9/J1n8uYkcNn2jfh28UnQlfKEQBTPPvIwVQDuATAIMAXA/gMH4aU6cCqPfvMwlAtt/WagAaAEoAr8MXn+v8+xwF8Ka//WMA7oIvhBoAYDl85wcqvr/HXuuAbwd4FnWe//O7L8N2IoD1ANrw05O6kfCdcHXAF5e/A0B7CVtXAzjk/4c6BOAOv81J3faZDOB7v93d8I2kPzkW+EKNf/v77fD/Q60EIPM/PgBQ5u+n2i/4aH/bQvhG+zb4Tii3AZjM93fIxYP4D7BPQgiZC2AVgFRKaTuPftwK32jfj1LayJcfQkEIVxSvGP/8sg6+kKI41IImhMwHcA6+cGYEgFcBfMEEzQ199UTxCfhi1GYAz/PQfxKANfCFC6/DN5U4jwc/BEmfDj8YwqSvjtQMAcNEzRAcTNQMwcFEzRAcTNQMwcFEzRAcTNQMwcFEzRAcffIyudDRGUy58K3O22o26nfz7E7IYSO1wJi57C+LCbw7Afo8gE1+gfcp2EgtEHQG00gAvwOG/LzbWKVQS1sfhG/pap+Brf2IcOatfHROrT1t+RnLsHQAtihp60a7K3oWQKQAFQEE/VTVx+vbUx8wG/Xf8u1vKGCijlCGPPPxlE6P6ikANyklNpqkqn3PbB3wmNmob+6KqeMVdccGxJx8eG/t1IkUoji5uOO7qWkbP4qStr2yvHCtYL94JuoIY+DTn0xPU5d/bLYOjAfQBOCvuSlb3vqw6KXz5SsBAOgMpigAhSqJ7YV2t1olIu7vvFTyBwDfmI16wQmAiToCKCouIOVt2fceqr96PoCpCnG7fVTi/vV7a/PuNhv1tsu1s6h4nvZk88hnTrWMmAsgM15RVzcs/siqHVXX/cFs1HsvaSBCYKIOY3QGEwFwU6y88fUWR0J/EfHUeqn4RQBvmo36jku1v4hdmUZmKZSJHK80dSZJARwl8L5wS84/P1leuDbi8wwKUtSRPk9bVFwgbnXGvLCrasbNTq9imIh4KnJTtmyPVzYsWFH4ftulLVx2P/J15tvu6vSongAwNFFZ44yS2paYrQP/ajbq3Vz1E2oEI2qdwSTRyCypqVHlC0paRv4GIGL47qK+NlKErTOYxAB+JoJniRfiYdGyFovVGbsYwFqzUR+0EVRnMIkmJu9YYrbm/Ka+PVUDoDRNXVY8LmnXa1z+E4WKiBC1/8tOBpCRl75uTpUtU37WMtQN0Ix0tfnGxo4kb6dHpcZ/JZuhSFJVH5uUsj1vReH7LTy4flnoDCbJ1SlbXj7RPPruVkdcDIDjg2OPvjck7uirywvXOkLoBwEwG6BLADJBI7M42pwxv0Uvw51Qw4uo3b/XukUEIi+F9zcZs5XVtsycfXVTtAAyxid9O6elMz76bOsQO4CMaFnLuDanVkohIj3MdACoyNSc0wL0bHlbzmYAlcmqioLa9oyp/5/Zi0BCXM1uKv0DgNVmo74TYUJR8byoz87OvQsQPQUgOyWqorPDrXrA4ohfy+eJW1FxAbG5op/8rmZqgc2lHQHQugnJO3elRFUtWFG45oKzLOFCyEXt/r3WLSb/P6J6PKAD3B/8RLAS4vK6qfQsgIqcmBNxcrGj8njTGBOAiqlp60mU1HbsG/OcsvNNR01aunpjXXvatV3m4xQNnzV3JsQBJF8u7rCMS9q94UTTqLsP/WE+b+LWGUyKdHXp0zZX9NMWR7wYwH6ZuPPFWbpPPg23+WOdwTRNK2t+tdUZN0ZMXFYPlf4ZwGtmo76Vb98uRMhF7X1W6yUAIQSgFKAA/XnMw2/vr5vyKYDKSSnbmpJVVZWBfrnZhs9WeSF5AKBugLjgj6l1BlN+hqb03xVtWfEAqgC8EK+of/vAc/eE7Od9UfG8+P211zxebc+cDyAlVV3WpIs++8dd1TOWh/t88T2vL/zVlopZdwJELyGujjH9vttXZs25Y9+z94ddrhL+R2oKj2RpK2drUHQG04cApsGXfusnsx9FxQVkR9XMm5o7+z0F4BqtvNmVoSl9/VjjuCfNRr2TKx/O45MGwMMqie35drdaCtAtAHne719Yi7knOoNpbLa25ONzrYOz4Us2/8aAmBMrNxoer+Tbty54j6m5FDQAjFjyYTUh3jNHlxbkXWgfncFERifuvbepI/GVSluWBkCZRmZ5eUbGV28uL1zL2QnRI6t/2b/KlrnqYH3uRIDERsta9l2dsu0fqxcU/42rPvhizLPvjbE44p8A6FypyEn6R5/beMYy9B6zUV/Ft28RMftxuTz09/vU68tubRvbb8/Ofy9+ceql9vef7d8A4A8AJsYpGlxtzuiFLq/8nd5MoekMpgQAj4qIe7GXSlSxioY9LZ2JRWajfm+gNsOVn7/6ZK7dpX7vh6arsgDiUYjbP5iR+dVbX5Xe6QFP1woEJWqdwTQGwKEEZe19+5+974J1V87TjkzP+GrJofpJhRZHfDqAs6MS9v0rS3t66ZVMqY159t2UbO3pTw83TBjjoRIpQP8zI+OrD99e+MYnARxORKEzmLIAPCmCpxCgIi/EHn/OeCdCfK1AaKK+G76c08PMRv2Fkp5frD0BMFsqchhdXvkwtdTaZHNFLwbwgdmov2CVgZnGv+ScsQx7BMADBF7lwNgTJadahs8xG/XHAz6YCGXhql+N31l17QetzriBvi3UA5AlZqN+Wah8EJSor1328uelrQNneSFW9uYyb1FxAbE6Y17cVnn9bC+VjJCKnGW5qVu+iJU3PdZ9bYTOYOqfpT31ToU1K99NJW6ArNHILH8+urTgJDdHFJn4lylsBqgCAHK0JxdveurxV0PVv6BEnf/iqzVOr0y763cPq7iwpzOYRABui5U3Frc4EuIIvCUUorVaeVP/dpc6w+WVzwAoRiXsPx0tb/3l+4+8coCLfoWAzmDKjZU3Fra7lQVOj7KZQpRnNupPh6JvQYlaZzDVSIhr05llt3GaFreouEB8vGn0r09bhhcByPJtpQDIxwAeMxv1YTOdFW7oDKbhALYCtDMvbcOc9x5Zvi/YfQrmxludwZQIINlNpQe5tr28cK1ng+GJ5QDeBGjX5WsPgENM0BfHbNT/AGCmTOxIONp01e47XnlmRLD7FIyoJ6dungMAA2JOBHOedAtAHADcAHEC2BrEvgSD2ag/PD3j6/tsTq3zQN3kz3QGU1ow+xOMqNtdUbkAMCTu6LFg9eGflroWwO8RQUtaw4FVD735gcsryweQKCbu7QtXzx8drL4EE1PrDKa3ADrbbJydxLcvjAsz6OlPpgJ0a7Tc4rA6YnSnXryjnus+BDNSAxgFkCN8O8G4OKdenLMjL33Do00d/YjTq9ioM5jiue5DEKIuKi6QiolrbP/oM+cr18wIM958+O8rKUSzAQyMklr3PbL6bh2X9gUh6ipb5jgPlYrS1WW1fPvCuDzMRv2mLG3J/Q63Mmt3Tf5uncGk5cq2IES9v25KOgB8W33tar59YVw+W556bO3YpN2/bezolwDga/8S3V4jCFEDGAXAC6DPrbWIdD569E8vAWQuQCcmqap+WFQ8L7G3NgUh6ixtyTytvLk1nO4/ZFw+ZqP+k4nJO5bVtydnbK24cYPOYFL2xp4gRN3YnhyXoKjnfGqIETo+evRPS9LUFYutzthRALboDKYlgaYhjnhR6wwmTZtLqz3bOmQN374wesfO3y18FcAyAJMAuhQB5teOeFEDGO5/PsqrFwyusPkXiwGAFL67Z66IiBf15NTNDwHAxOTt5Xz7wuCErQDpWgvvQgDrayJe1OXWrASpyOFOiao8zLcvjN7jX0/zpv/tjYGsr4l4UVfasjQur3xvuCWBYQTO4NijUgDIS1v/QyDtI1rURcUFBKCjALA1HwJCI2tVA4BKalMH0j6iRe32SicAJGZ80resIJOA2F83ZScAfGOeE1AOlogW9e6aaXoAaOpIrOHbFwandN3cLA2kccSKWmcw5TZ39nsaAEqtgx7vi/UChcqIhANZADAlbWNyIO0jVtQAzQdoV9gR0HwmIzxRS9vkACATd/atmHpQ7A9i3wQ9pQhwPpMRnuypyf8OADaXz24IpH3Eirrcmh0PeL0qif1lsPsFhUavYuqInDXwpQdT3Q7gm+N/nPtbvv1hcMvYfrszD9bnIjd1czagv+KLahE5UuembJkLoL9M1Pkx374wuEcpsYsBQELcUYG0j0hR293qx6UiB27QfbqBb18Y3PNt9czvAWBH1fUBreeJuPDDV6lrfJpG1rpx5QNreE/wzQgKfW6eehpAktucMav4doQRHCYmb08BgAnJO4YG0j7iRD0w5odlYuJ2ADDx7QsjOCgkHRQAJMQdUPbaiBK1zmCSVbRlXTU47lh1JBWrZFwZ2ytvKAGA3TXTA0r9G1GiBnBdp0clPWsZ/CjfjjCCSl+KqekvALQ4PMpv+PaEETympG2MBYDxSd+OCaR9xIh6UfG8eLm4syBTc/b7YNY8ZPCPVOR0AQAFkQfSPmJEvb/2mtsdHiXJiSn5nG9fGMFlS8VNVQBwoG5yQLVzIkbU1fbMGwHUbqm4aSXfvjCCjvBj6vvfeCgZoLMBfHSx0m8MYZCXtl4BAGMSv5sQSPuIELXTK3sOIPJrUjd9x7cvjOAjEnk6AcBDxeJL7Xve9ty6Exz21kwdpJTYWhKUdR/y7Qsj+GytmGUFgKON46+4wCsQAWs/fJnmVVMBvMzSIPQZhB1TD407/AQAiYh4/sm3L4yQ4QGAEfEHJwXSOOxF3e6OKuynrHHenP0vloGpj2A26qmIuKmbBhZIhLWodQZTapk1J0Yscr/FQo++hZdKOk42jxLkPPXPAEJq7BnL+XaEEXJcEGJMnaiseVIlsZ01G/UlfPvCCC1KiU01JO6IsGLqG/+8bERDR0rKqMT9TNB9EALqdngU7kvv+d+E7ZTeyeZRswGg3Jr9KM+uMHig3a1pKG3VnAmkbdiO1AC9C8CuXUsWBLRQnBHxCCumXrDqnpsBMion5gRLUNNHiVM0JGVrT44PpG1Yivpw/cRbCLwYGnf0Xb59YfADpaTT4VEGtG4+7EStM5hItT1zGoVo02sPvMuKE/VRWhwJTVW2/hJBVOfKiTkxDcBAAOyyeB/FL+SBAAYhgLJzYSdqrczyZzFxY1TiPpYCoe+SD1ARfGltrzhNc1hN6ekMJpFENC4zUVV77PPfPMeqA/RdtvqeKAByxWmaw22kznV7ZUm19nQj344weOUAQChANiKANM1hJerUqPInAOoAwG6u7dukwxd6fBDRdRTvfOUpaZtTO3tI3NEGs1Hfxrc/DP64NvOLmwFgStrGgNKOhU1Mvb9uSj4AEaWiP/HtC4Nfyq05UQAgIa6A6mOGzUgN4BcA2kpaRrzFtyMMfjltGSYCgK2Vs/YH0j4sRL2oeJ5GJuos0MpatrDEjwwCb38A9YFqISxEXW7Nvs/pVcjHJe3ax7cvDP7J0p66LSWqQhFo+7AQ9fcNkyYCtEkicr3Ety8M/qlrT3MR0HOBtuf9RFFnMEUBuBUga1YvKO7k2x8Gv/gqr2mi7S7NvwK1wftInZe+7o8AVFnaknV8+8Lgn0RlTTyAKAABFTECwkDUJ5pGT1ZLW52jEg58ybcvDP4Zm7TnWgDIS1vfL1AbvIYfOoNJCySPAfDG8sK1rkvtzxA+Jc0jogCgw6PcE6gNXkfqOEXDLwHIwJaZMvyYrQNVALCvdmpkijpW3vRsjLypE8BePv1ghA9KiX2Qf/1PQ6A2eBO1zmBKPNs6OC5JVb3ebNSz7EsMAED/6DO3JijrRWaj3huoDT5H6jsBIippGbmERx8YYUZlW5bdS0W9yiDAm6g1MsvDBJ6TANh9iIwfsbmio5s7E3uVXJ8XUS9Ydc94mzN6xITkXVUs9GB0UbDiMTlAU8XE1aua87yI+uvSO/IoRJCJHc/y0T8jPNHKWyYAhExO3ZLeGzs8hR/kFwAOvP/IK9/y0z8jHPm+fmI0ADR3JmzujZ2Qi/rBv98/HcCEGHkTu1uc8ROq7ZlxAPBD09jIiqmrbJkLACA3detXoe6bEd7EKRpG+l9W9MZOyEV9rHHcMDFx7/nbg2+z8nGMn5CuLputlrbS3t4oElJR6wymEQCGe6jk/VD2y4gMzrYObqYgAa+j7iKkor6q356VBF4aJbX+J5T9MiIDu0sTa3dFB3SzbXdCJmqdwUROtQwflRl9ru6H5++qDVW/jMigqLiAiODJVklsAa/56CKUI/V4u0sTV2Yd8EwI+2RECF4q7u+FWDk6cV9yb22FTNRyccd8+LLDfxKqPhmRw86qaxMAoMae/k1vbYVE1EXFBWKFpOOh/tFnys1GvSUUfTIiixZHQgoAmK0DD/TWVkhEvalcn9/qiBMnqao/CkV/jMgjXW0eDwAx8qbK3toKiahtLu0dANr31ua9EIr+GJFHP1XNDRLiwrT0dXW9tRV0URcVFyjFxPU/BN4vzUa9Pdj9MSKT402jawnxVi0vXOvpra2gi9rmil7soVLttIx1Z4PdFyNy6fSoEl1e+SkubAVd1FsqZg0RE7c9QVHPEqkzLohM1Dk4WmZp5cJWUEWtM5gUXiq+1UMlH79030fWYPbFiFyKiguULq80flDssTgu7AVV1Nnak68AiJaJOn8IZj+MyGad+bYkCjHK27I5qSARNFHrDKbc0tZBDwIUTq98aSD18Bh9g06PKgMA6ttTe73uAwjuSJ1PISK+0h3kisuGMfoOg2J/mAwAqVHlvZ7OA4Ir6mP+Zy98l8e3BrEvRgQTK2+cDgBXp2yr5sJe0ER9dcrWoQCgENvXIICyYYy+w/66yeUieFr+ev8/G7mwFzRR25zRuQReXK/74kkmaMbF8FBpmhfiUq7sBS3r6bGmsSKAnlxRuIaTOIkhXNTS1tESkbvXd7x0EcyYeixADgbRPkMguL3SNF30GQ1X9oIi6of+ft8QAOkDYo5bgmGfIRx0BpO206PCacuwf3NlMyiirrGnTwWADE1pSTDsMwRFJgDYXRpO1n0AQRL14YaJCQCwpUL/XjDsM4TD6MS9UwEgW1ti4cpmsGLqsQDOsbtcGJdCJbHnAsDQ+MP1XNkMyuxHjLxxtkZm5eznhCFcdtdMrwSoq96eyllKZ85H6klLV8dZHAmKeEXDGa5tMwRJJkAqPl68LODKAT3hfKSua08bBQDfN0xazbVthvBIUNblerxiTuvRByGmpmP9Lw5xb5shNNxeSXqqukLOpU3OR+qhcUcWVtr6O44uLeAs8GcIE53BJAHiRa2OWE5LDnI+Ule0Zam0Mgtn1/EZgiYVgJhCVMalUU5FrTOYomyu6KRKmy7gYumMvsPVKVvzAGBI3BEHl3Y5FXWsvHECfHcFsDUfjEtCQUYCQLb2FCdLTrvgVNRD4488DAD56V+bubTLECbf1UzTAMBXpXeG7+xHSfNwlVzc0a6Vt7DaiIyL4r9n9QH/WxOX97ByKuqmzqR0h0e5Y3nhWlYbkXEp8gEq9r/m9B5WzkQ9b+ViNUCHA5TF04xLEi1rLvedflEKju9h5UzUKontdoBIpqWvk3JlkyFcrM64aN8r8ldwfA8rZxdfDtTlJgGAh4o/5somQ8jQG+ErWvRbrkt5czZSN3UmDQDQurPqun1c2WQIk6LieVEykePmbG1JWTBq03MmaoW4fYqYuI4Ew0mGsDhYP2mm06sgqeqKLcGwz4moi4oLlG4qGT4qcb+SC3sMYVPRlp0LwLWzauarwbDPiag3lN082O2VwebUsvIXjEsiIm49gJ1mo74tKPa5MNLu1owGgNOWYV9wYY8hXBaunn+Vl0pGjO23uylYfXAi6mRV5WwCbweA01zYYwiXPdX5UwAgWm5ZE6w+OBG1TOy4PkNT6jIb9b2u18EQNk2d/a4BULu1YlbQftV7LWqdwSQqb8uS2F2aL7lwiCFciooLpGLinkXgWRfMWTIuRuqBgEjV1NlvAwe2GAKmw636pYdKoqelr+ektsuF6LWoh8UfmgMAsfJGtjKPcVG2Vd6QA1CqkHQsD2Y/vRa1XNx5u0TkRF76+uNcOMQQLg6PcgZA9v79obc4y3B6Pnot6kP1V9sI6NHlhWs5XejNEBYPr/pVFkAnRUmt24PdV69ErTOYCECucnnlLKk646LYnNqFACHXpG4JetLQXol6esZXEwHEpERVcHo3MEN4bK+6Lk4Ej1UpsQc9aWivRO3wKPQAMDLhQBU37jCEiP8X/UYvxN8sL1zrCnZ/vRL1ruoZYoB6mjsTOUuYzRAe2dEljwNI0chaakLRH6E08DlwncH0FYA0s1E/mjuXGEJCZzDlEnh3UIjEAHUAZHqwC1sFPFIXFRcQhcSen6SqYoWKGBfjJp+gAYCIEYIisQGLuq49ZXCnO0qZE1MS1KtDjMilqLhAqpTY5vjfehCiIrEB36O4p2b6AADYWzM1qFeHGJHLudbBn3W41cNSVOXv1rRnlgDYGoqamr258XYsAOqm0u858oUhIHQG0y3AuFmZmnPbll6z6J78/F6cvF0hAYcfSaqqQpm4ox3ASA79YQiAu19bNAWgawDsL2/LvjGUggYCnP3wpYiiu/wmHACCfkbLiAyu/9OftK2O2FqrM0bc4Y4aaDbqQ35hLtCROh8gXl+GHciVEvvWW1567h2dwRTPnWuMSENnMJFTLSNW1bWnyianbnmGD0EDgcfUWwE4AEgBSjVSi/tI44T5AH6R89Snn0zP/HrbprLZRyhE+QjRyQGDf6KkVoPdFT0XIE+99fDf/sKXHwFffPFnqcyHX7TZT302ykslD4qJ+14PlSh8OdIIBahncOyxF5o7E15v6EhpYnlBhMn9bzz0yOaKm1ZEyyw7LI74aXx+z726ong+FhX/MmlPTd4X9e0pE/zhSXesGpnFmqyqFp22DP0IIKVD4753ZmjM1evLbttkNurtnDrDCAk6gymNwPu9Vt4im5q2YdjKB9bwuhaIc1EDP47im+ALT7yDYo+tPdUy8hiArJSo8mtdXnlmY0eSCEDP5DcNcYp6R5yiqeOMZegnAEqv6rfHm6CsP7Oh7JZdZqOe0zIKjN4z/7VFym2V12+GryrARLNRz/vNIkERNfDf4cl5PicAEqekbZjhcCuH76ub0g4gK01ddoPNpYltdcQp4Mtb3AUFUJ2kqiJR0rb6c61DPgdQenXKVhIlbTu6qfzmQ+xu9tBz68vPHj3cMHGEiHjmnlt2S1gkMwqaqHuLzmASA0idlv7NrJbOhP5HGse7AGSlq82zWjrjFXa3Ro2fxjduAOUZmnNKMfGcMVsHfgOgND/jKylA9m6tmFXC4nnu8E/rLgbIz67qt2fv/z72/CS+feoibEV9KXQGkwxA5vQM0+1VNl3MqZbhIoDq0tVl+oaOZOLwKNQ9mnQA1JyjLYlzeWUHy9uyNxF4zdfrPpO7PLIdby98o4KP44hEJi5dfXt9e+pHAJEA8AKYZjbqd/LtVxcRK+pLoTOYoqKkbTmTkrffcdYyRFrWliOXENfARFXtzPr2ZHiotGc83yoi7vIBMSfjbc7oHdX2zG+jJG2VU9M3eBwexc5/LHy9mZcDCSN0BtM4AAtExH2Pl0q6rnG4AfzebNQv49G1nyBYUV8KncEUm6yqHDok/uitx5tGe+rbU6OVEvsIjaw1t6E9iVKIe5YWrpeJO2tytCWxDR1J6xo7kvcnKGvrJiTvbGt3aXa/++sVgrzxWGcwKYfGHTZYndrHqmw6NYB2laRtT7s7agogEsG38o7TSgC9pc+K+mL4T2L7ZWtPjsnQmGcfqp/UZnXGJqqlrVfJxY7RTZ2J8P/0+qFegFSpJG3NWdoz6oo23adWZ+zRdHVp4+jE/Q02l+bgu79e6ebreAJhwap7Z35bNWOu1Rl7B4DYRGWNM1rW+trZ1iHPm416y6UmAviEiToA/CexaUPjDk9MUNbduLc2r97hUaRrZc3jCaGDLI44EUC6ncRSF0DKYuRN9gxNqfxk88gPXF756UGxxyxD4o5VEHiPh0NFM1+tcNwsIp5fe6l4BoGHUog/BvC3W3M+2BYOPl4OTNRBQGcwyQFkjkrcl6eRWvO/rZ5RCZCsWHljrssrS7e5onusuaHtADEnKmtcKVFV3iON498HUDoqYb+1f/SZMysfWBPUNRQ6gyl1dOLe1WcsQ6fbXRoVgIpBsce2DYw9/tLrD7x7OJh9BwMmah7QGUxqALpxSbuuExHP2H21UxsAZMUqGq5pd6njHB6luEcTC4DSNLVZHKtoshxrHPcRgNKJydvtyVFVx1YUvn/FuZ6LiguIxRG3aFvlDVMBchsAcbb2ZGOlTfeg06P43GzUR1S41B0m6jDDH8/HAtBNSt42u8MdNfBI43grgKxYeeM1VqdW7aHSnqsr6wCUZmlLopTijvLjzWM+A1Cal77OHitv+r4re5Y/Dr4RgFYpsf+swx2VKiZuq4dKVouJa9XZZbedCeWxBgsm6gjDL/okAFmTUzff2djRL/FUywgnfKKfbHHEyinEP8bzBF5KIaoA0ETgHUNBiO+alfd4XvqGHYnKOsPL9/3Lws/RBAcmaoEx7cXlkjLrgDQAWVPSNhZUtOnkZdYBAOhUADr/RVgPgCXhNLfMJUzUfYSfLjILv7llLmGi7kOE89wylzBRMwQHZxVvGYxwgYmaITiYqBmCg4maITiYqBmCg4maITiYqBmCg4maITiYqBmCg4maITiYqBmCg4maITj+D1IkONmepTSlAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top-5 predictions:\n", + " 1. wine bottle 24.326%\n", + " 2. hexagon 22.632%\n", + " 3. octagon 13.903%\n", + " 4. lipstick 2.759%\n", + " 5. blackberry 2.112%\n", + "Answer: square\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu9klEQVR4nO2dd3hUVfrHP++dkkmddCChjCIsKii6WFCUCPa46rqWVWyAqKDCuqvuiIJjj66uYtdY1/6zrjrqquhYVtxVFNvakJ0AoYYkkzqZcs/vj5loZCnJlEwyuZ/nmQfmzj3veW/mO+e+95T3iFIKA4N0Qku1AwYGicYQtUHaYYjaIO0wRG2QdhiiNkg7DFEbpB2GqA3Sjn4vahFR23k9nKB6HhaRVxJhyyC5mFPtQAIY0uX/RwHVmx1r73qyiFiUUsHecMwgNfT7llopta7zBTR2PQbYgEYROVlE3haRdmCOiDSJyPFd7YjIISISFJFBm9chIi7gDKCyyx2gIvrZOBF5S0TaRaQ+2qLbt+WziOwjIp+KiF9EPhORIzezWRF9X9yljCN6bEKXY7uIiFtEmkVkg4g8KSKDu3w+TkQWR6+3WUQ+F5GDop9ZROQ2EVkjIh0iskpEqrr/l++79HtRd5PrgbuAXYDngCeBGZudMwN4RSm1fgvlbwL+D3iLyF1gCPChiGQBrwMtwN7Ab4H9gAe35oiI5ACvAN8CvwYuAf7S0wsSkSHAe8BX0boPBnKAl0Sk83t9Algb/XwPwAX4o5/Njfr7e2AUcBLwXU/96JMopdLmBRwfuaSf3jsABfxps/MmACGgPPq+gEiYctQ2bD9MRPRdj80CfEBul2MV0Tp32oqdc4B6ILPLsVOiZSo2s1G8hWuZEH1/FbB4M9sF0XP2jr5vAs7Yih+3AYsBSfX3lujXQGmpP+n6Rin1CfAlkZACIqJqAF7rod2dgS+UUs1djn0I6ETuCltiDPCVUqprrP+vHtYLkVb+QBFp6XwBq6KfjYz++1fg/mjodZmIjOlS/mFgPPC9iNwpIpVdWvh+TVpcRDdo3cKx+4Hp0f/PAB5WSoV7aFeItIxbYmvHt1WmE73LuZ1YNjtHA9xEhNn1NYpIeINSykXkx/UikbDoCxGZEf3sUyKt//yorUeAN9NB2P3+AuLgMaBcRM4H9gQe2s75AcC02bH/ALuLSG6XY/sR+bt+sxU73wDjRCSzy7G9NztnY/Tfrr044zc751NgV6BGKbV8s9dPdw6l1A9KqduUUpXAA8BZXT5rVko9o5SaDVQCU4CdtuJ3/yHV8U8iX2w9pp6wlfMfATqAd7thez6R2/uvgGIiLWcWsAZ4ARgHHEjkYeu5bdjJISLax4i0ogcTCYUUMDl6jgVYCTwPjAYOBT7nlzF1GbAhes4+wI5RW/cBuUAmcCeR+NwRPedL4P5o+T8CJxMJoXYCFhF5PshK9fcYtw5S7UCKRX1g9PPTu2G7BHgDaOaXD3XjiDxwtROJyx8G7NuxtS/wWfQH9Rnwu6jNfbqcsx+wLGp3CZGW9BfXQiTUeDZab3v0B3U7YI2+ngBqovWsiQo+L1p2FpHWvpnIA+W7wH6p/g4T8ZLoBQ5IROQk4F6gTCnVlkI/jiHS2pcqpepS5Ue6kA4jij0m2r/sIBJSVPe2oEXkDGAFkXBmLHAr8LIh6MQwUB8ULyESo9YDV6eg/kHAo0TChTuJdCWemgI/0pIBHX4YpCcDtaU2SGMMURukHYaoDdIOQ9QGaYchaoO0wxC1QdphiNog7TBEbZB2DMhh8t7C4XRPJDJLzuOtqlySajsDBWNEMcHMq54myzbuPbKmaaffgLqByDTSMMizoK8bX/Lx5Lr2Qd7VLY4aTULabsVLD9jYPnhFbcuIVWYJmsYWfzppfVvZ8rWtw2qtWodlWO6Kg3/0jRkJooEKDs9dcfZ7l819JNXX2ZcxRB0HDqe7aOrwV06uadrRsbxxlxxQYzPNbfu1h7Lll2cqQPygOjLNbfagbvGHdGsHKKLv20O6NfDT+7C1PaQsAdDFrIXyQrqFrotgMkztmzrCmW9nmVs+m1T+Vr3N3P7UbbMe8/XqxfdhDFF3g0NvuMH+fcPYXwFjdy36bEZde+mg9W3lOcDgLqc1AF+NKfzCkmHyf/r5xr2/JLJG0AIEgamxhA7R0GNxxI4Kjyn8YklN08jm9lDOOCIzDQE9BNpnedaGb/Yo/VfLutbye75rGPeVt6pyQH65A17UXeNVYOnkoa8f3BbKnvTxugMUMDbP2jilKZCf03m+WYLhoswNvvVt5S8BX00Y9EFrada6j1797/Gfby6iZMfUp98x91cmCZ/+Qe1Ua1DPmGCS0H5hZbZGP67Lz9i0fHTB183/2bT7X1uC9g+9VZVNsfrQnxjQonY43ccI+nMKMYEoIgteo+sQVRjkuyHZK5vLc1Y1fLJ+/3uJ5Nj4r7eqsqcLdHuFedXTMtpDWZVv1BxbDOybZ234TVOgoDMhjsq1+NaNyPux8atN428G7SPADkwmzR5AB5yo51VPy2gK5F/mWXX4rxXaEfwUrCoF8u6O9u9eGl3wdc3H6ya5l7qmd6TU2QQw7bY/DvnnmqnjgH2H5njPqGsvHe4PZ0V7vX767v0gU9JF2ANG1DvNf2F4SLfOtGiBOUHdWmzROhqDesaLRDIUmYkj7u1POJxuIbK28RpQJ3R5AP3nhEH//P2zF163OnXeJYa0FrXD6TZnmVuOKctZedfyxp1Loik3/jF56D+W5mfUX7to1uPtA7UP+JcPoAgoyTS3SXnOyruXN+78J29VpX87JvosaSnq8+87Y+I3m3a74EffmMlAWbal2b+j/TvPl3UTZnurKr2p9q+v0PUHPXX4ywUrfKOr/+v7VRngLbKtv25S+eIHF816vE8+P2yLtBH1yEv/PimszGcDI0HtJ5F48XWFdg/g9lZVhlLrYf/A4XRPBXUTyPgh2asa17YOO8ZbVfleqv3qCWkh6oOuu+Wm/zaN+lM0PlQ5Ft9zBw5945a7znn4w1T71h854ZZLtUxz290frTvw+EDYVgjqxSnD3bc/OOfut1PtW3fo16J2ON3DiQxw/C46ageRbKYLvVWV16fSt3TA4XRnAn/QJLQAJLMkc93z69vKz/VWVW7cbuEU0i9F7XC6MyYM+uCFZRv2OSSkLEHgb6BOB4lr9M5gy5x/3xm7rPCNfvg/m3bfE6RtcNbq+/ce8v7Vt816rCHVvm2Jfidqh9N9GJHUWqNGF3y1ZkPbkAOWXXn6ioHai9GbOJzuMYJ+g0I7Otfa6G8O5J8DPOatqtS3W7gX6TeiPvPO8/dc0zLspe8bxpYDy81aYN7y6377aqr9Goicddc5c/+5Zurs9lD2GEFfdtDwV//24Jy7b0m1X530eVE7nO4M4CJQl1m0gG1M4VfPfln369O8VZX9frSvP+NwujXgJJup7Q5/OKswx+L7oCVoP4fI0HsFKbxj9mlRn3nn+c7P1u97qS9QkAc8V5y57pJPrpi5ItV+GfzM3OpT7V7fqDu/qJtwFJAbHXpXIAFS9GzTJ0XtcLodwC3AsSWZ64JZlpbT3p0/7+kUu2WwDRxOd5Ggv6yQidFeqDCwIBW9UH1qjeLMu2bnnnir800h/B1wqKBfNrHsnSJD0H0fb1XlJoX2J1CBaGutEUkc3+v0mZba4XQfAep2kJEj7d8u/9E3Zqq3qjIlfxSD2In2Qp0I6lSr1pFbMewf5903+74HetOHlIt69r0z9v+2ftyj//WN3gH4vsi24eKlrukvpdQpg7g56dZL9lzeOOajxo5CFVaWI71VlYt7q+6UidrhdNuAiwX9cosWsJblrLrb2zTqQqNXI334/aKLR3+0dvJzIKMzza3TvrnmxGd7o96UiHr6nedd8dHayXPaQ9mlwDP7lS2++om5f/2y1x0xSDoOp7vQrAXe1HXTnhPL3rn78bm3zEl2nb0qaofTvQORrSCOLs5c72/wFx394/XHvNlrDhikhLnVpw36fOOEL2qadioF5nqrKm9PZn29IurZ907P39g25NlP1u+3P0g419p405Rhr/1l0azHtrRpp0EaEg03nwSOLc/x3jNh0IdzFs16PCniS7qoHU73USYJ3hVWlmHlOTVLa1tGHOutquz3S4YMeo7D6TYX2Ta8tMlfesSo/K//8UPjrkckI41D0kQ9+54ZB366Yd/b1reV7w58u2vRp9e6L17wWFIqM+g3zKueZvqmfrfF3zeMnQw8CJyd6NX5CRd1dA7unzUJXW7RQiazFriiNZhX5a2qDCS0IoN+S3TxrwtYOCL3x693L/33xNtmPda8nWLdJmGidjjdEwdlrb5mY9vgsTrmUosWeP7QEX+//s5zHv4kIRUYpB1H3XTVA1/V/XpGnrVhaVOgYLK3qjIhz1gJEXVkFEm9B2KOrkC5wFtVeUf87hn8hMv+cyYpl697k4RiKdPLVFx363xv06irga9BvQDyeryToBIl6puJbOAOqBCIsZwqyrgHdwkhoqGU/uWM/3Q/dbLLPlGhDmq3qa/DJv3w3FbzLIUyEVmu9kdBVjbkh3b22/RdBq+zfCpITlNueFzQoo8uqrd8CoxQqClEZhcFBDkcl++d5FxlfDic7vmgro2+bQeJa3Zf3Pmp51VPs9hMx/zWH84GCIEEieSlG/CMe3CXEJoWSWMmYhr3wM6ht9trlhQ0mL8yh8Xsz9B38Nv0XfOaTN9rSjKCZlUWNqkhGR3SIki+IGT5hc55ZxKZ/WYGbgMoaPzp6zsNILdZ08MmTRSqRJAMQKJlrMCb7VW5PzTnhr8t3WhZAOTSd1pxFXmJgMog4lfqRL2yeYdH/eHsHYbnLn9oZfNOP2Asp/oZkagaJZLVTNNMxXXmScAeQLMlKCpsknwlZKOo1zUVDFpUtq1DK+xqJqypBk0nh0iePy0qVHRRi9cPCt5RWG9+LyOgtYirKfDTF+qyTxRksUJZBAkDz4niN6UbLWOAYwGlIrPpOsRln5JiYXsiqY7JjOY09MRjLC5RO5zuMbDvsSWZ6z7eo/TfM9+7bF7fmPLXV1BKR8REZ4inVLhmRMDimO5XEFFodue5LrtkBLRTrAF1R1iUrimURL7goEmXyuhZFUS+8FpggSiml26wTG3NDj+dEdDOBX7uYXL5luCyTxUkUsblW2IDmm/KGZnbYrpRoX4riCiUDZhJHC1jvHirKpdE8o1wN6gRk4f+42Oo3G65rRFzTD1q/guTgrrlCRA78CtvVeW6mL1IY7oTU9c8aBtT0GB+Ia/ZNAb4MGhWMywhKWQ74UHtfZkV2a3aQ/k+swNoDJr0v2tKVpt0cW+z5Y08QC5WkVu9CCIhk3pk1bCO+Tuc2bEmzkuOmaNvcv35i7q9qg4e8dIF98++N+aOhphE7XC6Jwr6+wrNFJkULhVGyBEjLvsxuqhHAHtLjn53XrPpAly+ng1GuOzjgTuA/aMhRbsgU7sh7ArgQ+AohbooYFVBc0iOMi1seiO2i4mPC6pPG/LqiuNXF9rqnvj4ipmnxWonVlG7QF0RTbho9HbEgPch27DB6yz32jq0I4Bl60uDlwya0xb75C6X/VKFujYaUoQEWYjL1+3vZHW1bdbgddYrzWEZAtwXNOsvWELaHvTyg6TD6X4F2BXYMdYh9FiXc/0jGtgbvR2x4LJPLVtj+TajQ44Ia+oGYJ+4BB3BI5HvguiDoacnhYfO8lebwzIS+ItCnWUOyWsKdQ2wONqq9xYvAo5dij6bHKuBmEQdDTWmAAsxsiF1G+9DthL9yrx7gLfMIVm3emhgumlhkxOXL/4pBC7fkpCm5gH4rXpVTK2ry9eOy3eJ36a/ACCIRiTVb0Xc/nWTyUNf9wg62ebWK2K1EXPvR1TIhpi7Scd1uZMHi+VNTYkFuFVTMn/YWf72RNZROzSwdMTKDBoKQyOHxGEn02+6mUj3g41IH7InEf51h0fOv335Hlc8snzZxr0Gb//sLdOnVpOnI/7rczNw2a/PCGhvm0PSsrq840Jcvgtx+RIqaABN50uFUkWbzOvjMhRp5afoouo7rHpDb/dhN3QU3x3UM8ZEF5X0GEPUSWTNvZlH65pqAJzAQ+awOIbO8t+arPqGneX3C7LBGtTy4jbm8i3ZWBL6OCOglW66LXvXBLjXE/4OkGdteDy6Or1HGKJOBi67GZf9siFrLc+aQ2JZOzhwKS7fWbh8Sd/yLayp+oBFT4gIM9u1PwIU1ZtjHwmJjVLQaQrkTwQW91TYhqgTzMoHbIe32/Qa4BpBnjeFZfCQc9ureqv+dlt4ELBXInos8v7U8h/g30Q2e+pNKiLdxQIxPKgaok4ULruGyz5v6GrrS+aQDGnOCV+Ay/d708KmTb3ow8TsNpPdEhQLCeqKa8oNfwDssfIB2+HxO9htPJ27QhDJN+7pSWFD1Alg5QO2/YJm9S/gVlG8sW5wYLfci1pSMZ+8QhCTxNjCbYmGgtATCkVhvfm38drqLoeOePEzAJupbQkxdBkboo4Hl12UK29mea31fU1nT4WaJchvhp3l/yoV7rRmhWsAFEonhhZuS4yY4V8qyLs5raYDcdll+yXix2oKjAL49aAlq2IZAzFEHSMrH7CNU6iXBblfCZ/Wlgcmi6vpfly+lM1UbMoLTwDw2/TngG3P/egZTwFjmnLD+yXI3jZ5q+YoDeCb+nGvx1LeEHUMtN6Yc86QtdbPlXAYcKE5LPsMn+n/INV+DV5nyVGo5tVDg6cmsm+5viD0skLRkaH/JVE2t4U/nFUMUO8v/W8s5Q1R94DAtbnFuOxPZreZ7gmb1JrVQwNH4/LdisvXJ/Y8EeQgQTyjTu1I6Mr9wnmtte2Z+neF9eYdeiMEGV3w1R4AjrzvY1qIa4i6m6y7O/MiYK1CHQ8ssHVojuEz/a+l2q9OVj5gmwDs1JYZTkpOwqx20/UmXQYDeyfDfleKMzfsA7BbydKY0ibEvZwrrYl0iR0K7DkY69FtmXp7XXHw1LJz2p9PtWubk9muHQ+wqSj0RVZyqnhRoQJtWfpF2XBCcqqI8O+1B/wAShfU8ljKGy311ois5n5XoVzA0cCjmk5BXxQ0QEmdpVSh6sMmkpMu1+Xz+ezhTZagHLfm3sykNoYhZSkE2RTrvuiGqLfOLMAiCAoVBr6xXdrcl3NnHyTIu47p/oSm8OqKEm62BjWtbK11UrLqACjJXLtHlrnFH2t5Q9RbQLnypgLTiKy4DklkpylPar3aOisfsE0CHE254Zhu192loNF8D9BKkofNM81tY0qz1ubGWt4Q9Wasrradr2u8oYtaLsiRgiwksX2+CSe32XQ4gM8e+jCpFbl8rQGL7glr6gzvQ7bMZFWzsnnHtatbRnhiLW88KHbFZd+3HOuNfpsKbCgNnjhihv9rIKYBgN6koNE8Atg4bHXG35Nd18aS0LLyNdbK7FZtJpHFvklASkO69a1YSxstdZT2qtz9gdcFqTWHZKeooPs+kX7jw4B1wL69UOP1CtVYUmfZKxnGz757lg0oGJrjtcZqwxA1sLo68zhzSN4Pa8oPTLFc3lSbap+6S4M9dCVQolBj6YVFsuVnt7cK8jxwPC77gkTXZ9ZCOwGMyPsxJ1Ybhqhd9l3Kay33KVH+2vLACbh8q1LtUrdx2XPzfabzFQpBhF5aJNuaGfYBWdHuzoT+kF797/EawCfr94t528EBLeq192QeoFCLBQlYg9ruw2f630+1T90mEnbcK4hdkA4i2VB7JV2FOSyTIGmrzUsAOsKZa2M1MGBFvem2rN0L683vhE3YifRu/JBqn3rCukGBR4CTdVFXAgcRTVfRG700GQHNT2QCf8J/SOOKl+4DsHPh5zH3Uw/M3g+XfUQRlr+HNdWxpixw2rCz/N+k2qUe4bKPLxXLKU25oU31heFrowMuvdPlGLlD7Ay8CvyTBGdwyjK37AYwMv/bhlhtDDhR1zxo+/UwsT6vKckz6XLAsLP8n6bapx7hsucBz2hK1mu6TEjmCOKWWDms4+DhqzKKNxUGvyua25bwVHP/Wjf5B1D6+tbymAeSBpSow1flDR5ksbyvhIywqEmmhU39StDeh2xSmGv+KLdZ20GQg3Iubok57oyV/EbzBID2TJWsvcZLQOqeufD6mKfzDhxRu+wlJuQtrQNqywPnD53l77MjhFujdINlfla7tvOGkuBrpee1peShNq/ZtAPQOLTWmpRBqbLslfs0B+xx3X3SX9Qu+8SgSf1WTOo0c1jLF+TIobP8fXLvk23isu+ZhbYwrKm32rL036TKDYWaJMiSZC2M0EQfVpS5Ia6FCOkt6mhycXOYTBDaM8KuzEtb+p2gvQ/Zhg01WV8zhdlg0uXk3o6jO6l50OYYQcbOdUXB74qTVMfqFscmYFk8NtJb1JH+04zo9FE9s8PU/zYoddmlKMf8mqZTurEk9PvS89rqUuVKcZ15H4CQWb2axGpKgI3xGEj3fmqPQgmgogMUnhT7Ewvn57aYdm3JCd9Rel7b06l0JLvNNA4ID15vfSIZ9udVT8sECna0fxfzEDmkuahXDusoEUQ6LPqH9PHpo1ti7T2ZJyjUzcDLec3muan2J6ypKQq1DJcvITvTbk5TIH8HgEFZa0zx2ElrURfXWSoVirVlwXP7m6Bb/pJTXNBgfiJoUTpwZirziQCsut9mAybWF4biEty2eGfVkWaAJWsPimsKbfrG1C67ZKEdDLzlmJ6ajEkx47JLDqb7FUpqywNzhs7y16fapdINlvEmXQD+L4nVlET/3RCPkbRtqRvyQ4cBOwJJif+SSYdVnw8cI8jFQ2f5H0y1PwAZAW0vgKJ6y2PJqmNE3g/TAEoy146Jx07aijpsUtfpolhfGuwzuTm6w+pq25mWoFzjz9A/Am5NtT+ddFj1oxVqTbKm5jqc7okrm0aeDrCxffCiWJKtd5KeonbZTYX15qF+m/7poDlt/WfTUpe9sLzWelXIrJrXDwqenOo4ejMOaswPh5Jo/+DIvpwAYiaO6azpKWqYrCkpyWo33ZBqR7qL9yGbKNTDggy2BrWpI2b4van2qRP9yrxhGQHNZA7JU8mqIz+j7oDof8PEOZ01LUXdkh2er1BtwCup9qW7ZLZrLwnym5BJXYrL93Gq/emKpmQ/gNwWU1IeEqfdduHpvo7CQ8qya74AFhDnNoZp1/ux8Y4sW36HeUpDQdhbOK+1LdX+dAuXfb9SzEc22kMrG/PDf3Wk2p/NaMkO/z67VfML8kWibTuc7iyYernN1F43vvTfh314zpy4w8W0E3VJneUQQExhrkq1L93CZS8CnhbEm+8z75l/YWtfiqMBEMWhLTm6P/eilmCibZskdH1YmUf5w1lT7zrn4YQ8/6Rj+HEysMneZH481Y5sD+9DNlNTbniZQg0CTsDl86Xap//BZc/OatMyLEFJeNforLvPnq0rbW6hbeP/easq306U3bQStfchW4ku6kR/hv4uLl/CW5VEU7bGckVes2no+kHB53H5+uqChb0EMdk6NHcijTqc7qx3Vh3hzLX62iaVL07oFIC0EnXJBvOVmhJTe6buTbUv28Vln2QNavN1Uc/4berkVLuzNRrtoZkAIZNK9DSDa0O6dXhToOCo22Y9Gt8OvZuRPqJ22Sdmt5vOVijyG02zk53UJR5ab8z5fVjUWwq1RlNylmO6v8/F0Z1oukxpywx3mBc0xbwQdnPOuuucOaD+YJLQPd6qyoTPb08fUUc6602CIEivJHWJCZf9gKw27QlNkQEMAnp7i+Tu47Jruc1aVkaHlrCuPIfTnfXR2slXF9o2hip3fNaVKLtdSSdRexRKKRT0UlKXnhK4NncY8KggEv3xafTVH1+EkwTJN+lSk0Cb17UE7YUZpo7fJjrs6CR9RO3yLWnN0n8MaypAH5w7vebezAtE8d9oT0eAXsyoFBORnRT+BqBQFyUinDvt9nkzQc0F7lyy4NykDYylVT91TpvpNeD0PiVol10DLhmC5Vq/TXWsGxw4btjqDB+RFjqhiWASzKH8rI/OuRgx+zp2wRPZVtMedxZkbAoGdKszAf5tlbQSNdAA2HHZTbh8KVmc2pWaB20jSjLNL2a1m8YL8rQ5xKxhZ/k7d5zqq2LuzMJ0YOfWIILEfUdpCdqvI0jG/mVvnfP43FtaEuLnVkif8APYVBgcCrByWMfwVPuCyz6+bI31U5tfG9+aFb4GONlyeVNMW6j1NhuLg48DU4A7BFlAnOHcvlffewQwF7jj8bm33JcgN7dKWrXUukYDQEaHVgzEtFtqIghcm3uuFe0Wc4j6tUOCZ5ad0/5IqnzpKR3X5U4tDphP9uWFVtmbzHPjnf46t/rUkmB46kvZlqbG1mDepYnyc1ukVUtdUmd5F2DQBktq+n1ddlvDrdnLrEHtboX6lyB79CdB47IPzghojylhRUNBeP9EzOd+ZcUJV2zyl5r3HfKuy1tVmdSwo5O0aqmJxNQABb1es8u+A/BsQaN5943FwQ9bs/XDHNP9fXmLul+w6n6brdRqedsaELum5FDHdH/cK1wcTvdkMJ8H3PHAnHsWJcDNbpFWLfXawYFMgHWDAlN7s97a+zIX6qK+BEYCx5Sc37Z/fxI0QG6z6YWMgLbzpqLQTbh8cW8FPbf61BJ7Rv2rZi2wGkhqb8fmpFVLrWusBbAGtIxeqdBlNynUFeVYF7RlhtusAW2CeUFTUvcyTAou++/yMR/emhV+ufiCtoWJMPlB7dRFvo7CrIOHv+y8f849SckTsjXSqqUuX2P9EaCwwRzXEvvuUPOgbbQu6k1BFoQ19cSG0tDQ/ijo1dWZUxXqYeBf2W2mhOw57nC6K+r9pSebJHTX/XPuuT0RNntCWokal6+dyGjd4cmc0NRxXe4Bg9dZvgYmA2ebdDnVMd2fsAk/vUXg2tzswnrzKyEzNl3UCbh8cYdMc+6dXmoztf0fqB/DynxJIvzsKWkmavtEhbIq1IEkY/s1l11w2edkBLTFprD4assDZ+DyVfexVd/dw2UXa1CrzmyXjA2lQad2RVNCUh/80LjzM/5wVsn+ZYuv91ZV9mrY0UlaxdREJwcJAj/vGpWQkTvvQ7YSe75pSUGjeSTwmjkspw47K/WZk2LFn6E7bR3ayYJcXn52+82JsOlwus+DXQ/Mt256+/G5tzyQCJuxkF4tNXgE6bqrkychVl320SNqrJ78RtPIuqLgq8BRuHz9VtC192XOsAbkOn+G/gmQkH1bKq675WxQtwM0BoomxpOMJl7SS9SRodwpCvWdjmr1juhYFq/JDXdmXa5QnwgyKGhRvym+oK0yWVn0ewWXvbRsjeXqkFn51g8KnpCIaxk9/7nS9W1ldwKdOwCkdD57eokawOVbsnZI8FENsVsDck3sduzmthtyHivdaLk6YFWbgD2tlzX3mzwiW2J1daZVoZ4SpNAa1CoSkTDH4XTnBXTba+2hLF1QQfrAlNr0EzUQsKobQya1Ycja2DaFD16TVwYszmo3TWvKDb+1dkhwN1y+lQl2s9fJ6JB3BDkoZFLzcPmWxWtv9r0z8nKtjR5gd9COU2iTiW5SGk8ymngRpfrfg3u3cNkvAW4AxuHydTuVb+19meeWbDTfbglKSJBZuHxJy/LZq7jsxwAv1heEviqc1zouXnMOp9s0IvfHL2qaR+7iyPvhYs/8P9yUAC8TQrr1fnTlQYW6xmcP35MPk7Z5ZqTrrwIYUoZlTkeGCtWWB04aOssf86bvfQn9yrydNOQRYGlhg3nbf4tu4HC6BbirpnnkLmOLlz74ykUL+4ygIZ1baqB+UfZyu8+0g65RYLm8qWmLJ0X6thcDmdGuQE/QrI7Z6vn9DO9DtqLSDeYam19TmpJxuHzeeG0edkPVc981jDsOuN5bVTk/fi8TS1rG1J1kdMhMky6aJSSPbmMgpoKfd/BSwBvpImhc9onDV1rfyWzXstcOCd6YCEEfeO1tVd81jDtuZP43HwGXxe9k4klrUWe3mQKArlBHK9TWRhg9QIdC6YCfvroQtqdE7kDvakrGAaHyNda34jXpcLqnrWwe+eeCjLr3xxZ9VuGtquyTt/m0FjVQoVCdI4w2ttR36vItEWSqIJcL0udWocdC+Kq84vYM/ZVo/pPO66+Ix+b0O8+7lMjEp3cbOooPXTTr8T47tTadHxTh51Y4UxABttyyuHxLPB4xARkVvedb4oksmD3BhNxh6yA/evfR4104O+ayZyaF1dRrB2fVtvoCBcd8c82J/u2XSh3p3VL/3AovBL4GFrTemLPfVs6+Driy95xLLLX3ZY715YVWA08DNYKMF2RS9NpjvgM5nO5d/eGsl8LKtHKvIR9M/OaaE/teZtbNSOvej1/gsg8OmdR/wiaVt35QcM/hM/2/SCDu8civgJaKClWbIg9jI9I6z1Com5WQV18Yerp4k+U0XL6492eZfe+Mie+sPOI1fzizHWR/b1XligR4nHQGjqiBVffbTiivtT4his8EmRydf91vWfmAbVLRJvOj2W0mB/Beh1U/N2N+8zeJsO1wuktyrY3fhnRL4diizw555sLr437Q7C0GlKgBcNmPBV5QqKdrRgRO7sw46vHIEKASeLmiQiUlx1vCcNlNwHm6qL/oGtb2TP2q3BbTlYmaaOVwunOBt0GN3aP0X9Nf+OPVSdvAKBmkd0y9JVy+F0MmdYUgJ2W1aW92+WQHoBr4dYo86xYrH7BVBs1qGbBIFIvXDQ5MyL2o5YpECXpu9am55Tk1X4HaA+TE/iZoGIgtNZHt3ew+07cFjebRwPG4fM95PGIDBgOrKypUMvcLjA2X3aJQFyvhGl1DN4WZLshjiVx143C6TXZr/eu+QOHBE4e8c+eT8246P1G2e5MBKWoAXHYb8DYwPmRSk80LmvrUNm9dWV1tO6m81nqpILsHzfrra8qCF42Y4f86kXVE53PcCcwuyKi78rMrz3Al0n5vMnBFDeCyDwpr6gtdVJHSuGv10MDqlSMCayoqVN+Ymeey2zqs+l+tAZkdNtFiDsvpuHwvJKOq390yf/HS9ftPAW70VlX+ORl19BYDL6buisu3vjknfKs5LCZLUC5weDOuz28wXZFqtwCabs6uBJZlBLTZLTn6B7XlgXHJEvSo+c//Yen6/afsWvTp9/Ry4plkMLBFDeQ3mSEy6oYotNHf28zeh2zDUuaQy57j+2v2W7nNpld0UTnAYbkXtRyQrG2dHU7374N6xl9NEnLvlP/tbn11PkdPGNjhB3TOpV4MWBVKBNF0UU2akoXAPYnIhdFdPxRqliBHKNSg+sLQsqa88JE7nNmRkA0zt8TMu2Y731l1xLVKyT8V2mHeqsp+3W/fiSFq+GmRQH1B6KtVwzpm7/p1lt0clv1CJlW3oTT4ZNla6x8SttjWZc8FRqwvDRxmCsvI4k2WJmBPhTokOvFIAefi8iU1j7PD6d7HJKH3SrPW6hMG/XP07Wc/mpC8H30BQ9Rd8HhkDPAf4MTJntym9kz9+ax2UzawFLgEl2+bu7J6H7KJoyZjEDC8rih4sBLGl9RZ1gEj/Bn6RHNICs1hMW1WLAg0K1RhdE53SJCFuHwJSV2wJUZe+vedw8r8PuAblf+fKW86L07kRkUpxxB1Fzwe0QBzRYUKQGSb5SFrLWdlBLTLgGGtmeF6S0jesAa1DxryQ6VBi9q/ZKO5RpARQbM+3hSWIk3JL2wqVLMgNe02XW/L0vWievNTQE1dUbCjLUuvGb4q43NgbyIhkIWIyJM2Bfa8e8/c+/3ag99vCeY26cq8r7eq8sdk1JNKDFF3B5fd1poVfjKrTTtW+B/RrhfE227TAy05YVvRJvPjmpIVjfaQz2cP14yY4e9eK/jzOsmkbW7kcLqLLFrgY03CIyqGvX7Kvefe/3Qy6kk1hqg3w+OR04FhFRXq2l984LJfqlBXC2ICwmFRd9QODSwcPtPfL5Z+7XXl/bkb24e8Bexu0ToO/+G64zyp9ilZDPguvS1QARy7heMeQTr3PwyYlDzdXwQ9r/rU7Fxr0wpQewEnpbOgwWip/wePR6SiYit/lF4IERKNw+nWNAk/qSvTiQeUv/nQoxfcOiPVPiUbQ9RpzLzqafLyihPv0JV5Dqg/e6uOujHVPvUG6b5Gscd4PFIGXA1UV1Soj1LtTzysaR32pq7MUy1ax21BPeMvqfantzBi6v8lDBwBpG6oPAE4nO7ZH687YOouRcu+P3KH5/6YDsPf3cUIP9KQ3RY+dlpToOARwA0c562qDKbap97EaKnTjOl3nven1mDu37LMLV8AJw00QYPRUm8Rj0fmABMqKlS/6ilwON17gfIU2TYEJpUvHr9o1uNpNfzdXYyWessUA8NT7URP+N0t8yeCehVkwyb/oF0GqqDBaKnTglNvv3Ds13Xjl7WFsjs6wpnjvVWVP6Tap1RiiLqf43C6C0G9b9aCIw8e/sr0e8594MlU+5RqjPBjC3g8UurxyJsejxydal+2xdzqU0vMEnwDZKeQbj3cEHQEY/Bly/iAPCJTQfskDqfbsoP911+ElWmwzdx64rfXnOhJtU99BSP86Ic4nG4NeBQ4Zb+ytx98Yu7NM1PtU1/CCD/6GfOqp0mRbf2jwCnAfEPQ/4sh6q3g8cifPB55P9V+bM5/faP+b5N/0CmDs1c/BVSl2p++iCHqrdMA1EaXePUJHE732V/U7XX8iLzln+wz+L1TB9J8jp5gxNT9hN/dctn8pesnXg3yOnDsQBz+7i6GqPsBh95ww4krGn/1dGHmxjUb2spGeasq21LtU1/G6NLbCh6P5AH/BhZVVKi7U+GDw+meCJwCY2dkmVtW7TP4/Yrbz/6bIejtYIh66zQDnwEp2S4jImjdA2IFUW2hnPNuP/tv/WJ7ilRjiHorRNcpnpw6D9S0qKABpYOMBV5OnT/9hz7zZN9X8XhEtn9WYnE43RUg0wEFKkxkFbunt/3orxii3gYej/wZ2Nibwp5+55yrNAm/CXhBjgFZAEz1VlX2i9XrfQEj/Ng2nwOPABlEtnhOKg6n+xThiMvLcla2Fdg2HfLKRQvXYIQcPcbo0usjjL7suQsCYdsiUO8eucOzJ991zsNJS+Gb7hjhx3bweEQ8HrEms44TbnW+GgjbbjNL8HWQIw1Bx4cRfmwDj0fMQD1wM0nY4jm6eVAVHHDEzoWfrxhd8PXvFs16PC0Sn6cSo6XeBtGt524BPky07XnV0yyFto3PApcAd31Tv/soQ9CJwYipU4DD6bY68n5Y6m0aNbbQtvHuen/JecbkpMRhiHo7RLvzCisq1KZE2HM43VnAM8CRe5Yueeb5P15zYiLsGvyMEX5snz8DdR6PZMVr6IL7ThtWkrnua1BHAGcbgk4OxoPi9nmLSB91XA2Aw+kuybUe/l5bMMexW/Enl710kas6Me4ZbI4RfvQCO81/YWhIt74JOHYt+nSu++IFhqCTiBF+dAOPRwo8HimJpezse2ccnG1pWS7o5cChhqCTjyHq7RB9UKwBLu9pWYfTvds/vMc8FdIt5kNGvHSOt6qyz615TEcMUW+H6BTUC4CnelLusBuqKoF3dWVu15W2232zq41EM72EEVMngRNv/fO5yzbsfbemhdf7Q9n7eKsqB2yyxlRgiLobeDySA4wCPq+oUNvcztnhdP8W1FMFtrqm/cvemXLH2Y982TteGnRihB/d43TgU2Dwtk464VbnraCeBVna4C8ZbQg6NRii7h6vA8cDW903cZ+r7rvq43UHzBuSvcoLHOKtqmzoLecMfokRfsRJdKbdQsBVYNv4/gHlb1XeNuux5lT7NZAxRN1NPB4ZBwQrKtS3ncfmVU8zeZt2+ujzjXtPAB4GZnmrKkOp8tEggjFM3n1eAd4DTgNwON1mq3bcIwHdNmFc8Sf//rJuwkxvVeU2HyINegcjpu4+ZwLXAZx7z8wcUE8HdNspmebWqh3t3+9rCLrvYIQfPeTU2/9QsKZl+A8rfL8qAv7grapclGqfDH6JEX50E49HBj3xzcxzPqg9diaowgPK33jg0QsWGYLugxii7iZPfTv9j2/UHHNJ5J0WeL/20AdS65HB1jBi6m7yQe0hZZEUYAKRv1tFSh0y2CqGqLtJSzDvLpB2IAQEMdKA9VmMB8UeEE2tWwF4jDRgfRdD1AZphxF+GKQdhqgN0g5D1AZphyFqg7TDELVB2mGI2iDtMERtkHYYojZIOwxRG6QdhqgN0g5D1AZphyFqg7Tj/wHNVdJr0bDLEgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top-5 predictions:\n", + " 1. ear 62.866%\n", + " 2. moon 17.284%\n", + " 3. boomerang 3.729%\n", + " 4. knee 2.912%\n", + " 5. squiggle 2.257%\n", + "Answer: ear\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABMx0lEQVR4nO2dd3wUZf7H38/M1vRCrwEsiRqxIxYcEjvYC7YTy6EoqL+TU8GzLOqd3J146h2K4qnoWbCfgpWEATyxoSJIEEQSegvp2T7P74+ZhTUmpO1CCPt+vfa1mdl5ymQ/+8z3ad+vkFKSIEFnQtnbFUiQINYkRJ2g05EQdYJOR0LUCTodCVEn6HQkRJ2g05EQdYJOxz4vaiGEbOb1QozKeUEIMTsWeSWIL7a9XYEY0DPq75HAjAbnvNEXCyHsUsrgnqhYgr3DPt9SSyk3R15AZfQ5wAVUCiEuF0IUCyG8wM1CiGohxMXR+QghThNCBIUQ3RuWIYTwAKOBEVFPAM36LF8IMVcI4RVC7LBa9PTd1VkIMUQI8a0QwieE+E4IcXaDPDXruEtUmhzr3DFR5w4RQswRQtQIIbYKIV4VQvSI+jxfCFFk3W+NEGKJEGK49ZldCPGEEGKjEMIvhFgnhJjS8v98x2WfF3ULeRh4EjgEeAt4FbiuwTXXAbOllFsaSf8I8DowF/Mp0BP4XAiRBHwE1ALHARcAJwDPNVURIUQKMBtYARwN3An8vbU3JIToCSwAllllnwqkAO8JISLf6yvAJuvzIwEP4LM+u9Wq72XAgcAo4KfW1qNDIqXsNC/gYvOWdh7nABKY0OC6Y4AQ0Ns6zsQ0U0buJu8XMEUffW4MUAWkRp3TrDIPaCKfG4EdgDvq3BVWGq1BHl0auZdjrOMHgKIGeWda1xxnHVcDo5uoxxNAESD29vcW69f+0lJ/E30gpfwGWIppUoApqgrgw1bmmwf8IKWsiTr3OWBgPhUaIxdYJqWMtvW/bGW5YLbyw4QQtZEXsM76bJD1/ijwrGV6/UkIkRuV/gXgCGClEGKaEGJEVAu/T9MpbqIF1DVy7lngWuvv64AXpJThVuYrMFvGxmjq/O7SRDCiro1gb3CNAszBFGb060BM8wYppQfzx/Uupln0gxDiOuuzbzFb/7utvGYCn3YGYe/zN9AO/gP0FkKMB44Cnm/m+gCgNji3HBgshEiNOncC5v+1pIl8SoB8IYQ76txxDa7ZZr1Hj+Ic0eCab4FDgTIp5c8NXjufHFLKVVLKJ6SUI4B/A7+P+qxGSvmGlPImYARQABzQRL33Hfa2/RPLF03b1Mc0cf1MwA/Mb0Hed2M+3g8GumC2nEnARuAdIB8YhtnZems3+aRgivY/mK3oqZimkAROsa6xA2uBt4GDgNOBJfzapu4FbLWuGQIMtPJ6BkgF3MA0TPs8x7pmKfCslf524HJME+oA4HHM/kHS3v4e262DvV2BvSzqYdbnV7cg767AJ0ANv+7U5WN2uLyYdvkLQHozeR0PfGf9oL4DLrLyHBJ1zQnA91a+izBb0l/dC6ap8aZVrtf6Qf0TcFivV4Ayq5yNluDTrLRjMFv7GswO5XzghL39HcbiJawb3C8RQowCngZ6SSnr92I9zsNs7btJKbfvrXp0FjrDjGKrscaXczBNihl7WtBCiNHAL5jmzGHAY8D7CUHHhv21o3gnpo26A3hwL5TfHXgJ01yYhjmUeNVeqEenZL82PxJ0TvbXljpBJyYh6gSdjoSoE3Q6EqJO0OlIiDpBpyMh6gSdjoSoE3Q6EqJO0OnocNPkU0eNHIq5skyfMGv2or1cnQT7IHt9RjFKxAudaXVH+quT/gEoIHxAYULYCVrLXm2pH73irJNAmY8pYvzVydEfOzDFnhB1glaxV21qRQ0/DEKxdi0ZCKMYZMj6OAzoe61yCfZZ9pqop44aeWQ44DgeZNgSsh+pvL+rTlLsLn2CBE2xV0T98t8OzlbsoXeAraozcIUzo+4boYaXA1PNlntn3bS9Ub8E+zZ7RdS1m7I+MYK2/giZFPY7XvBXphyvqMYBwKsg/WbLLQIkzI8EbWCPjX5MHTVSBYaDfBFEZJf0duD1rIPWf+VMq//PFXesDLdmSC8x/JegMWIi6qbEZZ2/2pVVfXywzpUX9juckc+SulXOrN+a8XzGwE0HK7Zw9x0r+/wMJKf13XaMUIwuVWXdlwPJyd0rjkXItLrNWauAZGdGbb5QZGaw1ukPB+yZICQQBIYnhJ0A2iFqS7CjnFnVJ/l3pB4FQmD6aSuYMGv2Iuvzz2i7iSOBOsUeVBWbIUJehyPK3m6M6RNmzb6pjWUl6ES0aZw6WrD+HWnscjgkXTa3/1rMsWVtVwopQVQBGfZkb0Van+0vlf/Udx5Qn56zOd2R4mPbspwfgPqsg9ZLZ6q3JljvrKss7T4s5HWeJ43wFSC6WLb2RzaX//2Qz3E/0GuXwyPB+okLzwYGA3qfKScnWu39lLZOvmggrfFlaYAIY7bIqpTiuidvHjYF0nRMfxN2TGeMbuDTYJ37zGseWGI0lunUUSPVHSv7nCRs4ctVe2hMyOtUAL8MK18502sdUoqHb5kx77//nnjMbZVrevSyhgMFiODR2af/IJFzAATCv37iwuE/nznsR02T1W28xwT7KG0yP8yWWn5uZeEFbgO6pPQsd9RuzrwLqWxFGC8jRSlC9nCk+CYG651hGVZzJ8yavbFBXjZgWFqfbVNrt2QeaARtyYAvqWvlWmda/Vs1G7K/Cfkcr4NQAa9Qw+fYXMGPhGIEAjVJZwInAfqFh/zuUpu3523CNIOQhMoq+7/V35+x4uVjLp97FYCui2xNk+Vt/3cl2Bdos039jyvPLJVSIMPq5Q06hzcBT4JEqAYI+ZoM2S7rN2zp4q6Hrv1G0+TYqaNG2nofX/JY3ZaMcyvX9HQBXYUSDiV1qyqr25x1N/DBhFmza58cd3JusN5ZEqp3RbIPYZo2J2fnrr3+msk/PAeg6+IKV8WhL/X+clpQoKiAkEjL750REKjaz2cO+xnYAozTNPnUAw/cfaoQ8vxw2Pmyx+NJmCqdiDav/TBCtp8BdyMjDhmAAUKRYUWCGAXyOaGGxZriw29c/NSIniBO3PBFXrZiCyEU401pKK8dfs3cUTZn6EBNk68DzHps4NP+yoOuNkI2LJs9bOV7AjAjZ/jSaIeO7/kyf7xfilCqkI4jMZ2gnycQijRFrgErgYnAgoceuvN0w3B/bKW9zuPxFCaE3Xlos6hVR9CQxq5QDFHogB+kA1BBbgDxctm8wZ9aNvi5wMepvbfP7jds2ZIzz69dCKDrwgl0f+XvBwlfZcq7FT/nnQsChLHJlVn7x/S+2/5SubZr/2BNUp0Rsk0EFui62KZp8kJNk7XfzrwwV0j7lZi/gIDVOUUggoBumR1/83g8SSDfM6sqAOxDT3hp4adzX1IMA+OM01d3uOW4CVpHm2cUk7tVDlCdof4Nz1std6HqDK4FSUrPHTOBf0YNx4WA+Tc8+sW/IoIG0DT5yuKnRjy95fuBb1b83OtcS3B+pHLeuKcWvFKzocvL/oo0Mg/c+PyEWbN3YDpG/GBnfbaeeKUw0whA9aX+pAKE1fq/9ply8iJdF6vmznU+rSjBD0AMMDu4Mjz0hJeEqqIKgVBV1I8/GRRZUJVgH6XNrZK3IuWLYL2jZxMf9w/7HQMUe+CV2k1Zd4C0WyINY7Wc0RdPHTVyqOoIXgH2M4yQ7QCEYSAVJbX39ik3PPrF11NHjewF6eOBT8tL+t0KoGny8Uj69RMXpriVwX6J4RAoYSDsqjlIARQl7J64fuLCj0OnOt5YvvySSYZhQ1V9Y/LzX/Ns3HjUCkWhAMxRdilBUVAeffT6m7Oyfp7qcNQ+fcUVi/9P14Ud+BfwmqbJedbxycCPmtZojJgEe5E2izpY514DJE0dNVKZMGv2ziG6/0zJPR4xaAZSLDKCjuW/FjRzgckNOpaFID8MB2x2a7zZQCoKSKNmQ5ePp44aOdTm9r0d8jpdIG6aMGt2Yz3bGxXD6ZQYN2D6ju4Hyo2RewwSKvzss0mHA3Tv/v1zN9307rMw5VmAjz8ZFFJV1Eh/2TAwqqv7TKuu7iNBjvV4PLM0jZ+B8zDDbMzD9IVXhBm/5RldF/2sz27WNPmmrovuwD3As5oml+i6SAUOB5Zpmqxq6/88Qctou03tDPQJ+x1CdQZOAz4Gc5zZnd3tv4oaTnF3qb6hbnNWKqa5EentvQWUTB018py0vlsnenek9gd3L2s2EtMkYNcqPWHMRor0kNelWp91A1ZH1+OHGddnZoqrJgppK+o75ZQZAOsmzbtaSNtYQG4UFaEi1zc3I9WewE033fTu9Oj0Z5y+2vbxJ4NCioJiGBjffH3BM8BNZp2ECmiaJhcB0f2HcmA4sMo6Dln3VmYd98R0+PghpiPKfMzJqrOAj3RdDMWM9nWJpskvdF3kAtcD/9Q0uVbXRTamV9YfNU1GomklaCHtmFG0Xw0Q9tv/O3XUyMi6iwne8rRu6f23/PX3f/t6mXXt7cATIG3AMyCeBkTNhi6GM71uW7COFzADCanWJA5m6w5I4beEBWYcFI0GO2Fs3h5PC2nrUtOj+CU4mR9mXKcmJ5/yL3tdb+/Povy1BY7l15iCliEQSxq7n+jO4aLPPUNB3mDWh9+YSgCaJr3R5zVNbgRuijr+HjNSVoTlwJnAYuu4BvOptdU6PgAYjxnZAOA0zLB4hwAlui4uBqYABZboj8cMhPp3TZNVui56Yj6hSjRN7vd9gnbMKO4MsmMHtGcmDEmGLg+BeKuqrPukqGtTAGlZrYAsAvGQze3/ctz0+T6AqaNGzrDy1M0kIupviswyfmuLr5+40JnKaScGXVtWB5PLXgRIL7tkvBpKSa3uPfupBeVudddTQETqvduhO4/Hs+gvf/lDGERNIJB2diyG+jRNVmI9zazjZewKooSmydm6LpKikszHNHciLf82zAheEdPlKMzhyb9Zx78D/ooZFqNW18UtwFjgSE2TAV0XZ2DGlXlI06TUddEXcGmajDxpOhVtFbUOwg+4QWBz+RcHqpPmqM5gMOx33NjA7tUxFzpFhHlfw7Ft6zj6XAObu8nlpR6B2svu6/6Hw8c8J9dPXDhSJeWvwDdpG0aOw1X0tHVdiCZa3YZ4PB4npNnS09fOu/vuR/fY2LWm7ZoF0zS5CXgv6ng+ptAjx0/qupjOrkU3bwNr2BWFbDPwg6bJgHVcCNygaTLii/suzKdjFoCui4eAIZomT7OOLwa6app8yjruD4Q1Ta6P3R3Hj3at0hNK+G5pqCOFGt4sw2qProeV3nn1vct+E701Huue19499yRhOBYCCETIEMEvhFRPssamfUDBK1mvzfL7U+zhsPsJQG9Jq+vxeI7AjMNymcfjmRWLunYEdF3YNc2Mya7r4gggR9Pku9bxOOAwTZM3WcevA7maJg+3jt8D+mmaPMI6fgawa5q81jq+BvBqmpxlHecANXtrSUKbO4oTZs1e9NjVpz8W9isjZVjtAYS2Lcv5rKlrifGucGHYTgFTwoBNSHWIJWgA23Jl3TX19Vl9UlM3/jRhwr8fbmm+iuK73DBcZtadiIigrb+/xwySFDme1uDaS63JsAh/wzRtImzh1+H3xmH2DyKNwLuY0cXOBdB18Q7myM+91vFNwM+aJj+1jnOA7ZomayMZThtbvLMhHDe9oFXaadcmgamjRk4C+ZA1sRLCNC1aLKD2sH7iwqHstLcJYi6qehywbxGV4fcdixUEdpABEFoLW+mhYPzPssO9IBLT5y1A14UCuDVN1lnHI4F6TZPF1vGMitVn+TZ+/ceNgH7oZYXvSUN9a+NXEx5WnTWHpPb6fJa34sDPajcev1R1VB9uhNxH124+JhuUyBr9wtYIu71TwrplW0eEpbczvxbTZ8rJi9ZPXLjT3raOlwHa5/aV/RDcYF4pIms/musg9gFmWv9IsDrAzaVLAJomDaKiCmuanB39+Y+vFT0H6ObSCcmPr31aBWIMiBsByn+6GMzhzrMAECEjaga61d9Du0Rt7XDZXUcurlgbARY1PC73FA0FRoN0m+u+Fb2pPDwez1C3e/tUIdKPltJuYP44BXv4R9rJ0QDbTotOhFchbR86M362u7N+Sqled8oHRjBlU1LXH2qTuy3Ztu3H3x3Cr5/CemsK2+tux+KFx+MZ6nBUvRsIJGeA+kBS0raVoZCrLBBI65GcvPlYt7vitPLyA3xS2k8GFJDYbPVXhULJv2D9SBOmR2yw7OMikC5AuLN/vO26P9/6RAvSaOxpm7qj4/F47gb+HNnuFY0QYaSkGtQ084wMgbjP4/HskT7B/sa0scVDVWfFlUbYcbOiBjaE/ZkHjpteEJfZ0s7uylfFnPgBpFRV3zvAcQ5HTe9+/RbaQD0TM/xxqLHJnQSxY9z0gkVjH79ovM1VeXnYn9kHeHna2OJJVoscUzp7S91whOQ3oxnWNRoJc2OPMe2mj19D2kdZ+1v9tHJ0ozk6taghIdqOyIw7XvgyUNPvOOswBNw3bnpBzMy+Tr/LwxJyQswdiEBNb581wx8Xs6/Tt9QJOhbTxhYnYbqb+wBz1WKrRzeao9O31Ak6Fml9542vXjfcbXOVP3/jY5fMiUcZnX30I0EHw1/db4xQ/BhhR13zV7eNhPmRYI8xbWzxicBn1k7/Vq/paCkJ86Mz4knfOeKDp6rlomlrupZzCubma5U4rq1JiLqzYQqzGHBIZKjiseR33D7lU7dPqalLCmdWpYdzs3bYfnD5lbra5HBWdVr44KwdtiUuv9JbIu8DVIEI4EkvjIOw54EMgqGYW/eaXpPTHhLmRyei9HlXdrettsVur9JftGM5uESGBeJePFUxXzIw446Zhen95r0hVP8jl9z86l9inT8kRN158KSfI5HTBKKvREqBMCQyVJUWvsceEsXJ9aqvOjWcVJkR6tllu219klf1V6eGkiszwj26brOvc/uUPImciWkWGAJxGp6q4nhUVdeFiN6+FmsSot7HWftv10lZO2zPptSpBwPLa5PDd6XUqeW03aa+GbjcEHLh2n6B83Ou9cXNT4muC8Vaix1TEqLeV/GkO4AJhpCTpcDudxp/T/Kqf8JTFWw2bTOEH0i7RjXE81VpoY3p1bb+eKpi6nbB2ir2BfB21GbgmJEQdQzImThn56hB6ZQRcZ+SXz/DdXvPTY7bVEP0k8i31/cJTOn7e9/XsSxj81Pu13pscYzCdMjzGTAvlh1HXRfTgM80Tb4aqzwjJETdTixB6yDtAhmWKBeXThnx37gU5knvIZFTBeIKv8PwOgPKxXiqPmg+YZvLmw7caNnoPiAeIyIxJzGk1340zK1KQiJswLs5E+esG5C2sjrdWfHF99uGPIXpeuxY2tiahyenneR3Gk+4UQ4SCLvPafxrc4/gfTnX+ipifTMNKJNIrOgMMR9X1nXhALrF2p9IQtTtR8f0x23HnFh4EmTvHb4uF66pPuhQ4HqQPoF0SYQBwp8zcU5hi4XtST9Hgf8m+VQhkRK4zDWp5vWcuN3Or9ABQyIVEZ9NFAswN+wWxjLTxNqPdmKJsxDEfSCGl04ZcXvplJGjljzwO3uPpPUHAJerIvSDRGDtkHbQ0vDUnnQXME3sdJ1GGBgU+7toqvyqRQLxojBjVcbD9PgrMDXGeSZa6lhgCfs3X/gX9924GlidM3FOGchiwAWoightbHjtb/J83iUy0tXFGVW2vkAAiFdr2RyrMPfDLW7uwtaiafKdWOcJiZZ6t+RMnDM0Z+KcSVZnsNWfRzBFLwqARxRCO1yq7983PjXm4t2l6bnJfn9Gle2QrV2DczFb9vvYCx21rV2DgwHK+vmbcrDfLnRd9NV1cXYs80yMfjTBKX957I6y6gP+GokxkOqoNHyhpG1Bw+mzKQGH21bXvSaQYcWSNL0ItcROvvnpa4d/tqHwo+pAmh/U54HXfpPOk34WMCesyP+u6xu4MOda3177knY8nvxoVoXtD9u6BA/sOr7+51jnr+viSWA0kB0rX9yJlroRtL881m1rfa+HifKr4FL9VUn2uq+BBS7V+5VL9Udm2gRIh0Pxn9qSvJ+88fl51YH0K0FNAW4FiqJb+rX/dp1lCPmORC5RDXHV3hQ0QFaF7XuArtvt8arHI8BRsXQuv9/Z1Pkz83dOlCwdvfQ3LWvOxDkKHPg8GAhkQCIUEMFt3h4jo1tUS4hFIO12JWAbO/hvJ8KFLayFcqC1k1o1HbwIDViEJz2zh93+n5BNOrZ3CV3f60Zv3BbStwKv9e5ubcKS3LyhEqkh0OvOLv8iZU4Xakds3/l5ypwuJI/osib5g+zjl8vcSQKh560oabd51alFfcTMw05KVYPXScm2KsPht2GcBuJ462Nf/sz8gobCdqt1L3rDyWeD8ncJ79DE2HLplBGLcibOKQShnTtolnFU9y/fakXVdBAB0y2adexJtwGv2oMitSIzfHGvG73ftummY8zGnoHcXpscrOvjP6ovLGtpupLcvKHAfIGwI00Bw673CJFjaW7E9Zbk5hW2V9idVtT5M/OHAfMqw46IiWWEEFYzIQCcNJhMOG3K3+7yhg+50tqZMR54p3TKiCaXX+4a9RhBxIutros/AfM0LRLmuvF05g+C+0CcCWyryAh9nFlpKxCIMVm31b3d1vuONY6AWAuQVK/6W5lUw3L3K5EYKeHFaq3tfalK1T+45iR1q+MX+3rXOinkKUi0WE7wdFpRA4/s8pwpwyAmg5iL6dzGBVJk2wJl0QnW1Qw4i12xGFv9D7aicI3GDLjUpKhhp7DHAGvvcT3/VGalrWBHZujrrNvqnm1peXuCLuX2lQDZO2ytXa2nS2RAIFwIwmqt7ZbGWmCrRW+zM8jG6JQdxevf7PMC5rR0yHyJADDXMjUKbRiPCaCH3X9XdDpfOCkSRazF4TSi0TRZAxwPTABT5Lq+c+LkN5ROGbH+7KT5W66m+NSQKhftyAoNa015e4h6671VNnXeipJFAlFguEM+Iym8oSmTwjpvPbVot+kBnXBIb/DMw4YAn/dzeHesC7gvCCNOppFO4chXB31WFnAfC2Lg0tFLN9w240rne6sv2y4Rc0F8RTtX3Om6SMFsredompzU2DVlz7mO6bI+5X/bQlmOyVx+zvMPTJ7d2HV7k3XPuk7tu9756aYegSd7jvWOa236kty8+wAP0DtvRcmmmFewETqV+ZE/M787iLdAlvV2+LT3L1+9FnPZ5G8oCyT9DliJGdTnVm8o6VKJkjKs9yelL97yeCy2MdUDH2E+Wn+LJ93dzWX/0C4CjhuCf/CvlP3OAjqcqJ1+ZTNAUr3S1vgtbwKTw+nB37Ermlhc6TTmxx3vdnd3sfm/BJkF4sLpF21Yu7vrl45eusYhjNcU5M23v9Pj6EWbtAEADpsvJjatpklD0+SdmibnAui6OEvXRTcAPOkC+LfLJ7IrMkMTVsq+7ygidNVtM65KjkXZsaTbNvsmgPRq2xHWzphWkbeiZHk4O1BvZIQmxr52jdNpRP1dfdrM7SFn/2OTK2csHb30+5akOTm1fAagrvQlP1wTyDgO+OnZm57+MdZ103WRDrwC/B1P+lC/w/gauFwg/tR1fP2jp/T5+EdD2tKqA+mNmil7mXwAiRwBFLVF2OGs0Ee2MldGSW5e15jXrhE6hajzZ+ZfsSXouiRVCc587uL1t7U03WMXbF5gF8bLZf6kU1zdZp/uSvsuLsEyrXjkpx79TfLLEqk7AuJoaxmpDpDh3DHVrgSqF6w/7ZB4lN8evC5jAoAwR5IiI0KtwrEq6QFryO78mFauCfZ5Ud/6ds+LBfI5YGGNYR/T2vR+qb4DOGxZn9ntvd44y5pxjDmaJhen1qrHCITDcl8QxhLI42Ne9gYNx8ywtJ+dM3FORjzKbxOe9HSXTxwnkUhkm0aELH6QQv4STgvdGNsKNs4+Ler8mflZi+vTX0xRQrbuNv8VS0cvbfWm07C396mSSJBpqYa9va+OQ1UjzMOKXNBwGalD9b0MOI/o+uX9cSy/VUjkvwQiWyB+LxBtXiWYt6JE+o+o3arUqkd//YeuA+NQ1V+xz4o6f2a+CrxSHbbZDnXXjp575co2bQkKVAwFhGkMSJt1HCdMQewck40WyFk5b3/V1b0psN3b7Yr4VaDlbHza/YhAXBWwG4/hqfo3nqqH27XsVci/CEOQ/GF23Mfi91lR93V4ZwJngLhlxsXrX25rPqGqY14M1x4kpeGkfu31/lDVMS/GsJq/xVO1qDGBPD7mZRkwnI+trx3QLWfinP5xrUNzeNJ79thsv6EuKVy1sVfw3lhk6fo2bTZQJhC7XUceC/ZJUV/+ev8J6wLuK/s76hcBz7Qnr9IpIxa5FcMvDAeGN2f4nnBx0BRV/qzp1p97r7W2hhsVKWzJ9eqQnGt93mbTtIC8FSUynBr6WAp51td/6No3Fnk2xT4n6vyZ+Zct86b+2S1CG/LctWctHb203VOiQhhSFQZ7U9AApVNGrMlwlq/Mdm29+7YZV+6V2OhbugVfAM6SyDvwVP0Uy7x9x1V/LaRQbFscrZ6ZbA37lKhPeCn3dJCvgHB6pS37o6puMRkCCxo2vzRHI/Y6h2R//0W5r1vKh2sunN7cNrFYIz1pl3TdZruqzh2qKusfeDLm+buM56WQm1zfph0c67yj2adE7VKMp9i1s9pGG8ZMG8OQiugoov58Y+HLAAHDNYYGu2LiifSknS8Qs4RESfKqzpwy5/HNp2odx07dFhZSvAGcVZKblxrr/CPsM6LOn5nff1vI0cdc69y2VXRNYRdGiiKMjrIO5mjrXdAadwptxZMutjyZ9IwUvCWRQiAQplOeuJQb7O37GHB6h1bGbeiyo3yRLeER01E3o4A8mtiO1RbCUjVU0xnNb+gx7/ud2782Dz8irjb3Ox9luw/ImHjSz5V51hmhYkayig+e9H7AjO5b7afXu8M1bq/iwFzYHzdXDP4jaj9Vq2whe6n7lHjkD/uIqMe93ev/IPtihwg/tPjq5e8C78Yy/7Dik4hQOH9m/tDoH0rPeYuHgTLfOgz1mPf9g31Y/c4QPl0+bfj0mJgrui7Ehpp+SS8uv+nqQPieJ9ZUH2TbFUtdhkF0aS6P1lL6vEu4fOKFbsJ+qSJFGBhXm2JMT/KqQ4hveAyOnbotuDw3d4at1nattSz101isoY6mw6+nzp+Zb0tVQutVIbOPT6no9vfzt8TUf1z+zPyhUorPBRIhpP+IpOrfvXjJ2jcAesz7bjJwb2S+MbK53E0tPpLmS5RvDmTJRiC8isHJwLzWtOZ3PndRUrK9dv27P19Bhb9LZqZze6BPaukXS7cfPRSEHdP1QkFMR2U86f0kcoZAnF6TEt6eXKccp9xfvSZm+beAkty88cA/AQPwE6PNARH2hZZ6bI1h656shC6LtaAtNJARvTqzbYFHgDcAsthavIPudwB2KzLrjUcx//AArlOWMcQNjF/FYGdUXt4e874v3J2wdV2cXhtI1cYXv7op3XH+36sCWc5ke806YHyFv8vr300eHcqZOOdW4HEwbi+dck5MvmyrdX62O/ZLBEIJ2I07yrND/0j9o2+Pd5DDKaFctdYGZp8u5o4nO7SoJ7zT/SBB1z9LxNw6w/Z6nIrRkTYkIYnAX2+o94HpGPxJwRuL5Gnv/8QRhzrwPfXM8CdegiN2Juwx73t7Jlueq6DbldaozG8281p5HQb8eNeCp8/PdP3ltdKqQTZAkYgVBX3nzEp1VE1+fMzLOx+Zw/t+8MO8dWczrM+ng+Gc9t+hJ71fH9Xxii0sTvS6jNVunzjd8aeaX3Lan3ObkC5jEbWMk0gjHq7UOrSo1wXcbwlIO9hVc98bo0rjYictHb100cDJT4YdmV8ssKd/96enL9oQEaQLmDFUfLpgKJ8+Dth1/Z+vAA9omlwBsHn4EcEe875/ErjI9N+B0oO1K6KFr+viAuDt55aN/8OW+l7/2FLfG9PnB2N/eOCqp+Gq39Qpy7X9e4Cy6kHtGp0qfd4lMivUyenY/s8WFmpVWuiRiszwxJxr93zrHI1tu2MBgEC8CzwSa5u6ww7p5c/MP7LEl3JoX4f3gzdGlcZt1OH6J8c6DG9/tUv1kJ+iO4maJqs0Tf5J0+THmiZzgaXA6ViR4nVdHKjr4oTXxJFfAIVd2PQaCLqw+VpdF2/ourjcykoCsxdvPjET04YEhAFkNVWnqdfPqgS2lFUf0PZZRU96v25bbSvSq233hlS5AshPv73ujr0t6AZ8EGtBQwdtqe98t7uAbv8Esb0skHRlrPM/4aXcsX6pDghI5d3h9sE/A/RJLd3tegRNk0W6Lnprmoz4v7gV+D3Q7TVx5A7glWvkZynLOK6gXHYryRZbM3RdKMD9QEVdKPUjwLLPWzRkViYwclp7b6EH005RDG5XEKe6vQpbugVf9bqN33UkMdcV7uieXJSF99iqY4F/xzr/DinqqrDtCeDEVCV0y+e/K6mMZd7HvXjIcK+0PWUd3lJkbLsA4LutQ+Y1lUbXhRv4GnNL1l/wpA89WaSmhmzGt86gepiuVT8IFN7D2Ln38KJ7Ms92D0jX8hXDTzMs82NT6ZQRfsuBjUYLdqoflPljtwpf9pEtuafqqSnd0mrU04DRKpwmEFj26qXdb65vjeeoRrF8c2hATNyCKdWqD0CptVW2N6/G6HCizp+Zn+IQ6Vd1t/tqtNTy6c2naB0hmBTl99GOWnMKgD/srmkqjaZJr66L+cAqPOlDJVJXJA5HUAHQc0tc16zI8y1azSF2kAVb6dPXTkAfN++mP0wbLh+L5NOUH+vGCBq2JeW+rn1yJs5RSqeM+G1YNk/6wcA59e7wraleJfKUqY26wgAOaklZDYkWsZEcShKoc6xZxkAs3IK5v06vAnCWJMdl+1yHEzUwKSDVjK1B5YR7ztkR01Bn+TPzM0EdYnXUDBDB9HD2ijpgYPpPmab7sMbRNGmuLNPTJwGRLVlIpK3HFkdOj5u891427/tJlssywqisIe8k4DFdF8mY9vgHUebLbllTdfBc4DxMb0+b8aTbgZNqUsK32YPiLBeKA8AeVMq2dwl9llGpTrKHFEOYXqjsbR1ViPKY5JRIRL2iREXPdUqbMZI4xBOPJR2qozjy1UE3g7wL+PCH0cti/o/r4/DOAJnaxRa47bS07dsuyNw0JV923wHQN3VNs07FdV24KjJCy4CA5dAQCcaSw+sutYSrW96gQgaqdzlHPxa5NeBtTO9N6LpwW/b27ihLo5YX0u+/p+Kx5FKJ3A4Up9QqZ/udRnW9O3wfkGO/pzqn6/j6k+331HyGp+pzmthZ0wo0aTquVARCMZKMDdb+RAkoUpGTfjgj5+mS3LyUNuQNQN2p5d0BvMdVDWlrHrujw7TU5oZX978w/T0Pbzhl3V6ufqPfkZsCqRcd5KoruaV76VOYLee31y06dwPAok3aghZk892SI+pLND1NA64GWH2Af1tFVri/psm6zbBo1LzJYxYyIsfAVlw6/MRI/d+yyltoHU8Axui6OETTZJ3ldkAD9JqUcH19kvHgt6kph6cFgtj8xriAoRhetzE3yas+LRCfpt9e16SpZAm5zf+3QH9v0FHmJhJmTq2zXWJ9pAVyvELAOHup+wbgwmUnDprhHVI99dhHt7XK0Y1SZTNt6mpbWx3k7JYOI2rgtEaWlcZM1N/Vp98pkL5+Du9VmibDwLkAxkfm0s5A2FW/2wxMHgC2RQvnQOsFpn+PmwRP3oTnRU2Ti3b5wj5MXzp66adR+SwGkiOCNpALBKgCQWqtKlJrVeod/vLp4fPYYk96+fpeL4zeE6MXJbl5Q+24rpTIgHQbjwuv+k6U/Rx5/0tJbt4Q4AG13DEpaX7GHctzc+8QiKfzVpS0aJfMTpt6RXLMIxNAxxL1/6x3gxivEjty5qHHg3KZRDz4jws27/T7rOtCHdz1voFLth1HXtaStN3Z1AAtiM5aA1wDrDIFLXXMIbxA/sz8W4AugL50tPwQM5IsEqkJsFl2qwTe29o1eG+3cfU/PDJxTgUhKh+8NjaLp6KxPLQeAKzUNFn33RW9L3Eqqa9gYBOIUANB/4q8FSVfAmcsvqn7Tc7FaWMVxD8k8o7vruj9SahH4NZjH93W9JPk15xdkpu3vNNOvgx2Vy0BSFZCi4DCWJked77bXXSz+z90iHAt8PfIeV0XJwKVh2Z/NwKgb+qatJbkp+tigK4LrbHPLFdj72iaXIb5pLGbTx/hBPk08BBQFO1bRCB0gfBirhH3AVO6jav/wfzMWOtQfY3uEtF1YdN1kaPrIs067qLr4ve6LnKs44N0XczSdTHYOj5J10W5rosTrCxOBr7F8sCk1KrnWILeeTvN/S+OfmrLU4d9tWowMFwmG+Wub9OuSZqbtaYkN++Gkty8k0py8yZZHU++ua1bn2+v7nVGSW7euYY7NAVAIi8AiiLXxIoO01L3cPidS7yQ564tf/7idTH75c6vyRpVb9gyjkuueOnfF6+PbkFWAi8s2XbcT8Dl89ad3VLP/f8AjtR1kaNpu13iqIPwgXQAimVa7fR7reviCyANjaWanlZoCFlYmuMPr+0fqNAAXRcZR3S75/Bt9d3NzHTRx8yTuzVNvo7ZypYAV2KOn/cAZgCXAqVWOUcAmVZ9NgKvAjus42+AC6z/A7YNzhnAxRLZ6pGTvBUl+tcTug5WqtUJ7oUZFwNPRzrSAiFLcvNqk8neudNF8dqIZyTdDiPqBdXZNQDf1aUtbO7alpI/M98BtgeB5V/VZV4X/ZmmyW3ALdd8NGcUQNBwtHTX9D2AtxlBs3T00kX5M/NvsyLgWktXQQFpIHTMXS2VwD14qv68QBc/YI4zG8AKwMh2beXH8iNCORPniBfOpAb4CthmFbEeuB74wjpeCfQDtlr39yOws5XXNPkLMD7qeCtR69IPXbxqYUlu3s7JodaaBMdO3SaBR0py86YCzwOjo1r9HwMH1C8Ndw1UuBdlvAV0EYg3iaGj9Wg6jKi9UgUgjPLbiYY2crCr9vGffCkHAGcvHb200THv43osGPrV5mEc3uVrR3M2NYBlWrSULpitNIDRz1G/7Zjkqmcmn7t9EYCuiz+wK+JAPTAYWGeVU33NR3P+iBm9KkPTZAVRrhM0TdYCz0UdByJp24ol5Ha1mHkrSmRJbt7TAnEpu0R7++DZZb/Ktz0/oOboMKIe7K5yLPGmk6KELsqfmb+ovTb1ma8ckL0j7L6hn6O+fG0g6aPGrtF1ccMh2Wfc9tXmYfRP+0Vtad66LoYCJ2uabM7fso65CN4OBNcGki6Yc/nq6EVTj0X9LYEfohM7FP/6gOGkX+rqQ9jVke7w5K0oWdScaGPxA2qKDtNRXB90DwWoNdShNOhMtYUNQfddXkMRPe3+a3fjG2TeyopD3wL4pOzc0lZkfypwrzWC0CSRcBxYkyGt/aFqfT90AQzK+CmmEWH3BHkrShblrSh5OB6r8Jqjw7TU5SH7YdaWqXZ3Hk78T+4gsN8GYuazF69/v6nrNE2uuuajOV8CF/nD7tZEn3oC+HtLAlpaQm7TfVQHMhYALN1+dMwCZ+4PdBhRY3ae/IDTErfe1px62P1FdWFVFdCsH7jcrCVHrdgxmP5pP7dY1Ja/6bjzxSatFPBu93bP2BPldRY6jPlhtWjDk5XQLwJsBanbe7Uln8EzDztupS+l/yHu2gXfjf6xWU+oB2SsuEwRYSaf8H+tKkfXhabrYo6uC1db6tkSSqeMkKoIbkqxVx0erzI6Ix1G1GAK+8SUHac5hFE/ryb7wfyZ+Xe3xrbOn5k/1EDMAiqWetPOa0maRRu1F5D4iFqP2kLcwEDMYbS40T9tdXq6s/KE5q9MEKFDiRpg6gVbfvFL9RGJyAP5Z4H839EvHuIxI281Tv7M/L7HvZj3FMjPgRwgBTisJeWV+7rXGah1miZb67D9I02TeZomV7YyXauoDmQs3FzXu7XRZvdrOpBN/St8mOudFYkUAaneD9x//Et5W/o5vNtKfClvAF0HOuuP2RZ0dAf7AK+MxPUEc7JDaLSgg9YvdfWh5b6uSbouCjRNFre0gpHJl0jwz+YmY9rKdm+Pr4HzcybOSSqdMqIli672ezpcS22hY3YaQ5jhJH4P3JWhButX+ZLzrJDM43/xJx+vCpkJTARGsXMNRcuneZPsdb2SbHVu4KlmL25YSXO8uhSIm82b7tixFSAva0l+vMrobHTIltqaYrYG70W0z7y/5c/M/xMwGVBBhivDjr8tHb30rwD5M/PXYQ34t3RMeMWOw3+wKQEVOLMNVf0F+I44Ng5Dei50fFJ2Hj2T158KfBmvcjoTHVLUsNvx3WLgT+zymqS3IM3ucIYMR7WmyVa73tI0uYU4h1HbVNe7GODrLSfWxbOczkRHNT+apL2zdA3plrTx4CzXtixdFxfrumhLa42ui3RrO1fMWbr9mFVAqCaQ0S0e+XdG9jlRgynspaOXPhyLNddS0i1sqF2Wlx/+MNDqsA26LgZirpy7rL11aYzSKSPCqghWutT6S/Z0ZIF9lQ7v9TSeWCL5DHNfpD/JVnfa8odGfdaaPKzRj3uBdzRNLo1HHQXG5xKB1REu3NuxaTo6Hdam3kNo7HxaCVt9KOVkTJG3PANzKO+BWFcsugiJkLFYE7O/sE+aHzFEN/10SEAGx+Q/OkDXRWGrM9GF0HUxWNfFgc1f3Wp0y/cexNHDf2divxZ16ZQRiwakr1yuiLBURPjUE3sXXwKc1IasHJjrnW+PbQ3NOibbq3+0icAOEqZHi9jfzQ/WVB38DPA4sAropWmy1cEwdf3+o9LS1s5SlPAcTYt1DaFH0sZe/rDT8dk94zuEoIuKB+30U1JYsLpD1Cma/V7UmDOCADmaJr/e3YXrJy7c+WX2mXLyIgCPxzMc+KS6up8AecWMGWeNHzPmw5h68lxbM2CVQLZ4Z048KSoeVAh8CNIGhIuKB00EPhVU7QBjQ0HBDrm3Rb/fi3pw169qlmw7jiE955+j6yO3YroxeKKhwC1Bz5NIB0jWTpr7qiKdy/okOc9fb/it/6NUk8Ipzy6dPr4ubf3Z320YMv7mkLO8e0bZRVcePua5sK6LYwB/9ChJYz+UhgQNJ0B1HG6/xRQXZ+VLkv4EzvMwJ77A1M8jAJJ0QAaLigdtANkP07T1FRUPKtjTwt7vRd07pWzVkm3HUR9MGQDUAQWYfu8attoapuNFIQEhHZcBygDfQNY7SkCCio3cstFkyvRXAfr9b2Yk7ah1ExfUD7DNthv2GvsvC1/22uv6fhd0bzjATq9uIAyB8K+fuLCwMWEn22u62URwW8Pze4Ki4kEHAH+EjDGYm+HngTgB88kRAnErGDWCuiskzgA4ctm52Vi6gFuLigd9UViweo+NHe/3on7yxhfW50ycU7F0+9HVmia3A72buFTH2kRr+cUoBL79OfN/Y6jL+meqKt/LsdkWpqQt21bl2nZw2rpzfxQoKd6MpYPDzvK8lC3aYqkG+oZc2w9HKqkO+nmVUGoSZjDO3Qb0SbFX98lw7nDH5R/QBMXF3c6V2P4Jrj4gQmC8Lqj5d0FB+VzTvBAavzYvXoOIvS2KLH8nArgMwr2Li7PvLCgo/6LRwmLMfi9qi1LMddhN8vOZw75xlx+9NvOXy79LKj/uiUiLuslTVAVQY4gJF919dyO+4U5uMk/L9CiiGf8X27zdN1b6s75v/jbaR3FxlpCkngG22yH1NDAkBN4E522FBaWbItdZQm7UpCgsWL3ItLuFBiwAeSyIqZK0/xUVD/wHiB3AvHiaJAlRA31SSu31oaSTAHRdDMO0Ey/UNBm9HSzLm714tTd78SuaJnd+IQ5HTU4gkIqq+rZb6W8EBmianBhdhsfjOQlT4brH41kE0GfKyYvWT1y405VAUza1IW02f9gWt32RRcWDVJAXQPJzYEsFtgATBfXPFxRs2dra/BqI/n/FxdnfSFKfAmUC5qSAr6h4UGG8hJ0QNZDurKjYXN8rz/KEVIvpWCYT0wsSsHNF3m+83aSlrTtj+/Zc+vT5IiK6Q4F8XRcisnHA4/GcDXI25uM45PF4bvZ4PDPAFDbNzBDaFX96hnNHRvvv9NcUFecUgjEZ7P1A9AW1XFAzU5I6trBgdcx2sBcUlH9WVDzoFZB/tgKtOlu6iaMtJEQN/Fh+5JuYrWgXTZPf0ohzxGiRRlNZ2T8ghPSVlWnHY35J/6dpsqGXqVMAYXWebMA0j8ezLNJiN4dNCaX1Tlmb06qbagbTRFDmmqHIpQRxD6hTCgq2xstlsA74rc6jJI4zo/v1jGIUpdZ7TuREZJtWFJ/rupgafcLj8QwNhZKHSam6gCKPxzO0EUEDvGuu/d4ZClqhBV5FI3hDSb4VO/Jb4hS+NYyK2mscBozCgtVx84FtmhqiAFgDoiyeNnVC1MCQnvN9ACf2mnsh7LSL1+u6sFvHAnOh0/IGSTVzPyRYvX3Nun68rovvdu1fnLy4f3/9213rTAjQwpYqZ+IcAcLpCyfFepw6MkQYbs32t/ZgCfsxYGBR8aB4rJMBEqIGINu1dTnAdm/3bOvUL8BsIBXMlXiaJu/QNNlwplAHAtaCKMEuYWwBlkXSA6EBA+Z3ycz8Raiq3wAKW2p6nNiryAGI3iml2c1e3Crqj7N+ZPcDceu0/ZbAhwCC2ub8ELaZhKgxx6qBip8q8gMAmiY/1TR5o6bJHQC6LpIaMUcwhSkKVDWwylrr/IOV/g1Nk7/TNFltHRuaJg+oru7ztaKES1oqaIBs97YMgL6ppTH2L6JmQ7i+sOCXP+/JGb/CgnWrIFglccVts3JC1LsopcFYddQWrWcx47T8Bo/Hsygcdl4LIhnTAXp0+p2hmp9/fnhyOOzoFQwmGx6Pp8U7WD4uPS8E8P3W4/SWpmkZTgm2mPkCbx32R8E2oKh4UJO+XNpDYvTDIidtVUpdMGV45FjXxTOYNvJBwHvs3pXu56rq3yiE8YTHc39XEN5evb65PxC4JG3+/Hu+l9LWA4b1sDpmvTA7lS0yQfxhtxPAF05qaRyVZikqHiSAQey9zQbvApMhfBHwZKwzT7TUFk7VX1bh62I3O2YAzAGmW0N5r2manLab5MeHw/buoZDbCeIhYOrmzYen1td3RQiqgDkZGWuwOonRO1iaZXDXr7oADEz/KYY2deASIB38/WOXZ6tYCiE/GH+1VvTFlISoLX6qOOz9kLTbgWwATZP/1TT5KJCl6yJz96nRGgyPPWAYDvXOO6eJ++57SPN4PL+vrBx4wi5nOy3fwdIzeX0vaFnw0pZgisj+knnkOCMeomoBx4NqB1sKUBTrOiREvYtS6z0nckLXRRLwF2B7Mw7W9UikW8zhuo88Ho/UdaHqujhR14XbMjV2unZoaWexaO2IzQAL1p+WHaPd5BpmnHEwF1JpMcizLXWwJqNa/tRqKQmb2mJYn4/DC9afgdbnw8tgxDfW6YWYq/bGa5ps0qb1eDyLPB7PzjUcUYItAD4BztF1cZSm0UXT5K2tqVfQcB4FIFFHYfrUa++WLh1ztaHbmknU25FXO+ogDUCNxxh5QtQWblv99wDfbBl6Qs7EOUMt4TwA1Gua/HS3iYkM7/2m47UAGGW9F7Ar/FuL6eLafPV2Xw8wn6rt3k2+axVd6FMwlMKC2IX3a10d+lSDmgK2mI+R79d+P6KxHu2fY60iAwpfOHPkcsywbd9b0a/2OEdP/vfGcm/3nuxyfBmTzbdFxT3fBPeFIHsUFqxp9Uq89pff/yeQwcKCtS1yudwaEjb1LjTrXYCMtIiFmE4Z2+x9SddFiq6L63RdHNTatDkT5wwo9/boaRPBF0DcR0x3kyc9bNq1SptcrbUfWwjsJXHJOR6Z7qPoIAMgHAIppGlrRhb9FwAvtjFfN+bkzWpdF6s0TbY40pbAuFaiyJB03Fc6ZUS7YiQ2wncgN4NxBW2/t3Ygs4C4rBFPtNQWZgsotCRbzWaJ8AE/W1Fxz6AdHpisPHKBR4EWx4e5bcaV9jRH5aTuSRuWx0HQFBasNsBbBeKM4uIsZ6zzbx7ZA+rjMlWeEHUUpVNGLKoPpQ4H4QLDo+viCmCZFQK5zWiaXKlp8ilNkwUtTbNok3Z+VSDLdnDWsiZD5sWAZ0FBkr5HY8oUFfdzmNJzkZh82QOUThmxItVR+YqCvHljbZ+XgYt0XVyo6+KAtuap68Kp62KKrouLWppma32vm4HaBevP+KCt5TZP0gwgtOftarvl2k09msTky55heN8PH3aofjnt+0krMMeZ3wJaLMhGCAB3AW/qumh2Ec8pf378xl4hoQ3x2ZJ7hZRP4+XCt7BgdRUYX0H4iuavjiXh66w/oocpY0ZC1I3wxJj/lATCzrs31PbPveaj2b2Bo4HH2pqftQ1sBDCXZjrnORPn9Emq6P+vy2udnOyzictqHc5zwtVTnrrlvbS2lr87BHXloPYpLs4+Lh75N07wGGsNequWDLSUxDh1E8z+JO3mP+gz77UpwdrT+//3kMfHvNzakHStJmfinB5IOf/3Nc4DMwxFiN+GdlztTCurcqSu3Vyz4eQnge8x4zhqgD5uekGrh/uKinucCMmfATcXFqxudTCn1pc3SAG5BcIbwfYacXBNlmipG0HXhZriqPnrVXnTg95Q8gF1wZQXdV1M1HXRrkVFui5e0HXxj8Y+G//M1QelOiq/Gxyw9c80VAHSkOYr4Mr86XHgHuC7cCDl4JoNJ5+NuTNnvRk7Uj4EFE0bW9wGMyX5c2AN0OKhxnYyBEQXsE0pLFj9cDw2KCRE3QiaJsNAjyE9Fxyd5qhcra8761R/yPkwcExb89R1cRgwmkaCluZMnJP52YZT59n9ST1O9dokSF0IY5hA3CMQ2vUP3/R/46YX/Hnc9IJLbnzskhR3VkkWcDLI98wcRJttU9MdWOhzkGcVFQ+YHP9Ve/4JltkRtw5wwvxohpyJc04EPku210z58cHLJrU1H8sh++OAR9PkV1H5pwKfIuWR/xeuqrLX9kgCkT9uekGz0cLMllkusFbd+YCCtpkgPZ+GpBvMRUbCT5z2LJqbE4I+CNcUFmzoEuv8IyRa6kbQdTFG18UNAKVTRvwv3bFjXjDsuHPcM6MHtzVPTZOrNE2erWnyK10XKQC3zriqa6/ktStBHn2FKH/fXtuza3q/4rdaImgAU8DCGrkIvdAWQZskWZF0297it5BcsDtAeTxO+QMJUe/kH1eeOWzqqJGTpo4aORS40HoBcFLvoofCUlG21fco0nXhaE2+Jbl5I0py8yaX5OYNBdB18SKwIGfiHPfcspGzN9X16XF65jfP9q7se4Zir/nKkbr+umay/BXjphe8obq3b1Ucdb+fNnZuW02HyJPDIL4hOM433xzPxSl/ICFqAJ649tRzjJA6H+RfgOLFT414gKign9NufKG4X9qa2WlfurL9Dxw/IyLQ5ijJzTtVImdL5L0SWfS/6ckrgSxvyP0fkG/Wh1KPzXSWjzty3bH5AEYwddSlt8xslUOZaWOLh4a9WdlGIN0GorhtncW6DeZ76BPi6i4heCuEVxYWrN4Qn/xNEqIGgvWum81dGALABfLWjV8f6I++5oE3Xv3g9u9ep8/GyqslFLVQ2McCCDOylsO1JCVYH0x66dHFnttBnA2Mvd294ngj5D7RnVXy2LjpBaVtqL4GijX2J9pkOgiCqeZ7/bJ4CbqouNcgsPcQeFsdWbi17Per9KaOGunAHNUwAAlSAXFZ+aqeZ/zjyjOfMUK2/w7r/eWybG/2ZBAo5oVO0bLF+jrglUg3oH5Qc9b7zxVd+CeJ2vusnLe+POz7qz6pqjztUUfqutUpPb+6rw2xSa0yZAiEgzaaDpKMNeZ72m7Dg7QP9+lmGa4741eGyX7fUmcfvG4q0EWxB+8GZkTOB6pSM42QeidQVFOTtkVI0RVkIIwgqNjE1KNG9W84fX3ova+m5Eyckz/sz09ce/njf/zvJZfcd+N9Q3///f/6HuYTCKrrs++SqPmCsHFkty+PRISfB2EEavoWXnrLzDYNQ42bXrAoqeuSrwFs7m0Xtb2zCMD5cRzSOx9YCbaYB1BtyH7dUk8dNVLYk7pe6Eyr82UdtOFvm745aCI7vThKQAikdNT91E2tP3kNSQsztc96D77/3UEnnbEiq/+NIK/PmTin2Kl6uzuUQH5dMF0BWFsziLU1g1BFqP6b7nk//di7n54qnjvzyhWfsLD3YDYnZ8mypdft6CVVTbHX3HLTP88ra899hIMpa8A4IXPgBx+au8daS+AUM2qeHAXi/Fj7ji4uzu4H6adD4M3CgvVxH0Pe31vqm4L1rl7+avdjV9yx0nIvK6JsaRlWpFQy6nzrgwO9A/JWlCx6fOgFX6zI6s+uQD7y2GzXtsyDs5Zt6Zf6yzRgVLK95vhzBs4aFJa2lNIpI44qeejSs77KG3BtWFEZv+QtDgoIo+emw7s6Ussqsg96e3f+RFqEv/KAalB2tLW1B2WY+R6fIT2J60IzDIjv41jm2xT7bUttDt3Jf5riVG6bOmrkexNmzV40ddTIQtUZGB/2O65IFTVqRoUht2QkT754UlUpgDeU/DHIu6wtXwGtz0d/uOawac8Dl2iafEvXRW/M5vLlf97w4k6RPfr4Uy+8deIZRwzyhW47r95pB0Ggtk/K9pLLI3sj244IZyGVyrZnYLPcDO/cB6m3qz6/wTUU2CJJj+tQXoT9tqUWavgMdt3/ztZpwqzZi/7vxU+udKneHTVGCuuy00RZl4wnrPHryA6ZAhD3gih8Yfy/ZgJd2TXteyIw1TqHrosjdF3cqOsi5ZDytRM29BtaZTpIFSCl3ZG6vs37HyO4s1YUOtPK2rMu5TgQX0X2QcbW9OiaDPJs4L/mbpv4s9+21KojtCrkdWJNDf+qdSrJzRuRNLBnui915yq5X7kmsDa/7vziNU2WR/39uq6Lz4HIWOy5mIuR/rNl+ooXMua9l75t47EYQkGRBu7SYN20scWTaOMqOwB/dR8vUpXTxhYPbW0excXZZ0HGweD7W2HBhofbUv7ukbeDSIHaZbHPu3H225Y65HVanTMxEyicMGv2IoCS3LyhAVW8X+V2qqb7ZhmmlUNlmibXR4XSeBAYpGmyDliS5l/NEUseY2DpbAb+8l64MuPAu8xYKMybNrZ45LSxxb9Zb7o7npnwnwuNYHpfI5TSlTas1JO4RwIIvG+0Jl3L80/RQIbB3dBhfdzYj1vqYE44YAd4dMKs2TtbEcNpnLcms4sI21TyyzaHt6clz92UmTo5IvrWYol7nfX3I8vHH/w5oTULMqpL1RUHXCoRO91vOYH3heoNPTPhPxXBul6fAD+l9dVtir3+m8pfzi4aN72g3hKtBlTakzdeHKzvFr3vsQ3ObpxHA18XFOz4ptlLW0lR8aATQbU8yarvxzMiVzT7rajdXarG1G7sgjO99kBMr/8AVNiSytZ0TadnRY3sW1kX6FtZN/mKT+bH7Is4ZNlPny85LWe5bZPzUHvXDQ8I1f+ADDsMUILAtKSuy04J1PROAYYBV1av03amnTa2eDMY3SN+6IJ1Petc2SWrfOV5/UCotPKJUlSccxGoQ4Dpsbq/XxOaDLbIk6fd3qVayn659NQa+ViIGZrKB6Ig0hI/fXHhJ3XCddrQnze8luH1P5G3oiRmX4KuiweBSzP/1n+tfb1z2NYnVrp+evf1YSFf9gk0YlNPv+3t5IycT0fWl+f19G4/LA2MC0EMtlp2A5g8bnrBA1Gtd4vtcnOSRS40fwzSD2J4LFvRouK+dlDqTO+mu7xLJVrq+KGZrR0ALpvLP++ZCUMeDfntVV41/bQelXW4B5T/I+/tdV/tLpM2sBRIcfziVoBjzFgyzAfmN3bx2McvrIMLZ0WOp40t/pRfR8j9FCJLUFvdAt6N+aPGetfakMducIwG7OB/FJzbicO2rabYX0WtY8UZB4lQDFGzvqu1AUCyNS0Jf1L/HkfEuFBNk68Dr5eQt3M9sa6LXsBM4HFNk7N3l37c9IJF08YW7/Su2pbRkuJ5aTYpU98B10gQYUDGemy6qLi/C2z3AV+C84/m7po9x34p6sgkC2aLrXc5ZN0Xm7456CngBhDCEFDhTT8UMyxGzPHn1R1nX+OK+LvehhnFq0Xem9rYKgNQVDzIDRnzwX4sBN4Bx1RM2z2mrajA+7IktS+ExhYWlO1x+3a/tKkbw5pcKUJKlyIlhqKc2NYRj6YoLk5/CKH8Me0/GWVJXzgGibBycixt9t1RVDyoK/BfkMeDd0ZhwaYb41ROMhibIOgrLFjfLR5lNMd+O07dEEvAhQNrt1cevX3dplgLuqh40FBJ9p3SyHRWXa4cVHVxWPXlhud/P/LA08EMQKrrosW+9lpXdu9bILwB5NEgLo6XoC1uBSUVnOfFsYzdkmipG7Bs6AE14azg9sFzygbEMt+i4kGTMCdi1F3RnAGJRMifBLW5CL9XymwNxJLCgtX+JjNrhOLirP4S1wBwp4McCPVXgSMA9kyQB1uXBUBo8eqwmXXIWAZifmHB6pHxKKMl7Jc29e5QK+whtcK+2w5bG9GBAFI6CQol8xlVIgjVnGs8H+pLT4k7F5nqxvSHHSwq7r8VAlsg6V+AH8JHQ3gdONYB/aH+crDZwKGYx5npu4oSgFuC3A7sABH5GUVivMRF1BLHCyBSBDVPxyP/lpIQdRQluXluIAPYHOu8I2EpXD+IySmf2E5Ty8P/Vqvtzx311spFAMXFWQLsh0pSDgKOA+MqzKiw1so2lV0jcACuMBiVmCv8FkBdV2ApJH8MlAmqthcU7JDWov/oYUA91vcGUFQ8qBskHQvBzwoKtsbTU2uzJMyPKBaP7TEkSc/8IpwW1NVq+93x6MSV5OYVA93zVpQc2vAzXRdpQJeI62DTRRePALcBirX4ahpwP1DZ0qEyS9gacRwrLioe+BqIS4ErCgtWvxaPMlpKQtRRLBnZ/x7Hz0kPSqQUpuP1wlgKe/GYHv3dCzNWA389ZMWKPzX8XNfFMmCdpsmzIucaaWn3yKxcSygqHtQFuAhC94LaG3PM28dermPC/IjC/ovb7LdZu7+Jsf0pwuJugVDrh+9Y0cQlk4Dy6BO7omnFt6VtKUXFg9LBNx74P3BmmtPsaqX5qYiO5psQdUdAGKIIuDuy+zvcLdCU+NqE68u0Q6VqeN3zMxuNTKBpslFb1BLyXhNJcXG3TJAeSXI+qCeCywGhEARfA8cjINzsAbu9pSTMjwaU5OYNDWcG/6BU2S4Jdwn+YNvqODJvRUm7d2z8eNRBf1fq1T8SFdKuMdNG18WhwIDmpszjTXFxVrok6RJwngryHBBJYNSBMgOYJaj4sqBgx07x7Am7vaUkRN0ESwsGTrZtdN4H3Ju3ouShtuZTkpsn/IfV/te5LOUcy7QBM9zzfXkrSn6z00TXxSuY0cB6aZrcI9ufIpgr6xynAqPM0RdFBbYDb0Lt54LgawUFO+Lup7u9JMyPJrBtdHqAgRL5wLfX9fQe9dymqa3NoyQ3zw487VyWck6wj7fUtt7VneYf0fcCE/aUoIuKB6nAMPA9CPYhmJqogtB8gfcTSfrUwoLVoT1Rl1iRaKl3Q0luXlKoa2CrUqW6RVB5VEjxdktHQ77+Q9fe7q/SPlHLHYdghqzzAMdjPaL31JqPxjCHCmsvAnE3JPUE0d1cU+3bDPa7wPZua2c0OxIJUTfDkjP7j7eXuv8pEEhkKHBg/fPOVcnPAFsCA7zbBn9Y6ou+3vKxd244KfR7xad2CfX13XP4x6V/bk2Zui5OAc7UNNlmf9jRWBsCNPDZwdED1BFAP3OfgbEAbP8C5hQWrK6PRXl7m4Som6EkN28S8BBNLP4ynGFD8as/A1vC2YHuyg77AUIKRSIJ9vdNHfxx6R9bW6auiwmYi/gP0DRZ0Zq01oRNV6CXoPociWsQOK4AaTNnyqUB4kOQrwsqiwoKdsTVA+neIGFTN4+OtaFAIsOhHN9f7KXu74Hu/ry6U0WY3o6VyRuA7qJW7Yc0xS8QYUeZu7zpbHfLk2Ej50tQxhYVD9KtsWohqOgF9oGSFAfQC+ouADUFXDXmcegoc/uUuatHEh3QSwBSgvFoYUHpHW2s1z5BoqVuAZZJodGMLWxd96vZv7bYztbwmA7SgTlLtw7IBpJ/e7URAmUVsAF8XUBuBPeHwEZBjUPicILzKTrgjGS8SIg6xrT0B7A7rGWqf2aXo8qlQBHUZwiMbZKUD4ANULe1sGBzs0HrO9IY8p4gIeoOSEde77EvkBB1B2V/a11jSULUCTodiT2KCTodCVEn6HQkRJ2g05EQdYJOR0LUCTodCVEn6HQkRJ2g05EQdYJOR0LUCTodCVEn6HQkRJ2g05EQdYJOx/8DoX/8K7r8p5gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top-5 predictions:\n", + " 1. monkey 34.293%\n", + " 2. mermaid 8.274%\n", + " 3. blueberry 7.341%\n", + " 4. camouflage 4.992%\n", + " 5. bear 4.961%\n", + "Answer: monkey\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoC0lEQVR4nO2deXhTVfrHPydb96ZladkJCiJixG0AYcSr4loXGFxGUSs6uCPiNnX7TUdHreK4Iyo6UgV1XHHGuo3L0UFcBhWNiChK2CkFurdpk9zz+yO3TmTYSpvcJL2f58nT3u2cb9pvTt577jnvEUopLCxSCZvZAiwsOhvL1BYph2Vqi5TDMrVFymGZ2iLlsExtkXJYprZIOZLe1EIItYvX3E6qZ64Q4vXOKMsitjjMFtAJ9I76/SRgzjb7mqNPFkI4lVLBeAizMIekb6mVUhvbXkBN9D4gHagRQpwlhHhfCNEMXCaEqBNCnBZdjhDiGCFEUAhRuG0dQohSoBgoivoG0IxjXiHEu0KIZiHEVqNFd+9MsxBilBDiSyFEQAjxlRDixG3K1IztHlHXeIx9h0bt208IUSGEqBdCbBJCPCeE6BV13CuEeM94v/VCiK+FEEcax5xCiAeFEOuFEC1CiDVCiLLd/8snLklv6t3kTuARYD/gZeA54IJtzrkAeF0pVbmd6+8BXgDeJfIt0BtYJITIBN4CGoCRwERgDPC3HQkRQmQDrwPfA4cA1wMz2/uGhBC9gY+Ab426xwPZwD+EEG3/12eBDcbxg4BSIGAcu9LQ+3tgCHAmsLy9OhISpVTKvIDTIm/pl20PoIBrtjnvUCAE9DW284mEKSftpOy5REwfvW8qUAvkRO3TjDoH76Cci4GtQEbUvrONa7RtyuixnfdyqLF9K/DeNmXnG+eMNLbrgOId6HgQeA8QZv/fOvvVVVrqxdEbSqnFgI9ISAERU1UDb7az3GHAN0qp+qh9iwCdyLfC9tgX+FYpFR3rf9bOeiHSyo8TQjS0vYA1xrG9jZ/3Ak8YoddNQoh9o66fCxwI/CCEmCWEKIpq4ZOalHgTu0HjdvY9AUwxfr8AmKuUCrezXEGkZdweO9q/s2va0KPObcO5zTk2oIKIMaNfQ4iENyilSol8uBYQCYu+EUJcYBz7kkjrf6NRVjnwr1QwdtK/gQ4wD+grhLgCOBh4ahfntwL2bfZ9B4wQQuRE7RtD5O+6bAflLAO8QoiMqH0jtzmnyvgZ3Ytz4DbnfAkMB1YppVZs8/rlm0Mp9aNS6kGlVBHwJPCHqGP1SqkXlVKXAkXAUcDgHehOHsyOfzrzxY5j6kN3cH450AJ8uBtl30jk630o0INIy5kJrAdeBbzAOCI3Wy/vpJxsIqadR6QVHU8kFFLAEcY5TmA18AqwD3As8DW/jqn7AJuMc0YBexllPQ7kABnALCLxucc4xwc8YVx/NXAWkRBqMPAAkfuDTLP/jx32gdkCTDb1OOP4ebtRdk/gHaCeX9/UeYnccDUTicvnAu5dlDUa+Mr4QH0FTDLKHBV1zhhgiVHuJ0Ra0l+9FyKhxktGvc3GB+ohwGW8ngVWGfWsNwyfa1w7lUhrX0/khvJDYIzZ/8POeAnjDXZJhBBnAo8BfZRSTSbqOJVIa1+glNpslo5UIRWeKLYbo3/ZQySkmBNvQwshioGfiYQz+wP3A/+0DN05dNUbxeuJxKhbgdtMqL8QeIZIuDCLSFfiOSboSEm6dPhhkZp01ZbaIoWxTG2Rclimtkg5LFNbpByWqS1SDsvUFimHZWqLlMMytUXKEbPH5N5y72FERohJX7Hvk1jVY2GxLTF5omgY+gMiI8UCwNGWsS3iRazCD42IoQWoDDv6MTGqx8Lif4iVqSUQAKVAkGkLn+8t9+bGqC4Li18RE1MbocbRefbQ3cfmbgrX644BgBz1zLDeu7rWwqKjxHyUnpTCNm3V/scL1Mtue8h2cFbtiQ9M3PBeTCu16NLEZeiplEL4mnL+MX9L35OadPsWhTjBV+z7T8wrtuiSxKuf2unNrO93ScGq1xSiHpSc/MLAS+NUt0UXIy6m1jTVCoz3pDX/DhiTYwtv/bY555GJz+91Szzqt+haxH3mi5Si2+ag86yHNw2aviXkGgL8EZjpK/ZZU3AsOgUzHpPf0sMZvOe87mvHA88Dd+2bXv/x9QsKt00UY2GxR5hh6v8Dxl5wfONqYPKQtIYPvw/kHPZhfbd/eMu9aSbosUgxTJ14K6U44I2aAt/njXl/2RJy3Qh80N/VfNobZ63Yapooi6THtFF6UoqRwFcn5m26UE5efhNwLqhxrbpt7fRXe3vN0mWR/Jg59PQ/wDXA3wF8xb55h+dsvXlL2Ol6v677695y71ATtVkkMQmR90NKYQfSNE01jSjf/1Ad8QYo29js6umPTlo332x9FsmF6ZMEDEO/AzwK8HXxt4uBMdm2sP3zxrx5xz87eLKpAi2SDtNNrWkqTGTdlHfb9vmKfStGZ1f/Nk3oK9cFM8q95d5t12exsNghCRF+RCOlEJpm5Mgt9+YQSVV77IGZtW/3draccPeEysQSbJFwmN5SRyOlOAF4R0qRDuAr9tUDJ++V1vj9kib3ce/XdZ/jLfdaD2ksdkpCmZqInm5A97YdvmJf69D0xv2zbKFHWpT9QlAvXPZKn5wdF2HR1UnE8MNuxNn/g7fcOwO4t7+ruXagq2n47Enr18VZnkUSkHCmBjDCjz8DszRNrY4+dvHLfR/4tCH/Ch2+IzIue605Ki0SlUQLP9roA7StGPUrHpu0brqOOBbEQIH6dPorvU+KvzyLRCYhW2oAKUUvTVMbd3TcW+49KMMW/gSFyyH0oxed+/0H8dRnkbgkrKnbkFIMBbprmlq07bEZr/Y6/KP6bs+1Knt34Pe+Yt9r8VdokWgktKmlFILIGBEncGBb/3U03nJvT6AC1CGjsmqefeK0tefGW6dFYpHQpgaQUgwD6jRN7bCnw1vuzRroalqxqjWzlw11q44otWbSdF0S3tRtGK32ME1T323v+HULCjPer+vxRKuynS1QTxznrrpi5oTKljjLtEgAErX3Y3tcASyRUgzf3sGZEyqbW5XtHFB3KMQffgxk+Sc8v1dWnDVaJADJ1FJ3A84HHtjRw5k2Lnip3wv/acw7DcQnwMm+Yp81k6YLkTSmjkZKkQk0b+/GsQ1vufc0YL4DfY2Wu+Wc+yZu/DR+Ci3MJJnCDwCkFP0AHzBlZ+f5in0v2dGPtws16LOG/I9GlO+/f3wUWphN0pka2AAsJLIE8k5ZUrz0gzHZ1ac36fYaHbHQW+4dF3t5FmaTlOFHe/GWewcCbwnU4MOyq+97bNK6683WZBE7ktrUUoqrgQGapq7a1bnjnx1SYEetWB9MzwEu9xV/+0jMBVqYQjKGH9H0AfpLKXa5ds27Z/+46YDM+kECKkDMOvjp4Xddv6BQxEGjRZxJ9pbaAYR31guyLd5yr8OGekxHXDA0veH75YFsr6/YF4qhTIs4k9SmbkNKUQBcC9ykaSq4q/OvX1AoNgTTPljS5D4CqADO8BX7mmKt0yI+JHv40cYRwDTg4N05+e4JleqZ01drRMZsn5Auwp9d82rhPjHUZxFHUqKlBpBS9N3ZoKcdcdgzw34f0G3PZdvD9TVh5wG+Yp8/BvIs4kjKmLoNKcXRgE/T1KbdveaKV/pc+lF9tzsVogk4wVfs+zp2Ci1iTaqEHwBIKXoC/wD+1J7rHv7d+tkKMRZU2CH0zy9/pc+M2CjsOnjLvYd5y703GAvFxpVUbKk14HNNU+2+8Zv8wsD9NgTTvtwScjl0xNm+Yt8Lna2vK6DNH3rklpDzHRACaCXOKx6nVEsNoGlKappqklI4pRSD2nPt/DNWfbdvesMQHT4Bnh/1zLDrYiQzZZFSiJ6OlpdAOAA7kVlLWjw1pJypo5gHvNeW7Wl3eWTS+jUgjnUI/Y0m3XH3WS8M/NBb7rUe0uwCKcXhUgrbs1v6nPh9IDsHlA6EgCCRFZDjRiqb+n7gj5qmAu290Ffsaz4md/PEYen1vm+bc8cBc73lXmenK0wRpBTHAB9VBl3nL2/OfiXLFlYgTiayFEpcQw9IwZh6e0gp0vfE3EYLfRNwm9se/GJ0dnXRPRMqKztfYfIhpegDDNI09bGUwqYrzrtq9fBTFJwyLmfrtFm/Wz/bLG0pb2opxZHAs8B4TVNL96SMo+bvc93mkOvufHtw49aw6wBfsa+qc1UmH1KKD4ABwD6apsJjntn35nrdeRtwna/Yd4+Z2lI5/GhjGfA50LinBbw/+YeZv8mquWlr2OkGFnnLvXt1mrokQUphl1KcL6Vom/c5HThG01T48lf6XNSoO27Lt7d+AvzVRJlAF2ipO5NIn6t6PUPomaOzqy988HcbnjVbU7wwFp76DJiqaeqJtv3ecm+BQC3JsoUzx+ZsHXHPhMpV5qmM0BVaagCkFBlSijlSijP2tAxfse+TMdnVp7tsuvPD+u5Pesu94ztTY6IhpThASnE2gKapz4GxwJNtx69fUOgE9axC5DfojiMSwdDQhUxNpHtpODC4I4U8Nmnd+72dgaE64kfgjXHzhl7UKeoSk5uAMimFC0DT1KLoYb4bgmnvgTjaJfQrE2loQZcKP6QUzt0Zmro7eMu9eS4RfrtV2UeOyKh9ft4Zq8/qjHLNREqRTWQI7xxNU+ukFL2BgKap6m3P9ZZ7TwQqhqY3fP/SmSuHxVvrzuhSpm5DSuEFjtQ09WBHyrluQaF7eXP2FytbM/cmcoN0va/Yp3eKSBMwnsAuA6ZrmnpsR+cZcz6/AlYDh/mKfc1xkrhbdFVTPwxMBPbTNFXbkbKMNWjuB67It7f6mnT7xy3K/k6+vXXR2JzqYFiJ6kRefElKcRwwWtPUn43tfpqmdpjI/roFhTlfNrrXbI6MjznQV+xbETexu0lXNXUGkNOe4ak7w1vuFd3sLS9uDadN+t+jSgfRZEe1uO3B3Ebd7m9R9qoMW1j0cQYGVgbTFjfojg159qDTk9a0t78l8+OasHNdgaPFNSS9sd/3gexFW0KuqgGuJjEkvTF9aXPODxuD6TX9Xc0Nb5y1osPT0KQUdwOnAgftziCw0c8MK2/UHeeNzd5a9uikdTd0tP5Y0CVN3YaRdHIC8JqmqQ6FDd5y7w2g/gLCBuguEX7Xm1Ef/qkl66easDOYaw/27eVsGbmmNeOnZt2uMkS4d449tPfWkHNLCJvThsrVad84FTs6OqJGIerTRdiW7wjmbwq6loSx1XSzt2YXOFt6r2jJej+kbNV9nc35vV0tvVa2ZC4cm7315Nqw43OF2LSsOXtxi7JV93c1632dgdA7dQV+oHnbrLHGENLpwJk21F+/Lv722o78vWLJLmdhpzjHAq8AZwHPd7AsCaKFyKi0YKuyl849fU27xjxcv6DQvrjRnVEVSsvcJ72hVz9XYPDiRvfmurDT5XE1DertCoxY0uRe3qzbHX2cgaE9HC0jlgVyvg4qkZZlDw9Ot4VdCqGAwoCy9V0fTO8ZUqIHkL0umOFcF8wAOPUfNb0AfpXYZ2mzk6XNuW2b6sDy4aEMm25r0B2rAAVqL0AAuo5Y0IG/U8yxWmo4GXi9oy01/NKaaYCM9yCenSGlmBxU4rR/1fa86s3agnBPR0t+b2egX54jtNdH9d1/BrL2SW84INcW2ntxU97XQPZAV9OB6TZ94PJAtg84CNR+EU+rMIhbfMW+O819VzumS5s6GiOrqq5pqsZsLZ2B8YFF05SSUlwKnA2cvCfvz/iwvofxLYQJI+/aQ1d6+LJDpBRpRJbhSImsTVKKQiImPNXY9Rgwbk8/sIaBj8akoaTtpavH1ABommqRUtwOfGO2lo4QtbDqFiKzTjIAOiO0Moyc0GZuwwo/toOUwqVpqtVsHe3BCDEuBQ7VNNUqpRDtyVyVSljhxzZIKa4EFkcNsUxYpBQOKUXbjJyVRPJ2Z0MkljZNmMlY4cf/shT4mgT/wBs3th8Dc4B7NU29BbxlrqrEwAo/kgwpRTdNU1uN3x8h0h35hsmyEgrL1DvAmIP3KDBD09RPZusBkFLMAG4Bhmia2mK2nkTFCj92jBM4CBgGmGZqKYUbEEZ33DtAAZEEMRY7wGqpd4KUIk3TlGkLjBrjm38EXtQ0daVZOpKNhL4ZMps2Q0spTpFSHBuPOqUUwhjvjaapBuAOoDwedacKVku9C4zVChYDlZqmjotDfVcDdxMZ6/1DrOtLRayYehdomgpJKU4CYpbrQ0oxELBpmlpJJF1aE/BzrOpLdayWuh0YY0SO0DT1TieXuRpYqGlqO5MMLNqLFVO3j1uAN6QUno4UYmRknQC/xO1TgKs6Ks4igtVStwMpRS4wxnh615FyLgFmA6OMfBoWnYgVU7cDTVN1GI+ipRT9gbW7O8bCyHBk0zT1KTAX8BMZ7mrRyVim3gOkFPsRyc93LZGnjrs6304kSeVKIvnnAljjNGKGZeo9YxlwL/DPHZ0gpcgDLiIy2CgkpfgdEVNbxBjTY2pPScUv8/r8ZUVJMQg9GmPalGPbzE9SiknAi8BRmqakGdq6Kqaa2jD0e6DSgQCIo5PJ2Iah5wI6cAGRBDl2TVMvGsf21TS1zESJXRKzu/Q0UGnGKk4ZxHnBm45i3CT+TGTAkwCuBi5pO2YZ2hzMNrWM5MpQKuIJ9jZZT7swngT2BR405gGeBsT8UbrFzjHV1EaocTSIm4DXgQsP+lP51WZqaicFRFIP/EZKcSjwEJEJrxYmYnZLjb+s6BN/WdGdwO9yXdWf1rTk//W8h6a3a8XaeCKluFJKUQKgaeo/QD9NU+8RabFHElkHxcJETO/9iOayx6YU/Gfj2G+rmntlJ+pNo5TiaSAPOHXbBy9SigxNUwmV1rYrklCmBvCUVBQAH4PKH937wwnPT5+50Ew9UophwCzgAk1T/l1NHJBS2IBpwEuaptbFS6fFfzE9/NgWf1nRJuD4dHtz5vLq/eXZD14z1AwdbWm7gHpgILAX/HfiwE7oD9wOXBg7dRY7I+FMDeAvK/ppXL9/XVTXkhdetP7Iv3tKKnJ3fVXnIaW4jUj/M0YC8n00Tb2/O9dqmloFHALcFjOBFjsl4cKPaDwlFccBrzttLZ+cOOiVEx6YOm+P10LcFVIKh6ap0Kw/vBPCZrNh0/Xhvz8uzUjjtadlFuTMKzwhc2F+H0AO+35Zwt0jpCIJbWoA7//Nv6i+Ne+xofm+FcurvUP9ZUWdvqaKlGJ/4LWlz789EGX/b5dcOBzWvrrCp+eGetk3uX4SYRHSs0N5ek640F7pWiF0EdazQ/l6TrjAvtH1o1BCD+eEuqnscE/7BtcP4YLWg+1VrmwUSiACwNGWsWNPQoYf0fhunfz4IQWLXlte7R1MZO5ep2EskwGRYaAr0G2Rv0dbOG2z2ZRDT9Mzwt0QygagnCo9sh15WrTtNlHb9i3OWhSISIFOkuyJabKSFKP0vtg0ZiLwIHDNmNtmBxfdcmmH1xoxFjM6REoxxpi1fdzSee+EsNvttH176bq+/2cr9tvTOpbtO2zbvM6yo7otdk3Ct9QA/rIiBVzVI2PjovWNA0rOuP+Pt+9JOVKKfKPLDWAR8CZRH+zLnzjWQTgcRilFOBy+/IljO/ShN0KNX/I6W6FHfEj4mDqaK+ec4/5k/ZFLqpoL+4I43l9WtFs9EvDLwP6PgUs1TXV0fReLBCYpWuo2Hpw6r7aqudfBIH4AtaD44Wmn7Ox8IzFM22Pr74FniKS7tUhhkqqlbsNTUtE/21m33CbCafnpW/b78Mbpy7d3npRiDpFRc0Otx9ddh6RqqdvwlxWtGdv3vbMagznNq+oGv+YpqejedkxKMSSqV6Mc+BNWQsUuRVK21G14SirGAe+k25uWnbjXS0efsvcLbmA58H+apspMlmdhEknZUrfhLyv6qH/Oz9NawukHfrVp9OLz33p9DZFVWeeaLM3CRJK6pQaQUjz67qqTLp637BKILK12qdEFaNFFScqWWkpxuJSil7F5z/iBr48HyoCLB+X+8ISJ0iwSgKQztWHm94gkkkHT1Apj5smN/XNWfryybp8LimbeZsXTXZikMLWUoqeU4mwATVMbgZOIPKX7BX9ZkTq44JNjuqdX+pZuOehaT0lFkRlaLcwnKWJqKcVdRLKCDjRMvUM8JRU5wAeg9juq/xuX/O3yR56Oh0aLxCEhTW2MzzgL+EbTlE9KkQ/02t08Gp6SisK8tC0rW8OuNJe91bvkz+d9F1PBFglFooYfuURG5V0MoGmquj2JYfxlRZWH9ZGnBMIZdTUt3Ss8JRW9dn2VRaqQMKaWUgyVUvzZWFO7BhgD7PGKVLMv/tu7unIcBxRkOhoWTnv83L6dpdUisUkYUwPHAjOAQQCappYbWY/2GH9Z0ed7u7+/JBDO2PuLyjEfe0oqXJ0h1CKxMS2mNtY6mQF8rWnqTWPh+HxNU5s6u66J995y91ebRl8HzAfOi8WUMIvEwcyWWgfOJ9JCo2kqGAtDA7x69W3XAzcDk4fkfbcgFnVYJA5xNbWU4jApxQtSCqeRz3mUpqkZcar+jiF53y38sWa/k7U77uvUuY4WiUW8W+ruwCj+mximNl4V+8uK1H7dlxyVl7Zlob9un2s9JRVnxKtui/gS05haSuEC7geWapqaZWQ9cpm53renpCID+BeokUcPqLj2yctmP2iWFovYEJOWOiplV5BIb0Yv+CURuWmGBvCXFTWn2ZtP6ZlRGfp43VH3DbnxlQPM1GPR+XS6qaUU44ElUop8IyvoSZqmbunsejrC8ttP2zqy17+Pag2nVQX1tDc9JRVW+t0UouOmLnUfRqn7htBtub819lQBzUBPgI6k7Yolsy6e+6mO/RhQ2VnOus+mPX7eXmZrsugcOhZTl7oPU6gPgDQlCNmUGEdp7SfGU8HEG1SyHSbee8s5vqpDnslL37pqc3PhMH9ZkTVBN8npaEutCYRLIBAKG0ZarWQxNMCrV982b2i3b6/f3FwwAHjWU1JhLW+R5HTU1JVEViDSBaKFJE2rVXHdzTNBzAAm9M1e+ZWn5PUbjOXwLJKQDoUf9fdkr8hqsPW2IWYCb1Nam9RptbQ77v/SXzfkIGO1sBbgqERcosNi5+xxSx28LeeCnAb73nXu8DJKa0uT3dAAq+r2fskwtADS89K2/G3a4+cONFuXRfvYs5a61H0Y8G+FsgPNAnF0Kpj6vyvw4gIFKLvTFmwK6mk3AI/6y4qspDhJwJ621BpgN1Iyu0iRvMv/XdeRW0AcfpzntbPCyvE58IDT1rLi/FlXzJw+Z7LYRTEWJrPHLXVbVx6AQIyntPa9TtaWEHhKKgRwQrf0qme3Bnq6BfqnCtvVVqyduOz5jWKp+7DmNP2m9BZxvEC8DZxKaW2oU9UlENPnTE77ctNh166pHzQNKBzk/uH7Yd2+ueyRi5/6wGxtFr+m4wOaSt2XALMbssKvL/5N4ynJ1Ee9J3hKKrILM9fdXR3ofmlQd4UVtoeAv/jLiraYrc0iQqeM0qu9N6vCXec4sTov9Ej+VY2Xd4KuhOeSRy8c8ZZ/4jQQU+wi2PybXh+/H9KdZ700446YrSBmsXt0iqn9T6XbCyudH6cHxEiBmEBp7T86QVtS4Cmp8A7MXfHGqrrB/UD5QdwI/N2aMmYenTJKzzMlEM4I2I4SiC8U6vm1czLO7IxykwF/WZHvwxun9++RsXECiDrg2V5Za7ec99D0qWZr66p06iSB8K25vUIO5RcKOzDYdVP9qk4rPAnwlFTYh+QtvXFTc+8/1bZ0swMLgBJ/WdF2VzqwiA2dPvNlzRPpE/qtdT0jED8Dv6W0tr5TK0gCzn7wGvei9UddAZQI9MwDei5euqZ+0DFflp5faba2rkBspnOVuo8F3mh16ovX9wke4ZkSMHW2i1l4SioK9+/+5VtLtxw4QmFrAO50u7be//Wt51rDW2NIzOYo1v0169bcesctNe7Qx3m1jsMprU3prr6dsc+NLw9r1dPLgFPy0raEBub+dPfXVSNvsW4mY0NMJ97W3pv1D3ed42RgBqW198esoiTh9PtLzl9XP/Dh9Y0DsoCvMhwNNyz7y5lvm60r1YhthqZStw14UaEmbu4R+mPPK5pmxq6y5MBTUmEDfg/cCQzY2/39Rn/d4PE/3XnqUpOlpQyxTztW6s5sTtdXulpFQX1OeHzejMaUHCPSXjwlFemjen/44peVh40P6i4X8OShhQvvemnGnT+ZrS3ZiUsuvVV/S/f2W+t6164LHRhFae3qmFeaJHhKKnoAt4C6LM3e4uibvar859qhl/vLiqwnk3tI/BJElrqHA4vCNlW5pn/rkZ4pgXXxqTg5mDr74iP9tXs/9WPN8IHAhu7pm+7+bd93Zz0wdX7QbG3JRlyznjbdlT0ho9n2akO2vjanwT4olUf17SmekoqxoO4BMbpnxobGqubek/xlRdbNZDuIeyrfTbMyHymocl4KPApc1pW7+nbE9DmTRU1Lt3s+2zDunEA4swDUv7T+bz089/KHu8yYmo5gTn7qUvddwPV1OeEHcq9puCr+ApIDT0lFGnCpXQRv05U9u0dG5dtVzb3/4C8rWmu2tkTGLFPbGjPDizObbAdt7hG63urq2znTHj/P468b/LRv88GjQIQLMtc/M6r3R6UPTX1mg9naEhHTVhLwP5We33uD8wtXq+glEOMorV1sipAkwlNSMQj0O8F2ZqajPtgUyrkSeMJfVmTdm0Rh7pJzpe5C4FOFylzTv/WUARcGPjNPTPJw0eyp5y9cd/RVTaGcEaCWH9Hv7efy0rbe+sDU+db9CWabGgjfmjtcCb5udalWZ1D0ct5cV2eqoCTBmBB8Sqaj4bGmUHZhlrP+y8ZgzkX+sqIvzNZmNqabGmDd4xnX9FnvvEsg3gNOorTW6pvdTabPmZyxqn6vB5ZsGj0R6FGQseGDQ3stvPmRi+cuMlubWSSEqQEodV8IPBFI01/a2Ct4hmdKIEGEJQeekgq3TYRusAv9j7qy6WHluAe4019WVGO2tniTOKYGGu/OfjqryX7u5u7B53pMazrbbD3JyOWPnT9Srj3uj43B3IkCvXp07w/fL8jceP4DU+d1mcfuCWVq/1Pp9h6bHYuzGm0jBGISpbWvmq0pWfGUVBzcI2Pjc5ube+3jEMFVIeW8BnjFX1aUOP/wGJFIK97imRIIZzfaxwjEZwo1f+PsjElma0pW/GVFX47t8/6+I3p+fllIORuBl/LTq1ZcNPuiC83WFmsSqqX+hVJ3QatT/wnIbMjWvd2mN35ntqRkxlNS4Ui3N13ktLc+VN+aZwNeAG7wlxX9bLa2WJCYpgZWP5le1G+t6wWbEiuBsZTWxm3NxVTlyjnnFv5r1UlXN4eyrwDlPKjgM19h5vpJj17ypN9sbZ1JwpoagFL3UcDbYZtaKhQv25R4NxVSBpuNp6SizyD3Dy/6awePUVALttuAh/1lRSkxQTqxTQ20/iXnflfINl2hEIiWsE2dtWJw4J9Dz261Hg13kGPuunvsj9XDbwaOz3bW1h9Y8J85C9eNvzbZbyYT3tSUum9QqNsFvyw4ii4UwCqbEj8G0vTGutxwVl6N/e+uoG1ZfXZ4/ZbuodWeKYGEXOouETn0z0+e6rCFnt/Y2C8d+By41l9W9G+zde0pyWDqqOz+hJoyws83ZulDu29xrLUp0T9sU/vZdZETfYkuFELxk0CsbMoIhxqydUfPKke5QKyscYc21uSF/Zbpf830OZOdb6w87byg7voz0Hef/G835LjqJr484/akG4+T+KaGNmNrgNxeTL36yfRuA9akFQCe6rzQ+LBdje6xxbkW8ITsan9HWGRFn68LhU2JFYC/IStsb87QAz03O+cD/qoewc1bu4V+6qrhjaekIvOAHouf/r56/4mt4TQdxKMue+DWH26fVGW2tt0lOUzdQdY/lpHbZ4OrN+DZ3D1YJJQY1n2rYzPgCTrUCGdIZESfrwulbEr8BPjrcsKZrS59U48tzpcA/8bC1upad/iHVDf98Fue69UYzP0TqKlp9gDDun2zYEnVqHOTYfHULmHqXVH5SGZO4SZnH8BT1SM40RkUffNqHQ2AJ+jQD3aGbK7o86NNX+MO5es2VnSrdvwT8K/r01oXdKrvUiW8KZr5l9GtYdeCH2uGFwJr7CJ080l7vTD/ganzE/b9WabeDWruy8rKq3X0AzyVBcHfZzSLnNx6RxDwtDr1Q11BmyP6fIXSjQSZ/q35od42nS/yah3vAP7V/VuamzP0b5KtpfeUVGjAPcAhfbJWNztswckf3XRlQg5jsEzdCTTMzM7MbrT3VyhPZWHw3OwGu8hutNsUalDQqX7jCtp+NRxBocICsVKhVm/tFu7rDIqPcuvtH4bsas26vq1N/de40mxKjGMH9xBm4SmpsI3p8/5MX9Uhl9QH3ZlARb/slX9aePMVCTWG2zJ1HGi5IycjrdU2oNWpD93SPXSmu9bektlszwjb1D5huzpwO6aPrPYOASDh1qj0lFSkA1eCukmgcvfOW75oRc2wSf6yoo1mawPL1AlBm+kbM8Ne4ObMJtsBAiEUiuYM/d+bCkJHJOL48imzLh9UHej+ypKqkV4QAZc9cN/xnlcffHDqPFN7SixTJxpR/fIKZRcIFOpNgbiM0lq/yeq2i6ekYgiRhJeTcl3VukJcWd+a96i/rMiUm0nL1ImI0S8ftqmPW13qmIyAbYZCic09Qq83Zunne6YEErJb7Q+zL774y8rRN20NFPQHfPt1/+q+N667+al467BMnQyUugcE0vQX01tsI4MOtdIZEmdRWpuQT/qMCcGn2UToHl05BhRmrvuhsqnv6f6yom/ipcEydZIgpRDDvssoKdjkuFwg+jSn669UFgZneKYE1pitbXtcOeecnKqmXk9/uuGIIxW23AxH49+P6v/GPbMunhvznhLL1MlGqTtHF+oOobgi5CDgDIlzgZcTNSehp6QiH7jJJkIz7CJsA1EW1F13+MuKYrbAlWXqJGXNE+nn9lnv+qNdF8N1od5a26/19gEXBhaarWtHXPbYlMO/rBx958amfmOBTd4ei5/fy/3D9Q9Mnd/pY7gtUyczpW4HcIUu1N1K4AzbVakraLsjkfOmeEoqRqbbm2YHwpkHZztrKxuC7j8AFZ05htsydQqw6m/po3pWOR7LbLaPAL6uzgvdkH9V45tm69oR0+dMFrUt+X/5cO1xpytsQzIcjYsP7/uv+x+/dM78zijfMnUqUeqeoAv1qFAU1ufo7+XW2ycl8txOT0mFE7gow9F4b3Moy2Uj/KyO/QZ/WVGHlk+xTJ1i+J9K751Tb/tnt62OgwSiMmzTH7XpIigQCTWOJJppj5/bf3Hl2Fs3NPb/PSixf/evFlY1Fz5c2dR3GCD9ZUXt0m2ZOlUpdR8KzAOGGmNJAsBRUqs7FVimaaocQEoxE1iiaWq+sX0f8Kmmqb8b2w8BH2qaesnYng28rWlqgZTCBswG/qlp6nUphRN4GHhV09RbUooM4H7gRU1T70opcoiM9HtO05SUUuQDZcA8TVP/Pvehqw5sCmW9/0XlmHxQgNCBFuDo9hg7oZLZWHQipbWLFeoZhVICAeAkMntoPHBg1JnHASOitk8A9o/aLgL2i9o+CRgWtX0KsI/xu93YHmJsO43tvYxtl7E9yNhON7YHAlzofaB62kF3tAzv/tV/iLjaFqV7t7Fa6lTmv+NInECQBBzxtz08JRX/o7s9LbVl6lRnF/M7ExXD2BpWTG1hYcXUFimIZWqLlMMytUXKYZnaIuWwTG2Rclimtkg5LFNbpByWqS1SDsvUFimHZWqLlMMytUXKYZnaIuX4f1nzmjW0iwk/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top-5 predictions:\n", + " 1. fork 8.643%\n", + " 2. shovel 7.149%\n", + " 3. syringe 6.684%\n", + " 4. screwdriver 5.352%\n", + " 5. stitches 4.247%\n", + "Answer: line\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAs50lEQVR4nO2deZhdRZn/P3XO3Xvvzr6HJJAGAgQhIWGxIMogAZRRBsFR3Inww5lR1ODCZEYdIoIjaJRFZwjiPoyMEkBZLAgQwpIdkhASOnvSSXd6vfs99fvjnA6Xtrd0zu3u3NTnee7TXXXqnKp77/fWeU/VW/UKrTUGQzFhDXYDDAa/MaI2FB1G1Iaiw4jaUHQYURuKDiNqQ9FhRG0oOo55UQshdC+vB3yq5wEhxKN+XMtQWAKD3QAfGJ33/2XA/Z3yEvmFhRBBrXVmIBpmGByO+Z5aa72v4wU05ecBEaBJCHGNEOIZIUQCuEEI0SKE+Ej+dYQQ7xdCZIQQIzvXIYRYBFwHzM+7A0jv2AwhxFNCiIQQotHr0St6arMQYrYQYpUQIimEWC2EuLTTNaWXHpZ3ziQv76y8vJOFEMuEEK1CiHohxK+FEKPyjs8QQjztvd9WIcRaIcSF3rGgEOJuIcQeIURKCLFTCLG475/80OWYF3UfuQ34CXAy8DDwa+DTncp8GnhUa72/i/PvAH4HPIV7FxgNvCiEiAFPAG3ALOBKYC7wX901RAhRCjwKbALeA3wV+P6RviEhxGjgOWCDV/f7gFLgj0KIju/1V8Be7/hMYBGQ9I590WvvR4FpwNXA5iNtx5BEa100L+Aj7ls6nJ4EaODLncqdBWSBsV66CtdMuayHaz+AK/r8vM8BzUBZXp706pzazXWuBxqBaF7etd45stM1hnXxXs7y0v8OPN3p2lVemVleugW4rpt23A08DYjB/t78fh0vPfWr+Qmt9avAelyTAlxRHQIeP8Lr1gLrtNateXkvAg7uXaErpgMbtNb5tv7KI6wX3F7+AiFEW8cL2Okdm+L9/QHwM8/0+oYQYnre+Q8AZwBvCiGWCCHm5/XwxzRF8Sb6QHsXeT8DPuX9/2ngAa117givK3B7xq7oLr+nczpw8sp2EOxUxgKW4Qoz/zUN17xBa70I98f1CK5ZtE4I8Wnv2Crc3v/r3rWWAk8Wg7CP+TdwFDwEjBVC/D/gTOC/eymfBuxOeW8ApwshyvLy5uJ+rhu7uc5GYIYQIpqXN6tTmQPe3/xRnDM6lVkFnAJs11q/1el1+M6htd6itb5baz0f+Dnw2bxjrVrr32utvwDMBy4CpnbT7mOHwbZ//HzRvU19VjfllwIp4Nk+XPvruLf3k4BhuD1nDNgD/AGYAVyA+7D1cA/XKcUV7UO4vej7cE0hDbzXKxMEdgD/C5wIXAys5d029Rig3iszGzjBu9Z9QBkQBZbg2ueTvDLrgZ95538JuAbXhJoK3IX7fBAb7O/xqHUw2A0YZFFf4B3/RB+uPRz4C9DKux/qZuA+cCVw7fIHgIpernUOsNr7Qa0GPuxdc3ZembnAGu+6K3B70ne9F1xT43+8ehPeD+pHQMh7/QrY7tWzxxN8uXfu53B7+1bcB8pngbmD/R368RLeGzwuEUJcDdwLjNFaxwexHR/E7e1HaK0PDlY7ioVimFE8Yrzx5Um4JsX9Ay1oIcR1wDZcc+ZU4IfAn4yg/eF4fVD8Kq6N2gh8exDqHwn8AtdcWII7lPiPg9COouS4Nj8Mxcnx2lMbihgjakPRYURtKDqMqA1FhxG1oegwojYUHUbUhqLDiNpQdByX0+RDnV0Ll8/B9a5T4xafv2KQm3PMYWYUhxi7Fi6fC/wVt8NJAfOMsI8M01MfBUsWPHMervvqX2+856KjFt76execVxa8dFkgUxUC0OiQQEhc11NDHzE9dT9ZsuCZc4HlXjIJzOuvsHctXC6Az2mRvUuLTEQ4kSxeh5Muqbtmyrc+8RtfGn2cYB4U+4kdbvoy7hpCATqEawMfMevvvf6sbKjhZeBeoQMvto16bqZAXJCN7vst5HKh9ok37Fq4vPP6REMPGPOjnwQiDRfkUh171mgLhDqS8xfduigLWDijnU87JZYm+6AgsD/SdMrpTRN/92bl9n9YCKwDvutYyYd3LVy+AvPg2CeM+dEPlix4ZjzoumDJ7qdz6cpyJ1M6G5h14z0XvdKX8xfduiiLyFvEK8h9NjlP0MOdU6MdgTAPjn3AmB/94zMgRKZ93PVOpvT9wEFwbuvz2cL73Ds2QHCwtLdrgkY76djOlbjbN3wqEz6gNFoLhIW7IFf69zaKEyPqI+R3P/pk2Aq23WwF21648Z6L3r7xnotawxVv/xyseb++84tf7tNFtLevh34nra00mpwWiFQoPv5fxi0+/4Fxi89/IJga/nWBSOLuKJUBVAHeVlFhRH2EJBpPXOBkSksqJvz1+Y688nHP32aHmxJNde/79JIFz4iezgdY9O+LAmhygEaTW/TtRYFEzasfyUYabqeTeeH9Pw+4tfMxQ9cYm/oIWbLgmcfAOWP4KQ9N/oebHkjl5X8Gd9env7/xnov+MHgtNJie+ghYsuCpK0Ffgsg+d+D1T6Q7HV4Kzpt2qHnJ7370ySMeglNKzFdKzPOpqcc1pqfuI0sWPDMHnOVgdYxaxMGpiw57o8ZJl76Uapn0fKhs55Xp1vFzS0evfLBt7+xP4m5aIwHV28SMUuIVoF5KPb+gb+Q4wPTUfUe+M1yhHWCNFUjuyqXKK1Kt494PfD/dOn4uQNve2Z8AMqBfAP0fwNPuj6JHPkTePneG/mMmX/qOApEGgiAywM1f+PFlh3vfJQueqYxUbT5VO4Gvp5qnfAC0N9soAB0EIenBh0NKvbugrT+OMObHEeD1tpIezIklC54RgejBDU4mcpKTLckAAe9H0KNviFLiSiAhpX6iEG0/njCiLgC//sGNn2l888M/s4KtDzqZsk0Ym3pAMTZ1AbjmS0t+DvzRyZR96ISLF+w95aPz+jKqMZ93IhsYjgIj6sLxDdBlTW//3V3Ax5USPU7KSKnrpTQbRPqBEXWBuPGeizaUjFy99dC2S8u3P/edy6Xs2c5TSlyllLhsoNpXzBhRF5Bw+fZP6Fwo07Znzpf6UPyrwBcK3abjAfOgWGCWLHjmx+B8oXT0yy+17T3n5u4eGH9yw/kXp1tjc3Pp4J+//NtHjX/HUWB66oKT3QyW1bZ31ly6mYS58+rL5iQaKh7LpYO3Ak/fefVlvU3UHJssqpjDoopbWFRR0PdnJl8KxAOLbp/cvu+shRD4nOtjasE7/tCde2IJ2vZmLLsrc2yzqGKeRj8BCIFIs6hiHouaC/Iejah9ZsmCZy6yIw135tIzzgCdBfF7EJfjirU7f2gvT+NN1HRV5pgmZ+m/sx3RobeC/nCN+eEjSxY8817gqVyy5gycoI5UbvnijfdcdLWw0u+rPvF/to6Z9f3/6sqm9mzoQwj9CjCvGG1qy+EPGo1Gawq82MGI2lf0fA57PVm5ZNOJlQA3/OSSF0ef+dM1VSc8saX7c0UYbT1bjIIGEItaVmjYrQWbgIKZHmDMD1+J1ry+K9FwKqB1ZzNCSv3R7s5buui0AEyIRWtaqgagmYNGS0WuOpQWkdjX2gr6wzU9tY/YofirAHa46XG6cWDqambRjqSHAUSrW0cWvJGDSCaoGwJZUV3oeoyofaRt76w2gFyq6uedBa2UGKGUeBv4TOfz9q92w4Ef2jbqzwPRzsFCaFaFMpZovKskVsh6jKh9RAQSIfefbK6LwwdwQyXv6OJYKYDO2c0Fa9wgM2nhMvmHA64XQPWhwLhC1mVE7SNVJyw7FaBqyrLTOx+TUmsp9Sel1H/pfKxy8r7JAKWjG8sL38qBZ9LCZXNAP/1k5uwrAH6fveCSQtZnRO0jqaYpjQDp1nHbuyujlIgpJUL5ecGS5GSAaE1LUYoad0za2q2HA5COZT9WyMqMqH2kvX5mE0D7/vfs7Oq4UuIcoAV4b37+gQ2T6gAOvjFheRenFQPLAfZRpbPa4nRrS1shKzOi9hEr0B4GEHbK6abIG8Bi/tauPhNAO9YJhWvdoHLAXa6p/y9rWQ0np+r3F7IyI2ofqZj01FkAVVMePbGr41LqFin1N6XUmzvyXOcl/W03pe8rRmem6dXr5gH8/bRfPpcsT9bkbH1yIeszky8+kmyasg8g1TyxqxEOAJQSNlALvCGldnDtzY69RGyK0JmpInTogwBjS7f/JRPXjY7FKYWsz/TUPpI4eGojQPv+s3q6vX4CWA9M89LK20bhb2Yhi4XX9s9ttEVm/z//w8uvB7LihVBa2K13lBasQzWi9hEr1Brz/va08uJJXGHXe+k6XIPzLxSpM1NWB6fldHCtN5u6QSBEWZs9plD1GVH7SMW4Z2cDVJ3w2Njuykipd0mpfyGlPgRQPW3XrQCx4U3fKUZB/9P9H7NtkZ1RHTmwX0qtd0xIdWx3PLFQdRpR+0iiaeoOgFTT5H09lVNKjFRKXAwQP1hxdiCSylRMrH9hINo40KSd8KycDoRqq9daAHZOLALYOyp9TaHqNKL2kWTj9AaAtn2zGnspeiPw+P89OKIqeahsajYZfvDar7xZlItFH3/7wxUA25pPegigtM2+B6Ck3S5YcCYjah+xgq2lAHa4qbtx6g7+G5hb9/QZZwIVwGOFbtsgUguwt338qwB1k1NjHaEPlbfaBfsRG1H7SNnYFXMBqqY8WtFTOSn121LqlaWjG7+DcIhUtT4zMC0ceMaXbbs8aKVb6xbP79io59Z4zIlqtLGpjwWSh6ZsA0g1TzrUW1mlxKz4wfKTIxXxnTfe82xTwRs3aIiZY0p35N+5/jUd0vFkRMtC1WhE7SOp5ikNAK27z2vtrWz9+gm3pVtj5cmmkv8rfMsGh0kLl4mdrZP0nrbxD3fkSak32jleDKeEYFFFr/Fx+oMRtY/YoeYygGDpnq78qQ9z59WXzdn5/Knnuynx2WKcGvcYAaIq44TXdWQoJcZngnq/pUUQGF6ISo2ofaRk1GtzASonPt3b5ypx4yKC66ogC9isQeOc0Wo+wJTKjfkzrHLv6MxnANJBZ0oh6jWi9pHkoalbAHLp0kQvRRWQpshjI2adwFyA2up1W/OyHwtmxC0AB4dlP1yIeo2ofSTdOqERoHHLlZmeynkzh4djIxbjTCLAq/vPS4ButUXu1Y48KXVDaZv1EEB5S2GG9YyXno/YoebKXLo8d+M983r9sjwhF6WY86gFsfGuz/3y8OehlIgyjbljd4faStvtcCEqNT21j8SGrz9H2Gm795LHB7FA65wxJTvinbLDwG8zQd2Ws/S0rs47WoyofSTZNGWzduzkYLdjKHDVDxeOiGfLYuPK6to7HWoGZsRjTigZcWQh6jbmh49k2kc3AUbUwCv7zj8B4OV9F9ybn+9FVNjQ9krpimjCurAQdZue2kfsUHMlIleUjkn9oNb7u7HzAaXEBzJBvc/SIsaiCt9X0BtR+0i0ZtPZdqilR7+P44VTalZ/3BZZB3i7i8Nfrx+RcaMDl+Sm+123EbWPJJumbHaysd7cTo8LmlLVY6sjB9rqFs/vanb1mlBa3AfQXJHzPXiTEbWPZBPDWnUuXNA9LY4VdrdNDBxIjH68q2NS6l3RhLUMoLoxkPa7biNqH7FDLVXCShfESedYYtLCZVFgMl3Y0wBKiTM3n5S8VKNT0aRlbOqhTLhy2+nB2IHRg92Oweb9E/84HxCnD3+5u174fdrih1qwNxNwTvW7fiNqH0k1T9qSTVbtGux2DDa728ZPAxgW3b++myI/BWraSp3yVFif73f9RtQ+kktVhpxsLNJVWLnjiTcaZsYA5+kdlz/Z1XEpdauUujGYESticcvY1EOVX3z31qtAnwt6DN3ESzyOqAXeqls8P9XVQW8D+puBLZYW1SyqiPhZuRG1T2Tiwy8GLTrFQjwuGR7d+4GJ5W/19MBcA3z/UFW2HOBQZba2h7JHjBH1UaCUOEspcS1AouGU/wKRoMh9pHtj0sJlwYOJEZFYoP2tHoq9CVQ4ll4L0F7ivN/PNhzTvh8zls6Yg9sjqvXXrR8MN86vAzOUEr+/8R69YsmCZ+Z1tKe7GOTFRDef/xSNbW1sPP3X3Z0npc4BLQ3rYn8FGH4g4Ku/zDEp6kt+NXXU7kz0StB34d7qczOWzvgFsPu0aPMFTbngrh3p2DaA02PN723MhrbvTEfrBFqcFmu54GAmVLc7E91uo61TYy3nH8iEtu3JRHcGhRM4Odp6bn0m/NbeTGR3SORCtdG2Ofsz4S37MpE9EZELzyptumZ7Krp8ezq2tSZwYv2kULxpRzq65KalM+pLzs2WTI20n7U7HZl0z9Lw/FIrWzol0v6eXenohoZsqKHcypRPjsRn7khF1x/KhRor7EzFpHD8jO2p6NqmXKipyk5XTQgnTqtLxdY054LN1Xa6enw4MWNbMraq1Qm2Dgukh40NJU55K1nyarsTaB8eSI0YE0rWbkmWvBJ3AvERgdTI0aHk9DcTpSsT2k6ODCZHjwqmTtyUKF2R0nZ6dDA5dkQwNfWNRNmLGW1lxgST44YHU1Nej5c9n8XKjQ0mJgwLpievj5cvdxDOuGBiYk0wPWldvPxZjWB8KDG5OpAevzZe8RwwFvTHAQtEcsbSGfPWX7d+hSVyJzvahm7GqDtQStxkn8zu858POuG0NcxPfQith6b/zYylMwQw/LzShqv3ZSKT3kqVRICTS6zs+e1OoJPPsgaEA2gLbWvQ2k3z7rTGAluDoxG6u7QDDj2kARxErq/ljyAtLLAcyHk7oRY0LdBCHFnaEiDc944AbXnXzYH41vrr1t928fcWr3zz0IxZpcHmSzZ8+9puo40pJd4CVlygyj7g2BwM5MSn/AoYOuii/uojI8W+THjq6njFBODkqeG2f2zOBUcfyIZjuA8UHbQAr58Qbg9GrdzrryfK1wC3gQ54W+DOK4QJ4u3UOVNKvcpLXwiskFIf1y6mrumhnwbREXN9XuvGxYB+Hrf3TgDz6hbP7/I7UUpE3qvKZgIvAgivvB/CHjDzw+t5x5wZa7oiq6256xLlCeDkkKg5O63tw4F9dqRj6epAugV4GHjjtGhLfEQw9dpTLcNXr79uve50zZUgJIW1qa8HfqKUOEtKvUpK/dcC1XNMsf669StmLJ1x+Bli/XXrV0xauOwWOBz8tGMEqMvvRUqdRFVIjUa8e8Ro6Il6xtIZc0qt7MfanMBbgDU2mLjcQcyEsABRvipe6ZXUDSBeHxbIPDMm2Nr8arzyfuD1tLb2P3ntlj7dPjwhF6J3toEqKfVB4Je499i1ftdzrLP+uvUrlBIfAD6K+z0oPFuQXkaAlBKXj5wenFy7Ker0pfyR4KuovVvSc21O4PB1D2TDraODSYJC/yajxdpJofjeEyNtm2zBxts/tH9oGvTwCFCllLhASt2KO61r6JpSoBygbvH8Fef8+z3t8WxJsCVd3a3p4XHR/lGZy6e9Gd4ktKixtbjSL5va755a4s0+eA8Pt9054Y0U7lYAN0upW5QSI4AWb1nPkEEpEQSyXrsewr0dDqk2DkWk1F/KTydzsfqQncn0ImiAL0up/6XltZKDliNCpV9p8+2O67eoFYg0EPQe3h4DUkCrlLrFK3MncL5SYrKUWislxgD7vbHLQUEpMR74M/CvwO+l1L8drLYc6zSlapqAXkPKeUGciMXtTULja6xyX0Xd1cODd2hVXrEHgKfyeupHgEbgEgClxFhgzwD35HuBTUCvu5Ua3o0XvVcBv5VS3wU6DKJLn49O550MXH++LsvZjhjaky+9PbxJqZ/ulHUH3gps7wFtA/Ag8E9e3hgp9R6/26mUmAd8E7hUSp0A/t7vOo4HpNRppcQuoAlgWHT/ScOi9eUwv7dTRwLXpcLO/mDGyvgZVmDQZxSl1L/LSwaAm3F7TZQSo4HdSokbpdQ/8ezeSin1AR+q1sAwYDSwzYfrHbdIqf+h4/+2dHlb0Mr0+nl6Q6OVLa+VHHQsJ1RUos5HSp0Cfp6XlcLtsZ/y0nMBpZR4n5T6aaVEKWDl2evd4k2iXAdEpdQ/lVI/o5Q4YzBt+WLC+3xJ5h5N722PbenreSXt9htAiZ9tGdJeelLqRin13VLqN72sOlwnoo4NBz8GNColJgIoJaqVEj355n4IuLLjCzCC9gelxGzcuJDngg4JnF4d/5USllJiSTagy2yndxv8SBjSou6MlHq7lPo2KXWzl7UCd8SiI2zyN4G9npmCUmK0UuJmpcRI78HzE8AlQ204sQjYDvwRaAlZqaozRqyc3dsJ3ujH5amwMyETcCr9bMyQMj+OFCn1OmBdXtYjwDYpdcdWugo4EXCAHwBRoNfQFYYjQ0q9D/gMQOaJPzkNiRGb+3jehJbXSg6mwnqcnzb1MdVT94aU+jng50qJK7ysrwHfBv7TS7+AO7ICuEE6B7aFxc3SP06p0FjWjtYpb/Ze2qWk3X49mrD6XL4vFJWoPb4K/EEpcYKU+hEp9a3eJI8F3Ibry4FSIgbsUEp800sLb7bT0A+UEreMKtl9AMAW2R43nc8755+SEWe87QhfF98WhaiVElUdD4u4ZsY8KfW7hpWk1I6U+udS6ie8LBv4CtCxi1AtsF8pcZV3zYhSwveNVoqYZ9vS5UsAZo1aPquP50xPhfXkdNCp8rMhx7yovR54ObAUDi+/V72d55W7W0r9mpd1CLiFdyaOLsUdWZnp1VPey8jKcY2U+sX71//LXQD18dE9rnrJO+cLgSwN6ZAe62dbjtkHRaXEMKBBSu0oJb4GHNWso5R6L7A4L+sN4D+A1730jcC3lBKjpdTNSokqXJ+W7NHUW0y0Z0pDAFubp2/trWwHJe32BqGPo3Hq7lBKnI47C3gVgJR6mZR6tZ91SKk3efZ4h733V+DbecOJPwA2dYx5KyVqOv4/Xvn8aT/4NUDISvbph66UmNde4tTijk75xjEl6o7xZ9ze8wHgte5L+4uU+iUp9W15Wb8Hvp835v2o9wJckQ9U24YKB+IjnwWYO+avp/XxlPJsQI9Ih7SvQUKPGVErJT4PrFFKxKTUWSn1F6XUfb7N+Y2U+jEpdX7oh3twf2gddv5mpcQPOg4qJaoHtoUDzxN1Vy4D2NM+oa/j1H8IZGnIBrSvq8mPJZv6TWA9EAE6R3wadKTUS/OSQeDfcNuLN1S4TynxBSn1vUqJAFCSZ8oUBduaTvJcSHVvwVEPU9pmr8NdPeMbQ1bU3hd/B7BTSn2nN6KhBrVRfcRzzPpRXpaD67Oy3Eufg+uYdbHnWBUDnGN9hXp15GBlfWI054998jL42i96K6+UGHZmacmpkaQ4GOqt8BEwlM2PHDABGDXYDTlapNQHpdSLpdRveFl7cCeC1njpa4CmPMesMu9HfUxx6rBVZwDEs6V9GtIDUtmAHp4Jal8nvYbUB+cN030XuFVKvV8pcVUxetJ5E0PfystajTua0uGY9S3gk0qJsVLqjFKigiG4rrMz25pP3Aewpv7s5b2VBXeuoOW1kgYt8LOjHlqixnXavwb4C/BwMQq6K7yNcvKXvP0FqM9zzHoQGI7rT45SolJK3TSgjewDdS3TWgFmj14+XSmxWkrda1Cn0jZ7LT7b1INufiglJiklrgd3bBiYKKV+eJCbNahIqZ+SUt+Rl/Vr4Gd56ZVKiQc6El5PPuhUhBorAGqr1/0YOLcv58RjzompsL8zioMuauD/Abd7pgdSarP4tRNS6t9Iqf8LDg8X/gj4Xy8dwR1ZWeilxWD5rMwY/tpcgPr46BuBzmtRuyQT1KMywSIYp1ZKnKaUOMlLLgJmeLshGXrBc8z6sZT6j15WCHf4sGM7tBOBQ0qJD4O72lspER2Itm1rOqkO4C/br3hMSt2nYVc7R7PlcGyvfFFKhHH32LgdQErdJqXe0fNZhu6QUrd4Iysrvax23IftjiVvl+CK/AxwXW4LNbKyp31CC8DFE/84WimxoC/nlLXaa0rarTd6L9l3BkzUSokZSgnhjeFeBXx6oOo+npBS7/J8VrZ7WduAH/POftE3Ag0ddrg3fOiLz0p5qKkaYHLFm/OAn3pOXz2SjOjR7SXOKX76zQyIqJUS78NddnUlgJT6eSl1w0DUfbwjpd4gpb7Z60wAVgJ3581m/iewMc8xq6y/dZ1Uvf5cgJy27wNG9OX5KBPUI3K2LgXC/a23MwUVdZ5TjwK+jGt2GAYRKfVzUur8MfJlwD15Y+CPKyUe6TjobUPRJ+qap70lcHIf/Lum+r7vzaKFnROtfs6mFmycWilxB+52BDO8h4Yf9HaOYeCRUv+hU9aDeL41Xu/9llJiqZT6a15eqZS6y/jrBxKjWnlnt62PArGOUZvuKGu1VzOU9/3whpM6Qlf8CXdstU/r1QxDAyn1fVLqh7xkCLczegoO33kPKSU+66VtpUR04/TaORun195yUf3K6Ra5Dl/qa4HP91ZfzibWVuqcrpR4r1/vwbeeWilRgutP/Dhwu5T6WeBZv65vGHg8O/x2gI3Ta0X4+tIJTkX2V5EXKxMbF9ReWnJZzZdEuz1Po3MCIf555cOi+b0xDVcA/CN92I4iHXJGOJaOgX/Den6aH3HcHZTqfbymoQBsnF5rA1Vxeeh0qylQE1lTlgSGJWe2Xmo1BazQ29FGoCYzJnm+1Rpw7NaABmoq7x3XcRf+BEDpo+6cicYNx2XltD5l7844uEONfWlLNqCrPJv6Jb/eX79FvXF67ZzsqNTVrVfVn5c+pf0yb0OTT/nVMEPfWPXJMeHoSxVVQE1idvMskRGjI6vKDwDD0ie1zxMpqzxYF90P1OQqMjNE0g5ZWEFAxNS7R9wiq8vQlnZw95duADJOefaA3Rp4EWhIzmydIrJia3h96YvAwfiFjZHwmrIK+1DwN0DQEZZYU31iIxye6fwOoKTUj9IN5a2BVQwFf+qN02vnAM/Z+0J25ZJxIjMh+dTGBbWPApnkmS1z7MbgW8G66BYtdDY5u2W2XR/cEtoW26ptnU3MaZ4Z2B/aGtoS26FDTjZxbtP0wJ5wXWhzyV4nmnMS5zWNCeyK7A5vLGnMlWVzyXObygK7IgfDG0rbs8PTmeSslszZdx4Y0t5q/eXVm0aU44gTSp6u1kBN8rTWcwjqqZHXyrcBwzLjk3OBUcGdkX1AjQ4646OZisObG0VXvtsFJLg1mtNRJ4O7aKHBqcht0yMy7aEtsSeBhuQZraN02NkfXVnxAnAwfl5Tu1ORPXikn+/G6bXzALn43I9euXHE+I5GpHDt6kPkLXPriraS3KmvKvFdKfU3jqTe7uhXyLmN02tvwV1pjUaDICe0yGl0UFD4xaca7QhESgud01GnRKRFk8habTrgkKvMjrTa7F1W0m5yQk4gNzI90W4IbrHidoMTy0WyY1LTAvtCa622QEOuPFuSHZ+cHtgRedVuDTTkqjOlmYmJ6cGtsZV2S6AxOyJdkZmUmBraXPKS3RxoyoxJVmQnJyeHNpSutJsDLZkJifLM5OSY8Oqy1XZLoC09JV6SmZSsir5cvtlqDSRyVZnZWuhL7cbgCoGoT0+Jn+1UZGeGV5VtEIhhuZr0aTqoJwb2hRtww+v1NArQ6sRyOac8awX2hVcADZmJiepcZZbI2rI/AQ3J01tLnMpsU+zZqleAhtpNGwd0hdC8xXfUJ7Oxkhe+eUMJuH4q3p553ZJYXPZ6OuScvPrM+Oel1Pf70Y7+mh8KSABBgcigmVe7aeOKV748XACh4I5wMLy+zHLCTjB+UePY4M5INryhNOVEc+HEuU3TAzsjzeHNJe1OLBdNzmqeGdgR2R/aFmt2SrKlyZlt5wR3hHcGd0QbndJseeqU9rnBHZFtgb3hQ05ptiJ9YvzcwI7IlsDBUJOO5aoyJyRnB3aGt9hNVosO6SqnOnOmlbR2AHFsXYXQGocgUEVOVFotgRqRsk4GHCtulQa3R2pE3B4LWNahQDh8qCwotDgPIFAfIlAfAm9D9uCeCME9EYAbAII7ogR3vONWEdoaI7T1nUgP9qHDnejVHccBNPoM4CAZSzgV6XYt9LNCi4OZiYmS7Oh0LLKy/BGhRUPqlDadHZ9qKnmiZlPtpo2++kcUgr1t4+pwl9sB74TA6IlMUI+wc6LFL0FDP0Vdu2njio5bDqBqN21cAeDdtlK8+0m288xh53n+znEJf9MpfVd/2ng0rL18oh3aEgumprdHM5MTVZFXypOBgyE7PS1emZmYGBN5pXy/3Ry00tPiI7PjkpMiL1dstdpt0lPi47NjUlMjL5evt1L2FRp9lUBY3ujA3ekp8TvT0+MHz77zwJAXaH+IZ8vS5I14KCVm4NrVX/Pciv+GcnecevBtanCFTQFiGA4FTv/T9hzucrIk744DsxNvMW1vbJxe+7ZAXEHH3Qx+f/qy7bt9b+wQImLHKy3h5C8MyOJ6DQ7Hiw7RFYmIM2GlEquk1Gf60Y6htvKlaOjublbMxIJt0wQ6NWnhsjl1i+evkFJvxN2jsFsSEWdcNqArcPdR8YVBj01uKA4mLVw2B/QLbkok6SEueT4td5bWWw6h0q+0VfrVFtNTG/xCdhWXXCnxKdz47nO6Wjhc3mqvodjWKBqKBgU66wY90/lxxhO4s8zdurRmAk6lUqLRe7A8aoyoDb5Qt3j+itrqtfeBoLZ67QMdpoe3vvKK7qbNExFnfCaoa3A3w/cldIkRtcE3xpfV3Qo6u6nxtKa+npMN6CrHIiSlvklKXedHO4yoDb5x3xfubwDxssa6MD9fKfFLpcT/dHVOWZu9rrTd3uiV82U22oja4Cs1kfp1Amf2F+//eH6QqHW4u1B1iUYLpUQL7n6DR40RtcFXZo5Y+bbGEg2J4dd05Empvyel/m5X5eNRZ0IqrMfgboX8ih9tMEN6Bl9pSVfcB/o7L+yZ965wfp5pEcyLzABAztYVWhCWUn/VrzaYntrgK7/75+81gXgZd5waOBze7yDu4ut3UdZmry+J25u8cr7ECDWiNvjO2NLtWwTO7H/52TWjALyF1/fxzgY7f4NS4k+8s3/3UWHMD4PvTK9e98butolie8uUDwL3Akipb+mqbDyamyi0iAJL8Glm0Yja4Dsr917wE+C7q+rnTM7P91ajt+bb1TmbMsvRYSn1L/2q35gfBt/Z8O1r24HOdvX7ce3q2flly9rsDSVxe7O3vUapH2PVRtSGgjClYtMui9zsm+7/+GgvazVu2OzuNgO9AXea/KgjdRnzw1AQxpdve2lr8/Sr32w85WJgqbdV8x2dy8WjuclCiwjwAvBVIN25zJFiRG0oCGrnpfcBt28+NOPwIgFvw6OpUuq1HXk5m6jl6IiUeg3vBHY6Koz5YSgIdYvnx4GVoGVe9jeAV709ygEoa7PfKInbb3o2daU3pn1UGFEbCsbJNWsOWcLJt6t/BXykm+ITcNeDfvRo6zXmh6FgVEcO/tnR9uVr6mdJ4NdS6g3Ahvwy7bHcCZYjIri7Qn0Zd9TkqDCiNhSM53e/77+B/9zZesIZuBHGUErUAmVS6pcBtCDsWDrk7U/ty3bPxvwwFAzXrtYvBaz0+/Oy78WNXgBAabu9sSRuvwWglKhWSozsfJ0jxYjaUFBmjliZdrQ986b7Pt4RK/FLwGe7Ka7wptWPBmN+GApK0Er/xtH2vBf3XHQObhTjdzk1tcdyUy1HhL3N2/4N6NMWwD1hRG0oKC/vu+BXwJKG5IhZwMNKiRAwH9gqpV6nBQEtdADAr0jHxvwwFJS6xfPjlsi9Gg20X+5ladz9Ev8RoLTd3hRL2FvBDUedFzS23xhRGwrOmSNWZJPZSO1N9318rJQ6A7wH+Ncuin4NeP1onZqM+WEoOGknfJ/GvuDJ7Ve8B9jtjVcD0B7LTRNahL1pxN8Ba3E721x/6zOiNhScdQfO/l8gnczFzgP+qJSYgDtzuPQsUWIJrS0Av/w/jPlhKDh1i+cnwnZibVmo6cNe1jjge8DM0nZ7cyxhbwNQSkSVEqcpJcqPpj4jasOAcNqw1+Jt6bITbrj3k2Nwt0IYJqV+olOx03HNj/OOpi4jasOA0Jiq+ZHG5rG3rzpDSp3piE3fHsudGI/mOpZ9bQauAlYdTV3GpjYMCFubah/DXQBwIfCYt7zr4rPzYjdJqQ8BXW5PdiSYntowINQtnp8oDbZsrAof7Ni5aSbwqWjC2hpL2G93lFNKnK6UmHI0dRlRGwaM2pq1TU2p6rFX/XDhCFynpuGWFp2H7p4Cbj6aeoyoDQPGtqYTv6exeGXf+Wd7drVuK8mdFI/m8nvma4EfHU09xqY2DBgNyZF/xQ1HKIFlSomvnxaKTYgmrL0dZaTUTx5tPaanNgwYdYvnJ6vCB98eHt17nZd1WjAj9kWTVl1HGaXENKXEuUdTjxG1YUCZUrlp38HEyOHyP35YLaX+aFmb3Tku5S38bYDYI8KI2jCgvLZ/zr9pLOpaps0FaCvJ1cajual5Re6g+8W5fcKI2jCgaOyX8OxqpUSpY+lxVk5Us6hiDoCU+g0p9cqjqcMEBzUMOLP+/f6tFk7NCucrHwBeBBCIBDBPyZZtwNnAs1LqfkXrMj21YcAZU7pj8774mPJHcud9By0QCHgnoOhc4E/A1B4u0SNG1IYBZ039OX8CS/wi+36ZIojWOEBHQNFncXdG3dzf65txasNgUAOwSp9oXZv+Ru6TgT8/dYW94t9Y1LxCusePakMbY1MbBpxJC5fNETjLNcIGUiAu7IiQ68V9uRR4U0q9sT/XN+aHYcCpWzx/xdjS7deB1iEr9XiHoPN4BNcFtV+YntowaExauOxB4EpgXN3i+c0d+UqJmcBOb0/rI8b01IbB5C6g9JSa1bfnZ0qpV/dX0GB6asMgc8F3725uzZSHDyWHl9Qtnp8DUEpcCESk1I/355qmpzYMKgEr+41DyeFh4LK87K/ibkHWL4yoDYPKtuaT7gF2Av+Ul3098MH+XtOI2jCo1C2enx1Vsuu3wIUL7vnMhwGk1Duk1Ht7ObVbjKgNg87ZI1/4adBK61X153wWQClxilLihv7GKjeiNgw6P/r8g9syTuje+viYCyctXDYceC9uWOfq/lzPiNowVLgbCA+P7lsIPASMBg7050JmSM8wZLjgu3fvbk5VjZLj/1x+1+ceau/vdUxPbRgyjC3dcUdzutp6fve8jyklbvKCHh0xRtSGIcOKvRfeBbzZnK78Aq450q899YyoDUOGusXznZCd/EnWCZ3xhy3X/jPw3/25jhG1YUhxyaRHfhMNtLP+4Huul1Jn+3MN86BoGHKcdusv721Jl392SsXm/9vaXPv9LlxTe8T01IYhR0u68gkQ1tbm6VcCT09auGzOkZxvRG0YikwHNO9ekNtnjKgNQxEFIglkeWdBbp8xNrVhSOKZHBJQR2pTG1Ebig5jfhiKDiNqQ9FhRG0oOoyoDUWHEbWh6DCiNhQdRtSGosOI2lB0GFEbig4jakPRYURtKDqMqA1Fx/8Hw+g2hAa1JgIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top-5 predictions:\n", + " 1. snowflake 22.972%\n", + " 2. yoga 10.533%\n", + " 3. matches 6.915%\n", + " 4. candle 4.574%\n", + " 5. syringe 3.947%\n", + "Answer: trumpet\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2AUlEQVR4nO2deZgcVbn/P6eqept9yWSSyTbZZ0gGAgmBsIQiKKABFUFAUAEVDQZFwesvokIEldzrBRVuFA0qKFwFFRTIFdDEYg1LAiEJmUnIMllnMpl96bWqzu+PqoEhJpnMTK+T/jxPP0l3nzrn7Z5vn3rP9r5CSkmWLMMJJdUGZMkSb7KizjLsyIo6y7AjK+osw46sqLMMO7KizjLsyIo6y7Aj40UthJD9PB6MUzsPCiGejkddWRKLlmoD4sDoPv+/CFhxyGuhvoWFEB4pZSwZhmVJDRnfU0spG3sfQHvf1wA/0C6E+LQQYrUQIgR8RQjRKYS4rG89QogPCyFiQojyQ9sQQiwFrgEW9rkD6O57NUKIfwohQkKIVrdHLzyazUKI04QQbwohwkKIt4QQHz2kTt19PqLPNZXua3P6vHaCEGKlEKJLCNEkhPiDEGJUn/drhBCr3M/bJYR4WwhxrvueRwhxrxBivxAiIoTYI4RYduzffPqS8aI+Ru4Cfg6cAPwF+APw+UPKfB54Wkp54DDX/zfwGPBPnLvAaOAVIUQO8AzQDcwFLgHOAH5zJEOEEHnA00AdMBv4FvDjgX4gIcRo4AVgk9v2h4A84EkhRO/f9X+BBvf9k4GlQNh972uuvVcCU4ErgC0DtSMtkVIOmwdwmfOR3nteCUjglkPKzQFMYIz7vBjHTbnoKHU/iCP6vq9dD3QA+X1e0902pxyhni8DrUCgz2tXudfoh9Qx4jCfZY77/A5g1SF1F7tl5rrPO4FrjmDHvcAqQKT67xbvx/HSU6/t+0RKuRbYiONSgCOqNuDvA6y3Gtggpezq89orgI1zVzgcVcAmKWVfX/+1AbYLTi8/XwjR3fsA9rjvTXb/vQd4wHW9viOEqOpz/YPALGCrEGK5EGJhnx4+oxkWH+IY6DnMaw8A17n//zzwoJTSGmC9AqdnPBxHev1o1/Ri9ynbi+eQMgqwEkeYfR9TcdwbpJRLcX5cf8VxizYIIT7vvvcmTu9/q1vXQ8A/hoOwM/4DDIGHgTFCiBuBU4Df9lM+CqiHvLYZOEkIkd/ntTNwvtfaI9RTC9QIIQJ9Xpt7SJmD7r99Z3FmHVLmTWAGsEtKue2Qx3t3Dinlu1LKe6WUC4FfA1/s816XlPJPUsobgIXAAmDKEezOHFLt/8TzwZF96jlHKP8QEAGeP4a6b8W5vU8HRuD0nDnAfuAJoAaYjzPY+stR6snDEe3DOL3oh3BcIQmc45bxALuBx4FpwPnA23zQp64AmtwypwGT3Lp+BeQDAWA5jn9e6ZbZCDzgXn8z8GkcF2oK8DOc8UFOqv+OQ9ZBqg1Isajnu+9/7hjqLgOeA7r44KCuBmfAFcLxyx8ECvup63TgLfcH9RZwqVvnaX3KnAGsd+tdg9OTfuCz4Lgaf3bbDbk/qPsAr/v4X2CX285+V/AF7rXX4/T2XTgDyueBM1L9N4zHQ7gf8LhECHEF8EugQkoZTKEdH8fp7UdKKZtTZcdwYTisKA4Yd365EselWJFsQQshrgF24LgzM4GfAk9lBR0fjteB4rdwfNRW4M4UtF8O/B7HXViOM5X4mRTYMSw5rt2PLMOT47WnzjKMyYo6y7AjK+osw46sqLMMO7KizjLsyIo6y7AjK+osw46sqLMMO47LZfIsH6Ryycp5OLv5jPplC9ek2Jwhk11RPM5xBG2/AEIFEQO+eNro5//66E3/1dXvxWlKVtTHOZOWPHmrjfLDvodsBDa5nq7O7ljhK0Dd3FEvFAAvvd44/+/AgfplC9NaNFlRH+c4PbVcBXhAmGD/4NTyV87d01XpbQyOzQVZBSLn/Stkx9i8XYqNeGt/94RnBHbdhZVPRL1q1PjZ9Q/3fLDe1Lg0WVEfxxiGOBV4+9pnnp7NEQT4qZ98WxmZ0zDnnZZZlfWdU8t9auikirw9n9zXNV5GbX9JbzmBbUuU7R4lun1Cwbbx29qrp4JQcI7BnZdMYWdFfZxiGKIU2Ak8ouvyhsHUUblk5XleJXzF5KK60sbgmP1t4bJRXjV8sml5JtvvHeeUcmTO/mfmjX5+4c+ufyQpYsuKehhwuFv9TSuuFiEzx1ffOcW3tW2mVuhtC5w5ZtXEHR3TwnWtJ0bzPB25V1b95oYtrTPeeHHf+dvzve0FJ498bd7Ojql79nRN6szzdBTNGLH+rPqOKTsOBMd05Hk6SqYU1Z25u2vittbwyC6fEpwStf1nSYQAEaJPbzz11ifOitmef4DwglRAoApzmyW1nwK/q1+2MKGD0KyoM5gbf/W5aS/tO+9L7ZERXwepAqjCjFrSY4P0gRD9VDEAZNSvhrym1DpN29spsPIkSpE7wDSB2+qXLbyrt3TvDy3f0/7GlOK6895qOv1DwByPEolWlWx6e2Pz7M8ApSTA786KOoO4acXVnnfbTvjw5tZZc0FeKJCnfTAekSTP01nbHStcKbAjc0a9fHpzqHzLzo5pWzURi51eYZwSiuU2zhn18vU7Oqb9xpZq+77u8dvqWk/cm6N1m+eMfXbUnq6Jeze1nNKc722P6uOe0Tojxe3P770gfOiMhytad4BJjH785solK4WCddq0knce3to6Y6KNqgC2c5ZYRPq7fiBkRZ3mfOLu2yauP3ja2cCFAa3nspCZ68FRwmvTizfutqRSu619xrc4RnEZhhgL3A98U9dl3VBsG+wMx9RbHx8Vs32/B/khN7aPBeJ7fXv6oZAVdZrxhZ8v8q7affGpwEdK/Ae/0Bou641i2jQqd88704o3b3hh7wV31i9b2NJ7TSauCLpTiS+A0ECGQSzI9tTDiMolKyuAC0fm7P9CV7RgXsjME4CV5+msPaF0fUN9x9SlTaHRr9YvW2j3V9eRMAxRDNwOfF/XZVu8bB8KlUtWrsCJGHV2/bKFL8Wr3uzejxRQuWSlBzizLND4GVUxr4axfoCW0Mim6pIN73bFCn6yq3PKHzfd+el2J4hSXDgXJ+LqQzjBb1KOTw0Rsfxt9csuipugISvqpFG5ZOX4fE/HJaPz9vw/VVQVWVILHAyVm5UF27omFdb9dkdH1f2W1DY+/R/fS8itU9fl44YhKnX9sPG3U8LEwq3nN4fK8+Jdb1bUR2D5otXv+amL718wIF/P9XHPAzpmlb129bb2qglQOKorVojosaPjC3a8urNj2k9ArDZu/XpnAsx/D8MQecBUXZdvpZOgAfZ3T2gV2OH+Sw6M41rUvQMsjxJ9KWZ71wOBeaOeH3Pi/hlfyGfsDYCQyNjX7/zv3/21p3oVkDOz9M2TvWp41JtNZ2wEApOLaudowizZ0lZTCwRK/Y2nQvnY3jniDQdny4q8vfu6Y4W3AM90RotrN9zxmWQOZL4D3GIYYpKuy71JbLdfOqNFKkeODjtojltRu4J+CaQSs714JMyIqkzfej4FtoJEIhDY4G1oqfkifvOLAJtaTumt4jIgtqdzkvSqYQEUAaGgmVfE+1veLBv1zpe+u/j7yf10H+C/gA3pJmgARVijFGGti3e9CRX1UG7hSUAHlBGWwqyIysyoZnkQaizQEomM2Ozz7jsdaWu2Aubk4nfufC00/S9A8NTyl8TovL2hJ7df2Vy/bOG/BWn/90UJ8VxyP5aDYQgPYLozHX9IhQ1H46YVVwvB5WUnlb0xzUk9Ez8SNqW3fNHqM4B/ARrYdk7ZhoeDB2f9FmjJq3glHCje1nj5Vx88XIT/hPP7H9zuf7PxrG/6JHeOs1RMJEHFerbA1m4HXp9x5XljWrZ88kuNby0OMXifWieF88aGIe7CyW2zUNdlNBU2HI25d6wobQpWNFcWvHuPcevXb4ln3QkR9WP3XRto2/GR7WaobHQ/RbuBVi3Q5NV8nXa4fcpLQEtO2dvlqq8z1LX37OeAloLxq3NUb1dz27aPbwDaF9+/YKBpLABYvmj1OH/x1h/FgmVXWZFiJaxGQ696RIAR73z3T9+9+YeDqTNdMQxxPTBD1+XXU23L4ahcsnIaToDMz9YvW/hwPOuOu/uxfNHqXNX3seesSNFosC1QJEjLX1K3NNxavRYoyatYcw5SVHQ3nL4TKFW93fNsy1eIkwKiNHiwptQ9E3w1QOfuBX2bkL+48WlT0UJhM1y6GWgNlG4eIxSzOXjwxOdxfgRjgH2duxe8CvZ4T97+L1nh4hGQe0q4baoIjHinSS3ZcvvDsvythvCo1+ievru3csMQNwJv6bp8Od7fTTLRdbki1TYcjVG5eyc09owlR+tuj3fdcRX1/Tf9ZQQUP2VFiub6Cnd+N9IxcTWggzC+8KPFfW7DCx774JUfEC2P3XeNGguWj2rfeWEAKCmsfO5sO5pX3LX/jCagNFBSd74VLfCa4dIOYGSsp3yaFcur7q3ogz8ChVj3WNzcQb8Dcfvnf/C1eoDbl6xUcaLonwn83jCEH/geTgT+jBS1YYgbgN26Llem2pajUV2yYUFjz1jmj32u0EnhGD/iJuo//mTRXEU763krUqiCctkX//MLT7hvDdinvPyrD1nAvvdfWfD6B0ssuP1w1y1ftNoDlJRM+8vJ0e6K/O798y7G6e0VnO2RdYvvX1DfW75+2UJr9tLf1kvEp4BFui7DhiEm4uRLyTgMQ6g4mcZ24mTuSls2t5zUCtAUHP1WvOuOi6iXL1o9Ay57QtHCnpJpT3zj0zcvf6L/q+LP4vsXxIADsOAZ1669OFNvHvektHHoNZOKtjStbTzzxI/814/K/v6tWw/qugwCKUuVMRR0XVqGIc7ESbCU1hwIjtEA3myatzPedQ85mM3Dd33napAvgaLYlveUT9+8/L54GBYP3FmL84DbgPMON4uxtvGMuyQKxf6Wqw1DvGQYYmrSDY0DhiFONwzh03UZ1XXZnmp7+qPQ1zpFYAfrly0M9V96YAy6p16+aPU81dvxH1bs7EtUb2eLFS08Y/Evzo/7r26ouEI+ogskUV8HrIaeMXNx3I6GZNkWLwxDjMDJm/4gcGNqrTk2xuTtPlcVljcRdQ+qp3YXVQwrWngJ0iO1QMuNi+9fkHaCPhbqly3sLvYfbIrZ3gW6LmfruuxOtU0DRddlM85o6z9TbcuxUt8xuSFs+rcnou7Buh86Tp4+QFiRjkkT42RPSqgs2N7c2D221N0SmlEYhvAC6LpcqetyT3/l04Wgme8PmvlpJWrDmSKT4BwhMuJkT0o4qeyNHFN6NOAn7mpgRmAYogLYZhji46m2ZaBoSnRsjtadkAH5oES9+P4FaxBmVPW113KEAVimYBhC7Oma8Lj79AZgVQYJW8HJirs5xXYMiMolK4VAjqwq2TghEfUPfkpPesJWpPjZTBY0gK5Led0zT/XuaVZwNiLpDGJ+Pdm4O+8+lmo7BkqepyOnO1bI/u5xzyei/uM6PrVhCL9hiOtH5jS4ApaSDHCnDEOMMAxxn2GIkv5Lpx/dscIygMbg2ITcYQYtakXryc+veGV+PI1JARcAv/rP+V92nwqDJMd9GyQ68AVgbIrtGBRTijZPARgRaEwfnxpA2p5oNDhyd/8l05ongVNxtshawJoMEDS6Lv8MTNB1uSHVtgyG8fk7zwA4ZeRrcT+fCEPwqaXtjUTap9TH0Zako+tSAmsB1Gf/qswcsf5MWJhiq46MYYgCYIquyzd1XR5MtT2DZd2BeQcBdnRMfb2/soNhCD61BAYdhiLlGIa4xTDEnYbxXrw5uyua35FSo/rnu8AadyovY+mIluQCbGs/YVci6h+CTx0syK949Zx4GpNkqoCZbm+NJT2hHR1VCVkMiCN3AZ/Vdbk/1YYMhfKcfTMFdgxISPTTIbgfnnC0Z1RGLo0D6Lq83t2q2YsFqEcqn0rcVcOYe97wsf7KpzsBrWeBVw2rESvndBIwdTqEgaI3GumYlJEDRcMQueBs1ex9LaD15M8cse7M1Fl1VH4E/MM9TJvRVC5ZOa++c+qYiBVQSNBC19B8amFm3Dy3YYgxwAHDEFf2fd2WSqQrWtiaIrP6ow7niFks1YbEAd1JmyHg/YWuuDJo90PRggW5I98+G86Ppz3J4re4sx69RKxA567OKWnpTum6fCDVNsSL0bl7djf0jAOkfaSDG0NliD716B3xNCYZ6LrcB3z1MG+lnU9tGOJrwA5dl0+n2pZ4Mb14U3VDzzjKAo1/Oxga/eNErAsM0aeemDFbHQEMQ1QZhjjhcO8V+lrLqkvWp41PbRhCAz5HHMOepgPG3gsFSLO6dMO1iVroGpJPLZRoWvVsx8D3gJd69yD3JWZ5g53RorRZ0NB1aQJn4OwcHEaIuSA2/O7GexMWGHOoPvVZcGE87Uk03wB+c7iIRUEzryXYnZcWsznu4dm1ui4jOHkIhwU3rbha9SiXnl3oa0/oSfehLJOHo91jtsXTmESj67IJJ87d4UgLn9owxEjgH8AK4KYUmxNXOiLFZ8Vsn6+6ZENCV26HsqHJinROqHDPK6Y1hiGEYYifGIY440hlygKN46YXbzzi+8nC/eFdihOtdFhh7P3IOIDa1pr/SWQ7Qzh4K3NBngGsygBhVwCfAWYeqUDY8re3R0qakmfSv2MYwgeg6/Lv7izNcGMu0NMcGvV2IhsZysFbnMDi0ksCJtDjiSuQMTj5Tg5LV7So6UBwTMpiOLup4HYYhsi4kyzHSlmg4VPFvua9hwuBHE+GcPCWsJvYsfd5WmIYQgFwg7xEjlLUJvU+9RvAphTbkBDm3rHC2xYeUV5ZuC3hOyEHf/AWsQDE3wEVrNw42xVPrjUMsdYN+HJEKnJ3T51cVHtasow6FF2Xe3VdfkLXZcYtaB0LTcGKGlN6xPqmuf+d6LYGPVB0D9x+UtGCzd68hr8+dt+16brZph0nYGLL0QoFzdyDHZGSpCf6MQwx0jDE8kw9bzgA5gJIlIQcDOjLkDYkLb5/QbhwwuqHo91jc9t2fDQtFwl0XT6u6/JTvfumj0R7pLShOVSeiuxV5wDXAKP6K5jJTCvetMivBkNAwtcChrzLTvO33AysMUMjvr180er8ONgUNwxDzDj27ZrSApn0XYe6Lv+Ec94wo2J3DJSm4Ogxo3L3NtcvW5jwzGRD/iNe/tWHJHAzMCpQWvuroZsUH9zpsRdwksv3y4SC7TWVBdtnJ9aq9zEMUWQYYjaArsujukaZTuWSlfntkdKS+s5pSdltGJeeafH9C17NKVu/I9w26cqH7vhhdTzqjAMmcC3w82Mp3BUt3N8eKU6m+3Eb8LJhiGHtdrjMxpkmS7g/DXEMZhMo3naVtD3R7v3zbo1XnUNB16Wl6/IpXZfHlKevNVy2rz1Smswe8w7gKl2XjUlsMyXMHfXizQAzR6xLSkiHuIn6ypt//hoodwOf+fnilXPjVe9gMAxRaRji64YhCo/1GoFtC+yEJ0s1DOE1DCF0Xbbruny8/ysyn92dE8sLvG3dT3/ztqQcGI73wGiZooV6fPl7n33svmtE/8UTxkLgbqDgWC+YXLTl5Iq8PTMSZ9J7/Jhhct7wWGkMjh3VGS1O2kGHuIp68f0LOvPHvvh4uH1qUXPtld9Zvmj1t1OxL0TX5XKcoC/HfIihLVyyuzNamIz91BuBN4bJecN+mfP9X48BxpMkfxoSECCyo/78zwM7pO27A+SdpGjDk67LAZ03bAmX7+2KFiV8CVfX5QO6Lr+d6HbShZoR674McGbFquZktRl3US++f4GJsxdEgFBBBoB7fnHj01c9+rMvJPz2bhjiAcMQ3x3odYowEVgJcwkMQ3xjOG9WOhJ1rTWjBbYsz9n/92S1maiB0QMgr8ZJoSGBE20z55Hm2qv5+eKVu6UV+LsWOLi2qPIf66646YG45dFzQ4jlAL6BXjutePPsllDZyHjZ0hfXf/4MjuvxZCLaSFcaesaPAzbc88U/Jq2nTkhucngv2ZGO02uvza945aOKFvpSx55zVKR2BuCsPgpzJ1Jb5SvcsTG/4tVXrrjpgbVHrDSBnPr9B57vieVP2/yDK/rLpz4o3HORPl2XCQm1lY7ctOJq8eT2K1slyp/qly38UrLaTdgU1r+nelvwN+BvAMsXrdYKK5/7mLS8V3Xu0b3ApyIdk74Y6ZjE8kWrdoAwAiM2bc8t22hccdOKV46lPbeXHqnrclALKAdDo/fg7LmOK4Yh5gOvDbfzhsdC1PaeK1GK5lWsVpIZTTbh87KHw/G7FzwOPA6wfNFqtXjKkx+P9Yy8qLvh9BLgklDzzOJQ80yWL1pdDzyfN/r1Bl/hzpUtdVe8vPj+BYe7vcwH/mkY4nxdl/8aqE2aElUsW42rT+2uFj4H/ALn0O9xxdrGM6cBKCR3Pj5h7sdQWL5otVIy7c+fCLdNPSd48KSxIOfDe/uh9wDPF4x9oUMLtDy2//Wdq3EGvPbsG1b+GLjTTcU8IBb++M5393VPmLj++5+L6w/dMMSFwPrjYeXwUCqXrPwJ8GWgoH7ZQjNZ7aalqA/l9z+8XfHkNF3c03TS3HDbtKkgzwUxItx2z6FFrVsefXpQopx7x4qV7eGSeVt/dGlc9jUbhvDrugzHo65Mpeo7f1oftXw9O5Z9LKlBglLifgyUz37n+zaOP/43gMfuu0bYlv+j+9bwFO55MpdBT1E2BSv2Eief1zDEBOBVwxBf0nX5VDzqzDRuWnF1wJKXnnTSyNfXJTuBWEaI+lDc7a4r715z0aHnCged2sCrhtWY5Y3X92EBrwAZmZMlHqzafdHMmO0jZOYmPZ52xoXi7Yvralg4c+GDdj0Aqks2zM3ReuLierjnDS/VdZmQ9A+ZQHes4GSAutYT/5zstjOyp+7LUITcl8aeMXVhyz95KHUYhhiNs0/6u8N9439/lAUaL24JlbXbqEkPj5zRPbVhiFzDEH82DHHqUOs6EByz15KeoWZmmg9cDRz15PrxgCrMD00s2hpLxvGtQ8loUQPTgHmAf6gV+bUeD8gh9fq6Lh/FOW+4Zaj2ZDKVS1bmNgbHeHui+X9JRfsZLWpdl28BE4CXhlrXjJK352hKbFA/DsMQpYYh5rg2tQ3VlmHAKSCUxuDYlASLz1hRu3nFha5Ls7/wB8fCvp7xmy1bG2w4rNuAF92Ipcc9U4s2XwngVcJvpKL9jBU18APgTTfi/pBp7Bm7X6IM9vu4HbjSjVh63KMq5sUl/oPm1h9dmpLvI5NnP9YCYTfi/pDJ9XT6emIF4qYVV4ufXf/IMfX8bhiGmK7LdtyFoeORs35f9fmwVE6LSPXBjddsXFPXWmPlaD3PpsqejO2pdV3+UdflgA8DHIkZpW+f4v7331JnHIV7gOfidbfIRC57dOLFnbb264hUvgSsOuEXCz8CojJo5hmpsikjRW0YYoFhiCHPePRld1flJoC61ppjvuYfuy5q/+WGm8W1zzw95CnFTMIwxBmGIT4LsCWcN9O5rTl5EQu16FcAKnJ3pyziVMb1MIYhxgP/xBmc/SBe9Tb2jGsA2NJW0+8P/fPLvzJ99Z6Fl8Gib4HUBPbLlUue/iuIN6cVb9LG5O2O/GvPR58G9gOtqZirjTfuoLz3c3wNmGsY4n9hpgHCxlF1LD88sawRizmjXlmXqhxMGSdqYC9wARDXnqDA2x7ojBYxPn+7Bwj1fe8rv7xu1jP1l5xgS3V+nqfjku7Ywj6zHALpnMc8H7hka9tMtrbNBCf1MqowrVm3/85sj5SuBfZNKqzLL/a39Kw7cOYTwP5TR70YGp27d8e91z+cNpnBDsU96PArwxAf0nW5F2dveKeuS2sjrJn7u+qwKmRbt+351NZ9H/+ewHrn3ut/n4pgm0AGilrXpY2T6CeuVOTuXtAZLSJk5py7+JfX7nt+7/kndscK5/nV4MKwdVnvEa9OAZsun/6bkablWfv4ts/OADxu5tYPA2/q4/7vRMvWql/cd34IqJhavPkjMctb0R4pjQKz9nRNmryjo0oFLgN4o/FsAJ5csrIT2FeRuzsn4Olp295e/Qywf+6oFwo9SnT7y/s/9BLQWL9sYVJCK7hL/pobZmIP0ASUAHt1XTb0LWsjvOO94b1r37obYL5EHfAhjXiSEfupezEMcTZwJnCfrsueeNXrJH2XL4DQQEon7QcAHV41/NopI1+NdEcLlm9qOWVV/bKFpnuQ1nvtM0+fiHsOcyCJLq/82X+UvdqglwIVp416/qKuWMGIzS0ntwMVo3P3nNMZLfT3xAp8OLm7+yJzPV2mTw23tobL1gL7Z5W9NtaSau3G5jmrgP3nT/hrKKAFt/3s+kcsN5l9v/Zd8J/L1C1tNb6ROfsDc0e9VNEUHKV+YsofjI5I0SvrD859dGvrjJadndPCxb7molkjX5/7btsJe/Z2V3YX+5pLq0rXn7Gp4J+XxDpOeTPc8KmT3AgCJoj5iUr+2R+ZJuo7gEXAuH5SXQyIyiUrv43jnysg5aicvZsnFOz41muN5zzbNz+JYYhzgTXJ2PxfuWSlAoz48IQn5zf2VJRubJ5jAxUzSt+89GBolGwKVlg4Zyr/bcFHwbJt1CaQI53PhASxTWDbxf7myd2xgp6o5bdA+lRh5VpD2R2gBMmffgfhxouItZ2J41pLC8T36pctvGvwFQ+ejBI1gGGI4ngvRbs92iqcnjEGnPeBXmZp4byI1774nRmhb3YWWvfquvxmPNsfCjetuDrwbnv1+M0tJxerIjb2tNEvXrG7c1J4b3flCSBPdpNNAaJWYG+qLn17dlt4xLsNPeO2eZWwVVO2bnZTcPTmMXm7xk8o2DG/KTj62frOyWt3dkzfmat12aeNfqFqT9fEunfbT9hX6G215lUYo3d1Tt5V23pS84hAY2z21P8585WY+Wh5rPyhbdu+cTlH+g6TSMaI+pDRd9w54q16aWGv4H0SaXYWWJ8ovLknaYFZBkt/P1TDECcCfwc+o+vyX4YhcgFzoHfAa/807tJ1waI/n5bb9u1/rv3l8wzCHYs3GTFQdMMfvGoY4o+6Ln+SiDbcP8Lh/hA6TnAcRSDUwk5tFo4Y0pr6ZQvXVC5ZeR59RGYYYiJQ4oY33gq8DHQDDHaMsi5Y1APwWk/x80f5DpNKRogayAXqgFRMExmS924QUYEwUmDDoOgrMrdjeBroAM5wxwWXx6GZ3tNCrXGoKy5khKh1XXbjJPtJPks71oTvymtSLVHiNZXzWNqR8p7oWHFni24ErtZ1aRqG+DzOPH/cODHQ+aENoQLm5ralTRTXtBe1YYg8oHggYXnjytJCNYCaC/w6EwRtGCIHkLouQzi96GnAROBdXZevxbu9sFTyAEq0WEN/ZZNFJuz9+CywyzDEtBS1fwJO3L9MEPRonJRu17svPYUTp/vdRLW5NZy3H+j68ScOhPotnCTSvqcGVuKM4BP2hzkaB0bGbipv8tBabL6Tjtk7DUNUA9N1Xf5V12WDYYgVwGvw3urrUM9d9kcxaeRPQwaIWtflbuDeVLWf26NMMVUZ6yyw3kpHUQM/xNlc9JSbvCmpAd3HeUPzg7aal8w2+yOt3Q/DEJ8xDHF6Km3I61FHapZ4rvK6cFpM6BuGmGsY4pU+qepuBk7WdTnYo2hDosPScsK2otY8VJP0bBFHIm1FbRhCxdnpdmOqbDDvLCgCqkmxP20YosAwRLn7tA0oAsYB6Lqs13WZkh1+NQ/VzOu0PGU9tlYIrEoXYaetqN2e5wTgW6my4UB57CsATWWxlG2jdI+MbQXuBHAHfTN0XabkUOsh6DibPQTOuEdPpTG9pLVP7c5Pd6eq/cIOtVIiCebYK5PZrmGIWcACXZf36LqMGIa4FXi79/1EbhcYIAbvLUyJmPM89aTl3g93+u5+4Ku6Lt9JmSFLC58BKljacWKimzIMoeDML0vDEN8HbgImpnsckbMenn4gZitaUGoXbbxmY1pMe6ar+zHWfaRsqqj+t35VIk8DXk10W+603CacveLgHOidkO6CBuiwvJuCUqtNF0FDmopa1+VqnLnXlK1SKTYXCETRgZGxhORpMQwxwjDECe7TXUADrjuo67JD12XCczrGiQiDyIaWSNLOpzYMUQK0uwsHKWNEs1YFYKnyiXjX7W4u+hfQhbO5KAicF+92ksF4b3B6j62VpdqOvqSdqIHfA3nAOak0Iiekng2EKxq8cVn+NQxxCs7y9Y26Li3DEDcBGZ8HxpKiI2orxam2oy/p6H48DPw2lQbEflCgS+THJdIH/NM9KDBgDEOo7nlGgMk4Wz2nguNi6bpMWWyMeLEvFtjYZWudqbajL2nXU+u6/EOqbTA1+z6PqfYevu2dfx3QQMhdLFkD/BfOTM4TwMrBZA5Lc7I+9ZFwp7Q+Dfw1nifFB8zSwrF+lMkSaQsnSMsxz78ahqgAqnVdrsIJKfAcsA3AjfmXtLRryWK6v/ukXZFA1qc+AmfjuB5XAo+mygiJvFs4IRI+BUwHjAHso/45cLphiLGuiBclys50IWorB2NSpNViRzqJ+gUcYads+XfvisB/jMV7echv3xtY0tVvllbDEDU4+1Ou03XZDCwBovGKxJoJ7IzmvA1cmGo7+pI2onaXfoecEWDQLC30jlY8iyNeO3igPHZb5RGKuXsxctyFEQs4BadHb9Z1WZcka9OJCKDWPFSjbrxmY0p2Ch5KWsx+GIa41jDE992deani66otJviiyuWV14UPu/BhGMKLcwD4BwDu7MUEXZcvJ9HOtOKknI6TAS4sbCpKsSnvkRaiBk4FPpSqPcG7fuOfawt5p0Q+ydKOD2xeMgwx0T2wiq7LKPAz4D3X5HhyNQ5H0FIbABpjvoHE9U4oaSFqXZeLgXNT1X5Zk/YI4O3Ksw63G+9LwHLDEKUAui5/6s5uZAHejeRtBFgfLEybwWLKRe3e0nt7weSytNDP0sI/5oTVKUIiC7q1nzYtz7nMMMSLhiFOc0vdjXN49bhO9nkUeiM6pc1cdUpFbRiiANhrGOK6ZLe9d4X/I8GA1QxcIZHSncbzlLRqM3CC55QA6Lps1nW5L9n2ZQpzc9tOBFhQ0Jyq0/7/RqpnPwI4K22bktbi0kIBLBqD9yemJrWOAnN5Xpf6FUVKKRAxzRLP6br8ftLsyXC6LG0fQFPMmzbBbNLykECi2PUbf1XZQe3RnJB6Yk+OtR3Qc7/VvXfng75vlrZ4phZ0qQ9mQsCadKLmoZqLgSeB5cAj6bCvOmWiXn/puI+rTd6ztYPev1TX1Sb8i5BLCz5sqTyu2OQdKI/935bp4QUITtV1mby7xDCk5qGam4Cf4szZR4HzUi3slPjUtVXV87y1uY+rzZ5bJHJVbVV1wk4h1//Wnx9alv87gXhOCtm1vyJ26Zaq8CcQjM8KeugUq9Hev51Kmhy+TZVPrWOjCDdNGYPYBdcfhiEKx+32XjC6ybMiEFYKDo6I7dg2JfydeRfaj491iqRt4qBMos3y/Azk5W5KEZs0OHybqtkPQyAkzlHkuJ9ClksL5s16K6e2cqfvUX9YYV9F9IdlNwYnz7vQ/mM828kCG6/ZtAbEuTjJjuwpvp5D89QknZT51Jurq0JSk+8oMeWr8fCpDUNM9UbEHXPW5nZ4YuLLAoG7ffQTLO14Kh42ZzkyNQ/VjPYLa4tPsXNOzumYcd8nG7akypaU9NRv3FImAH90ZndwKII2DKG8+Tctb/8vA7eesi7n6dNfzbvSG1O+3Pu+ux96ZjxsznJ0Nl6zsWFeXtsN3ZYmja7SX9c8VJOyxZiU+NT+1wryhBR4dgUGvStv/y8D505R/H8c1ejJ1SyRG9OkJQXLkbwuEPfzfq4TI152Zzk6936y4ZGah2piwKMK9hM1D818EYRxrLMhbtgyHTAeu8uk9/8D7fhS4n7UVlWPxklxfEN1Xe39x3TR0sJ5Mc3+RDDHnuqLKLP8EWWiRMqIT75pqXL5wTLzscrrwj29ZXG/kOy889BxT7+T+9QI7Dwzxyoxx/rfyg/ZhWap0q16zfLoJO+WnCazPDpB6dKsRycG/t8B21etWeAxpSwxrc5cxcpXI0pUhJROn5C5HuxcNSZMJax0e5G5io0nFlPRLElRN/aUBikABCIMnDcQYaekp45O6xnt3ZqLOTJ6bO6PI1JDM4W3sFPDErLhwMjYSinkLaNuCG0BZ137/fIdaZFQJx68ddUYJTy7a7R3a44iNVmgtmtqbGxkomePr9vOs8qVDs2yyqNTtb2+JrvIHK90amGrJDZd2+vbbZXGpqgdWrdVbE7V9vp2WqWxKrVTa7cLzElqg2+HXRKrUjq1djvXGqce9Oy1860JSo/aLX12mdKutUi/XSbCSqRMmZojwkoMiUdIcURbfW4srWvfgD5hsQUoha6n63ceAksRmCqapVJgakKJqhBRJTEN8kNOfL7Bzo6lRNSxsZETvFtziVb1VBzjJTqg9g7+VCnuK/9K8AOJJ925bp1B3K768sYtZUJ67HylW8tVehS/9NtFSPIxlYASVjzSaxdJQb6ICk2Yih9VFkhF5ouwIoUt/AjypSoLlKASRZCLxCdVipQeJYRCPpZQpSYLlR41iCLziQnQZIEIqkEEucIUEgiIqDCxhcdvF+B/s+ADNvrXHeOH2fH+fyXyLO2AVyCIymaPSlQpEjYFxJSAYqMJS6io0pIeu8MO2KaI2NvM8ugEpUfdbeebuepB7xZzbHii0qnV2/mWX2vybomND1cqHdpOmWtp6gHvjtik0Gi1xbPr1dGeymcrAt+OqmimRuzEg+Z1n1sTeyl8cpemNfpa/W/l98zcXPeBbcau67EK8MzcaVu3/dH2uXtyBuxCpsanXpffDODdknOsIb0MnNUqz+E+pCvof0mkF4HcOH/SOrvI9CqdWoedb01QutXuXiHZfqtcCasRICAiwpQqeSIqbGyhCVOQZ4+I20EFqUgbTUqpShuISI8EVVpSk1JYwpZeaeOVEem1wwia7YDtBYLSZ6tKUN1v55k5whIdtt/WlE5tt10cyxdRpdnOsVS11bPLKovmi5B6UAYsS2327jfHRAJKt9osBUGtydMarQoKEVY6cp4v7hAIs3pTXVJ8zVnA8odqnsPtZJ69eUu/nczGazauqXmo5jxAn7VDHgB+LRCPAD/PFJ/6Y8DfgFOr62rXHtNFR/GTa6uqv40TUV9IJFKVJgEbLNFp51p5IibapN/2iqjSbBeYJSKiNEm/7RUR5YBVaJYoYeWA7bNVJaI0WYVmkQgrjXhtKaJKi1Vg5oqIchBNRkRMtNv5lkdElBYpCApJj51vWSKktGLTjULQzrci/rX5LWq7J1pdV5vSKFOZytsLJ9zu3Z6z1Mo3q2a+8e6ApwZT436MD0/27PYTGxc+9lMjR/eTDSCM25MLS5xXvbb/3iFLemLnWh+XHpvISd3bB3N9SuapzYrIHIBodXzCe7i3p/OA2xjgSDlL+uHblNeG4J3ZDzQM6qhcSnpq39t5dQCebYH6eNXpCjkr5mGAsMUMouL/Bnt9SnpqJaR6ALw7ctIqBluW1LNuUfkUoNwsi+4fbB2pcT/KI9OkIkPZgVSWf8MWHwWIzujpGmwVKXE/rNLYySKkps1BzSzpQ84LTlRgbbd/0KHnUiJq77s5tdgi1ecjs6QnM4EW747ArsFWkBJhiZjiI81S/2ZJD6zi2AVYomHm6+8OegElJT61lW9WWvlmyjeTZ0kv3rilTIgedZw5ITyksVZKemqZY1XaeVZ7KtrOkr7krRwxARCeLTm/HEo9KRG12uQ9oLSlRcbWLOnFTAAlqqwfSiUpcT+EFLlKVGlORdtZ0pdIdc9VAFZJbEgJYVPjfiiyyCqL5vZfMsvxhAgrNVZhzJz5yrYh5ZBMek/9xi1lucIWmjk2MjrZbWdJb7w7A1Lp0J4daj1JF3XOP0v8AN53cp9LdttZ0pfaqmoPUCUQG4daV9JFrUSUfAAlrGZD42Z5j6De9mHAE50aHPJ+oKSLOnxiVyVArDKUk+y2s6QvSqs2GyA2PjzkeCFJF7U1IjYNIDYhXJjstrOkL/4N+T7Ayl1VcrhsDgMi+T71v4p3AfhfL3gx2W1nSWtqgC3VdbWRfkv2Q9JFLaRwfOqQ2p7strOkL1Zh7MOxMeG4pEhJuqijU4M1AJHpPWmRcy9L6tl41uR8tcMTsEtje+JRX/J96uLYDIDYpNCQbzNZhgdas7cawLch/9fxqC/pog68XrgewL+2YHey286SttS4/8YlCH4q9n5MByztoHd2CtrOkoZEZnZ/WXpsG9gZj/qSKuraqup5EnmVRKpAQtNiZMkctAZvvlVoHozXmdVk99Tnwr+lxchynKO2eEdqzd498erkki1q0RvkkWzs6CxAbVX1hTiJWE8hTnfvpIn6ravGKFLIK4FdAvE9spGUsgB2rvlR978Kcbp7J20/tZ1n3SmkmBmdHLz1pJW77ur/iizHA1KT/wC+OtiwvYcjKT11bVW1CLxaeImVb3ZGq4L3JKPNLJmB2uF5BkAg/kmc7t7Jcj8+IqJKtdqlfePUuw9mF12yvEd1XW0MZ3y1Ll7uaMJF/cYtZcIqii2XQu4Bfp/o9rJkHrbfUiM13RfGq76Ei1rb7/ui2u6pDJ/e8aL7q8yS5VB61GZP3A6NJHSgWFtVLfzkf04qstEqNhclsq0smYsSVhuUBjVu0QUSKmqpSl1Y4ixhi6+ees/BQUexzDLs6ZHIuEUXSKiozTGRP6kHPN1KRI3L7qssw5PY2PBEVFkZr/oS5lO/c/K0+Z7d/tJoTc+z1XW1oUS1kyXzEWFln9LmaY9XfQkTtRJSbwUO+tcWfC5RbWQZHmjN3i1qpxaMV30JEfWG8yu/A1wAPFZdVxs3Y7MMW+LqU8c9j2JtVfU8KeTLQgohkVGB+A3wu+w+jyxH4u0LKrdr+70TlZh6Zjx0kghRf1sifyhwkrRLpARMgbgReDN0akexDNixnBeKdwLR0Bntmu23g7mrSzqq62oHlWLsCHbEJa1zlvjwxi1lAaVbnZvzfHEuMCU6MXSxMEW1Z48fiRwDIBAh4rBUnpCeGifHtE8ie/dOHyu21Gykgq1ElVYgYhXGihHE1HbPTiBijo5UIglpjb53gEh0UrBaWKLTsyuwHohGTug+UWnzSE+D72xAlciIQGR3BCaBN24pC+Q+UzpGWGJqdErwAhmwz/FuzG0UiKlSyElCivfEIDU7Yo2IWWqjd7tAzAQEYAK3VdfVDmnDW0LSOLvC/pxEXoezndAUiP8H7Aif0nkSkOt/s2Ar4IvUdM/Fxut7J68O8EWm95wuLKF6t+VsBbzRiaFTRUzg2euvB3zm6EiNiApLbfE2AT6rMFYpYoqtBNUg4JOanS9M5f0vD4nMtQ4qPdrtwMrqutrs2cghUFtVrQGV0SnBM63S2EW+t/JblKgy3vZbp4ioUi7s9zsx22cjTLFRWKLWHBXpjk0K2b4NeY8o3Vot0FRdVyv7dIIenD0g6ddT9yVVLkDvFyWRXgSK1GSrElNKAcyR0bD02U949vj/B3ituq42G6rhEGqrqrXolOAJ5tjIxb71ebba7hll55lzpM8+VWnxKAKh9paVQgaFFFvtfPNgdEoox7Pb9ye1xbvOHBHdET6ts+HUuw/2K7B46yShok4lfb8o4FVgujkqcp30yi9pu335AqFKRbZHpwXblB71Hs8e/8PVdbXtx4sv/tZVYzzWiNgZ3ndyyz37/GV2rjnLLI9+TNvnjyoRpRyn5+ylR2r2rtjEcIHSrj2rHfS+bBXF9oRP7zggVTYdi3CTybAV9dGoraouBs43yyM3KF3afCWoCsCy/dYOEVEmCykAzNioyEPmxFBPYE3RK0AsMqO7wioy83JeLloHmOFZXeV2genJeaG4FjDDczqL7DxTyTFKdgFmaF57wA7YVu7qkhYgFpzfhp1vRU+9+2DCNnb1/VF2L2xe692SM827LWeM1OyqyAk913r2+C21zVMgkRMF4j3hSmSPNSqqYoo3tWbvC9Jr7wyd2e4R3eo/Am8UvltdV5sxQjkuRd2XdV8creW8VDQXuMj2WV9TImoyMhxIwJSarUgFlKjSAZh2rpmPglS6tAYgZpXERgGm2urZCZjmqMhEJBHtgG8LYMbGh6qxRLdnn38zYMYqwqdr+30TBUJIJCiIvj6u9NjSDtgH1E7tZeDd0GkdZSKirPavz/8X0JhJwj0ax32CztkPNJjAK8ArtVXVT0nkaoHQANMcGV0cndG9N+dfJfsBLTy7c4KdaxXnvFC8HfCET+6aKv1WUWBNUR2ghU/qOkF67cLAG4WbAC0ys/skqck8//r8DYAWqe45BUUGfO/kbQC02KTQHMDj3Zq7CfCYo6KnYAvF26VtATQ731SICaniaQY0FGxiQgEKAE0E1RIREwWAF/CoLZ7xuAtqAiHNouh2a0zkb76N+U8C7/ac33pMPm6mc9z31IeSyT51ImYSMpGsqIcZmfyjjBdZUWcZdqQkj2KWLIkkK+osw46sqLMMO7KizjLsyIo6y7AjK+osw46sqLMMO7KizjLsyIo6y7AjK+osw46sqLMMO7KizjLs+P9sfHI8s9UvAwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top-5 predictions:\n", + " 1. shovel 15.070%\n", + " 2. floor lamp 10.788%\n", + " 3. screwdriver 10.516%\n", + " 4. lipstick 9.559%\n", + " 5. lantern 7.887%\n", + "Answer: anvil\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA8rElEQVR4nO2deXxU1dnHv+fOnkky2SAEAoRdhChalYJir6DWSm21ttpWLYWK4mvVV601apdptYq12lZLpWLVuC9t9VWpiiVeikJVlE1AZJElQPY9mf2e94+5oTEEyMzcbMN8P5/5zMy9Z8vkN2eec85zniOklKRIkUwofd2AFCnMJiXqFElHStQpko6UqFMkHSlRp0g6UqJOkXSkRJ0i6RjwohZCyKM8njCpnieEEK+bUVaKnsXa1w0wgYIOr78OLOl0zdcxsRDCJqUM9UbDUvQNA76nllJWtD+Aho7XACfQIIT4nhCiTAjhA/5HCNEkhPh2x3KEEOcIIUJCiPzOdQghvMAcYHaHXwDVuFcshPiXEMInhKgzenTPkdoshJgqhPhYCOEXQqwVQpzfqUzVeJ/XIU+Rce2UDteOF0IsFUI0CyGqhBDPCSGGdLhfLIRYbvy9zUKI9UKIs4x7NiHEg0KI/UKIgBBirxBiYfc/+f7LgBd1N7kH+DNwPPB34DlgXqc084DXpZSVXeT/HfAi8C+ivwIFwCohRBrwJtACnAZcBEwHHjtcQ4QQ6cDrwKfAl4CfAvfF+gcJIQqAfwOfGHWfDaQDrwoh2v+vzwIHjPsnAV7Ab9y73mjvd4FxwKXA1ljb0S+RUibNA/h29E86+L4IkMDNndKdAoSBYcb7bKJmytePUPYTREXf8dp8oBHI6HBNNeoce5hyrgbqAFeHa9838qidysjr4m85xXj/a2B5p7KzjTSnGe+bgDmHaceDwHJA9PX/zezHsdJTr+n4Rkq5BthI1KSAqKjqgTdiLHcisEFK2dzh2ipAJ/qr0BXHAZ9IKTva+u/HWC9Ee/kzhRAt7Q9gr3FvjPH8APCoYXrdIYQ4rkP+J4ApwGdCiEVCiNkdevgBTVL8Ed2gtYtrjwJzjdfzgCeklJEYyxVEe8auONz1I+VpR++Qth1bpzQKsJSoMDs+xhE1b5BSeol+uV4hahZtEELMM+59TLT3v90oqxR4OxmEPeD/gAR4GhgmhPgxcDLw+FHSBwFLp2ubgROFEBkdrk0n+rluOUw5W4BiIYSrw7XTOqWpNp47zuJM6ZTmY2ASsFtKub3T4+Avh5Rym5TyQSnlbOCvwJUd7jVLKV+SUl4DzAZmAmMP0+6BQ1/bP2Y+OLxNfcph0pcCAWBFN8q+nejP+wQgj2jPmQbsB14GioEziQ62/n6EctKJivZpor3o2URNIQl8xUhjA/YA/wDGA+cC6/miTT0UqDLSTAVGG2U9AmQALmARUfu8yEizEXjUyH8T8D2iJtRY4I9Exwdpff1/TFgHfd2APhb1mcb9H3Sj7EHAMqCZLw7qiokOuHxE7fInAM9RyvoysNb4Qq0FLjbKnNohzXRgnVHuaqI96Rf+FqKmxt+Men3GF+ohwG48ngV2G/XsNwSfaeSdT7S3byY6oFwBTO/r/6EZD2H8gcckQohLgb8AQ6WUbX3Yjm8S7e0HSylr+qodyUIyrCjGjDG/XETUpFjS24IWQswBdhI1ZyYDfwBeSwnaHI7VgeJPidqodcCdfVB/PvAUUXNhEdGpxMv7oB1JyTFtfqRITo7VnjpFEpMSdYqkIyXqFElHStQpko6UqFMkHSlRp0g6UqJOkXSkRJ0i6Tgml8l7mqKSpdOIesdpuxbOXt3HzTnmSK0omkxU0LIMcAABEDNTwu5dUuaH+aiAA4Qgupv95qKSpeLIWVKYSUrU5qOBkMaOLR24ON3WtOaav8w7u2+bdeyQErXJTMjeWAUoIJaBmAH61WHdOmXZrm8sKyp5/faikqWd9xqmMJmUqE0m11V1F8BpQ/59966Fs1ftWnjBI7NGvn6yy+p7G8RvQP/4R3++Zs7RykkRP6mBoslM+vnz7ysiMnbm8H/m/XH+M1/4cItKln7DaWl7MhBxerIcdU/VB/Ku3bVwdvPhykoRH6me2kSKSpZmt4YyTm4OZi3pLGiAXQtnv3rOyFcnjfJsW14fyLsc2DTzngdSvbbJpERtImM8n15FdO7/5cOleeiqp/aV3XbT2cDpFhFu29k44Ykzf/PguqKSpYfE8EsRHynzw0TOvffefZWtQ4eMz95se+nGe/Sjpb9hyeXuA62Fr3xQccaZINpsiv9RAf6g7vxnam47flKiNomikqVpIGsL3OXLVv98wTdjzDsBeB6YYkwFShD/mJiz/uOizO3vvrHr4pW7Fs5O/aO6SUrUJlFUsvSbRMN7nbNr4ex/xZH/dpB3glCIKjtENHYHRIPW/Of43LXNec7qf/9737nbiMYOSS3Dd0HK98Mkhmd8/pN9LcNbdGldEWcR74AIEI3OFALOOXfk/w3Z3TR66tb64sEgp22uPWk8cJmRXgL+opKls1LC/iKpntoEvnL3H63VbUMCRZ7tu/95yx2j4y3naI5Q1y+5fNy/dl9wd1vYfXF0GV5GQPx818LZ9yTQ/KQj1VObwO6msWcCSoM/565EyjGEfNhe98H5T28rKln6gED/pkTYBDIiEVoidSYjqSk9c7gI8O9vHfFCT1e0a+Hs1en2xv8BsCihu1Omx6GkRJ0gNyy5TKTbmn6U46xet2vh7K7iYJtOczD7bwBh3dHSG/UNNFKiTpBtDcd/tSWU6ZqUu3ZjL1bbqIiIf2j67i/3Yp0DhpSoE2Rz7ZQzgcj66lNvS7gwr2caXs9teD3TjpRs18LZMtdZpWTYmo6Y7lglNVBMGHkhiBUbfn15bULFeD3TJHIF0f+JX3g9s/A2HtZebgpmf1DrH+xMqM4kJdVTJ8A1f5l3HoiJE7I3bjChOBWwif/umFGPlDgQcW7XpWWoCfUmHSlRJ8CG6lPOAxib9elzJhRXKxBIJIawj+jglJ+2LwCy4IYll7mOlO5YJCXqBNjXMnIasGbR1U98kGhZLe7IFRLpE4hfAe8ANxxY7HrgcOnHZW9xgxBB3XFConUnGylRx8mUXz55CdFTtdYcLe3RqHkobYjLp5xRlxPeibfRC5zf4o7U5lfabgzdlfm1rvJsrDn57wBvfH5x5xPDjnlSoo6DopKl0xoD2c9G38m5xvJ23OTV2i6x6AIpuBEAb6O/Njf8JeBTW1i8iNczp/OsSGMgZ4fxcngidScjKVHHhyppP0RTWDjKoO6IeD2C6NHOH+Zd1/Z2++WR8/y7FSnOlsgWiXxCIu8ElrcLOz9t3z6AcdmbvhJ33UlKStTxoYFo3wQQir6Pj/JhgauA41vTIi8dctPbuC9ok28LBCL65bFhfIG+XLCi3mHx4ba2dD5Y9JgnJeo42LVw9mpFhHaBvg1IyPUzu976vbBF6tWDwk92dd8eEg9LJBLZ7mOtAfxx/jMyGHFsXVc9dVe8dScrKVHHidvaNqo47+NIQg5FXk+2u80y1RLhL0Vz/ZVdJRHeptUC8ZZAtAJfWJCRKHuBwrjrT1JSoo6DopKlzuaQR2kKZr2bSDlBm3414BSIR46Urs2l/wtI3zc06O54PT9tn+6yth6fSBuSkZSo46MQYHfT2PfiLUB6M6chudNvjzTgbVx3pLQ1eaGPAexBcUnH68MzPnf6w66Myx68yRFvO5KRlKjjYKh7z0QAp6Vtf1wFRGcw3rGHFasjqKQfzYFJV3hHIvcPqrFldrz+cdWXn5EovLd/Viq8QgdSoo6DMVmfzgZQh78Z7144VSBsQPuSuHqkxEVz/VIgygDVmAIEQJfWvcbLlF3dgZSo42BT7UnNABFpiXc1UZPICIBEBunGlGBTRmQrkL+3MPDV9msTc9Y3A5w0+D+z4mxHUtIvRF1esnJWecnKu8pLVg4I/+A6/6AMoGbJNY/Ux1WAt3F1gye8GsDn0r9/JBfTduqzw6sA3K2Wg6Iem7VlL4CCPimudiQpfepPvWHJPEta1RnPOBl3KYBE3vG596UWm3/Iq8C21rz3I6G0fTuz9nxraeHCGQ192daOuG1NkwIRZ5dTcN3FHlI+As5sztCXp3UjvRS8I5HlOfXWgvZritD3AK0fVU2vSKQtyUafibq8ZOVxmY7Zr1kDg8ca7pYAUkQcYWA68D13zVTRIX11MK08FLHXV7oaiv8GfNY09K3WsKtizQnzH63uzbZn2JpOGere25BIGe42SwNAfpWtrTvpi+b6JV6PBpyD1yPwNso/zn9G/l/J0tRcdSd6XdQblvzInVl+/q+sDL7OEhjU2pa97h+u+hO/RtRBPmQNZZ9fuHDG6vKSlc6GkX87y9Y25Dh39RlWYJxUAt+0txSNB34DkLk/+ktcXrJyH7CtLefjTERkfVrtqa8A25oLlu2eeMOdbYZZowJa4cIZCe++rvIVhMLSujKRMkJWPdsaFhHhbYp0N099VnhPdoM1f8/wwHkj4A2AQa4KJAwIs6236FVRl5es/HKG69y3rYHB6RL9BYFyw/hbr6vsSnSFC2f4C5nxBsY/L8qMq4xy0oGxjYWvXeZoHpPtbDzeKpHjHc1jplhCnpOBuQDpB2ax+443my243YAA/OUlK2clIuyikqXpYMmo8Q35KN4yABqyIqfn1FktsfiNNmdE3s5usN7uabScwX9FLfc0j8pLpC3JRq+IeuPiH+dn7frO7QLlOksgt7Zx+MsPTLr2gV+23zdE1m2hFS6c0QKsK2TGus73dtz1RJ6jZcxo3dJ6fFveBz901ZxaKJFjjF0ldoFQY6mrMxNz1k/aUnciHkddTbxlAKS3WHYISUyrgSP2OlYA5Z4m65j2a5vrpvwN+FlRyVLbroWzQ4m0KVnocVFvv2fxDzL8Mx8zAh8uUnTH7ZOufaDHoueP+dkPa4Aa4AM474nykpXTJPoKEDaQOglGNBqavvesLXUnctqQd51wRdzluPxKExBb3A5vo8Tr0STynN2PO0XRXL8E9hL9FSoA9sTdoCSix6b0dv/89fzykpXPOhsnlQJNjSP/dnXhwhnXFS6c0avHQRQunLE6Yq+fD6BbfL9L1Kb+oOKMFoDy5hFaIuWErDJbF/KoMaw7U5MbqhGI/CEVtsfxeqYV560RAGcMezvlV21guqjLS1aKLX/41e+Rln0SeTHwS2tg0JDJ1zy4xOy6uos1mPsPAEvE3ZBoWc3BrDxAbqmb8lki5bSkR04LOGTMtrA9oGwDcATEFcDyH8llmQC+cNqYI2Y8hjDN/DAGexcBakbFzFMDGduaApnbLjr+unvKzKojXgoXzmjeW6L5QmkHTkq0rDxX5SkN/pza7fdcmJD96m5Vdih67GeGZrZYhgGIqDlnO6tlZwbAR5Wnpw5EMjBF1Ibd+m8QVmO++b5QWnnJ8dcd/YiI3iLsqrSGnVWnJ1pOhr1hmtPSZj96yiNjDyltQF2s+XTkWiX6GetAyI3/TeAmUnsVD2KW+aG2C1oiw0D9cTf+ot8IGsAS9KxzNkw6kGg5e5rG1DcEcuN2OW0nbJHZEUXG3FXvKwwKgDZXZCUwy/qr+tUeR12oKHPbeYm2KVkwS9SaQEhACkRCe/Z6CiXi3q7ojtxEyigqWSoi0lrQEsrcnGh7fC59cluaPirWfOktlqCR/8l2n5FMe0Nbayg9K9E2JQumiNqYUagBPgISWtzoKULOSr8UkeEblsyL3ZA1mDHs7UIgbZCrIuEQui6fsscREDEPNrMbrH6A3Drbp+3X9jaPXlbtK+j2ymSyY9rsh674s/yeT+r6o6AB/Nnrc4W02IVuj9v2TLO1fBlgUu7a7vggHRFrRITsIaUq1nwRRXqMlx2/WOVAQerc8yimiHrDknlC6HZbxN5/B+DOhuKlAJ7dF6fHW8bbuy8oAlhTOf3zRNsTUaQnZJUxD9SrBofOBtgzPJDdfu2EQR+mA+Lcka9MSbRdyYApos7ZMdctUHBXT4v5qLXewuYr2Aqg6M6Co6XtiqKSpdN0af0NQEvI87tEozIF7XJES3rkuFjzuVstNQCOgHJw9TDD1rQPoMY3uCiRNiULZpkfGcZzv+2qAxnb6wF82eviDf6iQnvPKq0kEpUJsAdFXVqbsj7WfJnNlkaA/CrbQX/u9/bPegvg46rp/WLTR19jyofQWPjqeIDWQe/223jJrYPfqwYIO6tnxFmEJjh4Pl/CMzwWXUhHUInZuT+iyGwjsI2vw+Vy4znlV41Joha6PRsgYmsJmFFeT3DC/EcPSPSW9IqztseTf9fC2astIvwYgECel+ipWLqQ7qBNj/kkgPrs8LkRCwJvY8dNv412JRCZnPfRdxJpU7Jgiqgz95/XaDwnvCjRkwiU/UJa4w4nEJb2nQAS5f1E2yIFGU2ZkZgD0aS1WfYLSWPHa7sWzpZ2i79tV+PY4Yna+snAMWNTA4TtdYGwozpu/4/hGTuHAUwreCfhmNCKTiS9Jfbd6Gk+pdmiiy9MBRaVLJ3WEvK4W0KeocDyY13Ypoi6eUjZ6QBNQ9/s10c1BNN3ZkoRjnkVr52h7r1jAQalVSQmaq9HEQiLMxC7Ta0LmS2Rnfc1qkR9qqFDZNRjFVNErUScaQC6rSW+kAG9hLNx0qtW/5BQecnKuFYV11Z9+T2A9/bNCibSjrrssBPA79BjXsRpdetTW9L1ok6XNYEOSDBhEDvQMUXU7urpewGydn97txnl9RRKxLVLIFyA56iJuyCoO8IAtf7BCbWjJT2SA9DoiX2e2ukXNbaQ+MJgd9fC2atznNU7nBZfKwmGFk4GzLSpJdArxxjHi9+zRQdoLlh2Yjz5R2TsGA6J29R5NdYwgKfREvMBSLawEnYGlB2dr9f68zf6I2k7j3VBg0mibsv5SNUtvkjhwhnxxpbrFfyeTTqAbm07OZ78Be7y0ZC4TZ3ms1gBnIHYfT8k0hNRZL+dOu0PmGRTp1mlEuz3O5nTK2YtA/DsvTCu4DcfVU5/FxK3qRszw1kAba5IzDZ1xMKQ+uzwIcfMjfF8etJg14G4B8HJhCmidjZOLLeEPP3angawBrPbV97iWvkMS1sEErepGz2RkQANWZHRMWX0eoQlgu7yKes63/KF0xoDuqNb0Z6SHTNt6iaTyuoxChfOaJEiGPB7tqjx5C/K3DYSErepB1fZqgCy662xzlPbBcLibrNs7Xxjf+uInY2BnITi+yULpog66N51ciB9Z7/1++hI2FktpBKcEE/e/LT9RZC4Te0MKALA5Vdi2qPYnB7JAghbZELmT7Jjjk0ddguE3q9XE9ux+oauctWfGNcJAB9WnPFvSNymbsoI5wO0uCMx+X7UZ4fHAFQPCh2yvD42a8vJg9P2x2bOJCmmiNoaGNTqaB6b8HHGvYFA7CcazShmdCwSErepmzL1CQANWZGY2pFdbw0BuFuVtZ3vtYbS6wJhZ8LbzJKBY8qmBghkbHNIERoZz17FUZ7PiiBxm3pQtXUHQG6tdWMs+TJaLApAZrP1kHnqA63DdzUGc2KeIkxGEhZ1eclKIUU4py33g/FmNKinCabvsghps1qCWTGPAQa7DoyExG1qR1CRcDCeXrdpc+n5AEGb3ic2dXFp8bTi0uLbikuL+7XDVMKibstd4xLSCigJRQHtLTIOnPMCgGfvRZlHS9uZ9yu+sgLg1R3fS0hUzemRQoCmjHBMexTrs8NTASrzQ4fYP2OzNp+Sn7a/x0KPFZcWq0R9Su4CuWLWM+Mv7qm6EiXhCE1ptae4jeeBsjzbHtBmKLClLxrQnBGZnNFioSErkh7LNyurwXIAwN166JReSyiz2hd2mb6bvLi0uHi8s2WJhbRTIijGL5RQqsKOvxWXFm8FVk9Ja/SnKZHXVrXkvLVxzsY+D9VgRtixdl/qAWFTtw5a1equnk7L4H/PghnLY8k7xvPp6B2Nxxk29ey42zCoOmpL59VYY1qwcrdZQgA59dZDIk1VtBbuJup2mjA3vjwkryFi+/WaVs9JIL683e8OD7X7KsuDrlzAIkBmW4Kv1UUcdpBfX9fmyQMWAM3FpZPfP9HVZI8gnv/El/nCxjkbYw6tligJi7phxD+mZO35Fs0Fy0ZBvNv/eo9A5ra97urpCGmJ+ac611VVuKPxuIRtals4alOn+SwxzVb4HfpQZ0DB59Rbe8Jx/cTSySfoiKss5M6LoLhsQt8dkuImHfHkG9/bUWvY0qoEbcXln60G+Okr+SIoxVmbfBnFFSHnBCvyKxt8mcdLxJnAn08snbx9vLMFn255dncwbRswAnhn45yNPfbLnrCobb7B0d5BWgfECVEnzH+0srxkZZu7+vRh5SUrp8USfOeDijP/DZz36o7vBR9MoA0t7khRequFxsywHosPbFNmZIazWqEyP+Qr6nRvXPamU5sCWTGFVTNEek6aCGdlWcPzdZzpQADEP9SMmlUuRV/02wsrDzqpGUL8wudl3C8zHgD85JX8/Pdbsk5qiNhPciuR8/cGXae36tZfRO9KBISLS4vP7ClhJyxqd/UZzQAZFTPXJdyaXsAIOeySyNOBsvKSlTN7O6pUq1svTm+1UJ8diXiA5WVjDp55M2vmjsO2JbPJslMipxfN9R/iPNYUyKr0hd3d/gWJClquAGFrk1YsEdk2ydX8+CZfxi3r5nxSG8/f1c7vLqysBN40Hvf89JV88UbjoPtA3AhCkWBV0B8pLi1WN87ZmFBdXWHGPPWAsqkBVSKlEXLYCfxPdzOOzdo8BhKfp86ttX4EkNVgaVpeNno68G/gLmC5IfAucQaUkEA0dnWvsm3YnqZgVrdmoIpLi0WuJfg0xlHSQKRZt931/CW75vWEyKK9ufg7EAAZBhnRUSYCm7734sj/Nbu+hEXdXLDsXICGkS/16/2JHdAEIiCR7fufLt9bov1jwyNXHXXjQLaztgASn6e2RoQAIutOaiuCxpeN4DgKSBcEH19eVtjlCQNBmz5MF4n5fRSXFtuAJ2oj9tHROCYyDHTrKOlEMEyNWSB+AWIG8CWniDR/4sv8/dnPjHu3uLQ4oYi0HUlY1FbfEB+A0AeGTW2YGrME4mciOpi5HSG/4dlz0drPf/XCzUfav/hhxYx3IfF5ar89cqqO5LT33UWK8B0AAkAEkGCfAPZdQ8rWhIeUfawPKVsTbs/Xlqaf4nfqXQp+fPYnU4eklY87Ur0/eSU/P9sS/AD4AfBziTg9KjJm9eTArZ2Nczau3jhn4z3G83o1s/aEya6mNyrDjqnApjOePu5SM+pJ2KZ2NZzgAPDsvWgUsC/hFvUCnY64e3fjX675KL1CfdjmG/o74ILtdz96w9jbr4w5JFh3aHzAfX5GyHKOANJ8ltfUFcqssjOBaOB6DYLyMl5+F9qPWLRYhpStCVfMPMWa3mLZLQVdmhgNgZx9vvDh9xwUlxYPyrZkfdQQsQ0bavPf/tb3t91j3Oqz9YX7Lqz0AecXlxafCPKJxojt+W8+P/pXOwPu0xMxgxLqqY1B1w9ldBfzMuP9gKP46oeX2XxDxwHzJfpJ9pZR6z6774HnyktWfmHed1zWprEAZw3/Z9ydQdgq5whJ+7HVNimYZVE+/6tF2blv1swdq2fN3PsfUKL/F9H+oxF9b42IdFtYOPF6Dvmcq9qGljcHs7oUQnFp8WjgvfqILfdL7saSDoLuF2ycs3H9eZ7q6VPSGt/ZGUgbC2wqLp18a7xL8omaH6pEWoxjMQZ0vInChTP0woUzHm0oevGMgGfLnrTaU78LrNl7m3ZqexqPoz4fIMPeGNPnpmnCoWmiGCCnzvoHwA+EgVBTZuRj4BOMlU5NE4MQevRokYOh+3Qdr2eaRE6SyHESufxQYUvj8UWu/0fBd11KZDPIXBCzHv/23ntjaXtvcd+Flb6nvrNnJogvgWwCsRDkb4DlsQo7UVFrINuXRSMkQbyJ4gWLNo679ccjiZ40locU72+9/94Py0tWpq+pPOM9iMum/gvwjqaJTOFtWi0QM4FfALOybmz9p6rKS1RVvm2k/c7z4lQLRCJRVUciFTNPaY+yKowe3k6nDmR89qapQ9L2fcGmLi4tnrWiOfcxu9AtM9LrvrdxzsZVMba7L9jJQV0KQRzBeRISdeHCGasFyrUAAnFbfz1FIB4KF854JeSsmtSW9/5md/X0U4BPvot93CQslJFxy9FMLU0TQtNEu5lyD/AjVZXRaU9v42q8jfe0n9nSicXA1IqZp1grZp6sPK+c+rCmibd0IVcIhE8iwwIRBDRNE3dpmrgIoN6fW94Syjhofsx8ZvzVwBs6Yke6Eh7/54v3L0v8U+lZbnx5yASBfAdEEcggxq8ZMXaWZvh+/BNAVwJJt8VolPfiBmDy3hJthsDyyI9xzo0gUcAL3F5esrLL8200TViAZ4maFP+rqnIrcIgTUleoqtSBjvFAtgAtyi+bVuH1zKrNDf8kYuGlLcf71gIPE+3JXq72FewDXADff3Hkk9XhzCucIvKRX1rOfvP72xvi/Qx6i7OfGTc+JD0bFKQlgrgIRA3GglSsMzMJi7qx8NWKzH3n0zboP5fB2YsSLa8/MnyhurK8ZOVJex0HGgsDQ+wCYeG/P4uHfOCqKiOaJvYCcYVi6FTWn9tfa2rTFuB8YKuqyuc1TXwJY/HLY6/LEa7Pi6aU/vS9CJnTR9rbtk90tcy678LKLhdr+hPFpcUngPNNK3r4jIy6G/70rQOvGbfi+uVPeJ560o/vC+vWtnpH01h/omX1ZwoXzvA/Gch6LAjI6DjiCz+LmiasmiZ+oWliAoCqyp+oqjR1UKaqsgEYCTxgXPoSsEPTxPScrLVfiRT8PSOCMh0I7w6m/XAgCPrH/yi4ViDfA2QYZeqfvnVgcaJlmrKdyxLKXG/zDUv4FNj+jKaJ35fnrc6+njZCUfOjs+mRB1wP9Gjgc1WVVaoq2+eq24A3blv5sGtfREhjahUpEcCZPdkOM5hSOulb7zbnPJRtCVms6NM3ztn4iRnlmiJqidwjOSQSZ9KgacIFfGlk5g51ExHuHP7C79sFrWliuqYJoaqyAjhBVeVdvdUuVZWfqKq8/EDr8NPCbWMk0oqUAlB0+vlMVHFp8ZURlJcUwYZT3A1T1s7ZZFowJFNE3Zr/75Egh21YMm+g+H/EhKpKHzDzQOvwD+C/89SaJr4BvAdcYKSLK/SCCWi6b2Sgbc+VkWD1OaFQ/bRre2PZOx5++kq++MFLI5YBS4BlIamcfv9FlTEfknokzIn7Ecp4T2AhrXr6CDPK6y9omkjXNHGvpol0VZXhjyqnrwYIRhztqxxLgaswZoD6CiPS6SzdN/LnwdqZX9l64+Ilfdmew1FcWqy80TjowbVtnnMmOFs+n+hs/ubGORtNj5RrxpQeaXUna8DtzqYJQ+jm1NUAYRZwI/Aa8G77xW+Ne+pDTXvsNFWVzUR7nD7HEHa/7J0BbnklP8Mm8kpDUrlIIH8/2tF2y28vrOyR/Yzm2NQitBsg7KiOOYh4f0ZV5f8BY1VVvgtQmP75mQAbqk+pAhI+9+VYobi0eNaqluwDIalcZEGWbJjzyU09JWgwSdR1Yx+vAvBlb/y2GeX1NZomTjLmgFFVuUfTxNd//uTse/e1jDwH4E/rbj/1h2++PrFvW9n/ueKlEcqJpZNuA95uiljdAhmJIP7d0/WaIuoTf/RUg674m5wNkwdEPL1u8HvguQ7L3HNrfYO+Lw+6zYkB7bzV0xSXFitnPTP+igNBZ4uOcjcgQCARkl743EyxqQEU3blV8TtjPsze6/Ue3J/n9Xr7i034beBsIAeoAuat3HfOiSDeJLqSeMwfFtQVP30l37LV774K3FfXhB0nZlpCzaMdrS/sDLi/QS9+bkLKQ90V42HP7ctfBk4ccfesbkfeNAS9nKjXWRCY1ZfC1jRxKrAGSAd2A0tVVV7Rft84n1AFtNTZKv+luLRYAb6ZbQk+Uh+x5wnkdon4FfD8xjkbw+2hFYjDjyMeTOup2/LeL0yrOXXUhiXzxAnzHzvqN8Xr9Vpdrto/+Xw5Lr7oTtknYtE0MYmoI9FPVFXer2niB0QFfpD+PsPQ2/z0lXxLU8T6G4Xs2TpicrNu3TMtve5hjyV8430XVh48l6ar0Ao9iWmitvoHlSm685TM8tn5wGH3Kxq985WA6vPlju7g3C6j25n6nM8BVFW+3tcN6a+098xWkXd3WCrHuZVwdatuvSIslecfuXhf+KgF9DCmidrZdNwqAGtgcCGHEXVU0Pq7xvYkKUTkDimVd6xW3ysgc0ePfufDqFtF72G4iWYTFfMrxnOKLiguLVamp9f9JkPJmNOs2wrCUvlssqvpN4V2/50de+a+xjRRR6zN5ZZwBoH0nVNgxmECsMtzQbTPuESktEiv17t68eILn6yomPKTvXunnQ+8alabjoamiTHAdqIuosWqKi/qrbrNZNGCsoM267WLZ5r+M3/FSyOUdW2eC4FfrmrJOSHHEgxY0OdEUJ597pLdfd4zd8asoOs0jni5FiCYsf2Cw6cSaVH7+YuumxUVU34ONPp8uZeY1Z5u0n6e4iqisxwDjqigZRnIu0GWGQI3heLSYuWSF4pu3B90tgB/B5wZSnj+aekNnnVzNj25cc7GfidoMFHUiMhuKcJ+V+2pXe5ofvxxVYCcDWwF8XM6zHR4vV4/8BzIi5cs+VqPHoikaSLT8Kyzqap8CchVVXmhqpo0DdT7qIDTGGybMn/+01fyLWc+PeFyYO0Wf8YDYSmUSa7mXwPHr7piy6P9ydToCtPMjxPmPybLS1busAazs7u6Hw6n3QhiUkbGvttvvnnJIVv0hwxZq1VUnLQgEnHcDfzQrHZ1wV+IxuHdqWniBVWV/SpcQBzsiT5JibF3Md6CikuLFYG8MM/qebI+YncDnwGX51hDzz9/ya4+jzvdXUwTNYBuaa2SQk7q6l519cQLLRZ/KCdne5c7GxyOxhet1rY/VFVNPuTkqUQxBoM2VZV+4HaiTkiXAYecnTKQePGhOcKefvavgy0FzaD8AXgjHpv6xNLJp2dZQl6wF0nE2BbdWjktva50dUvO9f0hiHqsmCpqX876wc76yWM7X/d6vSMh43Tgt3PnvlPfVd65czXp9Xp/D9zr9Xp/B/zdjIUYY6n7LaICvkpV5edEZzjKjphxANBafeINwZZhowdNKt1wyXWlv+hOnuLSYnG8q3lyjiV0+dq2TFurbj0NOL0uYsfo7b0+3XLXIxfvG3BibsdUUdtah79pCWdO2v3z19NH3vn1gwHFXa5ar8+XA4iHj1LEFmPO+iYQ/+P1ehNeYVRVGdY0oQF7jdmORcB8VZV7Eym3r1m0oCwNTrjJkbWDQcc/+39Qekia4tJiCzAuxxI8s9Duv3J7IE2AdcxmX4ZhIkpJdIAsiRrlESA4EHvnjpgqanvb8I8ALCHPCGAzwOOPn5UdCp02JzNz796bbnpsz1GKmBx9+kIQk5hFrWkiDbgP+Iuqyg2qKu80rn8VOA4zB8h9wKIFZdOkf9PrEdmaY2048L6whO+55ZV896e+9C/tCqaNtaCfOsQWuEzB6dAR9rqInSafFZcS2Q28ZEVff0ZGXZtT0f/vzcbBx4FYDthAJIVPi6miDrkOVNp8Bfiy158KMzYD7N595kUghNPZ8OtuFKEBOkglwQ/YDVxIdMPChvaLqirf0jQxXlX7xzHIf73tS0rDzgI74MibtDsPXbhqtoxoA+y5E/eMkWGLo27bsErAnjO+/EQ9ZFGays9wCiXvrkjgQwE6LVimrnz6B1XvnbY9vcXeAkIngtIiEYHhdt+q3cG054C1Z2TUffbQtw4csuP/PlhdXFo8i170zehpTHNoAtj4l6tPyf788g+DabvX29tGXvOoc/l/gI+JfnlO8Hq93fEJeRH4BnBWLKaHpglh5HtVVaX815v2zKoNRaHqTSOVcd94/7t62JLe8Hn++1XrR9dKXbF7RlYOc2S2FVZtHLUdsGcOrxpjT/ePqNkyYgNgzxhWc7wtLTC8btuwNYDDPaRustUZHNq4a8hHgD1tUMNkxRYZ1LI/dwNgd2Y3H69YdE9bjeczwGHPaBuDkK5gk/sAYLc4gkMAWyRgbwPsCOlCHowAmQACq/N0rK7TkOgotpagHsrYJBD7XXmfDFIs/orWylPeADIs9saxkaDniZ5YoOlPxC3q+y+dPV1Y9K8i5HvHf+fdc/SQhexN1+0u9J/7EBIJMrg668n3NgeGz7S11Tyc1bxxdfqQuhOb9g76LNicFnRmNQ9NG9x4UlN53ifhNmfI4WktdOU2TakJT3H53MOn5FS895bT3TS2tTJ7gx6y6ja3v9Du9o1tq838VEYsisUZzLc6gkMDTWn7kIrF4gwWAA49aPVLXREg7R3ChpqEBIQfCCi2sF2xRqxhn6McCNjS/DmKPWwPNKRvAoKOrJZhFlvY3ladtQYIpg1qGKXYIraW/bmrgUD60JoJilWnac/gVUDQM6JygrDq4YadBR8Awewx+8cIRQbqtg1bDwRyJ+wtBNoad383DcXzVLjtLQE6YMGtjF0T8Zz/1/SC/3wjHMjK8Ncd1wQUWOyNkyPBTJsxh22gh0E5M5mFHZeo77/069NArvrihwUTPV+mOHsGQijoMsIrrKDOHiJ92waE1I/eGEUnlJET9g0da03fs6HNTqMj7HOUS11psdhDTnu6L9/f6P5ERiwttjR/psPTWuirzfw4ErTVOzJbc9KH1ar124aW6mFrsyunabAzu2V4w678MiCQXlA3wp7uz6z7bKgmdYs/fWhNriu7Ja9688hVSBHIHF7lcWa3uKs2jN4IBLNGVTic2S1UfDx2PxDMm7gnOMe7oc9X0F58aI6o3nRZox7YIW2tG+zWcN07V/7jhfMPl/6vty22+uvH3wnyFhAW44u5+NrFM6/pxWb3KvHa1CoHR8xSB/G6ze1fIQd/dqYMnXE+UiqtBCJ1Tt1q15vfEFL/jTO72Zo5vDqvZX/uzrYaT6MrrxHPiCpr8768mtbKbB8QvOm5f8p77vnfMwmwomXECZd6vd4jesppmvgJcB0wRVVlfad7gqg34NNGiIOkQOr2aWDNyJ6w67nLSx7+/tHS/+ieBeFFC8peBXED0cGgBbh08fUv/3bBgxclpfNWvKLWjJ/h9hHzwusf+9dq4AEjGqi6zL5+PELMCVqyr7/9hdd3drfgQCBrm/GyO+EWVhANw9VVyLNTgUeIbpBNOJRVf6F+59dGAeih9Ge7m+faxTNXL1pQ1j4Y/Fwoob9aHE2bXvzTFaMv+fFTA+JYk1hIwKb++kHPsJtfeP0L9tnjj5+VsX//qfVWq2/zrbc+dEIs5Xq9XgX0YEbGgVduvnnJFzbyGr3vPCBHVeV9RytL08RU4EMjkmhSsGhB2b1EwzZkXLt4Zlw+GM/df31J3bYL7hZK5A2p2y+4dvHMpPl8IIH52ptfeH31zS+8fk9nQQNUVEy5LBRKs2Rn73w61nK9Xq/ucDRJiyV48mGSzATO1jTRZds1TWRrmpgMoKry/WQSNIDFWfdVYQl8Gq+gAb5384MLQVwvdfv5Ue++5KJHFiECAc9cYOv+/af+Lr78masaGooOhvDSNHGGpolhhifdfOBrRxDrfcC7miay4qm7P/PiQ3MsMuw40T14rQn/N2WRUIKPgrj1md/+5JHEy+s/mC7qRYu+cyFwGvAnr9cbZy+pfA5iJICmCQ/R8F53AaiqbDtK73sHMNcIe5tUVG/+/lg97CbUNuipRMu6dvFMmTfx+eud2VvrGnZ+de6iBWXTzWhjf8B0UYdCrvstlgD5+eufj7cMt7tCghz26KPnOVVVNhJdVLn+SHk0TQwzoo9Wqqp8Od66+zXSdipAoHGMKbH7LrnuCV/YN2g8WHYBryxaUDbSjHL7GlNF7fV68xsaRg13Ohteu+aal7t1pHBX5OZuGwVC5OZuvQFAVeUKI25dl2iayAE+BH4bb50DAWfW9u8gIgGiR2aYwtV/+HYtcAEi4rK4qjf/+cev323m7pm+wOyeej4IW2tr/k8SKaSi4qT7AfbundbdedQGolGVYh6YDiQkQnVm7Qxcu3imqYtA1y6e+al70PonI768NBl2lQDLB7KwTXNoevzxs1xW62m3Ae/97Gf3xhxv2IhdVwJcHgz+chtAXd1425FzRc8oVFUZIDpATFoWLSizwmibxdH4TE+U31p1crmxkKbQxzFYEsW0nrq6+vjfhsOutPT0A/GG8h0KTAWKXK7acoCsrJ1fO1IGw5V0a/s5K0nOJBCuSCDrnR4qXwMRMOKwKAxgF1RTRO31eqe1tQ36H5A0NIz6nhGw5qhomigwhImqyteACaoqt95660MtVqtPh6OKtZaoa+mAdvjvDukF/7kCwJ6xp0fOTDccnGbZM8o3gxDZY14r7Il6egOzemo1WpYgxoigDwFPGmeq0NFHIxx2rWtoGHXEI9tUVa5RVfkNVZVtcbV6ACF1+0zF1iIHFz9h2iCxM9cunrk6c/iK8xCRtvodFwzIGChgnqi1DuHDjujcr2nCqWmiPTrq/wLqYRyOWoCTu+r1NU3cp2niDmPZ/JigtfJkqYdd2jd/oPXoCuml1z+2F2lZDFyyaEHZgDzuxCzzY7XV2tZmtzdXcYTIpZombEQHHw8DqKosV1V5SM8TFbI8HWQ+yOUdhW0sjw8F8gdwrI6YWLSgzAmcgLS830tV/hF0Jb3gg+d6qT5TMW2gGA67a4PBzKVH2q2iqjIEPAEcbQSvctCc+WKAFmM18XLgpsRaPHDIHr30IsDqyt18tD2epnDt4pl73IPX726tOvHURQvKPL1Rp5mYuUfRQRcuoPfcc8O8nJztNwnB/VddtfRxVZV/7EZZGojotg5jr6Jhdz8A/FpV5QGih7EfE/jqxn0HQEql1/ZWttUed4mMOD4g6pN+f2/Vawam9dSKEszxeHaP63jN6/VOCwSyHj1w4JRJ+/d/aXF3Z0WM3n4t0ehD7ebMFKI99BSz2jwQWLSgbJq/YfwFIPHXTXiotxZF/mfR7A+BFRC56cWHfjigzsc0TdRSWiyKEu5s486N7hMUGOF71e6WZ7c3T3C7K6vbzRlVlauBUaoq3zCrzQMElegvFr191kz60NV/A8vQkC93QC1smTVQVKS0iPr6Me91vG6zNZ9hzIiEieG8D6/XK0KhNLfD0dSqaWKSpon2E2Xj9icZwGigG8FlZJheXBRxZX/2sMVRX9vw+TlfW7Sg7LaBsnRuVk9tN54P2tSLF3/zy6FQ+sTMzD3rgV8Q23kug6S0KHV14/4G/Ax4RNOE26S2DiiuXTxzdVreJ88CODw7bu/NXeCXXFcaiQSyH0XaRxN1/R0QPiGmDBQLC1cNKi+fTk7OZwdXACsqTvouyHBGRsUVN930+MYYi2yfH91DNJjjGFWVph/3O1BoqznhYeAHgcaxfXGacKuxx1ohgahZvYkpPXUk4kwDUJRIEMDr9WYC80C8MH/+G7EKmvz89bOjz+tQVelXVbnJjHYOYMqN575Yuv5X9OnoC2v9BVNEfeDAyQGAmpqJ/wEYNOiTJUCG1dr2UDzl6br1OIBRo7RLzWjfQMeZ/VkF6KQXfPDN3q772sUzV6MEdyEiO4BZAyEIjlk2tdN49nu9Xkt9/ehz09MrGn/2s9/GtQJWXT1pH+gBq9V3nUntG9D86J4FYYu9ORAJZOT2SQN0xxaktXEgCBpMEnVBwZrxAIMGfTIa+Ek4nJbV0jI45l0omiYUTRNFwAhQdp99dqDLozaORSJBz3pf3cSmvqjb6qwJCIu/qC/qjgeTbGqHHcDvzxr83y33ys+6u9jSgeuBT9zuivPT0qocZrQtiSinb2xqXHlb8qW05Lz40BxLX9QfK6aIuqqquBqgpSV/SIcj5eJZKHgJuDcQ8GC1Bo7FOenDkpa3MUtYfeP7om5f7cR/otuo2XpJVl/UHyum2tRC6IZfs9SJYaSsacJl7ATfp2m/XBgOu9KamoanTpztgGJvqZJhl6X0V/f0ul0d9uXtAJBhV35v1x0Ppog6P3/9KQCKEhkUvSLuppuLLcYhQ6/z33h3Xye6JnzU/YnHEi37p70K0HJg6uDertuZtb0NwJ3/UUwh5PoKU0QdDjsEgJSWiSB3e73en8eweiiJ9uirDT/qF4zLt8RhkyczfTZX7c5fGwGwuysGxP/DFFHX1h63ByASsY3xePZ0e5XSMDl0VZV3qqp8gqgN3p4/JgeoZMdTtMwP4Bn59rd6u+7WqhM/BGjYdU6v+HMnisnz1ApSKm91J4OmieHAfzRNdPxJ00AYnn6JHXSZbFid9VsBgq0Fve4D468fXw1EpG6/YCD4fpgi6ry8zTPaXzc1DX+xm9kGAel0cILKyflsl7EcW0ZsDlBJz3f/9y9NQLWvZnJfBJCfCtIC8kwGgFOTSTa1M9Th7UfdyaOq8mOgWFXlwcA3DkfzT0Eo+fnrH0sJukvKgWF9UK8affrCUYD9FlO89BoaRn8OYLc3R26//f4jzi9rmvgWMBq4v3P00tra8SMUJeR3Ohv+Zka7kg1n9mdZeiitL+aqP4pOSEl9IJy1aPY89X+6kfbrwHfoNGXn9XpFMJgxVddtr8+d+07cAcWTGaGE9oZ8uX1xsKmxSUE8wQBwajLlA3K7K78FEAh4uuNm+iPgq50P6MzN/XQGMAxktwaaxyK+2knLZMTlWrSgrFf3DLrzP/oBgMVRf2t/FzSYIGqv1zuttXXwcdF3ct7h5pY1TVynaWKwqkrZVUB0iyV4M8CIEe9tOCRzinbKAYQS6lW7OuTLURVrix4JZI87euq+x4yeWu3w2kIXgwjjoPvfEt1u3yU1NROzrFb/vnnz/vWBCW1KSrJGvZkOkD3m9a/3Vp2LFpRNCzaNGq6H3YIBMPMB5oha63BIaJeDCFWVO4CTOExQdK/Xm6brtqnhsPMlE9qTzGwE8NePdR4toWmI8JWAGCgzH2CO+dHBxhJXdHyvaSJD08RZAKoqP1VV2WUAmtzcT38AOKxW3/JE25PMNHx+3scAbTXFvRJu7cWHfuiyOOsvjyciQF9i6kg6M3Nv52DrdwDLNE0cJdCguFJRQgwb9sF7R053bHPt4pktQAMiMrw36qvd+u0bI75B9rTBHz+GERFgIAwUzQw7hsezJ6/TpV8DK1VVHtFnoLZ2fJrV6l81d+479UdKlwKsrmqnEJEfLFpQ9kxPCmzRgrJhkHY78NrcX9/yo56qpycwtaeuqTmuAkDTxChNEzbjeLilR8rj9XpHgJgYDrv+bmZbkpFFC8qmhX15jlBbfgY9OGhbtKBsmsVZ+yHoNuCGnqijJzFV1D5fbtAI5FgGdOusv9zcT28GsNubUvb00VGjDl8CogE5VbMriH5RpBbx5xYQ/SUfYnYdPY3J5sdut6pKn6aJW4Hd3ckTDGacZ7c3RwoKPk7NTx8dDQiAdAJK2uB12dFTrRPnxYfmWMKB7F/B1+eAYkTcEjoDIHhNZ0ztqXNzPxsJoKryRVWVRw2P4PV6rc3Nw/JDIddTc+dqx0QA9URoP5dFsbbdZ3HWhX11x12zaEFZQpsGFi0osy5aUHZZzaeXbq3f/o07hCWQQXSWIzwQ/Dy6wlRR5+V9+qymiViOAz4N8EhpNeUE12OBaxfPXH3Nny641easnybDLoC/GycNxMSiBWXOpxeWPKnYWg4AT8uI0585XPtt3nEv5QNfYQDNdnTGVPOjvPzL28aP/+cn3U2fm7v1F7W146Xd3pKyp2PkRwuvWrNoQdkc4O8Oz871ixbIJ0BoRxPhY3c8lOWrnXQlcFPjrnMLHJm7GgOhtAtBee2KO37d7jW5mgFmcnQkYVF7vd757a/37z9lyv79p16qqizpTt6mpqEn22ytgWAwYwID+EPsK65dPPMfj93x4Dpf7eQpIH8DhB+746GnHJ7df2vYef471y6e6Yf2wR/n2zN2Tw37R55NdKRZZkurnJ85fMU/L7muNKlMPyETPAvI6/W+CXw1+k4C4i2v13teN/J9FXjTyOQntdMlLhYt+NcdIO40lrE7IoFd9ozdGcHm4TlG0Hscnh21jozyq6/42a+SdgrVDJv67x2OmzPed6NiJeg1Xg4Yn4L+iVIGwg+EQfrSBq3/pSt3803ArxHhNZFgpqdDgKFIoHHM/cksaDChp4aDJsjdQNjr9RYcLf2jj5771fLyqW+CohvTRiFSPXXcGOaFChxiUxv3lhPtOEIM0MFfLJgiaoB7773uTp8v92eFhaumXnnlssO6j3q9XgH6MiH0GWlptfNaW/NHAlpK0D3HkUSfjJg2+5GX9+mavXtPx+/P+T5wJJ/ob4FytpTK9bfc8vCzZtWf4vAYQk56Mbdj4pFzoVdB7q+pOe6w5sfjj581yGZrfVpRgtswTr1NkcJsTBN1dEVQvA2c7fV6uwz5WllZfHco5HYWFKz9vdfrPWYO90zRu5jsT12+EcgZNuw/3+18z+v1TvD7c+aA/tT8+W+keukUPYapos7K+vwNgObmoWd3vP7446qw25ufA9kGyi1m1pkiRWdMFfW8ecs3A2ubmkaM6njd58v1BoMZJ+XlffqK1+utNLPOFCk60xOBUZYB0++669YMAK/X666qmjzPavXtcrurru6B+lKk+AKmizon57MtgM1ma3s5uigjl4IoDIddl6ciL6XoDUz10gNoaiosB4nPlzML5KzoVRkxVg5TpOhxTO+pw+G00zpsOaJDTBDV7LpSpOiKnrCpNaJedxFD0JFUAPUUvYlpvh8dMeLpqUANkEfKtyNFL9Ijok6Roi/pi1jHKVL0KClRp0g6UqJOkXSkRJ0i6UiJOkXSkRJ1iqQjJeoUSUdK1CmSjpSoUyQdKVGnSDpSok6RdKREnSLp+H8CA7+vWdnIbAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top-5 predictions:\n", + " 1. blueberry 13.230%\n", + " 2. submarine 11.078%\n", + " 3. bicycle 9.777%\n", + " 4. motorbike 9.246%\n", + " 5. eyeglasses 8.239%\n", + "Answer: pickup truck\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADdCAYAAAD99DOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABQG0lEQVR4nO2dd3hUVdrAf+fe6SmTSkJooRNgUIqoIDiAPdbVFRVX1oKyssK67PrFsmssq9EVO8ouNuyurrpq7OBYAAsqEpQqhJ7eM33u+f6YCRsxIZkGLM7vefIkc+9pN/POmfec8xYhpSRBgsMJ5WAPIEGCWJMQ6gSHHQmhTnDYkRDqBIcdCaFOcNiREOoEhx0JoU5w2PE/L9RCCNnFz1Mx6ucpIcRbsWgrQXzRHewBxICe7f4+HVi8zzVX+8JCCL2U0ncgBpbg4PA/P1NLKSvafoCG9tcAE9AghLhQCLFMCOECrhZCNAkhzmvfjhDiRCGETwiRs28fQohiYCZQ2O4bwB66ZxNCfCiEcAkh6kIzunV/YxZCHC2E+EYI4RZCfCuEOG2fNu2h11nt6uSHro1rd224EKJUCNEshKgSQrwghMhtd98mhFgaet5mIcR3QogpoXt6IcSDQojdQgiPEGKHEKKk+//5Q5f/eaHuJncCjwDDgX8DLwCX7VPmMuAtKWVlB/XvAf4FfEjwW6AnsEIIYQHeBVqA8cA5wATgic4GIoRIBt4C1gNjgeuAv4f7QEKInsAnwNpQ3ycAycAbQoi29/V5YE/o/migGHCH7s0NjfcCYDAwHdgQ7jgOSaSUh80PcF7wkfa+zgckMH+fcuMAP9Ar9DqdoJpy+n7afoqg0Le/NgtoBFLaXbOH+hzUSTtXAXWAud21i0J17Pu0kdXBs4wLvb4VWLpP2+mhMuNDr5uAmZ2M40FgKSAO9vsW659fyky9qv0LKeUqoIygSgFBoaoH3gmz3QJgjZSyud21FYBG8FuhI4YBa6WU7XX9L8LsF4Kz/GQhREvbD7AjdG9g6Pe9wGMh1etGIcSwdvWfAo4ENgohFgohCtvN8P/THBYP0Q1aO7j2GHBp6O/LgKeklIEw2xUEZ8aO6Oz6/uq0obUr24Z+nzIKUEpQMNv/DCao3iClLCb44XqdoFq0RghxWejeNwRn/xtCbS0BPjgcBPt//gGi4FmglxDi98AY4MkuynsBdZ9rPwBHCCFS2l2bQPD/uq6TdtYBNiGEud218fuUqQ79br+Lc+Q+Zb4BRgDbpJSb9/nZ+80hpdwkpXxQSlkIPA5c0e5es5TyZSnl74BCYCowqJNx/+9wsPWfWP7QuU49rpPySwAP8HE32r6B4Nf7UCCL4MxpAXYDrwE2YDLBxda/99NOMkGhfZbgLHoCQVVIAseHyuiB7cCrwBDgJOA7fqpT5wFVoTJHAwNCbf0TSAHMwEKC+nl+qEwZ8Fio/h+BCwmqUIOABwiuDywH+32MWg4O9gAOslBPDt2/pBttZwPvA838dFFnI7jgchHUy58CrF20dQzwbegD9S1wbqjNo9uVmQCsDrW7kuBM+pNnIahqvBLq1xX6QD0EGEI/zwPbQv3sDgl8aqjuLIKzfTPBBeXHwISD/R7G4keEHvAXiRBiOvAPIE9K6TyI4ziL4GzfQ0pZc7DGcbhwOJwohk1ofzmfoEqx+EALtBBiJrCFoDozErgfeDMh0LHhl7pQvI6gjloH3HYQ+s8BniGoLiwkuJV48UEYx2HJL1r9SHB48kudqRMcxiSEOsFhR0KoExx2JIQ6wWFHQqgTHHYkhDrBYUdCqBMcdiSEOsFhxwE5Js8vKj2WoLWYo7ykcOWB6DPBL5e4nyjmF5VOBD4i+K3gBaYlBDtBPIm7+mHWtc4maB+sgjQAN4dm7gQJ4kLchTo/dVNa8C8JQcE+CViaEOwE8SLuQr2jecAGkJpe8X4evCIEwZnbHu++E/wyibtQt/hSc0Ds9GnGP4JwEQxN4AMc8e47wS+TuAt1sr5xtFnXWhlaHE5LNdTffdbA529MLBYTxIu4C7UqAgUD09anAZSXFK58cOpvss8Z/PxtDodIinffCX6ZxHWfOr+o1AQZir7V1z5aaAlwn90uO4rFkSBB1MT78KUfQI0r55u2C3a73BLnPhP8womr+lGQ8d1EgBzLrp8EXXQ4RJ7DIR5yOERBPPtP8MskrkKdYao5CWBc7vJ9vaT9BOPYjY1n/wl+mcRVqL/YM3k3SK9O+Ne0v263yyogx26Xz8az/wS/TOJq+5FfVPoKwXhvl9GJQZPDIVS7PezAjAkSdEpcZ+pUQ8M4i645AHwE8m8gP2p/PO5wiMcIBkFPkCBmxHWmHn7TS1qyoamqytmzR+h4HIJx294f02OFZ1LvD5OGZ67+3qh6/2K3JwKQJIgNcRPq/KLSNKDeqDoXewLmiwEjoIH4SKANkyh9QkWdIL8am7NC8Wv6F76rHv9ieUlhfVwGleAXQTyFejTBqJrnEYy4aaedTv27f1w67tuqY8ZUtPYamWJoPL3Vl9Jfk8Hwz6rwbxieuVpr8aUs2do49BVgS3lJYWImT9At4ibUZ95zy/w1NePuyU/ddLzjhj980lk5h0OcC7xS0Zp3zh1f3OVu8qYflWqoP8MbMB7lDlgAUIWvbmDaBnedO/uJGldOKfBNeUmhNy4DT/A/T9xOFE0650QAW9bX27oo+i4wKzdp97I1t17cFHp928yHr9Gt2D1luE8zTsi2VF5Q48qZWOfOvgm4SREB3/F3PODc09r7CW/A9FGqoWHlmltnJCKGJgDiq348DHJGecnp6TFssycwcaB1/WVOv+XYPa19kkHoALLNFe5qV85zIJYPTS9bMyyj7JsHZj2XUFl+gcRTqEuBnuUlhWO6KutwCIWg7t1kt8t3w+jDAhw1Kuur39e5s0bvbOmfCaQBWHQtPqc/+R1g+bic5duyLRXvPHrVE00RPUyC/yniJtS2vz5XbVTdm1bdfPmErso6HEIQTHK5wW6Xv4q0z/yiUgUYdkxPxx93NvcburOlfy6hxDyK8Gua1H0BLD+mp6MxzVj3yqLZj6+PtK8Ehy5xEep5i2eIt7eep43M+nrVa3+8/aju1HE4RG9gt90utS4Lh8GQG17Nmdhr6R821o/I39XSrx/IsSAModubQC6fmLdUSJSnV+ye6igvKYxp/wkOPHER6pDuu1sRgWu23HnmwzHvIArOu++GpDRj7SVrasblVznzhikiMFmTalrodr1e8awa0+Nzrcmb9ti6uiPeLi8pPGi5YBJERryEegKwHCgsLyl8e7+Fi617A9047E090uvUW21llpcVKZZS3Bh3l695i2cIr2Y8ecWuKYMavRmjTarzRHfA0nYw5DepzvUFmWu8la15j+xu7VtaXlJYEe8xJYiOuAj1OffedPu3VcfeOCxjzfh3r7v+q04LFluPlchlBNOjeWoz/P/MqNfNFRIpEB5g2oEQ7H35/T8vGfJe+dkFPs14bJqx9pwWX8oQvxbUWIyqq2pg2obW8sZBDzj9ycuA7xMqy6FFXPapNamOBBiRuXpTF0XtgFEghESas+r0RxNMXdw+jMIBF+qHr3x6I7AR+A9QdOnCOUkf7TjNBkzMNFf9ZlvTgBFOf/L9AHrF6556572NWxqHLASxPFnf+MXa2y5KuKodROKlfjwOnFpeUpi334LBmXopYAKECKXilkgpEG4O0kzdFflFpYJgUvuJg9O+/12tu8fQOnd2GoBAkz0sFQ2VzrxngOWjsr/67o35xRsO5nh/acRLqD8CDOUlhRO7LPxfnfrLVkvgmiSnehaARL4iEHMobqyK+QDjQH5RaTpw7BHZX87f1dK3X40rN49gKmWS9Y2tLT7rG8DySb3e35FhqnnngVnP+Q7qgA9j4iLUI//yfLPV2LBm+U1Xdy3U7ah90DIxs07/mSakR5FCpwnp39bPYwyo9B70G8+umA80juQXleoVETjy6NxPrt/cUNCj2pU7AOgJoBM+r1/qPwG5fGqft1tNOuczj1z1VGIBGiNiLtRn3HOrYW3NaM+RPb5c9tofb5sWVuVi6zTgQ2AKsKcu3b88o16XGVBko6qJ638c4F4y8BLP/+QWW35RqeiVXD5koHXjvLW1R2bWuXsMA2kL2plLCeI7o+padUzPj90uf9LiLysmlSUsEyMj5kKdX1Q6APgRuKy8pPDJsCoXWy8mmAl2KMWNGwF2/dP827zd+ssF4jinOcCuXt7lep8yKf9S9//8G/6bh+bl6hXfpV9VHJfV7LMeqYjABE2qptDtXUn6pjVHZK9y7mnt/fDWxiGflZcU+g/qgP9HiIdQ751ty0sKHeHUrXzE8kZOlf6Mnb28Ob1nuf6rSxdbRXNyYKai8WSSU0Uiv3RatFu/Gt+6zG6Xrpg+wEFk3uIZRnfAfO6y7afl+DTj0SbVebI7YEkL3XamGBo2DU3/vmlD3ch7mn3Wj8tLChsP5ngPVWIu1Ofdd/3CVZXHXT26x8pRr/3x9rJw6jbfk/xqUqtyhnJzk76j++VPmvQ5lfrfm93KfKBXbYaP1iTtvL6Xuw9bP8crH5111Pvbzh4ITEw31pzb4MnoKYOupTLF0LAnP3Vz7dqaMX+XKMuBrQmVJQ5CffJdJW9sahh+xgVDHzPe8ds3wjPkL7a+CIyluHFwF+XMlT18/86s1Z2qBpACsWTdMNd/KnN9bx7ununn31+U+WXFpNHAxF7J5b+tdub28WomFcCsa3X2TNq5e0vj0EeA5T0su1d/+ddZvzhninioHy8A48tLCgeGW1cWp34sEILixsndKb9nkblPzwrDXImcKwWGnb295O02ZOj+0vSL8XHMLypVgZHAxCHp38/d1dK3Z6svJRVAp3i1TFP1rkpnr2eB5ZN6fbDmmWvu33FQB3wAiIdQfw60lJcUnhBuXVdJisdj1HakXds6KJx6/ttS82sz/et7VOmMAtHQagk8tmaUc9mxp2jvhDuGw4H8otJeighMHJW1qmhL49C0Jm9aX0AFSDU0VDV5094QaMtPzn99h1F1LzvcnCliLtTDb3rRm5u0+8tl1//xuHDrarekelqStQ9T57cURtK3/7bUI3UBcQdwqtuo0ZwSuC+7Rv9nihsPa5WkK/KLSpMyTZWTB6ZtuHZd3aiUZm9aAWAF0CueJp9mXGZSnasm9f6w2qxrfeHBWc82H+QhR0VMhfrUu+9IXVd3ROOR2V+8+vr8W88Nq3KxNYVgTJD/o7jx7mjGUfGo+SqLU30ktVlVJHLt5kGeDbvzvDcfP1V+H027hwv5RaXKsIw1x2Saqn/3bdV4s9OfciTBY38Emk+ifGk11JWNyfm8tt6d+c/X59+6/eCOODxiKtT5RaUjCHqwXFheUvhiOHW9f0spMPiUH4BLKG58JurBFFsFcJ4m5N2KFPkNVj/WRvUYUdz0RdRtH4Zc8vDcoQraZZ/tnmbya4ajBdo4iaKGbm/MNFVtLMj8rmZ9ne3eGlfu2kN5lyXWQn068CZwTHlJYVjCs3OxaW7vXcYHdvf0zs+7ynVvzAZVbNXv7ul9JadSP03VRJJHr61pSPdbklvU2UnXtSyNWT+HGXMXX5ze4k2dvmxHYRow0aC6T/AGTG0HQ3XZ5opt+dZNe76qmFQCrCovKTxkzgtiKtTn3/9/L3xZMfmCY3o6Brw47+9bw6nbtCB5Xmqzen9Vtm9qjznOj2I2qDaKrcnAfRJ5ReiKWyCmOuxNnydCnnXNr++7XtGr3skrdk8dCExMM9ae2+DJTA3d9mWZKytzk3ZuWVsz9gFgeXlJYeV+mosrMbWnrnL2TNYp3kCOZXd5uHVTm1UFoEe1/rtYjmkvxY0tFFu3ADJkv63ThJwKPOBwiEV2u3wiLv0eJrx87Z0awYxqDuBx4LJT776j97q6I8YCE42q+7Ifao84DpgMcOTNT7emm2rXbW0cshhYflTOZ+tCbcSdmAp1edPgALA+ki2igCL7KhoegYjnHrNDICSAQPiak/1fA+OAGgCHQxgAxW6X7jiO4bDhnetu2AnsJOhMcd3Y4ieNte4eYwXacdnminnbmgYOA/4BsLZ2tHb0rYvXVTrzXgCWnznwhbIHZz1bG49xxVqn/g7YVl5SeGa4deseSNpicSp9TNc3d3hEHgvKnzSp/bYZmgTiO2D+vg4IDoe4BvgzMN5ulwlT0CgJOVMMshrqT+ybumXupvoCsztg6QugCj8WfcuPzd60t8y61i+n9i1dt/DKJd/Got+YzdTzFs8QRvUc2wDrxiYIf5s5qVVpAroKURYVisYUgbBU9vCtybna2ZFHzXfAa0AlgMMhhgCbYx224ZdCaIdkU+jnEYD8otLMfik/FmZZKq5aWzPGAFzl8ifNK91yPu/f8GqFTzMuTTfWrMm2VOg31Q9HoiwLN+dmzIT6+9rROZ6AWegV78ZI6hu9ioGgUMWNzFrdQAApZIcnjXa7/AT4BMDhEFbgc+BZYG48x/VLoryksBZ4OvRDflGp4YjsL0+x6Fov/6riOAlMq/dkzaj3ZBHKZ+/KLyqdFo5gx0yoNzcU9AFYU3PUG5HUl8g8KXDEM7VBklPtB/hzKw3dCW3WAlxDcN8dh0NkAcNDgp8gRgSj1xa+AbwBQZUlSd+0qNWXcmXQ/zp8B+yYyZBA6x/6M6ytPIDyJ03pAmGtyfKHbQQVDn5VTpDIHyhu9HRV1m6XAbtdPme3y7Zvj7nARw6HyI/nGH/plJcUylZf6uqQQAeIII99zIR6fM9PfwtwfO9394RbN7NWlwNg8IrlsRpPR2iKnFSfHgp6HT4lwBl2uywHcDjEpQ6HGBazwSXYy7icz34FGorwlwBhqR4QQ/Vje9MAzai6XEt+/1B1uHVTWtRMgLRG3ZexGs+++G5PzTP4FUUNaG91Xfrn2O3SCbwN4HCIZOAe4F/A72I3ygQAWxqH9s4yV9WuuvnymyKpHzOh3tPaR09I/wwXl0kbbHYr+FVZGa8o8Hq/OBLA2qR7Ndq27HbZ0n6WdjjEsK9bUm/9V33eBqeme7tsZtkhF6vkf4VgPvvs/sDCSNuI4bpMG0AE+jRAo9VfCLCrl7dLXTdSnObAiaE/Y7LDYrfLartdVgN80pQx85na3r92aupNwEe2JbZju6ieoBPSjLV2gkmvHJG2EROhnrd4hl4VgUFHZn+x/4hMnZDWoKuVyIAUxC2Skdcgf+02aj6KG2MeeP3l+rymAEILLW50BFfrCSJgcNq6IoHGUbmfRmxNGROhXl09vl9A6vFqhogGYvIoRoHYk3+pO27G/KlNqkb84vI5CK7UARn2aj3Bf1lXZ8tIN9XufvkPJRFH5oqJUG9rGpQH8EPt6Pcjqe9X5SBNyPglIiq2WhUp+pg8ynvxaL5sZtnKQcbWrwFSVf9ZCZ06MvKLSi0tPuuwOnf289G0ExOhTjE0FIT+3BJJfa9BG9eUGsiNxVg6oi7dfxKAV6/FzfOl0mdcBTIwMbn+AwDbEtsk2xLb9Qn9uvv0S918GsHDlqhMj2Mi1MMy1l4o0Dhr4Ath71EDmNyKx+hRPo/FWDrCa9AuANjT0xfRh647NGt6AaLx7rMrZUiQPwJ5h0B+NuGZYZfGq9/DiWxz5TxFBDg5/7Wvo2knJjtoPzYMdRpVd8MDs54NPy5zsdWgIKxmt1gdi7F0RHa13q0JWdvvMndYwXXCwar6+rdqapvJqh0QIJCgNGv6J2xLbH/uqXd/MczU8p5J0V66++zKhGPCPpTVjElK0Tf9+I/Zj0XlYBAToa5zZycDayKpW5/mz09v0OHVaw2GrotHhKqJkUDcDnYAMnXeMaaALi300iGQfhkMS+ADsRAYU+Ez/naPz/Rb4I53ltheHW5u/qyfwfXm3WdX/qK93QHyi0qTwWzzBMwLom0rJuqHIvyDFeGPyOO4JTkwAaA6258Ri7HsS/mTphSJHOkxaOXxaL+NnV7TtsaA7geAh/qt/f7a3C2G0ZamD0BMLZtZ9qeymWVTT0ytLhhgbL0dWA9y7g+ulNc+bs5osi2xPWxbYpty2guD4paB+FBneOa3vwZ0BsX9cbRtRf1PnLv44hQpp+eOy13eC84Ku352td4LkNSqxMX6TQ1wukAotZk+V0Sb6N3EK1UD0BZD29nf6BrTP3tHld2+fW9c7QXnVK4H/gJwyvODMvsaXbf94EoZCVwGzKn167WTnh/s2OMz3QMsLZtZ9osJGWbWuWapws8p/V//BsKLrrEvUQv1l3sm9ZMoNHrSI/LMNnkUK0Bao25dtGPpiN47DRaApFZlSTzab8MgtFyj0PYA2O3SD+zXi+PdizbXAlcD2JbYknobXBdblMD1m9xJRwNvC2TLuS/1r/Zqyl3lXsszZTPL/ifjcneX1VXj9Sada+2Ds56J2mE3aqGucPbuBbCxfmREXxsukzbK5BZSIOKSBkMgRgPN1iZdRHYp3UUvtNy+Rlc/AIdD2AgGh3krJOD7pWxmWStBX75/2JbYTMC0HnrPtTu9pqlOTbcIuHfis8O+GGlu/r7aZ7j51Qu21sXzWQ40+UWlKaAb3epLuSsW7UUt1D3Me0ZXuXqiV7wR2X04LdoUNaBIw41NcQko7jZqhYrGNsONzXF1yWrVVP8Oj6lNhbqQoK+jaT9V9rJg+ul7c0mWvVS2EigFSs9/Kd+wzp0yCTjXqykzV7RkTAF5pW2J7YN8g/PzIaaWFxecU7k5Do9zQBmbs+KSrysnqGnGmpgcWkW9UOydsvVsneLltP6vROSoam1UdymaiMsb03Bfkqr3iX5NqYG47i7YltiMIPRNmr4toujdwNjuhBUOCrT8GOQdIJeFBByAf00v95bNLFtaNrPs6imptamjzE3nh3ZSRpZ7Lbd90JS9ybbE9qFtie13F/6rX1wdLOJJQFMvUoWPyb0/iIlQRz1Tb6wf2aAT/t0PzHouIsHRBUQaEBehTmvUDQKEtVF9NB7ttzHC3Jz7vSuFbJ1HB2C3ywagoZvV7YAuaAwlO3VdCm37vQy8bFtimz8lpeaiDe6kk3f7zOOBR753pWB/buj2Wr/hfuC1spll5dE91YFjdfV4g17xfhmrkAlRz9QtvtQsd8AS8aFGQJH9vXotXoug0QB6vxLX+Hm5evdAgEGm1l4ADoe43OEQY7tZ3QFCCzqZCi/dMIYqm1kmH/zVnufeu2jzJUBBL73rqNGWpmWtAdUH3AtsPfH5wa2FLwz8h22JbWgkz3SgyC8qtYIY49OMMbPLiXqmVoV/sEH1RLQIK3/SpO+nGdLrMgI52dEOpAMarP7fWBtVTSB+iEPze/miJb0VYKM7+WOHQ+gILvpKgC6Pe+e/9NbKBReeugZNyUJo08fOfme4wyE22O2yW4vBspllElgFTAOwLbENytO75oC4YrvXciVw5ZinR/w4wty8qzmgu+lHT5KfNv39EDC8OrbnR1et3DNF6ZW8bVWs2oxqpr7mn7/pFZC61COyv4pIJnvtMmQLBMktane8u8NG5xc2p0VzU9wY1/3eFk1nAaj1G/YQNEHtCdzf3fqGJM/I5Lw6xs5+pw5YBMyKdCxlM8s2v3fR5mvfu2hTCtAXmJui+OV3ztTJP3qSPgGWg7wdWHooGFvVezJO1ilexuasiPrQpY2oZupPdp6cC1DpzCuNpL7eL3IBzG4l9nvUxVaRjGqSyLBCCkdCf2Pr4K2eJPoYXIFQsMlu+2kumH66CmZFZ/SttNvlBodDHAN8E8k4dhZ9uncXpXfJpJVlM8t2AA8BD/325T79v3amLQB5Tih3oxnEaRyE3O/tWV93RLpA++TBWc/GLNNYVDN1oze9D8DWxiER6awNVv9ogFZLoCGacXRCHpAtEDEJZbU/cnTeMQBDTS26r6/InfntBb3fKJs0cGo3q/cEoTprrMsA7Hb5td0upcMh0h0OkdbdMews+vRYifaJRN4BLA0J+F6e+vWOrcDfAVcwGSkAc2xLbOEfA8eI/KLSDOBIibIslu1GJdS9k7ceC2BUXRHtUbtN2mSAmix/zGMbV+R4LwGoT/PHPXHPt87UDQBT/mFNMi9Pe9y4OvkMtVr/1rphBV1+vZvSWkYCCDWw13bG4RBmYDVhqDCAHYROIJD/3UX5CUEdWkwDcSOI3xAM8/b6eS/13zzp2aFnHGj770m9PpgLiCHpayMyhuuMqIQ601x9ikl1ckr+axFFKs2u1m8H0PtEzMONGT3KKImk0RqIq3UegEeqFoB+O5QjkQiBQCAMdMNXMSm37hyAHrbyvVuioYSndxBUHbqLQyACEIzoSie7KGUzy1aWzSy7s2xm2bPA0SPNTR9scCcNbAjo/wPcxgHUtXe29BuvU7xyWEbZh7FsNyqhXlc7qkoiNkWa3UnVRBZQm3eVK+YzdXqDrqdA1ORvM+bHuu196al3DxdInyHAUoFo84iXdGN7rnlnlhNAUbWf6LZ2u/yH3S6/BnA4hOiqnc2nTPZKZDmwDpjWu2RSl7py2cwy7wvnbztJwKNBPRuV/4b5ijtbG4f08muGj2KdOCkqofZqpjxPwByxTYXbqI3xq7IlmjF0SLH1WILBvzOBpaHXcSNd5zvSogR0BevXrQSmacbANs0U0FoKa7rcpvK2WNKA3Rddt6HDN9bhEMXA4v214XCI3ki+kKproCttze7uCHR7JOIZkIHg51D6OQCOw0NvfCUTGEWUrlsdEbFQz1s8QyjCPyjNWBtxkHS/To5wWgLJkdbvDIm0S6QgeEwX95lngyvpe5emlgMUrF+30n1U878Vt2qwfJT+dFd6taL3jRRKYOd+iqiAGtr/7oxKQ/OguUrAQsDQGLZLXdnMspUDjc6bQdBD533rQOxfH5vnuA5gdI/PYx4WI2Kh1lBGaFJnGJ75XUqkbSS1KvUWpxrzZEJ+nfw6tGCSRBBgMFwCKBatXQYE83LrGwCKU50OLN2fYKsG/+jkvLr97fP/1W6Xl+7P2s9ul76+K574CiC5atIr4T8BvH7Blr8J5PIqv3GMbYktnsFnAdhQN3KITvEG+qZsfTvWbUc8+Pe2np0KsLVx8GsRNVBsVQQiVxcQMXeG1fuV7wEE4nVg2r4ZA2JNquoblKL49s6kQooJgAYIiTT7M73Xd1RvwfTT9b5Wk/C1mjrd0mpLsuRwiHyHQ1y7732HQ5zjcIirpPANCF2KaCcKQCIeAgZYVd/ZkbbRXfa09hns1wzLIvJr7YKIhdqrmfIB9rT2iWjnYk+utx+ga7XExYLOGvr9UrwFGsAktH499N4e7S45AI8kmIFAV2s4Y92wgifWDSvI3KdqHxCKuz5lRTe6uRS4xeEQvfa5/mvgqtYeyy8CaM5dtutnNbvPaxbF7zaLwGPx3N47+a6SPsAI4qBPQxRCnZ+6yQ6Qamgoj6S+XydHAzRaA+ZIx9AZu3t6xwFU9vDlxLrtjqjyGyq3e82OttdtC0aBuAmDnEbQDuQSqdfKv76i50Nfzc8WAEk59WMAdCbP/nTqNu4ARtrtcl+hnQGcqHf2smhqq6fgDzdHbOlWNrPMm6l6v6rwm9JBxm17r2fSzj8ATMz7sDzWbUMUx+TJhqbJKYYGbc2tMyKysOuz09gKkFmri+iIfX/ofSIJQFNkXLI//RyR6pPiJxGmQoLd9i2x7Afb0JcCWb5PLJ+l/R4YuK604Hem8w2FrZXpZA7b2eWWpt0uPcB2AIdDHGG3y+8cDqEL6dq1O9/9VCNCj/727PBZ1gCTQLTf3ovpt92amnG9dYrXl2Wuej2W7bYR8Uy9tmZ0S4s3ZU9+UWmkn+SeAEavEvPkRdk1+jqAnhWGuB+RX/d6jhBIa0+9e78L5uFlG1a7xzRnapbA/wGTJXKdYYvpeJDaEc9i787pI4DDIX4NrHY4xGxgp8Mh7KFb/YlCn25DjxayaJQRRfHvDnXu7FF+zbD0gVnPxSVLbkRCHRRkZYxEzQOWRiLYjan+SQBevRZRVKcuaNOpY2Yk0xk+KTIlQsnTu3t0VfaoBdW+Ed9svBsYEcj1bhdVpv5mr1/RBSiWyGXdFOw3gGsJJln6HFj/zTNn6qTwDXZmfrmvzh42x6bUJwFk6bylwLRYb+9Nv/+6QcAwkHHRpyHymdpOlPvAfp0c41clhhubY+4gUJ3lOwlgT6437kk+P2zK1gOUuVK7vTVVsH7dNvfY5oLmFF2r2esDUATCFLD4l60bVnDHumEFx605qX+HqqHdLj12u7zfbpergXPtdlmRvGdqfyH1SMUXtbVjucdcA5Cp8z0Sj/1qo859DcBJ/d6IW57KSIXaEfwlIcKvqMw6/Y9qID7xqA1eISRSeozdM7SPklQAr1TC6uuoBdXSbVHMZp9PAgEpZACFauA64FO1Su9ec0L/1euGFcxcN6zgJwteh0OMD3nWrHY4xMmWurG5AEnVE9+M9mG2ey2tABvcyd1ZvIbNqoqJGarwu8261pfi0T5EKNShxDL1IL8igkQzIXoKxO5I+u8Ka5Nuj0DU51/qjnu8upHmpiEAA42tYe3iLJh+usnnNSqt6cq/gL8IKSaNXLWpL5ClJQVm+Aa4tugqDf2Ap4CKsikDWtacnP/sDyOHHkuAF4H7gD1AQBKIeo+6jWTFnw5gUfxxyerg9CePD0jd0gdmPRe3rBFROAmIVhBlEQo0Pp0s8OnlmkhTZXWBlQOgTwOkqb4hAL0Nrm6FQ2hHP4AGUkoL1n/8TNvFgvXrGoDngefXDStQgCP8Wd7fSFVeodtmulAgZvSYN6TZM7I1U63TF+u3m1a3zP74xuQKOy09P9wFk6J6nuHm5slftqYzMTmoW8eSSxfOGQGnDTGpzqdi3XZ7It79MOtazblJO/p3XbIDiq1C0UhvTYo4/dt+aUoJTHaZtPR4tL0vn7VklgN83pIeVrq8lF41EwCMqa2d6pYF69dpBevXfWv77Mc/jvpwa6pAZAMXBjL8Xxk2mVP02033SmSV4Xv98Zqsw//qc+NCH4SI2eE1bweo9BlirvMGpHo1wPF93otruu6IZ+okfUtqurE2MqGGNFUTZNXo4qJX6X0iIIU8IDM1IZ3aI9WGcCoZkt0nAKQNqOi2QVjlovX9gInABUlvZtUll2aNQSfPVIzZN8naOnSVxo+B6rLJA8p8g11l5uVptxasXxeWrr/HZ2oCWOOyNoRTrzt8tmuaWRH+FpPqejnWbbcnYqGucfX4scbVI9LN/p4A8dKpzW6liaBXR9wZZGwds9mTxFBTS1g7LXWbe1aA9Cm6QDh76WMJRn+66agF1QEW8BXw1Y7rP7pMmt0rgdeBU5Um3a/Ny9OmAtesG1aw0jvYudXfy/2GxZHxSsH6dftdZyQp/sxWTZWhcA0xRZO6ycCyB2Y954t12+2JRqf2R1q/Kts3oUe1nvo0fyBOOsIB06mTFP8QgP5GZ1gmuDKg9gHKL/rzxm7bvtjt8jGHQzwX8owBYPUTM5Iz5ZV5zryv0yoXrS8FypLezPqt/kfzKcb1SUdJ5GmGTZaLDZssFwN71g0reNd1VOOOQJbvseR3snoTctQNnYAy0OicvM6dLL65ZG1MF9mzHr1qLJw5MMNU/XQs2+2IiIU61VBvNaruiNQPKSgAaE4JNMVDqP2q7NuUGhgSl4DX+/Cdy1oG8ri/n10Z1mpeZ/aMQ9LtY3yHQ1jsdulsL9AAyRXH9xcoKH7zSuAVoF/rGTXD7Hb5JvAm8NdVf8i2GcqST9bvMh0lkeeav7KmSuRNEokIpsnzrBtWMK1g/bqVO72mrZqk4OcjiI5mb8olAEflfrYOfhvr5n9CxIuKFENjRqqxoXckdXOq9BUAfXcYu2OdFh7FVqEGEIpGXFSbDhgMIhCu4Y/URL6lR2O3dhgcDmEENjkcomjfe6amglwAS+34DwjucZ+/r+31uPury+r+Uv5I5aL117cW1vZonVZ3jW+wUyH4/iu0O0CrCxhaAigx/5b7fM+UVIFWb1JdUWcc7oqIZ+pdLf3WgIjUFSsPaAVi6psWIlkgRFqjLu4mp0FBlqcDCoiltiW2bh0rL5h+ejIYhLPK2l2DfiPwNB0YFvkN9cN13nSArXa73Os573AIC5Btt8u2tcX7gDhqQfVE4OEvizKT9ZstNyPR0e4AzSwCWV6pxEPntUsUR6QxF8Mhiu2fyHXq5uTA8T6d5qG4MR6HIwfM7gM4maBAQ3jmAvkAfrexW+HQ7HbZZLfL6+12+bMoRu70NRdI4aNu4JMVDofIAXA4xO8JThrrHQ7R9h7/DShuqze+pLZESDEV+CswrU2nzjO4j8rUeWOa/m/2ossnAPm9ksvjlvKvPRHP1BmmquxI6ysaeR6jRB9p5/thR2/P6D47jVTkeAfELTHjfxkW/CUD7Ccswb5Y+1ZOadyegyW7oUudOhTA3Wy3y5+FenA4REq/xlecmuqurhv85FXAgyHB/gbYCDxI0MdRs9vlO/vW38c8FoAKn3G7hJimuq5o7XU2gC3rm6hSyXWXiIU6zVif5Q0YI0qoleRUvUAVxdZjY+2ZYnEqOgA1IMpj2e6+XPZK72mQdh5Bl7EvCSPgomr0HweQ2qemO14qNwAnOhyiN+AHVLtdehwOMRV4T/FbNqn+5NXAUuBPQMBulyuAiKKdtmo6NxDTg5fV1UfngKypdfV4I5btdkbEQr2lceiXQJfmlj8jGK6gD9CbYPiCmPoQZtbp3QDZNfrVsWpzX2xLbKKPwfQvk9CEWQlc9cnFG8JK7VG3qdcukE6haN2xqptD8BuhB0EngGuBJwlGcLpHCRh/J4V/hd0u1xGM+bEXh0PkA7cAc+z27oWiMAgtQxA7Q7D8olIBTAHhePnaO+OazaGNaI5UI9Kp/ar8VejPeIUvOBA69bk7vOaMQabWx8IV6BD9QZRf9OeNP1tTtOnADofQORxiPXBdaObdASwB1gPY7bIuY9Pl9wupt7bkOPb1W2yjF8GUaaO7O7A01Te4t8E9JMzn6ZRT8v99PNBnUNoPccs2vC8Rz9Q5ll15Lr+lZ7j13CbNldyqIpHa/sJjRUpFjrcwt9LAjt4efZ9YNhzCtsRmARYAa9a6UudE0obe4j5aKHI3BKMvtfMYf5ngRHMuYCaoQgjY61U+r307yRX2vgA6T1aHYbvsdrnc4RB97XbZbR25PqCv9UglZkmftjYOPQFgYNqGT2PVZldEPFNbjfVZRtVj7brkT0luVWsBBKKEOIQvsDiVtm3CaLyqO2WUubEU6KuizS2bWRZR8qWAT80xZzYZQtGX2keM/YL/LtwGEfRJ7HRf19DaryeAuf7ITgWmTaAdDnGKwyG6DBzkkwqNAX3M/ncb6kfmA5XvlZ8Tc1/UzohYqDfWj1xe7cqN5OFHEYzffFM8whekNusagECfncaYOwjYltjOLXOlTu6ld+5ZPfP7sIOEOxziog/fMWzWfHqlcXv2M8AW4Ku26Et2u7zHbpf3hP7+Fhhot8tOwyT7zLtHA2hdRJ11OMQQ4G32mek7QkGmJCl+tdsPtR/mLZ4hQE4BHOUlhQcsF/sB16md5sDZTnOgKU571Ehk0O4jxu2HTgxfkghll8+c3p0TRIdDHOtwiG8dDjE4dKnKWZsa1C2l8qPdLp+22+WcfU8AHQ6R5XAIpascjN7kLWdrqouG/Bdr9lfObpcbgUKC8an3iypk6kCjc3hX5bqDVzOeCCJvVNaquLludUTEQt0nZUs/s641PPOKYqvO5FasbpOM2xF2Q1rgVLdRizgUWmeoaGcS3PMFhI4OFrgOh+jjcIgPHA5xcuhSNcEsXakAdrv8sPr7fh8BJOfVNuynuxeBLlOGmBpG1Uvh3zZq1hNdfoDtdvmO3S69Docwhk4bf4ZtiU34pMJOr+mrrtrrDmtrRh8DkJO0+61YtNddojBoakivd2eGG4hmkCKFmlGvezzSfrvC5FbqhCSi/fP90d/o9G/2JANSaztocTiEgaC71TK7XT5GUIjTAQuA3S43A1PatyM1MQogObeuw92AUNjeJwktEPeH6kvNArodIcvhECZCe+rA3A6KGADqAoaY+CfuaB5QAOz5YNuZMY+XuD8iFurva8d8RnCvORxGhX7HNHJ8e8xuxUmM8jIunL1sbw6V5km6bQCjzE3rRlmaV/zf6fUrARwO0RNIA7DbpRsYt782G8tza4DGXkdv7NDeO7TL8VxXY1uz+DKRLi4ZpKnOz7v7PHa7dDsc4l90klNmiKkldaM7mTTVG/Vh77zFM4TggqkS5cMDqU9DdImMfBDeSXd1lu/qrBodzSmBdalRdLw/JDIN2NLlNNcFIYH+CKQB4Q+k77I/UpnzOdMz96xLVf+7kLLb5ZT9NNMR/YHytm289jgcIgs4A3gh9AHpHKkOFlI1t/ZYkQWndbtzu13e3unAjM5eG93JDDW1Rp170RswniZReozP/aQpqM4fOCLWqQdYN/TXCV9YPobJLarVY5T1qfNb4xaPw2OUw+vTAyNj0JQdMIAQSJ1uQNPgk0C2fNaccb7dLi+PtFG9xX2s0drS2cna+cATwIBO7u8ldWdhFoChtW9E+qrDIWY7HOJv7a9922p1A2z1WKJOKfJV5XE2gGRD0/PRthUu0dhTp8kwZ3qzW8kweZS45Exsw+AVXoNXxCKFnQNwE4pc2qdm9LCTy89N7vfuCxEHnVww/XTh9+jTjFZnZ65SjxLMad6l9Z7Om9kbwNRYEOmibgQwtn0w9yq/UQ39jnohX+PKGQPsXLb99M+ibStcIhbq76rHfxqQ+m6f5XvuSEknmKwybvo0xVZFkcKY3KqujrapOYumrgSmgbjJkLJj+taen/j77TkOYPOjc1+/66UHL41EuLNlQFWatvfocPay26W022W3cih6krdMAAjoGyON9TEfOLX9tmFfg7MHQLbOE5VOPW/xDKEK/wmCwAHdn24jGp3aDyj5RaVKeUlhl8Jdne27qPcuI5U9vJ54xdd1G7UUk0dRJLIpWp0a9gr2SgDbEtvCHpnfvv+rtX/Ua97U6+p/PONPj8x5e54MmP4xZ9HU7hrVt7m//UQQQzserwFvhXZRusRvqjxR58mU/W47PSJHDbtdekN9pwOn2O3yhf5G5/DtXgsF5pbObEm6hSdgOisgdemTen3ghTOjaSoiIp6ph6aXDQA4a+Dzxu6UT2vQ9QTwGuIXGLAyxzcUoCLXZ4tlu0c9PfxEIKs+dat7zqKp52cM+fcVQvFtkQHTQ0DZ07fdNv9fD83s8nOUPmjXmQDW/Ip9bTGSCdp6dHsr0lw3ukpo+ljkXL8OeMrhEL3KnKm7ADa6k6JKAfjJzpMGAgjkohiML2wiFupkQ3MKgE8zdGuvOrlV7QHU9dlpjHnOxDbSGlQVwORWYtaHbYntWLdU3gTwS3GJbYnt2Av/uPBxvyt7CHCWUDyG5l0T76nfcurm0I5Jp/jdhnwAS3bjT2II2u2y2W6XJxPUqbuFopl6KQFLLDxJ/gYcY7fLXXUBw2CACp8pbEO19jj9yROAbU9f80BMDnHCJWKh/rpywmcAb289r1tGPZqQo4E18ToeB7A26RSA9AZdzKzMCO6C6AFk8EDEDjBn0VQ5Z9HUN7IKXiqw5r/3jN+VlQSsWDT39fdevP+qkzpqqHlndgtQc9GfNu09NnY4REZbuuaOtvk6Ys3iy1RJoL/fWBVxZrQ27HbZYrfLb0P+lqHdEPmPSDMIzFs8Q9Up3pNMutZu75/HmmhtP6Abenn5kyZVCsbVZvhiHp+tPV691gNAE903tewGjtAJIiG/TEf7m+df85Tn4qK7LgFlEHCz5jdOq91w7nsLf/fBIwtnL9vXiSKfnwdxvA4odzhEt7fuhaYfLVB1zsyvY5aub7Cx5Xf899yhQzOA7uD2W87xa4bko3KWx9QlLBwiFuoRmd8MBDi+97td2n9kV+uGqppASBHTxOr7UpPlnwqws7c3ZiE/ymaWrbQI/7UAyYrvjs5ctuYsmtoyZ9HUWzOHvnKEIbniP0j1SpA/Lrnljtf+9dCl2QD6JNdEc2bTvnrzC8CN4dg8W7edlwRgahweWWa0DqgP6J8CZDA8s/ASoZ37+9vO7A3gDpjDSUEdU6KJpWcCMKruLg9gkpxqAUBGvS6iHH/dJbVJrQEwu5RNsWz3mJSGymVNWRxhae7SUGr6vMe/B85eOHvZUNVUv6hlzzFnt1YdOeXhqz581Oc0WwxJpr07JQumn34ZFA4G3rDbuz8eRTP1AzC09ovZ9miN39im538A3BxpwHWJYge2vPyHkrJYjS1cIp6pv6yY/DnA+9vO7tJtymPQJobSr8XVRT65VW3zT4xpwPBN7qTNAOvdyT92t86cRVM3zL7/vCnpg/5zpQwYtyNbi5AIT8u0sY/+/q0/LZh+znEgHwNZBCxdMP30buuw7tT1U0KJT7eH/zQdM9LcdDsgxifV3/ZQv7W3OhxiQrhtzFs8Q69XPCenGWtXx2pckXBAdGqXWbvAbZJ+ihvjkrimDZ9O5spgbu2Y9rPDa24AqPUbwg6aeNGfHlgM4gUZaNIAhGIVmt/yd9U4/P1gkvuwY4ag6ZsmBYy1Wu+SSTELXF7lM56ao/O4f5O1azVBJ9+8cNuo92QW+jSjaVT2qspYjSsSIhbqI7O/GAhwXK8PutyoT2lWpRTEfXunKdV/gl8n1VjvsPTUu/0APXSesN/oEA4p60JCneoBrpdacyiBkwBUVZ902ohn7rjp9O7sd5trx+1WfCmrIhzLz7AtsfWp8htzGgK6u+x22QyMtttl2KriJztPHgBQ2Zq3IFZji4Qogq47dQA6xb9/nbrYmqpqIs/iUn4WTCXWJLWqu4UU1bFud4S5WQHoa3QdFUn9OYumrtSZPv4QQGdqPmPOoqklmm9LC/CDztLzLX3ymStUw9DpTdunvlm3+azqhbOX3bJw9rJhnbUnUPIVzbihs/sR8GsAj1SfBbDbg/YuDoc4w+EQR4fRzhRg03v/V9RtNS0eRCzUK/dMWQXg2HHqflPGtaWWCygy7iGnTB7FpwuImDvc7vGZagE2upMifgZXrXcPsOd3D132wbN3FpwCjDKltfx73pP/PGPu45cfZ+370YC0/u8+IwP6H4G/AOsWX/ek87GixQ8snL2sX1s7ZYuuTpbI3t6kbTFTsXL17r9YVd+usplle+3QQw4FDxMMkNMl8xbPMBoU98k5ll1xSU4VDtHafkAXNtUus3aRtQl29vZW9ttfwRgQUGQPIXFGlR+iA753pbgBmgL6aAIn7k3e2VqRfhFAWv+K/7TdvPiG23cAlwAsnL0sz5y19s+az3KFp2HgXGDuo9f8Z21Kr8/X5xvSXk1HCHfa2pg85uRnhw6qD5jSjrQ0ftL+esih4ESgvDvt7GzJP9GrmfRDM9ZGnUwpWiL+xxyV81k/gIl5Swftr1xmrd6vCemUgrifMHmMmq0pNTAw1u2WzSyTAunL1HkjNvTRJ7knJOXUpwK0VGQcCfKzGUXrO4wtN2fR1N2X3T732ivuuiIFGAjcoOjcuY3lJ563e8sJzwLsqBhheOnBy/IjHU8b9QHDOQCrndZr971nt8uN7fwa9xuL/OvKCQUAqyomlEQ7pmiJWKgNqju0oJH7NWjS+8UgRYqvD0T6N6NHaTJ6Ymf38ZO2habvqXePjaTugumn63ytRr2iC2y9b8YpBYANRLfynsxZNHXLnEVT77zqvunZyXkrJ+fog/boO+t6zaxZd8GWhbOXvbFw9rILH7/hkYicjRXkhcBXZTPL9hdB6TWgtL3tdQdMAdb/cPsFByoueKdELNTLd5+wNvS709wq5U+aVE3I0T6djInPYFeomjCa3crGeLTtlUrdFo8l0gOFPiBE866s/1j7VT0EEnNmY9iJPGf+9cZP83LWeSWBQPLgV2caU3a+DIwBnvc05jc+VrT464Wzl521cPaybllOXvta7hQNMXqEubmr/9nfgfmdhWy48tFZJoPiPrlf6uYdHd0/0ETro7jfNhSNCYoU5sosry4qs69uUP6kSe2HIdWvIzoL907QEC1OTRdZwHAh84NZr9natDNrqCmtdc/Vj3waoe6p2fzmKm36Hx9+Gnh64exlitG69RS9perulooxg4DXQWt6qviuSiG0O1r2HP3snEVTOxTGL1vTTgDI1bsX7q9Hu/2/5sKheCQ/sZ/f1jRwilczKX1Stq6O7JliS8Qz9YS8Zb0Ajunp6NQfsNcuQzaA2aUcCD+1XIEQdRn+qJ1GO8IgNDVN9UWkU2cO2XkxgCW7oVfAY+jtbki+M9JxmBtG1elcOXujQ81ZNFW74q7L35558/Ujkfos4FR9csUXrpoRg1v2HP0ksOsff3jlmRfunTP7Xw/N/EnkpaaA/jxg+9Km7G717XCIGcDK0M7IXjbU244A+GzXifdE+lyxJOKZWhX+AIBEdGrYrmpiJCDTGnVx91PLrtaZASxOpdMwXdGQpvoyU1T/iEjqOmtSdSCl32U4GqQE8e8ohtJfoHRYP+SB8y7w7gsLfm+t2/SracCFfk/qhXUbz70YtBsWzl72oj516xvvjr79VkgeAmhAd1N71BIMzpMCtHOellNAfF9eUhhJBNiYE/FM/emukzYDfLHn+E6Nh1wm7ZSAIndR3Bhpbphuk+RUzQApLWpcdOr6gH7TDq85oj1YV61VAbFdqNoV5szm+vkvvRXRYmrN4itygCx36rou3ecunP9w45xFU1+ds2jqr7MKXuiT0mv5HaCUSeS1vqb+n4794o4p43acQpqrx08SGe0Pu12+S9D1a+8B13VPnGsxKJ6TBqd/3+1MY/EmFvvU+2tjXHNKoCotik66S6sl0CvJqeIxaO5urZLCxCeVRoJ2mREgBwBmT2OyMaV3dbd8EDtC9WSOAfCkbgrL5mP63Cf3ADfOe63nEStr8nPz621jjqge3zx258kp43aeSo1lpy4pbevxC2cve37Ooqn7Tapqt0vpcIgM4M9A8YrdDx/n1UxkmGrialYcDhHP1Mf3fi8TYHzuJx0H9C62JpncQmd2KS9G2kc4NKQFjgGo6uHrnoIYJsmK35Kk+CNKI6Mze44B0QOQzTuz/9ZlhU6w7jxdD5C6qzDsNcqpzw868asW6zdeQ5NtXc7Kc2/8+xWpHw5ecuamnOXvZem8LvPuSScD5Qtnf7jy2ZLrX3rh3qv3l0vxKIInjcftbMk/CuCLPcfvd7F5IIl4plZEwAfg13SdhX0dIRDC6BUHJO5DRp2uAiClWY1LCIYU1de/OaBLti2xHRuOrfFDl081+l0WBUAogc//+MI7+zUr6IL+AEKqYe2c2JbYLgXzIrMINByfWjfrgXP2vArw+vxn2hKI8sjV7w2Qmv4CRe+c1Vh+4jEgz1s4e9ky1Vj3n/SBb781fe4T5W3t2e3yPYdDDLTb5Xb9+6/e7NMMa8pLTt9v5NUDScQz9Uc7TtsF8E3VhA71zLp0/7kATnNgfaR9hIPZrQiAtEZdzG0/bEtsx+7xmVJbNJ0e+PjoZwo69EHsCG+LZa91QPqgPVHt47rSvztTU7w+6F6m3D+/nmOe/lL+KoJRnz51SXVIm0Dvy9WPnLxlzqKpd/zuoTP7Zw7911mg3Qn0D3gyHqpZP33rI3PeeWfh7GUXLpy9LAnAbpfb5y6+OEUgJ43KXhVR8Pl4ETedWgpO8KuSqh7+TflRdNJdXCatv9mt4NVrjTEPeQr2dkFI9T4p3i18YeDi7V7LdWUzy/brJKEze4b5XUEtX9EFbo5mEM+5ao5H96kC+IqZtN/3zrbElqUXWa/7pDJ2qKnl0w3u5FO6m/nggmsXvQG8sXD2sr+kD3xzurel1+zWyjGjgOeF4vM/+Zf7tzmrR81vHNor26uZGNPj83gkE42YKHTqdy0AY3NWjO/ofkad2qJofJl/qTvuGU4BWpIDx2lCsjvPFw9HBAfgBfwgvZmqr26713IlsG3ys0Mfmv9aTqf2L9a+VecDILTymTeXRfytVfzXYj8SFYFAoBb/tbhTAf3Ny31PAL7ySWVchur9/SvTt06OJJXHnEVT5UV/vu/F397yJzvBjGp2S/aaMlf94F7A62M2nPTQKU4duRtP/mHh7GU3dhUi4kARsVCrIuAB8AUMP99eKrYKgRilSNGtEFqxwNqobgGa4mFjEtKhpwF/BWH/YMamLGAssLQ+YPj9R81ZG21LRt5tW2L72UKyeXdmAYAh2f1EVIMQofdK7PN6H857qf/8H1wpHxiElgZM/vjiDTFZwM1ZNFWbs2jqx7+95c9jpN+cCpy23eh2FXgVAtVHXArcDiw9FAQ7YqFetqOwAWBNzbif6dQ7e3nHAmnNyYEDthlv8CmKIkXcFitlM8tWls0su7NtkVg2s+ybspll505NrTnLqvo+BjEf5NZzX+q//I+v5e799vI2W8YAZAza/XpUA5Bood8/fR3CtsSm2JbYbt/gTr4nRfXvOj6l1l42syzq6KUdMWfRVN+GsU+s+E+SN31X+s6KtiCaxCeFYNjExUdR7xNTARrS/AfMYsur1/oFFBkzn73u8sA5e974aMbGKcDQVNVfutmdNOHDpqwVtiW2f9qW2PaG5K34dlBUMTqKby3WIQkAEkmg+Nbivf/3458demaq4qsBbgQer/UbBt57TkXcImEBvFd+9ji/ZqBZ9T8DwkNQHmKeQjASIl4ontTvdfn+trM5MvuLY/YNqp1TpdcBZFfrD8geNYDHKEdKIQPxCubeFSGvkfOufS13wrKmrIslXNZ/l6V9HOulC6afPm3+S29FnJGsTZBPen6wZc6r/7x6kztp8B6faQzoJwdLSD+Ix8tmlsX9w+0JmCcD2jv+vL+NDJqm2gFHKKjmQSVioTbrnB4AT8DU0cp3FLDVdH1zPLPO/gSLU6nUFHnQTR/vO6diBbDCtsR22zHbLXtDNWhIU0ua+xL2SXDfHWxLbL2OSaqft8NrGrLLZ+4JxjF7fKa2964GhOS/2rY9kj7CJc1Y+2unL+mHjXec2xjq76ALcxsRC/UDs56T/ykqDayrO+JnOrXHoJ0cUNkSVpqBKFE1YVI1cdCFuo3fvt2vgpB6J5FSU6T4tKBh9inPD5q2y2e+uDN917bEpgdGHWFuvKbWbxi102fOBPp+3pqOiqYBn4G450hLY20Pneet95t6pANLCeqzB+Tr/3f/uDStxXtWgS171VfB5LyHFtHsU0NQj/qJ+XLDfUlJVq+aVpPlbzyQQq0JmenTSxEPu48I2WvRJxC3eDJbvu7Tq3red87Uo4EvjlgyctlAY+u3mzzJLqBxkLF1cqumjgdTKmD+zmUlVfH5CH613zvC3Ly5j8Hl+PvZla37dmRbYptG6Os/0shK4fDO1vPGAtS7Mw9aaLH9EZVQGxSPfkjG2mPb69RpjbphANk1+gNmC1D+pEntJw2WRmsgf9+IjAcL1eidGfAYUA0+7Q/PvHdL6PJbtiW2ZGC2grxlkyd5alv5zR6L1lPvcSnIxzTEZ70Nrm/euXBztzyGQoJ8IL/+pwCB8qYh/+my5EEgyplaBlx+y75JieKSVi6/qHRv+rfyksKfvIG5FfoUgSCzVuen2HpsPNJDh8Pzfx8idMZecwMeA6rR52h/r2xmWQtwz+inR6Qg5V+CUZoIgLj1/Ys23XpQBhwmmabKGS6/ZdMPt19w0CKb7o+o3Oy9mqnpx4aCn9hT16X7L9OE9BPMux01+UWlyil33XkPyM+AO4BPJ//twZJ5i2fs1TRMHmUKgKoJO7CUYutBPQCo/G7AKE9TkgHA22x5u6Myfqm8C8JNUIXzEgzMeMhz9oK/Whs8mfnDMsoaDvZYOiNandq3bxuWVjHAr5Neg0+MJ4qvxLMX/HXs6uqjzwR+s75+VP92pw7q9uaB/1fpzJuXX1T6DPDyuhQuNwf3YNobvB+02Vrz6fYmtleN3g6/scpmlq080LpwLFhdffTRAFsbhxz0UAidEZVQpxoaMvKSt0/Yq1MXW481oeYBSORSUWydFo4qkF9Umgacn2WuvLHGdXTfkOvThxmmqjfr3NmzCK3wCzJWv7yzJT/LEzBfCMz6wDOeM5QvkZKAAJ8QB+8AIBi9VP62bYdNNXYeaP4g6MKxYArgr/dkHdDUzOEQlVBrUnE7fcntXbXshKJ2A2a3UbvLVGy1U9zYqftRflGpfkTmt5cGpHoT2HqAMDZ5rOVH9/z4HZffcu0b84s3hMq9GGxfON657saVoWvmYRlrLh/i3nHPJn+e/vXAJHWVHKy5MpxP1N2+8KZdLfn/KS8pPNBmkXb27hlLvE1JBcDrB3gMcaOHZfelnoCp/LtbfhN3F71IiUqoW3ypVS2+1PYG6w7ALZEGQDV5lEnAp9otqXOUm5tWtxWat3iGcAfM53+xZ/IpkHna97WjeyTpm2Wv5G1v7GrJv92rmb5+ad7dPzFMCi0OV+5zzUXxRf8E/u4RuoWPBM76qHfy1uur6/uP8wTMrwC1R9/6z89HZn376eaGYQs+vmHegRBwB0FnVgVEgEPg2DhWHHf7w9ZqZ9+cMTlfxDSofawRsnu5czokv6h0HbCmvKRw+t6LwUWaHfgYGArcLZGZdRn+7x6snXnREs/phQJtpkQZqYiApkn1deDp43u/9/6S3z8YttloxaPm83MrDS85zYErLP/X8jjASXfdlbSxfuRJwK8Niud8r2ZUgRrgNVvWqhUDrBtfeGDWc3E7Sl5wwakrkOqxis73zrXPvdf9xOGHOPlFpacCbwu0E7eWnPHhwR5PZ0Ql1Efd8liz1dhQ82HRnzqNs/b+zcf3zLZUfD7KVdm3XqZwh+8iXtMmfTE8c/UX/a0bH3r4yqejit5U/bDluewa/UXb+nrG9LvM/e2+9+cuvjh9fZ3two31I48DeSaIJJPq9LgDlqeBl8flfOZ45do7Y2bkHtKpPwWhhmwxJkdj73EokV9UehdwLZBWXlLoPNjj6Yyo1A+/pm9p8SU373s9v6hUmZC3bGa9O/PadZ4/98MjUsfpvm9aYFgk7hWLUm5JXjisNSlwS+6VrqjDkWXX6PUSua0jgQZ4cNaz9cAjwCNnL/hrcpqp9qbvqsaPcQcsFwGz1tWN0o67feHSnS35fwc+ioEObu/g9WEh1D2Tdlzp1/S7v7r58kNWoCFKoa73ZO3Aw14b5tmLLp+6bPtpJ4DpghW7p/Y3qi5S9E2vNfusD63yj/i4n66W6izfgrQG3TXJLcqbFFsfBm6muDEyw6diqwAmCoSjO8Vfn39rC1AEwUXmAOuG3xhV9w3r62zHAScqIlB/xj23VLr8lls3Nwx/OUIBd4SyW+lDqeq6NbZo2d/hVCwYXfxUWoO7l3VU9qq42GjHkmh16jWAFXjBpDpPdgcsR7ZtwxlV1/Mn579e+uCsZ38W2d/7t5RMg0+5TSJnB1Q8NVm+xbmVhnnhprXY/rjp6L47jJ83JwfuSPlTy41RPIcZOKVn0o4/1bqzJ3gDJoCaTFPVZ6N7fLGywZN+XzgqSigpkR1wxEL1yC8qVcbnftIzy1x1hGPHyW6nPyWjv3XjmCxz1YRvq8Zv9GuGQSDtBHddPCCmxFqw84tKTyfoeT61vKQwbqm4Y0HEQh2cGbQV/z2UlOXjclZ8l2WuvG3R7Mc7jLu8L833JNuF5K3kVjUJ+BSYQ3FjtyOLVj9sKc6u0d+8o7fnwj5XuGNiuz39getSvthz/AnA+TrFe55fM+hA1oB4bVjGGsfQ9LX/jsUi89z7bkjtmbTL9vmeyaLGlZvWK3nb8N7J5VO+rx29vcWXmpRiaBiarG8eWenMa9KkmkEH36oCDZB1EtUHMico0xIQnwJnlpcEvZNiwYDr37hXk+rVBPXpfU0jDimiEerrg2l/22wX+Et5SWHYgQ/LnzSpfbcbLlOkuFMi02sz/au9Bnla3lWurjM8FVsflMjLWpK1tJQ/tcR8u27u4ovTtzYO/m1ZzbjxwBlAklnX6nX5k5YA/xJobokyCXCMy/lsVW7S7iFrqscmb28emJxpqhwwJOP7UzbWjaiqdefoLLrmAZnmmvEVrXlNPs2YCnToCaMQcGmoe0yqs7VPytbsSmevT5q8aZuzzXt8wzO/y1xfZ/ug0tlra17S9rqjcj+reWDWc56Q6rEUpD74fkjFrHP6R2Z989xXFZNmxWKvfsJtj7YiZOOKm66ONJnTASPKmfondrzTovrKK7Zm1qf5301rUMcBFQLxKG32wZ2dShZb14X6/028jZiO+Osz5tE5n9+8tmbMMTWu3HFA0n+P7gUhtauDzFqaBkqlTvjq+6ZuyWnwZHxd587+PkXf2HJkjy97b2/u79jWNGh9pqmq7vje7zXce8WLEflZtteph6aXmTwB06vlTYPTgHUgF4MwEaG+PezGl9PdAXPtiMzVr5X++aZDz4B6H6LVqWO+OHHfmXKcyaP8EyiQQaGRAvGdJqS7NUkrMHrEToNPqQsImalIhofuu4GwjuSjIb+o1GxUXU97AqbzQoeHUhBwHJvnqK519Vixod72rVnXWnNSv/94gPIHZj13QMJEtGfe4hnijR8vOFOiPAz0Dn0AXSDCnnzyi0rPIngqenx5SeEnXRQ/6EQl1HGj2HqDRN4uEEIiEYgtmpC7W5K1ESa32GHwKbUacoCAfiIoVH7grxQ3Rhz3OVxi/k0VJ/KLSm8CeWtILZEgbiovKbwjnDZG/uX5xS2+1ItBpJWXFB5w5+ZwiXUiq1jxUWj29QuEC7hYublpUur8lgzDjc1HUNw4VUFcGLp3ULyYQwIcigVyaAp0iKVBE1epBQVbGz1v8YwuE5C2J8XQdHG/1B9b/xcEGg7VmRraH7fvT6fuukyCvWqiIvxHalJ3/jE9HW+9OO/vZ3SzbiZQMzjt+2c+KLrukviONDYcukKdIObMWzxDXV9n27Kh3tYXuKi8pPCFrurkF5WeA7wKHFdeUrg87oOMAYeq+pEgDjww67lAlbPnUOATYMmwG18+oas62eY900G6IP655WNFQqh/YXx7y0w3cLZBce8E3p+96PJf7a+8IrSzB1g3OstLCr0HZoTRkxDqXyDlJYX1J/Z78yKd4vO9v+2shflFpb07KpdfVJpd6exl9GsHLtJWLEgI9S+UhVc99XmLzzpek2oS8E7h32/L6qDY8QDbmwc8e2BHFx0Jof4FU15S+B3wK4E2vNWXsnHu4ot/kgq6d3L5pYKAC+iWLc+hQkKof+GUlxR+eFyvD/9Z3jQ4/c0fp/8zv6h0r0x4NcO0AdZNreUlhYdUpoCuSAh1Ap655oHfATdIlAt0wnc3QH5RaW6VM8/Y6E2POEXewSLauB8JDh9KTKpzsDtgmX/Rg/P7wNRXAWpcOR0mPjqUSRy+JNjLvMUz9Gtrxvz4Y+PQ3ma1tdodMGdI1CnlJYUHJG1grEgIdYKfkF9UagG+AEaGHA5cHNq2LT8joVMn+AkhL/HX/xuT6NDI4xIOCaFO0BFvcxAtIKMloX4k6JB4e6fHk4RQJzjsSKgfCQ47EkKd4LAjIdQJDjsSQp3gsCMh1AkOOxJCneCwIyHUCQ47EkKd4LAjIdQJDjsSQp3gsCMh1AkOOxJCneCw4/8BTx4J1XngGOIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top-5 predictions:\n", + " 1. stereo 21.389%\n", + " 2. radio 16.453%\n", + " 3. yoga 9.803%\n", + " 4. ant 6.983%\n", + " 5. power outlet 4.575%\n", + "Answer: calendar\n" + ] + } + ], + "source": [ + "n_new = 10\n", + "Y_probas = model.predict(sketches)\n", + "top_k = tf.nn.top_k(Y_probas, k=5)\n", + "for index in range(n_new):\n", + " plt.figure(figsize=(3, 3.5))\n", + " draw_sketch(sketches[index])\n", + " plt.show()\n", + " print(\"Top-5 predictions:\".format(index + 1))\n", + " for k in range(5):\n", + " class_name = class_names[top_k.indices[index, k]]\n", + " proba = 100 * top_k.values[index, k]\n", + " print(\" {}. {} {:.3f}%\".format(k + 1, class_name, proba))\n", + " print(\"Answer: {}\".format(class_names[labels[index].numpy()]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HPyTzSGInU0q", + "outputId": "ee4f95cf-4974-4cde-bf89-2c8ae104b4da" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2022-02-18 16:47:16.114014: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.\n", + "WARNING:absl:Found untraced functions such as lstm_cell_1_layer_call_fn, lstm_cell_1_layer_call_and_return_conditional_losses, lstm_cell_2_layer_call_fn, lstm_cell_2_layer_call_and_return_conditional_losses, lstm_cell_1_layer_call_fn while saving (showing 5 of 10). These functions will not be directly callable after loading.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Assets written to: my_sketchrnn/assets\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Assets written to: my_sketchrnn/assets\n", + "WARNING:absl: has the same name 'LSTMCell' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'LSTMCell' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n" + ] + } + ], + "source": [ + "model.save(\"my_sketchrnn\", save_format=\"tf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4BZh9u9pnU0r" + }, + "source": [ + "## 10. Bach Chorales\n", + "_Exercise: Download the [Bach chorales](https://homl.info/bach) dataset and unzip it. It is composed of 382 chorales composed by Johann Sebastian Bach. Each chorale is 100 to 640 time steps long, and each time step contains 4 integers, where each integer corresponds to a note's index on a piano (except for the value 0, which means that no note is played). Train a model—recurrent, convolutional, or both—that can predict the next time step (four notes), given a sequence of time steps from a chorale. Then use this model to generate Bach-like music, one note at a time: you can do this by giving the model the start of a chorale and asking it to predict the next time step, then appending these time steps to the input sequence and asking the model for the next note, and so on. Also make sure to check out [Google's Coconet model](https://homl.info/coconet), which was used for a nice [Google doodle about Bach](https://www.google.com/doodles/celebrating-johann-sebastian-bach)._\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bZjrpFCLnU0r", + "outputId": "bcd1d870-fbd9-46bc-a161-7300fab8e047" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://github.com/ageron/data/raw/main/jsb_chorales.tgz\n", + "122880/117793 [===============================] - 0s 0us/step\n", + "131072/117793 [=================================] - 0s 0us/step\n" + ] + }, + { + "data": { + "text/plain": [ + "'./datasets/jsb_chorales.tgz'" + ] + }, + "execution_count": 100, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tf.keras.utils.get_file(\n", + " \"jsb_chorales.tgz\",\n", + " \"https://github.com/ageron/data/raw/main/jsb_chorales.tgz\",\n", + " cache_dir=\".\",\n", + " extract=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "TUgeUpY4nU0s" + }, + "outputs": [], + "source": [ + "jsb_chorales_dir = Path(\"datasets/jsb_chorales\")\n", + "train_files = sorted(jsb_chorales_dir.glob(\"train/chorale_*.csv\"))\n", + "valid_files = sorted(jsb_chorales_dir.glob(\"valid/chorale_*.csv\"))\n", + "test_files = sorted(jsb_chorales_dir.glob(\"test/chorale_*.csv\"))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OTj7oEZnnU0s" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "def load_chorales(filepaths):\n", + " return [pd.read_csv(filepath).values.tolist() for filepath in filepaths]\n", + "\n", + "train_chorales = load_chorales(train_files)\n", + "valid_chorales = load_chorales(valid_files)\n", + "test_chorales = load_chorales(test_files)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xa18annKnU0s", + "outputId": "8e98ed97-47be-475c-f886-3caa7da87fd1" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[[74, 70, 65, 58],\n", + " [74, 70, 65, 58],\n", + " [74, 70, 65, 58],\n", + " [74, 70, 65, 58],\n", + " [75, 70, 58, 55],\n", + " [75, 70, 58, 55],\n", + " [75, 70, 60, 55],\n", + " [75, 70, 60, 55],\n", + " [77, 69, 62, 50],\n", + " [77, 69, 62, 50],\n", + " [77, 69, 62, 50],\n", + " [77, 69, 62, 50],\n", + " [77, 70, 62, 55],\n", + " [77, 70, 62, 55],\n", + " [77, 69, 62, 55],\n", + " [77, 69, 62, 55],\n", + " [75, 67, 63, 48],\n", + " [75, 67, 63, 48],\n", + " [75, 69, 63, 48],\n", + " [75, 69, 63, 48],\n", + " [74, 70, 65, 46],\n", + " [74, 70, 65, 46],\n", + " [74, 70, 65, 46],\n", + " [74, 70, 65, 46],\n", + " [72, 69, 65, 53],\n", + " [72, 69, 65, 53],\n", + " [72, 69, 65, 53],\n", + " [72, 69, 65, 53],\n", + " [72, 69, 65, 53],\n", + " [72, 69, 65, 53],\n", + " [72, 69, 65, 53],\n", + " [72, 69, 65, 53],\n", + " [74, 70, 65, 46],\n", + " [74, 70, 65, 46],\n", + " [74, 70, 65, 46],\n", + " [74, 70, 65, 46],\n", + " [75, 69, 63, 48],\n", + " [75, 69, 63, 48],\n", + " [75, 67, 63, 48],\n", + " [75, 67, 63, 48],\n", + " [77, 65, 62, 50],\n", + " [77, 65, 62, 50],\n", + " [77, 65, 60, 50],\n", + " [77, 65, 60, 50],\n", + " [74, 67, 58, 55],\n", + " [74, 67, 58, 55],\n", + " [74, 67, 58, 53],\n", + " [74, 67, 58, 53],\n", + " [72, 67, 58, 51],\n", + " [72, 67, 58, 51],\n", + " [72, 67, 58, 51],\n", + " [72, 67, 58, 51],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [72, 69, 65, 53],\n", + " [72, 69, 65, 53],\n", + " [72, 69, 65, 53],\n", + " [72, 69, 65, 53],\n", + " [74, 71, 53, 50],\n", + " [74, 71, 53, 50],\n", + " [74, 71, 53, 50],\n", + " [74, 71, 53, 50],\n", + " [75, 72, 55, 48],\n", + " [75, 72, 55, 48],\n", + " [75, 72, 55, 50],\n", + " [75, 72, 55, 50],\n", + " [75, 67, 60, 51],\n", + " [75, 67, 60, 51],\n", + " [75, 67, 60, 53],\n", + " [75, 67, 60, 53],\n", + " [74, 67, 60, 55],\n", + " [74, 67, 60, 55],\n", + " [74, 67, 57, 55],\n", + " [74, 67, 57, 55],\n", + " [74, 65, 59, 43],\n", + " [74, 65, 59, 43],\n", + " [72, 63, 59, 43],\n", + " [72, 63, 59, 43],\n", + " [72, 63, 55, 48],\n", + " [72, 63, 55, 48],\n", + " [72, 63, 55, 48],\n", + " [72, 63, 55, 48],\n", + " [72, 63, 55, 48],\n", + " [72, 63, 55, 48],\n", + " [72, 63, 55, 48],\n", + " [72, 63, 55, 48],\n", + " [75, 67, 60, 60],\n", + " [75, 67, 60, 60],\n", + " [75, 67, 60, 60],\n", + " [75, 67, 60, 60],\n", + " [77, 70, 62, 58],\n", + " [77, 70, 62, 58],\n", + " [77, 70, 62, 56],\n", + " [77, 70, 62, 56],\n", + " [79, 70, 62, 55],\n", + " [79, 70, 62, 55],\n", + " [79, 70, 62, 53],\n", + " [79, 70, 62, 53],\n", + " [79, 70, 63, 51],\n", + " [79, 70, 63, 51],\n", + " [79, 70, 63, 51],\n", + " [79, 70, 63, 51],\n", + " [77, 70, 63, 58],\n", + " [77, 70, 63, 58],\n", + " [77, 70, 60, 58],\n", + " [77, 70, 60, 58],\n", + " [77, 70, 62, 46],\n", + " [77, 70, 62, 46],\n", + " [77, 68, 62, 46],\n", + " [75, 68, 62, 46],\n", + " [75, 67, 58, 51],\n", + " [75, 67, 58, 51],\n", + " [75, 67, 58, 51],\n", + " [75, 67, 58, 51],\n", + " [75, 67, 58, 51],\n", + " [75, 67, 58, 51],\n", + " [75, 67, 58, 51],\n", + " [75, 67, 58, 51],\n", + " [74, 67, 58, 55],\n", + " [74, 67, 58, 55],\n", + " [74, 67, 58, 55],\n", + " [74, 67, 58, 55],\n", + " [75, 67, 58, 53],\n", + " [75, 67, 58, 53],\n", + " [75, 67, 58, 51],\n", + " [75, 67, 58, 51],\n", + " [77, 65, 58, 50],\n", + " [77, 65, 58, 50],\n", + " [77, 65, 56, 50],\n", + " [77, 65, 56, 50],\n", + " [70, 63, 55, 51],\n", + " [70, 63, 55, 51],\n", + " [70, 63, 55, 51],\n", + " [70, 63, 55, 51],\n", + " [75, 65, 60, 45],\n", + " [75, 65, 60, 45],\n", + " [75, 65, 60, 45],\n", + " [75, 65, 60, 45],\n", + " [74, 65, 58, 46],\n", + " [74, 65, 58, 46],\n", + " [74, 65, 58, 46],\n", + " [74, 65, 58, 46],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [74, 65, 58, 58],\n", + " [74, 65, 58, 58],\n", + " [74, 65, 58, 58],\n", + " [74, 65, 58, 58],\n", + " [75, 67, 58, 57],\n", + " [75, 67, 58, 57],\n", + " [75, 67, 58, 55],\n", + " [75, 67, 58, 55],\n", + " [77, 65, 60, 57],\n", + " [77, 65, 60, 57],\n", + " [77, 65, 60, 53],\n", + " [77, 65, 60, 53],\n", + " [74, 65, 58, 58],\n", + " [74, 65, 58, 58],\n", + " [74, 65, 58, 58],\n", + " [74, 65, 58, 58],\n", + " [72, 67, 58, 51],\n", + " [72, 67, 58, 51],\n", + " [72, 67, 58, 51],\n", + " [72, 67, 58, 51],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [72, 65, 57, 53],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46],\n", + " [70, 65, 62, 46]]" + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_chorales[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "e_f8DIs9nU0t" + }, + "source": [ + "Notes range from 36 (C1 = C on octave 1) to 81 (A5 = A on octave 5), plus 0 for silence:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "b98KVyPAnU0t" + }, + "outputs": [], + "source": [ + "notes = set()\n", + "for chorales in (train_chorales, valid_chorales, test_chorales):\n", + " for chorale in chorales:\n", + " for chord in chorale:\n", + " notes |= set(chord)\n", + "\n", + "n_notes = len(notes)\n", + "min_note = min(notes - {0})\n", + "max_note = max(notes)\n", + "\n", + "assert min_note == 36\n", + "assert max_note == 81" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZfMe0BRynU0t" + }, + "source": [ + "Let's write a few functions to listen to these chorales (you don't need to understand the details here, and in fact there are certainly simpler ways to do this, for example using MIDI players, but I just wanted to have a bit of fun writing a synthesizer):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kdMrqLpynU0t" + }, + "outputs": [], + "source": [ + "from IPython.display import Audio\n", + "\n", + "def notes_to_frequencies(notes):\n", + " # Frequency doubles when you go up one octave; there are 12 semi-tones\n", + " # per octave; Note A on octave 4 is 440 Hz, and it is note number 69.\n", + " return 2 ** ((np.array(notes) - 69) / 12) * 440\n", + "\n", + "def frequencies_to_samples(frequencies, tempo, sample_rate):\n", + " note_duration = 60 / tempo # the tempo is measured in beats per minutes\n", + " # To reduce click sound at every beat, we round the frequencies to try to\n", + " # get the samples close to zero at the end of each note.\n", + " frequencies = (note_duration * frequencies).round() / note_duration\n", + " n_samples = int(note_duration * sample_rate)\n", + " time = np.linspace(0, note_duration, n_samples)\n", + " sine_waves = np.sin(2 * np.pi * frequencies.reshape(-1, 1) * time)\n", + " # Removing all notes with frequencies ≤ 9 Hz (includes note 0 = silence)\n", + " sine_waves *= (frequencies > 9.).reshape(-1, 1)\n", + " return sine_waves.reshape(-1)\n", + "\n", + "def chords_to_samples(chords, tempo, sample_rate):\n", + " freqs = notes_to_frequencies(chords)\n", + " freqs = np.r_[freqs, freqs[-1:]] # make last note a bit longer\n", + " merged = np.mean([frequencies_to_samples(melody, tempo, sample_rate)\n", + " for melody in freqs.T], axis=0)\n", + " n_fade_out_samples = sample_rate * 60 // tempo # fade out last note\n", + " fade_out = np.linspace(1., 0., n_fade_out_samples)**2\n", + " merged[-n_fade_out_samples:] *= fade_out\n", + " return merged\n", + "\n", + "def play_chords(chords, tempo=160, amplitude=0.1, sample_rate=44100, filepath=None):\n", + " samples = amplitude * chords_to_samples(chords, tempo, sample_rate)\n", + " if filepath:\n", + " from scipy.io import wavfile\n", + " samples = (2**15 * samples).astype(np.int16)\n", + " wavfile.write(filepath, sample_rate, samples)\n", + " return display(Audio(filepath))\n", + " else:\n", + " return display(Audio(samples, rate=sample_rate))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "w2aVZoOSnU0u" + }, + "source": [ + "Now let's listen to a few chorales:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3kig5cKPnU0u" + }, + "outputs": [], + "source": [ + "for index in range(3):\n", + " play_chords(train_chorales[index])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wYFuPXh7nU0u" + }, + "source": [ + "Divine! :)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FF5lcAQrnU0u" + }, + "source": [ + "In order to be able to generate new chorales, we want to train a model that can predict the next chord given all the previous chords. If we naively try to predict the next chord in one shot, predicting all 4 notes at once, we run the risk of getting notes that don't go very well together (believe me, I tried). It's much better and simpler to predict one note at a time. So we will need to preprocess every chorale, turning each chord into an arpegio (i.e., a sequence of notes rather than notes played simultaneuously). So each chorale will be a long sequence of notes (rather than chords), and we can just train a model that can predict the next note given all the previous notes. We will use a sequence-to-sequence approach, where we feed a window to the neural net, and it tries to predict that same window shifted one time step into the future.\n", + "\n", + "We will also shift the values so that they range from 0 to 46, where 0 represents silence, and values 1 to 46 represent notes 36 (C1) to 81 (A5).\n", + "\n", + "And we will train the model on windows of 128 notes (i.e., 32 chords).\n", + "\n", + "Since the dataset fits in memory, we could preprocess the chorales in RAM using any Python code we like, but I will demonstrate here how to do all the preprocessing using tf.data (there will be more details about creating windows using tf.data in the next chapter)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WCZsQpvAnU0v" + }, + "outputs": [], + "source": [ + "def create_target(batch):\n", + " X = batch[:, :-1]\n", + " Y = batch[:, 1:] # predict next note in each arpegio, at each step\n", + " return X, Y\n", + "\n", + "def preprocess(window):\n", + " window = tf.where(window == 0, window, window - min_note + 1) # shift values\n", + " return tf.reshape(window, [-1]) # convert to arpegio\n", + "\n", + "def bach_dataset(chorales, batch_size=32, shuffle_buffer_size=None,\n", + " window_size=32, window_shift=16, cache=True):\n", + " def batch_window(window):\n", + " return window.batch(window_size + 1)\n", + "\n", + " def to_windows(chorale):\n", + " dataset = tf.data.Dataset.from_tensor_slices(chorale)\n", + " dataset = dataset.window(window_size + 1, window_shift, drop_remainder=True)\n", + " return dataset.flat_map(batch_window)\n", + "\n", + " chorales = tf.ragged.constant(chorales, ragged_rank=1)\n", + " dataset = tf.data.Dataset.from_tensor_slices(chorales)\n", + " dataset = dataset.flat_map(to_windows).map(preprocess)\n", + " if cache:\n", + " dataset = dataset.cache()\n", + " if shuffle_buffer_size:\n", + " dataset = dataset.shuffle(shuffle_buffer_size)\n", + " dataset = dataset.batch(batch_size)\n", + " dataset = dataset.map(create_target)\n", + " return dataset.prefetch(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HBEoaYZ6nU0v" + }, + "source": [ + "Now let's create the training set, the validation set and the test set:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ahIYOSUAnU0v" + }, + "outputs": [], + "source": [ + "train_set = bach_dataset(train_chorales, shuffle_buffer_size=1000)\n", + "valid_set = bach_dataset(valid_chorales)\n", + "test_set = bach_dataset(test_chorales)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Pn2RrfGGnU0w" + }, + "source": [ + "Now let's create the model:\n", + "\n", + "* We could feed the note values directly to the model, as floats, but this would probably not give good results. Indeed, the relationships between notes are not that simple: for example, if you replace a C3 with a C4, the melody will still sound fine, even though these notes are 12 semi-tones apart (i.e., one octave). Conversely, if you replace a C3 with a C\\#3, it's very likely that the chord will sound horrible, despite these notes being just next to each other. So we will use an `Embedding` layer to convert each note to a small vector representation (see Chapter 16 for more details on embeddings). We will use 5-dimensional embeddings, so the output of this first layer will have a shape of `[batch_size, window_size, 5]`.\n", + "* We will then feed this data to a small WaveNet-like neural network, composed of a stack of 4 `Conv1D` layers with doubling dilation rates. We will intersperse these layers with `BatchNormalization` layers for faster better convergence.\n", + "* Then one `LSTM` layer to try to capture long-term patterns.\n", + "* And finally a `Dense` layer to produce the final note probabilities. It will predict one probability for each chorale in the batch, for each time step, and for each possible note (including silence). So the output shape will be `[batch_size, window_size, 47]`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MkqCupapnU0w", + "outputId": "a65f9fc9-9505-42f3-b86a-0a392ddf4695" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_19\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " embedding (Embedding) (None, None, 5) 235 \n", + " \n", + " conv1d_22 (Conv1D) (None, None, 32) 352 \n", + " \n", + " batch_normalization_3 (Batc (None, None, 32) 128 \n", + " hNormalization) \n", + " \n", + " conv1d_23 (Conv1D) (None, None, 48) 3120 \n", + " \n", + " batch_normalization_4 (Batc (None, None, 48) 192 \n", + " hNormalization) \n", + " \n", + " conv1d_24 (Conv1D) (None, None, 64) 6208 \n", + " \n", + " batch_normalization_5 (Batc (None, None, 64) 256 \n", + " hNormalization) \n", + " \n", + " conv1d_25 (Conv1D) (None, None, 96) 12384 \n", + " \n", + " batch_normalization_6 (Batc (None, None, 96) 384 \n", + " hNormalization) \n", + " \n", + " lstm_3 (LSTM) (None, None, 256) 361472 \n", + " \n", + " dense_17 (Dense) (None, None, 47) 12079 \n", + " \n", + "=================================================================\n", + "Total params: 396,810\n", + "Trainable params: 396,330\n", + "Non-trainable params: 480\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "n_embedding_dims = 5\n", + "\n", + "model = tf.keras.Sequential([\n", + " tf.keras.layers.Embedding(input_dim=n_notes, output_dim=n_embedding_dims,\n", + " input_shape=[None]),\n", + " tf.keras.layers.Conv1D(32, kernel_size=2, padding=\"causal\", activation=\"relu\"),\n", + " tf.keras.layers.BatchNormalization(),\n", + " tf.keras.layers.Conv1D(48, kernel_size=2, padding=\"causal\", activation=\"relu\", dilation_rate=2),\n", + " tf.keras.layers.BatchNormalization(),\n", + " tf.keras.layers.Conv1D(64, kernel_size=2, padding=\"causal\", activation=\"relu\", dilation_rate=4),\n", + " tf.keras.layers.BatchNormalization(),\n", + " tf.keras.layers.Conv1D(96, kernel_size=2, padding=\"causal\", activation=\"relu\", dilation_rate=8),\n", + " tf.keras.layers.BatchNormalization(),\n", + " tf.keras.layers.LSTM(256, return_sequences=True),\n", + " tf.keras.layers.Dense(n_notes, activation=\"softmax\")\n", + "])\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Xqo8m42LnU0x" + }, + "source": [ + "Now we're ready to compile and train the model!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0Ke5aEg8nU0x", + "outputId": "7bbb1f5d-0f4c-44ce-c887-1bb9c866a24c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "98/98 [==============================] - 25s 208ms/step - loss: 1.8695 - accuracy: 0.5301 - val_loss: 3.7034 - val_accuracy: 0.1226\n", + "Epoch 2/20\n", + "98/98 [==============================] - 22s 225ms/step - loss: 0.9034 - accuracy: 0.7638 - val_loss: 3.4941 - val_accuracy: 0.1050\n", + "Epoch 3/20\n", + "98/98 [==============================] - 23s 233ms/step - loss: 0.7523 - accuracy: 0.7916 - val_loss: 3.3243 - val_accuracy: 0.1938\n", + "Epoch 4/20\n", + "98/98 [==============================] - 23s 232ms/step - loss: 0.6756 - accuracy: 0.8074 - val_loss: 2.5097 - val_accuracy: 0.3022\n", + "Epoch 5/20\n", + "98/98 [==============================] - 22s 223ms/step - loss: 0.6188 - accuracy: 0.8193 - val_loss: 1.7532 - val_accuracy: 0.4628\n", + "Epoch 6/20\n", + "98/98 [==============================] - 23s 237ms/step - loss: 0.5788 - accuracy: 0.8280 - val_loss: 1.0323 - val_accuracy: 0.6826\n", + "Epoch 7/20\n", + "98/98 [==============================] - 25s 256ms/step - loss: 0.5396 - accuracy: 0.8374 - val_loss: 0.7257 - val_accuracy: 0.7910\n", + "Epoch 8/20\n", + "98/98 [==============================] - 27s 278ms/step - loss: 0.5079 - accuracy: 0.8451 - val_loss: 0.8296 - val_accuracy: 0.7497\n", + "Epoch 9/20\n", + "98/98 [==============================] - 26s 267ms/step - loss: 0.4796 - accuracy: 0.8523 - val_loss: 0.6217 - val_accuracy: 0.8162\n", + "Epoch 10/20\n", + "98/98 [==============================] - 26s 270ms/step - loss: 0.4543 - accuracy: 0.8594 - val_loss: 0.6307 - val_accuracy: 0.8136\n", + "Epoch 11/20\n", + "98/98 [==============================] - 28s 285ms/step - loss: 0.4291 - accuracy: 0.8665 - val_loss: 0.6203 - val_accuracy: 0.8183\n", + "Epoch 12/20\n", + "98/98 [==============================] - 28s 284ms/step - loss: 0.4062 - accuracy: 0.8732 - val_loss: 0.6111 - val_accuracy: 0.8210\n", + "Epoch 13/20\n", + "98/98 [==============================] - 24s 247ms/step - loss: 0.3846 - accuracy: 0.8798 - val_loss: 0.6185 - val_accuracy: 0.8167\n", + "Epoch 14/20\n", + "98/98 [==============================] - 24s 247ms/step - loss: 0.3647 - accuracy: 0.8856 - val_loss: 0.6036 - val_accuracy: 0.8244\n", + "Epoch 15/20\n", + "98/98 [==============================] - 24s 248ms/step - loss: 0.3454 - accuracy: 0.8918 - val_loss: 0.6400 - val_accuracy: 0.8149\n", + "Epoch 16/20\n", + "98/98 [==============================] - 24s 243ms/step - loss: 0.3299 - accuracy: 0.8969 - val_loss: 0.6517 - val_accuracy: 0.8099\n", + "Epoch 17/20\n", + "98/98 [==============================] - 23s 240ms/step - loss: 0.3100 - accuracy: 0.9027 - val_loss: 0.6472 - val_accuracy: 0.8148\n", + "Epoch 18/20\n", + "98/98 [==============================] - 23s 238ms/step - loss: 0.2952 - accuracy: 0.9080 - val_loss: 0.6446 - val_accuracy: 0.8167\n", + "Epoch 19/20\n", + "98/98 [==============================] - 22s 221ms/step - loss: 0.2781 - accuracy: 0.9136 - val_loss: 0.6774 - val_accuracy: 0.8104\n", + "Epoch 20/20\n", + "98/98 [==============================] - 23s 234ms/step - loss: 0.2642 - accuracy: 0.9179 - val_loss: 0.6484 - val_accuracy: 0.8199\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 110, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "optimizer = tf.keras.optimizers.Nadam(learning_rate=1e-3)\n", + "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=optimizer,\n", + " metrics=[\"accuracy\"])\n", + "model.fit(train_set, epochs=20, validation_data=valid_set)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X4IllaB-nU0x" + }, + "source": [ + "I have not done much hyperparameter search, so feel free to iterate on this model now and try to optimize it. For example, you could try removing the `LSTM` layer and replacing it with `Conv1D` layers. You could also play with the number of layers, the learning rate, the optimizer, and so on." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jBWMCh6-nU0x" + }, + "source": [ + "Once you're satisfied with the performance of the model on the validation set, you can save it and evaluate it one last time on the test set:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "5F9__ylFnU0y", + "outputId": "990970af-665a-4111-9e73-b3d1360ecfbd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "34/34 [==============================] - 3s 74ms/step - loss: 0.6631 - accuracy: 0.8164\n" + ] + }, + { + "data": { + "text/plain": [ + "[0.6630987524986267, 0.8163789510726929]" + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.save(\"my_bach_model\", save_format=\"tf\")\n", + "model.evaluate(test_set)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "99pkq2NVnU0y" + }, + "source": [ + "**Note:** There's no real need for a test set in this exercise, since we will perform the final evaluation by just listening to the music produced by the model. So if you want, you can add the test set to the train set, and train the model again, hopefully getting a slightly better model." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GNaPwP_lnU0z" + }, + "source": [ + "Now let's write a function that will generate a new chorale. We will give it a few seed chords, it will convert them to arpegios (the format expected by the model), and use the model to predict the next note, then the next, and so on. In the end, it will group the notes 4 by 4 to create chords again, and return the resulting chorale." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wBZ1LRzHnU0z" + }, + "outputs": [], + "source": [ + "def generate_chorale(model, seed_chords, length):\n", + " arpegio = preprocess(tf.constant(seed_chords, dtype=tf.int64))\n", + " arpegio = tf.reshape(arpegio, [1, -1])\n", + " for chord in range(length):\n", + " for note in range(4):\n", + " next_note = model.predict(arpegio, verbose=0).argmax(axis=-1)[:1, -1:]\n", + " arpegio = tf.concat([arpegio, next_note], axis=1)\n", + " arpegio = tf.where(arpegio == 0, arpegio, arpegio + min_note - 1)\n", + " return tf.reshape(arpegio, shape=[-1, 4])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K22y92DtnU00" + }, + "source": [ + "To test this function, we need some seed chords. Let's use the first 8 chords of one of the test chorales (it's actually just 2 different chords, each played 4 times):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UAgiq49vnU00" + }, + "outputs": [], + "source": [ + "seed_chords = test_chorales[2][:8]\n", + "play_chords(seed_chords, amplitude=0.2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zl5DbUdRnU00" + }, + "source": [ + "Now we are ready to generate our first chorale! Let's ask the function to generate 56 more chords, for a total of 64 chords, i.e., 16 bars (assuming 4 chords per bar, i.e., a 4/4 signature):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wpO2aAZCnU01" + }, + "outputs": [], + "source": [ + "new_chorale = generate_chorale(model, seed_chords, 56)\n", + "play_chords(new_chorale)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GepRKx9MnU01" + }, + "source": [ + "This approach has one major flaw: it is often too conservative. Indeed, the model will not take any risk, it will always choose the note with the highest score, and since repeating the previous note generally sounds good enough, it's the least risky option, so the algorithm will tend to make notes last longer and longer. Pretty boring. Plus, if you run the model multiple times, it will always generate the same melody.\n", + "\n", + "So let's spice things up a bit! Instead of always picking the note with the highest score, we will pick the next note randomly, according to the predicted probabilities. For example, if the model predicts a C3 with 75% probability, and a G3 with a 25% probability, then we will pick one of these two notes randomly, with these probabilities. We will also add a `temperature` parameter that will control how \"hot\" (i.e., daring) we want the system to feel. A high temperature will bring the predicted probabilities closer together, reducing the probability of the likely notes and increasing the probability of the unlikely ones." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UjThlTmmnU01" + }, + "outputs": [], + "source": [ + "def generate_chorale_v2(model, seed_chords, length, temperature=1):\n", + " arpegio = preprocess(tf.constant(seed_chords, dtype=tf.int64))\n", + " arpegio = tf.reshape(arpegio, [1, -1])\n", + " for chord in range(length):\n", + " for note in range(4):\n", + " next_note_probas = model.predict(arpegio)[0, -1:]\n", + " rescaled_logits = tf.math.log(next_note_probas) / temperature\n", + " next_note = tf.random.categorical(rescaled_logits, num_samples=1)\n", + " arpegio = tf.concat([arpegio, next_note], axis=1)\n", + " arpegio = tf.where(arpegio == 0, arpegio, arpegio + min_note - 1)\n", + " return tf.reshape(arpegio, shape=[-1, 4])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wgCGFTQPnU01" + }, + "source": [ + "Let's generate 3 chorales using this new function: one cold, one medium, and one hot (feel free to experiment with other seeds, lengths and temperatures). The code saves each chorale to a separate file. You can run these cells over an over again until you generate a masterpiece!\n", + "\n", + "**Please share your most beautiful generated chorale with me on Twitter @aureliengeron, I would really appreciate it! :))**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true, + "id": "AGrQAwxsnU02" + }, + "outputs": [], + "source": [ + "new_chorale_v2_cold = generate_chorale_v2(model, seed_chords, 56, temperature=0.8)\n", + "play_chords(new_chorale_v2_cold, filepath=\"bach_cold.wav\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YbgdLQKInU02" + }, + "outputs": [], + "source": [ + "new_chorale_v2_medium = generate_chorale_v2(model, seed_chords, 56, temperature=1.0)\n", + "play_chords(new_chorale_v2_medium, filepath=\"bach_medium.wav\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "z-8A3dX-nU02" + }, + "outputs": [], + "source": [ + "new_chorale_v2_hot = generate_chorale_v2(model, seed_chords, 56, temperature=1.5)\n", + "play_chords(new_chorale_v2_hot, filepath=\"bach_hot.wav\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "B_UagYWHnU02" + }, + "source": [ + "Lastly, you can try a fun social experiment: send your friends a few of your favorite generated chorales, plus the real chorale, and ask them to guess which one is the real one!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MHSro53BnU02" + }, + "outputs": [], + "source": [ + "play_chords(test_chorales[2][:64], filepath=\"bach_test_4.wav\")" + ] } - ], - "source": [ - "optimizer = tf.keras.optimizers.Nadam(learning_rate=1e-3)\n", - "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=optimizer,\n", - " metrics=[\"accuracy\"])\n", - "model.fit(train_set, epochs=20, validation_data=valid_set)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I have not done much hyperparameter search, so feel free to iterate on this model now and try to optimize it. For example, you could try removing the `LSTM` layer and replacing it with `Conv1D` layers. You could also play with the number of layers, the learning rate, the optimizer, and so on." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Once you're satisfied with the performance of the model on the validation set, you can save it and evaluate it one last time on the test set:" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "34/34 [==============================] - 3s 74ms/step - loss: 0.6631 - accuracy: 0.8164\n" - ] - }, - { - "data": { - "text/plain": [ - "[0.6630987524986267, 0.8163789510726929]" - ] - }, - "execution_count": 111, - "metadata": {}, - "output_type": "execute_result" + ], + "metadata": { + "accelerator": "GPU", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + }, + "nav_menu": {}, + "toc": { + "navigate_menu": true, + "number_sections": true, + "sideBar": true, + "threshold": 6, + "toc_cell": false, + "toc_section_display": "block", + "toc_window_display": false + }, + "colab": { + "provenance": [] } - ], - "source": [ - "model.save(\"my_bach_model\", save_format=\"tf\")\n", - "model.evaluate(test_set)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Note:** There's no real need for a test set in this exercise, since we will perform the final evaluation by just listening to the music produced by the model. So if you want, you can add the test set to the train set, and train the model again, hopefully getting a slightly better model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's write a function that will generate a new chorale. We will give it a few seed chords, it will convert them to arpegios (the format expected by the model), and use the model to predict the next note, then the next, and so on. In the end, it will group the notes 4 by 4 to create chords again, and return the resulting chorale." - ] - }, - { - "cell_type": "code", - "execution_count": 112, - "metadata": {}, - "outputs": [], - "source": [ - "def generate_chorale(model, seed_chords, length):\n", - " arpegio = preprocess(tf.constant(seed_chords, dtype=tf.int64))\n", - " arpegio = tf.reshape(arpegio, [1, -1])\n", - " for chord in range(length):\n", - " for note in range(4):\n", - " next_note = model.predict(arpegio, verbose=0).argmax(axis=-1)[:1, -1:]\n", - " arpegio = tf.concat([arpegio, next_note], axis=1)\n", - " arpegio = tf.where(arpegio == 0, arpegio, arpegio + min_note - 1)\n", - " return tf.reshape(arpegio, shape=[-1, 4])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To test this function, we need some seed chords. Let's use the first 8 chords of one of the test chorales (it's actually just 2 different chords, each played 4 times):" - ] - }, - { - "cell_type": "code", - "execution_count": 113, - "metadata": {}, - "outputs": [], - "source": [ - "seed_chords = test_chorales[2][:8]\n", - "play_chords(seed_chords, amplitude=0.2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we are ready to generate our first chorale! Let's ask the function to generate 56 more chords, for a total of 64 chords, i.e., 16 bars (assuming 4 chords per bar, i.e., a 4/4 signature):" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [], - "source": [ - "new_chorale = generate_chorale(model, seed_chords, 56)\n", - "play_chords(new_chorale)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This approach has one major flaw: it is often too conservative. Indeed, the model will not take any risk, it will always choose the note with the highest score, and since repeating the previous note generally sounds good enough, it's the least risky option, so the algorithm will tend to make notes last longer and longer. Pretty boring. Plus, if you run the model multiple times, it will always generate the same melody.\n", - "\n", - "So let's spice things up a bit! Instead of always picking the note with the highest score, we will pick the next note randomly, according to the predicted probabilities. For example, if the model predicts a C3 with 75% probability, and a G3 with a 25% probability, then we will pick one of these two notes randomly, with these probabilities. We will also add a `temperature` parameter that will control how \"hot\" (i.e., daring) we want the system to feel. A high temperature will bring the predicted probabilities closer together, reducing the probability of the likely notes and increasing the probability of the unlikely ones." - ] - }, - { - "cell_type": "code", - "execution_count": 115, - "metadata": {}, - "outputs": [], - "source": [ - "def generate_chorale_v2(model, seed_chords, length, temperature=1):\n", - " arpegio = preprocess(tf.constant(seed_chords, dtype=tf.int64))\n", - " arpegio = tf.reshape(arpegio, [1, -1])\n", - " for chord in range(length):\n", - " for note in range(4):\n", - " next_note_probas = model.predict(arpegio)[0, -1:]\n", - " rescaled_logits = tf.math.log(next_note_probas) / temperature\n", - " next_note = tf.random.categorical(rescaled_logits, num_samples=1)\n", - " arpegio = tf.concat([arpegio, next_note], axis=1)\n", - " arpegio = tf.where(arpegio == 0, arpegio, arpegio + min_note - 1)\n", - " return tf.reshape(arpegio, shape=[-1, 4])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's generate 3 chorales using this new function: one cold, one medium, and one hot (feel free to experiment with other seeds, lengths and temperatures). The code saves each chorale to a separate file. You can run these cells over an over again until you generate a masterpiece!\n", - "\n", - "**Please share your most beautiful generated chorale with me on Twitter @aureliengeron, I would really appreciate it! :))**" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "new_chorale_v2_cold = generate_chorale_v2(model, seed_chords, 56, temperature=0.8)\n", - "play_chords(new_chorale_v2_cold, filepath=\"bach_cold.wav\")" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [], - "source": [ - "new_chorale_v2_medium = generate_chorale_v2(model, seed_chords, 56, temperature=1.0)\n", - "play_chords(new_chorale_v2_medium, filepath=\"bach_medium.wav\")" - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [], - "source": [ - "new_chorale_v2_hot = generate_chorale_v2(model, seed_chords, 56, temperature=1.5)\n", - "play_chords(new_chorale_v2_hot, filepath=\"bach_hot.wav\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lastly, you can try a fun social experiment: send your friends a few of your favorite generated chorales, plus the real chorale, and ask them to guess which one is the real one!" - ] - }, - { - "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [], - "source": [ - "play_chords(test_chorales[2][:64], filepath=\"bach_test_4.wav\")" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "nav_menu": {}, - "toc": { - "navigate_menu": true, - "number_sections": true, - "sideBar": true, - "threshold": 6, - "toc_cell": false, - "toc_section_display": "block", - "toc_window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file From f6a18173f3771ef67ce80ee2f853beb4b37d63ad Mon Sep 17 00:00:00 2001 From: AndrewDavidRatnam <130483608+AndrewDavidRatnam@users.noreply.github.com> Date: Wed, 29 May 2024 15:15:08 +0530 Subject: [PATCH 3/5] Created using Colab --- 10_neural_nets_with_keras.ipynb | 7900 ++++++++++++++++--------------- 1 file changed, 4187 insertions(+), 3713 deletions(-) diff --git a/10_neural_nets_with_keras.ipynb b/10_neural_nets_with_keras.ipynb index 12860bf7..e8b46681 100644 --- a/10_neural_nets_with_keras.ipynb +++ b/10_neural_nets_with_keras.ipynb @@ -1,3717 +1,4191 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Chapter 10 – Introduction to Artificial Neural Networks with Keras**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_This notebook contains all the sample code and solutions to the exercises in chapter 10._" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - " \n", - " \n", - "
\n", - " \"Open\n", - " \n", - " \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "# Setup" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This project requires Python 3.7 or above:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import sys\n", - "\n", - "assert sys.version_info >= (3, 7)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It also requires Scikit-Learn ≥ 1.0.1:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from packaging import version\n", - "import sklearn\n", - "\n", - "assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And TensorFlow ≥ 2.8:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import tensorflow as tf\n", - "\n", - "assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we did in previous chapters, let's define the default font sizes to make the figures prettier:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "plt.rc('font', size=14)\n", - "plt.rc('axes', labelsize=14, titlesize=14)\n", - "plt.rc('legend', fontsize=14)\n", - "plt.rc('xtick', labelsize=10)\n", - "plt.rc('ytick', labelsize=10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And let's create the `images/ann` folder (if it doesn't already exist), and define the `save_fig()` function which is used through this notebook to save the figures in high-res for the book:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "\n", - "IMAGES_PATH = Path() / \"images\" / \"ann\"\n", - "IMAGES_PATH.mkdir(parents=True, exist_ok=True)\n", - "\n", - "def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n", - " path = IMAGES_PATH / f\"{fig_id}.{fig_extension}\"\n", - " if tight_layout:\n", - " plt.tight_layout()\n", - " plt.savefig(path, format=fig_extension, dpi=resolution)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# From Biological to Artificial Neurons\n", - "## The Perceptron" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from sklearn.datasets import load_iris\n", - "from sklearn.linear_model import Perceptron\n", - "\n", - "iris = load_iris(as_frame=True)\n", - "X = iris.data[[\"petal length (cm)\", \"petal width (cm)\"]].values\n", - "y = (iris.target == 0) # Iris setosa\n", - "\n", - "per_clf = Perceptron(random_state=42)\n", - "per_clf.fit(X, y)\n", - "\n", - "X_new = [[2, 0.5], [3, 1]]\n", - "y_pred = per_clf.predict(X_new) # predicts True and False for these 2 flowers" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ True, False])" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_pred" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `Perceptron` is equivalent to a `SGDClassifier` with `loss=\"perceptron\"`, no regularization, and a constant learning rate equal to 1:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# extra code – shows how to build and train a Perceptron\n", - "\n", - "from sklearn.linear_model import SGDClassifier\n", - "\n", - "sgd_clf = SGDClassifier(loss=\"perceptron\", penalty=None,\n", - " learning_rate=\"constant\", eta0=1, random_state=42)\n", - "sgd_clf.fit(X, y)\n", - "assert (sgd_clf.coef_ == per_clf.coef_).all()\n", - "assert (sgd_clf.intercept_ == per_clf.intercept_).all()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "When the Perceptron finds a decision boundary that properly separates the classes, it stops learning. This means that the decision boundary is often quite close to one class:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAccAAADYCAYAAACeCyhIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+RElEQVR4nO3deZzNZfvA8c81YxjbkJjJMnaSNZHlIfRkSxSP9NMilSUVLUpJpcxgpKwT2bVrkxayPCWEMDMMKk9RZM2Ssi8zXL8/zpnVLMecbWZc79frvMy5v9t1TnLN/f3e132LqmKMMcaYFAH+DsAYY4zJbSw5GmOMMelYcjTGGGPSseRojDHGpGPJ0RhjjEnHkqMxxhiTjs+So4iEi8h3IrJNRH4SkScy2EdEZLKI7BCRLSJyQ6ptHUXkF+e2ob6K2xhjzJXHlz3HROBpVb0OaAY8JiK10+1zK1DD+eoPvAkgIoHAFOf22sDdGRxrjDHGeITPkqOqHlDVjc6fTwDbgPLpdrsDeEcd1gElRaQs0ATYoaq/q+p54EPnvsYYY4zH+eWZo4hUBhoC69NtKg/sSfV+r7Mts3ZjjDHG4wr4+oIiUgyYDzypqsfTb87gEM2iPaPz98dxS5ZChYo2Cgur5Ua0xhhjcrvduzPfVrFi+u27UD2SUU5Jw6fJUUSCcCTG91X1swx22QuEp3pfAdgPFMyk/RKqOgOYAVCpUmMdNizWA5EbY4zJrQYMyHzbsGHptzd26Zy+HK0qwGxgm6qOz2S3L4H7naNWmwHHVPUAEAPUEJEqIlIQ6Onc1xhjjPE4X/YcWwC9gK0iEu9sGwZUBFDVacDXQCdgB3AaeNC5LVFEBgJLgUBgjqr+5MPYjTHG5FIhIXA8/UM6Z3tW27Mi+XnJKrutaowxJrUBAyROVbO9t+rzATnGGGOMLz37bOqeY6NGrhxj08cZY4zJ1y73lipYcjTGGGMuYcnRGGOMSceSozHGGJOOJUdjjDEmHUuOxhhj8rWkesfLYaUcxhhj8rWxY1N+HjAgLs6VY/J1cjxyZCcnT/5FsWJX+zsUY4wxbshq/lQRyGg+GxF4882cXS9f31Y9ffooERF1iI//3N+hGGOM8ZLMJnpzZwK4fJ0cAY4fP8i0ad2YPfseTp484u9wjDHG5AH5OjkGBQUm/xwTM48RI+qwaVNGK2UZY4wxKXy5ZNUcETkkIj9msn2IiMQ7Xz+KyAURKeXctktEtjq3uTyTeO3aFenV6+bk9ydOHGL69O7MmtWTEycOu/2ZjDHG5E++7Dm+BXTMbKOqvqaq16vq9cDzwEpVPZpql5ud211bqRIIDAxg9uwn+PzzFylXrlRye2zsR0RE1CEu7tPL/hDGGGPyP58lR1VdBRzNdkeHu4F5nrp2p06NiY+fTO/etyS3nThxmJkzezBjxl0cP37IU5cyxhjjYyKX1+7SOX25nqOIVAYWqmrdLPYpAuwFqif1HEVkJ/A3oMB0VZ2RxfH9gf4AFSuWabRjx8w025csieORR6ayb99fyW3FipWmZ88pNG58V04/mjHGmDzA1fUcc2Ny/D/gPlXtkqqtnKruF5FQ4L/AIGdPNEuNGlXXdevGXdJ+7Ngpnn12LnPnfpOmvWHD7tx99xRCQsJc/kzGGGPSr5mYIiQkbRG+P6SNrTGqsdn2KXPjaNWepLulqqr7nX8eAhYATdy5QIkSRZk+fSALF75MhQopEwRs2jSfESPqEBPzIb78pcEYY/K6zNZMzMlaip6W59dzFJESQGvgi1RtRUWkeNLPQHsgwxGvl6t9+4Zs2jSZhx5ql9x26tRfzJ59N9Ond+fYsT89cRljjDF5jC9LOeYBPwDXisheEekjIgNEJPWkQN2AZap6KlVbGLBaRDYDG4BFqrrEU3GVKFGUadMeY9GilwkPL53cHh+/gIiIOmzY8IH1Io0x5grjs7lVVfVuF/Z5C0fJR+q234EG3okqRbt2jl7k0KFvMWvWMgBOnTrKnDn3Ehf3Cffc8yYlSlzj7TCMMcbkArnqtqq/hYQUYerUR1m8eASVKpVJbt+8+XNGjKjN+vXvWy/SGGOuAJYcM3DLLQ3YuHEy/funzFlw+vTfzJ17H2++2ZVjxw74MTpjjMl9MlszMSdrKXpaTmLwaSmHr2VWynE5li/fzMMPv8Eff6RMN1ekSEnuumsyTZveh7hTZWqMMcancmWdo695IjkCnDhxhhdeeIdp0xanaa9XrzP33judkiXLuX0NY4zJy9ytc/RVnaSrydFuq7qgePHCTJ78MMuWRVKlSsoEAVu3LiQiog4//PC2PYs0xlzR3K1zzG11kpYcL0ObNvWIi5vIo492Sm47ffof3n77AaZM6czff+/zY3TGGGM8xZLjZSpWrDATJ/bnm29GUrVqSi/yxx+/JiKiDmvXzrVepDHG5HGWHHOoVau6xMVNYuDAzsltZ84c4513HuKNNzpx9OgeP0ZnjDHGHZYc3VC0aDDjx/fl229HUa1aygQBP/20hIiIuqxZM9t6kcYYkwdZcvSAm26qQ1zcJB5/vEtyacfZs8d5992+REd35OjR3X6O0BhjvMvdOsfcVidppRwetmbNz/Tr9wY7duxPbgsOLk737uNo2bKv1UUaY4wf5bo6RxGZA3QGDmW0nqOItMGxGsdOZ9Nnqhrh3NYRmAQEArNUdYwr1/RHcgQ4ffocr7zyPpMmfZXmtup117XjvvtmcvXVlXwekzHGeLOWcMCAzLdNm5b9td2J7ZFHIKNUJgJvvpn713N8C+iYzT7fq+r1zldSYgwEpgC3ArWBu0WktlcjdVORIoUYO/YhVqyIokaNlAkCtm37LxERdVm1aro9izTG+Jw/awmzu7Y7sWX2z2lSe65ez1FVVwFHc3BoE2CHqv6uqueBD4E7PBqclzRvXovY2AkMHtw1+XbquXMn+eCDAUya1I4jR3b5N0BjjDEZym0DcpqLyGYRWSwidZxt5YHUdRF7nW0ZEpH+IhIrIrFHjvh/CerChQsxZswDrFwZRc2aKWH/73/fEhlZj5Ur3+TixYt+jNAYY0x6uSk5bgQqqWoDIBr43Nme0b3hTO9JquoMVW2sqo1Ll84F08E7NWtWi5iY8Qwe3JWAAMfXfu7cSebNe5RJk9py5MjObM5gjDHGV3JNclTV46p60vnz10CQiJTG0VMMT7VrBWB/BqfI9ZJ6katWjeHaayskt//yy3dERtZjxYqp1os0xphcINckRxG5RpwP5kSkCY7Y/gJigBoiUkVECgI9gS/9F6n7mjSpSUzMeJ555j+pepGn+PDDx5g48RYOH/7dzxEaY/Ijf9YSZndtd2LLrEIuqT1Xr+coIvOANkBp4CDwMhAEoKrTRGQg8AiQCJwBBqvqWuexnYCJOEo55qjqKFeu6a9SjssRE/MrfftGs21bymPVggWL0K3bq7Ru/Why8jTGGOM+j9Y5ikgw8ARwCxBKuh6nqtbPYZxelReSI8DZs+cZOfIjXn99QZrbqjVqtOL+++dQpkw1P0ZnjDH5h6eT4xygG/AJjud9aQ5S1RE5jNOr8kpyTBIbu52+faP5+eeU6eaCggrTrdsY2rQZaL1IY/I5Xy34mxPZFdpnJ7vPdnmF/Jce7ypXk2MBF8/XFeihqt+4HoK5XI0b12D9+nGMGvUxr702nwsXLpKQcIaPP36CjRs/pVev2YSF1fB3mMYYL8ltC/6mll2hfXay+2w5LeT31nfjalfkNGlrDY2XFCoURETEvaxZM5Y6dSomt+/Y8T0jRzbg228ncvHiBT9GaIwx+Z+ryXEsMFhE7L6ej9xwQ3XWrx/HsGF3ERjo+NoTEs7wySdPMW5caw4e/NXPERpjTP6VabITkS+TXkBb4P+Anc7Za75Mt914QcGCQbzyyj2sXfsa9epVTm7/7bc1jBzZgG++GW+9SGOM8YKseoJ/pXstAJYDf2awzXhRw4bV+OGH13jxxf+jQIFAABISzvLpp0/z+us38eefv/g5QmOMyV8yHZCjqg/6MhCTtYIFgxg+/G5uv70pfftOZsuWXQD8/vsPjBp1PV26RNK27VMEBAT6N1BjTI6FhGQ+ItPfRDIfTeqK7D5bduf39XfjainHcuA/qvpPuvYQ4HNV/bd3wnNPXivlcNX58wmMHfsZo0d/TGJiym3VKlWa0bv3XK65ppYfozPGmNzL03WOF4FrVPVQuvZQYJ+qBuU4Ui/Kr8kxyebNO+nXL5r4+JTp5goUKESXLhG0a/e09SKN8QJ/1iJmt6BwdrWCWW0H9+oMvbmYsSe5mhyzHH0qIjeIyA3Ot/WT3jtfNwL9gX0eiNfkQIMGVVizZiyvvHIPQUGOO+SJiedYsOA5xo79F/v3/+znCI3Jf/JyLWJW292tM/TmYsb+kF1pRiyOib8VWOZ8n/RaDzwPRHgzQJO1oKACDBt2F+vWvU7DhlWT23ft2sDo0Q1ZsmQMFy4k+jFCY4zJe7JLjlWAajjWVGzifJ/0Kg+EqOocVy4kInNE5JCI/JjJ9ntFZIvztVZEGqTatktEtopIvIjEunK9K029epVZvXosI0bcm6oXeZ7PP3/e2Yv8yc8RGmNM3pFlclTVP1R1l6oGqGqs833S64CqXk6R3VtAxyy27wRaOycxjwRmpNt+s6pe78q94itVUFABnn++B+vXj+OGG1ImK//jjxhGj76BxYtHWy/SGGNckGkph4jc7+pJVPUdF/ZZJSKVs9i+NtXbdTgWNTY5ULduJVavHsu4cQuIjPyQ8+cTSUw8zxdfvMCmTZ/Ru/dcypev5+8wjTEm18pq4vEp6d4XxLH+YtKaSgFAAnAOyDY5XqY+wOJU7xVYJiIKTFfV9L1Kk06BAoE899yddO7chH79oomN3Q7A7t1xjB7diNtuG06HDs8RGJgrBxobk2vl5VrE7La7U2fo7vbcxtVSjtuAV4AncQzEAWgKjAciVXWhSxdz9BwXqmrdLPa5GZgKtFTVv5xt5VR1v7N05L/AIFVdlcnx/XGMoqVixTKNduyY6Upo+Vpi4gUmTPiCESM+4Pz5lNuqFSvewP33z6VChVy5HKcxxnicp+sctwEPqeoP6dqbA2+p6rWuBJVdchSR+jimqbtVVTOcWVtEXgFOqurr2V0vv9c5Xq6ff95Dv36TiYnZntwWGBhEp04v0bHjUOtFGuNn3q4VdOd4b9cp+qoO0iN1jqlUBk5l0H4aqJhB+2UTkYrAZ0Cv1IlRRIqKSPGkn4H2QIYjXk3WatcOZ+XKMURF9aZQIUcivHAhga++Gs6YMU3Yu3eznyM05srm7VpBd473dp1ibquDdDU5rgcmi0j5pAbnzxNwDJ7JlojMA34ArhWRvSLSR0QGiEjSnA/DgauBqelKNsKA1SKyGdgALFLVJS7GbdIpUCCQp5/uRkzMBJo2Tenw79kTz+jRjVm4cASJief9GKExxvhfVgNyUusDfA7sEpGkGXHKA78AXV05garenc32vkDfDNp/BxpceoRxR61aFVixYjSTJ3/Fyy9/wNmz57l4MZGFC18hPn4BvXu/RXj49f4O0xhj/MKlnqOq/gbUB27DMQhnAtAJqKeqO7wXnvGmwMBAnnqqKzExE2jePGWy8r17NxMVdSNfffWy9SKNMVckV2+rog7LVHWyqk5S1f+qK6N5TK537bXlWb58FK+99hDBwQUBuHgxkUWLIoiKupHduzf6OUJjjPGtTJOjiAwWkeBUP2f68l24xlsCAwN54onbiY2dwL/+dV1y+759WxgzpglffvkSCQnn/BihMflfZjV/qWsFL+e4yz2/t451hbfPf7kyLeUQkZ1AY1X9y/lzZlRVq2ax3W+slCNnLly4wNSpX/Pii+9y5kzKbdVy5erSu/dcKlWyGfyMMXmTR+sc8ypLju7ZseMA/ftHs3p1ytJXAQGBtG//HLfdNpygoEJ+jM7kZbllbT9fyytrHuZnHq1zFBFbNfcKVL16Wb75ZiQTJvSlSBFHIrx48QJLlowmKqoRu3bF+DlCk1fltpo2X8lvax7mZ64OyDkmIktF5HkRaW7J8soREBDAY491Ji5uIq1a1Ulu37//J159tRkLFjxPQsJZP0ZojDGe52py7IZj0ePbgBXAP6mTpbeCM7lHtWplWbYskkmT+if3IlUvsnTpGEaPbsTOnRv8HKExxniOq3WO/1XVF1W1JVASR7LcD0QAq70XnslNAgICeOSRTmzcOInWrVOmxz1w4GfGjm3OZ589Z71IY0y+4HKdo4iEicj/4ZgEYArQE1iDI0GaK0jVqtewdGkEkyf3p2jRYMDRi1y2bCyjRjXk999dmlHQGGNyLVcH5PwE/A4MAP4EHgZKqmobVR3hxfhMLhUQEMCAAY5eZJs2KQsn//nn/3jttRbMnz+E8+fP+DFCk5vltpo2X/F2HaPxHFeXrNoLhADfA985Xxtz+ww5VsrhGxcvXmTWrGUMHfoWJ0+m3FYNC7uW3r3nUrWqPZY2xuQOHq9zFJHqQBvnqzVQDGeyVNUJLhw/B+gMHMpoPUcREWASjjlbTwMPqOpG57aOzm2BwCxVHeNKzJYcfWvXroMMGDCF5cu3JLeJCLfcMpjbb4+kYMHCfozOXCkeeSTzFe3ffNP7x3uzVtHqJN3n6fUcUdUdqjoL6A3chWOVjluBbBcddnoL6JjF9luBGs5Xf+BNSK6xnOLcXhu4W0Rquxq38Z3KlcNYvHgEU6c+QrFiSc8ilW++GceoUdezY8caP0dorgSZ/b7v6n0ud4/3Zq2i1Un6jqvPHG8UkWdFZDHwN45yjuuAcTh6etlS1VXA0Sx2uQN4xznB+TqgpIiUBZoAO1T1d1U9D3zo3NfkQiJC374d2LRpMm3bpqw0dvDgr4wbdxOffDKY8+dP+zFCY4zJnqs9xzU4yjc24+g1llLVZqo6VFWXeiiW8sCeVO/3Otsya8+QiPQXkVgRiT1yxH5d8pdKlUJZtOgVpk17jOLFHbdTVZVvv51AZGQDtm//3s8RGmNM5lxNjlepanNnMlyiqqe8EItk0KZZtGdIVWeoamNVbVy6tA3x8icR4aGH2rFp02Tat2+Y3H748A7Gj2/Nxx8/yblz3virZIwx7nF1EgBf/Au2FwhP9b4CjokGMms3eUTFimX46qvhzJgxkJCQIoCjF7l8+SRGjmzA9u2r/ByhMcak5fKAHB/4ErhfHJoBx1T1AI5p62qISBURKYhj8oEv/RmouXwiwgMPtCU+fjIdOtyQ3H748G+MG9eajz563HqRxiMko3tNWbR7+nhv1ipanaTv+GzJKhGZh6MMpDRwEHgZCAJQ1WnOUo43cIxoPQ08qKqxzmM7ARNxlHLMUdVRrlzTSjlyJ1Xl3XeX8/TTszl2LGVwTunSVenVazbXXtvGf8EZY/I1W88RS4653b59f/Hoo1NZvDguTXvr1o/RrdsYgoOL+SkyY0x+5fE6R2M8rXz5q/n88xeZPfsJSpYsmty+cuUUIiPr8csv3/kxOmPMlSzTnqOIDHb1JKo63mMReZD1HPOO/fuP8uijU/n669g07a1aPcJ//vMqwcHF/RSZMSY/cfu2qojsdPFaqqpVLyc4X7HkmLeoKh98sJLBg2fx998nk9tLlarE/ffPplatW/wYnTEmP3D7tqqqVnHxlSsTo8l7RIR7721DfPxkOnduktx+9OgfTJzYlvffH8DZsyf8GKEx5kphzxxNrlO2bCnmz3+et956iquuShmU8/3304mIqMu2bd/4MTpjzJXgclblKIWjzKIiUDD1NlXNlQse223VvO/PP/9m4MBpfPnl+jTtLVv2o3v31ylc2Aq4jDGu82gph7MofxFwDigD7APKOt/vUtX67oXrHZYc8wdV5aOPvufJJ2dy9GjKbdWrrgqnV69Z1K7d3o/RGWPyEk+XcrwGvI9jwu+zwL9x9CBjgVdzGqQxrhARevZsxebN0XTt2iy5/e+/9zB5cgfefbcvZ84c82OExpj8xtXkWB94Qx3dzAtAIVU9CDwHvOKl2IxJIyysJB999BzvvfcMV1+dUtqxZs1sIiLq8tNPS/wYnTEmP3E1OZ5P9fNBoJLz55NAOY9GZEwWRIS77mrJ5s3RdOvWPLn977/3Eh19K++88xCnT//jvwCNMfmCq8lxI3Cj8+cVwEgR6Q1MBrZ4IS5jshQa6uhFfvDBEFIvTbZ27VwiIuqydevXfozOGJPXuZocXyBlmagXgcNANHAV8LCrFxORjiLyi4jsEJGhGWwfIiLxztePInLBOUoWEdklIlud22IvPbu5Et15Zws2b47mzjtbJLf9888+pky5jbfffpBTp/72Y3TGmLzKl6tyBAK/Au1wrNEYA9ytqj9nsn8X4ClV/bfz/S6gsaoecfWaNlr1yjJ//loef3w6hw+nDM4pUaIc9903g3r1bvNjZMaY3MKjo1VFZLmIlMygPURElrsYUxNgh6r+rqrngQ+BO7LY/25gnovnNobu3f/F5s3R3HXXTcltx47tZ8qUzrz1Vm/rRRpjXObqbdU2pCv8dwoGbsqgPSPlgT2p3u91tl1CRIrgmHBgfqpmBZaJSJyI9HfxmuYKU7p0CO+99zQfffQcoaElktvXrXuHiIg6bNnylR+jM8bkFVkmRxG5QUSSlm2vn/Te+boR6I9jQgBXZLSOdmb3dLsAa1T1aKq2Fqp6A3Ar8JiItMok5v4iEisisUeOHHcxNJPfdOvWnPj4aHr2TPlrcuzYAaZOvZ25c3tx6tTRLI42xlzpsus5xuJ4NqjAMuf7pNd64HnA1anj9gLhqd5XIGWQT3o9SXdLVVX3O/88BCzAcZv2Eqo6Q1Ubq2rj1KMYzZWndOkQ3nlnMJ98MpSwsJLJ7evXv8eIEXWIj//Cf8EZY3K17JJjFaAajl5fE+f7pFd5IERV57h4rRighohUEZGCOBLgl+l3EpESQGvgi1RtRUWkeNLPQHvgRxeva65wd9zRjPj4ydxzT+vktuPH/2TatK7Mnn0vJ0/+5cfojDG5UZbJUVX/UNVdqhqgqrHO90mvA6p6wdULqWoiMBBYCmwDPlbVn0RkgIgMSLVrN2CZqp5K1RYGrBaRzcAGYJGq2nQoxmVXXx3CW289xfz5w7jmmquS22NiPiAiog6bNi3wY3TGmNzmclbluBV4DKgKdFDVPSLSF9ipqt96McYcs1IOk5GjR0/w9NOzef/9FWnaGzfuSc+e0RQrVto/gRljvM7TpRz3Ah8D23HcUg1ybgoEns1pkMb4Q6lSxZk790k++2wYZcum9CJjYz9kxIg6bNw4P4ujjTFXAldLOZ4F+qnqU0BiqvZ1wPWeDsoYX+jcuQnx8dH06nVzctuJE4eYMeNOZs78P06cOOzH6Iwx/uRqcqwB/JBB+0nAhoSaPOuqq4oxe/YTfP75i5QrVyq5PS7uYyIi6hAX96kfozPG+EsBF/fbD9QE/kjX3gr4zaMRGeMHnTo1Jj5+MkOGzOXttx2P0E+cOMzMmT2Ii+tBz55vEBIS6uco8xeRi4SGHiEs7B8CA10e22dMpi5cCOTgwZIcOlQaVVf7fhlzNTnOACY7B+AAhIvITcBYbD1HkwscOrSS3bvf49y5IxQqVJqKFe8jNLR19gemUrJkMWbOHET37v/ikUemsm+fo8Rj48ZP+PXX7+jZcwqNGvVAJKP5LMzlqlp1L2XLCqVKVSYwMMi+V+MWVeXChQRCQg5SrNhefvutolvncym1qupY4DPgv0BR4DtgGjBNVae4FYExbjp0aCW//TaVc+cOA8q5c4f57bepHDq0Mkfn69ixEfHxk3nwwbbJbSdPHmHWrP9jxoweHD9+0EORX9lCQk5Rpkx5ChQoaInRuE1EKFCgIGXKlCck5FT2B2TD5X6nqr4AlMYxGUAzoIyqvuR2BMa4affu97h48VyatosXz7F793s5PmeJEkWZPn0gCxe+TIUKVye3b9o0nxEj6hAT8yG+WtEmPxNx79aXMel56u9UdnOrFhGRKSKyT0QOAbOAXaq6QVVPeiQCY9x07lzGq5hl1n452rdvyKZNk+nTp11y26lTfzF79t1Mn96dY8f+dPsaxpjcJ7sUOwJ4AFiEY4mpdsCbXo7JmMtSqFDGRfuZtV+uEiWK8uabj7Fo0cuEh6ecMz5+ARERddiw4QPrRRqTz2SXHP8D9FHV/qr6OHAb0NW5cLExuULFivcREFAoTVtAQCEqVrzPo9dp187Ri+zXr0Ny26lTR5kz516mTevGsWMHPHo9Yy5X165tGDp0oL/DyBeyS47hwPdJb1R1A45JAMp5MyhjLkdoaGuqVXuUQoXKAEKhQmWoVu3Ryx6t6oqQkCJMmfIIixePoFKlMsntmzd/wYgRdVi//j3rReZzgwY9QGioMH78yDTta9asIDRU+Osv12/nu5rMBg16gHvv7ZztfnPnfsaLL0a5fH1PCw0Vvvoqf9QGZ5ccA4Hz6doScb0ExBifCA1tTePGM2nRYgGNG8/0SmJM7ZZbGrBx42T69++Y3Hb69N/MnduLN9+8g3/+yWw1NuNJdepAaOilrzp1vHvd4OBg3nhjLEeO5I5ZlM6fd/wzfdVVpShWrLifo8kfskuOArwnIl8mvYBgYGa6NpeISEcR+UVEdojI0Ay2txGRYyIS73wNd/VYYzJz6NBKYmP7sWZNN2Jj++W4xCO94sUL88YbA1i6NILKlVMmCNiy5SsiIuqwbt071ov0ssOZ5KbM2j2lRYubCQ+vzPjxkVnu98MPq+jYsSnh4cHUrh3GSy89lZzIBg16gLVrVzJnzhRCQ4XQUGH37l0uXT+pJzl58qs0aFCB66+vAFzaE1248DNat65PxYqFqVmzFHfc0ZpDhzIvRXr77ek0a1aT8PBgrruuDHfd1YHExJQZQ+fNm0vLlrUJDw+mWbOaTJs2gYsXLwLQqFFlAPr06UFoqCS/TzpvkybVKV++IE2aVOfdd2e6fN1Nm2Lo0aM9tWqVpmrVEDp3bklMTEYTtnlWdj3AtzNoy9H4eOdzyik4BvXsBWJE5EtV/Tndrt+rauccHmtMGkk1kEmlHkk1kIDHepc331yfjRsnMWzYO0ybthiA06f/4a23ehMX9zH33DOdq64q75FrmdwhICCAl14aQ+/eXenX7wmqVKl2yT4HDuzj7rtv5c47ezF58lvs2vUbTz3VF5EAIiLGMWrUJH777Vdq1KjFsGGjAShduswl58nM2rUrKV68BB9+uCTDX8IOHvyThx/uyQsvRNG5c3dOnTpJXNy6TM8XHx/L0KGPER39Nk2btuTYsX9YvXp58vZ3353Jq68OJyoqmvr1G/G///3I4MH9CAoKok+fgSxdGkPt2qGMHz+Tdu06ExjoGJqyaNECnn9+IJGRE2jTpj3ffbeU5557lNDQa+jQoUu21z158gQ9evRi1KhJiAizZ7/BPfd0Yt267Vx9tfdW0MkyOarqgx68VhNgh6r+DiAiHwJ3AK4kOHeONVewrGogPXnrtVixwkye/DD/+c+/ePjhN9i50/Hb+dati4iIqEOPHhNp3ry3FbvnI23bdqJJkxZERb3AjBkfXrJ97typhIaWZezYqQQEBFCz5nW89NIYnnnmYYYOjSQkpAQFCxakcOEihIVdc9nXDw4OZtKkORQqVCjD7QcP7ichIYEuXe4kPLwSANddVzfT8+3du5siRYrSsePtFCtWnPDwStSt2yB5+/jxkQwfPpYuXe4EoFKlKjz++FDmzp1Knz4DkxN7iRIl03yeqVNfp0ePXvTp4+jRVqtWk82b44iOfpUOHbpke92bbvp3mjijoqJZuHA+y5cvoUcPzw66S82XFbjlgT2p3u91tqXXXEQ2i8hiEUl6cuDqsYhIfxGJFZHYI0eOeyJuk4d5swYyI23a1CMubiKPPtopue3MmWO8886DvPHGbfz9916vXNf4x/DhY/nyy0+Ij4+9ZNuvv26jcePmBASk/DPbpElLzp8/z86dO9y+dq1adTNNjAB16jSgVau2tGpVlwcf7M7cuW9m+Yy0TZt2VKhQicaNqzBgwL18+OHbnDx5AoAjRw6zb98ehgx5mMqViyW/Ro4cyq5dWU+vvX37Npo0aZGmrWnTlvz668/ZXhfg8OFDPP30wzRrVpNq1UpQpUpxjhw5xL59u7P9jtzhy+SY0a/M6e8FbAQqqWoDIBr4/DKOdTSqzlDVxqrauHRpWzDkSuftGsiMFCtWmIkT+/PNNyOpWjUsuf2nnxYzYkQd1qyZY88i84mGDW+kc+fuREY+d8k2Vc30ToEn7iAUKVI0y+2BgYF88skyPv54GbVr1+eDD2bTrFkNfvxxc4b7FytWnG+/3cjMmR9ToUJFJk+O4l//qsWff+5Pfq44duw0li+PT36tXPkjq1b9lG2sGX3epLasrgswaFBv4uNjiIycwKJFa1m+PJ5y5SokP7v1Fl8mx704SkOSVMCx2kcyVT2eNPOOqn4NBIlIaVeONSYjvqqBzEirVnWJi5vEwIEpj9DPnj3Ou+/2ITr6Vo4e3ZPF0cYVZTJ5RJdZuzcMGzaadeu+Z/nyJWnar722NrGxPyQnFoANG1ZTsGBBKld2PKMMCirIhQveW5FERLjxxuYMGfIyy5bFcM015fjii48y3b9AgQLcdNO/efHFKFas2MLp06dYtmwhoaFhlC1bnl27fqNq1eqXvJIEBQVd8nlq1LiO9etXp2lbv341NWvWzva6Sfv27TuIdu1uo1atOhQrVpyDB71fU+zLkowYoIaIVAH2AT2Be1LvICLXAAdVVUWkCY7k/RfwT3bHGpORpOeK7q7YkVNFiwYzfnxfunVrTv/+0fz2m2O6uZ9/XkpERB3uvHM8LVr0sWeROfRT9p0Wr6tatTq9evVn5sxJadoffPBRZsyYyLPPPkr//k/wxx+/Exk5lIceGkiRIkUAqFixMps2bWD37l0ULVqMq64qleY2rDtiY9exatU33HxzB8qUCWPr1k3s27cnTVJKbdmyheza9RvNm7eiZMlSrFnzHSdPnqBmzesAGDLkFYYNG0SJEiVp27YTCQkJbNmykT//3McTTzwPQHh4Zb7//luaN29NoUKFKFnyKh57bAh9+/agfv1G3Hxze5YvX8L8+e8zd+5nLl23WrWafPrpe9xwQ1NOnz5FRMSzBAUV9Mh3lBWfJUdVTRSRgcBSHPWTc1T1JxEZ4Nw+DbgTeEREEoEzQE913H/K8FhfxW7yttDQ1j5Lhpm56aY6xMVNYvjw94iOXoiqcvbsCd57rx8bN37CfffNpFQp95bYMf7z9NPD+eijtIP7y5Ytz7x5ixkxYgj//vf1hISUpHv3e3jhhdHJ+zz66DMMHNibm26qzZkzZ4iN3UnFipU9ElNISAk2bFjDrFnRHD/+D+XKhTN48EuZDmIJCSnJ4sWfM25cBGfOnKZy5WpMmDCLZs1uAuC++/pSpEhRpkx5jVGjnic4uDDXXlsneaANwIgR4xg+fDDz5oVTtmx54uJ20alTV0aPjmbq1Nd56aUnqVChEq++OpUOHbq4dN2JE+fwzDP9adeuEWFh5Rgy5BX++sv79aWSn599NGpUXdetG+fvMAzur7e4detwjh/fkvw+JKQ+9epFuHR+d6/tibUiU1uz5mf69XuDHTtSngwEBxene/dxtGzZ94rpRTZsuI0qVa7zdxgmH9q5cxubNmX8d2vAAIlT1cbZncPWizFe5+56i+kTI8Dx41vYunV4tud399qeXisSoEWL2sTGTuDJJ29PToRnz57g/ff7M2lSe/76648cn9sY4xmWHI3XubveYvrEmL49q/O7e21vrBUJUKRIIcaOfYgVK6KoUSNlquL//e8bIiLqsmrVdBvRaowfWXI0XuftWsOszu/utb0de/PmtYiNncDgwV2Te5Hnzp3kgw8GMHFiW44c2eWR6xhjLo8lR+N13q41zOr87l7bF3WShQsXYsyYB1i5MoqaNVPmtvjll+VERtZl5co305QDGGO8z5Kj8Tp3aw1DQupn2Z7V+d29ti/rJJs1q0VMzHiefrpb8nD+c+dOMW/eo0ya1JYjR3Z6/JrGmIxZcjRe5+56i/XqRVySIFOPVs3q/O5e25drRYKjFxkV1ZtVq8ZQq1aF5PZffvmOyMh6rFgxxXqRxviAlXIYk0udPXueyMiPGDduQZqEWKNGa+6/fzZlyly6EkReYqUcxls8UcphixYbn9ixYxoHDy4DLgIBhIW1p3r1Acnb3aljzI6n6xR9JTi4IKNG9aJr16b07RvNtm2O6ea2b19JZGR9unUbQ+vWj3lsRhVjTAr7v8p4nSMxLsGRGAEucvDgEnbsmAa4V8eYHW/UKfrajTfWZP36cTz7bHcCAx3/y54/f5qPPnqcCRNu5tAh91d4MMakZcnReJ2jx5h5uzt1jNnxVp2irwUHF2TkyF6sXj2W2rVTppnbvn0VkZH1+fbbSfYsMpfp2rUNQ4cOzH5HkytZcjQ+kNk/2q79Y+5OraGv13P0tkaNqrN+/TiGDu2R3ItMSDjDJ588yfjxrTl4cLufI8z/Bg16gHvv7ZztfnPnfsaLL0b5IKKMhYYKX331qd+un9f5NDmKSEcR+UVEdojI0Ay23ysiW5yvtSLSINW2XSKyVUTiReTSlUVNLpbZXzPX/vq5U2voj/Ucva1QoSAiIu5lzZqx1K1bKbl9x47VjBzZgG++mcDFi95bBim3+eef9/n118r89FMAv/5amX/+ed+v8SStM3jVVaUoVqy4X2MxOeez5CgigcAU4FagNnC3iKRfO2Un0FpV6wORwIx0229W1etdGWlkco+wsPZZtrtTx5gdf67n6G033FCddeteZ9iwu9L0Ij/9dDCvv96Kgwd/9XOE3vfPP++zf39/EhL+AJSEhD/Yv7+/TxNkUk9y8uRXadCgAtdf7yjBSX9bdeHCz2jduj4VKxamZs1S3HFHaw4dOpjped9+ezrNmtUkPDyY664rw113dSAxMTF5+7x5c2nZsjbh4cE0a1aTadMmJN9ab9SoMgB9+vQgNFSS3yedt0mT6pQvX5AmTarz7rszXb7upk0x9OjRnlq1SlO1agidO7ckJuYHt76/3MqXo1WbADtU9XcAEfkQuAP4OWkHVV2bav91OBY1Nnlc0qjUzEar1qsXkeVoVXfWZPT3eo7eVrBgEK+8cg933OEY0bp16y4Afv99LSNHNuD220dyyy1PEhAQ6N9AveTQoRdQPZ2mTfU0hw69QMmS9/osjrVrV1K8eAk+/HBJhnPiHjz4Jw8/3JMXXoiic+funDp1kri4dZmeLz4+lqFDHyM6+m2aNm3JsWP/sHr18uTt7747k1dfHU5UVDT16zfif//7kcGD+xEUFESfPgNZujSG2rVDGT9+Ju3adSYw0PHff9GiBTz//EAiIyfQpk17vvtuKc899yihodfQoUOXbK978uQJevToxahRkxARZs9+g3vu6cS6ddu5+uq8ezcmI75MjuWB1Euf7wWaZrF/H2BxqvcKLBMRBaaravpeJQAi0h/oD1Cxog+XAzdZql59QJrSjfRSl21kxJ01GXPDeo7e1rBhNX744TXGjPmUMWM+JTHxAgkJZ5k//xk2bvyU3r3ncs01tfwdpsclJOy+rHZvCQ4OZtKkORQqVCjD7QcP7ichIYEuXe4kPNxxK/y66+pmer69e3dTpEhROna8nWLFihMeXom6dZOfMjF+fCTDh4+lS5c7AahUqQqPPz6UuXOn0qfPQEqXdvzbV6JEScLCrkk+burU1+nRo1fyGozVqtVk8+Y4oqNfpUOHLtle96ab/p0mzqioaBYunM/y5UsyXScyr/JlcsxokboMZyAQkZtxJMeWqZpbqOp+EQkF/isi/1PVVZec0JE0Z4BjEgD3w75yuFMPmF0dY1zcIM6eTfndKDg4nEaNopPfr1nTHUj9nCyQFi3mp9p+F3A+1faCtGjxcfK79esfIjHxaPL7AgVK0bTpHLc/lyeO95WCBYMYPvxubr+9KX37TmbLll0A7Ny5jpEjr+f22yNp23ZwvupFBgVVdN5SvbTdl2rVqptpYgSoU6cBrVq1pVWrurRp055WrdrSpcudyUksvTZt2lGhQiUaN65CmzYdaNOmPZ07/4dixYpz5Mhh9u3bw5AhD/Pss48kH3PhQmK2K7ls376Ne+55KE1b06YtWbr0y2yvC3D48CHGjHmJNWu+4/Dhg1y4cIGzZ8+wb59vfxnxBV8OyNkLhKd6XwHYn34nEakPzALuUNW/ktpVdb/zz0PAAhy3aY2HuFMPmF0dY/rECHD27B7i4gYBGSVGgAvO9owSI8B5Z/uliREgMfEo69c/lCvXc/S266+vyg8/vM7w4XdToIAjESYmnuOzz57ltddacODANj9H6DmhoaMQKZKmTaQIoaGjfBpHkSJFs9weGBjIJ58s4+OPl1G7dn0++GA2zZrV4McfN2e4f7Fixfn2243MnPkxFSpUZPLkKP71r1r8+ef+5OeKY8dOY/ny+OTXypU/smrVT9nGmtFi2kltWV0XYNCg3sTHxxAZOYFFi9ayfHk85cpVSB6ElJ/4MjnGADVEpIqIFAR6Al+m3kFEKgKfAb1U9ddU7UVFpHjSz0B74EefRX4FcKceMLs6xvSJMUlKe2YjK5PaM/sfz9GePjEmSUw8mmvXc/S2oKACvPji//HDD69z/fVVk9t37lzPqFENWbp0LBcuJGZxhryhZMl7KVduBkFBlQAhKKgS5crN8OnzRleJCDfe2JwhQ15m2bIYrrmmHF988VGm+xcoUICbbvo3L74YxYoVWzh9+hTLli0kNDSMsmXLs2vXb1StWv2SV5KgoCAuXEj7/1aNGtexfv3qNG3r16+mZs2UsZGZXTdp3759B9Gu3W3UqlWHYsWKc/DgAU98PbmOz26rqmqiiAwElgKBwBxV/UlEBji3TwOGA1cDU52/ySQ6R6aGAQucbQWAD1R1ia9ivxK4Vw/oXh2jN+X29Ry9rUGDKqxZM5bXXvuMUaM+JiEhkcTEcyxY8BybNs3n/vvnUq5c+kHjeUvJkvfmymSYWmzsOlat+oabb+5AmTJhbN26iX379qRJSqktW7aQXbt+o3nzVpQsWYo1a77j5MkT1KzpmC90yJBXGDZsECVKlKRt204kJCSwZctG/vxzH0888TwA4eGV+f77b2nevDWFChWiZMmreOyxIfTt24P69Rtx883tWb58CfPnv8/cuZ+5dN1q1Wry6afvccMNTTl9+hQREc8SFFTQB9+g7/l0blVV/Rr4Ol3btFQ/9wX6ZnDc70CD9O3GcwoVKu28dXhpe/YCyDgR+n+OCfc+l/vH5wZBQQUYNuwuunRpQt++k9m06XcAdu3awOjRDenceQTt2j1DYKBNtewtISEl2LBhDbNmRXP8+D+UKxfO4MEvZTqIJSSkJIsXf864cRGcOXOaypWrMWHCLJo1uwmA++7rS5EiRZky5TVGjXqe4ODCXHttneSBNgAjRoxj+PDBzJsXTtmy5YmL20WnTl0ZPTqaqVNf56WXnqRChUq8+upUOnTo4tJ1J06cwzPP9Kddu0aEhZVjyJBX+OuvS///yA9sVQ4DpDxbS30LMSCgkEvLM6U8c0wrLKwj1asPyPCZI6QMysn4mSMkDcrJ+JkjJA3KyeiZIzgG5VSp0jvHnwvc+15yo4SERMaNW0Bk5EckJKTcVq1UqTH33z+X8uUzH0HpabYqh/EWT6zK4f9f7U2u4M66hdWrDyAsrCMpf50CkhMjQKNG0QQHh6c5JvVoVceo1PQjKFNGqzpGpaa/dZMyWrVp0zkUKFAqzdak0ap5bT1HbwsKKsDQoT1Yv34cjRqlPJ/6449YoqIasXjx6HzxLNIYd1nP0ZgrVGLiBcaP/5yIiHmcP5+SECtWbETv3nMpX76eV69vPUfjLdZzNMbkWIECgTz7bHc2bJhA48Y1ktt3745j9OhGfP31SC5cSPBjhMb4jz2BNy7zZjF8dpMIZLfd5Fzt2uGsWjWGCRO+YMSIDzh/PpELFxL48suX2LTpM3r3fosKFTKe/9aY/Mp6jsYl3iyGz24Sgey2G/cVKBDIkCH/YcOGCTRpUjO5fc+eTURFNWbRogiv9CLz82Md4x+e+jtlydG4xJvF8NlNIpDdduM5tWuHs3JlFFFRvSlUKAiACxcS+Oqrlxkzpgl79sR77FoJCUEkJJzx2PmMAcfKNAkJQW6fx5KjcYl3i+Gzm0Qg904ykB8FBgby9NPdiImZQNOm1ya379kTT1TUjXz11SskJro/Xdju3aEcOLCP8+dPWw/SuE1VOX/+NAcO7GP37lC3z2fPHI1LvFsMn90kArl3koH8rFatCqxYMZrJk7/i5Zc/4OzZ81y8mMiiRSOIj19A795vUbFiwxyf//jxELZvh3Pn9hMUZAN/jPsSEoLYvTuM48dD3D6XJUfjkooV78uwGN4TiwaHhbXPZBKB9i5tN94TGBjIU091pVOnG+nfP5offvgfAPv2bWHMmCZ07Pg8nTq9SIECOZtC7PjxEH780f1/yIzxNPvV27jEm8Xw2U0ikN12433XXlue5ctH8dprDxEc7EiEFy8m8vXXkURFNWb37o1+jtAYz/LpJAAi0hGYhGM6lFmqOibddnFu7wScBh5Q1Y2uHJsRmwTAGM/bvn0//fpFs3ZtytJXAQGBdOgwlE6dXiIoKPN1DY3xt1w3CYCIBAJTgFuB2sDdIpJ+SvpbgRrOV3/gzcs41hjjAzVqlOPbb0cyblwfChdO6kVeYPHiUURFNeaPP2L9HKEx7vPlbdUmwA5V/V1VzwMfAnek2+cO4B11WAeUFJGyLh5rjPGRwMBABg3qQlzcJFq2TPk9df/+H3n11WZ8/vkwEhLOZXEGY3I3XybH8kDqpRn2Ottc2ceVY40xPla9elm++WYkEyb0pUgRx+3UixcvsGRJFKNH38CuXTF+jtCYnPHlaFXJoC39A8/M9nHlWMcJRPrjuCULcK5gwa4/uhyhSVIayBur+eYu9r2lcuDAz4wZ08SVXe17yxn73nLm2ux38W1y3AukXreoArDfxX0KunAsAKo6A5gBICKxrjx4NWnZ95Yz9r3ljH1vOWPfW86IiEsPxX15WzUGqCEiVUSkINAT+DLdPl8C94tDM+CYqh5w8VhjjDHGI3zWc1TVRBEZCCzFUY4xR1V/EpEBzu3TgK9xlHHswFHK8WBWx/oqdmOMMVcWn86Qo6pf40iAqdumpfpZgcdcPdYFMy43RgPY95ZT9r3ljH1vOWPfW8649L35dBIAY4wxJi+w6eOMMcaYdPJlchSRjiLyi4jsEJGh/o4nrxCROSJySESs/MVFIhIuIt+JyDYR+UlEnvB3THmBiASLyAYR2ez83kb4O6a8REQCRWSTiCz0dyx5iYjsEpGtIhKf3ajVfHdb1TnV3K9AOxylITHA3ar6s18DywNEpBVwEscsRXX9HU9e4JzBqayqbhSR4kAc0NX+vmXNOY9yUVU9KSJBwGrgCefMWCYbIjIYaAyEqGpnf8eTV4jILqCxqmZbH5ofe4421VwOqeoq4Ki/48hLVPVA0uT4qnoC2IbN3pQt5xSRJ51vg5yv/PWbupeISAXgNmCWv2PJz/JjcrSp5oxfiEhloCGw3s+h5AnOW4PxwCHgv6pq35trJgLPkvEK4CZrCiwTkTjnbGqZyo/J0eWp5ozxFBEpBswHnlTV4/6OJy9Q1Quqej2OGa+aiIjdys+GiHQGDqlqnL9jyaNaqOoNOFZ4esz5KClD+TE5ujJNnTEe43xmNh94X1U/83c8eY2q/gOsADr6N5I8oQVwu/PZ2YfAv0XkPf+GlHeo6n7nn4eABTgew2UoPyZHm2rO+IxzYMlsYJuqjvd3PHmFiJQRkZLOnwsDbYH/+TWoPEBVn1fVCqpaGce/bctV9T4/h5UniEhR56A5RKQo0B7IdGR+vkuOqpoIJE01tw342Kaac42IzAN+AK4Vkb0i0sffMeUBLYBeOH6Dj3e+Ovk7qDygLPCdiGzB8Qvtf1XVyhKMN4UBq0VkM7ABWKSqSzLbOd+VchhjjDHuync9R2OMMcZdlhyNMcaYdCw5GmOMMelYcjTGGGPSseRojDHGpGPJ0Zg8zLnKwDNZbH9ARE5mtt3XROQtW0nC5AWWHI1xk/MffHW+EkTkdxF53Vlo7MrxlZ3HNvZ2rL6SHz+TubIU8HcAxuQT3+CYDCAIuAnHiglFgUf8GZQxJmes52iMZ5xT1T9VdY+qfgC8D3QFxxRzIvKsiPwmImeci62mnvJrp/PPGGdva4XzuBtFZJmIHBGR4yKyWkSauxuoiHRxrkpwVkR2isgo51SLSdt3iciLIjLded29IjIk3TlqishK5zl+EZFOInJSRB7I6jOlOv4JEdknIn+LyFwRKeLu5zLGkyw5GuMdZ3D0IgFGAn2Ax4DaQBQwXURuc25Pmvy4I45p1f7jfF8ceBdHT7QJEA98LSKlcxqUiHTAkbjfAOoADwF3AqPT7foUsBW4AXgVGJuUmEUkAMekzYlAM+AB4GWgUKrjM/tMOD9PXRzzqf4f0A14IqefyRhvsNuqxniYiDQB7gG+dT53HAy0V9XvnbvsdO7zGLAIOOxs/0tV/0w6j6ouT3feQUB3HAknpysxvAC8pqpzne9/E5HngPdEZIimzCe5TFXfcP4cLSKPA7fgmHu3HXCt8zPtc8b2FLAm1XUy/ExOx4FHnPMgbxORT5znjsrhZzLG4yw5GuMZHZ2jQgvg6DF+AQzC0VMMBpaISOqJjIOAXVmdUERCgUjgZhyTJgcChYGKbsTZCMfaic+lagtwnvca4ICzbUu64/YDoc6fawH7kxKjUwyuL777szMxpj53UxePNcYnLDka4xmrgP5AAo7EkQAgIlWc27sAu9Mdk5DNOd/GkRSfwpFIzwHfAgWzOCY7AcAI4JMMth1O9XP62JSUxzCCewuIZ3VuY3IFS47GeMZpVd2RQfvPOJJapfS3SVM57/wzMF17S+BxVV0EICJhOJ7fuWMjUCuTWF21DSgvIuWSFo8FGpM2wWX2mYzJEyw5GuNFqnpCRF4HXncujLwKKIZjIMtFVZ0BHMIxgKeDc4X3s6p6DPgVuE9E1uMoCxlLStLJqQhgoYj8AXyMY1BNXaCJqj7r4jn+C/wCvO2cgKAwMN55rqQeZWafyZg8wW5lGON9LwGvAM8AP+FILt1xljs4n789DvTF8fztC+dxD+FIpHHAh8AcsnlOmR1VXQrchuM55gbnayiX3vLN6hwXcYwwLeQ8/m1gFI7EeDabz2RMnmCLHRtj3CYiDXCUmjRW1Tg/h2OM2yw5GmMum4h0A04B24HKOG6rCtBQ7R8Vkw/YM0djTE4UxzE5QDjwN7ACeMoSo8kvrOdojDHGpGMDcowxxph0LDkaY4wx6VhyNMYYY9Kx5GiMMcakY8nRGGOMSceSozHGGJPO/wOQABSAoEj7NgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# extra code – plots the decision boundary of a Perceptron on the iris dataset\n", - "\n", - "import matplotlib.pyplot as plt\n", - "from matplotlib.colors import ListedColormap\n", - "\n", - "a = -per_clf.coef_[0, 0] / per_clf.coef_[0, 1]\n", - "b = -per_clf.intercept_ / per_clf.coef_[0, 1]\n", - "axes = [0, 5, 0, 2]\n", - "x0, x1 = np.meshgrid(\n", - " np.linspace(axes[0], axes[1], 500).reshape(-1, 1),\n", - " np.linspace(axes[2], axes[3], 200).reshape(-1, 1),\n", - ")\n", - "X_new = np.c_[x0.ravel(), x1.ravel()]\n", - "y_predict = per_clf.predict(X_new)\n", - "zz = y_predict.reshape(x0.shape)\n", - "custom_cmap = ListedColormap(['#9898ff', '#fafab0'])\n", - "\n", - "plt.figure(figsize=(7, 3))\n", - "plt.plot(X[y == 0, 0], X[y == 0, 1], \"bs\", label=\"Not Iris setosa\")\n", - "plt.plot(X[y == 1, 0], X[y == 1, 1], \"yo\", label=\"Iris setosa\")\n", - "plt.plot([axes[0], axes[1]], [a * axes[0] + b, a * axes[1] + b], \"k-\",\n", - " linewidth=3)\n", - "plt.contourf(x0, x1, zz, cmap=custom_cmap)\n", - "plt.xlabel(\"Petal length\")\n", - "plt.ylabel(\"Petal width\")\n", - "plt.legend(loc=\"lower right\")\n", - "plt.axis(axes)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Activation functions**" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAADPCAYAAABRAPaGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABpV0lEQVR4nO3dd3gU1frA8e/ZTe89JCT0GqQXEURCFyxY0CuKilLEckWxIPK7lmvvqNgQFRWuvWNBRCKIIE16ryEkEBIS0uue3x+zWVIhCZvdDbyf55lndnfOnHl3N9mZd+bMOUprjRBCCCGEEEIAmJwdgBBCCCGEEMJ1SIIghBBCCCGEsJEEQQghhBBCCGEjCYIQQgghhBDCRhIEIYQQQgghhI0kCEIIIYQQQggbSRCEQymlWiiltFKqlwO2laCUmu2A7TRRSv2qlMpVSjm932Cl1AGl1P3OjkMIIRobpdR4pVSOg7allVJjHLEtIepKEgRxSkqp7kqpUqXUinqsW90B+iEgCthgj/is26npB/0qYIa9tnMK9wPRQDeM9+YQSqnHlFJbqlnUG3jTUXEIIYSjKKXmWQ+stVKqWCmVqpRaqpS6UynlbodNfAa0skM9NtaYF1azKAr4wZ7bEsJeJEEQpzMJ42DzPKVUxzOtTGtdqrU+orUuOfPQTrut41rr7IbeDtAGWKe13q21PuKA7Z2S1vqY1jrP2XEIIUQD+Q3j4LoFMBzjIPtxYLlSyre+lSql3LXW+VrrVLtEeRrWfWGhI7YlRF1JgiBqpJTyBq4H3gW+BCZUU6avUup3a/OaE0qpJUqpaKXUPGAgcGe5sz0tyjcxUkqZlFJJSql/V6qznbVMd+vzaUqpTdZtHFZKzVVKBVmXxQMfAL7ltvOYdVmFKxhKqWCl1IdKqQylVL5S6jelVKdyy8crpXKUUkOUUlus21uqlGp5is/oADAauMm67XnW16tcOq7c9MdaZrJS6gvrtvYppcZVWidaKbVAKZWulMpTSm1QSg1SSo0HHgU6lXvf42vYTjOl1DdKqWzr9LVSKqbc8ses7/c6pdRea5lvlVJh5cp0tn63WdblG5VSg2r6XIQQogEVWg+uD2utN2itXwbigR7AgwBKKQ+l1HPWfUyuUmqNUmpEWQVKqXjr7+YopdRqpVQRMKL8Fely+6LO5Tdu/d1OU0q5K6XMSqn3lFL7rfuV3UqpB5VSJmvZx4CbgUvK/VbHW5fZ9hNKqZVKqZcqbSfAWueVtXxP7kqp15RSyUqpQqXUIaXUs/b84MW5QxIEcSpjgINa603AxxgHwbZLuEqprsBSYA/QH+gLfA64AVOBlRgH71HW6VD5yrXWFuAT4IZK270B2Ka1/sf63ALcA3TCSFj6AK9bl/1lXZZXbjsv1vB+5gHnYxzQ97Gu84syEqEynhjNkm4FLgCCgLdrqA+M5jy/Wd93lPV918UjwHdAV4xL2+8rpZoDKONM2B8YZ8muBDoD/7Wu9xnwErCTk+/7s8qVK6UU8C0QCQwGBmE0h/rWuqxMC+Bf1u0MB7oDT5Vb/j8gBeNz6w48BhTU8b0KIUSD0FpvAX4Brra+9AHGSarrMX47PwR+sO63ynsO+D+gA/B3pTp3AWupfh/1mda6GOM46jBwLdARmAk8DNxiLfsixv6h7KpHFMZ+q7L5wHVliYXV1UA+8GMt39PdGL/h1wFtMX7Td1azLSFOT2stk0zVThgHp/dbHyvgAHB1ueULgFWnWD8BmF3ptRaABnpZn3exPm9TrsxuYMYp6r0YKARM1ufjgZxTbR/jx1IDF5VbHgicACaWq0cD7cuVuQEoKttWDfEsBOZVek0DYyq9dqDs8yxX5plyz90wkpZx1ueTgGwgrIbtPgZsqeZ123aAYUAp0KLc8lYYSdfQcvUUAIHlyswE9pR7ngXc7Oy/SZlkkuncnjBO9CysYdmz1t/Q1tbfuGaVln8LvGl9HG/9Db66UpkK+xOMkz4HAWV9Hmut+4JTxPgs8NvpYi6/nwBCrfuaIeWW/wa8Y31cm/f0GrCkLFaZZDqTSa4giGoppdpgXBX4H4DWWmMkBBPLFeuO8WNUb9q4OrEZ44wISqnzMX4I/1culsFKqcXWy6rZwNeAB9CkDpvqiPHjurLctk9Ytx1Xrlyh1rr8GZdkwB3jSkJD2FQunhLgGBBhfak7sElrnXYG9XcEkrXWB8ptZx/G+yr/vg9aP48yyeXiAHgZmKuM5mQzlVIdziAmIYRoCArjoLuH9fE2a7PRHGuzoUsw9i/lrT1NnZ9gXHUdYH1+PbBPa23blyilpiil1iqljlm3cy/QrC6Ba63TgUVYr1YopaIwrvjOtxapzXuah9FZxi6l1BtKqUsqXZEQotbkD0fUZCJgBhKVUiVKqRLgIWC4UirWWkbVuHbdLODkJdwbgOVa64MA1uY2PwLbgWuAnhjNf8BIEmrrVLGW75q08s3TZcvq+r+iq9lmdT1sFFezXtm27PH5lu0wq1P+9VPFgdb6MYyE4lugH7BJKXUrQgjhOuKAfRi/XRqjCWi3clNHTu4/yuSeqkJt3LD8GxX3UQvKliul/gXMwjg4H2HdzpvUbf9UZj5wtVLKCxiL0Sz3T+uy074nrfV6jKv0D1vLfwgsliRB1If80YgqlFJuGDdVzaDiD1FXjDPeZW0r12O0a69JEUaScToLgDZKqb4YbSbnl1vWC+OH9l6t9UpttAmNrsd2tmH8vV9Q9oJSKgCjHee2WsRYV8co1+WpUiqSuneBuh7oUv5m4Upq+76bKqValIulFcZnWKf3rY1eml7TWl8CvEfFq0lCCOE0SqnzMJqffgn8g3FypInWek+l6XA9qp8PXKOU6omxzyi/j7oQ+FtrPVtrvV5rvYeqVylquy/8zjq/FGsiYr16T23fk9Y6W2v9hdb6doyrC4MxetoTok4kQRDVuQQIA97VWm8pPwGfArdaz0i8AHRXSs1RSnVVSrVXSk1USpVdWj0A9FFGz0VhNZ3F0FonAcswbgYOBL4ot3g3xt/pPUqplkqpsRg3JZd3APBSSg2zbsenmm3sxvjxfUcpNcDaK8V8jLb1/6tc3g5+x+jBqZcyemOaR91v6v0fkIpxQ/EA6/u/vFzvQQeA5kqpHtb37VlNHb8BG4EFSqmeyhigbgFG8vF7bYJQSnlbL1fHW7/L8zF2ig2RWAkhxOl4KmOAymjrvmcaxj1n64AXrSeSFgDzlFJjlFKtrL/F9yulrqrH9r7BuAL8HrDauj8pswvooZQaqZRqq5T6D8aNxOUdwOgqvL31t7ra8Rq01gUYTWj/D6NJ0fxyy077npTR499YpVRHazPh6zH2cUn1eM/iHCcJgqjOBGCptU1kZV8AzTFucN0ADMXo/WEVRg8Q13GyucqLGGdOtmGcUT9Vm8yPMa5Q/Ki1zix70XqPwlRgmrWeiRgDk1GuzF8YycUn1u08WMM2bgFWA99b5z7AxVrr/FPEVV/3YVzqTsA4ozUX42C/1rTWuRg7msMY/Xxvxejru+yM0lfATxj3gRzDuCRduQ4NXGFdnoDR69QR4IpyZ6ZOpxQIxrhcvRNjZ7kS4zsRQghHG4rRq1oixu/f5Ri/jRdZfzfB+L3/AHge2IHRmcRFGDcc14k2xpX5BmMfNb/S4ncwein6H7AGo4nPS5XKvIvRTHYtxm9x/1NsrmxfuF5rvb3SstO9p2zgAYz923qMK/8jtYyLI+pB1f4YQQghhBBCCHG2kysIQgghhBBCCBtJEIQQQtSLUup9pVSqUmpLDctvUMYo6JuUUn9VM0iVEEIIFyQJghBCiPqah9FzTE32AwO11l2AJ4A5jghKCCHEmXFzdgBCCCEaJ631svJd6Faz/K9yT1cBMQ0elBBCiDMmVxCEEEI4wgTgZ2cHIYQQ4vSccgUhLCxMt2jRwi515ebm4uvra5e67M1VY3PVuMB1Y3PVuMB1Y6tPXCUnSsjfmw8aPCI98IypbmgH58TmCPaOa926dWla63C7VVhP1rE7JmCMn1FTmcnAZABvb++esbGxNRWtE4vFgsnkmufCJLa6c9W4wHVjc9W4wHVjc9W4wL6x7dq1q+Z9hNba4VPPnj21vSxdutRuddmbq8bmqnFp7bqxuWpcWrtubHWNK31Ruk7wTNBLWap33b1LWyyWhglMnz2f2ekAa3UD/55j9Pu+5RTLuwB7gXa1rVP2Ec7nqrG5alxau25srhqX1q4bm6vGpbV9YzvVPsI10yMhxDkl4/cMtozegi7URN8eTZtZbVBKOTsscYaso6p/DdyojZFghRBCNAJyk7IQwqkyl2Wy+bLNWAosRE2Kou3stpIcNBJKqU+AeCBMKZUEPAq4A2it3wYeAUKBN63faYnWupdzohVCCFFbkiAIIZzmxIoTbBq1CUuehSa3NKHd2+1QJkkOGgut9djTLJ8ITHRQOEIIIexEmhgJIZwma00WllwLkTdG0v7d9pIcCCGEEC5AriAIIZwm9p5YfNr5EDIiBGWW5EAIIYRwBXIFQQjhUNn/ZBtdmVqFjgqV5EAIIYRwIZIgCCEcJndbLhuHbuSfgf9QkFjg7HCEEEIIUQ1pYiSEcBjPWE98O/niFuSGRxMPZ4cjhBBCiGpIgiCEcBg3fze6/NwF5aYwecgFTCGEEMIVyR5aCNGg8nbmseuuXVhKLACYfc2YPOWnRwghhHBVZ3wFQSkVC3wENAEswByt9atnWq8QovHL253HhkEbKEopwjPKk+Yzmzs7JCGEEEKchj1O45UA92mtOwJ9gTuVUnF2qFcI0Zglw8bBGylKKSJwYCAx98Q4OyIhhBBC1MIZJwha6xSt9Xrr42xgO9D0TOsVQjRe+QfyYRoUJhUSeGEgnRd2xuxrdnZYQgghhKgFuzYEVkq1ALoDf9uzXiFE41FwqICNgzfCUQi4IIDOP3XGzU/6QxBCCCEaC7vttZVSfsBXwD1a66xqlk8GJgNERkaSkJBgl+3m5OTYrS57c9XYXDUucN3YXDUucLHYjgH3AMlQ2q6UrIez+HPdn04OqiqX+szKcdW4hBBCnFvskiAopdwxkoMFWuuvqyujtZ4DzAHo1auXjo+Pt8emSUhIwF512ZurxuaqcYHrxuaqcYHrxFaYUsiG2zaQn5yPXw8/ch7PIf5S58dVHVf5zCpz1biEEEKcW864iZFSSgHvAdu11i+feUhCiMam6GgRG4dsJH9XPn7d/Oi6uCv4OTsqIYRoGInPJ5KxNOOUZTKWZpD4fKKDIhLCvuxxD0J/4EZgsFJqg3UaZYd6hRCNQNGxIjYM2UDe9jx8O/vSZXEX3EPcnR2WcACl1PtKqVSl1JYaliul1GtKqT1KqU1KqR6OjlGIhuDf259t126rMUnIWJrBtmu34d/b38GRCWEfZ9zESGv9J6DsEIsQohE6/vNx8rbm4RPnQ9ffuuIR5uHskITjzANmY4yFU52RQFvrdD7wlnUuRKMWPCiYuM/j2HbtNjp+0hFLgQW+hrScNExeJraP3U7c53EEDwp2dqhC1It0LSKEOCNNbmoCQPDwYDwiJDk4l2itl1l7r6vJaOAjrbUGVimlgpRSUVrrFMdEKETDCR4UTMdPOrJ51GYwA4Ww9ZOtUAqdf+osyYFo1CRBEELUWXFmMSXpJXi39gZOJglCVNIUOFTueZL1NUkQRKP3xx/wx8sW+haDR7EGQBcY803DNp12fb8efvRa18v2PEElABCv422vre25lpz1OXWKq/L6rIfstdn49zSaO+2cvJOUd+v2L9hzbc8q67d7px3Rk6MBSJ6TzK7bdtWpznbvtIN2VFg/alIU7ee0ByB7XTbreq2rU53VrV/T53w6CRjlHPU95azPqfZzPlVsldnze5IEQQhRJyVZJWy6eBOFiYV0/b0rvh18nR2ScF3VNT/V1RaUrrBdiqvG5gpxJSV58+qrbUlO9mZG00Tcla7hr/rUcrKrfy8VXsuue73Vrb9u7bqTdSXXvc7q1t+1cxe7EqwHmzvrXueunbvIibZ+Btb1U5JTSElIqXed1a1f0+dcW+fq9yQJghCiTpRZYfY2ozyMuRCnkATElnseQw27PekK27W4amzOjuu772DaNHj4YbjzTjixqBlbr9lqu3IAoLwUx//diSkfhjFzJvz736Bqc6dmdUlG3U7KV7t+lc8svqbCtVTd+vHAS3WvyhZbdevHA7fVvc7Trl+LZO6Uf2cN9D1VUcPma/0/UF2ReCp+zqf4u5QEQQhRJ2ZfM51/7ExxejFesV7ODke4tu+Bu5RSn2LcnHxC7j8QjdUHH8B//gM//ADnW2+1N3mZoNRICnShRnkqKIWBw02suh2uuAKSk+GZZ2qZJAjhIiRBEEKcVmleKUmvJBH7YCwmdxNmHzNmH7l6cK5TSn2CcU4qTCmVBDwKuANord8GfgJGAXuAPOAW50QqxJmZP99IDn7/HdpZ281nLM1g+9jtdP6pM5YCC1u+2UKnKztV6MXo99+DGTQIPDzgv/917nsQoi4kQRBCnFJpfilbRm8h47cMChILaP9Oe2eHJFyE1nrsaZZr4E4HhSNEg1ixAu67D5YurZgcbLt2m60r08KUQrgO/J/0xzPK09YFatzncSxZEky/ftCmDdx0k3PfixC1ZY+B0oQQZ6nSglK2XrWVjN8ycI9wJ+beGGeHJIQQDnP4MFx7LcybB3FxJ1/PXpNdcZwDDeRia59eNk5C9ppswsPh22+NJGPtWsfGL0R9yRUEIUS1LIUWto7ZyvFfjuMe5k6337tJj0VCiHOGxQLjxsHtt8PIkRWXNXuw2WnXDx4UbEsgOnWCt9+Gf/0LNmwAfxlgWbg4uYIghKjCUmxh67+2cvzH47iFuNF1SVd8O0lyIIQ4d7z6KpSUwIwZ9qnv6qshPt64kiCEq5MEQQhRgaXYwrax20j/Lh23YDe6/tYVvy5+zg5LCCEcZscOePpp+PBDMNuxP4ZXXoHFi+Gnn+xXpxANQRIEIYSNpcTC9hu3k/ZVGuZAM10Xd8W/u1wLF0KcO7Q2mhX95z/QqpV96w4IgDlzjDEU8vLsW7cQ9iQJghACAF2q2TF+B8c+O4bZ30zXRV1tQ7YLIcS5YsECOHEC7rijYeofNswYR+GppxqmfiHsQRIEIQTaotk5cSepC1Ix+5np8ksXAs4PcHZYQgjhUFlZ8MAD8NZb4FaHblyUh4Lu1nktvPyycSVh15mOwCtEA5EEQQhB5tJMjsw7gsnHROefOhPYL9DZIQkhhMO99BIMHXpypOTa8gjzgJet81qIjjYSkenT6xGkEA4gCYIQguAhwbR7ux2df+xM0IAgZ4cjhBAOd/QozJ4NTzxR93VL80vhd+u8lu6+G/75B5Ytq/v2hGhokiAIcY7SWhujf1pF3xZNcHywEyMSQgjnefJJuPFGaNGi7uuWZpXCe9Z5LXl5GT0l3X+/cWO0EK5EEgQhzkFaa/ZO28va7mvJ3Zbr7HCEEMKp9u2DTz6BmTPrt75HpAcssM7r4LrroLAQFi6s33aFaCiSIAhxDtJFmtwtuZQcL6HgYIGzwxFCCKf6z3+MJj/h4fVb31JkgW3WeR2YTPDoo/DYY3IVQbgWSRCEOAeZPE2c9/15dP29K6EjQ50djhBCOM2GDfD77zBtWv3rKE4rhjut8zq64gooLYUffqj/9oWwN0kQhDiHHP30qO0Ml9nbTNCFQc4NSAghnOzxx2HGDPBz0oDxchVBuCJJEIQ4Rxx48gDbx25n27+2oWUvJOxEKXWxUmqnUmqPUuqhapYHKqV+UEptVEptVUrd4ow4hajO1q2wciVMmuTcOK64wkgOvv/euXEIUUYSBCHOAYnPJXLgPwfABOHXhKNU7QbzEeJUlFJm4A1gJBAHjFVKxVUqdiewTWvdFYgHXlJK1e1OTiEayDPPwD33gLe3c+NQSq4iCNciCYIQZ7lDLx1i30P7QEGHDzoQeX2ks0MSZ48+wB6t9T6tdRHwKTC6UhkN+CsjK/UDjgMljg1TiKr27YNffoHbb3d2JIbRo41E4bvvnB2JEFCHgcSFEI1N0qtJ7L1/LwDt57anyU1NnByROMs0BQ6Ve54EVB6DdjbwPZAM+AP/0lpX6epFKTUZmAwQGRlJQkKCXQLMycmxW132JrHVnT3jevnldowaVcQ//xw488rSjNnKv1ZCWP2rGT06nJkzYwgM/Ad7Xeh11e8SXDc2V40LHBebJAhCnKUOv3mYPffsAaDdO+2IujXKyRGJs1B1hzCVG0iMADYAg4HWwGKl1HKtdVaFlbSeA8wB6NWrl46Pj7dLgAkJCdirLnuT2OrOXnEdPgx//gm7dkFYWIszrq8wuZCVrOSCfhfgGe1Z73oGDICPPwZ393guvPCMwwJc97sE143NVeMCx8UmTYyEOAslz0lm9527AWj7RluiJ0c7OSJxlkoCYss9j8G4UlDeLcDX2rAH2A90cFB8QlTr5Zfh5psh7AzO9pdnDjDDZOv8TOoxGyMrP/+8feISor4kQRDiLJPyfgq7btsFQJtX29D0jqZOjkicxdYAbZVSLa03Hl+H0ZyovERgCIBSKhJoD+xzaJRClJORAR98YByI24ubnxuMtc7P0M03w+rVsG2bHQITop4kQRDiLHLkoyPsnLgTgNYvtibm7hgnRyTOZlrrEuAuYBGwHfhca71VKTVFKTXFWuwJoJ9SajOwBJiutU5zTsRCwJw5cNll0NSO506KM4rhOev8DHl7w113wYsv2iEwIepJ7kEQ4iyRvzefHbfuAA2tnm1F7H2xp19JiDOktf4J+KnSa2+Xe5wMDHd0XEJUp6gIXn8dfvzRzhUrwIvq78qphzvugDZt4Ikn7JvICFFbdrmCoJR6XymVqpTaYo/6hBB1593am3ZvtaPlky1pNr2Zs8MRQgiX88UX0KEDdO1q33rdg9xhqnVuByEhcNNN8OqrdqlOiDqzVxOjecDFdqpLCFEXhScfRk+KpvnM5s6LRQghXJTW8NJLMG2a/esuyS6Beda5ndx7L7z3HmRlnb6sEPZmlwRBa70MY/AbIYQDpX2fBuMgZ3OOs0MRQgiX9scfkJ8PFzfA6czS7FL40Dq3k+bNYdgwI0kQwtHkHgQhTkcp4p0dQw3CwIiti3PjqE58PdcrxUQuvuThQxEeFaZi3Gv1mgUTpZht8/KPy+ZLWH7aMhZMaJRtAso9h1KlrJPx2M2icLcYZQrMiizPk2Us1jJl82aZCpO1voMBijx3sCiFha/RCiwotFIEFEBslrHNQjNsCzPq0MoYcMCYK7SCDscgoMj4HE/Uvyt2Ic5KL79snJU3NaLuWaZNg2uvhX//G9zkiE04kMP+3GSUTNfhqnGBa8YW7+wAGgkLigyCOU5ItfOyx1kEkIuvbcrDp8LjYtzxIQ9v8vGiAA+KcKe4UgpQVOPr7hRjphSFhVJzKSVmCyXmUkrcSik2Wyi2zttlFBFUZMFMKTvDLOwJrVTGzUKx2YJ/kYXb12FLC6YNhxxPjcVUNh6YBmU8/tcWzfA9xuNVUZqv+lQtUzaO2JTvNX7FxuMnumm2RlqXK20rg9L0T9TcstLY/hEvza+DKFdXeZqpv0PXo8azzQHw5zF7fbtCNG67dsGqVfDZZ86OpG769IHYWPj6ayNREMJRHJYgyCiZrsNV4wIXjU1rDowfT4t585wdCQDZ67LxPc8Xk6dxGswRn1lpKSQlwb59sH8/JCdDSkrF+dGj4OMDoaEQHAxwnNatQwgONm64iwqGuGAIDARfX2Py8an62MsLlPJHaz+yi7JJz0unWWBLzCZjAKKvt3/N1tStpOenk1GQQXZhNmmFWWQVZnFhswt5ecTLAOw9vpc2r7ep8T39csMvjGgzAoCHlzzMvD9fqLZcbEAsk9Ym2p7PeCGCrDzjyNvD7IGH2QNPsyceZg/6PzSDG8//NwAx+5fyz+8z8XTzrFDGw+yBp5sn1yx4DX9PfwCy1s9lf8Z+kg4l0aZlG8wmM24mN9xMbrQPbc8l7S4BILswG6/tX+NmcqtQxs3khlmZ6T23N2E+xshPFxVm8bBXYD2/cSHOLrNmwZQpRheijc1998Ezz8A114CyUy9JQpyOXLASohHJSMhg86jNBMUHcd4359mSBHvJzjYG59myxZi2bzeSgsRECA+HVq2gRQuj272OHWHwYIiOhqgoaNLEOLgvk5CwqUriklecx5GcIxzNOUq4bzhtQowD+LXJa3lqyVMcyz1Gen46x/OPczz/OCUW44a/lPtSaOLXBIAPNnzAwl0Lq42/7OAYIMAzAH8PfwI8A4zHnicf5xzPIdIv0lb2kraXEOkbiY+7D97u3vi4+9gmfw//CtvYe/dePN08cTe5o06xtx7UchB/TfjrtJ85wMQeE62fWQLxA+NrLOfv6c/N3W6uVZ0BngG1KifE2S49HT75xPg9a4wuuwweeAD++gv693d2NOJcYZcEQSn1CUZLjDClVBLwqNZabqsRwo4yl2ey+ZLNWPIteER7oNzP7FRSbi6sW2dcdl+1Cv75x7gK0LEjdO4M550HQ4dC69ZGUlD+4L8yrTVpeWnsST3KeRHn2V6/48c72Jy6mSM5RziSc4ScopM3Uz/Y70GeG/YcYJwZ/3bHt1Xq9XX3JcQ7hNyiXNtrYzqOoUtEF0J9Qgn2CibQK9CWCET4RtjKhfuGkzWj+u4/EhIS6Nakm+15/2b96d+sdnvesrP+QojG4Z134MorjZMYjZHZDPfcY/TAJAmCcBS7JAha67H2qEcIUb0Tf51g86jNWPIsRN4cSfs57VGmuiUIOTmQkACLFhlnonbsMBKBvn2Ntq3PPmskA2bzqevZeGQj3+z4hv2Z+zl04hCHsg6RlJVEQUkBHmYP8mfmY1LGlY1VSav458g/tnU9zB408WtCpG8kUf5Rtte7RHbhi2u+INwnnFCfUEK9QwnxDsHTreqdtrU9gy6EEIWFMHu28bvXmI0fD489Bnv3Gr/TQjQ0aWIkhIvLWp3Fpos3UZpTSsQNEXR4r0OtkgOtYfNm+OUXY1qzBnr3hhEjjB1m9+4VrwpYtIVDJw6x5/ge9mbstc33Ht/L1POnckv3WwDYnLqZx/94vMr2gryCiA2IJaswiyCvIABeGv4SGk20fzRN/JoQ6BlYbbOcUJ9QxsSNqd8HJIQQNfjsM+NqaOfODbsd93B3mGudNwBfX5g0ybiX4vXXG2QTQlQgCYIQLix7XTYbh2+kNLuU8H+F02FeB5S55uRAa9i40Rgt9PPPjZuLR40yusqLjwc/PyguLWZvxl7+TE5iaKuhtnWbvdKMw9mHq61367Gttse9o3vz8IUP0zK4Jc0CmxEbEEtsYCx+Hn5V1hvUclD937wQQpwBrY2uTZ97ruG3ZXI3QWvrvIHcdZeR7Pz3v2UdQQjRcCRBEMJFZf+TzcZhGyk9UUrY1WF0/LgjJrfqdz5pafDxxzB3LuTlGU2GPv0UmndIZ9XhlWw8spGPft7I1mNb2Z2+m2JLMR5mD3IfzsXNZPwMxAbGUmwppl1oO1oHt6ZNSBtaB7emdUhr2oW2s22rfVh7nhrylEM+AyGEqK/ff4fiYhg+vOG3VXikEMZA4ZZCPJs0zCAk0dHGDcvvvAMPPdQgmxDCRhIEIVxQzuYcNg7bSElGCaGjQ4n7JK7KmSmtYeVKePzxOP75R3PhsAwun/Y3lw8P5oLYvgDM3/QzN35zY5X6mwc2Jy48jhMFJwj1CQVg6c1L8XI7xZ3IQgjRiLz8snH11BFdg7oFucE067wBTZt28qqwh0eDbkqc4yRBEMLF5G7NZeOQjZSklxBySQidPutUITkoKYHX5iXxxqsepKUrvPu+Q95dr/Gjexo/JkHuln/bEoSeUT0Z1GIQXSO70rVJVzpHdKZDWAd8PXyrbFeSA1EfSqmLgVcBMzBXa/1sNWXigVmAO5CmtR7owBDFOWjbNqOXtq++csz2zF5m6GedN6CuXY2e5j77DG6seu5HCLuRBEEIF1KSXcLGoRspPlZMyMUhxH0Rx/7c/azdvZYr24/h88/MPP44HCWd7J6PQvsfyDJZUCjah7anW5Nu9I3pa6uvY3hHfr/5dye+I3E2U0qZgTeAYUASsEYp9b3Welu5MkHAm8DFWutEpVREtZUJYUcvvwx33nnq7pntqehYEdwBRX8U4RHesKf277sPHn4Yxo2TgdNEw5EEQQgXUuxVTOojqSxds5S9g/ey6vVVpOelw9ZraLXxCqIizMyZAyvMP7DxqDu9o5/BPdWdCaMmyMBYwhn6AHu01vsAlFKfAqOBbeXKXA98rbVOBNBapzo8SnFOOXLEuHKwe7fjtqmLNWy3zhvYiBFGkrB0qTFYpRANQRIEIZwovzgfb3dvtNbsSNtB17e7UmwphubAXuBwL9x+/RkfFcz9zyQx5V+tUQoG8X+2OhISEiQ5EM7SFDhU7nkScH6lMu0Ad6VUAuAPvKq1/sgx4Ylz0RtvwNixEBZ2+rKNkclk3IPw8suSIIiGIwmCEA6itWbP8T0kHEhgWeIyViSuoHlQc3666Ce2jtlKq3db4enmScfgjnT3G8neLyaxa3VznnnKzPjxClPD9Z4nRH1V18Ch8ilUN6AnMATwBlYqpVZprXdVqEipycBkgMjISBISEuwSYE5Ojt3qsjeJre5OF1d+vonXX+/L7Nn/kJCQ77jA0ozZyr9WggMSk2bNTPz1V18+/HADzZvnnbKsq36X4LqxuWpc4LjYJEEQooEt3b+Uuf/MJeFAAsnZyRWW5RXnceC5A+Ssz+Hwo4c5+lUqn8735qFpxsiZP34MAXJxQLiuJCC23PMYILmaMmla61wgVym1DOgKVEgQtNZzgDkAvXr10vHx8XYJMCEhAXvVZW8SW92dLq4334RBg2DcuMoXshpWYXIhK1nJBf0uwDO6Ybo5rWzqVPjrrz7cfJrB5V31uwTXjc1V4wLHxSYJghB2Uv4KQbcm3ejdtDcAezP28r/N/wMgzCeM+BbxDGw+kAubXUjniM6oYoVnqCcl1zbj8lFuZGTAr79Ct26OjT8rK4vU1FSKi4vtUl9gYCDbt2+3S1325qqx1TUuX19fYmJiMDnv8tIaoK1SqiVwGLgO456D8r4DZiul3AAPjCZIrzg0SnFOKC01mt18+KGzI3GM22+HDh3gySchPNzZ0YizjSQIQtRT+YQg4WBChSsEU8+faksQLm5zMbNHzia+RTxx4XEopSg6WoQ50IzZZEZ7wNJWrZg+BKZPh3vvBTcH/2dmZWVx9OhRmjZtire3N8oOXWNkZ2fj7+9vh+jsz1Vjq0tcFouFw4cPk5aWRkSEczoG0lqXKKXuAhZhdHP6vtZ6q1JqinX521rr7UqpX4BNgAWjK9QtTglYnNW++844UO7Xz9mROEZEBIwZA2+9BY884uxoxNlGEgQhaklro2l12cHziPkjWLxvcYUy4T7hxLeIp39sf9trMQEx3NnnTtvzwiOFbIjfgFdzL5p+cB63TzWzcyf88Qd06uSAN1KN1NRUmjZtio+Pj3MCEHVmMpmIjIzk4MGDTksQALTWPwE/VXrt7UrPXwBecGRc4tzz4otG7z5O6frTBIRa5w50771Gk6oHH3Rcl67i3CAJghA10Fqz+/huEg4k8GP4Mta83JTltyyndUhrAOLC49hwZAPxLeJtU8ewjqc8+16UWsTGIRvJ35nPppIAnuhj4sqr4eOPnfvjXlxcjLe3t/MCEPXi7u5OSUmJs8MQwun++svo3vTKK52zfc8mnvClde5AHTtCz56wYAFMmODQTYuznCQIQpSTV5zH/E3zjWZDBxJIyUkxFvgBObA88WSC8PSQp3llxCu1bo5TlFbExqEbyd2Wx8ImLZl/ohnvz1NcckkDvZk6skezIuFY8p0JYXjpJeNsurlhBzKukaXYAnvB0t9SYeR7R5g2De6+G269VQZOE/YjCYI4Z2mt2Zm+k73H93JJO+Mo3aRMTP1lKgUlBcDJJkOdlyVy9SPv0zGso219H/faN8cpPl7MpmGbSNucz6sB55ESGsLK7xWtWtn3PQkhxLlm926jiaYzb04uPlYME6F4ZLHDejEqM3gwuLvDzz/DqFEO3bQ4i0nP6uKcUTYY2dtr3+a6L68j6qUoOr7Rkeu+uo4Si9FMw8vNixkXzuDNUW+y9Y6tHL3/KJ9f8zk3Znew3WBcV8WZxWwcvpG9G4qZ6tmT0OHBrFxtkuSgkVq+fDlBQUG1Kjty5Eief/75GpfPnz+fFi1a2CcwIc5Rzz0Hd94Jfn7Oi8EjygMWW+cOppTRwcXTT4Nu+IGcxTlCriCIc8KiPYu4+dubOZp7tMLrkb6RDGwxkMyCTMJ8jNFtHhlov+4gSk6UsGnEJtauU/zH3JP7HzTx4ONmuQx8BuLj4xk6dCj/93//V6vX7W3AgAFkZmbWquzPP//coLEIca47dAi+/tq4iuBUGiiwzp3w+37ttUZPRsuWwcCBjt++OPtIgiDOGkWlRaxLXseKQytYcWgFvaJ6MfOimYDRk9DR3KM08WvCwOYDbTcVtw9t32DtuEuyS9g0chM/rvbkFVN75ryjuWaC/MsJIYS9vPCCcXNuaKhz4yg6UgSXQdHhIoc3MQLj3ouHHoKnnpIEQdiHNDESjdryg8uZ8dsMLvrgIgKfDaTf+/14YPEDfLvjWxbuXmgrFxcex447d5A8LZlPx3zKlF5T6BDWoeGSg5wSNo/azHsrA5htbsuP35VyzQTHX3o+VyUmJjJmzBiioqKIiopi8uTJZGdn25Y//vjjtGrVCj8/P1q3bs2sWbNsy8aMGcO9995bob4PPviA1q1bo7UmISEBt3IDVfz22290796dgIAAwsLCGDp0qG1ZfHw8Tz75pO356tWr6dWrF35+flx44YXs27evwnby8vK4//77admyJSEhIVx88cXs2bPHXh+LEGeVo0dh/nzjJl0BN94IO3bAmjXOjkScDSRBEI1CqaWULalbeP+f922DkQH8b/P/eHbFsyxPXE5BSQFx4XFM6jGJD6/4kAVXLbCVU0rRPqzhrhaUpy2azZdv4aU/Q1jo1pQ/EzT9Lm1kHVQrdcaTf0BA7cvbUUFBAYMHDyYuLo59+/axbds2kpKSmDp1qq1M+/bt+fPPP8nOzubdd99lxowZLFq0CIBbb72V+fPnVxhRet68eYwfP77av5+bbrqJu+++mxMnTnD48GFmzpxZbVwnTpxg5MiRjBkzhuPHj/PKK6/w5ptvVihz1113sWPHDlatWsWRI0c4//zzufTSS+02urUQZ5NZs2DsWIiKcnYkrsHDAx54wLiKIMSZkvYOwuVorUk8kcjqw6tZk7yG1YdXszZ5LbnFuQB8fOXHjOsyDoCrOl5FoFcgFza7kAtiLiDUx8nXmQGLVrxMO9a5W1i2XNP8fBlfwN6eeuopXnzxxQqv5eTkMHToUBYuXIjWmv/+978AeHt788QTT9CvXz/effddzGYz1113nW3E4sGDB3PJJZewZMkSRowYwYgRI/Dw8GDhwoVceeWV7N27lxUrVjB//vxqY/Hw8GDv3r0cPXqUJk2aMGjQoGrLLVy4EF9fX6ZPn45Sit69ezNhwgQWLDAS2bS0NL788ksOHjxIZGQkAI8++iizZs3i77//5sILL7TLZyfE2SAjA+bMgXXrnB2Ja5k40bhZefNm6NzZ2dGIxkwSBOF0R3KOcCDzAH1j+gJQbCmm3ex2FJUWVSjXIqgFvaN7E+V38nTRsNbDGNZ6mEPjPZXCQhg3Do4rH1YeKiUo0kmdcp8pO3SFkZ2dbTsIt7eZM2dWe5MywP79+0lMTKzS05BSiiNHjtC0aVPeeustPv74Y5KSktBak5+fz/XXXw+A2Wzmxhtv5IMPPuDKK69k3rx5DBkyhNjY2Gpj+e6773j66afp3Lkz4eHhTJ48mXvuuadKuaSkJJo3b17hKkTLli1tj/fv3w9Aly5dKqxXXFzMoUOHavW5CHGumD0bLrsMpBOwiry94Z57jCThk0+cHY1ozCRBEA5TaillV/ouNhzZYExHjXlqbir+Hv5kPpQJgIfZgyEth6DR9InuQ5+mfejdtDcRvhHOfQOnYCm0sO6mnUw/2Jbgpm78+CN4eTXS5KCRa968Oe3atWPr1q3VLl+xYgWPPvooS5Ys4fzzz8dsNjNmzBh0uaTolltuoXPnzqSkpPDRRx/x3HPP1bi9rl278tlnn6G15s8//2T48OF06dKFwYMHVyjXtGlTDh48iNbaliSUJQVlcQPs3r2b8PDwer9/Ic52GRnw2muwYoWzI3FNd9wBbdrA1q3QqZOzoxGNldyDIOxOa82hE4dYtGcRW1NPHqS9/8/7xL0Zx/VfX8/zfz3Pr3t/JTU3lUDPQHpE9SCzINNW9qcbfuLnG37m8UGPc0m7S1w6OQDY/uxhbvk8Gr/tx/n0fxa8GtktB2eTsjb7Tz/9NNnZ2WitOXz4MN988w0AWVlZmM1mwsPDUUrx448/VumOtH379vTq1YsJEyaQnZ3NlVdeWe22ioqK+PDDD0lLS0MpRXBwMCaTqcJNzOXjysnJ4YUXXqC4uJj169fz/vvv25ZHRERwzTXXcMcdd3D48GEAMjMz+eabb8jJybHXxyNEo/fSS3D55dCunbMjcU3+/sa9CI/Yr8ducQ6SBEGcsd/3/85Lf73EhO8m0HduXwKfDaTZrGZcvOBi5m2YZyvXPao7zQKbcXn7y3nkokf4+tqv2Xf3PjKmZ5AwPoEQ7xDnvYkzkJ0NkxfFcF4HC/MTfHD3lH8rZ/Lx8WHJkiVs27aNDh06EBgYyJAhQ9iwYQMAI0aM4LrrrqNPnz6EhYXx5ZdfVpsA3HLLLfz8889cf/31eHrW3G3hZ599RocOHfDz8+Pyyy/n8ccf56KLLqpSLigoiB9//JHPPvuM4OBg7r77bm6//fYKZV5//XXat29PfHw8/v7+dO7cmS+++MIhN9cL0RhkZrrz1luud/Br8jbBxda5C7jjDli1Su7REPUnTYzEKRWVFnEg8wC703ez5/ge9hzfw77MfXx/3feYTUYTmhlLZrD68OoK64X5hNEpvBMtg0+2se4V3YuD9xx0aPwNyVJiIeu45pIrzXTpqnjjjWBMrrFvOKslJCSc9vXY2Ngabyo2mUy88sorzJ0795TbmTRpEpMmTaryenx8PCUlxsjbHh4e/PTTT7WO9YILLmBdpT32I+WOdHx8fHjyyScrdI0qhDjpf/9rxtixYG2R5zLcg91hunXuAnx84OGHjUTqgQecHY1ojCRBOMflF+eTeCKRxBOJRPlHcV7EeQAkHEjg1u9u5eCJg1i0pcp6SVlJNA8yfqGvaH8FvaN7ExceR6fwTsSFxxHue3a3odalmnVjdzF5cQx9xvjwxhsmSQ7EOUkpdTHwKmAG5mqtn62hXG9gFfAvrfWXDgxRnCUOH4ZffmnCjh3OjqSqkpwS+ARKepXg5ucah1YTJxoDyW3ZEoC1Dwchas01/oqF3ZVaSknLSyM1N5XOkSf7OnvijydYvHUxebvySDyRyLG8Y7ZlU8+fyqyLZwHg7ebN/sz9KBQtglrQJqQNbYLb0Da0LW1C2lToTnTGgBkOe1+uQJdq1o3bxYQvm9DCPZsX7gSTyc/ZYQnhcEopM/AGMAxIAtYopb7XWm+rptxzwCLHRynOFk89BaNGpRAd3czZoVRhKbDAGuvcRXYHnp7GFYTZs1ty113OjkY0NpIgNBIllhIy8jNIz08nPS+dmIAY2xn8v5P+Zs66ORzJPUJKdgpHco6QmptKqS4FoPD/CvEwG6P4/rznZ1amrbTV625yJzYwlmaBzWgV3Mr2epfILmy/czstg1ri6eb4YeNdlbZo1o/fza2fRtLcLZ8Pl/gQ0N1F9gZCOF4fYI/Weh+AUupTYDSwrVK5fwNfAb0dG544W+zdC599Bu+9dwhwvQTBI8wDXrbOXchNN8Gjj3qyeDEMc50ewUUjYJcEobaXmAUcyz3GoaxDZBVmkVWYxYmCE7bHbiY3Huh/srHgkI+GkHgikbS8tAo9/AA8O+RZpl84HTCa+7y/4X0qC/UOJco/iqzCLMJ8wgB46MKHWL9pPSMvGEmzwGZE+kViUlXbxni7e9MhrIMd33njpy2afybs5pb5ETQz5/Phr94EDwh0dlhCOFNToPwgDUnA+eULKKWaAlcCg5EEQdTT9OkwbRoEBbnmqOKl+aXwO5SeX4rZ23W6uHZzg0mT9nHffefxzz9gdp3QhIs74wShtpeYXU2ppZSi0iIKSwuNeUkhhaWFNA9sjrvZuMloa+pWkrOTySvOI684j9ziXNvj2IBYbuhyAwCZBZlM+mHSyXJFRrnj2ccpWVPCR1d+xMVtLgZg9urZ/HfZf6uNKcI3okKCsOf4HhJPJAKgUAR7BxPmE0aod2iFNv69onvxzqXvEOUXRRO/JkT5RxHhG2G7alDe5e0vJyAlgPNjzq+yTJyChg237eGWedbk4BcvQgYFOTsqIZytuu6VKo+yNwuYrrUuPVVvTEqpycBkgMjIyBpvRq+rnJwcu9VlbxJb7WzcGMjy5R2ZNGm1S8VVQRrwBCzvshzCnB1MRd275/DVVzFMn36USy9NcXY4Fbjq9+mqcYHjYrPHFYTaXmK2OZZ3jDdWv0GJpaTCVKpLuarjVbYbZZfsW8J3O7+rUq7EUoKnmycfjP7AVufN397MoROHbMvLH/hP7DGRB/s/aKtzxPwRtuY3le29e6+tqc1jfzzGl9uqv5duSMshtgQBqLEcwPH847bHzYOa061JNwI8AwjwDCDQM9D2uOwsf5nvr/seb3dvQr1DCfIKsvUaVFnzoOZM7jm5xu2LM5O/P5/cBE/GJ4YTY8pn3kJPQocGOzssIVxBElB+iOkYILlSmV7Ap9bkIAwYpZQq0Vp/W76Q1noOMAegV69eOt5Od1UmJCRgr7rsTWI7PYsF7r8fXnkFRoy4yGXiqqwwuZCVrOSCfhfgGe1azXITEhJ4//0gLr00iEceaU9AgLMjOslVv09XjQscF5s9EoTTXmKuLDEzkbt+rv6OmZK78ji+JR6Ar/p9yVvD36u2nHehFx9cMY946/Ol/47kUOjRasuufWIVyxb9AsDW5psovcVIDjxLrFMpqNJg3Eo8yW/dDzKMeqIvGkDP5t3xKvbEs9jTNvcu9iLmu6Ysu9mos8RUymMdHsar2JMuxa8TUpyGTzEkF08mr3ggvZ+YA6VGMjGcq2nDMzV+Nsv4pcLzE0AQUzCzFIAkrmYfE2nK17TmXQAy6cImah7ptTITsJfJVdYPZDNdMRKpErz5i69rXSdQ7fpm8unPVbYya5hLPk1PGVv5z6Cm9XsxER+MwaS2M51jtr+E2qlu/Q48T0SlzxkgF28e414jOfjeg7CLG+d4DUI0gDVAW6VUS+AwcB1wffkCWmtbX8dKqXnAwsrJgRA1+fhjo5nM2LHOjqRx69kTRoyAZ54xJiFOxx4JQm0uMVe4fBwYGEj86njMFnOVqfmxtlgwhqHttr8Pd/3sjZ8lhZaWr3CzgLK4s9fyIJ6lFih3oP1/304i2y3IVo9HqQdupW64l7gTmB9oq7NTYk8W/3cxHpZCLuJS2/p/8yr5xNKSG22v3bZsIFcypMY3Xtb5p8kCA7cZd//04V18rK+biSCVaNzLfcwaky2W2tLlxrMrW19XqFPVo86q61uo2H9zXeusbn2FpdJrHnWqt+b1T/7ZadzrHGt161f3Oedj4iE6E8caJs3zYKsvkFDHTTUwe1xuDAwMJDs72z4BWZWWltq9Tntx1djqE1dBQYHTLoVrrUuUUndh9E5kBt7XWm9VSk2xLn/bKYGJs0JuLsycCV98ATJW4Jl7+mno3Bluuw1atHB2NMLV2SNBqM0l5oqXj3v00l998dVpKx7AAOOBCcxe5rJ6sORbDxp9nrZdapmQX1pNWnIaPidX6GVd3+SVCCbjl6hDoYX2pXWrtPz6qb8mMODCASiPX8HNOPhsWmwhurhudVa3vnK7CDzeBCCoVDOgsOpYBTVZvmw5rQbPrrq+aQB43QOAWWsG5Ne+TqDm9av5nE8V24CLBlR8sYG/p7L1K3/OgZmay6420aMV3HiTB4MHx9dpG45ij8uN27dvx9/f3z4BWWVnZ9u9Tntx1djqE5eXlxfdu3dvoIhOT2v9E/BTpdeqTQy01uMdEZM4Ozz/PAwYABdc4OxIzg7R0TB1qjFw2hdfODsa4erskSCc9hJzFSYw+9TvVnqlVLXrnmmvAdWtb/I8w5GvPKq+T5O7Cc5goMXq1lfm6j+TGnmByePke6tu/Zo+59qq9/fkdeq/jYb4nqpbP7/IxOhroVVreO89WLbsjDYh7Cg+Pp6VK1fi7u6O2WymZcuWzJw5k2uuuea06yYkJDB06FAyMjKqLGvRogVPPvkk48aNq9XrQoiGs2MHvPEG/POPsyM5uzzwAJx3Hvz8M4wc6exohCs747FftdYlQNkl5u3A51rrrWdarxDOkpsLl10GzZvD3LnICMku6D//+Q85OTmkp6czfvx4rr/+evbs2ePssIQQdqA1TJliDPIVG3v68qL2vL3hrbfgjjuMfZ0QNbHLoY/W+ietdTutdWut9VP2qFMIZ8jNhUsvNXZK770nfUa7Ojc3NyZNmkRJSQkbNmwA4Ntvv6Vnz54EBQXRsWNHFixY4NwghRB18sEHkJcHd97p7Ehqzy3YDf5jnbu44cOhXz947DFnRyJcmev/JQvhINnZcMkl0KYNvPuuJAeNQVFREW+99RYA7dq1Y/HixUyYMIFvv/2W/v37s3btWkaMGEFsbCwXXXSRk6MVQpxOairMmAGLFjWu32CztxkGn3lzZ0d55RWjqdENN0C3bs6ORrgiSRCEALKyYNQo6NgR3nlHmhUBJKiEOpX36+FHr3W9bM/XBawDIF7H215b23MtOetzKqxXfnltPfXUU7z44otkZ2fj7u7O3Llz6dKlC5deeilTp05lwADjRvc+ffowbtw4PvroI0kQhGgEpk2Dm25qfAetRWlFMA2Kfi3CI6zqIKWuJiLC6O508mRYubJxJWPCMeQwSJzzTpww+ofu3FmSg8Zi5syZZGZmkpaWxqhRo/j9998B2L9/P8899xxBQUG2ad68eSQnV+lYrQp3d3eKi4urvF5cXIy7+xn0LCCEqJXvv4e//mqcTV9MXibobZ03ErfeCr6+8NJLzo5EuCK5giDOaRkZRnJw/vnw2mvS13Z59TmzX17PrJ5Vuuwsf4XBHoKDg5k7dy6tW7fmu+++o3nz5owfP54HHnigznW1aNGiyo3OOTk5HD16lFatWtkrZCFENY4cMc5mf/WVcdDa2Lj5ucFY67yRUArmzYNevWDoUOjRw9kRCVfSeFJdIewsNRWGDDFu1pLkoPEKCQlh2rRpPPzww9xzzz3MmjWL5cuXU1paSlFREevWrWPt2rUV1ikoKKgwlZSUMH78eObMmWNbNyMjg6lTp9KpUyenjjMgxNlOa7jlFpg0Cfr3d3Y09VOcUQzPWeeNSPPmMGuWcS9CXp6zoxGuRBIEcU46eBAuvNDoseiVVyQ5aOymTp1KSkoKycnJzJkzhwceeICwsDCioqK49957yck5ed9DaWkpEREReHt726a77rqLG264gaeffpo777yTkJAQzjvvPPLz81m4cCFubo3nrKAQjc3s2XD8uNGtaWNlybfAL5wcyLURueEG6N7dGCNBiDKy1xPnnG3b4OKL4b77jFElReOSkJBQ5bWAgACOHz9ue37JJZdUu258fDxa6xpHLJ40aRKTJk2yW6xCiFPbuhX++1/j3gO51cd53nzTuDF81CijNz8hJEEQ55S//4bRo+HFF0EGxhVCCOfJzoZrroHnnoO2bZ0dzelprTmUdYi84jwKSgooKCkgvzifgpICTKkmPPG0lc3Iz+Bw9mGCvYIJ9g7G280b5cKXqoOC4OOPje9j1Spo0cLZEQlnkwRBnDMWLzYupb7/vtG0SAghhHNYLEZ3pgMGGL3pOJPWmqO5R9mfsZ8DmQfYn7mf/Rn7ScpOIsAzgM/GfGYr2+71dhSWFlapIzQrlC/50vb8t32/ce2X19qee5g9CPIKItwnnJiAGOZfNZ8wnzAAth3bhr+HPzEBMU5NIgYMgIcegiuvhBUrwMfHaaEIFyAJgjgnfPghPPig0UOGtYt8IYQQTvLkk0ZHEZ9+6tjtJmcns/noZrpEdiHKPwqABxc/yIsrX6y2fIRvhO2xUooukV3ILMjE290bLzcvvN288XTzxC/Dr8J6AZ4BdAzrSEZBBhn5GRSWFpKam0pqbipbj23Fz+Nk+SkLp7A8cTm+7r60D2tPh7AOdAjtQJfILvRu2pto/+gG+CSqN3UqrF8PEyfCggVyf965TBIEcVazWIwb3z75BBISjIHQhBBCOM/33xuj1a9eDZ6epy9fX8dyj7E2eS1rktewNnkta5PXkpKTAsCHV3zITV1vAqBdaDtCvENoGdSSlsEtaRnUkhZBLWgW2IxI38gKda6etLrabRUmF7Ly7pW25yPajGBbm2225wUlBWTkZ5Cam8qRnCN4uXnZlkX7RxPhG0FqbirrU9azPmW9bdnE7hN59/J3ATiac5TlicvpH9vfltzYm1LGeEADBhjjI9x/f4NsRjQCkiCIs1Z+Ptx8MyQnG20qw8OdHZEQZx+l1MXAq4AZmKu1frbS8huA6danOcDtWuuNjo1SuIqNG42z0z/8AFF2PMbVWpOam0qkn3FAX1hSSOwrsVWaAwV6BtK1SVcCPANsr03oMYFJPRu2cwIvNy+i/KOI8o+iK10rLPt0jHEZ5Xj+cXam7WRH2g62HdvGhqMbGND85CXvZQeX2ZottQxqSb/YfvSP7U+/2H6cF3EeZpN9hkP29oavvzbGB+rQQZrknqskQRBnpQMH4OqrjR+3334DL6/TriKEqCOllBl4AxgGJAFrlFLfa623lSu2Hxiotc5QSo0E5gDnOz5a4Wx79xq95Lz5pnHweSa01uxK38XifYtZnric5QeXk1ecR/qD6ZhNZjzdPBnYYiAFJQX0iupFr+he9G7am9bBrau08zepM+/x3aOJB/xgnddTiHcIF8RewAWxF1S7PMgriGGthrEqaZVxn0TmfhZsXmBbdnjaYXzc7XPjQLNm8N13RnIgTXPPTZIgiLPOr78aN79Nnw733CNtKIVoQH2APVrrfQBKqU+B0YAtQdBa/1Wu/CogxqERCpeQkgLDhxtNPseMqX89iXmJTP5hMov2LiLxRGKFZWE+YSRlJdE8qDkAv9zwi+Nu+lWAl3XeQIa1Hsaw1sMotZSyJXULKw6t4K9Df7Hi0ArCfMJsyYHWmq5vd6V9WHuGtByCX54fWus6fxZ9+hj3IYwZY+xXu3Y9/Tri7CEJgjhrWCzw7LPGoDuffgrx8c6OSIizXlPgULnnSZz66sAE4OfqFiilJgOTASIjI6sd76I+cnJy7FaXvZ0rsWVnu3HPPd0YNCiV9u0TqW21pbqUndk7KbIU0S2oGwAZORm8u91okx/oHkjP4J50D+pO54DONPNpxv4N+9nPfrvEXSdpwDXwxxd/QJhjNhlHHHEhcUwMmUhBaYHt+0rMS2Rz6mY2p27my21Gz0r3bbqPHkE96Bnck76hffFz8ztFzSe5u8Ptt4czdGgbZs36h6ZNC+z6Hlz1f8BV4wLHxSYJgjgrJCcbVw0KCowb32LkHKUQjlDdKUldbUGlBmEkCBdWt1xrPQej+RG9evXS8XbK8BMSErBXXfZ2LsSWng4jR8Lll8PLL/uhVKtTlk88kciiPYv4dd+v/LbvNzILMukX2497rrgHAMtSCy/EvMCgFoPoHtXdLs2D7MFSbGHZ3GVcNPoiTO7OjUlrTb++/ViybwlL9i9h0a5FpBam8svRX/jl6C+suHUF/WL7AZCUlUS4TziebjXfLR4fb9wvMnNmXxYvtu+YFa76P+CqcYHjYpMEQTR6330Ht90Gt98OM2eCm/xVn9MWLFjA888/z8aNzrsPdsqUKbi5uTF79uxql//5558MGDAAras9lm5MkoDYcs9jgOTKhZRSXYC5wEitdbqDYhNOlpICw4YZI/M+++ypm3su2LSAJ5c/yY60HRVebxPSht7RvW1NZEzKxP39XK9rHZO7CVrj9OQAjO5Y24S0oU1IG27rdRu/L/2dkI4h/LbvN5YnLqdP0z62srd8dwsrElcwsMVAhrcazvDWw4kLj6vSHOm228BsNpKFX36Bzp0d/KaEw8mhlGi0MjONLtiWLDFuourf39kRCUfZt28f06dPZ/ny5eTk5BAcHEyvXr347LPPuOGGG7jhhhucGt/bb7/t1O070BqgrVKqJXAYuA64vnwBpVQz4GvgRq31LseHKJzhwAEYOhQmTIAZM06+rrVm09FNLNq7iAtiLrD10qPR7Ejbgb+HP0NaDWF4q+GMaDOCVsGnvuLgKgqPFMIYKNxSiGeTBuy7tR5MykS3Jt3o1qRbheRKa012YTb5Jfn8sucXftnzC2B0uzqs1TAmdJ9QoReliRPB39/4Xr///sxvNBeuTRIE0Sh98w3cdReMHm10mxcQcPp1xNlj1KhRDB8+nJ07dxIQEMDhw4dZuHDh2XBGvlHRWpcope4CFmF0c/q+1nqrUmqKdfnbwCNAKPCm9axkida6l7NiFg1v/Xq44gqjo4g774TU3FQW713Mor2L+HXvrxzNPQrA5B6TbQegl7S9hGXjl9E3pi/uZncnRl9PFiDdOm8klFKsmriKIzlH+G3fb/y691d+3fsrydnJfLjxQ/rH9rd9P9uPbSc5O5nRV/fHz8+Lyy6D99+XLlDPZs6/FiZEHSQmGj0qPPSQcSPym29KcnCuSU9PZ+fOnUyZMoXAwECUUsTExDBlyhQ8PT2ZN28ebdq0sZXPzs7mpptuIiQkhObNm/PRRx8RHBxsu8nrscceY8iQIUyfPp3w8HBCQ0N5+eWXOXjwIIMHD8bf35+ePXuyfft2W515eXlMnTqV2NhYwsLCuOKKK0hMPNmjyvjx45k4caLt+e7du4mPj8ff35+uXbuydu3ahv+gHERr/ZPWup3WurXW+inra29bkwO01hO11sFa627WSZKDs9gnn8CIEfDKK0ZycOM3NxL5YiTjvhnHx5s+5mjuUaL9o7ml2y2M7jDatl6wdzADmg9onMlBI9fErwnjuozjoys/IuW+FDZN2cSLw15kZNuRtjLvrHuHoR8PJeS5EGZnjmTsU58wcXIxTz2lkfMyZye5giAahdxceP55eOMN48rB/PkytkFDU4/X3GD4nUvfYXLPyQDMWTeH2xbeVmNZ/ejJvUfPOT0rjBJaeXlthIaG0qlTJyZOnMiUKVPo1asXHTt2rLELv6lTp7Jv3z527NiBl5cXkyZNorS0tEKZZcuWMXbsWI4cOcKvv/7KpZdeyk8//cQbb7xBmzZtuOWWW5g6dSq//vorAPfeey8bNmxg1apVBAUFMXXqVC677DLWr1+P2VxxsKKSkhIuu+wyhgwZws8//0xSUhKXXXZZnd6zEK7Moi1sSN7MtAcLWb04lk++LGD0wJYAxPjH4OXmxUXNL2JE6xGMaD2i2jbuwjUopegc2ZnOkRVvMmgZ1JKukV3ZeHSj0RyJX2Ds/Tw+5wcWLPZgzY/n4evrpKBFg5ArCMKllZTAvHnQsSPs2mVcun7sMUkOznVlvTjMmjWLbt26ERkZyRNPPFGliZHFYmHBggX897//JSIigoCAAJ5++ukq9bVr146JEydiNpsZOXIkoaGhjBgxgo4dO+Lu7s7111/PmjVrbHV+9NFHPPnkkzRt2hRfX19mzZrF9u3bWb16dZW6//77b/bv388LL7yAt7c3bdu25b777muYD0YIBzmcdZh5G+Zxw9c3EPF/veh5YTp//JVD/vjOHPT6wVbuwf4PcvzB4ywat4hpF0yjU0QnSQ4aoal9p7JhygZS7kvh4ys/5sYuN9Ik2kLxjf3APZc+fWDDBjh04hDTF09nyb4lFJTYt0tU4VhyBUG4pNJSownR448b3at98onchOxotT2zP7nnZNvVhPKys7Px9/ev8Nq6yevsEltYWBhPP/00Tz/9NHl5eXz++edMmjSJpk2bYjKdPO9x7NgxioqKaN68ue218o/LREVFVXju4+NT4TUfHx+ys7NtdRYUFNCq1cmbJ/38/IiIiODQoUNccEHFUVCTkpKIiIjAx+fkCKctW7as5zsXwjmO5x8nxDsEgBJLCR3f6Eh2YTZsugEW/YJ//HtccesuRrR9leGth9vWC/YOdlbIogGUNUca12UcWmu2pG7B+14fVv5kDIQ34F8pfB3yIs//9Tzebt6n7R1JuC5JEIRLKSw08e678NJLEBoKb78NgwbJaMiiZj4+PowfP57XX3+dDRs20KNHD9uy8PBwPDw8OHjwIK1btwaocK9AfYSHh+Pp6cn+/fttdebk5JCamkpsbGyV8k2bNiU1NZW8vDxbkrB/vxMGchKiDlILUpm/aT5/HPiDPw7+QeKJRDIfysTLzQs3kxtDI25k1bvXoVPjmP3DCa4a9JAc/J1jypojAbS5EQYOhKvHxtH0xB78rp7GzpJvK/SO1DKoJbv/vRuzyXyqaoWLkARBuISUFCMZeP31vvTrZ9x8LImBqE5GRgbPP/88N9xwA+3bt0cpxXfffceWLVt46KGHyM3NtZU1mUxcf/31PPbYY3Tu3BkvLy9mzpx5Rts3mUzcdNNN/Oc//yEuLo6goCDuu+8+OnToQJ8+faqU79u3L82bN+ehhx7iueeeIzk5mVdeeeWMYhCiIew5vocnlz3J8sTl7MvYV2GZn4cfu9J30SG4C6+9BsuefYOJE+HRR8HbO9RJEbsO5a6go3V+jmrWDP5e7sfs2X488cQ3TBmbS4/rFvJn6k/8uvdXWgW3siUHxaXFtJ/dnmhzNFd4XEH/2P70iOpxygHbhGPJPQjCaUpKjL6UR4+GuDg4ehRmzdrAwoUweLAkB6J6Hh4epKamctVVVxESEkJ4eDhPPvkkr7/+Otdcc02V8q+++irNmjWjXbt2nHfeeQwbNgylFJ6e9d8RvfLKK/Tq1YvevXvTrFkzUlJS+P7776vcoAzg5ubG999/z8aNG4mIiOCqq65i8uSqTbKEcJRjucf4YecPzFwyk1dXvWp73aRMfLjxQ/Zl7MPX7MuotqN4fujz/D3xb44/mMGhtV3o2tUYe+avv4zBz7y9nfhGXIhHuAe8aZ2fw0wmuPtu2LIFCnN8eeyafxGf8SGJdyfz+TWf28ptOrqJ/Zn7WZG+ggcWP0C/9/sR+GwgAz4YwEO/PUTiiTO70ivOnFxBEA5VWgorVsDnnxuDm7VqZQyks2AB+PlBQkKes0MULs7X15f33nuvxuXjx49n/PjxtucBAQHMnz/f9nznzp1orW33Ijz22GNV6jhw4ECF5/Hx8ZSUlFSI4fXXX+f111+vNoZ58+ZVeN6hQwf++OOPCq/dc889Nb4HIexpXfI6luxfwvqU9axNXsvejL22ZV0iuzC171TAaALy1iVv0Tu6N5k7MxkyaAhaGyPnXniV0Zvcc8/BZZfJCZzKSgtK4S8o7VuK2Uua0ERGGuMkrFpljIfxzDOK//wnhOuvN0Zk7hHVg93/3s3cX+dy3Pc4fyb+yfa07fyZ+Cd/Jv7JzV1vttX19tq3SclOoXfT3vSK7kUTvyZOfGfnDkkQRIPLyYHff4effjKuGEREwLXXwrJl0Lats6MTZ7v9+/eTkpLC+eefT1paGvfeey/9+/cnOjra2aEJYTdaaw5nH+aflH9Yn7KesZ3H0i60HQCfbf2MF/56wVbWx92H3tG96RvTl/6xJ3t/UEoxpdcUAH7b9geffw4vvwzZ2UZTojFjjDPEoqqSzBJ4GUpuLcHcRBKEMn37QkICLF1q/A09+SRMmwbjxinahLTh4iYXEx8fD0B6Xjork1ay+vBq2oe1t9Uxb8M8/j78t+15U/+m9IjqQZfILgxtNZT4FvGOfVPnCEkQhN3l5cHff8Py5UYS8PffxpDsI0caPxLt25++DiHsJT8/n8mTJ3PgwAF8fHy46KKL5B4A0egVlxYze/Vsth7byrZj29h2bBsnCk/Ylkf5R9kShOGth5NXnEf3Jt3pEdWDzpGdcTNVv/s/cgTeew9mzepLXBw88IAxKnI1redEOZ5NPOFL61xUoJTRbHjQICNZeO01mDkTbr4ZevQ42UYt1CeUS9tdyqXtKg7P/NCFD/HXob9Ym7yWdSnrOJx9mMPZh/lh1w9kF2bbEoSdaTt5avlTdI4wxnGIC48jJiAGk5Kstj4kQRBnpLQUdu82+j9ev95ICjZvhs6dYcAAmDoV4uOhUm+XQjhMXFwcW7ZsqfBaWZelQriqrMIs9hzfU2EqthTz8ZUfA+BmcuOxPx4jqzDLtk6IdwjdmnSjR5MedGvSzfb60FZDGdpqaI3bys2Fb74xBqD8+2/jSsEzz2xi4sTeDfb+zjaWYgvsBUt/CyZ3OSCtjlJGkjBoEBw4YHRG8u9/d+eNN2DcOKNlQVhY1fWu6HAFV3S4AjAG5duVvouNRzayOXUzA5sPtJVbfXg1H2/6uMK63m7etA1tS/vQ9rx72bsEegUCUFBSgJebDKh0KpIgiFopKTH+oXftMhKCbdtg40bjRqQmTaBrV+jeHZ5+2rhaUK7LdyGEEJUUlRaRkp/CHwf+oHVIa2ICYgCYu34uDy95mGN5x6qs42H24IPRH+BmckMpxcwBM/Fx96FTeCfiwuOI8I2odVejR4/Cjz8azT6XLoULL4Tx4+Hrr43f74SE3NPWIU4qPlYME6F4ZDGe0XIV4XRatIDnn4fhw1dSVDSQ+fNhxgzo3Rsuv9y4z6W64WJMykSHsA50COvAv/hXhWUXNruQty95m82pm9mcupmdaTs5mnuUTUc3sTNtJ59c/Ymt7EUfXMSBzAO0Cm5Fi6AWtAhqQcuglrQIasF5Eec18LtvHM4oQVBKXQM8BnQE+mit19ojKOFYWkNmJiQlnZwOHz75eP9+OHjQGLCsbVto1w7OO8/I+Lt2hYAAZ78DIYRwHXnFeWQWZBLtb9znYtEWHvrtIQ6eOEjiiUQSTySSkp2CRsNqeGPUG9zR+w4AvNy8OJZ3DC83L9qEtDGmYGNe1mSozIP9H6x1TDk58Oefxv1gS5caJ3qGDzeuFrz3njHujBCO5uamGToURo0yrmQtXmwkrU8+afxNDhx4cjrdbWMtg1tyW6/bKryWWZDJ7vTdpOSkVBh/ISkriWN5xziWd6zC/Q0AD/Z7kJHuIwHjBv9n/nyGaP9omvo3NeYBTW3P/T3P3uYRZ3oFYQtwFfCOHWIR9WSxGP9Y2dnGTiA7u+qUk2MkAWlpsH17HCaT8TgtDdLTwcsLYmIqTn36wFVXGZl+q1ZGGSGEONeUWkrJKMggPS+dKP8oAjyNsyJL9i1h4a6FHMk9Qkp2Cik5KRzJOUJWYRYtg1qyb6oxloBJmfhgwwek5aXZ6jQpE+Ee4bSNaEuw18nRhi9vfzlJ9yYR5R9V77bTxcVGU881a05Ou3cbZ2cHDzYGojz/fDiDnn7F888bH+igQTWXWbrU+PAfrH0idy7z9TXud7niCqP58saN8Mcf8NlncNddEBJiNF3u3t2YunY9ffPlIK8gejet2lQuaVoSydnJHMg8wIHMA+zP2G/MM/cbzfPSjXLbjm3jq+1f1Vj/sQeOEeZjtIt6ZvkzJGcnE+4bTrhPeIV5tH80QV5B9fpcnOWMEgSt9XagzqMn5uQYXV1qXVZP/R9v2BBMQcGZ13Mmjy0W44+5tNRoilP2eOfOGNasqX5Z+cfln5eUQGHhyamgoOLzyq8VFBg3BXt7G/8oZZOfX8Xn/v4QGGic+Q8PP8bAgRGEhRnt/UJD5eBfCFE/SqmLgVcBMzBXa/1speXKunwUkAeM11qvd3ScuUW5ZBZkklWYVWUK9g62tXE+UXCCsV+NJT0/nfS8dNLz08ksyLTV89W1X3FVx6sAo83zrL9nVdmWh9kDD3PF/vCfHfIsXm5eNAtsRrPAZkT7R7Ni+QpbDy5lAjwDbAnI6eTkwN69sGMHbN9+ctqzxzip07u3Md12G3TpIgmBXfXubTSa//zz6pOEpUtPLhd1ZjZDjx7GdO+9xnHWli3GseOGDcb9Mlu2GFcVunWDDh2MFg5lrRxOd0XMpEzEBMQQExDDhc0urLI8ISEBgIEtBvLp1Z9yOPswydnJJGcn2x6n56UTWm6QwM+3fc6GIxuq3d74buP5YPQHAOxI28Et391CkFeQMXkGEewdbHt+VcerbElHWl4aFm3Bz8MPbzdvh45W7rB7EJRSk4HJAO7unbntthPW18uW6wr9Ktf29ZKSaL744vgZ11Pd6+VfO9XrSmlMJjCbNSaTMZnNmtJSE2lph2zPT86rlnV313h5YX1ssU0eHhY8PE79mpdXaZ16mGjePAez+RgZGZCRYZxZchU5OTm2f0xX4qpxgX1iCwwMtPuNu6WlpS57M7CrxlafuAoKCpz2t6mUMgNvAMOAJGCNUup7rfW2csVGAm2t0/nAW9Z5jQpLC1mfsp684jzyi/PJK86zTe1C2zGg+QAA9mfs56WVL9mW5ZcYZbMLs8kqzOKHsT/Y6py8cDL/2/y/arfXL7afLUHwcvPi5z0/V3yfKIK8ggjzCatwVn9IqyG8YH6BJn5NiPKLMub+UQR7BVfZkU/oMeFUb7mC0lLj6u7RoxWnpCSjuefBg8Y9Yfn5Rjvtjh2N6fLLjT7n27c3zsaKBjRokHHwf+218MkncLgQ8IXFv0FTTxg7tubkQdSZyWQkuV26nHytpMS4L3LjRmO+aBHMnm08NpmMkZ1jYqBpU2Mq/zgiwrgi4Xaao+CyhL46WusK/+ePDnyUA5kHOJZ7zNZ8qexxy6CTN1QczTnKqqRVNW6zf2x/W4Jw/6/38+HGDwHjd8jXwxcPPAjZHEK/2H58eIWxrLi0mEk/TMLPw882+br74u3ujZebFwObD6RlsBFDSnYKydnJ+Lif+mbR0yYISqnfgOpGpZiptf7udOuX0VrPAeYA9OrVS69dG1jbVU8pISGhyhkYV+GqsblqXOC6sblqXGCf2LZv346/nbuays7Otnud9lJdbC1atODJJ59k3LhxToqqfp+Zl5cX3bt3b6CITqsPsEdrvQ9AKfUpMBoonyCMBj7SWmtglVIqSCkVpbVOqanSvcf30nNOz2qX3dbzNluCkJaXxhtr3qgxuOP5x22PI3wiiPIzmgcFegXaztQHeAbQPvRk38uebp4sHLuQYO9gQr1DCfUJJdgruEL7Zdubb9qHPk37AMbBSn4+5GdDYqpxZTc//+Q8P98443/ihDFlZsL27W15552Kr6WlwfHjEBRkDDZVNkVEGAc4/foZzT6bN4fwcBmwzKkGDTKSg1GjwBQOLIDbJoPlmDHwjyQHDcrNDeLijKk8rY3/o0OHTt5Tefiw0e162eNjx4wTpH5+J1tSlE2BgXD8eCtWrKi+ZYafn9HqwstL4eVlXJnz8oLR7a+o1f9j96jurLh1BZkFmWQWZJKRn2F7nFmQSaRfpK2sl5sXYT5h5Bblkl+ST05RDgDHjx+nRVALW7mcohxbIlGdT6/+1JYgfLzpY6b/Nr3KVc4qn+/p3ojWuua+0YQQwoH8/PxsjwsLCwHwLNduIicnx+ExneOaAofKPU+i6tWB6so0BWpMEGITY3nnsZpvbUsgwfZ4KUtJccvl48CdmC0mTBYT954wTjPOeXwtZq34H7sYwQhGM7pWdfriSxFF3EI6xWRRTBLTyKEZJTxOE/bgSzHuTOAow8iosc4y7tYpANjMfjRHCeQE42lDMK0pZBF+LCOQE5jpylEmQRrGtLVqfblUzMDa8RLRLAQgmUvZxX1EsZD2vARANu1YV8dbBaNYCAyqsL4fu+jFyZtAE1hapzprWj+ekwfSa3mHHNpVWbe88t9VTev35Db82QXATu4jhYp9659OdetX9zkbh1G/nlyxsBAohmHD6rS9hhTv7ABOIb4B6lRAuHXqcYpyFhSZJ4JIPxFK+t5Q0jGmLALIxp9s/DlinWfjTw5+tnkBXhTgRSGetsdFeOJBIV4U4Gmdlz12owQ3SjBTWu6xJ26EYiaowrJ/s9j22ExvrqI7ZkoxUUqJWVNi0pSYLZi05r6bXsKEhVKlGRn+LMVmCyVmTZFZU+JmsZbVLHlpGzuzH0Gh+SfKQlTMDMxYSOK5Gj8f6eZUCNFolE8AJk6cSElJCfPmzXNeQKK682W6HmUqNENtd5oDxMoCSooZmp6ECQsKDRgJQne9GRMWTFjwJRSo281WL/AA7hTjTjE53EspzXiTO/BlD+4Uk8qtZFC3A8GHebbSgWdrOrOFaP4CIJmWHK1TjcJVNGceZvKcHYaoJROaEDIIIYO27Dnj+iwoivCokDSUPS7BjVLM1tTg5OOa5jUt06XKmIoVFkxoFBqFRZuISLU+Lv+67bGJYuvjjimK9inG45rTA4w2VPWdgCsxzgYVAkeBRbVZr2fPntpeli5dare67M1VY3PVuLR23dhcNS6t7RPbtm3bzjyQSrKysuxeZ3kTJkzQN998s+35jBkzdMuWLbWvr69u1aqVfuWVV2zL9u/frwH90Ucf6Y4dO2o/Pz89bNgwnZycbCvTvHlz/dRTT+nBgwdrX19f3alTJ71ixYoGfQ+V1eczO9V3B6zVZ/Abf7oJuKD87z4wA5hRqcw7wNhyz3cCUaeqV/YRzueqsblcXD/8oLWXV1m/Jcbk5WW87iJc7jMrx1Vjc9W4tLZvbKfaR5zRcH9a62+01jFaa0+tdaTWesSZ1CeEEPUVFxfHn3/+SXZ2Nu+++y4zZsxg0aJFFcp89tlnLFu2jB07dpCbm8sjjzxSYfn777/Pa6+9xokTJxg2bBg333yzI99CY7QGaKuUaqmU8gCuA76vVOZ74CZl6Auc0Ke4/0CIRsXLy7ir3MsLrVSF50I0ZjIeuBDirDBu3Diio6NRSjF48GAuueQSlixZUqHMo48+SlhYGAEBAVx//fWsXVtxbMfbbruNTp06YTabmThxInv27OHEiROOfBuNita6BLgLWARsBz7XWm9VSk1RSk2xFvsJ2AfsAd4F7nBKsELY29KlRm9FP/0EX3zBgVtugS++MJ6PHWssF6KRknsQhBDVOvPeUWrfG4+u0iK97l577TXeffddkpKS0FqTn5/P9ddfX6FMVFSU7bGvr2+VLkUrLwejZ6HAQPv0unY20lr/hJEElH/t7XKPNXCno+MSokGVH+fA2lvRQT8/Wpb1KFfWBap0dSoaKbmCIISoVsVGtXWfsrKya132TK1YsYLp06fzzjvvkJaWRmZmJpdddllZm3chhLCvNWtOffBfNk7CmjWOjUsIO5EEQQjR6GVlZWE2mwkPD0cpxY8//sjPP/98+hWFEKI+Hnzw9FcGBg0yygnRCEkTIyFEozdixAhuvPFG+vTpg1KK0aNHc+WVVzo7LCGEEKJRkgRBCNEozZ071/bYZDLx1ltv8dZbb1VbtkWLFlWaG40fP57x48fbnh84cOC06wghhBDnAmliJIQQQgghhLCRBEEIIYQQQghhIwmCEEIIIYQQwkYSBCGEEEIIIYSNJAhCCCGEEEIIG0kQhBAAWCwWZ4cg6kh6WRJCCNEQJEEQQuDr68vhw4cpKiqSg85GQmtNeno6Xl5ezg5FCCHEWUbGQRBCEBMTQ1paGgcPHqSkpMQudRYUFLjswaurxlbXuLy8vIiJiWnAiIQQQpyLJEEQQmAymYiIiCAiIsJudSYkJNC9e3e71WdPrhqbq8YlhBDi3CJNjIQQQgghhBA2kiAIIYSoM6VUiFJqsVJqt3UeXE2ZWKXUUqXUdqXUVqXUVGfEKoQQom4kQRBCCFEfDwFLtNZtgSXW55WVAPdprTsCfYE7lVJxDoxRCCFEPUiCIIQQoj5GAx9aH38IXFG5gNY6RWu93vo4G9gONHVUgEIIIepHEgQhhBD1Eam1TgEjEQBOeYe7UqoF0B34u+FDE0IIcSac0ovRunXr0pRSB+1UXRiQZqe67M1VY3PVuMB1Y3PVuMB1Y3PVuMB1Y7N3XM3PZGWl1G9Ak2oWzaxjPX7AV8A9WuusGspMBiZbn+YopXbWZRun4KrfNUhs9eGqcYHrxuaqcYHrxuaqcYF9Y6txH6Ea+6BISqm1Wutezo6jOq4am6vGBa4bm6vGBa4bm6vGBa4bm6vGVR3rAXy81jpFKRUFJGit21dTzh1YCCzSWr/shDhd9jOV2OrOVeMC143NVeMC143NVeMCx8UmTYyEEELUx/fAzdbHNwPfVS6glFLAe8B2ZyQHQggh6kcSBCGEEPXxLDBMKbUbGGZ9jlIqWin1k7VMf+BGYLBSaoN1GuWccIUQQtTW2TCS8hxnB3AKrhqbq8YFrhubq8YFrhubq8YFrhubq8ZVhdY6HRhSzevJwCjr4z8B5eDQKnPlz1RiqztXjQtcNzZXjQtcNzZXjQscFFujvwdBCCGEEEIIYT/SxEgIIYQQQghhc1YlCEqp+5VSWikV5uxYAJRSTyilNlnb3f6qlIp2dkxllFIvKKV2WOP7RikV5OyYyiilrlFKbVVKWZRSTu9FQCl1sVJqp1Jqj1KqutFinUIp9b5SKlUptcXZsZSnlIpVSi1VSm23fo9TnR0TgFLKSym1Wim10RrX486OqTKllFkp9Y9SaqGzYzkbudo+Alx3PyH7iDrFI/uIOnDVfQS4/n7CkfuIsyZBUErFYtwol+jsWMp5QWvdRWvdDaObv0ecHE95i4HztNZdgF3ADCfHU94W4CpgmbMDUUqZgTeAkUAcMFYpFefcqGzmARc7O4hqlAD3aa07An2BO13kMysEBmutuwLdgIuVUn2dG1IVUzFGGxZ25qL7CHDd/YTsI2pB9hH14qr7CHD9/YTD9hFnTYIAvAI8CLjMTRWVBgTyxbVi+1VrXWJ9ugqIcWY85Wmtt2ut7TVI0pnqA+zRWu/TWhcBnwKjnRwTAFrrZcBxZ8dRmdY6RWu93vo4G+PHrKlzowJtyLE+dbdOLvM/qZSKAS4B5jo7lrOUy+0jwHX3E7KPqDXZR9SRq+4jwLX3E47eR5wVCYJS6nLgsNZ6o7NjqUwp9ZRS6hBwA65zZqiyW4GfnR2Ei2oKHCr3PAkX+SFrDJRSLYDuwN9ODgWwXZ7dAKQCi7XWLhGX1SyMA1iLk+M467jyPgIaxX5C9hE1k33EGXC1fQS49H5iFg7cRzSabk6VUr8BTapZNBN4GBju2IgMp4pLa/2d1nomMFMpNQO4C3jUVWKzlpmJcblvgaPiqm1sLqK6Lhpd4myCq1NK+QFfAfdUOkvqNFrrUqCbtT31N0qp87TWTm+fq5S6FEjVWq9TSsU7OZxGyVX3EeC6+wnZR9iF7CPqyRX3EeCa+wln7CMaTYKgtR5a3etKqc5AS2CjUgqMy6DrlVJ9tNZHnBVXNf4H/IgDE4TTxaaUuhm4FBiiHdzfbR0+N2dLAmLLPY8Bkp0US6OhlHLH+OFfoLX+2tnxVKa1zlRKJWC0z3V6goAxoNjlyhhEzAsIUErN11qPc3JcjYar7iNOFVs1HLqfkH2EXcg+oh5cfR8BLrefcPg+otE3MdJab9ZaR2itW2itW2D8s/Zw1A//qSil2pZ7ejmww1mxVKaUuhiYDlyutc5zdjwubA3QVinVUinlAVwHfO/kmFyaMo7C3gO2a61fdnY8ZZRS4WU9sSilvIGhuMj/pNZ6htY6xvobdh3wuyQH9uHK+whw3f2E7CNqTfYRdeSq+whw3f2EM/YRjT5BcHHPKqW2KKU2YVzedpmuvIDZgD+w2Nq93tvODqiMUupKpVQScAHwo1JqkbNisd6kdxewCONGqs+11ludFU95SqlPgJVAe6VUklJqgrNjsuoP3AgMtv5tbbCe9XC2KGCp9f9xDUbbUulOVDibq+4nZB9RC7KPqBdX3UeA7CdsZCRlIYQQQgghhI1cQRBCCCGEEELYSIIghBBCCCGEsJEEQQghhBBCCGEjCYIQQgghhBDCRhIEIYQQQgghhI0kCEIIIYQQQggbSRCEEEIIIYQQNpIgCCGEEEIIIWz+H+oBQAT3kJ4pAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# extra code – this cell generates and saves Figure 10–8\n", - "\n", - "from scipy.special import expit as sigmoid\n", - "\n", - "def relu(z):\n", - " return np.maximum(0, z)\n", - "\n", - "def derivative(f, z, eps=0.000001):\n", - " return (f(z + eps) - f(z - eps))/(2 * eps)\n", - "\n", - "max_z = 4.5\n", - "z = np.linspace(-max_z, max_z, 200)\n", - "\n", - "plt.figure(figsize=(11, 3.1))\n", - "\n", - "plt.subplot(121)\n", - "plt.plot([-max_z, 0], [0, 0], \"r-\", linewidth=2, label=\"Heaviside\")\n", - "plt.plot(z, relu(z), \"m-.\", linewidth=2, label=\"ReLU\")\n", - "plt.plot([0, 0], [0, 1], \"r-\", linewidth=0.5)\n", - "plt.plot([0, max_z], [1, 1], \"r-\", linewidth=2)\n", - "plt.plot(z, sigmoid(z), \"g--\", linewidth=2, label=\"Sigmoid\")\n", - "plt.plot(z, np.tanh(z), \"b-\", linewidth=1, label=\"Tanh\")\n", - "plt.grid(True)\n", - "plt.title(\"Activation functions\")\n", - "plt.axis([-max_z, max_z, -1.65, 2.4])\n", - "plt.gca().set_yticks([-1, 0, 1, 2])\n", - "plt.legend(loc=\"lower right\", fontsize=13)\n", - "\n", - "plt.subplot(122)\n", - "plt.plot(z, derivative(np.sign, z), \"r-\", linewidth=2, label=\"Heaviside\")\n", - "plt.plot(0, 0, \"ro\", markersize=5)\n", - "plt.plot(0, 0, \"rx\", markersize=10)\n", - "plt.plot(z, derivative(sigmoid, z), \"g--\", linewidth=2, label=\"Sigmoid\")\n", - "plt.plot(z, derivative(np.tanh, z), \"b-\", linewidth=1, label=\"Tanh\")\n", - "plt.plot([-max_z, 0], [0, 0], \"m-.\", linewidth=2)\n", - "plt.plot([0, max_z], [1, 1], \"m-.\", linewidth=2)\n", - "plt.plot([0, 0], [0, 1], \"m-.\", linewidth=1.2)\n", - "plt.plot(0, 1, \"mo\", markersize=5)\n", - "plt.plot(0, 1, \"mx\", markersize=10)\n", - "plt.grid(True)\n", - "plt.title(\"Derivatives\")\n", - "plt.axis([-max_z, max_z, -0.2, 1.2])\n", - "\n", - "save_fig(\"activation_functions_plot\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regression MLPs" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.datasets import fetch_california_housing\n", - "from sklearn.metrics import mean_squared_error\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.neural_network import MLPRegressor\n", - "from sklearn.pipeline import make_pipeline\n", - "from sklearn.preprocessing import StandardScaler\n", - "\n", - "housing = fetch_california_housing()\n", - "X_train_full, X_test, y_train_full, y_test = train_test_split(\n", - " housing.data, housing.target, random_state=42)\n", - "X_train, X_valid, y_train, y_valid = train_test_split(\n", - " X_train_full, y_train_full, random_state=42)\n", - "\n", - "mlp_reg = MLPRegressor(hidden_layer_sizes=[50, 50, 50], random_state=42)\n", - "pipeline = make_pipeline(StandardScaler(), mlp_reg)\n", - "pipeline.fit(X_train, y_train)\n", - "y_pred = pipeline.predict(X_valid)\n", - "rmse = mean_squared_error(y_valid, y_pred, squared=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.5053326657968465" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rmse" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Classification MLPs" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – this was left as an exercise for the reader\n", - "\n", - "from sklearn.datasets import load_iris\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.neural_network import MLPClassifier\n", - "\n", - "iris = load_iris()\n", - "X_train_full, X_test, y_train_full, y_test = train_test_split(\n", - " iris.data, iris.target, test_size=0.1, random_state=42)\n", - "X_train, X_valid, y_train, y_valid = train_test_split(\n", - " X_train_full, y_train_full, test_size=0.1, random_state=42)\n", - "\n", - "mlp_clf = MLPClassifier(hidden_layer_sizes=[5], max_iter=10_000,\n", - " random_state=42)\n", - "pipeline = make_pipeline(StandardScaler(), mlp_clf)\n", - "pipeline.fit(X_train, y_train)\n", - "accuracy = pipeline.score(X_valid, y_valid)\n", - "accuracy" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Implementing MLPs with Keras\n", - "## Building an Image Classifier Using the Sequential API\n", - "### Using Keras to load the dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's start by loading the fashion MNIST dataset. Keras has a number of functions to load popular datasets in `tf.keras.datasets`. The dataset is already split for you between a training set (60,000 images) and a test set (10,000 images), but it can be useful to split the training set further to have a validation set. We'll use 55,000 images for training, and 5,000 for validation." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "import tensorflow as tf\n", - "\n", - "fashion_mnist = tf.keras.datasets.fashion_mnist.load_data()\n", - "(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist\n", - "X_train, y_train = X_train_full[:-5000], y_train_full[:-5000]\n", - "X_valid, y_valid = X_train_full[-5000:], y_train_full[-5000:]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The training set contains 60,000 grayscale images, each 28x28 pixels:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(55000, 28, 28)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Each pixel intensity is represented as a byte (0 to 255):" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dtype('uint8')" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train.dtype" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's scale the pixel intensities down to the 0-1 range and convert them to floats, by dividing by 255:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_valid, X_test = X_train / 255., X_valid / 255., X_test / 255." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can plot an image using Matplotlib's `imshow()` function, with a `'binary'`\n", - " color map:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAKRElEQVR4nO3dy2/N3R/F8d3HpbSSaqXu1bgNOqiIqNAhISoxMDc1MiZh4C8wNxFMS4iRSCUGNKQuIQYI4hZxJ6rUtTyDX36/Ub9rPTkn/VnN834Nu7JPz6UrJ+kne++G379/FwB5/vrTTwDA+CgnEIpyAqEoJxCKcgKhppqcf+UCE69hvB/yzQmEopxAKMoJhKKcQCjKCYSinEAoygmEopxAKMoJhKKcQCjKCYSinEAoygmEopxAKMoJhKKcQCjKCYSinEAoygmEopxAKMoJhKKcQCh3NCb+z9zFUg0N456i+I+NjIzIfHBwsDLr6+ur63e71zY2NlaZTZ36Z/9U67nwq9bPjG9OIBTlBEJRTiAU5QRCUU4gFOUEQlFOIBRzzjC/fv2S+ZQpU2T+4MEDmR8+fFjmM2fOrMyam5vl2hkzZsh83bp1Mq9nlunmkO59devreW5qfltK9WfKNycQinICoSgnEIpyAqEoJxCKcgKhKCcQijlnmFpnYv91/vx5mZ87d07mHR0dldm3b9/k2tHRUZkPDAzIfNeuXZXZvHnz5Fq3Z9K9b86nT58qs7/+0t9xTU1NNf1OvjmBUJQTCEU5gVCUEwhFOYFQlBMIRTmBUMw5w0yfPr2u9VevXpX548ePZa72Pbo9kVu2bJH5jRs3ZL53797KbO3atXJtd3e3zLu6umR+5coVmav3tbe3V67dsGGDzFtaWsb9Od+cQCjKCYSinEAoygmEopxAKMoJhGowRwLWfu8ZKqn33G19clu+1DiilFI+fPgg82nTplVmbmuU09PTI/MVK1ZUZm7E5I62fPnypczd0ZfqWM8TJ07Itbt375b5xo0bx/3Q+eYEQlFOIBTlBEJRTiAU5QRCUU4gFOUEQjHnrIGbqdXDzTnXr18vc7clzFGvzR0v2djYWNfvVlcIuvdlzZo1Ml+5cqXM3Ws7e/ZsZfbw4UO59vnz5zIvpTDnBCYTygmEopxAKMoJhKKcQCjKCYSinEAojsasgZu5TaTW1laZv3jxQuYzZ86Uubrm78ePH3KtuiavFD3HLKWUL1++VGbuPR8cHJT5pUuXZO5m169evarMtm7dKtfWim9OIBTlBEJRTiAU5QRCUU4gFOUEQlFOIBRzzklmdHRU5mNjYzJ31/ipOej8+fPl2jlz5sjc7TVV5+K6OaR73WqG6n53KXq/57Nnz+TaWvHNCYSinEAoygmEopxAKMoJhKKcQCjKCYRizlkDN3Nzs0Q1M3N7It0ZqO7sWHfP5ffv32t+7ObmZpkPDw/LXM1J3XxXPe9SSpk1a5bMP378KPPu7u7K7PPnz3LttWvXZL527dpxf843JxCKcgKhKCcQinICoSgnEIpyAqEYpdTAHdPoti+pUUp/f79c646+bG9vl7nbOqWemxsZPH36VObTpk2TuTqWc+pU/afqju10r/vt27cy3717d2V28+ZNufbnz58yr8I3JxCKcgKhKCcQinICoSgnEIpyAqEoJxCqwWx/0nuj/qXc3MrN5JShoSGZb9u2Tebuir96ZrD1XvHX1tYmc/W+ujmmm8G6qxMd9dr27Nkj1+7cudM9/LiDc745gVCUEwhFOYFQlBMIRTmBUJQTCEU5gVATup9TzVDrvarOHU+p9g66696ceuaYTl9fn8zdEY9uzumOkFTcXlE3//369avM3bGdivtM3Gfu/h5v3bpVmbW0tMi1teKbEwhFOYFQlBMIRTmBUJQTCEU5gVCUEwhV18Cunr2BEzkrnGgXLlyQ+cmTJ2U+ODhYmTU1Ncm16pq8UvTZr6X4M3fV5+Kem/t7cM9NzUHd83bXDzpu/qse/9SpU3Lt9u3ba3pOfHMCoSgnEIpyAqEoJxCKcgKhKCcQinICoWLPrX3//r3Mnz9/LvN79+7VvNbNrdRjl1JKY2OjzNVeVben0d0zuXDhQpm7eZ46H9bdYele9+joqMx7e3srs5GREbn24sWLMnf7Od2eTPW+zZ8/X669c+eOzAvn1gKTC+UEQlFOIBTlBEJRTiAU5QRC1TVKuXz5snzwAwcOVGZv3ryRaz98+CBz969xNa6YPXu2XKu2upXiRwJupKDec3e0ZVdXl8z7+/tl3tPTI/OPHz9WZu4zefz4scydpUuXVmbu+kF3ZKjbUuY+U3XF4PDwsFzrxl+FUQowuVBOIBTlBEJRTiAU5QRCUU4gFOUEQsk559jYmJxzbtiwQT642ppV75Vt9RyF6K6qc7PGeqm52Lt37+TaY8eOyXxgYEDmhw4dkvmCBQsqsxkzZsi1ak5ZSinLly+X+f379ysz976oKx9L8Z+5mu+WorfSubn4kydPZF6YcwKTC+UEQlFOIBTlBEJRTiAU5QRCUU4glJxzHjlyRM459+3bJx982bJllZnaH1eKPwrRXSenuJmX25+3ePFimS9atEjmai+r2odaSikvX76U+enTp2WurtkrpZRHjx5VZu4zu379el25ukKwnuNGS/FHgjqqJ+6xh4aGZN7R0cGcE5hMKCcQinICoSgnEIpyAqEoJxCKcgKh5KbKuXPnysVu3qdmlW5utWTJkpofuxS9/87t3Wtra5N5Z2enzN1zU/si3Z5Jt3dwx44dMu/u7pa5OnvW7al0n6k7L1jtyXSv212d6GaRbv+wmnOas5/tlZEdHR3jPye5CsAfQzmBUJQTCEU5gVCUEwhFOYFQcpTiRiXu389V/yIuxW8/clcEun/Lt7e315SV4reUue1qbr3atuWuulPbqkopZc6cOTK/ffu2zNVVem681draKnO3XU19Lu4oVXc0plvvrulTW/VaWlrk2ps3b8p806ZN4/6cb04gFOUEQlFOIBTlBEJRTiAU5QRCUU4glBz+rF69Wi5225OOHj1amS1cuFCuddfFua1Val7otg+5mZfajlaKn3Oq5+7WNjSMe4ri/zQ1NclcXfFXip5du21b7rm72XQ9WwzdY7vcbTlTc1R1nGgppcybN0/mVfjmBEJRTiAU5QRCUU4gFOUEQlFOIBTlBELJKwBLKfrMP+PMmTOV2cGDB+Xa169fy9ztyVRzLbcP1V0n5/Zzuj2Xah7ojll0c043a3QzXpW7x3bP3VHr3TGtjptNu78JtZ9z1apVcu3x48dlXkrhCkBgMqGcQCjKCYSinEAoygmEopxAKMoJhJJzzl+/fsnBlZsN1eP8+fMy379/v8xfvXpVmQ0PD8u1bl7n5phupqbOUHW/28373By0nrOI1Zm2pfj3pR5uv6Xbx+pm15s3b5Z5V1dXZdbb2yvX/gPMOYHJhHICoSgnEIpyAqEoJxCKcgKhKCcQakL3c6a6e/euzN3doO4eymfPnsm8s7OzMnPzPHeeLyYl5pzAZEI5gVCUEwhFOYFQlBMIRTmBUP/KUQoQhlEKMJlQTiAU5QRCUU4gFOUEQlFOIBTlBEJRTiAU5QRCUU4gFOUEQlFOIBTlBEJRTiAU5QRCVd9F9x/6PjkAE4ZvTiAU5QRCUU4gFOUEQlFOIBTlBEL9DRgW8qPu1lMTAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# extra code\n", - "\n", - "plt.imshow(X_train[0], cmap=\"binary\")\n", - "plt.axis('off')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The labels are the class IDs (represented as uint8), from 0 to 9:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([9, 0, 0, ..., 9, 0, 2], dtype=uint8)" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_train" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here are the corresponding class names:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "class_names = [\"T-shirt/top\", \"Trouser\", \"Pullover\", \"Dress\", \"Coat\",\n", - " \"Sandal\", \"Shirt\", \"Sneaker\", \"Bag\", \"Ankle boot\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So the first image in the training set is an ankle boot:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Ankle boot'" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "class_names[y_train[0]]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's take a look at a sample of the images in the dataset:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAFJCAYAAACy802jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADmp0lEQVR4nOydd5gdVfnHP2c3m00nhZDQk1BD702Q0HtHRaSJCD8VpSgoCIiKioIFLKCgIiCiSEd6B0NHeighBEhCGiFs2m62zO+Pme+Z2XPv3b7ZW97P8+xz996ZO3fmnXdOedtxURRhGIZhGIZhGIZRCVT19QkYhmEYhmEYhmGsKGwCZBiGYRiGYRhGxWATIMMwDMMwDMMwKgabABmGYRiGYRiGUTHYBMgwDMMwDMMwjIrBJkCGYRiGYRiGYVQMK2wC5Jyb5JyLnHMrt7FP5Jw7spu/0+1jlBrOuXHJdW/TnX2MGJOnUcyYfvY+zrkTnHOLC703+gbn3KPOud/19Xn0NaafxYlz7kjnXKfWljGdLkxvy7PDEyDn3JbOuWbn3H87czLlSHcHF8l32/q7podPGeBDYFXgpXbO7ULn3GttbH/TOXdIRya0KwqTZ/HhnLsmI/9G59xc59wjzrlvOOdq+vr8ViSmnyuePPo3zTl3qXNucF+fWyninBvtnPuDc266c67BOTfHOfeQc26vvj63UsT0s3cxfe1ZylWe/Tqx71eBPwDHOecmRlE0pZfOqRJYNfP/gcBVwWfLevoHoyhqBma3tU97A1Pn3AbAWsADwHY9d3bdxuRZnDwIHAtUA6OB3YEfAsc65/aIomhJ+AXnXP8oipav2NPsdUw/+wbpXw2wC3A1MBj4Wl+eVHdwztVEUdTYBz99MzAI+AowFVgF2BUY1Qfn0mM45/oBzVHfrAhv+tl7lKW+9iHlKc8oitr9AwYCC4HNgD8DlwbbxwERcARxZ7kUeAPYK7PPpGSflZP3tcCtwIvAKslnEXBk5jurAzcCnyR//wHWa+dcI+DUZN+lwPvAMcE+mxI3PsuABcA1wEqZ7VXA+cRW1AbgVeCQ4Deyf492RI4FzvfI+Da0u9+awO3J+S4F3gSO6oT8tc82wf3YH3gWWJ7ILby2EzLHODs5h3F59rsmc19/A8wB6oGngZ3z6MGBxNbpeuAFYOuuytDk2Xvy7MZ9uAa4K8/nmySy+WHyfjpwIfAX4jbmpuTznYDHEtnPBK4AhmWO89lEFouBT4FngE2SbSsB1wFzE3lMA07vS3mYfq5Y/cynf8QTz48SfXst2HYCsLij75PPTiEeDCxPXr+a2fYP4OZg/yriPuWM5L1LZPwucV/0Kpm+KiP3LwIPJ/uc2gc6Ozw5jz3b2Gc6cB7wR6AOmAGcFeyzEvAn4udyEfHzvU1m+6hEbjOSa30d+HJwjEeB32Xe70HcbpySvG9zzKB7n9zPd4FmYEgfyNT0s2/19RjguUQP5wI3Aatntk9KjrEHcd+yFHge2Co4znHEY8ylwF3AN8i078A6xG3obGAJ8Xj3wLZ0utj+ylmeHRXAscDLmQuZC9TkeRDeBA4C1gP+BnxM0rhkBLAyMAx4hLgBzA5qIpIJEPFs823ihmIzYENiC8n7wKA2zjVKfvcUYH3g+0AL6UBgEPGA6jbiidCuye/cnDnGGcSN+NHJMX5E3FBukWzfNvmdfYCxwMhuKFdHB0R3Eg92NgfGA/sC+3ZC/tonHBC9CuwNTCAedF2aHGds8jcwcw6TgROJLfqHJ9/fKNlvpWSfy4gb8QOAicSN+mJg1eB330zktwnxwzK7rftq8uwbeXbjPlxDnglQsu0Okg6eeOBUR9zRrpvIetPkGr+dvN8eeAr4d/KdfsSDm0uJG8QNiZ/Vicn23xIPtrdL7tMk4HN9JQvTzxWvn/n0D7gcmE8PDDCBw4BG4knk+sA3k/cHJdsPIJ7sDc98ZzegCRibvP8J8FZyb8cnOrwEOCC4h9MTvRkPrNEHOtuPeGBzOTCgwD7TE/07lfg5/mZy7jsm2x3wJPGEZLtknx8TP/vSldWBs4AtEv08mXjwvkfmdx4lGdwQGwDqgM8n79sdMyT3fglwP7BVoo/9+kCmpp99q68nEhuDJiT6+AjweGb7pOTank3ksiFwHzAFcMk+2xOPLb+fyPgU4mcgyhxnc+D/iPu0dZN9lwMb5tPpYvwrZ3l2VACPAd9J/neJwh+R2a4H4ZTMZ6snn+0cCGAisQXwjlCYtJ4AnQi8I+Ekn1UnAvl8G+caAVcFnz0IXJ/8/1Vii/HQPDdn3eT9TOCC4BiPZo6h692m0Hl0Qrk6OiB6BfhBgW0dkX+rc85c8xHBsS4kaHyTz8cQN6Cjg++vnNlncKKMxwX37F3gouB7X8rsM4TYineSybO45NmN+3ANhSdAFwNLk/+nA3cG268F/hx8tkVynasAI5P/dy1w/DuAv/bVtZt+9r1+hvpH3CnPB/6Z75rp/ADzv8Bf8vzmk8n//YgNhV/JbL8auC8ju2XALsExfgPcHdzDbxeB3h5B7I2sJzZGXApsn9k+HfhH8J13gPOS/3cnnhgPDPZ5CTi7jd+9Ebg68/5R4HfEk6NPgb0z29odMyT3vhEY08fyNP3sQ33Ns/+GybWskbyflLzfJ7PPZ4J9bgAeCI5zNe2078Re8vNCne5rmVWiPNstguCcWzc50RvQmcDfgZPy7P5K5v9ZyesqwT73E7u4D4+iqL6Nn96a2KKwyDm3OKlw8ikwgtjq2xZP5Xm/UfL/ROCVKIoWZbZPJp55buScGwasRtyAZHkyc4xeRdeb/F2ZfHwZcJ5z7inn3EXOua3zfLUj8g95voOndRDwdBRF89rYZx3ieGYvuyjORcjKXzyV2WcxsWW6V+Rr8iw6HHHDJ0KZbQ0ck71vpDJYJ4oiha3e55z7j3PuTOfcmpnvXwF83jn3cpJYvGsvXUePYPrZa+ybyFSd9uPElvCeYCJt9BFRFDURD2a/BOCcqyUeRFyf7LsRMAC4N9Dzr5Hbv3X0nvUaURTdTNwvHgTcQxyi+rRz7tzMbq8EX5tFqo9bE3to5gXXuwnJ9Trnqp1z33fOveKc+zjZfjhxHlqWQ4DfE3tE78983tExw4woiuZ0QQw9jelnL9GevjrntnLO3e6ce985t4j0GkJda6uNnUj+sabHOTfYOfcL59wbzrlPEhluk+d3ippylWdHiiCcRGxF+cA5588jOZk1oyj6MLOvT36LoihK9g8nWXcBnyd2Yf2vjd+tIrYOHZVn24IOnHchwsFXlqjA/2191htskfm/DiCKoj875+4jdjPuCUx2zv0siqILM/t2RP4hOYnoBTiUOPayLaQgfSm7fGyR+d/k2fdsRJyXI0KZVRFbfn6d57szAaIo+rJz7jfE4RkHAz9xzh0aRdF9URTd45xbG9iPOOb4P865m6Io+nIPX0dPsUXmf9PPnuNxYk9BIzArSpKznXMtpOcuulKZsL3rvp74vq1OHN7RnzjvFdL7dBDwQXCMMIm8o/esV0kMlg8kfz9yzl0NXOicuzTZJTzviPQ6q4jzxHbJc+i65PU7xGGvpxFPkBcDPyV3Uv9KcuyvOOeeToyy+o2XaH/MUBTyxPSzV2lDX39PHH6lIhRziVMzniCWQZbstWb1DHLvUT4uJe6jvkPsnVxKHOEQ/k7RU47ybLOzTCqkHA+cQ9xJ629z4kaoKwOK84ErgQedc1u0sd+LxDF+86Momhr8tTcB2iHPe1WtewPY3Dk3NLN9J2JZTImiqI54ZrpzcIydk+9CHPYB8cSwxwmudW7m8xlRFP0piqLPAxcQN549zXKC63Jxac49iPOmsvsR7KuESy8751w1sCOp7MQOmX0GE1sCe6WyoMmzeHDObULcgP27jd1eBDbO89xPjaLIV0yLoujlKIp+HkXRJGK39/GZbfOjKLouiqITiCvXHJ9YOYsO089eY2ki0/ej1pWp5gFjXMaiR+tJaEeYQtt9BFEUPUMcDvhFYkv7bYn3i2S/BmDtPDr+fifPpa94g9iIOqAD+75IHFbZkud6pfM7E4fDXhdF0UvEsls/z7HeIw6p2Rv4U+Y+dmfM0BeYfq5YpK9bEA/Qz42i6PEoit6kfc95oePlG2tm2Rm4Noqim6MoeoU4+qm9CKZSoeTl2Z4H6ADiC7sqiqKPsxucczcCX3POXdTZH42i6PvJw/2gi8vhvpxnt78Tz/Jud85dQGyFWJPY/X1lFEXvtPEThzvnniMeFB1J3JlvnznuD4Frk+OOIK5cc0sURVOTfS4hnuG+Q5yvdAyx5UphKHOJ42P3cc5NB+qjKPq0k2LoFM65y4hdj28TF5HYl9xBRk8wHVjbObcVscwXEScvT8vIB+LE0gg4wDl3J7AsiqLFzrkrgIudc/OJO6oziDu+PwS/c55zbh7xZPMC4oHUDb1wPXkxea4Qap1zY4mNC6OJn8NziZ+pS9v43s+J3etXEj+bi4hjig+KougU59x44gTJO4g9QhOIk56vAHDO/Yh4MPQ6cRt3OLG8G3r8CnsJ089e5VHiPLJzk35sEnE/0RkuAW5yzr1AHNa9L/Eg8vBgP4WLjyNOTAcgiqJFiefk0qQvfJw4N2oH4knCnzp5Pr2Gc24UceGKvxAbPhcRh52cDTwURVFd67F6Xh4kDsm63Tl3NmnhjX2BB6MoeoJY17/gnNuZOB/mm8QhbTmRIlEUTXPO7UZ8L//knDuZ7o0ZiolHMf3sMu3pK+nk7tTEezGRuCBHZ7mc2IN2DrFBbxIZGSa8DRzmnLud2PvxAzpmMCgaylqeUdvJRXcA9xfYNoG4Q9ybAkUBaF3UYBK5SbQ/I27oNg/3T96PAf5KPOFoIO5g/5I9Rp7ziogrn9xLPEn5ADg+2GdT4hu3jLia1DUULoO9nNgdf2hwjJOSYzezYspg/5bY5VdPbCG6kaTMYAfl32qffPcj+byWWPk+SbafQOxi/GmeczqfuAJUC/nL4jZQuCzuwcQPUwPxYHXbrsrQ5Nl78uzGfbgmOa+IuLLQfOKO/ZtA/8x+00kKrATf34b4Ga4jDrF4FfhRsm0McAvx5KeB+Dn8BUllSuLKMK8Tu8cXAHeTVIjr6z/TzxWjn7RRhCPZfgrxpG5JItvT6HyZ4f8j9oI1EpQZzuyzTnL9cwiqjRGHfHyTdAAxjzi8ZK+27nMf6GwtcSjac4meLE1081ckFVDJ8xyTW7J6KHFu2wzifvXDRPbrJNtHED/XKqX7C+KJ9KNtHHOd5Dh/SuTZ5piBAkU/+kCmpp99q69fIPZ+1RNXJtsnuZZJyfZJ5I5Xc66XOArqA+Kx5D0kSwtktq9NPPlfkuj9d4jTQK4ppNPF9lfO8lT5OcPISxLSMhfYL4qiZ3vgeJOISySOjqJofnePV2qYPI1ixvTTMAzDqATarQJnVDyjiJPRn+vrEykTTJ5GMWP6aRiGYZQ9HakCZ1QwUZyg2uk8LyM/Jk+jmDH9NAzDMCoBC4EzDMMwDMMwDKNisBA4wzAMwzAMwzAqht4IgSsnl1JHFmbqTdqVpTx4bZUhnTIlXm7j1FNPBeDzn/88AFtuuSX9+8frR/XrF6vC66+/DsCtt94KwIQJEwA4++yzGT58eKcvIENfyxK6qZtz58bLVVxzzTUAHHfccQCMHTu23e++9NJLALz55psAHHHEEdTUdGVtO09Jy/O9997jscceA+D22+P1NkeOHAnAscceC8BWW23l5XXzzTcD8OCDDwIwePBgAI455hgATj6520vklLQ8u8usWfGi3KuttlpPHbKo5dmRdlPP+8MPPwzAVVddBeDbwYkTJ1JbGy8t9cknnwDw1FPxwuU77BAvX/HTn/4UgIEDB3bpHDIUtTxLkJKQZxih05auqD1dZ514WZQ11lgjZ5/33nsPgOeffx6Az33ucx081XYpCXmWECbPniWvPM0DZBiGYRiGYRhGxdAbOUBlP2tcgeTIsj2r4f/+9z8A/vnPf3qreXV1vHj74sXxIs/Lli0DYMGCwotjr79+vAB3VVU8R37zzTe9p2OfffYB4Nvf/jYAm266aUeupa9lCd3QzcWLF3PjjTcC8Jvf/AbAe89Gjx7t38urI1k3NMRrb3744YcAHHrooQDsuOOO3bW+lZQ877nnHgB+/etfA7FFfPny5QAMGBCvY1ZXVwekXsg5c+Ywbtw4IPVQrrrqqgCstNJKQCrfGTNmsOeeewJw+eWXd+VaSkqeIbvvvrv3Qqy88spA6rGQDLPI47PbbrsBaZuw1lprAXDfffd5L1sXKUp5Fmo/58+PK3RfdtllQOxprK+vB1Jvo/RVXslFixb57+u5X3311YFUTyXXkSNHsuuuuwLwzW9+E4ARI0Z05lqKUp4lTEnIs6WlBUj7YTFjxgz+8pe/APDLX/4SSNvPjqDjSW9//vOfc9ppp3XqHAJKQp4lhMmzZzEPkGEYhmEYhmEYlY15gNqmr2fh7cpSVh/lo7z88svxF6OIIUOGAGn8uazo8gg1NTXx6aefAjBo0KBW2/J5mGQRlVVTFtGdd94ZgOuvv76tU+1rWUI3dfOmm24CUnn+5Cc/AVJr+pw5c7xHQnkCQ4cOBfDeiaOPPhqIPUTyBnWRkpDnu+++C8CFF14IwCqrrALEOhRaFqWf8pZBqofSy2HDhgGp5VLfGTVqFDNmzABS2csy2kFKQp6FmDRpkpe1dFDPqdqBI4880j+jzc3NQOp9k8yk22pHukFRyjP0AElmBx54IJDm8w0YMMDrmHRP+T7KVVu8eHHONrWJ8+bNA+I2FuJ70tjYCKRt7SmnnALA4Ycf3pFrKUp5ljBFLc9CXpctt9wSgHfeecc/59InvaqfHjFihH+uP/roIyBtE/Sca9/Fixd7vd5jjz0AuOGGGzp0TglFLc9uHTRpM1paWvy1h+OjzuRqTZ48GYCddtoJgLfeestH3GS+V7by9AfPyKyDeZCtUP7vmWeeCcQ5wxC3tWqPM+T9gZKZAOULXVAIwpNPPgnAfvvtl/MddfQaKLV3/OA3+loJ25WlGqsPPvgAiAeCEF+Drl2ddEhLS4vv5LWv/+E29CK8F2pc7733XiBODs5DX8sSuqmbGjyOGTMGiCc8AL/97W+BOBE6nABtvfXWAHz5y18GYPr06UAcNrfvvvt253RKQp5f//rXgXSgLZ1ZsmSJ73ylnwo10rO60kor+X30PclXZCf16tRfe+01IC2moMFtO5SEPAtx+OGH88ILLwDpQEghrkrmj6KIz372swC88sorQKrLGpwrXE6J/92gJOSpgjAKgVNYWlNTk9c5tZEa/Khzra2tzZn4yKAkeWbbUQ0gta9eVQREE9UClIQ8S4iilGehEM0dd9wRSIsXjBkzxuuP9tVkW3q6ZMkSf7zQCCr9VLuc/b6ehUMOOQSA2267Lecc8wxYi1KePXLQzASo0FiqLR599FEAXn31VSCevELaBkdRxP333w+QHbiXtDzz6Ug+3W5v4ig9ramp8fI78sgjAXj77beBXD1dvny5T0/IHjrfeVoInGEYhmEYhmEYFUNvlMHuFWQ9q66uZurUqQBcffXVQGrdkAVZVo3tttsux/OTnc1n32f3a89zUgzI2ivPjxKfZcWB1N09c+bMVu917f369fPXGrq1ZV2S9XPo0KG+rGYoU31X96OToUclg8LZZCFbe+21gfR6Z86c6UNfZEnXfdF3dH8qZQHiE044AUiLH6hgxJgxY7wHNywHLuuNZAlp6Ju8GyH9+/dn4cKFQFr+tYOen7JgnXXW4emnnwZyQ7aySC+feOIJIC17rbZh6dKlvX2qRYG81rNnzwZS/ZLFsV+/fl4WS5YsAXL7herqat/2yVOp74RJ5tXV1d7Do/5Jx73jjjuANDzWqFxCC7iWo9CzveaaawJxHy5d1XfC12HDhhUc74R665zzupothAJpARtF2HQlXKkUKOR9C8Ows1x77bVAWvZe7erll1/u21aFEyvMTaFaKqa0xRZb9NQlFA3OuYLenWy0kfRS4yKN5fW5dPLxxx/nsMMOA9LxwYYbbgjA73//+1a/05nlRcwDZBiGYRiGYRhGxVAyHqCs9U3x6Q888ACQWkWUHyAr3P33389Xv/pVII11LzSbX7x4sbeKFLIyFxOPPPIIkF6zLDm6hpaWFm8B/sUvfgGkpVklr1mzZvnPwhm3PEAq5/ziiy/68sKy4ssCpd9U2e1y9QCFOvPxxx+3er/yyiv7JGrpoLxvYXGJcrWihWy33XZAGsOufIftt9/eW30kKyXhZsuLy1qufaRzKoOt/BZIvRgXX3xxL11N8TJx4kT/DEu35BGXPBVzDqkXQlY6yVWekHJHJcPlAdLzme1D9JnaQrVzWat6mH8h9Hk2wkAeTXmFdVwt7mseoMqmubk5p49RgQzpjLzmw4cP93116AmSLjrnCpauDj+vqqryuiq9VB7r/vvvD6Re07Fjx/rfaC+3utzQovK6fuX3KDdLeZfHH3+8L3svj4/20ava5alTp7LuuuuugLNfsRQa42R1XP+HXhvppwoi7b///j4CR3MBjTO19EAnF5aOf6fDexqGYRiGYRiGYZQ4JTN9z1Z1eO6554C0opYsn3rde++9gXhR0LPPPhuAbbbZBkgX7VSlsmeffdYfU2UJZa2WlbkY+fe//w2kM+hsXg/EFkydv7xgqjSi/KETTzyRP/7xjwBsvPHGQOpJ0ixbZYvPOOMM/vCHPwCpxSlcKFALBL799ts+3rWcCC0Mkr1kpRyUjnw3tBiXO9/61reANO557bXX9p5E6Y88r1kvhOSkffU+9Fh8+umnPka9UrwYWdZYYw3/7EsfZcmVl3fLLbf0slGelNoNUcxtXk8ib5j0SZ6gbF8iL5li+ddZZx0gzaMaNGhQTv6pLJnyJKly0Z133un3VTsh77pygYzKJmsZV2UreWGUP6Yxz/Dhw3PyzERY0bUtsmWdw7GE2mM9B/J2HHXUUUWdH91VCnkOFH0wefJkH+GhdvLEE08E0hxXeSPOPPNMH52g4ypn5cUXXwTSCKYBAwaUpQeovQV058yZ4z1miqbR2FQVdtU+jxw50stelTY1pu8O5gEyDMMwDMMwDKNiKHoPUGg5f+CBB3wMpayZsqCpLrhet912Wz+zlrVNi1DdcsstQOox2W677bjqqquA1Nu0++6799ZldRtVFlE+j6w+2XVSNFMW++yzD5Bak6ZMmcKll14K4Cts3HnnnUA689bCay+++GIr7xKkM3u96lyeeuqpsvQASYckY1nGspX09H9YASX0Usp7Vu6EseL//e9/Afj+97/v95GlUZbM7GJ9kqc+U15b6LloaWnhoIMO6pVrKAVWXXVVLz/pXhhfvfHGG3vPmeQnS6Z0OpRruXLUUUcBsMsuuwDw97//HUjXkDr33HO9xTZE7d+yZcu8XqoPCr3iyuv52c9+xrbbbguk3ibp/bRp03rqsowy4amnnmr1Plz/LGtVL5RX2pFKo9nvhhXiwkgPRd4cddRRZZnDGlbE1TWq36+trfXtg7xhiqDRGogaY0EaPSPkEVKuq/KD//KXv/CZz3wGgE022aQHr6hvCeWpRadPP/10IPaEK6/n9ddfB1Jv+xtvvAHEC3xD7FnTM6AxQEeiaNqr6GweIMMwDMMwDMMwKoai8wC1Z7U4//zzfTUSIYtcuP7Fk08+6b1Fms2rIsd6663X6ju/+93vvCVO1cyKEcWUKycizEPJWsxlaRCaZUs+H330kbfES+6hFTlriVIuwaxZs1r9tmSrGPfHH3+c448/vruXWnSEa/jkW2OhvXWm9Hln4rRLmbBKkHRowoQJvPfee0DqSZM1SBajAQMGeHnJa6lKWqE8tXZFpTJ69GifHyDPRaFKb5D7nEvmeVbQLkuUG6rr3m233YDU411XV+flKBkp4mDUqFFA60pcYdU3ed9lMV533XW9l0m6rOPkW6+pHGlvXZCqqqqcHMlCVcZaWloK5haI7JpOpeaxUF+qPL586xmGVeDCHEDIzREO70HWMi6Zq92QxV3ezBtuuAEo3yqvoedH6F5EUeQrEB9zzDEAXHnllR0+vvJc6urqANh6662BuM2VrLWP2oZSJsxNUw7lNddcA3TsGjXOra+v996xL3zhC0DqLQo9Tc3NzXnX98xH0U2A2muoRowY4SdAUkwpjxoCuSwHDBjgQxR03CeffBJIQ+EkqDlz5rDvvvv22HX0Fj//+c+BNCRIjVMYnjZgwACvgJoE6uFS4lljY6NPNtO+avzU8Cph95///KcvHRsm8+q95K9EtnIjTA7Vg5ftXEJXa6jPlTLYaY8oivxzqoZLz7EmQsuXL/f6GA7MQzmH4QaVhhJEIXfCkw1rCweYepUujxgxovdPtghQqMpDDz0EpEYvFYo5/vjjfdEXTWa0ALf01jmXU5RDeiqd1kBp6NChvjy72gDJWuHY6pNCw1W5UKhvz1e+ttDARffkoosu8oa4QnRmQcRiQaHtMvQoRFVhaNKv+vr6nBDscLJTXV2dEx4XyjprsJPM9Zn6e+lruZe8LqSf6o8++9nP8tnPfrbVNo3DdC+yxwhlrXGrnnsZVPbbbz+/7f333wfKYwJUCF1bS0uL191Cz6oMUzfffLOX22OPPQbAd7/7XSB3LJB9396E0kLgDMMwDMMwDMOoGEpuSr906dIcy7s8ELKCarY3ffr0nMXrwqRqba+urmbGjBkr4hK6hUp1y3Mjq6SslPIArbfeev7att9+eyCdGWeLF0iGsmCGrkPJa9iwYb6wgRJ+Q7e6XJKHHnpoT11uUREmiOdzvRZKIpelWNY03b9KISyJufrqq/tSxNom2Wif+vr6Vv9D+qzL4jZ//nwgLesM7YfPlCuSSSGcczkl3EOrb6WUEP/e974HpNevtkvLI9xxxx386Ec/avUdWSmlp1kLu44TeoTUVg4fPty3w+qnZN1UoZ5y9fyEhJbxfM+pwq1eeuklAG666SYg1fHRo0fzxS9+EYB//OMfeX9HUQy/+MUvOO+883ro7HsX6U/Yj4Te8iiKckKyw/64ubm51cLo2W2h1TwbvRBa5XWMUhgf9Sb55CmyXrdCyKunENjsfdP9rYQ+K/v8h56fsO8+7rjjgPj51/c05s0WS8ryxhtv8I1vfANIy5Jff/31ec/FPECGYRiGYRiGYVQMRTfdDK0ZmlFrhjxr1ixvgVM8rCw9+lx5MZ9++qn3Bskzon01C1dC2qabbuqtdcqZ6YmFlnqar3/9661eFaf7zjvvAHDFFVcAcZlGWRS1+KsWVZMM2ip5G96HAQMGeC/TZpttBqRWukrgk08+ySlxLQtmW3KUxShMMF26dKn3arRnuS9Hxo0bl7Ngp3R57bXXBmIrkGJ4Ff8ry5Ce/Y4mO1YChWLYs/H+YU6AdFfv1XaWOyr7rxwg5S1qMd2DDz7Yl61VgQ3pq7w7y5YtyylmIj0MS7svWrTIx/dr0US9V0ldFWDQazmRT/eE+q6bbrrJF91RLtaECROA1MOrfIzp06dz9913t/mbN954IwDPPPNMT1zCCkGLZKpNDHN11O4NHDjQj1dCK7q+ky0qkY1SyO4T5gBm/5eFXYnoGjM988wz3ptZSWS9O/pf3oewHcjqu9D9+tvf/gbAgQceCMSl8iXb0JtRjrSV5x8WNpGMRowY4XPOFaWgtlvLr6hNh3Qs0d4Y1TxAhmEYhmEYhmFUDEVnNg1LY2qm/c9//hOIK2nIIiELhfbRDPuDDz4AYsuIKkvJMpe13kGaQ/CNb3zDxxt3ZIGlYkGW8e222w5IvWAPP/ywl6VkIPno+rKz7bC0c1iZq6amxnsslIdUSdTW1nrZtmdph1wPmpBer7TSShXp+RGDBg3KiZcO46uzOUDSc8VRyyMsZDGtZAotIaDPm5qacnL7wsWM5fUod6ZMmQKknhrl5eywww5AvGCvlhwo5OnN5lSFsg/lO3bsWL8o6hZbbAHA+PHjgdSCucEGG/TEpa1Qwtw+PYdh1cZs2yhL7rnnngukffvgwYN9mXz1Z+qvFcGh0uQzZ87k/PPPb/Ub0l0d78wzzwTgzTff9B4+lR4uVsJ+OFzMON++2qb+OZvLU0g/RXaMoIpzals1TtDxNRb4zW9+UzDvqtTIV4GwK4T5U9nPhKKR5OFVpNEpp5ziFwkt57FVPlmH+l7oPqy55posWrQISKsYhwufjxkzBoj1VfmVak8KYR4gwzAMwzAMwzAqhqLzAMnqEFqQtAhSbW2ttwqFXiJZgGRZHzlyZMGqPLIoy/p2ww03cNZZZwGpFbCYCdf6kLw0gx46dGiOfMLZdb441UJkrZ/KJRKhtbPUFp3rCM65bi1eGnrjKo0wtrdfv37ekyvdDdegGT58uN8mj62sPPIEVUrOSkdozwPU0tKSYxEOrbxaTLXckcVVz/SHH34IpJ6gQYMGeZmEVZuyXrSwzdM+8ljoGHPnzvXeJlnYZ86cCaQekdmzZwNp3kuxk134WRRaSPehhx7yay0pLl85qhtvvDEQy1V5psrNVU6EnnNZzceOHesXlr3kkkta7aucV7W19fX1Pneo2JGuibAiWzb3sVB/1FZOqghzihYuXOh1WF489fM6XnYNonKhp8cq+arAKbJo8803B/DVC++66y4A7rvvPi9zjUfLkc7k/oS8/PLLPvdcayYpx09txQUXXADE7etee+3VoXPq9QlQ9kENSzGGZRahcDKzklOHDBmSs0qy0IBKnXp9fX1Og6zjh0mBr7zyincBlwJSpkKr7Q4bNqzgZDJfUnQhwkITQI6cOlICstTJdjaFSmG2ty37eXV1dU74SDkTXmtdXV3OwroqeCBGjx7tB5IaGIW6rOMq7BUqtyBCOBjNt/p7GGoQGkkqZQIkOchYJp3RQHnp0qU5z3JYBKWlpSVnmYXwO9mCMyuvvHKrc1Aoh9ppLexZKhMg51zBNv/yyy8H0qI8c+bM8YM7GTMl8+ySAIUW7pRc1cdr0ANp2NCtt97a6hwuuugiAH7/+9/7wioqh6vS48XGT3/6UyDt18PwM+nMqFGjCho8OoJ0We1pdXV1zoLymoypDdYE/rbbbuux0LFyIWxHIV20Xvfs//7v/wC47rrrgDQkbv/99/ftbiEDQjmSHX+qDQyN9dKz2tpa3zYX0vuf/OQnQNzWfu5zn+vQOZT/yMswDMMwDMMwDCOh10yl2RlxZyyyjz/+OIB3lz/55JNAan0YNWqUt1SEC6lpH/12Q0ODd9cWKvMqC93gwYO55ZZbgNzkqmIm9L7Iml5bW+uvXVakcLFT51xOElrouciWbS60iFolUF9fX9A6KXm0tLQUDEsILWbOOa97lVAMIfRyjR492oe+qMywLI2Sx5w5c7xFTBZcbZMFWEmOCieqVN5+++2c0rnhs5wvZCkM61JRmHIn9I6FxTaWLVuW480Jrd35iiCEFvvswpYK35QOq93QPkryLXZUqvmBBx7grbfeAtKwKHmxdC0Ko1pjjTW8F1ey0XsxaNCgnMU9dQ/Ud+n9wIEDvRxV5lptgcLctQji+uuv79uWq666Ckit88XGtGnTgLSYkWSlZ1vtYLY/7g5ZvdU9k6zDdkR927hx48zzExB60C+88EKvy6ussgqQjmnXW289IJXzrFmzStbzU2gRXsgtsNMWhdIntBTNbrvtxn333Zf3u3o2pJ9rr712jre94O92aC/DMAzDMAzDMIwyoNc8QPm8BIqFlJXo7bffbvX+lltu8Z/JAqKZpTw3H3/8MautthqQWtI0k1Yssb67dOlSHx8s68YTTzwBpDNO5bPU1NTw9NNPd+ua+4JwxpyddRfyWGS/m89KnG/fqqqqnGIHhc6hHMlazwvFP3fEIpfdpyPJquXKE0884fPVQu+OYn0XLVrkE8Tl3ZWlTG2GmDNnji+CIotbJeVYTZkyxS8WKRnJ6i2am5sLlmtWm6lE/MmTJ5d1SVYhK62eZRVBCGUHuV6JpqYmr2Pha76yuJJxaDUNS5MXK7/73e8AfKTEsmXLcpLp1Rerv9b2xYsXe7npWZZ3KHsP5EnS9+QBkaxUDKW+vt5bftWHS+by4skbt2zZspLwrs2cOdNfnyzYYTGNbO5ymH8mHZYc8i0NoO9on2yORZhnqfZYspOeZvMtS4V8OTpdOYbkJdlKl1VWX4W01l9/fV9Y5Ze//CWQO15QcYRp06ax4447dvm8ept8EUPh2LK7UUFhH3344YcD+MIHf/3rX/22sF9X+yHPb2cWki7/kYFhGIZhGIZhGEZCr3mAnnrqKSAuTaeStbLmhrHVsgRVV1d7629oLVNuy0477eQXOtt2222BNB9AFotsJaNXXnkFSEuPykoqC5UsLEuWLCmrCkizZs3ycg0ti4W8PPnIxgiHpXMriY5YZ7MWEhFaTCS75ubmipBjaK2RVeyNN97w1a5UDU5V4FShacmSJT4mXlbdbPWnLEOGDPHldU8//fRWv1kJPPTQQzkx+6Hs81V9DPNbJPsrrriirD1AhbzW0rPssxla2mUJz5YVD48XenWiKPLWfbXLYUn8Yi8vfOyxxwJpv/vf//6X1157DYD3338fSL0FeqblEerXr5/XNXlqlW+W9WrIsh7mqwpVJhs8eHCrCmaQ3gONA7JWeo0nDjjggG5IoHdRdArkenHkAdK1LViwIGfpi3zLXXQ0OqO2ttaPiXQ/wgVR9dulGLkQeijyRcN05Bh6nuX5Ue7pr371KwB23313IM5Lu+mmm9o8XrYSp45XjHSmavCbb74JwF/+8hfvDVPlRpHtl9TmSbfOO+88IF3mQt7mLGG/Hs4nFFmic85eQ86x2rwawzAMwzAMwzCMMqLHPUCaIZ922mlA7IkI194JK7HJEjZw4EDv6RGKS5WF6Xvf+57fR2sMqPqLZpGaha+zzjq88847QGpdliUlW50HYguVcgdKiUIz26zFQ1ak0JKZzWsJ84TCRdFqa2tzvBjtnUM5EUVRwRr1WYtYvkpR4T76rnR72LBhvXPSRUBorVEll4022shbf3T9esZVvenNN9/0MpfnVh5dVdTScz1ixAhvjdMzr2o7lcDTTz/t29mwkpbI58WUXupeyFI+efLkXjvXUqC+vj4nTyL0rEHhHEztI3kuXLjQe4Ckl8oByC5uWczo/LSOz/bbb++3qQ9/7733AJg6dSqQRmPMmjUrJ78n9FCOGjXKR4BojRR5y5Tno/eDBg3KsZqrrwrluPLKK/sxRzH3Vdk1/cIcaF2Tomiam5tbeSIhV/daWlr8MQu1Bdn1BDV+0nfkxdO+5bS+Wmf0IDsmCj1JF154IYDPS1f/pCilttD9mj9/flFWgQu9sFVVVV4H5Km5+uqrgTR3Urz33nvcfvvtAL5SpMiOQ6VzigyR1+zuu+9u9Z1ly5b5cX+o79JT3dOdd97Zf888QIZhGIZhGIZhGAk9PqX/29/+BqTW3AkTJvjqDIoPDld8l8Xy008/9ZZeWYFlNZPF9/jjj+e2224D0vV6ZHXS77zwwgsAPPLIIzlVjsK6+qJfv37+M81GtXJ1KVJbW5tTkSicOTvnvOxl9QlXiA/XWoLUClVJNDY25q11n33fEauS5JiteFRJyEK22WabeXnquQtzIvLlYYRx/npWhw0bluNJqiQP0PTp033+SiF9bG5uLqijYZWt2bNn+/uhtrOckKdBeQ6hh3bZsmW+TVT7ma/6ZZhPGXrHs94d/YbWvXr++eeBVL7FXgVO3hf1sx999FFOWzhy5EgAJk2aBJCzFh3k9i1ZL6S2hblAOo7u17x583LWrQmjO5TfO3ToUN/uquLkpptu2nkB9DK77rqr/1+ykc6F3p6ampocL1EYodHU1OSt5pJRWJ0w2/+HVV7D75QyYZuoMYwqB3/00UdeZ0PytZk/+MEPgPS+qF+79dZbc/YN24QwP7BY117LPrMhWgtM8guf5VVWWcXn+t15551A7vqaWbl+8YtfBGDfffcFWufxADmRYVlUuVRe3s7krvb4BEhhZJrILFq0yD+oavjDhkuJzSNHjvQNlPbRQCe7eNxhhx0GpI2Y3OyaWOn3hg8fntOJqUPKFxamh0SluEt5ApSv0co3MCrk3s4XEpctK5pv33KmqanJyyLswDtCKN9sUYlKQEYKhavW19f7hGZ1ENLZrH6F4bPhJElhMLNnz/ZGEyVQVgJy/8+bN8+3vZJRvoU884XBZr+z9957A/Cvf/3LG5LKqRhCuFisrj8MQ21sbCzYJmYHhoVCi8JJU9bYNG7cuFbHCQecxY4GGmEoO6TPbjh4Xrx4sdex8Dols5aWlpx+K2xrNXFdffXVcyadhQb51dXV/lwVqlSM/Oc///H/a5yiV7VpMgT379/fX3+oR7r+rBE0NGzmmzSFRQ5CXS7liVDYV7/xxhtAawOaJsxtFSRQmLVChDUxzxawKPTbhZYPKday4o8//jiQnt+RRx7pdeSjjz5qta9CVGWEGzhwoH/mlA4TToAADjnkEABef/11AB821xmUSpDvvrU3xrIQOMMwDMMwDMMwKoYe9wDJ86PZ7pprruld5rJiyJWu8nh6bWpq8lYiWXVC13dzc7NPkNQsXpZkeZg0C62vr/fHljVPXgy9z4Z8aBar5NQ99tijG5LoW/KFU+TzWBSaIYcuzWwCYL5FAsudbMhkaNHpTFnQbNKpnotKQJa27OJlkqmecT2TWQuxPBxh2IDah/HjxwNx4QNtk0VICy8rLKcc+d///uf/D9u0UD+zi0eGBT3ULiphtbm52S/uV04eoLBstXRN3kORDRcMLbf5ishkF6CGXAt7v379fFSDQjNDy305eIQVqhKGrKhPNgpz7733+v/1LCuaRbqjwk9f+tKXvP5o/CM9ktcou3h5oWIdanvr6+t9u6lQPIUSa7yWRaFP8kgVA22FoofbutqmffWrXwXSKKG77rqr3e+ExVSE7oFKRxcbWoLilFNOAeD888/3uiZPmN6r/1A/P3PmzJy28OyzzwbgpJNOAuC73/0ujzzyCAB77rknkBY/6QzyRsk7nKW9KB3zABmGYRiGYRiGUTH0uAdoiy22APB5On/961993K0SmxRHKK+OrJLLli3zVo1w8S29d875WD/lE4Sxr9p3+PDh3nKSzQvKvspaUlNT4/MUismq0R5tzXDb80xkLRKhxyhfqefQCl9JLF++PKcgRGcstmFBipqaGt59910Attxyy5481aIkLDs/aNAg70nUMx8ubFhVVeWf39AiKgvUNttsA8TxymoP9FvyHpWzB0gWyJVXXrlg0r7a2SiKvGz0mXJfJF8llFZXV/Pqq6+uiEvoE0IPd5gb0tzcnJObE+ZPZD1DoYU5n9VXFvaNN9641XEKFVcxKouGhgZvxVbbGHofNa761re+5Rd+Vhspj7fawWy+ZCGPr9qB6upqX9ZcORuPPfZYq+9kc4DuuOMOIPWIFANtjYXCbXrW9t9/fyDuT773ve8BcPTRR+c9xo9+9CPvpdNi290ppqH2RP1UsXHCCScA8Kc//QmII650rtJLlb+WHqm4xMorr5xT9v6SSy5p9Tp69GjvKf7hD3/Y6rfztbGF0G/m81S2933zABmGYRiGYRiGUTH02spW5557LhB7hC699FIgrQSlvJzsomYQz/pktQhj/bMWNn2W9Rzl2zf7v34jtJZohjh79mw222wzAI455pjuXfwKpFDca//+/XOqtYlsbGahEtki6wkKq+uE+5Qzs2bN8v+H8f2SWb4yw6Fcdb/69evHyiuv3LsnXUSoQqOe2dGjR/Paa68B6fOrHDzt069fvxwvsTzCKjt6wAEHAHFbon1kpQrLj5Yj8iIuWrTIe2/0fCqeWp/feeedHHjggUCaoyFLs2K5xdKlS31lnnIk9HCr+qiora31/ZSs8mEVrH79+uVdHDV7XPVn9fX1XpfDfKMwcsGoTJxzfnySz5qd5eKLL+biiy/Ou02W90WLFuWMD/Qqb3tHFuEOq80NGDDAlzYuJg/Qo48+CqTXNnToUO/9V0UyRRCE1YWnTp3KL3/5SyDNR1FVzfvvvx+Ayy67zJfKLiT7tig0Nij2ZQZUtfLpp5/2efbqa5ULpmtRP9LQ0JBzvcoDzF6vPEihJ62tMaXaVPVh8qxnI7f0DOj+FsI8QIZhGIZhGIZhVAw97gEKLd7777+/j7N8+OGHgdQ7pPV7NIOLoshbL2VtCPMtVlllFT87VMU5zfI0+8yXoyKrQNbbBLDXXnsBMHHixLKqdgS5eSfZfB69FvJQiDBWHiozB2jAgAFeJ8M1FSSz6urqHNko1jpcZG7x4sXemlIJqAKk9GjUqFE+dleyUR6GrEsjRozwlrtC+Wx65keMGOHvi76j6jAbbLBBj15LMSGPzqOPPppTkSys1pj18oRVMcPPBwwYUJSLRXaXcP0jEVYQamhoyFnEU15MySjfOkBC+ioL+5IlS7w+qr8KK56Gi3MblcWf//xnbrnlFiBdbLYzuRAi9G50FVn+w+q99fX1fOYzn+nWsXsDjSf1OnfuXO9R0zMsL4TGRFrr8ZhjjvERQA8++CCQrvWjXMidd97Ze4k0nuzOYtHyYOyzzz6d/u6K5JxzzgHgH//4h6/ypnZP7abaOckhG6mlcVM4/ly0aJHPYxMd0fewzVU7nfUAdbQyr3mADMMwDMMwDMOoGHrcA9TWzG333XcH4ljCLKqDPm/ePD9DnzFjBpDGZmvGrUpyRkyhWMnVVluNd955B0gtluFaFcuXL2+1Unn2Nd+aLKISc4C22247X/tfnovQwhZFkZdbIZnIClxVVVXWnokQWTTlgc1WvpEFR8+4LEfz5s3zeRjhWmJ6VQ5MVVVVTry7rH/ljGLwTz75ZH/9yv0Jc1aybbPyz6TLkn1dXZ1/VTWockJtV1hxMLQqHnnkkV4W0kF9NyvX0AsceuHUHqy00kq+YqEIq/ZVomfdSBk+fLhfe0fRKNLBQpXJsoT5aC0tLTn9UKH1gPK1n/vuuy8AV199NZBW+jrggAP47ne/25lLWyGoalk+5L3VuFI54HofRZGXvTw/kr0imI4++mjvMRLdyd+RB+hXv/oV559/fpeP09soEiCKIl8F74ILLgDgueeeA1JZdYZddtmF3XbbrdPfC+cYul/ZSp4dHZP2WhGEzrDhhhu2egXYZJNN+up0yoKFCxf6BkuTGDUC2XKu+SY4kLvw5BprrOGT1TXoFF1x05cagwYN4rjjjgPwi3fNnz8fSAfnTU1NOSFFkp/kqbCC3Xff3U8GKgFNxrVwqSY9kOqPQrY0sdxpp528i1yTIi1OHHb2Cxcu9PKcMGECQJca11LllVde8SEcIuyc586d6/9XYQTdB+mpJo333XdfTmGAckBtWD79yaKwj94kDC8Oz8GoPMIkcz2PGqiLJUuW+FBfERo4O0vYV2lJE73XeOLUU0/t0vH7EhmFurLQZm+hsUApyVOTYr0KGYdfeOEFIO6PtFSFJptq71QE5sorr/TfDw1HbRH2a1pgNWtQloGrPcp3xGoYhmEYhmEYhhHgemHxtXJaza2vY7valWWhMthnnXWWT9BT8mLo7WlpafGJ0WFZ2DBsrqamxlsot9tuOyBNwO4gfS1L6IZuRlFU0K0qC8fs2bN9QQ/tqzKPes2GzRW6dx2kpOQpD470qqWlxeuWPIryOCjRUt6iFURJybMtnnjiCQCmTJkCpMVnfv3rX/tFEs866ywg9Qp94QtfANJwjx6gqOV55plnAqlHSOXU1aZl+8XeCvFVMSAtDyEP83777Zdv96KWZwlSlPKU3l177bVAuoiznluFUTY1Nfm2tKcIQzxVkOGkk04CUsv73/72N/bee+/w60UpzxLG5Nmz5JWneYAMwzAMwzAMw6gYesMDZBiGYRiGYRiGUZSYB8gwDMMwDMMwjIrBJkCGYRiGYRiGYVQMNgEyDMMwDMMwDKNisAmQYRiGYRiGYRgVg02ADMMwDMMwDMOoGGwCZBiGYRiGYRhGxWATIMMwDMMwDMMwKgabABmGYRiGYRiGUTHYBMgwDMMwDMMwjIrBJkCGYRiGYRiGYVQMNgEyDMMwDMMwDKNisAmQYRiGYRiGYRgVg02ADMMwDMMwDMOoGGwCZBiGYRiGYRhGxWATIMMwDMMwDMMwKoY+mQA558Y55yLn3Dbd2aeScc5NSuSzchv7RM65I7v5O90+htEa59yRzrmok9951Dn3u946p1LG5NlzVIpcrP00SgUbL614nHPTnXPf6e4+RnHToQlQ8mC19XdNL5zbh8CqwEvtnNuFzrnX2tj+pnPukI50eCsS59yWzrlm59x/+/pc+pq+arydc6Odc39IGrIG59wc59xDzrm9VuR5lAsmz65jsusc1n6mrKj2s4/GASWHjZeKnx5qb7cF/tDO75S1HLM458Y45y5zzr2byHSmc+4e59z+PfgbPTrp7NfB/VbN/H8gcFXw2bKeOiERRVEzMLutfZxzNe1s3wBYC3gA2K7nzq5H+Crxw3Occ25iFEVT+vqEKpCbgUHAV4CpwCrArsCovjypEsbk2XXKUnbOuX5AcxRFnfLQdQBrP1c8nRoHOOdqoihqXBEn1ll6+dxsvFT8dLu9jaJoXlvbnXP9u3OCpYRzbhzwX2ARcA7wMrGDZQ/gSmK9Kj6iKOrUH3Bk/LV291sTuB1YACwF3gSOSraNAyLgCOKHbSnwBrBX5vvaZ5vk/aTk/f7As8By4NTks+zfCZljnJ2cw7g8+12T7FML/AaYA9QDTwM7Z46h3z2Q2LpSD7wAbN1Z2WWOORBYCGwG/Bm4NNjeEfnovFbOXMetwIvAKslnEXBk5jurAzcCnyR//wHWa+dco0TO/0nO433gmGCfTYEHiRv2BcA1wEqZ7VXA+cRWqgbgVeCQ4Deyf492VbaduAfDk9/as419jgGeI36o5wI3AavnuQd7AM8k8nke2Co4znGJ3JYCdwHfIPMMAeskejobWJLcwwODYzwK/K635WLyLFrZTQfOA/4I1AEzgLOCfVYC/pTIdhHwGEn7mWwfBfwj+e4y4HXgy23JJbkXC4FTkvdttiHAhcBrwAnAu0AzMKSH5WXtZ9+3n63GARmZfxF4OLmWUztw7vreNsHxQ9lfkMiugfi5vjazzRH39e8mv/tqVsaFzm0FPds2XurmeKkX7slweqa9nQ58J9DZbwC3EPc7/y4kx3L7A+4GZpGnrQdGJK9rEbexi5K/W4A1Mvu12W8T902t5Nnt8+7ChXb0gb4zeVg3B8YD+wL7Jtv0gL0JHASsB/wN+FgCbOOBfhXYG5hA3GhcmhxnbPI3MHMOk4ETgWrg8OT7GyX7rZTscxnwEXAAMJHYWrMYWDX43TeBfYBNiAdus4FBXVSWY4GXM8efC9RktndEPjqvlYFhwCPEA55hwQN5ZPL/IOBt4s51M2BD4GriTqXgdSTH+Bg4BVgf+D7Qkrkvg4CZwG3EHfmuye/cnDnGGcSNyNHJMX5EPDDaItm+bfI7+yT3ZuQKeGD7ET+ElwMDCuxzInEHMoHYIvYI8Hhmu+7Bs8BuiUzvA6YALtln+0Re30+u/ZREnlHmOJsD/5fIb91k3+XAhsHDXxQDdpNnn8huenKdpybX9M1EVjsm2x3wJPFAe7tknx8nz53astWBs4AtkntwciKXPfLJhXjAVQd8PnnfbhtCPAFaAtwPbEXcXvbrYXlZ+9n37WehCdD0ZNt4YI0OnLu+V3AClNHDA4gHUduQmcAAPwHeIh5jjE9+awlwQFvntoKebRsvdXO81Av3pNvtbWafcAI0Fzgpkfc6heRYTn/ASOI27dw29nHEE5rJxO3VNsST5+dJ+/Y2++3kdz4Efij97fa5d+FiO/pAvwL8oMA2PaynZD5bPfls52Cf8IE+IjjWhcBreX5jDNAIjA6+v3Jmn8GJgI/LfFZNbEm6KPjelzL7DCG2QJ7URYV5TA9OohjTs9fVQfnovCYSW1juIHiYad2JnAi8I2XLXOvHJAOcAucaAVcFnz0IXJ/8/1XgU2BoZrvObd3k/UzgguAYj2aO0eper6g/4o51AbGV6inizmH7NvbfMDnPNYLr3Cezz2eCfW4AHgiOczXtPEPEjcN5gbyKYsBu8lzxsiNuI/4RfOcdXROwO/FAZGCwz0vA2W387o3A1aFciCdHnwJ7Z7a124YQt8eNwJhelJW1n33cflJ4AvTtYL8unXsg+zOJJzg1ec5jMLFHZ5fg898Ad7d1bn0hpzb2s/HSir0v3WpvM/uEE6DfBt/JkWO5/REb3CLgsDb22YvY8DEu89kE4olTW564sN9uJfPu/vVIFTjn3OLM35XJx5cB5znnnnLOXeSc2zrPV1/J/D8reV2lnZ97voOndRDwdNR2nOY6QA1x7CIAURxL+xTxjD3LU5l9FhNbVsJ92sU5ty7xoO6G5FgR8Hdiq0FIR+RzP7F79vAoiurb+OmtiS1Li3SviDveEcRyaIun8rzXtU8EXomiaFFm+2Rixd7IOTcMWI2MjBOepAvy60miKLqZ+NwOAu4BdgKeds6dC+Cc28o5d7tz7n3n3CJS3QvjWdu6TxPJLz+Pc26wc+4Xzrk3nHOfJPdmmzy/U9SYPLtOe7JLeCX42ixSuWxN7E2Yl22PiS2w6wA456qdc993zr3inPs42X44uXI5BPg9sQX6/sznHW1DZkRRNKcLYmgXaz89fd5+FsD3zz147jcBA4D3nHN/ds59zjlXm2zbKNl2b6D3XyP3vnR07NCr2Hip7+mB9rYQRaFjKxjXgX0mArOiKJquD6IomkYs042gb/rtjhZBaI8tMv/XAURR9Gfn3H3EIS97ApOdcz+LoujCzL4+CTGKosg5B+1XplvSwXM6lDiesC1046I82/J91hOcRGw1+SC5Xn8ezrk1oyj6MLNvR+RzF/B5Yrfh/9r43Spia/BRebYt6Pjp5+AoLKuowP9tfbZCSQY9DyR/P3LOXQ1c6Jz7PXH41YPEITdzicNlngDC5MZsMq2uSfepI43DpcQhD98htjItBa7N8ztFj8mz67Qhu0uTXcKk7YhULlXEcfm75Dl0XfL6HeDbwGnEA5LFwE/J7dRfSY79Fefc08kkQ7/xEu23IR1to7uCtZ9tf9bX5Lv3bZ17S/Ka3swgWT+Kog+TBP09iMcSvwR+4JzbnvR+HgR8EPxG+Lz0pl52hi0y/9t4qY/oZntbiGLRsRXJO6Te9FsL7NORdm6F99s94gGKomhq5m9u5vMZURT9KYqizxMnMZ7cE78XsJy4Q/Q45wYTN5a3BfsR7Ds1+XznzHergR2Jkwyz7BAcfxPi3IQOk1REOp64SsYWmb/NiQcdX+7M8RLOJ66y8aBzbos29nuROK5yfnC/pkZR1F4HvkOe97r2N4DNnXNDM9t3ItatKVEU1RHP8ndufQh2JpVxvnvTV7xBbBjYgniAfm4URY9HUfQm7Vt/Ch0vn/yy7Eyc1HtzFEWvEFuk27Mqlwomz64j2Q3owL4vEoextOR5vtUm7wzcGUXRdVEUvUQcurJ+nmO9Rxy6sTfwJ5fONLrThnQbaz9bUaztp6eD5y6PQ7ZK2hZ5jlUfRdF/oig6gziHYGNiT+AbxIUR1s5zX97vuavpOWy8VLR0pr3tKEX5bPYkSft3H3Cqc25IuN05N5xYtqsn1eL0+QRiL5x0pyP9do7+doee8gDl4Jy7jNi1+DZxkum+5D4kPcF0YG3n3FbEFqBFxMl306IomprZ733imeYBzrk7gWVRFC12zl0BXOycm0/c8Z9BPJAI67uf55ybR9ygX0B8I27o5LkeQDwIvCqKoo+zG5xzNwJfc85d1MljEkXR95NByoPOuT2iKHo5z25/J55Z3+6cu4BYVmsSh7tcGUXRO238xOHOueeIY7ePJG4st88c94fAtclxRxBXTrklI/9LiC0s7xDH2x9DbKmWm38ucRz3Ps656UB9FEWfdlIMncI5N4o4tOIvxIOnRcTu1rOBh0g71lMT78VE4qTyznI5sTXvHOKqMJOAw4J93gYOc87dTmx1+gE92wj3OibPrtOe7KIoqst4OwrxIHFoyu3OubNJE533BR6MougJYrl8wTm3MzCfOLF3PHk8H1EUTXPO7Ub8zP/JOXcy3WtDegJrP4uk/ewEbZ57FEXLnHNPA991zr1LXMnwZ9kDOOdOIB6rPEPstfwC8XP9ThRFixKL/aXJPXycOOdkB2JjwJ96/xK7j42XVhw91N52lLxy7KmDFxFfJw7dfd45dz6xXB1xMaNzgLWJS2P/3Tn3rWTbb4kNSw8nx+hIvz0d2MU5dz3QEEXR/G6dddT5hKeOJvX9ltiNVU9s5bmRpOQtHUt8bLUPBZLJiMsy/pu4LGlEXH71WuCnec7pfOIKJi3kL+vYQOGyjgcT39QG4pu2bRdkdwdwf4FtE5Lf2buD8smRB3HHMR/YPNw/eT8G+Ctxh9lA3ID9JZRpnt88FbiXuJP9ADg+2GdT4kHusuQ+XEPhMq7LicNvDg2OcVJy7GZWTBnXWuLwn+eSc16a6OuvSKooEXe07yY6/CxxRxEBk9q4Bzn3jtgy/UEin3sSeUaZ7WsTD2CXEFs9vkMcmnNNZp9HKaKkfZPnCpfddILkz/AagKHEuQQzkufsQ+J2d51k+wji0qMqQ/4L4oHLo20cc53kOH8i7rTabEMokGTdQ3Ky9rN42s9CRRBCmXfk3CcST96XJtt3Ce7VocQ5JQuJn+nnaF0e1xFP5mVkmUcc1rRXW+e2Iv5CObWxn42XVtw96an2ttU+BO1FW3Isxz9iL+5vgWnJfZ9F3D/vl2xfi9jLqDLYt9K6DHZH+u0diCdS9R15rtr7U/m5siFxyc4lFvqzPXC8ScQlUkdH3Z1tGoZhGIZhFAE2XjIqmR7JASoyRgG/Jp7dG4ZhGIZhGLnYeMmoWHotB6iviOKkwk7HgRuGYRiGYVQKNl4yKpmyC4EzDMMwDMMwDMMoRDmGwBmGYRiGYRiGYeSlN0LgOu1SWrIkXjvq/PPPZ/LkyQAcd9xxAHz961/v9AncdNNNAFx99dXst99+AJx++umdPg4dW3SxN+l199xbb70FwL333gvAyJEjARgwIK4+uNNOOwGw+uqrt3sseRMLlJDsa1lCCS7W1gYmz57F5NmzmDx7lpKX53PPxWkm1157LQCjRo0CYOjQeAmkfv36MX9+nDevPmStteJF4F966SUA5s6Nl82ZN28ejzzySHdOp+TlGfLxx3Fl+JVWWgmI5dkV1I/rtaqqQ3byopRnS0u8zq6uIXwvli9fzgcfxOvovv766wBsv31cqX7s2LHt/vD778dLTr3xRly5fN999y00Dip4DgFFKc/2yHdtixfHVb8lV71uttlm1NbWAvDRRx8BMGbMGAA233zz1icSRQXl2UHyftk8QIZhGIZhGIZhVAy9kQPU4QP+3//9HwCPPfYYEM8eNQPULHH06NEArLnmmgCst9563sKxYEG8ALe8RsuXx4vu1tXVAbDqqqt679Iaa6wBwFVXXQXAhAkTOnKKfT0L79Gbk89Ds/vuuwPw7LNxBcympiYAGhoaWn33pJNO4uWX4/UBly5dCsBnP/tZAH75y18CMHDgQACam5uprs5ZrLevZQlmEe5pTJ49i8mzZzF59izdkucll1wCwN133w2k/dB7770HxJZieYBGjBgBpN6M4cOHA7DyyisDMHXqVP+9LlLS8oyiiPvuuw+Af/3rXwDeIzZnzhwA6uvr/Rjrf//7H5Ba6KdMmQLAhhtuCMTRMptttlnB34KCkR2iKOXZnjfrlFNOAeLxjrwRkp/GkbruxsZGttxySwCWLVsGpF42eX7kzZwwYQILFy4E4OCDDwbgiCOOaPXb7XiCilKenUHRRYsWLQJSnXvhhRcA2GWXXfxzrudekUfy/G6xxRbdOYUs5gEyDMMwDMMwDKOy6RMP0MMPPwzAz3/+cyCNBa6rq/Oz4vr6eiCO9YU0T2js2LFss802QBpTrH1lJZIXae7cuX6Gqdn4sGHDALj11ls7ci19PQvv0ZuTz+Kw0UYbAeksXV60/v37A6ncmpqavJxramqA2CIC8M1vfhOAyy+/HIitI/IGZehrWYJZhHsak2fPYvLsWUyePUu35HnhhRcC+FwLRXDoVf0TpBEI+iz0AD3xxBM+8mPcuHFdOZ2SkqdyTD7/+c8D8Xjo008/BdL+XPm76pfff/99HzkTess0hsr2++rfTz75ZAC+973vtT7ZEszxLeRlOeeccwB49913AVhttdX82EfRK5Kv8lMOO+wwvva1rwGw4447AulYc/DgwUCqn01NTV5e0u8ddtgBgDPOOAOII2WyvxdQlPLsKO+++y7Tp08HYO211wbglltuAVJd/NKXvuSfXd0HzQU07pRHSPraDfLKs0/WAXrggQeAtOFSY1dTU+MfXimSXIxSpubmZh8ep0H2kCFDgNT9OHPmTAAGDRrkv6cQOLk1n3zySQB23nnnHr++YiVsDLKJf3qAFQKnCadkO2LECK+4mhxJtnqgRQeTJg3DMIwK4e233wZSo6aSo9XXLFmyhFVWWQVI+yGNBzRQV5/T1NTE448/DnR5AlRSnHDCCQB88sknQNwfq89Wf6uJiYy+48eP96FFe+yxB5AagDUOUv+eTTJXiOIdd9wBpCkG3UxC7xPCMc+0adMAeO2114A0taKhocFfn/ZV4SeNTz/44ANfYGvQoEFAOk6VXDWpqaqq8sdZbbXVAHj11Vdb7aOJT4GUgZJm4cKFfnKo0EKNwa+77jogdkLsv//+AOy5554ATJw4EUgnlppEFTCqdxsbqRqGYRiGYRiGUTH0iQdo1qxZQDprznqANDvWZ/I2yFIhNyWkM2hZM5Scr9n5kCFD/Cxcx9Usv5I8QLKaZUMMIA5FlPVN3rNwH8l7yZIl/p7IKqekSR1j9uzZQBym2MFSj4ZhGEYFIG+EvDnqNxRqNHLkSN9Pq8/SPuq31Qc1NTV5b0g5o6JNSsyXx6G5uTmnb5XM1D8vXbrUW80lR8kv9EJUV1f7cCMVntK46uabbwZyk/hLgbAU+EMPPQSk4xKNGQcMGOC9jkJ6uuqqqwKx5/LOO+8E0uR8eTFVFEHHramp8WOg8L488cQTAEyaNKnV9lJG1yoP2+LFi33pennZ5FGbOnUqEI/tNb7UnEDeRkUmKTRujTXW4Itf/KL/v6ew0alhGIZhGIZhGBXDCvUAaZYoy4JKXOpVSXiQzpZlqdBMu6mpyXuFtI+Oqxm83jc2NnqrhpAlSfHIlYCuWXITzz33nF/kS0mmKl2o78ibprhtSD13hxxyCAD3338/AFtvvTUQe4DKwaphGIbRFsoJuPLKKwHYeOONgTTnQm2kkXp6ZFGXtVwlhD/55JOc/jrsR9QfRVHkv1fO/OEPfwBa50ALFSMKZaS+O/u5PCH6vsYC+ry2tjZn/CTvkHI2StEDFCKdCT2M/fv3z4l+0fXLS1FbW5sTiaT8Fo1FpdMDBgzw+q5xre6L8o/kAerqgrXFhDw/8twMGjSIddddF4BXXnkFgO222w5IF5adPn2694Zpm5ZjkddIy7RUV1fz3//+F4D1118fwJck7w7mATIMwzAMwzAMo2JYoVNPVRHTTFtxk/IojBgxIqfqi2bHmnFHUeRn1JrFyxIiC0a2XKNm5LIcCVWKqwQKla/UwmmQeoD22msvIJ3R6zvz5s3zca+K7dQ9kWVI5Q6hYGnHikHVS2bMmAFURq6ZYVQaTz/9NJD2V1qa4be//S0Ap512GgC/+c1vCh5DVuiLLroIiPM9/vjHPwJp31bqNDQ0+MgPecnkhVAfs3DhQt8vK+JDY4Ow6taYMWN8eeJKQGMm9bkNDQ2tvGGQm2+bHf9IxhpP6X3W6yPvm/KG9Jvqy5SnoapmpYhySiQHjTeXLVvmr196KdllKw+GVYk1ztHnem1oaPDf1zhX38lG05QLKlutKo4LFy70Orb33nsD6bOsPKq9997beyTl6ZH8pJcqIT548GB/r/Tcr7feekBaH6ArmAfIMAzDMAzDMIyKYYV6gDRzU9xkOMNee+21/YxQVcm0TRahmpqaVpU2IJ3Fy3KhWXn//v19vLGsbDqOFlzSbFyVT8oRyTSMNZ02bZqvgiJLphZTk9yVnzVp0iTvzVA1jp/+9KetjtfOQmkVgXICzj//fAD23XdfIPWwbbLJJp0+5vXXX+/jXhUraxjGiiXfwoWKS1c7KU+Q4vsvu+wyAI499lifIylkNdW+H3/8MRBXpjr++OMB2HXXXXv4KvqGBQsW+D5dfa36Xnk1li5d6vsOWc0/85nPAOlYQbIfMGBAWeeZnnjiiUAqB/XTH374IRBb05VLofGU5Jhdz6ZQJEZ2DRohz4equapqn+7bY489BqT9fymhMaK8BfJG6ppnzpzp807kCQpzy6F1FWJIq+rlk7MileTF0PEVXVMOSD8lF40xBw8e7LfpOZc8FCnU1NTkxzOqEKc1PjW21z1oaWnJyVHTeHTDDTfs8vmbB8gwDMMwDMMwjIphhXqAZOGSV0ZVMrSi85e+9CUfXypvkWbY8u5kK5lptqnPNEPU56ussor3bMiCpJVmZQF48803gfL2AIXWCVXemDt3rvdI6N5kV5qGdPY+duxYX79dMqxUwjWOFLf+rW99y/8/YcIEIK2AcvLJJwNpnfss8kr+5S9/AVLLmywoQ4YMKem460K05zG8/PLL2WqrrYA0tljPs55XrUUlC1JH+NnPfubzEA4++OAunLlRiYR6umDBAp/XKiuk+ivFu6sS0jbbbMORRx4JwFprrQXAr371KwDGjx8PpNWR6urqfIRCufDJJ5/k5FbIKq/Pm5ubfZUutXeqKjVu3DggHQcMGzasbPKj8vHNb34TSCusSkbqExobG31Ui8Y76uezeqr/w8pwkt3gwYOB2OuhnCJVKdNv6bsap5WiB0jjSXnSpIPqexcsWMAGG2wAkLMWld5XVVX5vj9fpT1I5Tpw4EBefPFFIJWx9F2e33JAYxXJRd6z+vp6H02kNlH6pOu/+uqr/T7yOoqw0nO/fv38PdQ2rY3VHQ/QCp0AaTCtMAEl4evzF154gc9+9rNAOnBU6JAuuqWlxSuZ3G6a+MjFpoZh7bXX9g/1M88802ofLab08ssvA7DLLrv04JUWF2HHff311wPxwyvZqcNVBxMWltDnAJ/73OcAOPPMM4G0I882CuUcBhc2enJxv/XWW76jDgfs0nHJfrfdduOuu+4C4NZbbwXSBkK6qDCYroTNlQKFQjMffPBBAI466ig/0ZGMVIBDz7XKxE6YMIFtt90WSMuxa6KuJF4tgvf+++97WVfqBEg6LFlrwr7OOuv47eX8DHeFMMn8hhtu8P2TBgDSZRmUpKcbbLAB99xzD5D2T9JPhTDJILh06VIf3lEuz359fb0fCAoNbjQIXXnllb3OSa4aUOkZVj/Vr1+/nHCkckIlfqUHKjSkvmbChAl+cqiBe7YEM7QO3dIgVPqobbondXV1fjCqsZHen3HGGQC+fS1FNBkJdUYTomyBg7CkdVhIIos+C43M1dXV/nga8MvAIR2WTmvMUIpoPK1Xje2HDx+eM9lUOycdvP322334r2SgNjAMd1u2bJmfAKkYVzhp6goWAmcYhmEYhmEYRsWwQj1AJ510EpCWWtbM+PLLLwfiECCFpIUlCTVzr6qq8jN0WTG1j2aWmoU+++yzPildXgqFKGnhOs1Ky5F8SbuQutVHjRrl5aHZehiWIGTRhDihN3tcLfZ3++23A+VRBCF0dWevKZTnpptuCsQWMyXxKYRQ3gjJT6ENa6yxBptvvjkA3/72t4HU2qsQUZH11JV62Ec2fFAWsilTpgBpAQlZPe+++24vR123wof03exiykoQVilieY+07+c//3kgDocot4WQO+KxmTZtGj/60Y+A1OKmxOaDDjoISL26nXmGf/e733mrXCWVe//JT37i9U8h1WGZ3OySDUqClmyVXC5vpNqVxsZG7zlWEZVSxznXKooA0rZAMswubKrnXknrKnkrr0d9fb2XXyVw8803t3p/9NFH+6gCeXc0ZpLFvbm52etUvpLOkOrrwIEDfbt777339tp19BUKlxIa98kbO2zYsFbhVpDqp2TW0tJS0OMTLkrb2Njof0NFD+Sp0z6KZihlD5A8NnpONfYeMmSIH0NKP4Xauz333NO3ifosG0IHtDqGxvf6LFwOpyvjTvMAGYZhGIZhGIZRMaxQD5BQGbxbbrml1eebbLKJT9BXHGq+UpfZ0niQejqUeCpre3Nzs49j1SJzlUQ4I1ZelWJPx48fn2M9Cks1Krk8G/+u+6cSsF/60pd64/RXKGFhgzDevyNccskl7LHHHkDqDZNlRJ6LMWPGALHVvKMlbp1zJef50XMbvmYtZ7I0/vrXvwbg1FNPBdJ8lKyXRhY86bQ8lophb2lpyVnAT7JXzpru6YcffuiLfcjqqfam2Anbw3weSlky5Y284447AFotHPnqq68CaQ6U5KH2t62cyBdeeAGAr3/96/5Yhx56KFCeHqDQwqjCB7Nnz/Zx/bJGynocWif79evn+ylFM6hvEvpuVVUVTz31VO9cTB8RRVFOm6r36oOUCwRp8Qjl6MoDJCvwp59+WtGLbWf1Se2edE5tYratkKzCsVM20T+bM5SlrWiIUkELoKpt1HhHOVXrr7++18dQDtnr17awHdZxdU+GDBni/9er5KbjvfXWWz1ybX2B+t+wnLjaxsGDB/s8vlBv1P4NHTq04Fhecs4uJquCC/pM3juN97VIcmcwD5BhGIZhGIZhGBXDCvUAZWMps6+ybm+66abeahvOlrMxq6ElSdv0HVmJlBOQJbvwF+RfwKpcCOWk3B/Ju7a21lsuJENZ4WSVUznSefPm+e8pDluLfYoTTjgBgGuuuaYnL6PHyBcrqs9CWanCyHXXXQfAPffcw8MPP9zm8bfffnufZ6KKT2E8sax1N910U44HSLqpuFrdi2XLljFr1iwgjY1XzkWxEso1tHptsMEG/PCHPwTS8t+y6Kgs8DHHHFPw+MofvO+++4A4nlpeS1lAVdFMsfLyIi1dutTrcjF5gEJvmXMux9ralvVVz+W5554LpDKX93HcuHHe66D8CXmHZK1Ttb1nnnnGVyuSrJSfqd/RIpXTp0/3pXPLCcWlK5Zfslce1ejRo33UQSHLumhubvZtrWSv93rNlr1/9NFHe/6C+hDnnG8L1T+rLdTzmc0R0sLPijKQxV4et48++iinL68kZHnPEub8NjY25pQTDnNVRHV1dU6VPtGVaIhiQ/2nvGRq7+TJqK2tzRlHinx6Vkgm2UVp1VdL9mob1K9nPfKlRpgLpb5bepkvtz6fVyfMC5Rssp5ziKNB1FdLntJXjdXMA2QYhmEYhmEYhtEGK9QDFM4aw1m0vD+QW+lBM8Hm5uYc75COE8bAhpXMsvuWYhxrZ8hWgJE3R9X25D146623fDymZBVW1tGs+t13383JtZKnRzlBslreddddHHjggT19ST1GGNOc5fTTTwfiCoKQXusnn3zicx609kw+/vjHPwLwj3/8A0hlorwrVUn529/+5j2UqoooC4esKFmvpyx3ioUvRg9QthKZnjPJUTkmv/vd7wDYfffd+c9//gOkspHHR9XgILdakZAF7wtf+IJ/lRfi97//PQAPPPAAkFqMZAXMWueKibZi7EProeKh5Y1ZsGAB77zzDpDm8anKoKoNNTc3e93V9e+5556tfkftwIwZM7x+qo2QVU/V9WQ93X///b13TZbAQtbkUiGKohzr5J133gmk7d66665bsPqb7mH2c3kxJEfJL1ybZMSIEX7RaXk499lnnx66sr5DMtEzHa5Xo2caYKONNmr1XcX5S76jR48u+z68LRYsWOD1M7Ssh1Ez2c/0qrGB+vSampqyroirXB/1BSL0SkJuPkrWW6b/9cxKjtJljbWccwXXvdIYQP1RKaJrkdz0Xjo0atQo/8yGz73kO3jwYK/Dkme4/qRYsmSJ73dUNTJcg6gr9EkRBBEuhNjY2Oj/lyDU4WcT/bQtXHxOIQTqxOVGz9KdknmlRDa0TwUgNKBRR7Pmmmv6kCQpYKGBS3V1dc6EU/ckLKRw9913+4HB0Ucf3TMX1AN0JIlz4403BuDvf/87kE441l13XR8e9L3vfQ9IQ4uySDc1+NSAUzJS2NCWW27py2erDOZ2223Xal/Rr18/35hogdVioK3k2CuuuAJIJzeSqxY+e+CBB/z/Tz75JBAPpKH1cxuuuF3oPaQTfHUsal/U4Ugnhw8f7o0tCvEsJiTXN998s9UEB1ovlgmpwaKpqcnLRINHrdyuULYxY8Z4/ZEswtA/TWA233xzH2aoNkFtsX5boYorrbSSn+hqYlaME6AoinLCDEVoGMvq1c9+9jMAfvzjHwPpyuNNTU1ex7KhL/mOn11oMRyE6jWr02pLVQSg1CdAURR52YQlbiX7rPFNi26Gg/msUS87aK005s+f741zGvfomZNOZss2i3DyqWd52LBhrQzQ5YZkpGdM77PtVaEiENk+R7KV/IQ+ly4vX768YNlmPQelHMIpvQkLPKifamhoyOmrw/avpaXF7y/dDY1D2TmCQt1kbFO/1p0JkIXAGYZhGIZhGIZRMfSpByhk5syZ3oIezupkmcyWA9Zsu9ACVlVVVTlJzvnKapcToZcG0pANeX7kCRo2bJj3QijkQqFK8krI6puvDLOsKLLc7b777kDbIWJ9iSwvsi6stNJKORayr371q0AawiYvxQUXXMAOO+wApGEp2lfyfPrpp30ivvR3s802A1KLpiwdDQ0NPnTw+eefb3UcWd4VytTS0uL1WF6SYqCt5Fg9b1tuuSWQWh7lUdtkk038NW211VZAGgKYDcUoVKQkvG/33XcfV111FZAuHqky2grjlEVupZVW8sctJg/Q9ddfD6QexhNPPNG7/WXtldVL1ySr7bx58/y+sqopTFIyX7ZsmS81rnYwLHoii5vaAYC5c+cCqbU09M6/+OKL3tNXzOQrKlGIO+64g7PPPhtIC3fIq5tN4pX8pd9qE9UXZT1KYdiRZC69zJbJlndd97LUaW5ubrVIJKQ6FnouoXU4HJC3RHG5R3FA4YiVlpYW74WQV1gyy1eII4y2CUO5li9fnuPVKIdomTCaQv2y2jK1kcOHD/eehbDoSdZjobYvDKULwxEbGhr8khfq8/WboUeksbGx5Ja50LWE3qysVzZbjAPSZzibmiLZSvcUmZD1pEHc76ltDb+Tr9hZRzEPkGEYhmEYhmEYFUOfeoBCy8JTTz3lZ8Ka+Wm2p1n5smXL/P+aYYYxsFlrnKyXskiH8delTmilyVrllbQry7osRJJXXV2dz4+QdVNyf//994F0Zj98+HB/7DAhXQtX/vnPf+6py+oVtBiaPDhRFOWUp5ZFV5Yi5f0MGTLEWy5OPvlkIDexsn///j4/QJYneSOee+45IF1YFlLLnRad1EK1WkxV962pqYkNNtgAKJ2SpGHxAyEr24ABA7wHTDk7uj9Z9CyrZKhkNnPmTCD1DM+aNYubb74ZSHOzlOivdkFtS//+/b0XMNTlvmS//fYD0nN69tlnC5aXltdVz/J7773nvyfd0za9Zhc7lBy1TXqVtXDK6yT5hUsUiNraWn9ftUiq7m2xopy6Bx98EEgLRdx1110AvPbaaz4XTd7bsFx1//79C0YU5CvekfX+QtoHaR+1L01NTa3alHKgsbHRy03eSz3Tkoc83pDqd5gUne2/y0U2XWH58uW+b1ZfJVll8120TxglEy6M2tDQUDJ9S2cI+x/JI/Q0ZD06hRZDz/esh1FH2aJS6pvkFVFEgrxO2nfu3LmtxgWlgOSla9C1SQ5jx471fVc4phJZ+epZ1nhUfbeiY1ZaaSXvUVNfo/shb1RXKD+NNwzDMAzDMAzDKECfmj/DGfbUqVNzvDphCdZspbjQi6MZZrY0n+K3lWdQyvGs+Wjrei644AIgzedRLoBiJuvr633svipxyeqpe/PII48AsaVDXpIw/jVfFY5ijB+WJUJemvXXX98v7ihrt6wLJ554IpDK7L333uO0004D4NBDDwVSncrqqEoRywL+6quvAqn3TdbO5cuXeznqO9rniSeeAFKvXEtLi/eSFFMVOOnMLbfcAsCqq67qr0HPoKxg0hHp0OLFi5kyZQqQ6ooswPfeey/QunKWjhN6IWVV33DDDf026fcbb7wB5C44WVNT4z3DX/nKV4DikKssuEcddVSr147Q2Njor186Fi56mH1O1XZqH71293mVBa+YUCn6H/3oR143dP+VA6Z8JunTLrvs4mWh51vvs9bKcBkBtSPh4ocDBw7MqZqoZ0VW6WwlKZ3Pjjvu2O3rLxa04GnoCZMM11133ZzvqM3WvtlqsOVctUwU6kfr6+tzqumFuXnOuZxKY6FnMrvMSJhvVkx9d1dRPq2uU8+gIgDUTzc0NOR4c/ItZhzKJByDZtsMjVk32WQTIO2XdL90b9S3lRLStWzeIqQ5qsuXL/cyDp9TXW9tba3XVXnkJBu1je+99x4Q5weqSq7GB8pf133SWE7ju45gHiDDMAzDMAzDMCqGPvEAhZXKZJWYN29eTgWOcBaenVmHFU3CuNaamhrvARLlGOcKuTJ97rnnfFy7qkMpD0Wz6/Hjx3urmyy3L774IpDO2nfeeWcgrnAWWjt1j7QwVZZitB7Jeqj8kQULFnjLw8iRI4E0Zlgyk9Vmiy228GuyyPMj747iVYcOHeotyvLYyPIULpTW0NDg75l+S9YUyVN177NrvBTT2heybEmeM2fO9LkVitddddVVgVQOkvf8+fO9LGQF0jVq3apx48Z5K1K4RkO4nsurr77q5aZX6WDosdxoo438OR933HFdu/heQN4Dyaiurs7rRJgvEn4O6fWG63KF7SLkyi/8vKWlpVV+AOSuxSJaWlp82yBPWrigcl8gb+7XvvY1IG63lH+iV8lTOqO2bcGCBTlrGRVaTDKL2l99V/dkyJAhXg+V+xLmt0rXGxoafFv12c9+tvMXXoRUV1f7qI5sbiOkz2e+dftkUZYlX3rVmYp+5cjaa6/t+2w952F755zzz3NYBS6sjtbU1FRwHZxSJhyzZJ8xSNfXeuWVV3LWlwzHp9k+W/IMF6HN5mPptxVF8q9//QtI+zudUyl6gPQsZ9flgnS8WFVVlbMulchWyAx1Tt/R8y7ZQdpmq00Ix6FdyQUqz9mAYRiGYRiGYRhGHvrEAxRaHWXxHDVqlI/NljVUVo4w5hDS2Xdo5dCMsKmpya9vIzRTL8YclY4QWiELVSz57ne/m2MZ0ntZv6dPn+4/U5UxrcUg66mqwW2yySY+xlKzfs3A5QEpdqRTktWwYcNyrLCyMMrKIGvNG2+84feVjso6kc9CJC+b4lEVXy2PyJtvvul/U9YTWaHljZI1aa211vKyL6a4d13jF77whZxtYYUiWbkkz5aWlpy436zlEmIrkOQpz5r0VTKXRW/hwoX+szAWXvqq+z9o0CBfFVKyLiZ0nno1uobWI5MldqWVVipYiUiylp5WV1f7/6WPslzqOwMHDvS6FeYYyFOr3/7www+9R3fs2LFA2haorVHbU11d7S2goReqHAgt3uqL8z2Lek6VL5h9/ktt7ZSuEPbzktXSpUu9PuYbG2X3hVQPpa+hN7eqqqqgB6hUx0qQW+UzXIMnm1su/SvkARo8eHBOnqXkKvQsV1VV+egReUXUX6qfU1+ufrCUUJ+ta9BzGXrRsqiNzHrb5UlS+6uxqb6vCsMzZ870kTLq1yV75Q53pa0sigmQFKWuri4njCNMQG1sbMwJK9K2cGHOfv365QyuwhtUCuWwswvI6XoKhfJdcsklQByytuuuuwIwefJkIL1WKWC23KrCMjS4F1dffbU/nkLqwkRfKWaxI9np+t966y3/mULfVB5YD3Y2JEjoujWpkeu1oaHBT9i1f5iAL4YNG+bvoWSv50CDp2w4qEpnlkoIp3RNjZJei6HYgFEZhAU0Bg0alLPQtp4nTU6ygz31L3oOtW92gBQeR/2WOnINbiZNmsSPf/xjoHUZfsgdwC5evLhbpV2LlTABPVzcPJ8hTe2FDECaGC5cuLDkSgf3BNKRKIpyjJ/hBKapqSlnIBq+zz4jxRC22tOEyx2EoejZCZDaAOmhxpPq51dZZRX/v8YNkplCvxUmP3z48FbFKCBtY5S8r3PR75QSarukcxoTaty0ZMmSvCkp2e80NTXl7KNtYdGoefPm+bmAiiHo3ipcuCv6WxqjKcMwDMMwDMMwjB6gKFYBlHWnrq4uJxk99OA0NTXleIC0j6xDmmkOGDDA7yvLvhKpCi1gV4yE5VchtQTJ4vDb3/4WgF//+tdAXD5VFoeddtoJSAscyEtRW1ubdwFVgDvuuAOAgw46CIC7777bbwvd8WERhCiKitpdfvjhhwOx1UElqCUrecCmTZsGpJ6L+vr6nIRpWSvGjx8PxJajbBgLpGEusirl8+DoXuq3pb/ZBRPzFZowDKMw559/PpCWX3744Yf9c67nSZZHWS6z5YHDsrh6zYbC6TNZgPV8n3nmmQCcfvrpOed13XXXAWnbEIbhNjY25oTWlAOhtVcWXFmP8y1sGiY8S/bLly8vqkWMVxTZUMtwQfjQA9TS0pKTFhBa2nWM7MKdIaUcAqfnSJ4bjQP1nGa9NOGCsmGJ53nz5vmx6g477ACkHkodX99ZtGiR/w2FvOpVYfEae5Tisy6d0/VqrKLxtRYwzSJd03eyC0nLU64xve6LGDJkiB/rKl3j8ccfb3Vcjf87g3mADMMwDMMwDMOoGIrChKLZc3YxKs3UZQHKWjJCK4asd2GpzKwFRJY/zVBLkX//+998+ctfBtJrD5N6Zdl8/fXX2XrrrYG4xCPAOuusA8Brr73mjyFrh+Rz6623AqnnR4QJlpBahJSgLlpaWkoit6qqqspbE/TaF4TeIsMweo7LL78ciD0rv/nNbwC49tprgTRXRxEH8vgOHTrUex3CBaCzeT7adt555wFw7rnntns+ao9l0dTzL4/I6NGjfRGasIxvqZJduFRWX+U+hP1HFi3iLTnIQgy5Ce7lSBipks9LU6gIVLawQVgGW2St8dK/ckKehNCjILk888wzQDwuVHl2PWv6TnbpAY0fpcvaR3LUePW1117zUR8PPPAAkLYbGu/Kc6FnvZRROygGDBjQKtcHUjmqvauurs4pXKQ2Qbqo8eywYcN8+xsuIC0kz85gHiDDMAzDMAzDMCqGoqgC99577wG0KmupmbXK4GUX7pJ3SDPscMauWWRtba33FinvpdA5FDOqEnbWWWf5WXShcsjZmMynnnoKSONVldei786dO9dblA477DAADj300LzHzVogs6UzIZ2Ri1KSrWEY5U22CtFZZ50F4F/Fww8/DKR5kq+99ppfAkCRBbJyytJ46qmn8r3vfa9Dv53N/bv44ouBtNpjWFJ2+PDh3ntfLjQ2Nvp+Q94c9elh/5FFORbyauh1+fLlJRFl0NNo7NPc3JyT16PXsLog5FrhNU7IWtHDSqXlgPJqteC7nmWNB5WXU19f759rjR8lP8kz68UMdTlcamHJkiXeW6l99N233noLaL0gaKmiZ3ittdYC0lyeN954w1e7Cz2UWa9kNl8fUm9YWHmzpqbG/1boxSxUBr4jmAfIMAzDMAzDMIyKoSiCaDV7HjBgQCvvDaSzO82ilyxZ4mMoVX0rrKKhmWB1dXXO4ooi30JNxYoqsi1YsMBbLOS5CReczFocNfN+7rnngHRRuW222QaIrZ3Tp08H4JZbbmn1m2Gd/OwiU6G8x4wZ063rMwzD6C06snbW7rvv3uq1N3/7+OOP79HfKAUaGxtzFi5V/yRPWPazcPHu0CI8bNiwVvlA5UqhHKBspdVQx7Jjm9Aqrr4737qIpTQm6iiht1F6pHW2JMOBAwfmLOoZyn7hwoV+zClCHZYMR48e7e+Ljht6j3QupZjLJg+a1i7UOoXymk+fPp3NN98cyM0/y67Bqfw/VdGUbCRPeZQGDRrkvXnhwtSq8tkVj7B5gAzDMAzDMAzDqBiKYuqpGOjq6mo/Y1fsr2bRmi1nY3+1ZpAqRshLka9ufWgt6ohVsFg47rjjAPjXv/7FlClTAHJWGc7OqiG+PsWsa9u7774LpHGxCxcu5JFHHsn7m4XiLLPbwip8orm5uSStGoZhGEbvoJxdIStvtoJU2I+pqlZ27SWI+71K8ACFyAOUL19H46is10d9tGQl+eYbD8kaX8rr/oRoTCiPhaoKKpdK3oPFixd7fdRn0jUdY8iQId6TpEgloePr86qqKi8/VXvUGEqveh5Cr1IpsMkmmwDpuatamzw5hxxyiB+XS5/0DOt9bW2t11ndD1Vwlp6rHRg4cKD32mmOoPUcJfvQw9wRimKU+vbbbwPxgFwXobKketVFf/zxx94tNnXqVCBNnHrppZeAeBFQiJVawi7lMqLqIB566CFfqvGaa64B4D//+Q+QJu92ZFEthcvdfffdTJo0qUPnsN566/n/lUioAhUbb7xxq30rMTnVMAzDyM+8efO84U2lhMMFzSF3AhQuCq1BZWNjY05p43IknITomqMo8gPCWbNmAbmL+0ZR5CdAGsyHi25r3/Hjx/vlMdS/hxPWUkRjE01uVIL+Jz/5CZAOyj/++GOvl5rEaKFSpSCMGzfOy1FjVslIct57772BWK6So46rQb4WCVXxj8985jM9dLUrDhV70KvQOBRyy1KHJdyrqqr85EXPu/YJl3dZvHix111NKFXYQpOmrlA6bhDDMAzDMAzDMIxu0iceoDD8TEn58+fP96Fvmj2OHj0aSGeIs2bN8hYPlQqVdUgJWLKaDBo0yHuFVDyg0DmUCipkoIX39CpkmZg2bZr3nilUUB6brDeno5x11llsu+22QBqeqOMqTEFY+JthGIYhNt10U7+4tqzl6j922203v1/YL6vfDssYjx49OifyoBwJ+9J9990XgPvuu88XMJInSFZzeYkWLVrkI0IkV4XOyVsk+Q4ZMsSPD0LPTymHwilU67vf/S4ATz75JAAHH3ww0LHIoPPPP79HzkUeoNNOOw2AnXfeGSiP8ZKeaY3bBwwY4PUxXCRVXt3Gxkbv/Q0LGmjcL4/QsGHD/HFCr1O+pQY6SmnOAgzDMAzDMAzDMLqAs0UrDcMwDMMwDMOoFMwDZBiGYRiGYRhGxWATIMMwDMMwDMMwKgabABmGYRiGYRiGUTHYBMgwDMMwDMMwjIrBJkCGYRiGYRiGYVQMNgEyDMMwDMMwDKNisAmQYRiGYRiGYRgVg02ADMMwDMMwDMOoGGwCZBiGYRiGYRhGxWATIMMwDMMwDMMwKgabABmGYRiGYRiGUTHYBMgwDMMwDMMwjIrBJkCGYRiGYRiGYVQMNgEyDMMwDMMwDKNisAmQYRiGYRg9gnNunHMucs5t0519jMI4505wzi0u9N4wjPZZYRMg59w1SYMXOecanXNznXOPOOe+4ZyrWVHnUUpk5FXo75q+Psdyxjk3xjl3mXPuXedcg3NupnPuHufc/j34G9Odc9/pqeMVO0E7EDnn5jvn7nLObdjX51ZqmH52HeuPUvqon/kQWBV4qZ1zu9A591ob2990zh3inJuUnOvKPXyevUIe/ZvmnLvUOTe4r8+tUrD2s2cpRXn266kDdZAHgWOBamA0sDvwQ+BY59weURQtCb/gnOsfRdHyFXuaRcOqmf8PBK4KPluW3dk5VxNFUeOKOLHOUsznlg/n3Djgv8Ai4BzgZWKDwR7AlcBafXZypY/aAYDVgEuAW4GJfXZGJYbpZ49g/VFMp/qZniCKomZgdlv7tDcRdc5tQKznDwDb9dzZrTCkfzXALsDVwGDga315Ut2hVPp5az97lpKVZxRFK+QPuAa4K8/nmwDLgR8m76cDFwJ/ARYCNyWf7wQ8BiwFZgJXAMMyx/ks8DSwGPgUeAbYJNm2EnAdMBeoB6YBp6+oa+8h+R0Z3y7/fhwQAV8EHibupE4lVrrziS1sDcCrwCF5vrdNcPwIODLz/gLg/eQYs4FrM9sccDbwbvK7rwLHtHdufS3DTsr7bmAWMCTPthHJ61rEA/dFyd8twBqZ/dYBbk/ktwR4ETgws/3RRE7+r6+vewXINacdIB50RcDA5P3FwFuJ3kwHfgEMCL5zDjAned6vBX4ATO/r61uBcjT97GE9TD6v6P6IoJ9pY781E91ZkMjgTeCoZNu4RF+OIJ6cLAXeAPbKfF/7bJO8n5S83x94NrkHp4b6B5yQOcbZyTmMy7PfNck+tcBvkraiPrknO2eOod89kNgbVQ+8AGy9ovWPeOL5UaJvrwXbTgAWd/R98tkpwNREllOBr2a2/QO4Odi/injccEbyvmz7eaz9NHlGUd9PgJJtd+iBJ+5w6pIHb11gPWBT4o7k28n77YGngH8n3+kHfAJcmghxQ+BoYGKy/bfEjdt2yUM7CfhcXytNJ+VXaAI0Pdk2HlgDOCOR39HA+sCPgGZgi+B7BSdAxB1XHXBAorTbZBs24CfEA9R9k989OlHYA9o6t76WYSdkPRJoAc5tYx+XPKCTgW0TGT0NPA+4ZJ/Ngf9L9Hdd4PvEndGGmd/5kNjqPBYY29fXvgJk26odAIYSDwZfyXx2PvCZRI/2Bz4AfpzZfhTxQOWkRMfPIR5kTu/r6zP9LI2/UA+DbRXbH9HxCdCdxJObzZP2fV9g32TbOOL2/03goERGfwM+JhkgUXgC9CqwNzCBeJJ1aXKcscnfwMw5TAZOJPbgHZ58f6Nkv5WSfS4jnlQcQOxhviq5d6sGv/smsA/xBPgm4kHYoBWpf8DlwHx6YAIEHAY0Ek8i1we+mbw/KNl+AHEbOjzznd2AJpLnnDLt57H20+Sp81qBQsp54DPbLgaWJv9PB+4Mtl8L/Dn4bIvk4VslEUwE7Frg+HcAf+1rRemm/ApNgL4d7DcTuCD47FHg+uB7bU2Azkwavpo85zGY2NKzS/D5b4C72zq3UvkjHphEwGFt7LMX8cRyXOazCUlDsGcb33saOC/zfjrwnb6+5hUo22uIO9nFyV9EPMHZpI3v/B8wNfP+KeDKYJ/7qZwJkOln92Vo/VH+c+voBOgV4AcFtqn9PyXz2erJZzsH+4QToCOCY11IMBlIPh9DPKAfHXx/5cw+g4kHUMdlPqsm9mhcFHzvS5l9hhB7+05aUfqXPNPzgX/mu2Y6PwH6L/CXPL/5ZPJ/P2IP5Fcy268G7svIriz7eaz9NHkmf8VSBc4RC1A8H2zfGjjGObdYf8QPOMA6URQtIH6473PO/cc5d6Zzbs3M968APu+cezlJNNy1l66jL/Cycs4NI86p+G+wz5PElrGOchMwAHjPOfdn59znnHO1ybaNkm33Bvfja8TWzrznVmK4DuwzEZgVRdF0fRBF0TRiN/BGAM65wc65Xzjn3nDOfZLIaRuKNR52xfE48YBxC2Lr+cPA/XpmnXNHOueedM7NTmT2a1rLbEPiMJksz/T2SRcRpp+9i/VHGbLX6Zy7Mvn4MuA859xTzrmLnHNb5/nqK5n/ZyWvq7Tzcx3tMw4Cno6iaF4b+6xDnF/j+8Mozj16itz+8KnMPouJPVGd6TO7wr6JTOuT33+c2FPTE0ykjXFAFEVNxJOtLwEk/fsRwPXJvuXcz1v72bOUrDyLZQK0EXEctAiTT6uIrRNbZP42J3atvwQQRdGXiQdTjwMHA2875/ZJtt0DrE3sTl8Z+I9z7q+9cSF9QE6iLq077/CzluTVK22YbBpF0YfABsQxxHXAL4EXkgo10pmDaH0/NiYOXWjv3EqBd4jl1VZSfjhIyqLPLwU+RxzStSuxnJ4F+vfIWZYuS6Mompr8PQt8BRgGnOyc2wG4EbiPWMe2BM4jHshkKST7SsD0s3ex/qg1W2T+LgCIoujPxCFPfyUOsZrsnLsw+J5Pho8S8y3tjzk62mccSpwv0Bbq49rqD/sSGYI2IM5xPDyKornEfXQ4qOxKZcL2rvt6YFfn3OrEIXH9iXM0oLz7eWs/e5aSlWefT4Ccc5sQx5j+u43dXgQ2zgyasn++Qk0URS9HUfTzKIomEYd9HZ/ZNj+KouuiKDqBeMB1fMarURZEUVRHPKPeOdi0M3ESKoAsZtkqP1vkOVZ9FEX/iaLoDOKYzY2J8zLeIC6MsHaee/F+z11N35FYcO8DTnXODQm3O+eGE8th9aT6iT6fQOyBk6x3Ji4ecXMURa8AM8i1ni0nDsuoZCLiTn8QsY7NjKLox1EUPRdF0TvEg8Usb5Jb9akUq0B1CdPP3sP6o1yC65ub+XxGFEV/iqLo88QTo5N74edz9C8xxO0B3BbsR7CvCgD4/tA5Vw3sSPoMiB2C428CTOneqbeLDEHvR60rp80DxjjnspOgLTp57Cm0PQ4giqJniMMBv0jsCbot8X5BGffz1n72LKUszxVdBrvWOTeWeOI1mrgRO5e46sqlbXzv58DTifv9j8QVJDYkTug7xTk3nthbcQdxDswEYDPiUAOccz8i7rReJ77mw4FpURQ19PgV9j2XAD9yzr1DLNdjiEtsbg0QRdEy59zTwHedc+8SVyT6WfYAzrkTiOX0DHGexheIrXnvRFG0yDl3KXBp0kA/ThwzvQPQEkXRn3r/ElcIXydO2HveOXc+cTiHI04UPYd4UP4y8Hfn3LeSbb8l1rOHk2O8DRzmnLudWH4/IA4ryDId2MU5dz3QEEXR/N68qCJB7QDACOJE3SHEidVDiRvKLxGHhexD3EFnuQz4q3PuOeAJ4oTf7YkTzysF08/uY/1RF3HOXQbcQ6xDw4gnjeGkoieYDqztnNuKOFdwEXGbMC2KoqmZ/d4nNqQc4Jy7E1gWRdFi59wVwMXOufnAe8RFgsYAfwh+5zzn3DxiA+IFxAOtG3rhejrCo8R5ZOc6524kzlM6spPHuAS4yTn3AnF+5L7Ek5zDg/3+TlxMZhxxOwpABfTz1n72LKUpz55KJmrvjzgmOkr+mogT/h4ljnntn9lvOnmSnIhjAe8lDslaQhyj+6Nk2xjiknozia0WHxCXzq1Jtn+fuLNZSly2826Sijyl8kfhIghhMYNsGezliZwODfZRfPDSZPsutC6CcCjx4HNhIuvnaF2O0CX3TVaiecQVgfZq69xK7Y/YS/Zb4nCYBuLO8R5gv2T7WsRWSJV1vJXWZR3XJl7rYQmxNeM7wF0kJVqTfXYgbhjqs/e3XP+CdiBKnudnySQ/E0/I5xFPvm8hjjuPguOcS5zEqzLYFwNT+vr6TD9L4w/rjwrJpaNFEH5LHPpSnzyrNwKrJ9vG0X6hnVb7kKeIQfJ5LbE37pNk+wnJ8/7TPOd0PnHFtxbyl8FuoHAZ7IOJB20NxIOybVeA/uUtwpFsP4V4Urckke1pdL4M9v8Re8EaCcpgZ/ZZJ7n+OUC/YFtZ9/NY+1nx8lT5OcMwjJLFOXcrcQd+UF+fi2EYvUMSwjaXeFAVFkLpyvEmAY8QV5MrV+u8YRh5WNEhcIZhGN3COTeI2Ct0L7H1/gjgkOTVMIzyZRRxVcjn+vpEDMMobWwCZBhGqREB+xGHwQ0kDsU5NoqiW9v8lmEYJU0UF2G4qK/PwzCM0sdC4AzDMAzDMAzDqBj6vAy2YRiGYRiGYRjGisImQIZhGIZhGIZhVAy9kQPUbkydwu5ar/MV88gjjwAwbVq8EPdXvvKVTp/AH/4Ql/jfbLPN2HnncC2wTpF7giuWLscnLlu2jIEDB/bYiTQ1NdGvX7fUpa9lCV2QZ74Q0VBvZ86cCcBdd93FJ5/ES9E0Nsbr2u22224AOXoYRZE/TlvPQxuUpDyLmLKR5w03xMuXPPTQQwDMnx8Xt2psbKSurg6AlVdeGYDPfOYzAJx11lk98dNZykaeQrIbNmxYwX1eeOEFALbeeuue/GkocXlOnjyZxx57DIC//vWvAJx66qkAbLPNNgAMHz6cxYvjdTjffz9ea/Pvf/87AM8//zwA3/jGNwA46qijGD9+fFdPB4pUnp3pC+6//34ArrzySgBmzJgB4OWyZMkSf5zm5mYA3nnnHQA23HBDAM4++2wAdtllly5egqco5dmXtLS0AFBVFfsZOtnPl608n3zySQCGDBnix5SLFi0CYMsttwRgwIBw+Z9uk1eevZED1OkJkAaNRxxxhP+/pqYGgB133BFIH+CqqiqvWAsWLGh13NmzZwMwd+5cv68E+eyzXaqY2ddK2K2bs3x5vDi25LL66qvHB83c82XL4oXL6+vrW73/+OOPARg5ciQAa6+9dndOBfpeltDNCVDYcN11110A/OlP8ZpwI0eOZPTo0UDa+H300UcA7LnnngCceOKJbf5Gvt8pQEnKs4gpKXmGnSvAiBEjAPj0008BWGmllQAYOzZec3bJkiUMHjwYgIULF7baV8dTOwBdnpiLkpJnPjQp1HOuPkivO+64I6+//joAU6fGa3IOGjQISNvaM844A4Bjjz22O6cCJSJP9ckvvfQSgJ/0fPzxx14mH374IQBXXHFFuz+odvOkk04C4K233gJi/V1zzTUB2GOPPYDY4NkJSkKeYvr06UA6aZw8eTJLly4F4okjpM/wvHnzCh5Hhg8909p35MiRXn6aoI4bN66jpwclJs+wbauvr+fee+8F0onlm2++CaTynT9/vh+w6zPdgx122AGAI4+M16vdZJNN/G+pvaiuru7MtZSUPDvCxIkTgfT5X3XVVX3/JTlqvK6JumhpafH3qif7IwuBMwzDMAzDMAyjYugTD1DICSecAMQz7/XWWw9IZ8uySMras2jRIvbbbz8AnnrqKQAf6vXqq6+2+m51dbWfSf785z9v9VsdpK9n4d26OV/+8pcBvGVDVgvd89raWh+qJeuRZtdySerzWbNmdedUoO9lCd2QZ0tLi7dW3HprXG352muvBVIdXXXVVb0FY9SoUa2+/9577wGpVXnzzTfPa8XvBCUtzyKkpOU5depUH3a1/vrrA6mXR5b3qqoqb41UOFdtbS2QWpjVZvzsZz/zx+6inpa0PC+44AIuuiiutqy+R+1mQ0MDEPcvYbs5ZMgQIG0TFI1w//33s+uuu3b1dKAI5ZkNi77llluANGRd3gPp3siRI32/rH5oyZIlQNq3ZEOsFXGgCASFd0nOixcv9t51bVt33XUB+NWvfgWkFucCFJ08IZYppLJ4+eWXATj44INbfT5q1Cgvz/79+wOpNzfrCZb85TnT8y6dVnjs0qVLfZugMcFNN90EpOHb7XiEi1KeIbo2RRgpOmaXXXbxz+x2220H4L27ut7hw4f7511tq8aeGrfKEzxx4kQfiuxProxC4Apdi6KOpJMAv/jFLwD47W9/22pbc3Ozvw+6LzqeImnyRW5pXz0L3ZFnn06ApEyKQ4f0IZYApJQS7ODBgxkzZgwAb7/9NkBObooe8paWFv89hXapIeggfa2E3bo52267LZA2qkId+Pz5833MtTocxbdLbnrAJ0+e3J1Tgb6XJXQjBC77kKmT1+RaHfFee+3l9VUNoTogdfLqpK+44grfEJTqADNKhNNFl3SObMP3zc3NXiaF9sm+L+eQrULXpon1ueee62OrNcnRcy89W758uQ810ABIbaf2Vdt51FFH8b3vfa/Vb3VST4tanu2x7bbb8u677wK5hqOs7kl+ko1kHw5KN9poI5/f2kWKWp4yMCp0+oADDgDSfkR9ThaFY2b1SbKVPmqS5E8gY7xbZZVVgLRPv/322wG8gfS4445r61qKWp5ir732AtKJ0GqrrQbE1y/Zqs9WW6A+fejQoay66qpAauDQgFPHUcpB//79ve5KZ9VGPPPMMx25lqKWZ6H28/LLLwfgnnvu8fknCmO9+uqrW+07fvx4P9lW/77VVlsBsPvuuwOpvv7vf//j3//+N5COATpJUctTtNUnKNz/f//7H5D2NQq7HDp0KEOHDgXS8ZF0ThNTjfV//OMf+3zqnJPsWL9vIXCGYRiGYRiGYVQ2feoBUjiQqhX179/fW4rkxs1X8ECzzdBdrJm7LBnLli3zbmLNDr///e8DccGFDtDXs/Bu3RzNphVGIIubkqMnT57s95GnJ6y+8d///hdI70M36GtZQg+FbF1yySUA3kKsUIts0Q29ykonS9trr73mjyEvZ6jHHaTo5Pnqq696C6OskKrwVAIUnTzbQta1Bx54AEiTmwHmzJnTal89u6uuuqqvrimrsTyWahukkx9//LFPir7tttvyHq8dT1BJyTNk7NixORb2fJbGMDFXfY88aTrGBx980N02tCjl+fjjjwNpiNbxxx8PpGFpClfJFtcIq2Jl9UifhbJS25j1COnYinRQsY/nnnsOSMPyClCU8hR6huWVkCVc7Wttba3vNyQr9eGqmLfBBhv4fXQ/pJcK81Jkx+qrr+7vg8ZM8uY9+uijQDqeKEBRyzPk4osvBtJ+OYoif/0K35RuS49GjBjh+zXJ9Ze//CWQejV0LxobG/2+O+20ExB71TtBUcuzkNdFYX/XX3+9jzaQl0eVHdUWfPzxxz7sUp5KPcOSnfqlxsZGNt98cyBNYynkESqAeYAMwzAMwzAMw6hsemMdoHbRLFlFDLJ5P7JQCM00NRNUbGD2OIpn1b7K92lpackp7/z73/8e6LAHqKSR9VEWHXnXFJ8+ZswYv00WDVlB5MHQDP/999/viVLYZcGUKVOA1CupvJ7XX3/dr68gWcsKIj2UNaSuri6nZHY3c1hWOLq2f/3rXwDccccd3msgPZIVba211gLS5NG6ujqfOCrrmeQhFi5c6NsDHU8Wdn0nWwI2bDskRz0H0vGGhgb/fXlS1IYUO8ojUb6PZNjS0uKtw2or9ZxnC5so31JFTmQZloVd+jlmzBiv5z/+8Y8BOP/884EuF+0oKebMmeOt7oXyz5xzrQruQG4OkLwUURTxwQcfAOmzUA7IWq7iGXrGZMHdeOONgfiaw+gCySyb56f/wyiP8DuffPKJtyjL4yPvUDfXByoKfve73wHpeEeyU/TGvHnzvLVcz7v6kWzeqcoxv/LKK0BaIEW6qONl20/pueT55z//GYALL7ywZy+yD5DOqDjJhAkTgFie8kaoz1K/Ljm///77/tnffvvtgbTwlqJBtGzL6NGjvex1PJV0z3rrS5VwjHLKKacA8MYbbwCxt0x9qtpAPdMqEJUtgpD19EAqc+l9dXW1L5995plnArDvvvsCrQv2dJby78kMwzAMwzAMwzAS+sQDpJmgrJiq1vLcc8/lLOoli5oslCNHjvRxm4obDOODdfz6+nq/r+IFZa0ud+rr672VQxZHWc80yx48eLCPG5b1R5Y7odn6rFmzKsIDJOtXvvh0WcLWWGMNILVuZnMsZFmX5VIW+4022qjV8W677Ta+/e1vA+RUgysVD9Cdd94JpIseXnTRRTzxxBNAWnpdFpwtttgCSCsV1dTUeA+wLGKKe1dp1kGDBnmvkBalkz7qc1ngBg4c6NsO6bIsb4pl1zlsuOGGvq1QJb9S8QBdd911QNrmybsFqd7o+vW8633W4qZtstzLuqbKmkuXLvV5mPIEVQJqGyHX8yOZ6X2/fv1y2otwsdRs9TPlU5aTB+i+++4D0ufosMMOA9K2Uf3vlClTvO6FOUAiu8i59lH/FJZvB1hnnXUA+OY3vwmkOSrKQ5Auy+tRSqjfUHunZ1jP5KxZs3j66aeB9PqkV8r5/eSTT/xzLZQnrTZW+1ZXV3uZqx3WaxcXkS9KlB+lsaM8DyNHjvSykmzUn8hLtGTJEi8/eYelg/LUZZ9t9THykmpR4HKKPtKzJy/seeedB8QexjvuuANIn0uNgfQMf/LJJzm552ovNY6SvKuqqvy9kjxVplzLkqjt6QzmATIMwzAMwzAMo2LoEw9QiBaUPOKII3xFOFlrlbsj60RLS4u3imQXRYM0z0LW0bq6Os455xwgjRusFBYsWODlIKuRZtUimzOhGbhm5/quYjGVp1XuhNWcpHcPP/wwL7zwApBaJSUj7TNs2DAvJ1nWDjrooFbvlXMxY8YMTjvtNAAuu+yyVscplVwgeU1kGX/++ee9tVCx5XqVN0aLQc6cOdM/94rl1VoVOt4XvvAF78VUvpHyrvRe3omddtrJtwuy/Mr6rPukal7z5s3znip5QEoFeSjCNTvWWWednOdbyBvZ1NTkvyfdkmdN+8jqO3jwYG+xD63I5czMmTP9//lyVCB9PrP5KdommcmSma1mls1fLRfk0ZWXVbkr8mprcd6ddtopR44iX/XLbL4epDKXRXjx4sV+nRXldchSrzHE4YcfDpSmB0jtm/oa5U6qz95www29LJTPI1npeldbbTW/fpBkruNssMEGrb47ZMgQL2O1scol0po35YCuP1xvKotko/xK5bfcd999vo9R5UGNm9RPScez3iLJVesFlgO6JvW18vIo/+61117L6as0llfbUFVV5ftkLSC96aabAqmssu2n7pXG+aoK94Mf/AAwD5BhGIZhGIZhGEab9KkHKIz3vfnmm70VWDNsxVhmLUGaUYbVs4QqUSxatMjPwiuNBQsWeOtRNq4d0hk55F/dHFLLk+IuFRdbKcj6KyZPnpyTYyJrsaq9vPXWW/5/eSVlEVaeiyymq666qve2yeImL5H0OjyHYkMrsEsOH374ob9+VcXR86wqRMrFmz17tq+yI+uxrEDZOGpZi2Rh0rOt35RVCdK4bOUm6b3OSZbM5557zntLst8vBfQchvH6q622mtdLWcrCnJXm5mavW5KrvDt6rypwr7/+ureESkbK85BltByRnkLaJspDEXrPmpqa/P9hNThZ8CdNmgTAP//5T/9MlBNq11T9Stcty7i8CPfee6/fJvJ50sK+XcfJejEhHhccffTRANx4441AGq2gz7P5V6WGqlSKsCprXV2dv171G3o+lY+x+eab+330DOtV0QxZL3mYpypvR3YNxlInu44UpHpWU1PTalwEqRdC8pgwYUJOrrQ88NI1HaO6utrrt8Zf5eQBVv6Z9FReR1UKnDt3rm83Qzmq762pqcnxskvXdF+knwMHDvTHk9dSY1O1QcqHVV/WEfpkAhQmmGeVRhcjBQuTTFtaWnwjEBZKCBdRq9TJT4hchhqMi4aGBt+hhO7asDx2Ntm6nCkUflZXV9cqARfSAbsG2h988IHv5PV9DVj1IEvn6+rqvExVRGD33XcHSmcCpI5X7v+xY8f6QZ6uIbsN0onRbbfd5hdJ1SBcLu2HH34YiCeLcomrU9eiclqcT5PSF198MacUsSZfaqTV+Q8fPjyncyoVwjA36dDs2bN926kOIOzQBw4c6J/nsFyzXiWj+vp6r8NqPzTpLOcJkAaRkA6WwnYzW4AibCfCpRh23nlnIJ4A5Qu3KXXuuusuIG0D1W9Lv26++WYgNnzI4CHjmnQuW+o+XLhcSJ46/pNPPukNMNJPLRqqwej//vc/APbbb7+euNQVikKlVXBH16T2Khu+rjZA90B9zosvvuj7KIUaadCoCZUMS3V1db5tlhFEfZnOpRyQHPVsS6823HBD37ZKRmFJ9jlz5njdVWh3uBBy9v6ovZQcw8lXKaO+NTQgykBZU1PjdUztpyaA6rMHDx7MrFmzgFR3dX+yhZAg7vckY31fEyFNsGS86szi6xYCZxiGYRiGYRhGxdAnHqDQupN9Hy5mqBm1ZoYDBgzIKTka7psvqbJUEst7iuXLl3vLheQha5AsZsOHD/dhLkpel6VIctIxit0b0VOE3hd5D5YuXerLL8qyo4Q/eSecc94aIc+FvBsKJ5AV+PXXX/deEZVylgeoVHQ0XHhwl1128eWvZRmaOHEikOqVQrZOP/107+mRtUfJy1qsc5dddvGy3n///QF8Uq+KH3zxi18E4kIKskrJkyQ3fRjCsdFGG/kFa2V5KhVk9VYZ8GyYj9q40FqcfZZDT670MfT8OudyQoulpwrrKkeyBR/kUQsX8pOMsp4htbFhP5O1+mYTessFPUeSkcLR/v73vwOpN+G+++5rtQg0pN7MbJK09FM6LP2Ut0jli4cNG+a9Twpxvf3221vtIyt9KbLKKqsAqRzCRZ0HDx7sPQvSU/U98tC+9dZb3ksfhglJL3WMDTbYwI8LJHPd09ADWspI96RP2cWJsyWxIe3DVESquro6p9iJ5Cj5ZvU2jKJRH1gOqB/XtSmMXbq3wQYbeG+Q5Kjxju5BQ0ODL5Kifl3eHbW1iiBZbbXV/JhK0R+hB7kr7at5gAzDMAzDMAzDqBiKogx21uKtmbVmd5phZq0QsmJkF6QDy/3Jsnjx4pxksNAiUVtb62UmS5Bm4OGidaG3rVwJrd5azGv06NHeWyZ9k7VHyaNz5871MeryOkgXFQ8rq+eSJUu8RShMjsznwSxGZAWSd+ull17y1h3pj5JEdY2y9Oyxxx5+H3k1Lr30UiCV2XXXXec9QCpXLe+DFgrMJuqrLK5KnSrnQJZNxRsvW7bM37NCpaOLDemT9EslyLPJt7JG6nqlX3rf3Nzsn+cwH0XWXrWtVVVVOfHtSpwuZ6TTAN/5zncA+OlPfwrkWhj79euXs3ixXtX2ZheWDheZLnWWLVvmnx95LKRfKv//2muvAfCHP/zBe4tksZWnRp6hIUOG+P/VBki/ZWFWe5LNS/nGN74BpJbhvfbaCyjNnAtdp55PyUP9ctZDJhnI8y0LuaIWBg0a5D3cahP1nCsaRNb5xsZGr5/yLod5LeWA9FXtp65x6dKl3mMYLjKdfcbDNkDjBXmAsjmW8ngowiHMIS5lVMxJ+qNr1DXPmDHDP+/qu1QyOytzeYmkcxoTyAun7w4fPtxHIOhZ0G9qXNuVIhPmATIMwzAMwzAMo2LoU1NzW3k5suzK4iOLUFNTU071t7D6UynH/vYU9fX1OQt1hh6glVde2VtCRGjt0THCEqblSqiLsqZFUeQtjJLn2muvDaTWtdmzZ3uLXWit0HFl0VhppZV8zLEsb7J2hnlwxYrid2+77TYg9rjIqvvYY48BaQzv6aefDqQW9p///Of+Oi+55BIgtR5pYdj58+d7S/pTTz0FpJblb33rW0Bq9Z09e7bP/VHboXLYyutQrsDy5cu9J2qHHXbolgxWFIpVDz0OorGx0VvP9JyHnsSqqqqcSpnZbVn69euX4w3VOZQzWU/3nnvuCcDFF18MpJ40eXOrqqpyFi8OqwuqyhaUXsn19nj11Ve911VtgfRK7aAqMv3gBz/wVdrU3oXeyEWLFvltkp+Op1xCfZ7VTVmazzvvPCBtY//73/8CcMwxx3gvdbGjZyyMIJB1W562rBdblnVdr9rVgQMH5lTTUp8TVkF7++23ffuh74d9vsZipTi+0rMrL0y4iHe/fv1yqgmHC/dmPUDhQqphWztgwADvzVN7oQiEckDPYXj9qna7cOFCr8PSJ+VSSeeccznLhYQRR/KsLViwwHvv5L3UfZIn1DxAhmEYhmEYhmEYbdCn6wC1Ve1Ks71wMb/+/fv7WaOsTOFaNppFfvLJJ37WWYlV4EI0y87KUvJRffvOHK8cCavdKYZ9q6228pYMWdzkndBaDc4574WQlULIEixrRX19fc4iYFqDRJ6KYkfWxHvuuQeAjTfe2Fdlk/VLr7r+G264AYgtce+//z6QemG06PGxxx4LwC233OItbltttRWQxh7LWyaLk3PO/5YszXqvfbQeyF//+ldvEQy9HMWKPGd6hsOFi51zOZUbZUULLZvZ74drhKk9mD17ditLHXRugblSJesB0vOuvijMLQ29ZtnPJNesxbiUF+bMx8CBAznhhBOA9HlUTL9Q3/zDH/7Qe2ZFaDV3zuWsAyQ5Sq758nq22GILIM0j0Osee+wBxF7oUvEAhYvlSh7qN9SONjQ0eFmH1cV0LxoaGnx0glCbrT5Lz3RdXV1ORE3oJZYHoxQ9QHqGw3GM3n/66af+ec/KD1q3CeE6auE6idk2Vh4zeUvkUevKgp3FhnRBOpIvVz9cKym8/ubmZr+P+ppwwd9sTQDls0mu4W92pVphUZTBlhCrqqr485//DKQKphAiCSgbdqAGVAoWuovPOeccrrzySv+9SqK5uTmnww1LadbU1OSsHh82gmEZ8kpBg2ZNZObMmePD2jTJUcjWtGnTgLjx00Ouh1UhdBq4ZxcKfPPNN4FUN1VOu1QmQCpeoMlJVVWV75R32WUXINUfhWdsttlmQNxpq5T1WmutBcD111/f6rgHHXRQq4UPIW3kNOjRxH306NH++f/Pf/4DpKtTn3HGGUA6cW1ubvbPQqks8ic9KrSYZk1Njb+m8BkOQzmyqA3VdyTD+vr6HKOROp5yJjuAkW4pbEaJuW19Lyzio2PU1taWzGS7ozzxxBM5RQrC8F0NwDfddFPfTkjXNBjXd/r375+TeC99zy4gDWnpfUgn7Zoc6LgTJkwA4rZbIXTFThiCrvGPjEXZ/XSdGkTK8KN2rqamxstPrwr9kswVxj1r1izfxqjNVduge1IqBWPyERokhPRz2bJlXp5CuqbvLl682I8HsoN4yA1fb2xs9J+FBSj0eSlPgBSKrlB3hbup36+qqvKfSWYaG2WXsQkNRpqYh5PGrIE+nHyqn1PBpM5QWbMCwzAMwzAMwzAqmqKot5u1TGoxxLCwgaivr/cz5zBRUq+ayVdC2dZCNDc3e3mESX2yQIwYMcJ7MbJeoex3RDmVwuwIkoesQHvvvbdP6Jf8ZK2QlW7OnDlMnToVSC0aSkKVpS0bVqQkVllPu5LE15do0bPsQmcKc7nuuuuAtES4LLAXXXQRADvuuKO/3rvvvhtIvRwqWrB48WLvEtfCiocccgiQykpJw8OGDfMLAR588MFAep9uvfVWALbffnsgTthW4QZ5iYodeST1vApZv8eOHVswrC+7uG+hRai1j2S23XbbeQuenoUwnKYcycpHcgy9EPnCqcOQRLWXCtmqrq4umeImHeXpp5/2beIrr7wCtC4jDmn7ueuuu/piBdIxyVP6lU26lxzDfkkyzGftlZdZocTyCE2dOrVkFu+VvsirE0auZMP9NTZSJIE8NvKOjRgxghdffBFI2195d3S/xPTp0713SO1wdgHQ7LmVInoes0sCQBouOWjQIK9z2agCaB12HLYF8m7ovcamy5cvz1kKQu+l50rhKEXC6AJdo7yPEydO9PoTehSzRczUFkiO0j0dX173hQsXtgrXhFSOOoeuLDNgHiDDMAzDMAzDMCqGovMAyYIUxrNr9hhFkbcKyRqkfcMEynxJUdl8o3InTJgOZ8qrr766XywyuwAi5Fp7CuUelCs333wzQKuYX8nkmWeeAdLkf33+4Ycfcs455wDwz3/+E0itSfJGylKy5557+phqWTPlJSoVZFVT3G99fb1foPT5558H0phzeXIUl688H0j1c/fddwdSC8+8efP8M65F/rbbbjsg9TrJgjR//nzfVsjyK0uwPECyLh122GHeS6TPip3weiUzWYpHjx7tZao8ntADHEVRTj5QWCJfv7PeeuvlxMBXQhuQjTUPPWphXiTk5lWFcel675wruee7Pa699lrv8Q7zI4U8Db///e+9F0J6JRllFz8NdVbvw3zfMPEf0lL7ekZUmlu5R6WAPL2SjdpNXb+8sCNHjvQFEyRXbVN/NG/ePC/bcIFZ/Y76oyFDhvhoBbWjahv0TJSyB0jPYaHyzcuWLWuV7wvp8y8519TU+HHSSy+9BKSFe9SXS87Zgh6SsTxK5VAOX+XvpU+6fslswYIF3mMTFpPI5qWFBRJ0vDAXsH///v6Zl16G+UHS6c5Q/rMAwzAMwzAMwzCMhKJbCFVx/JqZa0apvJ5sBacwJjusflRXV1dRHp8sDQ0NXk6SpWbk2YowWlhN1p1wMUW9r7QcIFkXZBV67bXX/CKf//vf/4BUb2W1GDBggI97ldxk7QlLEU+dOtVXipN3Qx6LUkHPatYyo3woXZO2XXvttUBqXRs5cqS33Ch2XzqnXJ3111/fy++b3/wmkHrSwpLX8+bNY/r06QA8/PDDQFr2WhZgWUhbWlq8l6hUKnPJEhxa0ZRXMWrUKO/ZlVdI+2bzfNQOhq+hxW3VVVf1VQnD42ifrpQdLXay7VxY9a5QmXHILZ+vNkH5GYsXL87ZpxxQBIFeQ1TR8sorr/TPXFgyWLodRVGOlzHMuZDOyQKf5ac//WmXr6PYCHMs9F7P9rx583wOpjw3iiTIlhfX+EdVSOWFUPsp63xTU1NOWxBG1JRyJVg9q9IfjXd0zdkS98o7UXuqcurPP/+8l22YvxsuOj906FDffsg7Ig9wKctRhHnQyjXL5u7k07Hsq3POyy1cfFfjCH13+fLlOd5L3VONuboi18qaFRiGYRiGYRiGUdEUnQcorIIS5gBlvyf0/TAee+nSpX4WrllipdDQ0NAq9h9SWUomQ4cO9R4gWT7De6LZerZCTyUQLtpVX1/vrbnh4ryiX79+ObHrhRbgnT9/vreIKia+K1VM+hJ5d7SWzuzZs9lmm22ANPdH8dN6P27cOCCuOiSrz2677QakspZXY8GCBd4aJ8+R9tHChlofY+TIkd6jJk+PPEuqTLf//vsDcaUaWU0POOCA7glhBRF6X/ReljLnXE6+ROj9DitqZrfpO2p/R40albMQqCz1WgSv3HJaIM1DW3/99XMsimF72tjYWFDW0kG1rz/5yU9KZn2vjpJt/8L2TnJRTuD3v/997xWWjoVrsjQ0NLRaODYfsuBPnz7d5x7uvPPO3b+YIiFcHFZ9teSqhaavvPJK/zzKS64xk6Jlhg8fzssvvwyk67RIfmorpZ/V1dW8/vrrQOFomVLxlucjjOhQXyt969+/f46XSNuya1CGi25K5morpdv9+/fPqb6re1sOYymNgXRNeq/qrBMnTvTyU5+t8YI+//jjj/19CHPdJKMwzz/7fclVxzUPkGEYhmEYhmEYRhsURRW4LKuvvjqQWh3D1YijKMpZnyFcgyFrLZXlo9I8QFEU5VQ8EZp1yxoP6SxaOVdhJal81uNyRlbunXbaCYgtPqp0JLmGugm5VuJwjapsJSnFyCqvRdYjvYYrUxcb4bpSTz31lM9j0vXKEn7YYYcBqc5NnjzZW4T1quNcddVVQCzzlVdeGUh1dt999wXwnqaf//znALz++ut89atfBdJKVD/72c+ANFdJbcqMGTN8/Ly8b8VOvjUUAJ+Xlq2oE1bMyuaehNaz8FXWzhEjRvjqUqp2GFbbKUcP0CmnnOL/nzx5MpC7Jk02pypcRynMmZQH81vf+lZvn/oKJ9vuFcpvUjs6adKknD5G35Fe1dTUFPQyhBXJFixY4D3PIYW87qVAeO5qE/X5Zz/7WQAuvfRSb20P1wzSWixLly5ls802A9JqfNOmTQNSi7uiEIYMGeL1W4TjqlKuXqY+VR5z9QXyhNXW1uashaY2Vl6IpqYm37aG++j4kqtzLscjIf0v5Wp6IryGMIenuro6J+cn/O7gwYO9zNUmqL1U+5mNeND3wvGX2oSu6GdRhMCJ5ubmVgtFQu4kJ7sYVUhYBCGKIj/4UbnCSiJMmNYDKcVRSWLITfxTQ1FpKORAcpCOvvvuuz5sqi3CCZAIB0h1dXVe1/fcc08A7r///la/XewTIHUeaoAmTpzodUwTH4Wd7brrrkBaQGLHHXf0+qdGU9/VJGnOnDleFtqmstWvvfYaABtvvDEQh2wpTE4Jv3rmJXtNdpxzPhRCoXTFjgqYhAMjGYzeeecdv0+hUtfZTjlcKiAMk3PO+fugDidc9K4cyZbH1YBQxrMwlLixsdEPeEIZSa9k5Mh+rxyLIRSadGih1K233tob1cJJtwhD4rKEg6nq6mq/VMFRRx3VoXMpBWRcCAuMqL1Sv1xXV5czidGznQ0j1LOqfXQPNBGSwWrzzTdniy22ANLFpYX6IY2lShE9yxrnhCW/+/fv7+Un2as9zRYwCkORwxQNDeRramr85F/o3oUTzVIkNPBqAqQ++OOPP84xEIeTmiVLlnh9zJYPz+4jdtxxRx566CEg1XPdn+5MgCwEzjAMwzAMwzCMiqFPPUChhaa+vr5gCFE+13j4WZh01tLSUtJu2+5QU1PjrWVhMrNm5lkPg6wTsrhnrZxQOWXE5WGQZV2LSzY1NflwIxVDUOiBcM7lWN3DV7lxZ8+e7Y+j0qSybLzxxhtA6mEpViSbG2+8EYgLHciSo9C1G264AUiLISjc7b333vMhLHvvvTeQeodkNZfVE1LLqBZelIVdibuDBw/2n6lErsI+wtCDfv36ecvn008/DVD0CeqhNU1WRFl2X3rpJW8JayuRPEyyDhN/dQy1FdnjiY54QkuVrMxknQw9P/kWlg1llK94Tyl6JLqKPLR33303EJfJlqdX/ZJkpNdsmfawDLTQszxw4EBvAS4n1N+qLZMHR94ZjWeWL1/uPZN6HmV9X3/99YE4/FAeD/VdagO11IDakfnz5/vlAtSvqa3NFp4oVUKvoNo59TW1tbXee6N+WLLOeoT0Wfj9MDRutdVW822odFjjsHJKJwiLFmgsM3z4cB+JEUYZ6B40Nzf70u1jx44F0j5fbYTGYXPmzPFjCo1bw/FtWx7kQlTGqNYwDMMwDMMwDIMiK4LQr1+/VrNDyC05nPX6hPlBoeWzqqrKx8lWGoMGDfKy0uxccpGVPhuLHno3ZCkKy5qWO7LofPjhh0CaJ7Xeeutx6623ArmWnKxlN2vNzG5TTozyUtZbbz1/H7JJwFA65UZ1/vLg1NfXe8uvZCRLY5gkWVdX569XRSBCL2T2N5Tro2c+jEefM2eOt1DqHqy11lpAek9lMR43bpzPb1GJ7GInTKgNE3Sbm5tznlE935JZFEU5ixuGuiZdzO4bWtpKrVx7VwkLT4T9TEtLi5dRIQ9QOS4Wm4/Qu6V8u9NOOw2A8ePHt8rfgVyrfLaoROjxDHPUGhoa/EK98uaqsEkpE+qa2q4DDzwQaK1PilaQTLR8gLw648aN81Z4yV4Wdnk7sh5fWda1ZIHyhPR5KXvcpD/qf6R7KiTR0NDgt4WlnfPlBUp+Ya5KdsylbfIkZyMQSp0wskX9kxZEHjp0qO8nwvw1edGqq6u9LCRjyVf9vryaM2bM8IWP5BV95plngFzPfKeuo9PfMAzDMAzDMAzDKFGKaipaW1ubU02jrbjpQtuyM0HFDOfbVu6MHz8eSK0Umnlnq78JxVoqpyK0xFWKJ01WNVkrZIFYtmyZt5aFFeJEvhjU0EJ8wgknALFFb6+99gJST4UoVOWw2JCVV3G/jY2NPPjggwBsueWWAGy33XZAmhP0xBNPAHGcuSxuyu9RqWx5hD744ANvYZJVUpYheejklWhsbMwpcSrvjmLaVc55jz328JYmeY20qGKxIuuhLMDZXDLIXzEwn9c8XDQ63EfH/+STT7zuSsayAKttLney3jDILWnf1NSUk6OqZzesjlRp/OY3vwHS3L+GhoYcncu3eGroQQ/J9kvSeeXvlYMHKN/SCpCWnFcO5ejRo32eUGiFz0bPyNOtvl+y1rOclb2WfJgyZQoAjz/+OJA+76W8gKfaNbVpuhb1DePHj/d9gsY6enazHhu1CWHUhu6FjjthwgTvDdFitIXubSkSLqcgL5e8kIMGDcqRleQrGY0aNSpnnCl9lDzVfiiCBtKxQHYRW2idt9pRzANkGIZhGIZhGEbFUFQeIEhn3Yrza6v6mGaLmtWHVWWqqqq85VmUw+y7I7z33ns+fliVYDSLlqUni7wQkp2sPppVl3IFmM4gi5DkITksXLjQyyK0oktHV1llFV/7P8xnkR7++te/BuD73/++X7BTliJ5T0plnZWNNtoIaB3b/LnPfQ5I9UgV7ZRjptfNN9+cu+66C0g9SPK2yWu7ySabeEuQvJi6H/JY6nhz5szx7YBkLy/RKqusAuAX9pwxY4aPjf/CF77QTSmsGNTWyQOmtTok58GDB/tY67CSlshW2Qp1WEhWdXV1Xl6F1iAqd0Kvdz5PULgwbVgxrlLXU1Ouo66/tra24AKQ2VzK0KsunZMOylI8dOhQ35+FuSml3Mfr+tV3q9Kb2jkxb948/1m43p+e8eXLl+csICsrfDavBeJ8nzXWWANI+3o952qfZXkvRaQT6lvkEdP6dI8//rjPeQoXRN166639dyRH9VWqNCqyeabqo1TdVPc2zBsqRcKKwtIneRwXLlzo+x/JROOabG6VtsmDJO+QInGke4MHD/YRJ6oYp747W8mws5gHyDAMwzAMwzCMiqHoPEDh6rnhWgxZClmLZPXo16+f/36h75QrG2ywgc8B0oxZFg6tKZBls802A1KLkzwhsi7ts88+vXq+xYIsQ7I2KD/l008/9V4hWd9lgZSMli9fzoIFC4DUgqfvy1Iii8cGG2zgZaz1dFTpJ18+RzGieHS9dpbjjjuuJ0+nIpAHSFZKWdrvv/9+b2GTFz1cbwUKW8fDikfTpk3z1tFClXrKHXltw6pN2f5FXqKwgpT6GVlEs5+VE2ElNxG2ezU1NXlzT7P7RFGUc7wwh1K6l7Uwq18ThSrJlgLyGqgPUH8kT7h4/fXXvX6Gsm9Lz8J9Jft58+b59YPksQi9xDvssEMnr6Z40DhQeiQvjCqYnnfeeb7Pluzl7dH4qbm5Oee+6DvKBVLEx4cffsivfvUrAB5++GEgd3xaymiNQnmCJBfp0Ny5c3nooYdafUdtpKI4li1b5r1sakfDqrnqy+bPn++jE3bbbTcATj75ZCDNAVRf2BmKaiFUSB90JfcKKdbixYu90PQadlBS3HwLTpWye7wzHHjggX5A3RE02Hn00UeB0uo0ehI9cErEV/jgGmus4Rf1FEpu1KT9448/9uWaDzroICDVwbCc87rrruu3HX744a2OI5e7YQh1sO+//z6QduQycuyzzz6+wES4IGo22bzQApN6r0nUTjvt5JPK1WFpcl/OC6Fm5aJnVmEYWrRP8ly2bJkfAGnfcPkAPe/hscsFySKcQN90000AvnTtlClTfH8dTnKyZdrDwbv69lB2NTU1frD1/PPPA3DBBRf01GX1GZrUaLCogfqOO+7Yaj+FH/cUMnxCOhY499xzgXSQr4lAKSJdU/smvdU13XbbbV067llnnVVwm8awejbC3y5l3n77bSANzZSe6vOf/vSnPpRSk5uwEEVLS0vO8622QKGKCuseNGgQJ554IgDHHnsskBuKrd/uDOXXIhuGYRiGYRiGYRSg6DxAcgHLtSbXpSzx/fv3zykJK6uRZpFyn9XX1+eUwa4Uli9f3u7CZfX19X4GHi7+JbIJlpVQ0lXWL5VxlY5dcsklOfuqiIFes6gMdFtI1tJ56bjKYxuGkDdXhTJkRVRYwNe+9jW+9rWv9cpvH3zwwUDaFhxxxBG98jvFQL4+SaEWCuk45JBDgPgZv/HGG4HchSblmdP9KVdCz4z6kcceewxILcRLly7NKcARRmg45wpGaGTDDiHW/zASpL1zKwW22morIF0SQH1uWEyjqanJX1+hMMTO0Nzc7Ps6eX6PPvpoIA1vyhc6XyrMnTsXSL3ZKjwkb3lvoLZAJczlASqHxZF/8YtfAHDnnXcCqUdSbSXAH/7wh175bXmAJEe9ytvcGUqvhTAMwzAMwzAMw+girhwTMw3DMAzDMAzDMPJhHiDDMAzDMAzDMCoGmwAZhmEYhmEYhlEx2ATIMAzDMAzDMIyKwSZAhmEYhmEYhmFUDDYBMgzDMAzDMAyjYrAJkGEYhmEYhmEYFYNNgAzDMAzDMAzDqBhsAmQYhmEYhmEYRsVgEyDDMAzDMAzDMCoGmwAZhmEYhmEYhlEx2ATIMAzDMAzDMIyKwSZAhmEYhmEYhmFUDDYBMgzDMAzDMAyjYrAJkGEYhmEYhmEYFYNNgAzDMAzDMAzDqBjKcgLknDvSORd18juPOud+11vnZJQXzrnpzrnvdHcfI8bk2XGcc+Occ5Fzbpvu7GMYpYb17THOuROcc4sLvTeMYqJY+/denQA550Y75/6QXFiDc26Oc+4h59xevfm7lYBz7ppkgBM55xqdc3Odc484577hnKvp6/MrdXpId7cF/tDO70xK7uHK3Tvj4qaS5Zl5Tgv9XdMLP/shsCrwUjvndqFz7rU2tr/pnDukGOXaGwTtauScm++cu8s5t2Ffn1sxYX1798jTf09zzl3qnBvc1+dWqvRRO2tQuv17v544SBvcDAwCvgJMBVYBdgVG9fLvVgoPAscC1cBoYHfgh8Cxzrk9oihaEn7BOdc/iqLlK/Y0S5Ju624URfPa2u6c69+dEywxKlmeq2b+PxC4KvhsWU//YBRFzcDstvZpz1DinNsAWAt4ANiu586u6FG7CrAacAlwKzCxz86o+LC+vftIz2qAXYCrgcHA1/rypLqDc64miqLGPvr5TrWzfXyubVLM51aA0uzfoyjqlT9gOBABe7axzzHAc8AiYC5wE7B6Zvuk5Bh7AM8AS4Hnga2C4xwHvJ9svwv4Rnxpfvs6wO3EA4IlwIvAgcExHgV+11vy6AX5XgPclefzTYDlwA+T99OBC4G/AAuBm5LPdwIeS2Q2E7gCGJY5zmeBp4HFwKeJ/DdJtq0EXJfcs3pgGnB6X8tkBevudOA84I9AHTADOCvPPt/JvI8S3bwl0cN/J59l/67p6+s3efaqLI7Mtk1t7Ldm0mYtSJ7RN4Gjkm3jkms7gnhyshR4A9gr833ts03yflLyfn/g2aSNODWPvE7IHOPs5BzG5dnvmmSfWuA3wJykLXga2DlzDP3ugcTeqHrgBWDrvr4XBeR+DUG7mpx7BAxM3l8MvEU8oJoO/AIYEHznnEQmi4FrgR8A0/v6+npIRh15nq1v77yeXQV8RNxfvxZsOwFY3NH3yWenEA9GlyevX81s+wdwc7B/FbHn+IzkvUvagHcTXX8VOCaz/7jkHn4ReDjZ59S+lm1ybq3a2ULnmlzz+cl1NyTXeEie720THD8Cjsy8vyDR04ZEF6/NbCtZOXZQ1sMp0f69N4XSj7jxu5ygc8jscyJxhzyB2ML4CPB4Zvuk5CKfBXYDNgTuA6YALtlne6AF+D6wfvLQfxwo/+bA/wGbAusm+y4HNszs8yhF1ki2I99ryDMBSrbdQdKAJkpVlzyA6wLrJXJYDHw7eb898BTw78y9+wS4lLiD2RA4GpiYbP8t8WBmu+ThnQR8rq9lsoJ1d3qiZ6cmcv1moqs7Bvv8f3tnHiZXVef9z+3O0ktCEkJIwIR9S4KAyC6bMuyyCQy8uLDII6ODow7vvAiKMw+CIMg+DA4iyA6jIItsgsAEZEcWCYkkgARCIAuB7nQn6e2+f5z6nnv63Kqkk3TTXbd/n+fpp7qq7r1V91dn/a1xh54PnFxq85sCXym9PgWYAIzq7/s3efapLHq6AboXt7nZFtgYOAA4oPTeRqV7nAkcUurD15fkNyI6Jt4A/RXYrySvSaU+PrMkqwmUFvmlc57CjdG1leQKXIZbtB2Ms5D8Cje2rBd97kxgf5yC5re4RUJDf/8eZeT+G4JxFRiJU/a8Grx2FvCFkowPAuYAPw3ePxa30TsZNyedgVMi/b2/76+XZGRzey+3s9JrlwML6YUNEHAE0I4bT7fAjaftwCGl9w8utdHRwTlfBDqACaXn5+I2+gfgxqDjcAvRg0vvb1T6Df+OG9c2Bib2t2xL363SBqjbdwV+gFsfHVeS09lAJ7BddF7FDRBOEdVUkukGwA4EG5hqlmMPZV2183tfC+ZInAZzGW6B/Qtg5xUcv1Xp5iaWnu9der5/cMwXomNuAR6OrnMNK1lk4DSVPw6eP84AGyRX8v1/Q+UN0PlAa9Co7o3evwH4dfTadiW5rgusXfp/rwrXvwe4rr9l0MfyXWHbLcn11uicWVGbKtehr4jOURtfp7/v2eT5qcihpxugV4F/r/DeRqV7PCV47TOl13aPjok3QEdG1/oPosVW6fXxuAXTuEpyxbnrtAHfCF6rxWk6z4nO+2pwzAicNfrk/v49ytz3b3CLwCWlvxS3wdl6Bef8EzA7eP408MvomD9SkA1Q6X5sbl/zdhZutHfCbX5uL9cnWfUN0J+Ba8t85pOl/4fgFpffjGT7UOn/RpwlYo/oGpcC95f+36j0e53W3/IsI99KG6DTouPmAj+JXnscuCk6b0UboH/FbXCGlvkeVS3HVZB3Vc7vfZoEIU3TO3A+1IcAD+Dcrp5JkuRMgCRJtk+S5O4kSd5JkqQZZwIHt4sOeTX4//3S47qlx8k4gYd0e54kSWOSJBckSfJ6kiSLS9lSdijzOUUhwTUS8UL0/ueBryVJskR/uAETYNM0TT/CDZYPJUlyX5Ik/5okyaTg/KuAf0yS5JVS4OZefXQf/cbK2m6JV6PT3idrl5WIf4tBgcmzMmE/TJLkl6WXLwN+nCTJ00mSnJMkyefLnLqicbESPZXXIcAz6Yr9sjfFxS9o7CB1sUdP4zR0IU8HxyzBWaLiYwYK03AKoe1wVohHgT9qDExcJrInkyT5oDR2XkL3uWQrnGUj5Nm+/tKfJja39woHlPq8Fo3TcJrx3mAyQb8s8SSlPpemaQdus/VVgCRJhuMWsTeVjp0C1AEPRuuEb+P6fUg1jcH+uyZJshauDVeUUw/5LU5WbydJ8uskSY4uyROKK8duVOv83udpsNM0XZam6cNpmp6dpuluwK+B/0iSZBTO5N2KCwTcEWciBIiDncJgMC3s9d2THnyNXwBH41wX9sJNbM+V+ZyiMAUXlyPiZAg1OG3PdsHftjhXmpcB0jQ9ETf5TwMOBd5IkmT/0nsPABvi5LoOcF+SJNf1xY30Jytou2o3cZBiysr7VC4xxWDB5FmR7YK/nwCkafprnCvEdTjXjKeSJPmP6Dwvr7SkHqP35HU4LrZiRWjsTcu8V+61aqE1TdPZpb/ncIG9awHfSpJkF+A23Nx1CPA5nG97nFCimu+/R9jcvsZoo70lznXoK2mazse5/cX3vjqZXVfWL28C9kqS5DM4961huGQfkP0Gh9B9fJqKc6ENqaYxuNx3XZGcukqP/veIk8ekafou7jc8BecKdxHwYimjX1HlmKMa5/f+qAP0Os78uh1u8XxmmqbT0jSdycp3g5Wut0v0Wvx8d1xQ2h1pmr6KC8CKd9+FIEmSrXGTze9WcNhfgKnBJB/++UwpaZq+kqbpz9M03RtnFj4+eG9hmqY3pml6Am6BcHyg9Sgqart1vXhNZeSr7cVrVgsmTyDqf/OD199L0/TqNE3/Ebcx+lYffHwbkaxKE/c+wF3RcUTHKsB69+DcWmBX3G8bsktwTCMuFmjGmn31T40UtxBqwLlpzU3T9Kdpmj6fpuksnDIoZCb5rHmDIYueze2rhjba76TdM34tAMYnSRJugrZbxWvPIOiXJXYn6Jdpmj6Lc1f9PzhL0F0l6yyl45YDG5ZZI7yzit9lQJKmaRPOCrEiOckCHmaT267MtZalaXpfmqY/wG34p+LGisLLcQUM+Pm9z9JgJ0kyFmcavBZn+mrGmab/H/AnsoZxapIkV+JMtj9djY+6HKcdPQO36N8bFwAY8gZwRJIkd+N2of9O7/4o/cXwJEkm4Day43CLljNxWZZ+sYLzfo4zT/4Sl5WjGee2cUiapqckSbIxTptxD85HdhNgG5zrG0mSnI3bRE3HtaGvAG+labq81++wH1hZ203TtKn73LRGvINbYB2cJMm9wNJgEioEJs9VJ0mSy3CuBG/grA8HkN9U9AZ/BzZMkmR7XKxLMy5ZwVtpms4Ojisr1yRJrgLOT5JkIfA2Lqh4PPl6Dj9OkmQBbsHxE9xEdksf3E9voHEVYAwucHcELjHFSOAzSZJ8Fee2tD9uARlyGXBdkiTPA0/g5qOdcYllqh6b2/ucx3FxuGcmSXIb7r6PWsVrXAj8NkmSF3HxZwfgNjlfiY67GRdkvhGBbNM0bU6S5BfAL0obsWm4PrAL0JWm6dWr+H0GKhcCZydJMgu3bvoaLiX55wHSNF2aJMkzwOlJkryJy4B7XniBJElOwK2DnsXFDR6Da4uzBoMcq3p+741AonJ/uPSoP8OlwlyMM4fPAi4G1i4dcwxOA7EMZ7bev3Rze6cVAp4oE5QGnIibvJfiFg2n0j0AbkNczv0WnIbo/+JSav4mOOZxBlig5Erk+xuyVIAduADKx3E+xMOC4/5OEFgWvL4D8CDOZNuC88k/u/TeeFzqwbm4iWwOLtXr0NL7P8JtflpxgW/3U8oQV4S/HrbdnFzjNhQfQ5Q6M3j9LFwmrS4GWNpmk2evy6KnSRCuKMloGU4LeRulNML0LDC32zFUCB4t/Ta/K/0uKS6Y+gbgZz2RK93TYC+nchrsQ3GT43Kc8mTH/v4tKsj9N3RPs9qEm5uODI45r/SbLMGNk9+Of1OcImo+WRrs84EZ/X1/vSQjm9t7p52VTWJUev8U3GKvpdT3v8eqp8H+J5yVtp0oDXZwzKYlmX8IDIneS3DrCW1oF+AyU+5b6fcaKH9UToIQj5lhGuw23Dro8OgYxVO1lt7fg+5j7eE4ZcjHpd/reYJU7NUsxx7Kumrnd6WbNAzDMAY5JRe2+cCBqYt/WdPr7Y1LgTwuTdOFa3q9aiVJkt/jFpiH9Pd3MQzDMPrQBc4wDMOoOsbispo9399fpFpJkqQBZxV6EGedPxI4rPRoGIZhDABsA2QYhmEAkLokDOf09/eoclLgQJwbXD3OHeTraZr+foVnGYZhGJ8a5gJnGIZhGIZhGMagoT/SYBuGYRiGYRiGYfQLfeECVySTUq/l7ltNVlmWsuiFaQe/853vAPDd77oi05MnT654/ksvvQTAr371KwD+67/ibLarTX/LEnogT8lPjzU1lXUETz31FABz5swBoKmpiQkTXPbc+fNdOZf33nsPgE022QSAb3zjGyv9kl1dXSv9bKpEnis8OWqry5YtA2CLLbYAYOLEiXR2dgLw+usuA7Ta8M9+9rPctdYw1WbVy1MyeuSRR4BMVj2Ryze/+U0Azj//fADGjRu3Jl8FCiDPmI6ODgCGDHHT5qxZs3x//t///V8Ahg3rs/qbhZPnmvD888/7uWr69OkAzJs3D4B11lkHgH/7t38DYOONNy53iQEnz9AbR3223Hwe89Zbrub5E088AcDxxx9f8dgXXngBgI8++giA/faLa3Fm848+s4ffZcDJc1Vpbm4G4MwzzwTc/AP4OaimpsaPAR988AEAQ4e6mqh1dXXdXr/88ssZOXLkmnydqpSn2k6aptTWdi/VI9nsuuuugJOnjh89ejQAF1xwAQD77rtvt3M7Ozt9u1vJuqgSZeVpFiDDMAzDMAzDMAYNlgShwGh3PWLECABOP/30bs833XRT2ttdAeo333wTyLQ7W2655af6XfubOBZOcihnjVm6dCkA3/rWt4DMovbBBx8wduxYAF555RUgs/zIWqTnu+++e+4ze2j5KQyxJlEauNAiJJkcdthhAF6+K7tWUVGbeecdV0RcWrXRo0d7q81vf/tbAJ588kkgs1wsWrSIhoaGbtfTMaeeeioAa6+9NgAzZ87MWTw0JgwWWQu1QclBlsonnniCa6+9FoArr7wSgB/84AfdzhksfbmvkSeCrDwjR470bfmAAw4AXPsGuOiiiwDYYYcdur0+0EmSJOeBEPe1lpYWwHlqvPjii0DW1h5++GEA7r//fgCefvpp3n33XQC+9KUvAbDWWmsBeOuE5v111lmHnXbaCYANN9ywt2+tKrjmmmsA+M///M+Kx6g/S+ZCliCtp/baay9OOOGEPviWA5N4riiHLLJ///vfARg+fLhv33pN4+drr73W7dzQmtSTz+opNjobhmEYhmEYhjFoMAtQgdHuWtqezTbbDMg0mIsWLfL+rdpNr7/++kDm9xrSE3/kaqXSPZV7/YgjjgCyWJWPP/4YgEmTJvn/jzrqKCDTGD300ENAFls1adKknKZNWo7BkJmxqamJxYsXA5lFbauttgLguOOOA1w8itqljpF2t62tDcBrOEePHs2oUaOA3tEMDVRkWZQGUm1o7bXX9vEn06ZNA1yMCsAPf/hD/7oskPvssw8As2fPBmD8+PHdPmerrbbyFjlp0KVxlmZ9sKIYq9GjR3vrr2KBpME0y0/vIo2wvBfq6+vZfPPNAdh///27Hfvqq68CcOONNwKuH+jYgUy5OMa5c+cCWZ9+4403/HuShaw6sjjIGnHQQQf5OUVjoqxmTU1NAHz44YeA69vPPefqHmu9sOOOOwKZha2I835I7IEgi7esbu3t7X5u1vpI8lQM0Ntvvw3g57aiEq8F4zn3zjvv5MILLwTgmWeeAbI5Zr311gPcvKLryPPgk08+ATJ5/sM//AMAhx56qPe46c35vbgrhUFKGLCo/7UoHzNmDJANcDU1Nb4xLV++HMgWOxp4Bzv33nsv4NwJXn75ZSDrpFrkzJgxA3Adc9111wWySej2228H8BOwAndPOukk77L05S9/GYCvfe1rQDEnGk24ctlqbGz0bS92a9tjjz0AePTRR5k6dSqQbdrlSqhFjwbKlpYW33bVvjXQFgG5/mjC1T1q09PW1kZrayuQ9XNt0O+8886VXl/9X+4FIfosbbrkrrDRRhut8n1UI7E722OPPQbAiSee6I+pr68H8rIxV7jeQS5waqf33HMPd9xxBwBnnXUWkG3qNa5I4ffAAw9UxQYoHPc1T2izrXtSu0qSxC/CtYjUPK/r1NbW+g2QFEg6Zvjw4UC2eRo/fry/no559tlnu50rxV8R5yfIlEFC87zaXJqmNDY2+v8hm9fk+iYZ/u1vf+v7L9yPxG0g7ovz5s3LtVmhDWV9fb1vn3HCCLXLP//5z4BTAFxyySUAXHrppUBe8bE62KhsGIZhGIZhGMagwSxABaOcm5pMjzKZa7e9dOlSr/ENrUKQaYhCiqr5Kccvf/lLAK6//nrAadplUZBpXFoKaTS22mor76IkTZDSjMbubgsWLPAuRfoMPZemo0jIJUCm7uHDh+esDe+//z4A2223HeCsPXEqTWnYZe2QRq69vd1r4aXBlAZPrnHViDSLM2fOBDI3wQULFgCZ9ayhocH3XblyyFoUyzC8btzf9dje3u5lLOub3pPbjOQdu88VjdjlQm4uW2+9tX/tyCOPBOAvf/kLMHisY31FJXdrtcGjjz6ao48+GsjGFrnLbLPNNgAceOCBQDYeVANKT62EBkoPHCcvgXzgvazBegytRHFCJKH+v3z5ct/OtRaQN4PcD3fbbTcAX+qhaMi9ULKOS2F0dHTkQgPkgRCPo5rLio6sY0qiozY0YcIE76YuOcbp1RsaGnxb1VytNZXmdTFs2DCWLFkCwLHHHgtk7uAbbLDBan9/swAZhmEYhmEYhjFoMAtQwSinOZNGQ5YKaSlqamq8FkmP2tHrechg8GeX/JQeOLT6fOYznwEyLZ20FNKIDRkyxGsnLr74YiDTQuo3kD/1mDFjfMIJBZUraF3av7gYWDUizU5shVi2bJl/LQ4o1eOHH37o5SVNqIoc6hxpmbq6uny7lBZJ/tnVbAGStUWWHmm7dY+Ke1p//fV7ZKGV3NS/1d4V8ycLXV1dnZenjlG7l9ZTv21RLUBxulUVmixXWFPxJ0p2IlY0Zg6G8XRVCONW47asZCeKZ5s2bZq3TGjOOuecc4DM2i7NcDUFpKuYcTzuqd9KLqElQv1RY6EehwwZ4tuW+rvOk8zC68YJkWQB1rmyfBbVAqSxVlayuC0OHTrUW8Pj9imZyaKxcOHCvv/CAwB5q0gushq2tbXlUoVr3RmuNSVHtXMRFlTV9eRxIEvQj3/8YwBuuOGG1f7+NvIahmEYhmEYhjFoMAtQwSinTdTOW77QoeZRWs5Yoy4Nc8hgiAF6+umngcwCNGnSJMAVjZVfrywUkqM04/X19V5L8dWvfhXIYlYkZz3fdtttfbpWxQsow5ksTUWwAOm+pcmRZrO+vj7XntQGZVno7Oz0VjZdJ8xyCN3be1y8tgjpxNVeNt10UyDLBict2Gc/+1nApfx99NFHAdhzzz2BTBunGIG5c+d6Lafi2KQtVxtWDMuiRYt8jIWyyul3USptXauoxBpMZTqSfEMUD3TPPfd0ez2MH5CW2Cw/5UmSJCcbPVcWOFlCTz75ZG9dj1Gpgc997nNAPu5lIKPCpJpHQmtO+HpDQ0Oufcr6EGaHi9MU6z2tCULLvI7VGK1HzXeKQ9x1113X9DYHJLKkabyUfCWj5uZm/5oe5V0g2amtlYuhLiJxwVK116FDh+ZifsJseuDGRMk27vfx2JimaW4+V/bdNcFGYMMwDMMwDMMwBg1mARoESDMU+/2H/8fapNgnEwaHBUhWmIkTJwKZhue1117zWvhYy3P88ccDcMYZZ3D55ZcDWRY5FZdTZi5l2Bk/fryPGzjooIOAzP87LHZX7UjDozYoOdTV1fk2F2snQ62kZBxnlBF6PnToUG+RiDPzVDOy8MjyI1nJGimN8Z577uktE7LqnH322UCmefvud7/LP//zPwN4687NN98MZFZH+VV3dXUxffp0IIszkvZZv6HisYqK2qxQXZTzzz+/4jmynKsOiCxt4fhahHbZF5QrBCpZ7bzzzgDeyvnQQw9x2mmnAVmsiorR7rTTTkA2TleTBUheGoqp0LinsTHMnBmPc3G2ws7OzlzsZZwVTrS1tfnP0vV0rPq9YiqLimSlNqi5R7/F0KFDvUVecVCyFmmdoDFjsFiAYi8AzTVArmhsPHeHbVNtT6htiyRJct5K8khYE2wkNgzDMAzDMAxj0GAWoEGAdtfS3EpbMWTIEK+p0K5aGo3BYO0phzKxqZaE/J4/+ugjr52TlkdZ3K677jrAVR6/+uqrgcxvWtrI559/HoDvf//7ANx///0+Tkia+m233RbI4juKgLQ2kpm0tTU1Nd6fX77mIqxFI62jNEKxr3CYFUlZDmVli7Wc1Yj6qu5XlgX1U7XJuro6Nttss27nyjJ5//33Ay7Dm7IUKnObLD5xtqjm5mafPWvatGlAVgdEVg3FBhUd+bmrLYfaybg96vdSBXPJqqamxmJ/VsKK5pzDDz+822OI5rXLLrsMyLL1ffnLXwbKW5YGKtKKKxujxkZZeqVx32233fycrfEuzlpYV1fnX9NjbOUILfKybsi6rP6uMaFI81I55PUiy4LmId13V1eX79+yCmkskHxlAS4XQ11E5JkgQguj2li5OnTQ3ZqpNiy0TlBbTpLE94W43t2aYBugQYCCxeLCiAsXLvSNSQsimSm1ERhsKN2qCk6K7bff3nfG+fPnA3DFFVcAmSuQ3OYgC4rWovy4444DsjS5kyZN4tJLLwWyYF11+iIs3IU233Fhs/b29pyJPAwYB9dOYxfNOI2zTO51dXV+s6TfI9xIhedUI5og5Kr24IMPAlmbW7x4sZe1+rk2mN/+9rcBJ1e5vmlSl8wkZ7XB2bNn+99MRT712YNl4yNuuukmAL7whS90ez1MvS4mT54MwLXXXgvASSedBPQsDbZtkPLE/T9cTMk186qrrgKytizFUniNatgApWnq+58W0LrfOHnJ+uuv72UTuxCH16vkHhcXQO/q6vJtV3IVGmP13drb26t6LK2EksYoOVGc7Ch0iY0D+yVHFaieOnXqp/CN+x+1S7Wv0M1tZX2us7Mz13bj9hq6uEvWmteVuGdNsJHWMAzDMAzDMIxBg1mACka5QqjSYEhLod32+++/7/+XO5e0HnKtGWxIfrIaSBNx0kkn+SJ8Sobwhz/8AcgsDqNGjeKDDz7o9p4sa0p1vcceewBw/fXXe7cGWZuklfvjH//YF7fWL8SF+3SPNTU1OXfLOE1wbW2t1zRKMxSnzQyLo0lDFBfwlOm8CFpLFeaV69rdd98NOBcZyU/9XFYeWWwkb8j3b8lMrh2tra2+4KfSXg9W1Jcfe+yxbq+Xs9Rsv/32AJx++ukrvW58vll+8sRuNLfddhvg3N3UVo844ggAfvjDHwKZ+1i1WdQ6Ozv9PY0bNw7I+ukhhxwCZGUZZsyY4S0WoSsRdB8rK5UCCDXr4Ny+1M+/9KUv+c8A2GKLLbp9l/nz53trcJHQPHzXXXcBmRw1boaWb93/e++91+0askpojVB0ZHWVt4D6aU1NTc6qsyLiJAjlzolLX4Tz2epSHSODYRiGYRiGYRhGLzCgLEAvv/yyDzqXNkIaD/lfyq+9HOWsH4ONUAYKYpaWXJYK+W3utNNO3q9Xmgv5HofFKKF7EG+loLZqRtoEaeCUklqxUI899pjXiF988cUAXHPNNQDceuutgNMGqd0qFbGuI/kqLfaUKVPYZZddgEzGcduXViROx1tNqC/GFjUgZ92Jz+no6MgF7wrJTJqnhoaG3GfERVOLiCyMM2fO9GNj7LuuYNFQ9koNHGvJ5f/f0dGRC0wtwviqQq/q52EQOGRtcvLkyZxwwgkAPh34woULgSwpwrhx4/x4KVlVKhbb0tLiLZSySOo76LpKvCJrsZFx1llnAVl8xpVXXumtbTHV2k7b2tpyhSB1L/LQ0HjX3NzsXwut6pC15dbW1lypAaHnGlebmpr8uDFlyhQgSyah5Cr6HK0ZiobiduPYVN23Ul9DZg2SBUhyVB/ffPPNP4Vv3P/ERWPD4qflipmGj6GFMrb0lpv3Y6tlueLqq4pZgAzDMAzDMAzDGDT0ugWoksYW8hoZZb/S6yeffLIvRClNmnxhpQ1funSpTy2slJjKjKLrhLvQVaHaNEblCO/hr3/9K9C9kBdkGseJEyd6DagsFNL2SN7Sfko7WVRia4S0sLK+vPvuu/zP//wPAOeeey4At9xyCwAvvPAC4LQ/Sh16zz33APD2228Dma/sBhtsADgNsVJjS+O23XbbAVkxVmmTimABiguifvTRR15jI9/yUDMErh9LBko/KtTH9X5nZ2cupkifVWQLUJjxLtbyxoR+1rGmWciSUaRivCFK9atYPWnUpTUPCxgqhkrFaBUDpLHhjTfe8G1M2R51Pcnx4YcfBlzMgOY0aSylYZ4zZw6QaZUHqwUoTdOcn7/GTVk3FfMWEhdQrtZ5vKOjw99DXOxR6yq1xVtvvdXH5mgsVP/WNVpaWrylV3KNM2lJzosXL/YZJXW+LD1xAcqw2GWR0HpUxNYIrUUha4+al+LCnSppUVSUCVfEZS7CNNgxanPLly+vGB9ULquc2l3cz1UaQuunVcEsQIZhGIZhGIZhDBp63QK0Mi0kwO9+9zsg28HJLxvgO9/5DpDt/J555hkgKwQ2atQov/tUDIa0IscccwzQXYu3Kqyo5kC1EO66pcWNLQiy+nR1dXmtkbTwumdp5yX3bbbZpirlsapIIyEfXsUA3X333d5H+Pe//z2QxVF8/vOfB5wmV/LceeedgaxOiyxoigm67777vNVN5+y///4AvPLKK0DvZDnpL9SHYo2utGkLFizI9bPYUpMkSa7QXGxR0nXb2tq8Zj3WEFWzHGNin2lZGhoaGnLZoCQ7Pba1tfljYp9tjRGKaWlra+vRWF5tSHMrbaL8+nWvGhsnTJjgMz1J5qqTomNDq5ssyNKSKzZL1veWlhYve1mJNE8p7qoIWQp7wqrE6Kh/Kxa4HOrvL7/8crdHxXCVq9c0EGlra/P9UI+ygKmdqs00NjbmCkir7UoeoVVCx8ZjYWiZj/tGfN1q9kToCerf6oeStQqkhvX5JIvY20DnFN0CpHWMiC2XSZLkYnDj57W1tblYt0rndHZ25upcCa3RVscC1Osz3IsvvghkDSFMHaibUjE+uSOIjo6OXADzrrvuCmSN86qrrvKLU6W9VFDqf//3fwNw2GGHAVkgek9ZWeXaamL58uU+QE8LbHVgDYYdHR3+fyVMiE3kKuxVdCQHTTiSlQbDvfbaKzcJa1J66aWXAGciV/uVm6FclFRdW2b2oUOH+t9F6UxlPpbbgzb6SutaTcRuE/GGZfz48X5xKOJNEuRN4bFbW+imIPnpOmEyhaIiedTV1XXbDELeza1cgd3YfSZMpV30BQ+QW0SqDX388cfevUXJT+bOnQtkm8Thw4d72UpWOkep7DWuTpkyxRdZjov6StkUf5eiUmmREyIZScmkAH2lJB89erR3Y9R4qXE4LkJZLRuglpaW3HiptqE2KMaMGePbljY6UoZokzNs2DDfpuKxIHZnC9deul5c7FMUfaOuFNbxelBurpC13VhJFBdQLypyOxOSkeb0pqamnNv6ivp7nCAhprOz08/j8XyutdXqMPBHBcMwDMMwDMMwjF6i1y1At99+O5AFjO677765FI6nnnoqkKX9lctPmPZWu0Rp0mWGXbhwoU8tGqcqlvZeO8J99tnHay+ktZBFI9R8gNO0SHMilzolW6hG5s2b1y1AvBzt7e057UYcSF7UlJcx77zzDkBOyyD5jBgxwmvYpEWTdUeuA8OHD/dWTbl17rvvvkBmxVEShGeffdZblCRrBV1L+ykLUDVqlWJtj2Qmt7/GxkZvZYz7omTe3Nzsz5c2qVJa7XHjxuU060V04YoJNdtxSuvY8lvOoqP3Qjc5Hau+r3G7WoPLQ6ShlPUgto6p7bS1tfk+q0QmOmbvvff2zzVu6lHzlFxe9Xnz58/3Gvv499BzyXmwUC5NfSVLjcaKK664AnDtNW6POje2pFWD9QdcG4rdgnXfcYrf2tpa37ZiN0w9dnR0+P91bOyqJDo7Oyumyo7H3KIXSZeXhlKux0khILNIxt4GlVKzFw1Zs+NC52oz6667rm8nartxiEmapjlX7EreG3V1db4ta72gY9bES6k6RgbDMAzDMAzDMIxeoNdVpBdccAEAl19+OQD33nuvt+JodydNl9I0S7M+d+5cnwI09lcPfdWlpdSOUtoN7Qi183zllVdyFqVYI60da0NDg9+pKiajmvnwww9zu/JYpm1tbX5XHfq3hkhjv2zZslyqxyKhhBGSw5NPPglk2obGxkZvYZQ8Ze2R1nfOnDk+acSRRx4JZDEAcZuvra31bVHtV8G7cVHKakZabmnRpJ2dOHFiRZ9eUV9fn9NY6li1W2klx4wZ4y1y+p0UiF5kn3W1xWHDhnkZSWsca9VWhOQaxhQp5iVM/1rt6F5k3dGYH6YIB1fgcM899wSygpCS58EHHwy4tqz2LJmr7akthr+B5hWNMZK1NJirU8hvoFEukYlQ+4zjJ8JjZAXXMUqYJCucLOjNzc1+PopLDOy3334Vv8NAprm52QfcC8VQx3HJixcv9seq3cRFKRsaGrxs1NbicTQMWo/HC/UVrc9Cy3yR0f3G81L4XPLUuKE2pvjAoiPvFMlBaxh5e+2+++7cdNNNQOa9Eaf/DxMlxHOU2prWT5tttpmfz1V2RJ+9JuskswAZhmEYhmEYhjFo6DMn+X/5l3/xj9o5K9ZHVgXF8shi09HRUbGomTRC6667rt+ha2cpbZ40QtIsdXZ2+tfibD3SCkt7UjQt8bx587rJAfKZs1paWvz/snTE1jU9nzdvXi4TTZGQdlaP0jYok15ra6vX7kjTJo2GLEFz5szx2mFlQ1SRQ2UmlPZs2bJlzJs3D4D11lsPyNJgP/TQQ0B1t0nJKM42JEvYqFGjclqfOB4jSZKK6TFj3+G2tjYfUxVbM6tFA9wT4nvR2Dl06FD/nvp9nPK6J2g8HDFihM+uVSQkE/VDzQ9x0cORI0d6Laf6t7Sciu+bMGGCjwuIU7lL8y7q6upy8ZXqC5JzEbLuVepraZquNLvqOeec4z1ILrnkEiArcn7iiScC8P3vf98fr99Ba43jjjtulb7TQCPsbxrDlAUvvofOzs6cVUeoDba3t+diNMqVD4DuGePULmUBiotYV0tM1eoSxz+r34blVSQLjRcaGyrFWxcNeXVpvpClZo899gBc2vpKBXNDb6xycYAhYQzQjjvuCGTeOcrCuyYxacVuyYZhGIZhGIZhGAGfSpokaSRVMNLoexYsWJDTEIWadXBa+VgLGRem0jkffPBBoS1A0lZIIyxL0PPPPw+4zIKSm/yy9Sht7/Dhw30B1FjjJmQRWrBggZexCi7usMMOQKbZqGbibEbSuCt7Tn19vdewSVZxXF5ra6v/XWTtjbOV6XOGDBniLWnS2MftvYgofiSsSRNbgFZEXHtJVvn6+nofjxG35UptuxpQ+1O7knY3tuo2Njb6+9Q4qvYqGY0dO9a/FhffjmXT1NSUi++Qll/tdHULeA9E4roeNTU1Pjur+qMySd1yyy0AzJ4922eIfe655wC4+eabgazNyQr/8ccfe6tQbPmpVDR5oBPGN8v6H2dhDeVaybqj5+3t7bm6P7EFKM6mGSILkH63SrHERUMyV/9Ue9pll138Mao1dddddwGZFUJjZtHRfC5vLFmAVEMpnHsqzb9dXV05C1C87lR7/eijj7x1SVbi3shUbBYgwzAMwzAMwzAGDcUvlDFI+fjjj3NanVgz1tbW5nfwsmLEsVfy8XzzzTfZdddd+/6L9xPScil7kx5l5VlvvfW8BnfzzTcHMu3Z9OnTAadVvu+++4CsloB8ZWU9kwZ6yZIlvhaJtCdCWmhpmqsRaRjjLIOy4NTV1fnXKsU61dbW5mI0pCHSOaG/u9qqtHBx5sciorZSX1+fi6GKNbZdXV05//1KY8S4ceO8lk/Z4JRlq5pjANSHZVGMfc91/+3t7d2yFUGmaSxXn0syiWuvSfZDhw717V1W99j6Xm3a49AKERP3vZdfftnX1TviiCMA+PnPfw7AaaedBsBPf/pT/7to3FVW2LjOUm1tLaecckrZz67W+l+NjY1+ThGxfDVPL1u2LFczJbZ0lft9KllvwvhrobWB4ls0FldzbGpPkGUytqDvtttu/v9tt90WyNerUcxw0dFYFc8FWhs98sgjuX4Yx/PG/6/o+ZIlS7zMRW9kJazOkcJYKQsWLPCuVFpgx2mxly1b5gdEDXJxI9WjXLeKShyIPGPGDCCbiMeOHevlpkWOFlMKVG1sbPQyf/TRR4GsIKImDSXseO+99/zkfvjhhwOZu51+g2oOqNTgFBfaLRf0qGPUFsNCZ3ILqpQMQY8dHR1+QRm35WpxgVkdtCAaNWpUzvUt3hCFr4l4QaT3m5ubfZvVJl4boGreUCpNvfq72pcUE5JHe3s7f/vb37odqwWgUjJPnTrVyzwu9SDZ6f2lS5fmEvHoucaEauzvsWuVErgopb+UOJ2dnVx77bVA1j+1EZJibe211/ayVrsOCydDVsD20EMP9XOSxk2Nw/ou2qBOnDixt263Txk9enS3QryQzT8iDPhW24rdOMMNUbmCp9A93T24MVdJeeRmqGPj8hdFL9grF+o4HEApniFzgYsX+bNmzfoUvmH/U2kjrcLvN9xwg1dIxhvJcA6P53Gh5xqfW1pacteJE9esDtWryjMMwzAMwzAMw1hFzAJUMLQbDjWOcYG00F2jUiCZztEuW8HWRWXatGlApt2VBm7y5MlA90K50vrIDCwXoYaGBp8+e/vtt+92Pf0usvosWbLEazulLX788ccBvCZOAYXVSFxYM04lGqa4rpSmvb293V8nLu4p1H7b29u95lLnyJIkzXCRqampqWjNiV3iwtfCNKPQPeBflok1CTIdaMi9RZaKDTfcEMgX5ZwwYYK3NsiqG7t9zJkzp2JxT7VXWYaGDBmSS3Mt7b76/9ixY3vpLj8dkiTJuaaq1IUSklx00UUAnHfeeTkt79FHHw3ASy+9BDg5xO5WsjbIQqfHG2+8kauvvhrI2rDkKZmfeeaZABx77LG9cbt9ztChQ31bULuK3c1C60Ts8iv5atwrZwGKvRgkz8bGxorphMNU2eW+U9FQGxSSa9h/44QlGjeKXiR2ZWgMW7JkSa4Miwg9CGILUDxGqI0vXLjQr7Pic9fEJdssQIZhGIZhGIZhDBrMAlQwZD0Ii6DFRSNDrbkI4y4g0xSF6TjDgOuiMWXKFCDzsZblRs9D7Y/koDSh0kQsWrTIy0bnKeZgs802AzLrRhjEescddwCZ1UhaT1mLqpE4gFxaRN1TmAIzDuKVPFtbW3NF+OJj1YZDv/TwfCCXfrgIxEXmQi1bueQHMfF7seZ92LBh/jdTey8XxFptyDIhq6CsBrpXtavW1lafCl+xJArQVxueP3++1wRrnIx/F31eZ2enl6O0pGrTGrP1frXw5JNPeuuN+l8cmH/NNdcAbjyVxXvRokVANo8ouPndd9/146b6tYLK9bpk1dHR4S1zkmOcgCIMWq8WdN+V4hffeustwI1pcdHyctbxOEZF7TWWVX19fc56EX92HNdZVGQV0/wRt2nIWzXKzUNFplx8KWTJpJqamnJeG/H80dHRkYvxjePUy6WD12uS+ZqsR80CZBiGYRiGYRjGoMEsQAXjnXfeAdwOPSyIFqIdeVtbW24HH2vudW5HR4e3Zmy99dZ99O37D2kRjjrqKCCLCVKmobfffttrySUzaR5nzpwJuFiB2267DciyFUnbq4xSDz74IJBlRQuRzJW1aE2ym/Q3sU+vNI7l/HZji4LkPHz4cB/XI2K/Ymnc5s2bx6RJk4Asq5Y0pJX86asZZccSY8aM8bEAum9pMtVOu7q6cjE/Olavh20uTOEM1W35EZKFMtqpf8bxkpBlIotTXCurZm1trddMxtrxuFBgGM+mc+KYojj2YKDT0tLCAw88AGT9UFnf1Gb0+ogRI/z9xtmbJOdFixblLECx9l1Wn5qaGv9eXNxTY0S1FZQO4/gkG5VjEGp7DQ0NOYthpZTu8WeEx+oazc3Nfs4SkqvGCFH0QqgqTC5ro6zFSvEMWduKLRQaV4qOPFrkKSM0hjU3N+eyCapfhnN4vB6Ii/uGGQjjuGKdq3ludTALkGEYhmEYhmEYgwazABUMadBqa2u9Fk0anFhz09bWlssQFx8Txv3Iv7OIFiBlhxK6b/mnv/LKK76mj7Q/0m4qFminnXbiueeeAzIL0IEHHghkhVB1venTp/vzZA2S9kRakLhAajURFyoNC6DqdWl9KhXn7OzszMWtqS3H2t6mpiavhZOmPv4ORULtU9qwpqamXJYxEWZ/jOODYl/uUL5hRknItPLVbElTXE8cqxOPg01NTd6KIy28+mmY0TC2MupRMgtlF8dbCY3Zxx9//Brf36fJVlttlWs/ei5rj+aMcnU8YivPiBEjKsZQqG3Hcg7P16Os+ZX6w0AlnHs13sX3MHv2bMDVpKlkAQprM8XxOjqnnFVcFg+h+AxZMeO4oaKi+V33KQtDGEsquaq9KvOgskoWnc9+9rMA/OEPfwCyuMgwPieea+LYnY6OjpxFMm6vYVuTdS2u96fYzNXBLECGYRiGYRiGYQwazAJUMKZPnw44DVKsRdJuWpqdxYsX+/8VdyItjzT12mXX1NR468Z+++3X5/fxaSPNg+KcpKX43ve+B8AJJ5zg46tUE0maB2k7Z86c6f1eL730UgD+9Kc/AZn2OPRbf+2117p9xmOPPQZk2qRqtrRJMy7/aVnEpIFfe+21fXuUZjj2A07TNBd3omN0ruS68cYbew2d4mP0m8aZkIqAZBbWpoqtYiLUzsf9WseWOzf22VasRrXVqwnZcsstuz3XeCkLraivr89ZG6QJ1/PW1tayGaIgn9GwsbEx58MejwmqOVYtbLDBBt4iobFQ9615RePhkCFDfJtTm9WxskoMGTIkl+UxtBhDvn4VZJplWeyq1ULZ1taW04DHmd7EkiVLcjWDRKhxD8fSctcNf4PYQqe1gB7jjF1FZZNNNun2fEV15JRFUvWZqq0Pry4aw+J5Q9aZlpaWXIxePN8PGzbMXye2isfXT9PU/y6y0MlrJ45xXxWKtzIY5Cid84wZM5g1axaQpRLVAlEL7Pfee88X7lR6TTUqNWRtCEaOHJkbGIqECvZV4oILLuCYY44BMpcVDX7q/I888ogPoLz++uuBrLM+9dRTQNbRlyxZwiGHHALAEUcc0e2xCMSulNokapHS1dXlZRGnula63NBErok8LkAnt7dwklLBNL1XhOD9GKUSDtGiJt7UVHI1hLzrUhjwHB+vBXs1b4DE6aefDsC5554LZElK5O7S1dXl/9eCL3YJjIPDIZNZPIEPHz7ct31dR2PvOeec02v39WmSJInfQF544YUA3HDDDUCm8NDiJEkS/3+cyKTcglrtMl7chMfqOlp06npf/OIX1+i++otPPvnEJ9TROCclmMawK6+80j+vVDyyJ8QbozBBipDsY9fiohf7jJPJlEtYJOIi0ZWKyRYNJYfS/arvKTnCGWecwXnnnQdkSk+1uTDRidqUxknJWomM9FzXBXj11Ve7nRO7M68K5gJnGIZhGIZhGMagIekDc2aR7KP9rTpebVkuXbqUGTNmAFlq0hdffBHIgsk6Ojp8oT4Ftd18881A5hIibc9BBx3kj11N+luW0Ettc/78+UCmNZbFYfny5V4boWO22GILIAukllxjl5vVoKrkKe1i6GIVp2CW1ldtrr293bvQxNrjsGAndA+eVPIIWTx7aAGqKnlKAyfa2trKWiQgs6hBPmWwHiVP/RZrrbWWd/nSa7KI6PWVUBXyVJuT+6kCwdW3IdMwxvJdZ511vCzion9C7faTTz7xVnVpRL/+9a+vyr1UhTyF5Cc33zfffNN7Iqg9yWorl7hRo0b5/yUrtcv42BEjRuTeU3+XZX4lDDh5NjU1eZdC3YOshGuS6nd1kadI7BY+derUcjIecPJcXbRu+tGPfgRknhnl+uudd94JZJbPM844A4Cdd955Tb/GgJankptcffXVQLa+OfXUU/0x8iaSjGQtlnV46dKl3gtE7pya32UBkkfTT37yE39dhRW8/vrrABx77LFAloyqAmXlaRYgwzAMwzAMwzAGDX1hATIMwzAMwzAMwxiQmAXIMAzDMAzDMIxBg22ADMMwDMMwDMMYNNgGyDAMwzAMwzCMQYNtgAzDMAzDMAzDGDTYBsgwDMMwDMMwjEGDbYAMwzAMwzAMwxg0/H8UgFisMsbjMAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# extra code – this cell generates and saves Figure 10–10\n", - "\n", - "n_rows = 4\n", - "n_cols = 10\n", - "plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2))\n", - "for row in range(n_rows):\n", - " for col in range(n_cols):\n", - " index = n_cols * row + col\n", - " plt.subplot(n_rows, n_cols, index + 1)\n", - " plt.imshow(X_train[index], cmap=\"binary\", interpolation=\"nearest\")\n", - " plt.axis('off')\n", - " plt.title(class_names[y_train[index]])\n", - "plt.subplots_adjust(wspace=0.2, hspace=0.5)\n", - "\n", - "save_fig(\"fashion_mnist_plot\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Creating the model using the Sequential API" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42)\n", - "model = tf.keras.Sequential()\n", - "model.add(tf.keras.layers.InputLayer(input_shape=[28, 28]))\n", - "model.add(tf.keras.layers.Flatten())\n", - "model.add(tf.keras.layers.Dense(300, activation=\"relu\"))\n", - "model.add(tf.keras.layers.Dense(100, activation=\"relu\"))\n", - "model.add(tf.keras.layers.Dense(10, activation=\"softmax\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "# extra code – clear the session to reset the name counters\n", - "tf.keras.backend.clear_session()\n", - "tf.random.set_seed(42)\n", - "\n", - "model = tf.keras.Sequential([\n", - " tf.keras.layers.Flatten(input_shape=[28, 28]),\n", - " tf.keras.layers.Dense(300, activation=\"relu\"),\n", - " tf.keras.layers.Dense(100, activation=\"relu\"),\n", - " tf.keras.layers.Dense(10, activation=\"softmax\")\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"sequential\"\n", - "_________________________________________________________________\n", - " Layer (type) Output Shape Param # \n", - "=================================================================\n", - " flatten (Flatten) (None, 784) 0 \n", - " \n", - " dense (Dense) (None, 300) 235500 \n", - " \n", - " dense_1 (Dense) (None, 100) 30100 \n", - " \n", - " dense_2 (Dense) (None, 10) 1010 \n", - " \n", - "=================================================================\n", - "Total params: 266,610\n", - "Trainable params: 266,610\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "model.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAIECAIAAADuFAIlAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOy9fzyUWf/4f4ZBIaO12rSkDeu3Vt2FrLU/UFKRtEqljdBm27vctVuPfny6Pah73/Xe2LfaVKKNLCGlX6vWr61Ii5JfdZeEIqFhRowfc33/ON+97uueMWNcjJnR6/nXnNc51+t6nTPm5brOeZ3XYRAEgQAAAABaKMnaAAAAAAUGfCgAAAB9wIcCAADQB3woAAAAfZjUQmFh4Y8//igrUwAAAOQfBweHsLAwsvhfz6ENDQ1paWljbtJbQWNjI4wtbdLS0hobG2VthbSAvw0FoqioqLCwkCphUGObUlNTfX19IdpJGsDYjgQGg5GSkvLll1/K2hCpAH8bCsSKFSsQQufOnSMlMB8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf5tBNAEABqa2tjYiICA8P19fXl7Uto0NdXR0ZVfPhhx/OmTOHrOrv7y8uLuZyuW1tbQghMzMzW1tbspbNZl+9epUsLly4cPLkyWNl9f8Ph8M5e/bs06dPjY2N/fz81NXVqbVcLjc1NbWurs7e3t7V1VVFRUVKOktLS3V0dAwNDclmtbW1d+7cwZ9NTU1nz5497L4RFFJSUgQkwGgBYzsSEEIpKSnDugRHn1y5ckVKJo0iEv5tJCYmIoSSk5Obmpo6OztJOZvN3r9/f2dnJ5fL3bt3L0KIxWI9fPiQbMDn80tKSqytrS0sLHJzc/l8vlS6IZqampqpU6eamJioqqoihIyMjJqamqi1xsbGly9fxj5x+vTp+fn5UtLZ19e3ceNGqn4ul1tXV/fHH3+oqKhs3bp1yPv6+Pj4+PhQJeBDxwgY25FAw4cSBPHq1StpGEPl9OnTI1cyLB/KZrOpwsbGxiVLllCF2KeYm5tT/SxBEPipfOTW0sDd3f3+/fsEQbS0tGzYsAEhFBAQQK0NDAwki+vWrXNycpKezv7+fnd39/LycgGFM2bMoOdDYT4UGLe8++67UtWfk5Ozc+dOqd5iSMLCwpYtW8ZisUiJsbGxm5tbdXW1v78/QYnb19HR0dbWHnsLS0pKVq9ebWNjgxDS1dUNDw9XUlK6ffs22aCpqamyspIsqqmp8Xg86elUVlYOCwsLDg4ejc4hBGtKwHiFz+fn5ubevXsXFxsaGqKjo/l8fkVFRWRk5JkzZ/h8Ptm4sbHx6NGjBEHk5eXt3LkzJiamu7sbIZSVlRUVFXXy5EmEEIfDOXLkSFRUFH5szM3N9fLy4nK5sbGxWVlZCKHW1tYDBw68fPlyzPpYXFx8+fJlHx8fqpDJZP76669GRkaZmZkRERGkXElJSUnpv37vHA4nJSVl3759cXFxDQ0NpFz8WCGEXrx4cerUqfDw8N9//31II2fMmOHn50cW9fT05syZQ52Q9fb2Lioqwk/ZXC73/PnzW7ZskapOFxcXDoeTkZExpPESQX0ohfdN6QFjOxLQMN/lKysrsWf5+eefCYK4ePGirq4uQujw4cPr169fvHgxQmj//v24cWJi4uTJkydOnLhx48aAgIBFixYhhObOndvb20sQhKWlpb6+Pm7Z2dmppaXl4OBAEERZWZmjo6Ourm5ubm5ZWRlBECdOnEAI/fTTT8PtHe13+eXLl7u4uAg0s7GxIQjiwYMHmpqaDAYjKysLy2NjY2NiYshm9+7ds7a2Tk9Pb2lpOXTokKamJp6XED9WBEHk5OQEBQWVlpampqZqampu2rRpuP2dOnUqdVahubnZ1NQUIbR161Y3N7eMjIzhKqShMzg42NbWliqh/S4PPnSMgLEdCcP1oQRBlJeXkz6UIIgdO3YghG7cuIGLs2fPnjNnDtl4zZo1DAajoqICF/fs2YMQOnbsGEEQPj4+pA/FF2IfShCEl5eXgYEBWcXlcs+ePSswCykJtH2oiYkJfmGngn0oQRDp6ekMBoNcX6L6UB6PZ2ZmtnfvXvIqPz8/VVXVyspKQuxYcTicmTNncrlcXAwMDEQIFRYWSt7Z/Px8fX19DodDFba0tBgZGSGEHBwcmpubJddGW2d0dDSTyeTxeKQE5kMB4L9QU1OjFidOnIgQMjMzw0ULC4v6+nqyVkNDg8lkWlpa4uKOHTuYTGZBQcGQd2EwGFQlq1atmjRp0siNl4Te3t7a2lo9PT1RDby9vXft2tXR0eHl5cXhcKhV165dq6mpsbe3JyULFizo7e2Ni4tDYscqOTm5u7v7u+++Cw0NDQ0NbWpqMjIyevz4sYQ2DwwM7N279+LFi5qamlR5XFycs7NzQEBAYWGhnZ0d9auRkk4Wi9Xf3y+55WKA+FDgbURZWZkQnSdJXV1dX1//1atXQ+qh+tAxpr29fWBgAPs7UYSHh9+/fz8rK8vf33/hwoWkvKqqCiFEdTpOTk4IoerqamEl1LGqrKzU09M7cuQIPZu3bdsWFhZGjV1FCMXHx6ekpNy9e5fJZDo6OoaEhISGhuIpZunpxH1vbGy0sLCg1xcSeA4FAEF4PF5zc/PMmTOHbClDHzp16lRtbW2BB0wBGAxGYmKimZlZZmZmdHQ0KX/nnXcQQtQ8mIaGhioqKkPG3isrKz98+LCvr4+GwcePH7e1tV26dKmA/PTp0+7u7kwmEyEUEBAQFBSUnZ3NZrOlqvP169cIIQMDAxodEQB8KAAIUlRU1NPTg5dTmExmT0/PoM0YDMbAwMDYmvZfWFpatrS0UCUEQbx584Yq0dLSyszMZLFY1GdMOzs7hBB1sqKioqKvr8/BwUH8HWfNmtXV1XXs2DFSwmazjx49OqSp58+fJwjC39+flOTn5+MP5eXlVO/m6enZ29srSXjDSHQ2NTUxGIwPPvhgyLsMCfhQYHyC4wFbW1txsbOzEyHU29uLi62trXg9gWzf399Pepm0tDRnZ2fsQ93c3FpbW+Pj47u6uuLj49va2mpra/FTjJ6eXnNzc21t7ZMnT7q6ukpKSubNm5eXlzdmfXRycnrw4AFV0tTU9Pz5cwGnb2pqmpSURA1smjVr1rp16woKCshZwps3b5qYmOCoSTFj5evra2BgsG3btoMHD1ZXV6empgYHB69duxa3DA4OXrRokbD7u3Hjxg8//NDX1xcTExMTExMdHR0SEoIX/RBCXl5e58+fJ8OnioqKbGxsTExMpKcTIVRXV+fm5jZhwgQJhnkoqAtMsHYsPWBsRwIa5rp8UVERjm2ysrK6dOlSXl4efjHfsGFDU1NTcnKylpYWQmjfvn19fX0EQYSEhCgrK3/zzTfbt29fuXLlkiVLyOV1DoeD117Mzc0zMjK8vb0XLFhw4sQJgiByc3OZTKa2tjaOZ8Lr4LhqWNBel29vb58yZcrjx49x8dy5c5988glCyNXVNScnR+DyyMhIamxTd3d3aGiopaVlQkLCyZMnPTw86uvrCYIYcqyqqqo+/PBD7D0sLS1LS0tJnXgd/NChQ9T7lpSUaGhoCLidCRMmtLW14QZdXV2BgYFWVlZRUVEbNmxYunRpbW2tVHXyeDwdHZ3r169TdUJsk7wDYzsShutDh0tISIiKigpBEPX19R0dHcINWlpa8Ifu7m6qnM1mU4OZBr12SEay1/PYsWOhoaES3ujly5cCEjabfevWrYaGBgk1kNTV1T179kxA2NPTk5KScuHCheFqIwiiq6urqqqqvb19DHSmpqZ6enoKCCG2CQBGAQMDA/zYJQAOO0cICbz9sVgsajDToNeOLgL7IIOCgtra2srKyiS5dsqUKQISFos1f/58GqmtDA0Np0+fLmxbYWEh3qQwXNTV1c3NzYUXtUZdZ01NTVJSUnJyskBj2lPbENsEAOjNmzf9/f1cLlcgxlCuUFFR0dLS2rBhg4ODw9y5c11cXBBCSkpKCQkJmzdvDgoKmjt3rmwtLC4u3r9/P14Nl0+dz549O3DgwKlTp8iYsIqKimvXrtXX13d2dtKbHqVvWVVV1dWrVx89emRvb6+lpcVkMj09PWlrkwYKl0GyoKDg+fPnZFFbW9vd3V3aN83OzsZJJzE2NjZkqPlbQlJSUnZ2NkEQ33//fVBQ0EcffSRriwbnyy+/HPRkUzU1tePHjw8rLl1KYLcuzzpVVVUTEhKoEWlWVlZWVlYIoZ9++omeTprv8nfu3AkICPj73/8+b968b7/91sfHp7S0lJ4q6VFaWhofHy+wcCnP2NvbT5w40c/Pz8/Pr7W19dNPPx2Dm9ra2hYVFfn5+a1duxYnZByDm8oVixcvrqmpef36dWRkJN5krYgIv1kDwujp6Y16SC9NHxoZGenk5MRkMgMDA2tqaiS/8JdffhFTHF18fHxevXol7Ue5UeyCqqqqp6cnTlC2Zs0a8VtQRghptq6uLo6w++ijjz777DOcffKtgsViaf+FVMccGJfQ9KHZ2dlkLkLJkxIK5Fscg/SLCpdBksFg4DUKakbIUUfAbHxH4WARAACGZNjzoU+fPr158yaPx6upqUlLS0MICe/iePToUVFRUXl5uaOj47Jly7AQ51tkMBixsbHTpk3T1NSkFpcsWYIQevHixbVr1xobGx0dHb/44gt8YUNDQ0ZGxubNm6uqqi5cuDB9+vTVq1cLZEIcFD6fn5+fr6mpiefaxetpbGy8ePHi119/nZ+f/9tvv73//vuBgYETJ07Mysp68uSJpqbmhg0bOBzOL7/80tfXp6en5+vrK9Aj3IVRR37MFv5af//9d5x3Uk1NzdvbW01Nrbi4uKqqavLkyXhyfNAvFCH0+vXr5OTkTZs2Xb16tby8/B//+MfoLkQAwNhBDXSSJE7t5cuXFy5cQAht3br19u3bt2/fxnlYyTxahw8f/vTTT/l8/tOnT2fMmIFT2xJC+RaF0y8OmpdwyGyGopBJBkkxSB4fivfwDgwMjJnZDx8+RAh98sknYqwa9Gvt6urCC1BPnjwhW5qZmeFka6ISTSYkJKirqzOZzP/7v/+bNWsWQggf6iAGJOX4UNkCscMKxOjE2OO1YzLXLJfLpfpQY2NjMujXy8tr0aJF5IUC+RapRTF5CcVnfhTD2GeQFAM9Hzo2ZkviQ0V9rRcvXkQIkZtzXrx4gf/CxCeaXL16NUIIZ8atrq4eckzAhwJygrAPHf0XqLy8PDyzVlVV1dDQgPfekggsipFFMi8hLpJ5CfFSNfrvbIa//fabJJYMmUGSqkc4g+SBAwcKCgpCQkLE30XamXvkxGxRX+vixYvNzc1//PHHwMBABoNx9uxZvEIl5gtFCE2bNg0hhN/3ya6Jx9fX19fXd1g2KxYyTAEFDAvBw1dG/Qbvv/9+dnb2pUuXnJ2djYyMSkpKqLWifKjkeQnFZ36UHAXNICkrs0V9rQwGY/v27QEBAVeuXPHw8Lhx48bf//53NNQXiudzJZnUJtmyZcuQWYUUlMLCQvKYJkDOOXz4sIBk9H3onj178PrGxIkT09PTBWpF+VAyL6GKisqom0QDnEFywYIFQ7aUq8eHUTe7paWFxWKpqamJ+VpXr169Z8+e//3f/50xY4alpSVeHRr1L9TBwWHQCPPxQVRU1Dju3Xji3LlzApJR3i//9OnTiIgIMrZR4DhAgXyL1CLtvIRSQlEySAow6mYHBQUpKyuL/1pVVVW3bNmSm5u7ffv29evXY6G8faEAICXo+FD8y8SHx6K/sg3iVAh4fSk5Obmzs/OPP/4oKCh4/fo1l8vF2bYF8i1Si4sXLxaVl3DIzI+iGPsMkjQGUxhsJznhOAZmP3v2jHoLzJs3b7799lsmk8lkMsV/rQihkJAQFovV2tpKzsyKTzSJx4q6xxQAFBXqApMk64O1tbX4ZGdzc/PLly83Nzd/9dVXCCFTU1O8dhwQEMBkMo2NjY8dO5aWlqaqqvr555/jvH4C+RYFioPmJRwym6EoZJJBUgySjO3169c3bNiAR8Db2zs9PX0MzE5KSpo3bx5CiMFg2NnZffHFF/Pnz7e0tMTv4MePH8faxHytmI0bNx45coTaHVGJJk+ePPn+++8jhL788ss7d+6IHxMMgnV5QD4Yo/yh1IyKPT091CqBfIsCRUJEXsIxYLQySIpCSr8TaZtNRczXShCEq6vr69evha8alS8UfCggJ4xFbBP6a+8gRiDASGALo/CORkNDQ8lvtGnTJlFVwcHB9BLwiDqmSkwGSRp3GXXGwGwxX+v9+/dnzpw56K7fYX2hAKBwKPYGu88++0xUFek7JEQhMkgKI1uzS0pKvvvuO2tr67y8vMzMzLE34K2irq6OPInzww8/nDNnDlnV399fXFzM5XLxFLOZmRn1rGA2m3316lWyuHDhwiHP7xx1OBzO2bNnnz59amxs7Ofnp66uTq3lcrmpqal1dXX29vaurq4SxnLQ0FlaWqqjo0P9v15bW3vnzh382dTUdPbs2cPuG/Wh9K19p0hMTHzvvfcQQps2bRpy1yY9pDG2Y2C2eIqLiydNmsRisVJTU6V6IwTv8n+dBZKcnNzU1CQwIbZ///7Ozk4ul7t3716EEIvFwtttMXw+v6SkxNra2sLCIjc3l8/nS6UboqmpqcFpFXFWMCMjo6amJmqtsbHx5cuXsU+cPn16fn6+lHT29fVt3LiRqp/L5dbV1f3xxx8qKipwnhJ92Gz267948+aNNG4hjbEdA7OHpK+vj9yWKj2k7UNPnz4tQz0jOU+psbFxyZIlVCH2Kebm5gLz3TgfOQ3zRo67uztOidDS0oJXTQMCAqi1gYGBZHHdunVOTk7S09nf3+/u7l5eXi6gEM5TGhEKmkFSHsxmMpnD2m4kh4xWAsMxyOUoTFhY2LJly6iz28bGxm5ubtXV1f7+/gQlBk5HR0fyNJWjSElJyerVq21sbBBCurq64eHhSkpKt2/fJhs0NTVVVlaSRTU1NYEzo0ZXp7KyclhYGD4FelRQ7L9+AKDC4XBSUlL27dsXFxeHk/JhsrKyoqKiTp48idscOXKE3FuJMwFyudzY2NisrCyEUGNjI85KlZeXt3PnzpiYGDIUelh6WltbDxw4IHww+ihSXFx8+fJlwe3bTOavv/5qZGSUmZkZERFBypWUlAT+24karoaGhujoaD6fX1FRERkZeebMGYFdFS9evDh16lR4eDjO2SaeGTNm4GhIjJ6e3pw5c6gTst7e3kVFRfgpm8vlnj9/fsuWLVLV6eLiwuFwMjIyhjReIqgPpW/tu/wYAGM7EpAE7/L37t2ztrZOT09vaWk5dOiQpqYm9c1awkyA4tMJSq6HIIgTJ04gSnozMdB+l1++fLmLi4tAMxsbG4IgHjx4oKmpyWAwsrKysDw2NpZ6vryo4Roy26SolIaSM3XqVOqsQnNzMz6CZevWrW5ubjibl7R1BgcH29raUiVwvry8A2M7Eob0oTwez8zMjEzASBCEn5+fqqpqZWUlLkqeCVBMOsFh6eFyuWfPnh3F2GFhH2piYoJf2KlgH0oQRHp6OoPBINeXqD5U/HCJSbcoPqWhJOTn5+vr63M4HKqwpaXFyMgIIeTg4NDc3Cy5Nto6o6OjmUwm3vKHgflQ4K3m2rVrNTU1eF8WZsGCBb29vXFxcZJcTs3AIpxOkMlkFhQU0NCzatUqalDt6NLb21tbW6unpyeqgbe3965duzo6Ory8vMhduRjxwyWcbpE8NJRMaRgaGhoaGkqmNJTQ5oGBgb179168eFEgFC8uLs7Z2TkgIKCwsNDOzm5YZ5TS08lisfr7+yW3XAyKHR8KAJiqqiqEEPVX5OTkhBAiMwmIR0wWK8nTCYrXM+q0t7cPDAyIX0sMDw+/f/9+VlaWv7//woULSfmwhouablHyHJWDsm3btrCwMGrsKkIoPj4+JSXl7t27TCbT0dExJCQkNDQUzylLTyfue2Njo4WFBb2+kMBzKDAeeOeddxBCZAg6QsjQ0FBFRUXCYHIxvg+nE8RZC0aiZ9SZOnWqtra2wAOmsD2JiYlmZmaZmZnR0dGknPZwkSkNaRh8/PhxW1vbpUuXCshPnz7t7u6OUyYGBAQEBQVlZ2ez2Wyp6sTJd0Tt7hsW4EOB8YCdnR1CiPrGXVFR0dfXR6Ztpp0JkJpOcCR6pIGlpWVLSwtVQhDEmzdvqBItLa3MzEwWi0V9xhxyuERBO6Xh+fPnCYLAZxxg8vPz8Yfy8nKqd/P09Ozt7ZUknmEkOpuamhgMxgcffDDkXYYEfCgwHpg1a9a6desKCgrIaa+bN2+amJiQYYDDSmAoKp3gsPSUlJTMmzcvLy9Per12cnJ68OABVdLU1PT8+XMBL29qapqUlEQNbBI/XGLSLYpPaRgcHLxo0SJh93fjxo0ffvihr68vJiYmJiYmOjo6JCQEH3eGEPLy8jp//jwZPlVUVGRjY2NiYiI9nQihuro6Nzc3gSQSNKEuMMHasfSAsR0JSILYpu7u7tDQUEtLy4SEhJMnT3p4eNTX15O1kicwFJNOcFh68LI4eVqfGGivy7e3t0+ZMuXx48e4eO7cuU8++QQh5OrqmpOTI3B5ZGQkNbZJ1HANmW5RVEpDgiDwOvihQ4eo9y0pKcEncVGZMGECmTixq6srMDDQysoqKipqw4YNS5cura2tlapOHo+no6Nz/fp1qk6IbZJ3YGxHgiQ+FMNms2/dutXQ0DBorSSZAIdMJyihHoIgRF0uwEj2eh47dow8b3VIXr58KSARP1xiGDSlYU9PT0pKyoULF4arjSCIrq6uqqqq9vb2MdCZmprq6ekpIITYJgBACCEWizV//nx9ff1Ba8VkAhQOQjIwMMCPYLT1iLp8JAjsgwwKCmpraysrK5Pk2ilTpghIxA+XGAwNDadPny5sW2FhId6YMFzU1dXNzc2FF7VGXWdNTU1SUlJycrJAY9pz2RDbBAD/hdxmQVRRUdHS0tqwYYODg8PcuXNdXFwQQkpKSgkJCZs3bw4KCpo7d65sLSwuLt6/fz9eDZdPnc+ePTtw4MCpU6fImLCKiopr167V19d3dnbSmx4FHwoA/yEpKSk7O5sgiO+//z4oKIheGm8p8eWXXw569qeamtrx48eHFZcuJbBbl2edqqqqCQkJ1BA0KysrKysrhNBPP/1ETyf4UAD4D4sXL/bw8MCfBXL1yznCb9aAMGK2ddEGfCgA/Ac5OdkFUCBgTQkAAIA+4EMBAADoAz4UAACAPoPMh6ampo69HeMenN8BxpY21AQZ4wz421AgGhsbBcNpqQH3eL8EAAAAIAqBfUoMgnJqFQDIGwwGIyUlZdC4SACQB2A+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoAz4UAACAPuBDAQAA6AM+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoAz4UAACAPuBDAQAA6AM+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoAz4UAACAPuBDAQAA6AM+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoAz4UAACAPuBDAQAA6AM+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoAz4UAACAPuBDAQAA6AM+FAAAgD7gQwEAAOgDPhQAAIA+TFkbAAD/xYkTJ9rb26mSCxcuPH36lCyuX79+ypQpY24XAAwOgyAIWdsAAP9h48aNsbGxampqwlV9fX2TJ09ubm5mMuF/PyAvwLs8IF+sWrUKIcQbDGVlZT8/P3CggFwBz6GAfEEQxPvvv9/U1DRo7e3btx0cHMbYJAAQAzyHAvIFg8FYvXq1qqqqcNW0adPs7e3H3iQAEAP4UEDuWLVqVW9vr4BQVVV13bp1DAZDJiYBgCjgXR6QR0xMTB4/fiwgLC8vt7a2lok9ACAKeA4F5JE1a9aoqKhQJcbGxuBAATkEfCggj6xZs6a/v58sqqiorF+/Xob2AIAo4F0ekFM++uij8vJy/PfJYDCePHnywQcfyNooABAEnkMBOcXf319ZWRkhxGAw5syZAw4UkE/AhwJyyqpVq/h8PkJIWVnZ399f1uYAwOCADwXkFD09PUdHRwaDwefzV6xYIWtzAGBwwIcC8svatWsJgvj000+nTp0qa1sAQASEXJKSkiLrgQEAQI7w8fGRtVsaHLlO3zA+PGlhYWFUVNT46Iswvr6+W7Zskd4e9sOHDwcHB2toaEhJv3jG93enQBw+fFjWJohErn3ol19+KWsTRoeoqKhx0xcBfH19HRwcpNe7jz/+eNq0aVJSLgnj+LtTIM6dOydrE0QC86GAXCNbBwoAQwI+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoI9fr8sC4pLa2NiIiIjw8XF9fX9a2jDL9/f3FxcVcLretrQ0hZGZmZmtrS9ay2eyrV6+SxYULF06ePHmMLeRwOGfPnn369KmxsbGfn5+6ujpZxeVyU1NT6+rq7O3tXV1dBXIPjq7O0tJSHR0dQ0PDUeyazJB1gOrg4Ig8WVsxOoynvgiDEEpJSRnWJThO5cqVK1IyaRQZ1nfHZrP379/f2dnJ5XL37t2LEGKxWA8fPiQb8Pn8kpISa2trCwuL3NxcPp8vHatFUlNTM3XqVBMTE3zUipGRUVNTE1llbGx8+fJl7BCnT5+en58vPZ19fX0bN26U8BYEQfj4+MhtjL2c/rbHk98ZT30RhoYPJQji1atX0jCGyunTp0euRPLvrrGxccmSJWw2m5Rgn2Jubt7Z2UltiZ/BR24bDdzd3e/fv08QREtLy4YNGxBCAQEBZFVgYCDZct26dU5OTlLV2d/f7+7ujtMbDok8+1CYDwVkwLvvvitV/Tk5OTt37pTqLQQICwtbtmwZi8UiJcbGxm5ubtXV1f7+/gQlS6+Ojo62tvZY2oYpKSlZvXq1jY0NQkhXVzc8PFxJSen27du4tqmpqbKykmyspqbG4/GkqlNZWTksLCw4OHg0OidLwIcCYw2fz8/Nzb179y4uNjQ0REdH8/n8ioqKyMjIM2fO4JR3mMbGxqNHjxIEkZeXt3PnzpiYmO7uboRQVlZWVFTUyZMnEUIcDufIkSPkpszc3FwvLy8ul0Y4DQAAACAASURBVBsbG5uVlYUQam1tPXDgwMuXL6XUo+Li4suXL/v4+FCFTCbz119/NTIyyszMjIiIIOVKSkpKSv/1u+NwOCkpKfv27YuLi2toaCDl4kfmxYsXp06dCg8P//333yUxcsaMGX5+fmRRT09vzpw55ISst7d3UVFRYmIiQojL5Z4/f37Lli3S1uni4sLhcDIyMiSxX36R9YPw4Iyn99/x1Bdh0DDf5SsrK7Gv+fnnnwmCuHjxoq6uLkLo8OHD69evX7x4MUJo//79uHFiYuLkyZMnTpy4cePGgICARYsWIYTmzp3b29tLEISlpaW+vj5u2dnZqaWl5eDgQBBEWVmZo6Ojrq5ubm5uWVkZQRAnTpxACP3000/D7Z2E393y5ctdXFwEhDY2NgRBPHjwQFNTk8FgZGVlYXlsbGxMTAzZ7N69e9bW1unp6S0tLYcOHdLU1MSzEOJHJicnJygoqLS0NDU1VVNTc9OmTcPtGkEQU6dOJWcVmpubTU1NEUJbt251c3PLyMigoZCGzuDgYFtb2yHVyvO7vJz+tseT3xlPfRFmuD6UIIjy8nLShxIEsWPHDoTQjRs3cHH27Nlz5swhG69Zs4bBYFRUVODinj17EELHjh0jCMLHx4f0ofhC7EMJgvDy8jIwMCCruFzu2bNnBeYlJUHC787ExAS/sFPBPpQgiPT0dAaDQa4vUX0oj8czMzPbu3cveZWfn5+qqmplZSUhemQ4HM7MmTO5XC6WBwYGIoQKCwuH1bX8/Hx9fX0Oh0NKWlpajIyMEEIODg7Nzc3D0kZbZ3R0NJPJ5PF44jXLsw+Fd3lgrFFTU6MWJ06ciBAyMzPDRQsLi/r6erJWQ0ODyWRaWlri4o4dO5hMZkFBwZB3oZ5Er6GhsWrVqkmTJo3ceGF6e3tra2v19PRENfD29t61a1dHR4eXlxeHw6FWXbt2raamxt7enpQsWLCgt7c3Li4OiR6Z5OTk7u7u7777LjQ0NDQ0tKmpycjISPgoaTEMDAzs3bv34sWLmpqapDAuLs7Z2TkgIKCwsNDOzo76LUhPJ4vF6u/vH5bx8gbEhwLyhbKyMiH6nER1dXV9ff1Xr14NqYfqQ6VKe3v7wMAA9neiCA8Pv3//flZWlr+//8KFC0l5VVUVQojqdJycnBBC1dXVwkrIkamsrNTT0zty5Ahtm7dt2xYWFkaNXY2Pj09JSbl79y6TyXR0dAwJCQkNDcWzyVLVifve2NhoYWFBuzuyBZ5DAUWCx+M1NzfPnDlzyJZj5kOnTp2qra0t8IApbExiYqKZmVlmZmZ0dDQpf+eddxBChYWFpMTQ0FBFRUV87L2ysvLDhw/7+vroGXz8+HFbW9ulS5dShadPn3Z3d2cymQihgICAoKCg7OxsNpstbZ2vX79GCBkYGNDrizwAPhRQJIqKinp6evACC5PJ7OnpGbQZg8EYGBgYM6ssLS1bWlqoEoIg3rx5Q5VoaWllZmayWCzqM6adnR1CiDo1UVFR0dfXJz6n9axZs7q6uo4dO0ZK2Gz20aNHJTH1/PnzBEFQz/jLz89HCJWXl1O9m6enZ29vr4SRDCPR2dTUxGAwFPrQVvChwFiDgwRbW1txsbOzEyHU29uLi62trXiFgWzf399P+p20tDRnZ2fsQ93c3FpbW+Pj47u6uuLj49va2mpra/FzjZ6eXnNzc21t7ZMnT7q6ukpKSubNm5eXlyelHjk5OT148IAqaWpqev78uYCLNzU1TUpKogY2zZo1a926dQUFBeRE4c2bN01MTHDUpKiR8fX1NTAw2LZt28GDB6urq1NTU4ODg9euXUuqDQ4OXrRokbAHvHHjxg8//NDX1xcTExMTExMdHR0SEoKX+Ly8vM6fP0/GThUVFdnY2JiYmEhVJ0Korq7Ozc1twoQJQw6y/CLD9SwxjKe17PHUF2HQMNfli4qKcGyTlZXVpUuX8vLy8Iv5hg0bmpqakpOTtbS0EEL79u3r6+sjCCIkJERZWfmbb77Zvn37ypUrlyxZQi6vczgcvBpjbm6ekZHh7e29YMGCEydOEASRm5vLZDK1tbVxPBNeGcdVw0LC7669vX3KlCmPHz/GxXPnzn3yyScIIVdX15ycHIHGkZGR1Nim7u7u0NBQS0vLhISEkydPenh41NfXEwQhfmSqqqo+/PBD/BO2tLQsLS2l3gIvhR86dIgqLCkpET5SZcKECW1tbQRBdHV1BQYGWllZRUVFbdiwYenSpbW1tdLWyePxdHR0rl+/PuQIy/O6vJz+tseT3xlPfRFmuD50uISEhKioqBAEUV9f39HRIdygpaUFf+ju7qbK2Ww2NZhp0GuHRPLv7tixY6GhoRKqffnypYCEzWbfunWroaFhWObV1dU9e/ZMWN7T05OSknLhwoVhaSMIoqurq6qqqr29fWx0pqamenp6SqJEnn0ovMsDioGBgQF+EBMAB6IjhATeB1ksFjWYadBrR5GgoKC2traysjJJGk+ZMkVAwmKx5s+fP9xEVoaGhtOnTxeW83i8wsJCvCVhWKirq5ubmw+6ojXqOmtqapKSkpKTk4erUN4YD7FNVVVVV69effTokb29vZaWFpPJ9PT0lLVRwyM7OxtnSxsUV1fX+/fvX7p0ydXVlcYfsULz5s2b/v5+LpdLDQCSQ5SUlBISEjZv3hwUFDR37lzZGlNcXLx//368IC6fOp89e3bgwIFTp06JjwlTCBT+OfTOnTsBAQF///vf582b9+233/r4+JSWlsraqGFja2tbVFTk5+e3bds2Ho83MDAwMDDA4XD+/PPP9evXX7lyJTU1NSoq6sWLF7K2dExJSkrKzs4mCOL777+/d++erM0ZAjU1tePHj7/33nuyNgS5uLiMum8aXZ2qqqoJCQk4tEvRUfjn0MjISCcnJyaTGRgYuHDhQsnfhn755RdqNIZAcYzR1dX19/f/6aefjI2Nv/rqK2qVsrKylZXVRx99dPz4cQm1yVXXRsLixYs9PDzwZ4HdTXLLoC/XgABitnUpHAr/HJqdnU1mEpM8pZhAbrSxT5UmjKidiJs3b54xYwZ+h5IkblwOu0YbFoul/Rfj4KUPGJco8HPo06dPb968yePxampq0tLSEELCEdePHj0qKioqLy93dHRctmwZFuLcaAwGIzY2dtq0aZqamtTikiVLEEIvXry4du1aY2Ojo6PjF198gS9saGjIyMjYvHlzVVXVhQsXpk+fvnr1aoE8ZqNLUlLS6tWrEULNzc3CtcK9o901mfQOAMYBCuxDNTQ0cMpbXV3d999/HyGEM0uSREVFXbhwIScn59mzZ5999llzc/PXX3+NEJo8ebKNjc2jR49MTU3xo6tAMTc3Nzk5+euvv540aZKXl5e/v/+RI0eysrICAwNxAvby8vJXr17t3r27sbFRek95XV1dERER2IcKM2jv6HUNITT2vQOAcYKMY6tEIGFc3vPnzxElLySXy0UIkZnEjI2NyZA9Ly+vRYsWkRcK5EajFsUkFhOfpW2EfXn48CFCSFtb+/PPP//8888//vhjLS0tLS0tXIvzgZ88eZJsL6p39LpGu3dIyvGhsmV8x/YqEPIcH6rAz6FDkpeXhzdRVFVVNTQ04J1zJAJzi2SRTCyGi2RiMXt7e+FcZL/99tvo2mxjY0OmJW9vb8f7qQdFTO9odA0NlmlNwt5RU2aMM3DXUlNTZW3I205jY6PcngI7nn3o+++/n52dfenSJWdnZyMjo5KSEmqtKEcjeWIx8VnaRs4777wj5lVaTO9G3jU0nN5FRUVFRUVJ0lJB8fX1lbUJABI4akV+GM8+dM+ePfn5+b/99tvEiRPT09MFakU5GjKxmOTna0uPgIAAUVViejfGXUtJSfnyyy9HUaH8kJqa6uvrK9X/lIAkrFixQtYmiGTcrro+ffo0IiJizZo1+BWVepgXEsqNRi2OJLHYmCGmd4reNQBQLBT7ORQHM5HL8XhOEKdWw+tLycnJK1euvH//fkFBAY/Hw8spkyZNInOjEQQxdepUanHx4sU4sRjOU/ngwYO0tDR8NoOoXGSjku4XZ1qsq6sbtLajo4PslPje0euatHsHAOMWGa1lDYEk66G1tbX4XFZzc/PLly83NzfjHT6mpqZ4cTkgIIDJZBobGx87diwtLU1VVfXzzz/HWbkEcqMJFAdNLDZklraR9CU9Pd3Z2RnfMTg4+MGDB9TaO3fuLFiwACFka2t75coVLBTVOxpdG0nvEKzLA9JHntflGYRczvWM1jwUh8Mh9//weDzqfsGOjg4lJSWyVqCIEHr27BmDwRj51j3pzamJ6t2YdQ0hxGAwYD4UkDZ4PvTcuXOyNmQQFPtdfkiojkNgwzWOzxdVRAgZGhpKz7BRQVTvxkHXAEBRGLdrSgAAAGPAOH8OBQA5ob+/v7i4eP78+WSuWDMzM+pJwmw2++rVq2Rx4cKF4k/3HF3u3r0rfMi7vb09eVocl8tNTU2tq6uzt7d3dXUdNDyura3t+PHjOKi5tLRUR0fnrXjjke10rCjG01z+eOqLMAjWlCSAzWbv378fn03C5XL37t2LEGKxWA8fPiTb8Pn8kpISa2trCwuL3NxcPp8/8vtKCJ/Px8clCVBSUoIb1NTUGBsbX758mcPhnD17dvr06fn5+cJ6vLy83nvvPfy5r69v48aNgzajgTyvKcG7PCDX/PLLL3KlhwbPnz9fu3btpk2b8Py1hobGP//5T1VV1Y6ODi8vL/JgegaDMXv2bF9f35UrV3766adjGVJ248YNDw+Pp0+f8v4iOzt7xowZs2fPxg22bt3q7Oy8aNEiTU3NVatWffbZZ7t37xZQcuLECZzVAcNkMmNiYv71r38JnHg6/gAfCsgvo5X8VLZJVMPCwpYtWyawsmdsbOzm5lZdXe3v709Q1v11dHQkT4M7Wmhqah4+fHjGjBmqf3HhwoXly5eTDZqamqj+UU1NDUdhkzx69KisrAyfWU2irKwcFhaGz3kex4APBcYCDoeTkpKyb9++uLi4hoYGUp6VlRUVFXXy5Enc5siRI1FRUfgNGudC5XK5sbGxWVlZCKHGxsajR48SBJGXl7dz586YmBhye8Ww9LS2th44cED4qHRpUFxcfPnyZeG93kwm89dffzUyMsrMzIyIiCDlSkpK1JytosatoaEhOjqaz+dXVFRERkaeOXNGYCfeixcvTp06FR4eTqawEYODgwP1pnw+H581TUq8vb2LiooSExMRQlwu9/z581u2bCFr+/r6du/e/cMPPwhrdnFx4XA4GRkZQ9qgwMh6MmFwxtMc4njqizBIgvnQe/fuWVtbp6ent7S0HDp0SFNT8/Tp02StpaWlvr4+/tzZ2amlpeXg4EAQRFlZmaOjo66ubm5ubllZWWJi4uTJkydOnLhx48aAgAB8Nt/cuXN7e3uHpYcgiBMnTiBKykQxjPy7W758uYuLi7DcxsaGIIgHDx5oamoyGIysrCwsj42NJU+fFzVuFy9exKeZHj58eP369fjpb//+/aTynJycoKCg0tLS1NRUTU3NTZs2DcvmgoKCadOmUSdkm5ubTU1NEUJbt251c3PLyMigtt+9e/etW7cIgti6dSs5H0oSHBxsa2s7LAOEkef5UDn9bY8nvzOe+iLMkD6Ux+OZmZmRSV0JgvDz81NVVa2srMRFHx8f0vcRBDF79mzs+wihXKhr1qxhMBgVFRW4uGfPHoTQsWPHhquHy+WePXuWevq8KEb+3ZmYmOC3dQGwDyUIIj09ncFgkOtLpA8VP25ikr2KzxIrCZs3byZT05K0tLTgdScHB4fm5mZSnpeXt2/fPvx5UB8aHR3NZDLxvmHayLMPhXd5QLpcu3atpqYGpyjFLFiwoLe3l9ynLx7q0oqGhgaTybS0tMTFHTt2MJnMgoICGnpWrVol6gCrUaS3t7e2tlb8+Wve3t67du0SWF9CQ42bcLLX+vp6/JnMEhsaGhoaGkpmiZXQZoIg0tPTqZOhmLi4OGdn54CAgMLCQjs7O3w7NpsdExOza9cuMQpZLFZ/f7/kBigcEB8KSJeqqiqEEPV0eCcnJ4RQdXW1JJeLWZ5WV1fX19d/9erVCPVIj/b29oGBgSFP0wsPD79//35WVpa/v//ChQuxcFjjRk32OqwsscLcunWrt7f3k08+oQrj4+NTUlLu3r3LZDIdHR1DQkJCQ0OzsrK2bt06d+7cixcv4mb//ve/e3p6MjIy8HEMWIi70NjYaGFhQc8kOQd8KCBd8BnihYWF2AUghAwNDVVUVCQMIBfj+3g8XnNzM87GMhI90mPq1Kna2trUp8tBYTAYiYmJdnZ2mZmZDx8+DA0NRSMYtxFmiU1LS/P09FRWVqYKT58+7e7ujg+XDQgI+PPPP+Pi4ths9qtXr65fv0426+joePPmzbfffmtpaUn60NevXyOEDAwMaBijEMC7PCBd8HEm1DfuioqKvr4+BwcHXGQymcIHsmIEcqEKUFRUhJP4jVCPVLG0tGxpaREQEgTx5s0bqkRLSyszM5PFYpGPmUOOmyhGkiWWIIi0tDThF/ny8nKcmxHj6enZ29v78uXLS5cuNVL4+uuvdXV1GxsbqafINDU1MRgMcr/T+AN8KCBdZs2atW7duoKCAnLC7ubNmyYmJmTYoJubW2tra3x8fFdXV3x8fFtbW21tLX54IZOfPnnypKurCyHU399Pepm0tDRnZ2fSh0qup6SkZN68eXl5eWPQfScnJ+Eg86ampufPnwt4fFNT06SkJDLGSPy4iUr2ihDy9fXFWWIPHjxYXV2dmpoaHBy8du1a3DI4OHjRokWi4roKCwu5XC71xGyMl5fX+fPnyfCpoqIiGxsbExMTSUagrq7Ozc1twoQJkjRWSGS6oiWS8bSWPZ76IgySILapu7s7NDTU0tIyISHh5MmTHh4e9fX1ZC2Hw8ErJ+bm5jgsccGCBSdOnCCEkp+GhIQoKyt/880327dvX7ly5ZIlS6hr65LrwUvhuEo8I//u2tvbp0yZ8vjxY1Jy7tw5PNvo6uqak5Mj0D4yMpKMbRI1bkMmexWVJZYgCLy2fujQoUGt3bJly5o1a4TlXV1dgYGBVlZWUVFRGzZsWLp0Kc7qLcD27dsF1uV5PJ6Ojs7169clGSsxyPO6vJz+tseT3xlPfRFGEh+KYbPZt27damhoGLS2paUFf+ju7ha4inSUISEhKioqBEHU19d3dHTQ1kMQhKjLBRiV7+7YsWPCoUJiePnyJbUoftzEUFdX9+zZMwFhT09PSkrKhQsXBr2ktra2tbVVlMKurq6qqqr29nbJbUhNTfX09JS8vSjk2YfCuzwwRrBYrPnz54s64RYHjSOEBF76WCyWcBCSgYEBfvKirUfU5dIgKCiora2trKxMwvZTpkyhFsWPmxgMDQ2F02zzeLzCwkK8Q0GYDz74QEdHR5RCdXV1c3NzybNJ1dTUJCUlJScnS9heQQEfCigMb9686e/vJw+VUhSUlJQSEhJ+/vnnu3fvytoWVFxcvH//frzCLlWePXt24MCBU6dODRnapeiADwUUg6SkpOzsbIIgvv/++3v37snanOGhpqZ2/Pjx9957T9aGIBcXl7FxaqqqqgkJCThCa3wD8aGAYrB48WIPDw/8WeBYF0VhVA6wUhTE784aT4APBRQD4VOhAEAegHd5AAAA+oAPBQAAoA/4UAAAAPrI9XzoihUrZG3CKNDY2IjGS18G5fDhw+fOnZO1FVJh3H93ikJRURE1DaBcwSAoZ7nID4WFhT/++KOsrQBkz++//25lZSUPUUGAbHFwcAgLC5O1FYMgpz4UADAMBiMlJeXLL7+UtSEAMDgwHwoAAEAf8KEAAAD0AR8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf8KEAAAD0AR8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf8KEAAAD0AR8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf8KEAAAD0AR8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf8KEAAAD0AR8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf8KEAAAD0AR8KAABAHwZBELK2AQD+g7+/f1lZGVlsaGjQ0dFRV1fHRRUVlUuXLk2bNk1G1gGAIExZGwAA/4WpqemZM2eoko6ODvKzhYUFOFBAroB3eUC+WLNmDYPBGLRKRUXlq6++GltzAGAI4F0ekDv+9re/lZaWCv9lMhiM2traGTNmyMIoABgceA4F5A5/f39lZWUBoZKSkr29PThQQN4AHwrIHStXruTz+QJCJSUlf39/mdgDAGIAHwrIHVOmTHF2dhZ4FCUIwtvbW1YmAYAowIcC8sjatWup86HKysouLi5TpkyRoUkAMCjgQwF5ZPny5UzmfwLvCIJYs2aNDO0BAFGADwXkES0tLXd3d9KNMpnMpUuXytYkABgU8KGAnLJmzZqBgQGEEJPJ9PT01NLSkrVFADAI4EMBOWXx4sV4i+fAwMDq1atlbQ4ADA74UEBOmTBhwvLlyxFCGhoaCxculLU5ADA4Cr9fvrGx8fbt27K2ApAK+vr6CKG5c+deuHBB1rYAUsHAwMDBwUHWVowMQsFJSUmR9RACAEATHx8fWbuQkaLwz6EYQmF3/aempvr6+iqu/VSk0ZfIyMgdO3YIb/2UCStWrEAInTt3TtaGjBPweCo6MB8KyDXff/+9nDhQABgU8KGAXEONtAcAOQR8KAAAAH3AhwIAANAHfCgAAAB9wIcCAADQBybsARlTW1sbERERHh6OI+rHE/39/cXFxVwut62tDSFkZmZma2tL1rLZ7KtXr5LFhQsXTp48eSzNu3v37uPHjwWE9vb2H3zwAUKIy+WmpqbW1dXZ29u7urqqqKgIa2hrazt+/PjOnTtxsbS0VEdHx9DQUNqWyxcyjk8dMTjGXtZW0EfR7adCry843PLKlSvSMGl08fHxkTwmnM1m79+/v7Ozk8vl7t27FyHEYrEePnxINuDz+SUlJdbW1hYWFrm5uXw+XzpWDw6fzzcyMhJ2CCUlJQRB1NTUGBsbX758mcPhnD17dvr06fn5+cJKvLy83nvvPbLY19e3cePGQVsOyrDGU26Bd3lAxvj4+Lx69crd3V2qd/nll1+kql+A58+fr127dtOmTZMmTdLQ0PjnP/+pqqra0dHh5eXF4XBwGwaDMXv2bF9f35UrV3766aeiTjOVEjdu3PDw8Hj69CnvL7Kzs2fMmDF79myE0NatW52dnRctWqSpqblq1arPPvts9+7dAhpOnDhRWVlJlTCZzJiYmH/9618PHjwYu57IGvChgOx59913pao/JyeHfN8cG8LCwpYtW8ZisUiJsbGxm5tbdXW1v78/QdnKpaOjo62tPZa2YTQ1NQ8fPjxjxgzVv7hw4QJO8oIQampqovpHNTU1Ho9HvfzRo0dlZWWLFy8WUKusrBwWFhYcHCxt++UH8KGAjOHz+bm5uXfv3sXFhoaG6OhoPp9fUVERGRl55swZ8ny6xsbGo0ePEgSRl5e3c+fOmJiY7u5uXJWVlRUVFXXy5EmEEIfDOXLkSFRUFJ5byM3N9fLy4nK5sbGxWVlZCKHW1tYDBw68fPlSSj0qLi6+fPmyj48PVchkMn/99VcjI6PMzMyIiAhSrqSkpKT0n58hh8NJSUnZt29fXFxcQ0MDVYOYkUEIvXjx4tSpU+Hh4b///rskRjo4OFDvy+fzMzIyyBOrvL29i4qKEhMTEUJcLvf8+fNbtmwhG/f19e3evfuHH34YVLOLiwuHw8nIyJDEjPGArCcTRoqizycquv1UaPSlsrIS+5qff/6ZIIiLFy/q6uoihA4fPrx+/Xr8mLN//36CIBITEydPnjxx4sSNGzcGBAQsWrQIITR37tze3l6sytLSUl9fH3/u7OzU0tJycHAgCKKsrMzR0VFXVzc3N7esrIwgiBMnTiCEfvrpp+F2UML5u+XLl7u4uAgIbWxsCIJ48OCBpqYmg8HIysrC8tjY2JiYGPz53r171tbW6enpLS0thw4d0tTUPH36NK4SMzIEQeTk5AQFBZWWlqampmpqam7atGm4XSsoKJg2bRo5J9vc3GxqaooQ2rp1q5ubW0ZGBrXx7t27b926RRDE1q1bqfOhJMHBwba2tkPedHzMhyr8r1fRfZCi20+FXl/Ky8tJH0oQxI4dOxBCN27cwMXZs2fPmTMHf16zZg2DwaioqMDFPXv2IISOHTuGiz4+PqQPxRdiH0oQhJeXl4GBAVnF5XLPnj3b2dk5XFMl/M2bmJjgF3Yq2IcSBJGens5gMMj1JdKH8ng8MzOzvXv3kpf4+fmpqqpWVlbioqiR4XA4M2fO5HK5WB4YGIgQKiwsHFbXNm/eHBoaSpW0tLTgRScHB4fm5mZSnpeXt2/fPvxZlA+Njo5mMpk8Hk/8TceHD4V3eUDGqKmpUYsTJ05ECJmZmeGihYVFfX09/qyhocFkMi0tLXFxx44dTCazoKBAkrtQV2w0NDRWrVo1adKkkRsvTG9vb21trZ6enqgG3t7eu3btElhfQghdu3atpqbG3t6elCxYsKC3tzcuLg4XRY1McnJyd3f3d999FxoaGhoa2tTUZGRkJBy0JAaCINLT08nJUExcXJyzs3NAQEBhYaGdnR2+F5vNjomJ2bVrl3iFLBarv79/WDYoLhAfCsg1ysrKhIhkeurq6vr6+q9evZJEz5itere3tw8MDGB/J4rw8PD79+9nZWX5+/uTKfqrqqoQQpqammQzJycnhFB1dfWgSsiRqays1NPTO3LkCG2bb9261dvb+8knn5CS+Pj4lJSUu3fvMplMR0fHkJCQ0NDQrKysrVu3zp079+LFi7jZv//9756enoyMDG1t7c8//5y8HPeisbHRwsKCtlWKAvhQQFHh8XjNzc0LYx1hZAAAIABJREFUFiyQpPGY+dCpU6dqa2tTHzAHNSYxMdHOzi4zM/Phw4ehoaEIoXfeeQchVFhYiF0nQsjQ0FBFRWXIwHtlZeWHDx/29fUNGgYvCWlpaZ6entQcg6dPnybPVQ0ICPjzzz/j4uLYbParV6+uX79ONuvo6Hjz5s23335raWlJ9aGvX79GCBkYGNCzR7GAd3lAUSkqKurp6SHDa5hMZk9Pz6AtGQwGPiJ0bLC0tGxpaaFKCIJ48+YNVaKlpZWZmcliscjHTDs7O4QQdWqioqKir69vyKMyZs2a1dXVdezYMVLCZrOPHj0qobUEQaSlpQm8yJeXl7PZbLLo6enZ29v78uXLS5cuNVL4+uuvdXV1Gxsbf/vtN+rlTU1NDAYD73ca94APBWQMDjxsbW3Fxc7OToRQb28vLra2tuKlCVzs7+8nnU5aWpqzszPpQ93c3FpbW+Pj47u6uuLj49va2mpra/EDkZ6eXnNzc21t7ZMnT7q6ukpKSubNm5eXlyelHjk5OQkEmTc1NT1//lzAxZuamiYlJZEBRrNmzVq3bl1BQQE5/3vz5k0TExMy1lLUyPj6+hoYGGzbtu3gwYPV1dWpqanBwcFr167FzYKDgxctWiQmkKuwsJDL5X7xxRdUoZeX1/nz58nYqaKiIhsbGxMTEwlHoK6uzs3NbcKECRK2V2xkuJ41Kij6urai20+FRl+KiopwbJOVldWlS5fy8vJmzpyJENqwYUNTU1NycjI+Vn7fvn19fX0hISHKysrffPPN9u3bV65cuWTJEuraOofDwQsy5ubmONRxwYIFJ06cIAgiNzeXyWRqa2vjeCa8Mo6rhoWE68jt7e1Tpkx5/PgxLp47dw5PNbq6uubk5Ag0joyMJGOburu7Q0NDLS0tExISTp486eHhUV9fj6vEj0xVVdWHH36If9GWlpalpaWkfry2fujQIVHWbtmyZc2aNQLCrq6uwMBAKyurqKioDRs2LF26tLa2Vvja7du3C6/L83g8HR2d69evDzlQ42NdXuF/vYrugxTdfirS7ktISIiKigpBEPX19R0dHYO2aWlpwR+6u7upcjabTXW4oi4Xj+S/+WPHjgmEConh5cuX1CKbzb5161ZDQ8Nwzaurq3v27JmAsKenJyUl5cKFC6Kuqq2tbW1tHbSqq6urqqqqvb19WGakpqZ6enpK0nJ8+FB4lwcUDwMDA/wUJgwOREcICbxIslgsajCTqMtHi6CgoLa2trKyMkkaT5kyhVpksVjz58+nkcXK0NBw+vTpAkIej1dYWIi3JAzKBx98oKOjM2iVurq6ubn5sLJJ1dTUJCUlJScnS36JovM2rstzudzc3NybN2+K2qwmbxQUFDx//pwsqqio6OrqTps2TfL5qfHBmzdv+vv7uVwuNQBIPlFSUkpISNi8eXNQUNDcuXNlaElxcfH+/fvH5liqZ8+eHThw4NSpU+JDu8YZb+Nz6LVr17799ttff/1V1oZIio2NzZMnT/z8/L766qvOzs5Xr15lZWX5+vp+8MEHu3fv7uvrk7WBY0FSUlJ2djZBEN9///29e/dkbc7QqKmpHT9+/L333pOtGS4uLmPm0VRVVRMSEnCQ1tvD2/gc6uPjc+7cuT///FPWhkiKtrb2V199tWfPHiMjo5CQECwkCCI9PT0wMLC4uDg9PV1Ku27kh8WLF3t4eODPAlub5Bnhl+txjJjdWeOYt9GHIqFkOfKP8Pwdg8Hw8fEZGBhYuXKlk5NTcXGxqqqqTGwbG6h55ABAfniLfGh7e3taWlpdXd3f/vY3giCoG1devHhx7dq1xsZGR0dHaqBcQ0NDRkbG5s2bq6qqLly4MH369NWrV2PnSxBEfn7+vXv3lJWVzczMXF1dxauSEr6+vr/88suVK1eKi4s//vhjhe4LACgiivQsNhIePny4cOFCa2vr8PDw1tbWzMxM0ofm5ubu27fP1tbW3Nzcy8sLb7xDCGVlZc2ZM2fLli0//fTTjz/+WFRU5O/vTy5D7d69+/Hjx1u2bHFwcCBTfItSJVVwUOQff/wxDvoCAIqHTCOrRgEJYxLt7Oy2b9+OP/P5/JkzZ3744YfEUHnDRGUb4/P57777bm5uLpZHREQMqWqE9nd0dCCEzM3Nhatwslt3d3dF6YviMj7iGeWH8TGeb8W7fE5Ozp07d/7f//t/uMhgMObOnYvXdsm8YbiKzBuGH+6Es43hfcEMBsPU1NTX1/f48eOenp7btm0bUpX04HK5CCENDQ056cuKFStGv5PyQVFRERrXHRxjioqKpP3rGAPeCh96//59hJCVlRUpIV/kh5U3jJqHLSYmZsWKFV5eXl988UVSUtJ777038hRk9CgtLUUI2dnZjYO+AIDC8Vb4UJys4c6dO9RkXNiN0s4b9tFHH5WWlu7YsSM2Nnb27NkPHjwYeQoyGhAE8ccffygrK7u6uv7yyy/y0Bd81vG4BD+BjuMOjjHj44n+rVhTsra2Rgjl5OQIV9HLG8bj8c6cOTNp0qQjR45cvny5qakpIyNjhCnI6LF169aSkpKDBw/OmjVL0fsCAAqJjOdjR4wk6xh9fX1mZmaampr5+fkEQTx//lxPT09TU/P+/ftcLtfAwEBVVfV//ud/qqqqUlJSVqxYQSan+Mc//oEQIjPWeHh4TJo0ic/nd3d3z58/Hx/gxefzdXV1z58/39PTI0bVSOwnCAJPR8yYMYOUPH36dNOmTQwGY/PmzVgi3gD56YviMj7WQOSH8TGeCv8XL+Hv9unTp3jb8syZM/38/JYsWfLxxx///PPP3d3dovKGick2xuFw9PT0Vq5cee7cuUOHDpHniIlJQTYS+y9evPjpp59itQ4ODq6urh4eHp6env/4xz/u3r1LbSn/fVFoxsdvXn4YH+PJIEQcVqMopKam+vr6StiLV69eqaura2hoCOetePbsGYPBkHxnXn9/P5/Pb25uFr5kWKqGZb+EjKe+yBUwHzq6jI/xfCvWlEjIxGjCiX8MDQ2HpQonwhnUuQxX1agznvoCAHLO2+VDAWAs6e/vLy4u5nK5bW1tCCEzMzNbW1uyls1mX716lSwuXLhwWJk6RwU2mx0XF1dfX+/h4fHFF19Qj6Xj8Xh4B/DHH39sZ2cnSVVpaamOjs7b9n/3rViXB4Cxp6Oj4+DBg9bW1o6OjjU1NX5+fp999tmjR4/IBiwWy9TU9MCBAxEREXp6etra2mNsYXt7+9/+9rf79+9XVFS4u7vPnz+frGppaTE3N6+vrw8ICMjMzPT09CQP9RNTZWNj869//Yt6rN5bgWynY0eOoq9jKLr9VMagL6dPn5ahHsnXQBobG5csWcJms0kJzqplbm4uEN4QERERHh5Ow5iR8/PPP7e1teHP4eHhCKGbN28SBDEwMPDxxx8vXboUV/X39xsaGn7//ffiq0iJu7t7eXm5JAaMjzUleA4FFIacnJydO3fKjx4xhIWFLVu2jJqvz9jY2M3Nrbq62t/fn6Asu+no6Iz9EyhCqLe3d8GCBWS+ZH9/f/RXisWCgoKbN28GBQXhKmVl5XXr1sXExHR1dYmpIiVhYWHkWaRvA+BDARnA4XBSUlL27dsXFxfX0NCAhVlZWVFRUSdPnsQNjhw5EhUVhZ9tEUK5ubleXl5cLjc2NjYrKwsh1NjYePToUYIg8vLydu7cGRMT093dTUNPa2vrgQMHxJwePFyKi4svX76MzyslYTKZv/76q5GRUWZmZkREBCkXSGU76MhgGhoaoqOj+Xx+RUVFZGTkmTNnyLOLEUIvXrw4depUeHj477//LomRqqqq1PPfy8vLFy9ejHej4Cw2+DPGysqqq6vrypUrYqpIiYuLC4fDwS3fCmT9IDxSFP1dWNHtpyJhX+7du2dtbZ2ent7S0nLo0CFNTU3yzdrS0lJfXx9/7uzs1NLScnBwwMWysjJHR0ddXd3c3NyysrLExMTJkydPnDhx48aNAQEB+My1uXPn9vb2DksPQRAnTpxACOFjk8Uj4bvn8uXLXVxcBIQ2NjYEQTx48EBTU5PBYGRlZWF5bGwseTaymJG5ePEijio5fPjw+vXrFy9ejBDav38/rs3JyQkKCiotLU1NTdXU1Ny0adOQRpLw+fyUlBQLCwvyJFF3d3eEED68HpOXl4cQioiIEFNF1RkcHGxrazvkrcfHu7zC/3oV3Qcpuv1UJOkLj8czMzMjI/kJgvDz81NVVa2srCQIwsfHh/R9BEHMnj2b9H0EQXh5eRkYGJDFNWvWMBiMiooKXNyzZw9C6NixY8PVw+Vyz549O+QuLELi37yJiQl+YaeCfSjx1+n2LBbr4cOHBMWHih8ZQnT2QnqJCjFcLjcoKEhdXR0hpK2tXVxcjDXjlDQkxcXFCKHQ0FAxVVRhdHQ0k8mkutpBGR8+FN7lgTHl2rVrNTU11IxnCxYs6O3tjYuLk+Ry6ukDGhoaTCbT0tISF3fs2MFkMiVcFBbQs2rVqtE6kKq3t7e2tlbMyULe3t67du3q6Ojw8vLicDikfMiREc5eWF9fjyiJCkNDQ0NDQ8lEhZJYq6Ghcfz4cQ6Hc/jwYQ6H8/XXX6PBoqfxyvvUqVPFVFGFLBarv79fQhsUHYgPBcaUqqoq9N+/UicnJ4RQdXW1JJdTfZ8A6urq+vr6r169GqGeEdLe3j4wMCD+KM3w8PD79+9nZWX5+/svXLgQC4c7MmT2wpEnKlRSUtqyZcvt27fT09N5PJ6BgcHAwACPxyPP/sO+3sLCoqamRlQVVSHuRWNjo4B8XALPocCYgheCCwsLSYmhoaGKioqE4eVifB+Px2tubsZpAUaiZ4RMnTpVW1ub+oA56N0TExPNzMwyMzOjo6OxkPbIkIkKR2i5q6vrO++8o6amZm5ujhCirmi1trYihCwsLMRUUVW9fv0aIURNNTmOAR8KjCl2dnYIIeobd0VFRV9fn4ODA0KIyWT29PSIupbBYJDh3MIUFRX19PTgxZaR6Bk5lpaWLS0tVAlBEG/evKFKtLS0MjMzWSwW+ZgpfmTEMFqJCisqKpYsWYIQCgwMVFNTu3XrFllVUlLy0Ucfffjhh2KqqKqampoYDAZ13X8cAz4UGFNmzZq1bt26goICPJeHELp586aJiQmOKHRzc2ttbY2Pj+/q6oqPj29ra6utrcUPNQghPT295ubm2traJ0+e4IDE/v5+0gelpaU5OztjHzosPSUlJfPmzcPry6OCk5PTgwcPqJKmpqbnz58LuHVTU9OkpCQysEn8yKC/Uon39vbiYmtrK1608fX1NTAw2LZt28GDB6urq1NTU4ODg9euXYubBQcHL1q0SDhyq7u7OzIysqKiAhfb2trKysoOHz6MEJo6deo333xz8OBBPFfQ09OTlZUVFxenpKQkpoqqvK6uzs3NbcKECSMYRcVBpitao4Cir2sruv1UJOxLd3d3aGiopaVlQkLCyZMnPTw86uvrcRWHw8GLKubm5hkZGd7e3gsWLDhx4gSuzc3NZTKZ2traOA4pJCREWVn5m2++2b59+8qVK5csWUKurQ9LD14oJ2vFIOE6cnt7+5QpUx4/foyL586d++STTxBCrq6uOTk5Ao0jIyPJ2CYxIyMme2FfX5+YRIVGRkYIoUOHDgncl8vl2tra4rPF9uzZEx39/7V3r2FNXOsCgNeQAFaQoCiFHlIqSAERVKxVBKs9RbwAhVowioqtFuwG7WMtbmRrq+VB6S6eCm5UFFGqoga8xKZad20BKRYbDygWAfsoclOQm2CCEAiZ82PtzpmGEMJwycXv/ZVZa7L4ZikfM7PWrEkSi8VUrVwuj46O9vPz27dvX0xMzPHjx9WpwqRSqYWFxdWrV/vtKP0Yl9f5315dz0G6Hj/dgI6ltbX1+vXr1JxEuoaGBvyho6Oj97eoRLl+/XpDQ0OSJKurq9va2hi3Q5Kk0q/3pv7vfEpKisJ0HxWePHmiEFtfPaNaZWVlVVWVQmFnZyefz7948aLSrzx9+rS9vb2vBmUyWX19/UCrMjMzAwIC1AlYP3IoXMsDzeBwOHPmzLGxseldRS1R2PtikMPh9J6ExOVy8UkZ43aUfn0wwsLC8NWxOjtbWloqxNZXz6hma2vbewFDqVRaUFCAn0HozdzcHE8OVYrFYr388ssDqiovL8/IyDh9+rTaUes8yKFAVz1//lwmk+FXQ2sbAwOD9PT0gwcP3rx5U7ORiESi3bt34yVih1tVVVV8fPzRo0dVT+3SM5BDgU7KyMj48ccfSZKMjo6+ffu2psNRwtjY+PDhw32dx40Yb2/vEctoRkZG6enp1DomLwiYYw90kp+fn6+vL/5MzffWQuq/kUUPqHg6S49BDgU6ib6sHAAaBNfyAADAHORQAABgDnIoAAAwBzkUAACY05MxpeFbhmdk6Hr8dPp0LErp/QGOJIU3pugigqS9HksX1dbW/vrrr5qOAgwXHo+3adOmftcuAjqKy+Xq+j+uzudQoN8IguDz+cuWLdN0IAAoB/dDAQCAOcihAADAHORQAABgDnIoAAAwBzkUAACYgxwKAADMQQ4FAADmIIcCAABzkEMBAIA5yKEAAMAc5FAAAGAOcigAADAHORQAAJiDHAoAAMxBDgUAAOYghwIAAHOQQwEAgDnIoQAAwBzkUAAAYA5yKAAAMAc5FAAAmIMcCgAAzEEOBQAA5iCHAgAAc5BDAQCAOcihAADAHORQAABgDnIoAAAwBzkUAACYgxwKAADMQQ4FAADmIIcCAABzbE0HAMBfVFVV9fT00EuePHlSUVFBbb7yyiujRo0a8bgAUI4gSVLTMQDw/3x9fS9fvtxXraGh4ZMnT8aOHTuSIQGgAlzLA+2yfPnyvqoMDAx8fHwggQKtAjkUaJelS5f2dalOkuTq1atHOB4AVIMcCrSLiYmJn5+foaFh7ypjY2M/P7+RDwkAFSCHAq2zcuVKmUymUGhoaLh06VITExONhARAXyCHAq2zZMkSU1NThcLu7u6VK1dqJB4AVIAcCrSOkZFRcHCwkZERvdDMzMzb21tTIQHQF8ihQBuFhIR0dXVRm4aGhitWrFDIqgBoA5gfCrSRXC63srJqbGykSq5du/bWW29pMCQAlILzUKCNDAwMVq5cSY3OT5gwwcvLS7MhAaAU5FCgpVasWNHd3Y0QMjIy+uCDDwwM4P8q0EZwLQ+0FEmSr732WnV1NULof//3f2fMmKHpiABQAv62Ay1FEERoaChCyM7ODhIo0Fq6sW7TN998U1BQoOkowEh79uwZQmjUqFHBwcGajgVoQFZWlqZD6J9unIcWFBTcuHFD01FowNmzZ2trazUdxdBgcCxmZmbm5uZcLneYQhpCtbW1Z8+e1XQU+kOH+lM37ofi0xCd+KM0tAiC4PP5y5Yt03QgQ4DZsfz00086MbU+MzOTx+PpxG+TTtCh/tSN81DwwtKJBApeZJBDAQCAOcihAADAHORQAABgDnIoAAAwpxvzQ8GLqaKiIi4uLjY21sbGRtOxDDGZTCYSiSQSSXNzM0LIyclp+vTpVG1ra+sPP/xAbS5atGjk3yLV2tqalpZWXV3t6+v7zjvvsFgsqkoqlV67du327dteXl6zZs2iV/VVW1RUZGFhYWtrO8JHMQLgPBRor6KiomPHjv3++++aDmSItbW1JSQkuLq6enp6lpeXh4SEvP3223/88Qe1A4fDcXR0jI+Pj4uLs7a2Njc3H+EIW1pa3njjjeLi4pKSksWLF8+ZM4eqamhocHZ2rq6uXrt2rUAgCAgIoL/Luq9aNze3r776Ki8vb4QPZCSQuiAoKCgoKEjTUWgAQojP52s6iqHB7FgaGxuHIxi6b7/9dvCN8Pl8NX+bamtr/f39W1tbqRK8Lqqzs/OzZ8/oe+Jz8MHHxsDBgwebm5vx59jYWIRQfn4+SZI9PT1eXl7vvvsurpLJZLa2ttHR0XhTda1MJlu8ePGdO3fUCUD9/tQ4OA8FWm38+PHD2n52dnZMTMyw/ggFmzdvfu+99zgcDlUyadIkHx+fsrKy0NBQkjar3MLCYuTPQBFCXV1dCxcuHDduHN7EqxaYmZkhhPLy8vLz88PCwnAVi8Vas2ZNcnJye3t7v7UsFmvz5s3h4eEjf0TDCnIo0F5yuTwnJ+fmzZt4s6amJikpSS6Xl5SU7Nq168SJE3K5nNq5trb2wIEDJEnm5ubGxMQkJyd3dHQghIRCYWJi4pEjRxBCYrF4//79iYmJ+DQnJycnMDBQIpEcOnRIKBQihJqamuLj4588eTJMRyQSiS5duhQUFEQvZLPZZ86csbe3FwgEcXFxVLmBgYHCin9isZjP5+/cuTMtLa2mpoYqV90zjx8/Pnr0aGxs7M8//6xOkEZGRhMnTqQ279y54+fn5+rqihA6f/48Qgh/xqZMmdLe3n758uV+axFC3t7eYrEY76Y/NH0irBa4ltcDAz2Wu3fv4lxz8OBBkiS/++67CRMmIIT27t374Ycf4pck7969G+988uTJsWPHvvTSSx9//PHatWuXLFmCEJo5c2ZXVxdJki4uLjY2NnjPZ8+emZmZeXh4kCR569YtT0/PCRMm5OTk3Lp1iyTJ1NRUhNC+ffsGenRqXnu+//773t7eCoVubm4kSf7++++mpqYEQQiFQlx+6NCh5ORkarfbt2+7urqeO3euoaFhz549pqam+C6E6p7Jzs4OCwsrKirKzMw0NTWNiIhQ/6Dkcjmfz588eXJNTQ0uWbx4MUJIKpVS++Tm5iKE4uLi+q3FwsPDp0+f3u+P1qFred2IEnKoHmBwLHfu3KFyKEmSW7duRQj99NNPeNPd3X3GjBnUzqtWrSIIoqSkBG9+/vnnCKGUlBSSJIOCgqgcir+IcyhJkoGBgVwul6qSSCSnTp1SuC+pDjV/5x0cHPAFOx3OoSRJnjt3jiAIDodz79498q85VCqVOjk5ffHFF9S3QkJCjIyM7t69S/bdM2Kx2M7OTiKR4PJ169YhhAoKCtQ5IolEEhYWNnr0aISQubm5SCTCLbNYLPpuIpEIIRQZGdlvLZaUlMRms+l5VikdyqFwLQ+0l7GxMX3zpZdeQgg5OTnhzcmTJ+MVmjETExM2m+3i4oI3t27dymaz1RkIJgiC3siKFSvGjBkz+OB76+rqqqiosLa27muHpUuXbtu2ra2tLTAwUCwW06uuXLlSXl4+e/ZsqmThwoVdXV1paWmo7545ffp0R0fH3//+98jIyMjIyLq6Ont7+/v376sTrYmJyeHDh8Vi8d69e8Vi8d/+9jeEUO93VuNhdysrq35rMQ6HI5PJ1IxBJ8D8UKCr8ClPX7WjR4+2sbGhv9WuL/QcOqxaWlp6enpwvutLbGxscXGxUCgMDQ1dtGgRVV5aWor+mqTmzp2LECorK+vdCNUzd+/etba23r9/P+OYDQwMNm3a9Ouvv547d04qlXK53J6eHqlUSv15w7l+8uTJCCHVtRg+hNraWnqhToPzUKCfpFJpfX29nZ1dv3uOWA61srIyNzdXOMHsHczJkyednJwEAkFSUhJVjkfJ6SuR29raGhoaqp57z2Kx7t27h19LNRgLFiwYN26csbGxs7MzQog+nNXU1IT+zJKqa7GnT58ihHRiTVg1QQ4F+unGjRudnZ14gIXNZnd2dirdjSAI+hTx4ebi4tLQ0EAvIUny+fPn9BIzMzOBQMDhcOjnmLNmzUII0W9NlJSUdHd3e3h4qPhxU6dObW9vT0lJoUpaW1sPHDgw0LBLSkr8/f0RQuvWrTM2Nr5+/TpVVVhYOG3atNdff73fWqyuro4gCPq4v66DHAq0l1QqRX+ey6A/Xw3S1dWFN5uamvDQBLW/TCaj8s7Zs2fnzZuHc6iPj09TU9OxY8fa29uPHTvW3NxcUVGBT4isra3r6+srKioePHjQ3t5eWFj45ptv4tHk4TB37lyFx67q6uoePXqkkOIdHR0zMjLoE5umTp26Zs2avLw86hZwfn6+g4MDnm7ZV8/weDwulxsVFZWQkFBWVpaZmRkeHr569Wqq2fDw8CVLlijM5ero6Ni1a1dJSQnebG5uvnXr1t69exFCVlZWGzZsSEhIwN3e2dkpFArT0tJwqKprscrKSh8fn1GjRg2qH7WKBsez1Afj8npgoMdy48YNPLdpypQp33//fW5uLr4w/+ijj+rq6k6fPo1nfe/cubO7u5skyfXr17NYrA0bNmzZsmX58uX+/v7U8LpYLMajMc7OzufPn1+6dOnChQtTU1NJkszJyWGz2ebm5ng+Ex4Zx1UDouY4cktLi6Wl5f379/FmVlbWW2+9hRBasGBBdna2ws67du2iz23q6OiIjIx0cXFJT08/cuSIr69vdXU1SZKqe6a0tJQ6DXRxcSkqKqL/CHt7e4TQnj176IUSiWT69OkEQcycOfPzzz9PSkoSi8VUrVwuj46O9vPz27dvX0xMzPHjx+nfVV0rlUotLCyuXr3ab0fp0Li8bkQJOVQPDPexrF+/3tDQkCTJ6urqtra23js0NDTgDx0dHfTy1tZW+mQmpd/tl/q/8ykpKfS5Pqo9efJEoaS1tfX69evUhE01VVZWVlVV9S7v7Ozk8/kXL17sXfX06dP29va+GpTJZPX19QOtzczMDAgIUCdgHcqhcC0P9A2Xy8UnYgrwRHSEkMKFJIfDoU9mUvrdIRQWFoavjtXZ2dLSUqGEw+HMmTNnoAtZ2dravvrqq73LpVJpQUEBfiRBgbm5OZ4cqhSLxXr55ZcHVFteXp6RkXH69Gm1o9YNkEOBnnj+/LlMJpNIJJoOpB8GBgbp6ekHDx6knmHVIJFItHv3bjZ72Oc4VlVVxcfHHz16VPXULl2kt/NDJRJJTk5Ofn7+P//5T03H8hf19fXl5eXz588fktby8vIePXpEbRoaGk6YMOGVV15xcHAYkvZ1RUZGxo8//kiSZHR0dFhY2LRp0zQdkSrGxsaHDx+mPyANXgROAAAgAElEQVSgKSP2yj8jI6P09PQRm0Y2kvT2PPTKlSuffPLJmTNnNB3I/2tsbIyKirKzs7tw4cJQtenm5vbgwYOQkJAPPvjg2bNnjY2NQqGQx+NNnDhx+/btg58YqCv8/PzKy8ufPn26a9cuR0dHTYejFqUX1/rK2tpaLxMo0uMcGhQU9Oabb47ARYr6KisrQ0ND8WJCQ8Xc3PyDDz5ACNnb269fv/5vf/vbnj17CgsLExIS/vWvf/n6+qqe0a03OByO+Z/072oRaDMtSjFDrvfSYZqFlxEa8mZ7j4EQBBEUFNTT07N8+fK5c+eKRCK8yi8AYMjpWw5taWk5e/ZsZWXlG2+8QZIk/fLh8ePHV65cqa2t9fT0fOedd3BhTU3N+fPnN27cWFpaevHixVdffXXlypVU5iVJEr8ZhsViOTk5LViwQEVT2obH4x0/fvzy5csikcjLywsXDrQT+uqBvpoC4EWjRadpg3fv3r1Fixa5urrGxsY2NTUJBAIqh+bk5OzcuXP69OnOzs6BgYGRkZEIIaFQOGPGjE2bNu3bt++bb765ceNGaGgofQxq+/bt9+/f37Rpk4eHx/bt21U0pZ3wxPJffvkFbzLoBKU90FdTALyINDs9VU1qzrGfNWvWli1b8Ge5XG5nZ/f666+TKldRVLEkpVwuHz9+fE5ODt7E68gOZkFGkiTxw4uffPKJmvsjNealt7W1IYScnZ17V+EFwxcvXqw68r46QWkPqG5qkMeiu3RoTrhO0KH+1J9r+ezs7N9++23Hjh14Ez+pdvv2bURbRRFXUasozp49u/fCi//+97+pFhwdHXk83uHDhwMCAqKiolQ3NYLHqi48WdLExAQx6gSlPaC6KdXx8Hg8Ho839MepNfR16BmooD85tLi4GCE0ZcoUqoT6D63+KooKS1ImJycHBwcHBga+8847GRkZL7/88uAXZBxJRUVF6M8lf5h1Qu8eGFBTCvA9gYF+SycUFBRQr2kCg4f7U9NRqEV/ciheuua3336jL02I0yi1iqKhoeGA2pw2bVpRUdHWrVsPHTrk7u7++++/M25q5JEk+csvv7BYLDwQxCzy3j0wbtw4xp3g4eGxbNmygR2G7khMTNTjoxt5upJD9WdMCb9NMDs7u3cVs1UUpVLpiRMnxowZs3///kuXLtXV1Z0/f36oFmQcAZ9++imeKDp16lTEqBOU9gCzpgDQWxq+H6sedcaUuru7nZycTE1Nr127RpLko0ePrK2tTU1Ni4uLJRIJl8s1MjL6+uuvS0tL+Xx+cHAwXqrns88+QwhVVFTgRnx9fceMGSOXy0mS7OjomDNnDv4sl8snTJhw4cKFzs7OvppSR319PUIoPDxczf2RGuMw+CbGa6+9RpU8fPgwIiKCIIiNGzdShSoi76sTlPaA6qYGeSy6S4fGQHSCDvWnbkSp5rj8w4cPZ86ciRCys7MLCQnx9/f38vI6ePBgR0eH0lUUVS+82NHRYW1tvXz58qysrD179lCvVFS9IKMKly9fxiMqlpaWqampdXV1/X6l37zz3XffUY/ee3h4LFiwwNfXNyAg4LPPPrt586bCzgPtBLFYrLQHmHUC5FCgPh3qT4Ls+61e2iM4OBghlJWVpc7OjY2No0ePNjExkUgkCi8arKqqIghC/eeUZTKZXC6vr6/v/ZWBNsUMQRB8Pn9o77INKHIVPTDQpobjWLRHZmYmj8fTid8mnaBD/ak/Y0oUapnI3m9qtbW1HVBT+HF7pTlCoamIiIi+GgkPD9eqZYQG1AkqemCgTQGgl/Qwh2rE22+/3VcVldMBoMhkMpFIJJFImpubEUJOTk7Tp0+naltbW3/44Qdqc9GiRarf3zl8lC7VKJVK8RPAXl5es2bNYrFY/dYWFRVZWFjo5x9dDd9LUA+8C0QP6NOx9Dag+3etra27d+9+9uyZRCL54osvEEIcDufevXvUDnK5vLCw0NXVdfLkyTk5OXhYb4Q1NDR89tlnL730ksJjdU+ePJk4cWJqampjY+OWLVt8fX1lMlm/td3d3R9//DEe71WHDt0P1Z+5TeAFd/z4ca1qpy+PHj1avXp1RETEmDFjTExMvvzySyMjo7a2tsDAQGqhQoIg3N3deTze8uXL58+fr5HHn5Qu1SiXy99//31XV9ePPvpo/Pjx8fHxJSUl27Zt67eWzWYnJyd/9dVXCq811QOQQ4E+yM7OjomJ0Z52VNi8efN7773H4XCokkmTJvn4+JSVlYWGhpK0URQLCwtzc/NhDUaFmTNnUo//UvLy8vLz88PCwvAmi8Vas2ZNcnJye3t7v7UsFmvz5s34Zc76BHIo0C5isZjP5+/cuTMtLa2mpoYqFwqFiYmJR44cwfvs37+ferYyJycnMDBQIpEcOnRIKBQihGpraw8cOECSZG5ubkxMTHJyMnU+NaB2mpqa4uPjFV6/PhgikejSpUv4nc8UNpt95swZe3t7gUAQFxdHlfdeALevzqmpqUlKSpLL5SUlJbt27Tpx4oRcLqdqHz9+fPTo0djY2J9//nmQ8eOHLPDzLNiUKVPa29svX77cby1CyNvbWywW4930BuRQoEWKi4s9PT0NDQ0jIyNbW1snT55MXVn7+/sfOXLkyy+/RAiNGTMmNDR0x44dSUlJCKGxY8e6ubkZGxs7OjpyudyMjAw3N7eoqKiIiIgTJ07cuXNn48aN8+bNw29GUb8dhJBAIPjHP/6RmZk5VAf49ddfe3h40F8jio0dO1YgEJiamu7YseP7778fUOeoXr1waFcpvH//PkLI2tqaKsFvHv3jjz/6rcU8PT3pfyf0gaZvyKoFxpT0QL/HIpVKnZyc6DP5Q0JCjIyM7t69izeDgoJsbGyoWnd3dw8PD/w5MDCQy+VSVatWrSIIoqSkBG9+/vnnCKGUlJSBtiORSE6dOqXOc2hqjoE4ODjgC3Y6Nzc3/OHcuXMEQVDjS4cOHUpOTsZVqjunr9ULh3ypRnd3d7wkDUUkEiGEIiMj+63FkpKS2Gy2VCpV/aNhTAmAAbty5Up5eTl9Ab2FCxd2dXWlpaWp83X6wIuJiQmbzXZxccGbW7duZbPZeXl5DNpZsWJF79NGZrq6uioqKuinaQqWLl26bds2hfElTHXn9F69EL80lFqlMDIyMjIyklqlkPEh9J5z3dPTgxCysrLqtxbjcDgymWwwMWgbmB8KtEVpaSn66+/h3LlzEUJlZWXqfF3F4PXo0aNtbGwaGxsH2c4gtbS09PT0qH5lXmxsbHFxsVAoDA0NXbRoEVU+oM6hVi8c8qUauVxuT0+PVCo1NjbGJTjXT548ud9aDB9CbW0tvVCnwXko0Bbjxo1DCBUUFFAltra2hoaGak4vV5H7pFJpfX09XhZgMO0MkpWVlbm5ueo3rRIEcfLkSScnJ4FAgO/SYsw6h1qlcNCx/4ezszNCiD6c1dTUhP7MkqprsadPnyKE6AtU6jrIoUBb4LWi6VfcJSUl3d3d1LLNbDa7s7NT6XcJgsCXjUrduHGjs7PTz89vkO0MnouLS0NDA72EJMnnz5/TS8zMzAQCAYfDoZ9j9ts5Sg35KoXr1q0zNja+fv06VVJYWDht2jS8AI3qWqyuro4giIkTJzKOQdtADgXaYurUqWvWrMnLy8P38hBC+fn5Dg4O1IxCHx+fpqamY8eOtbe3Hzt2rLm5uaKiAp/XWFtb19fXV1RUPHjwAM9GlMlkVA46e/bsvHnzqByqfjuFhYVvvvlmbm7uUB3j3LlzFSaZ19XVPXr0SCGnOzo6ZmRk0Cc2qe4cvAA59ebtpqYmPGjD4/G4XG5UVFRCQkJZWVlmZmZ4ePjq1aupZsPDw5csWdLX5C3cJ/TYrKysNmzYkJCQgO8VdHZ2CoXCtLQ0HKrqWqyystLHx2fUqFED7jutpdERLXXBuLweUOdYOjo6IiMjXVxc0tPTjxw54uvrW11dTdWKxWI8qOLs7Hz+/PmlS5cuXLgwNTWVJMmcnBw2m21ubr5v3z6SJNevX89isTZs2LBly5bly5f7+/vTx9bVbwcPlOMq1dQcR25pabG0tLx//z7ezMrKeuuttxBCCxYsyM7OVth5165d1Li8is5RvYSj6lUK7e3tEUJ79uzpHWpfSzXK5fLo6Gg/P799+/bFxMQcP36c/i3VtVKp1MLC4urVq/12lA6Ny+tGlJBD9YD6x9La2nr9+vWamhqltQ0NDfhDR0eHwreoRLl+/XpDQ0OSJKurq9va2hi3Q5JkX19XoP7vfEpKCn2uj2pPnjxRKFHdOX2prKysqqrqXd7Z2cnn8y9evDig1kiSlMlk9fX1A63NzMwMCAhQp30dyqFwLQ+0DofDmTNnjo2NjdJaah0shetBDofTexISl8vFJ2WM2+nr64yFhYU1NzffunVLnZ3xHHU61Z3TF1tbW6ULGEql0oKCgiVLlgyoNYQQi8XCLyhUv7a8vDwjI+P06dMD/VlaDnIo0EPPnz+XyWT41dDaxsDAID09/eDBgzdv3tR0LEgkEu3evRuvEjusqqqq4uPjjx49qnpqly6CHAr0TUZGxo8//kiSZHR09O3btzUdjhLGxsaHDx9WcR43Yry9vUcmqRkZGaWnp+MZWnoG5tgDfePn5+fr64s/U5O9tdBwv0hGq6h4OkvXQQ4F+oa+rBwAww2u5QEAgDnIoQAAwBzkUAAAYE5n7ofW1tYO4VK4OoS+zISu06djUYAP7cX8LzocdOi/CkHS3t+itYKDg8+ePavpKAAAI0onspNu5FDwwiIIgs/nL1u2TNOBAKAc3A8FAADmIIcCAABzkEMBAIA5yKEAAMAc5FAAAGAOcigAADAHORQAAJiDHAoAAMxBDgUAAOYghwIAAHOQQwEAgDnIoQAAwBzkUAAAYA5yKAAAMAc5FAAAmIMcCgAAzEEOBQAA5iCHAgAAc5BDAQCAOcihAADAHORQAABgDnIoAAAwBzkUAACYgxwKAADMQQ4FAADmIIcCAABzkEMBAIA5yKEAAMAc5FAAAGAOcigAADAHORQAAJiDHAoAAMxBDgUAAObYmg4AgL9ITU1taWmhl1y8ePHhw4fU5ocffmhpaTnicQGgHEGSpKZjAOD/ffzxx4cOHTI2Nu5d1d3dPXbs2Pr6ejYb/vYDbQHX8kC7rFixAiEkVYbFYoWEhEACBVoFzkOBdiFJ8r/+67/q6uqU1v76668eHh4jHBIAKsB5KNAuBEGsXLnSyMiod9Urr7wye/bskQ8JABUghwKts2LFiq6uLoVCIyOjNWvWEAShkZAA6AtcywNt5ODgcP/+fYXCO3fuuLq6aiQeAPoC56FAG61atcrQ0JBeMmnSJEigQAtBDgXaaNWqVTKZjNo0NDT88MMPNRgPAH2Ba3mgpaZNm3bnzh38/5MgiAcPHkycOFHTQQGgCM5DgZYKDQ1lsVgIIYIgZsyYAQkUaCfIoUBLrVixQi6XI4RYLFZoaKimwwFAOcihQEtZW1t7enoSBCGXy4ODgzUdDgDKQQ4F2mv16tUkSc6fP9/KykrTsQCgnG6MKQUHB589e1bTUQAARpROZCedWb5h9uzZn376qaajGGk8Hm/Tpk368YQ4s2PZu3dveHi4iYnJMEU1VAoKChITE/l8vqYD0RO4PzUdhVp05jwUIZSVlaXpQEYaQRB8Pn/ZsmWaDmQIMDuWx48fv/LKK8MU0hDKzMzk8Xg68dukE3SoP+F+KNBqOpFAwYsMcigAADAHORQAAJiDHAoAAMxBDgUAAOZ0Zm4TeAFVVFTExcXFxsba2NhoOpYhJpPJRCKRRCJpbm5GCDk5OU2fPp2qbW1t/eGHH6jNRYsWjR07VgNRIlRfX19eXj5//nx6oVQqvXbt2u3bt728vGbNmoWXNVBdW1RUZGFhYWtrO5LBjww4DwXaq6io6NixY7///rumAxlibW1tCQkJrq6unp6e5eXlISEhb7/99h9//EHtwOFwHB0d4+Pj4+LirK2tzc3NRz7IxsbGqKgoOzu7Cxcu0MsbGhqcnZ2rq6vXrl0rEAgCAgJ6enr6rXVzc/vqq6/y8vJG+jBGAKkLgoKCgoKCNB2FBiCE+Hy+pqMYGsyOpbGxcTiCofv2228H3wieXa/OnrW1tf7+/q2trVQJfnmUs7Pzs2fP6Hvic/DBx8aMSCQqLi5GCH3yySdUYU9Pj5eX17vvvos3ZTKZra1tdHS0OrUymWzx4sV4PcN+qd+fGgfnoUCrjR8/fljbz87OjomJGdYfoWDz5s3vvfceh8OhSiZNmuTj41NWVhYaGkrSZpVbWFho5AwUmzlzppOTk0JhXl5efn5+WFgY3mSxWGvWrElOTm5vb++3lsVibd68OTw8fAQPYiRADgXaSy6X5+Tk3Lx5E2/W1NQkJSXJ5fKSkpJdu3adOHECL46H1dbWHjhwgCTJ3NzcmJiY5OTkjo4OhJBQKExMTDxy5AhCSCwW79+/n3ooMycnJzAwUCKRHDp0SCgUIoSampri4+OfPHkyTEckEokuXboUFBREL2Sz2WfOnLG3txcIBHFxcVS5gYGBgcFffkPFYjGfz9+5c2daWlpNTQ1VrrpnHj9+fPTo0djY2J9//nmQ8Z8/fx4hRH8py5QpU9rb2y9fvtxvLULI29tbLBbj3fQG5FCgpUpLS3k83n//938XFhYihIRC4YwZMzZt2rRv375vvvnmxo0boaGh//znP/HOGRkZbm5uUVFRERERJ06cuHPnzsaNG+fNm9fd3e3v73/kyJEvv/wSITRmzJjQ0NAdO3YkJSUhhMaOHevm5mZsbOzo6MjlchFCAoHgH//4R2Zm5jAd1Ndff+3h4TFmzBiF8rFjxwoEAlNT0x07dnz//fdKv1tcXOzp6WloaBgZGdna2jp58uTjx4/32zM5OTk7d+6cPn26s7NzYGBgZGTkYOLHLwq0tramSiwtLRFC+Gau6lrM09OT/ndCH2j6ZoJa4H6oHmBwLHfu3EEIHTx4EG9u3boVIfTTTz/hTXd39xkzZlA7r1q1iiCIkpISvPn5558jhFJSUkiSDAoKsrGxofZ0d3f38PDAnwMDA7lcLlUlkUhOnTqlcF9SHWrev3NwcMAX7HRubm74w7lz5wiC4HA49+7dI0ny0KFDycnJuEoqlTo5OX3xxRfUt0JCQoyMjO7evUv23TNisdjOzk4ikeDydevWIYQKCgrUPCipVIr+ej/U3d2dxWLR9xGJRAihyMjIfmuxpKQkNpstlUpV/2i4HwrAEDA2NqZvvvTSSwgh6ibd5MmTq6urqVoTExM2m+3i4oI3t27dymaz1RkIpr+z3sTEZMWKFb3PE4dEV1dXRUUF/TRNwdKlS7dt29bW1hYYGCgWi+lVV65cKS8vnz17NlWycOHCrq6utLQ01HfPnD59uqOj4+9//3tkZGRkZGRdXZ29vX3vl06rz9TUVKEED7vjBV5V12IcDkcmkw0mBm0D80OBrsKnPH3Vjh492sbGprGxsd926Dl0WLW0tPT09OB815fY2Nji4mKhUBgaGrpo0SKqvLS0FP01Sc2dOxchVFZW1rsRqmfu3r1rbW29f//+oToELpfb09MjlUqpP28410+ePLnfWgwfQm1tLb1Qp8F5KNBPUqm0vr7ezs6u3z1HLIdaWVmZm5srnGD2DubkyZNOTk4CgQDftMXGjRuHECooKKBKbG1tDQ0NVc+9Z7FY9+7d6+7uHnTs/+Hs7IwQog9nNTU1oT+zpOpa7OnTpwghfPdZP0AOBfrpxo0bnZ2dfn5+CCE2m93Z2al0N4Ig6FPEh5uLi0tDQwO9hCTJ58+f00vMzMwEAgGHw6GfY86aNQshRL81UVJS0t3drXpN66lTp7a3t6ekpFAlra2tBw4cYBz/unXrjI2Nr1+/TpUUFhZOmzbt9ddf77cWq6urIwhCn97SCjkUaC88poHPZRBCz549Qwh1dXXhzaamJjw0Qe0vk8movHP27Nl58+bhHOrj49PU1HTs2LH29vZjx441NzdXVFTgEyJra+v6+vqKiooHDx60t7cXFha++eabubm5w3REc+fOVXjsqq6u7tGjRwop3tHRMSMjgz6xaerUqWvWrMnLy6NuAefn5zs4OODpln31DI/H43K5UVFRCQkJZWVlmZmZ4eHhq1evppoNDw9fsmRJX3O5cBfRY7OystqwYUNCQgLu9s7OTqFQmJaWhkNVXYtVVlb6+PiMGjVqwH2ntTQ4nqU+GJfXAwM9lhs3buB5lFOmTPn+++9zc3PxhflHH31UV1d3+vRpMzMzhNDOnTu7u7tJkly/fj2LxdqwYcOWLVuWL1/u7+9PDa+LxWI8GuPs7Hz+/PmlS5cuXLgwNTWVJMmcnBw2m21ubr5v3z7yz5FxXDUgao4jt7S0WFpa3r9/H29mZWW99dZbCKEFCxZkZ2cr7Lxr1y5qXJ4kyY6OjsjISBcXl/T09CNHjvj6+lZXV5MkqbpnSktLqdNAFxeXoqIi+o+wt7dHCO3Zs6d3qJcvX+bxeAghS0vL1NTUuro6XC6Xy6Ojo/38/Pbt2xcTE3P8+HH6t1TXSqVSCwuLq1ev9ttROjQurxtRQg7VA8N9LOvXrzc0NCRJsrq6uq2trfcODQ0N+ENHRwe9vLW1lT6ZSel3+6X+73xKSgp9ro9qT548UShpbW29fv16TU3NgMKrrKysqqrqXd7Z2cnn8y9evDig1kiSlMlk9fX1A63NzMwMCAhQp30dyqFwLQ/0DZfLxSdiCiZMmIA/KFxIcjgc+mQmpd8dQmFhYc3Nzbdu3VJnZzxHnY7D4cyZM2egC1nZ2tq++uqrvculUmlBQcGSJUsG1BpCiMVivfzyywOqLS8vz8jIOH369EB/lpbT27lNEokkJycnPz+femBD48Ri8alTpx4+fDhp0qSQkJDRo0cPvs28vLxHjx5Rm4aGhhMmTHjllVccHBwG37huef78uUwmk0gkvWcpahUDA4P09PSNGzeGhYXNnDlTs8GIRKLdu3ez2cOeB6qqquLj448ePap6apcu0tvz0CtXrnzyySdnzpzRdCD/ce/evddff/1//ud/9u7dGxYW5ubmVl9fP/hm3dzcHjx4EBIS8sEHHzx79qyxsVEoFPJ4vIkTJ27fvn0IJ7VouYyMjB9//JEkyejo6Nu3b2s6nH4YGxsfPnxYxXnciPH29h6ZpGZkZJSeno5naOkbTd9MUAuz+6HLli2zs7MbjngYWLx4cXFxMUmSDQ0NH330EUJo7dq1/X4LqXEPEU/Hc3Z2pkrkcnlWVpaZmdmCBQsYPLY4TNQ5FsZaW1uf/un58+fD9FNU0KH7dzpBh/pTb89DkbJlbzSlsLBw5cqVbm5uCKEJEybExsYaGBj8+uuvQ9J47/t3BEEEBQUdPnz46tWrc+fOpaa86DEOh2P+J/27WgTaTN/uh7a0tJw9e7aysvKNN94gSZL+CMrjx4+vXLlSW1vr6en5zjvv4MKamprz589v3LixtLT04sWLr7766sqVK6nMS5IkfqsBi8VycnJasGCBiqZUeO2119zd3alNa2vrGTNmDPdNKB6Pd/z48cuXL4tEIi8vL1w40E7oqwf6agqAF41WnKYNlXv37i1atMjV1TU2NrapqUkgEFA5VOkKYKoXDUMIbd++/f79+5s2bfLw8Ni+fbuKplSzsLBQeKCwpqZm8eLFQ3bkfcCTIn/55Re8yaATlPZAX00B8CLS8L0E9ah5P3TWrFlbtmzBn+VyuZ2d3euvv06qXAFMxXJqcrl8/PjxOTk5eDMuLk51U+q7du2ajY2NWCzud0+kxj3EtrY29Nf7oRS82O3ixYtVR95XJyjtAdVNDfJYdJcO3b/TCTrUn/pzLZ+dnf3bb7/t2LEDbxIEMXPmTDxES60AhquoFcBmz57de9Gwf//731QLjo6OPB7v8OHDAQEBUVFRqptSM86enp4vvvjiu+++G4EpOBKJBCFkYmKCGHWC0h5Q3ZTqeOhLZugZfGjDt3jzi0aH/qvoTw7F78+aMmUKVUJdPqu/ApjCcmrJycnBwcGBgYHvvPNORkbGyy+/PPjFxKKiojZv3kx/Ee7wKSoqQn8uV8GsE3r3wICaUpCYmJiYmDjQb+kQ/HAkeKHoz/1QvOzCb7/9Ri/EaZTxCmDTpk0rKiqKiIjIzc11d3dvaWkZ5GJihw8fnj59+rvvvsvs6wNCkuQvv/zCYrHwQBCzyHv3AOOmEFzLA7Xh/tQJ+pND8ZuwsrOze1cxWwFMKpWeOHFizJgx+/fvv3TpUl1d3fnz5wezmNiFCxdIkgwNDaVKrl27ps4Xmfn0008LCwsTEhKmTp2KGHWC0h5g1hQAekvTf2/Uos6YUnd3t5OTk6mp6bVr10iSfPTokbW1tampaXFxsUQi4XK5RkZGX3/9dWlpKZ/PDw4OxpPPP/vsM4RQRUUFbsTX13fMmDFyuZwkyY6Ojjlz5uDPcrl8woQJFy5c6Ozs7Ksp1a5evTpr1qx//SkxMTE8PByvFaQCUuPcDd/EeO2116iShw8fRkREEASxceNGqlBF5H11gtIeUN3UII9Fd8F56NDSof7UjSjVHJd/+PAhfgDZzs4uJCTE39/fy8vr4MGDHR0dSlcAU71oWEdHh7W19fLly7Oysvbs2UO9Dkz1YmJKFRYW4oEdulGjRjU3N6v+Yr9557vvvps/fz5u0MPDY8GCBb6+vgEBAZ999tnNmzcVdh5oJ4jFYqU9wKwTIIcC9elQfxJk32+k0R7BwcEIoaysLHV2bmxsHD16tImJSe/lJ6qqqgiCULqAjVIymUwul9fX1/f+ykCbYoYgCD6fv2zZsiFsc0CRq+iBgTY1HMeiPTIzM3k8nk78NukEHepP/RmXp1BLnPWePGRrazugpvCjREpzhEJTERERfTUSHh4+bdq0Af3cYTWgTlDRAwNtCgC9pIc5VCPefvvtvqqonA4A0D+QQ4cGvtsAAIqI3uwAAAj7SURBVDMymUwkEkkkkubmZoSQk5MTfQZxa2vrDz/8QG0uWrRI9es8h099fX15eTl1Cx6TSqV4UQUvL69Zs2axWCyEUFFRkYWFxYtwpaI/c5sA0FFtbW0JCQmurq6enp7l5eUhISFvv/32H3/8Qe3A4XAcHR3j4+Pj4uKsra3Nzc1HPsjGxsaoqCg7O7sLFy7QyxsaGpydnaurq9euXSsQCAICAvB7Ut3c3L766iv6i0j1FeRQoCeOHz+uVe2o6dGjR6tXr46IiBgzZoyJicmXX35pZGTU1tYWGBhIvYmeIAh3d3cej7d8+fL58+crrF8zMiorK0NDQzs6OuiFcrn8/fffd3V1/eijj8aPHx8fH19SUrJt2zaEEJvNTk5O/uqrrxTeY6p/IIcCfZCdnR0TE6M97ahv8+bN7733HofDoUomTZrk4+NTVlYWGhpKH5i2sLDQyBkoNnPmTGpFBUpeXl5+fn5YWBjeZLFYa9asSU5Obm9vx5ubN2/Gb2/WY5BDgXYRi8V8Pn/nzp1paWl4iX5MKBQmJiYeOXIE77N///7ExEQ8izAnJycwMFAikRw6dEgoFCKEamtrDxw4QJJkbm5uTExMcnIydQI1oHaampri4+P7ev364IlEokuXLuFXQFPYbPaZM2fs7e0FAkFcXBxVrrCmeF8dhRCqqalJSkqSy+UlJSW7du06ceKEXC6nah8/fnz06NHY2Niff/55kPHj59bwI4LYlClT2tvbL1++jDe9vb3FYjHeTW9pdHaquuDdyHpAnWO5ffu2q6vruXPnGhoa9uzZY2pq+u2331K1Li4uNjY2+POzZ8/MzMw8PDxIkrx165anp+eECRNycnJu3bp18uTJsWPHvvTSSx9//PHatWvxSytnzpzZ1dU1oHZIkkxNTUUI9fs4Gcl0Tvj777/v7e2tUOjm5kaS5O+//25qakoQhFAoxOWHDh2iXjevoqO+++47PBVk7969H374oZ+fH0Jo9+7duDY7OzssLKyoqCgzM9PU1DQiIkL9aKVSKULok08+oUrwGrhSqZQqyc3NRQhRyySSJBkeHj59+nT1fwqmQ3PsdSNKyKF6oN9jkUqlTk5O9KehQkJCjIyM7t69izeDgoKo3EeSpLu7O859JEkGBgZyuVyqatWqVQRBlJSU4M3PP/8cIZSSkjLQdiQSyalTp9R5lpfZ77yDgwO+YKfDOZQkyXPnzhEEweFw7t27R9JyaL8d1deCsINc/bZ3DnV3d8erfFFEIhFCKDIykipJSkpis9n0PKsOHcqhcC0PtMWVK1fKy8vpi5AuXLiwq6srLS1Nna/TR1pMTEzYbLaLiwve3Lp1K5vNVnOMWKGdFStW0N8+P4S6uroqKiqsra372mHp0qXbtm1TGF9CanRU7wVhq6urEW3h18jIyMjISGrhV8aH0PsxFjwob2VlRZVwOByZTDaYn6LlYH4o0BalpaXor7+Wc+fORQiVlZWp83UVo9WjR4+2sbFpbGwcZDtDq6WlpaenR/Ub9GJjY4uLi4VCYWho6KJFi3DhQDuKWhB28KvfKuByuT09PVKp1NjYGJfgXD958mRqHxxnbW0tvVCfwHko0Bb45eP0BcxtbW0NDQ3VnE+uIvdJpdL6+nq8tMpg2hlaVlZW5ubm9BNMpcGcPHnSyclJIBAkJSXhQsYdNcjVb3tzdnZGCNFHtJqamtBfc+jTp08RQlwud6h+qLaBHAq0BV5vn37FXVJS0t3d7eHhgTfZbHZnZ6fS7xIEga8ilbpx40ZnZyceXRlMO0POxcWloaGBXkKS5PPnz+klZmZmAoGAw+FQp5n9dlRfhnzh13Xr1hkbG1+/fp0qKSwsnDZtGrWmF0Korq6OIIiJEycy/ilaDnIo0BZTp05ds2ZNXl4evnmHEMrPz3dwcKAmGPr4+DQ1NR07dqy9vf3YsWPNzc0VFRX4NMfa2rq+vr6iouLBgwd4cqJMJqOSztmzZ+fNm0flUPXbKSwsfPPNN/FY83CYO3euwhT0urq6R48eKaR4R0fHjIwMamJTvx2F3+nQ1dWFN5uamvCQDo/H43K5UVFRCQkJZWVlmZmZ4eHhq1evxruFh4cvWbJExUQu3EX02KysrDZs2JCQkIDvFXR2dgqFwrS0NPocrMrKSh8fn1GjRjHoH92g2SEtNcG4vB5Q51g6OjoiIyNdXFzS09OPHDni6+tbXV1N1YrFYjyQ4uzsfP78+aVLly5cuDA1NZUkyZycHDabbW5ujuchrV+/nsVibdiwYcuWLcuXL/f396ePravfDh4Zx1WqMRtHbmlpsbS0vH//Pt7Mysp66623EEILFizIzs5W2HnXrl3U3CYVHaV6VVwVC7/a29sjhPbs2aM01MuXL+O3RVlaWqamptbV1eFyuVweHR3t5+e3b9++mJiY48eP078llUotLCyuXr060J7RoXF53YgScqgeUP9YWltbr1+/XlNTo7S2oaEBf+jo6FD4FpUo169fb2hoSJJkdXV1W1sb43ZIkuzr6woY/86npKTQZwKp9uTJE/qm6o5SobKysqqqSqGws7OTz+dfvHhxoK2RJCmTyerr63uXZ2ZmBgQEMGhQh3IoXMsDrcPhcObMmWNjY6O0llpLUOHykMPh9J6ExOVy8VkY43b6+vpQCQsLa25uvnXrljo7W1pa0jdVd5QKtra2vdeElUqlBQUF+JGEgWKxWPidr3Tl5eUZGRmnT59m0KAOgRwK9NDz589lMplEItF0IP0zMDBIT08/ePDgzZs3NRuJSCTavXs3XnV78KqqquLj448ePap68pYegBwK9E1GRsaPP/5IkmR0dPTt27c1HU7/jI2NDx8+3Ps8boR5e3sPYb4zMjJKT0/H07D0G8yxB/rGz8/P19cXf6bmfmu/4X431whT8fyVnoEcCvQNfR05AIYbXMsDAABzkEMBAIA5yKEAAMCcztwPvXHjxov57sy9e/dmZWVpOoqhoU/HoqC2thbB612HDu5PnUCQtBe2aK1vvvmGvkoNAOBFoBN/cXUjhwIAgHaC+6EAAMAc5FAAAGAOcigAADAHORQAAJj7P8zxMLZTU+CFAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – another way to display the model's architecture\n", - "tf.keras.utils.plot_model(model, \"my_fashion_mnist_model.png\", show_shapes=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.layers" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'dense'" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "hidden1 = model.layers[1]\n", - "hidden1.name" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.get_layer('dense') is hidden1" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 0.02448617, -0.00877795, -0.02189048, ..., -0.02766046,\n", - " 0.03859074, -0.06889391],\n", - " [ 0.00476504, -0.03105379, -0.0586676 , ..., 0.00602964,\n", - " -0.02763776, -0.04165364],\n", - " [-0.06189284, -0.06901957, 0.07102345, ..., -0.04238207,\n", - " 0.07121518, -0.07331658],\n", - " ...,\n", - " [-0.03048757, 0.02155137, -0.05400612, ..., -0.00113463,\n", - " 0.00228987, 0.05581069],\n", - " [ 0.07061854, -0.06960931, 0.07038955, ..., -0.00384101,\n", - " 0.00034875, 0.02878492],\n", - " [-0.06022581, 0.01577859, -0.02585464, ..., -0.00527829,\n", - " 0.00272203, -0.06793761]], dtype=float32)" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weights, biases = hidden1.get_weights()\n", - "weights" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(784, 300)" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weights.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "biases" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(300,)" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "biases.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Compiling the model" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "model.compile(loss=\"sparse_categorical_crossentropy\",\n", - " optimizer=\"sgd\",\n", - " metrics=[\"accuracy\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is equivalent to:" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "# extra code – this cell is equivalent to the previous cell\n", - "model.compile(loss=tf.keras.losses.sparse_categorical_crossentropy,\n", - " optimizer=tf.keras.optimizers.SGD(),\n", - " metrics=[tf.keras.metrics.sparse_categorical_accuracy])" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],\n", - " [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],\n", - " [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – shows how to convert class ids to one-hot vectors\n", - "tf.keras.utils.to_categorical([0, 5, 1, 0], num_classes=10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note: it's important to set `num_classes` when the number of classes is greater than the maximum class id in the sample." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 5, 1, 0])" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# extra code – shows how to convert one-hot vectors to class ids\n", - "np.argmax(\n", - " [[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],\n", - " [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],\n", - " [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],\n", - " axis=1\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Training and evaluating the model" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.7220 - sparse_categorical_accuracy: 0.7649 - val_loss: 0.4959 - val_sparse_categorical_accuracy: 0.8332\n", - "Epoch 2/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.4825 - sparse_categorical_accuracy: 0.8332 - val_loss: 0.4567 - val_sparse_categorical_accuracy: 0.8384\n", - "Epoch 3/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.4369 - sparse_categorical_accuracy: 0.8480 - val_loss: 0.4228 - val_sparse_categorical_accuracy: 0.8542\n", - "Epoch 4/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.4122 - sparse_categorical_accuracy: 0.8558 - val_loss: 0.3966 - val_sparse_categorical_accuracy: 0.8624\n", - "Epoch 5/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3910 - sparse_categorical_accuracy: 0.8631 - val_loss: 0.3890 - val_sparse_categorical_accuracy: 0.8632\n", - "Epoch 6/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3751 - sparse_categorical_accuracy: 0.8686 - val_loss: 0.3912 - val_sparse_categorical_accuracy: 0.8600\n", - "Epoch 7/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3628 - sparse_categorical_accuracy: 0.8710 - val_loss: 0.3723 - val_sparse_categorical_accuracy: 0.8698\n", - "Epoch 8/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3514 - sparse_categorical_accuracy: 0.8755 - val_loss: 0.3767 - val_sparse_categorical_accuracy: 0.8612\n", - "Epoch 9/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3406 - sparse_categorical_accuracy: 0.8795 - val_loss: 0.3513 - val_sparse_categorical_accuracy: 0.8726\n", - "Epoch 10/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3306 - sparse_categorical_accuracy: 0.8812 - val_loss: 0.3539 - val_sparse_categorical_accuracy: 0.8738\n", - "Epoch 11/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3223 - sparse_categorical_accuracy: 0.8860 - val_loss: 0.3606 - val_sparse_categorical_accuracy: 0.8712\n", - "Epoch 12/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3146 - sparse_categorical_accuracy: 0.8869 - val_loss: 0.3472 - val_sparse_categorical_accuracy: 0.8742\n", - "Epoch 13/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3071 - sparse_categorical_accuracy: 0.8900 - val_loss: 0.3284 - val_sparse_categorical_accuracy: 0.8800\n", - "Epoch 14/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3001 - sparse_categorical_accuracy: 0.8922 - val_loss: 0.3413 - val_sparse_categorical_accuracy: 0.8780\n", - "Epoch 15/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2938 - sparse_categorical_accuracy: 0.8945 - val_loss: 0.3376 - val_sparse_categorical_accuracy: 0.8822\n", - "Epoch 16/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2867 - sparse_categorical_accuracy: 0.8971 - val_loss: 0.3272 - val_sparse_categorical_accuracy: 0.8796\n", - "Epoch 17/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2822 - sparse_categorical_accuracy: 0.8978 - val_loss: 0.3317 - val_sparse_categorical_accuracy: 0.8796\n", - "Epoch 18/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2757 - sparse_categorical_accuracy: 0.9001 - val_loss: 0.3240 - val_sparse_categorical_accuracy: 0.8824\n", - "Epoch 19/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2711 - sparse_categorical_accuracy: 0.9030 - val_loss: 0.3484 - val_sparse_categorical_accuracy: 0.8720\n", - "Epoch 20/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2662 - sparse_categorical_accuracy: 0.9045 - val_loss: 0.3209 - val_sparse_categorical_accuracy: 0.8800\n", - "Epoch 21/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2613 - sparse_categorical_accuracy: 0.9046 - val_loss: 0.3178 - val_sparse_categorical_accuracy: 0.8862\n", - "Epoch 22/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2563 - sparse_categorical_accuracy: 0.9069 - val_loss: 0.3122 - val_sparse_categorical_accuracy: 0.8848\n", - "Epoch 23/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2520 - sparse_categorical_accuracy: 0.9098 - val_loss: 0.3480 - val_sparse_categorical_accuracy: 0.8716\n", - "Epoch 24/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2469 - sparse_categorical_accuracy: 0.9113 - val_loss: 0.3202 - val_sparse_categorical_accuracy: 0.8878\n", - "Epoch 25/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2428 - sparse_categorical_accuracy: 0.9123 - val_loss: 0.3152 - val_sparse_categorical_accuracy: 0.8856\n", - "Epoch 26/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2393 - sparse_categorical_accuracy: 0.9143 - val_loss: 0.3102 - val_sparse_categorical_accuracy: 0.8852\n", - "Epoch 27/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2341 - sparse_categorical_accuracy: 0.9147 - val_loss: 0.3200 - val_sparse_categorical_accuracy: 0.8850\n", - "Epoch 28/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2313 - sparse_categorical_accuracy: 0.9169 - val_loss: 0.3100 - val_sparse_categorical_accuracy: 0.8900\n", - "Epoch 29/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2268 - sparse_categorical_accuracy: 0.9185 - val_loss: 0.3215 - val_sparse_categorical_accuracy: 0.8864\n", - "Epoch 30/30\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2235 - sparse_categorical_accuracy: 0.9200 - val_loss: 0.3056 - val_sparse_categorical_accuracy: 0.8894\n" - ] - } - ], - "source": [ - "history = model.fit(X_train, y_train, epochs=30,\n", - " validation_data=(X_valid, y_valid))" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'verbose': 1, 'epochs': 30, 'steps': 1719}" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "history.params" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]\n" - ] - } - ], - "source": [ - "print(history.epoch)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAFYCAYAAABNvsbFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABwKElEQVR4nO3dd3gUVdsG8Puk9xAISSBAqAm9iUgUBAEFBIwIWAABUREUxVdREQtir2D5AEUELFhRBCyIlFAUpPfQIZTQa3rb8/3xZLK7ySZZ0jYb7t91zbW7M7MzZ8+WefZUpbUGERERkTNxcXQCiIiIiK4WAxgiIiJyOgxgiIiIyOkwgCEiIiKnwwCGiIiInA4DGCIiInI6RQYwSqlZSqkzSqmdBWxXSqmPlVIHlFLblVJtSz+ZRERERGb2lMDMAdCzkO29ADTKWUYCmF7yZBEREREVrMgARmu9CsCFQnaJAfCVFusAVFFK1SitBBIRERHlVRptYMIBHLN4fDxnHREREVGZcCuFYygb62zOT6CUGgmpZoKXl9d1derUKYXTU2FMJhNcXNhWu6wxn8sP87p8MJ/LB/O5cPv27Tunta5ua1tpBDDHAdS2eFwLQIKtHbXWMwDMAICoqCi9d+/eUjg9FSY2NhZdunRxdDIqPeZz+WFelw/mc/lgPhdOKRVf0LbSCPsWAhia0xupA4DLWuuTpXBcIiIiIpuKLIFRSn0HoAuAYKXUcQATAbgDgNb6UwB/ALgdwAEAKQAeKKvEEhEREQF2BDBa6/uK2K4BPFZqKSIiIiIqAlsOERERkdNhAENEREROhwEMEREROR0GMEREROR0GMAQERGR02EAQ0RERE6HAQwRERE5HQYwRERE5HQYwBAREZHTYQBDRERETocBDBERETkdBjBERETkdBjAEBERkdNhAENEREROhwEMEREROR0GMEREROR0GMAQERFRxbN2LcKBsII2u5VnWoiIiKiCWrsWiI0FunQBoqNLfpzOnYGoKCAjw3qpWhWoUUPur1plXp+eLretWwNJSUC3bggDwgs6DQMYIiIiR1i7FnXmzgU8PUsnYOjSBWjfHsjMBLy8ZNuRI8Dly0BqKpCWJreBgcCNN8r22bOBs2eBffuAL78EsrMBNzdg5UpJ04gRwIULElwYAUaPHsBLL8nzGzUCkpPNAUhqKqAUoDXg4SGP85owAXjjDeDKFeDWW/Nvf/NNuc3IKPRlM4AhIqKKrbRLBiyPo7VctLOyrJegIMDVFbh4ETh/3nqfzZuBkyeBW24B/P2BPXusA4SMDGDcODn+3LlSymBsS00F3N2BZ54BunVDvdRU4IsvgHr1JOjQGggJkXQCwEMPAcuXy3qTSZaGDYEVK2R7x47AP/9Yv8727YH//pP7MTHA9u3W27t2BZYtk/uvvw4cOmS9PStLzh8dLYFNYqIEWZ6ekkYjOAKklEUp2ebhIXmzerWkMyMD6NNHFg8P89KkiTy3ShXZ13KbhwcQHAzExQEeHtCpqbqgt5MBDBERlQ17Ao/MTODcOakySEyU26QkoG1bICwM+OknYPBguai6ugJ33SUXuLFjgchIYM0aYPJk6yqIjAwpWWjcGPjuO/nHn5gogYjh+++Be+6R5xrBhqUTJ4CaNYGPPgImTcq/3dVVLrYxMXKsvJ56CnBxATZuBBYskIu+t7fcBgVJvmRkQAESnHh7S3pdXIBq1czHadxYXpeLiyxKSfWLISDAXOKhlAQnQ4aYt7/7rpSQeHubF8vjb9wor2PLFuC22yTvPDzkPQMkfwszc6b147VrgW7dzMeZMKHg997NTQIwW6KjgWXLcPrGGxMKOjUDGCIiRyvLEoZiHie3aqN9eyAhAUhJMZcgpKRIiUH9+lIN8O235vXGPg0bAk8/LRdfAGjWTC7ARoDy0UcSQKxdK//i8/rlF6BfP+CPPyTIASSI+fVXuWjfc48EMImJwIED1v/gAwLMx6lRQ46/e7dUhRgX+u3b5Rg33QS89ppcTC0X4xj9+gENGpjXL1ggQVF2tlykIyLkWEZwYgQJSsnzp0yRxdZ75eEBU3o6XDw9gc8/t/2e2QquLL30Um4wBA8PeS2Wx+nRo/DnBwXJbceOUipT0s9PTuBRKp/D6GicAE4VtFlpXWDpTJmKiorSe/fudci5ryWxsbHoYkTSVGaYz+WnQuW1vQFDQoJcPC1LGHx85OJiXMCNEoaYGGnk2LAh8Oyz8vyHHwaOHrVuCNmpk5QeANLo8ehRqe4w9O0LLFwo90ND5V84IBdwQKomPvpIivp9fc3rc6pKNADl7Q3Mnw/07Jn/Nb36qlw8jx0D6tQxr3d1lQt4t27Ab7/J8QAJdlq0APz8ZBk2TPLs9GkJSoz1xhIZKRfX1asln4wL9LJlxbso5i0ZcPRxco51aNYs1B8xomIErhWQUmqT1rqdrW0sgSEi51FajR7//RdYuhTo3l0aM54+LYtlCUNmpgQTAPDnn8C2bdbbz5+Xf+MZGfJvu1Ej2deoCgkPB3bulHWDBkmjSEtt2siFOTbWuoThzz+lkaVl0fr589IQ08NDgoPAQPM/Z0CqDf75B9iwwVzCYNlO4YEH5BxGqYBSQIcO5vtPPGG+v3YtsHo1lNby2jZskNIBHx9z6YKPj5TAAFLNcvKkeZu7u/k4S5aYL/TffGP7PQsNBR55pOD3qlOnilUyUMolDEfT01G/pEFHdHSlC1zswRKYSq5C/VutxCptPpfWP7vVq+Vi1rat1OmnpEiJQKtWcjHet08CCmO9sbzwglwgf/1V2iFs2watNZRSQN26ctzwcGD6dOCdd+TfvuWyd6/U90+caN6elWVOl7e3XIzmzgWmTrVOs7u7uRfE8OHSQ8N4jre3VCcYjTuVkhKT1q3NJQjh4cBzz8lz/v4buHRJ1vv7y21QkFQ/VLSSgZzj5FZtlLCEobKWDJSWivTbcfIkcO+9wA8/SPMjRzt5EqhZs2mS1rv9bW1nCQxRZVTYhcP4Z52aKhc6Hx/pIbFzp7mEITVVShzeekv+ubu7S8PA6tWt2zqMHi3H37QJGDPGeltKirQV8PeXkg5bXSJXrgRuvhlYvx547DHzeuNf/qhREsBoLSUQWpsbPfr4SHUFANSuLa/V1VUWFxdzI0tA0jh2rKxbt07yxsiH2FjpKnrLLdYNHb29zemZNk2CJC8vcylG3oDhyy8Lvkjb6ipqqGglA9HROPnDKtw50h8LPk9EWLTN0nv701SBApfSukCX5nHGjm2Nv/6qGOl57TVps/vqq/KRrwjpAXz8CtxBa+2QJTIyUlPZW7FihaOTUPn9+68++NBDWv/7b4mPo99803wck0nrjAzz/c2btV65UuvfftP6u++0njFD61WrZHtqqtajRmk9eLDWnTpp7eKiNaC1u7sc7/RprYODtfbxMW8DtH73XXn+vn3mdZaLUnLr6iq3bm5aBwRoHRqqdd26Ws+fL8/fvl3r227TOiZG63vv1fqBB7R+7DFZ/+abOkHV1DcjVp9UNbS+5x6tFy7UetkyrS9elOcnJ2t96pTWiYlaZ2cXnD/e3jrbxUVrb+/i53fOcbSra8mOo7VOWLhB31w3Xp9ctKHYx6iIRo/WWimTHj26ZMdJSND65pu1PnmydNJVUg89JB//hx+Wr1RxjR4txylp/pRWPtuTHpNJ68uXtT54UOt167RetEjr2bPlJ8D4euddXF21fvttradP1/rbb7X+/XetV6+Wr3V8vNaXLtn+uhaWnuxsra9ckc/Gvn1ab9pk/ln7/nutZ86UnxlzOq7TuoA4glVIlVxFKp50emlpUmVw7pz59vBhYNIk6PR0KFdX4PbbpYunMV5E48bAiy/K8x9+GDh+3HqsiRtvlKqNtWulzYPJJPsapSJDhpirLjw985dijB4tf5WysqSkwt8fSEnByVPAvfgeP6j7EPbG49LG4Zln8pcw3Hwz0K6dlJYsXWrdzmHvXuDBB80lDH/9Je0RrtbatXi00w58lv0gHnH9AtNWtyj2v/KTizaaSwb6FL9k4OSijbj3iRD88MmZEh3n0UeBzz6TJhwl+cdaWq72n29WljT9OXlS2hn3729dw2ZwdQXGj5ePgbu7dYefvI8t1330kTQTclT+pKXJV+u222y/LkBqGPN+LfIuxtdi6lRzm2RLbm7Ahx9K4Zxlb2fLW8v7RpOkvNzdpUe2UtbNlfIuxvo777R9HFdXYOBA+Yk6e1aWc+cKHhfOw0Oek5ZmbkLl7m6uiS2MUvKzExgoP2+2QgqlpKlTYqK5Lbn92kHrjcrmuRnAVG6VMoApbr16Wpp8e4wRJdetk8Ge7rlHjrNwoYyFYBmk+PsD8+bJ8zt3lgGpLIWFya+D8S3385Nvspub/CJER0vjRUC6YyYkWHfV7NhR2na89Za09zB+PaKjpWHmddfJrxQgPTq8vCRNxhIUJOfMkz+lGTDYe6HXWtqvXrggnWEuXJDOKwX9UP/1l1wYfH3Ni4+PLC4FzNL26KPAp59qjBqlSnRBLCzwyMyUj0lSUsG3I0faviB6edkeeLS8GK/r4Yelg5ARmCQkmO9brjtzxvYFx5LxUc3MLPpiVhQ3N/kKtW5tXUNXWrKzZRy1ZctkWbNGvvZKSceuy5flfXN3lxHuO3aUz5plzanlYtkr3LJtd0Xn7y8BQ/Xq8n+qevXC7/v6ymdnxgwJZjIy5Lsxdaq87suXC1+uXJHb06cl/43PlYuL9GK//noZm89oHmY0A8t7a3l//HgZYsZkuk5rvcnmLwIDmEquQgUwRQUeWsu35eJF83Lpkvx98vSUhpAzZ+LkvH9wr2mulC60qSG9L7y8pCTjiy/kF8sIUjIz5YqjlHQb/eKL3NOdRJiUUngNR9jyb4GPP5a/P1WqyN+y4GBpmGkEID//LEGNsS04GDhyBCcHPI570mbjR+M4xWw4ebLrYNybNgc/eA0r9DhaS3Bw6lT+ZcoU2xcZFxf5d20MVWE5ppatx8b9qVOBRYvkLevb1xycGAGK5f1Llwr+l3u1jH+9RmCzZ4/tC62LC9Crl/3H/fNPcyFXXlWrykeliNHLC1WjBtCypQx5YixNm8qPcmGutuQkLU1GiD98WJYnnrDvn3JoqKSxZk1ZjPuW6yZNkguHm1s2srJcrYK87Gz5SmVkmG8tF2NdQgLwySfy1UxPNzdHMoI7Nzdpv92+PXDDDXIbFVVw4FpQ/mgtA7YaAUtsrFxIAaB5c2mi1K2bFDSOH5//Al2cIHjUKOmU5e4ur3fYMBkrzhgo13LA3MLWTZwI/Pgj4OZmQlaWCwYONP+HMT7rtip28q5/5x0p5TLS8/DDEsRerbvuks/ByJGSTydPylA8V2v06NLJZyM906b57dY6qZmtfdiIl4p01Q2ysrLMw2+fPy+/JLt3SyPJjAz5NTMaXF66JINg1a8v5c3/+1/+4x05Ir01cka0fM00GWvQEa/qFzHt/Lvmq2bNmlJiYQx5bSxGqca998rVJScYevXnbnKctGcxLTZWfpW++kp+CWzp3z//umbN8Fqv67Bmfghe7bUW06KvvsWa1kBqq2hMuGUtVv8ZgtHtN2JIQjWcmmo7SDl92va/QE9P+cIbMaDJJBeEoCB533bsMI92bizGGGNFWbHCPHJ5UJBc7IOCZKlb13zfcr1x/733pC2v0ann7rtlfLPk5PydjiwfW94PCwN27ZKCMZNJ3s4qVaTt7qkCh7nKr3lzGbbk0iXzP8TwcIkVQ0IkWPLzM99a3s97+/zzwKxZ5tfVvr3Eu7t3S9vktDTzeevUsQ5qjMDG11e25208mZUlxfFGgJJ3OXky/3vv4yN5ZTJJgNC2rfyrbtZMvhohIbK+KGfPykW6TZvN2LLleqtzGW2kLXtoF+SvvySg8PKS/Bk+XGpT16+Xgs/16+W/wfTpsn9AgPxTNwKaG24w/95Y5s/48eaAZflyc17UqyfVJt26yU9NaKh1ek6fltdleYEujjNn8h8nOPjqj5ORIRf7Nm025eZzy5ZXfxyl5DglfV2WwUreDnlXo7Ty2UjPtGnJBZZpsgSmMivuIEnZ2VY9SR593BWf/R6OR3odw7TB/5gDk/Pn5a/3//4n7Sj++kuqY4y/QIYVK6T05cUXzX9/q1aVoCUoSL4tjRpJgLJsmayrUsV8JWzRAtlunvD11UhPz18V6uIiTTMyM+1bEhMLfumRkdb//G1VcRj3x42zHUi4uck8ZcZ4ZZZjl9m6f+VKwelxcZELT1hY0YsxovjV/AMymSSIMQIaI8A5dgz44AMp7k9Pl4tQ375Sz1+zZsHptaW0/9nZKhkoznFK6x+irdeVnS2Bxq5d1suePdZBozECfFFcXCRYq1fPvNSvb74fGiqduErjdRlKWnprz/tu9HQ3Apr//pNBbe2pqgoJkVpWo5TFGJbG2VSoUvIKqLCB7BjAlCKHd9HLzpby1NOn5e/KG29AZ2ZCeXpKENGokYTGRmWusYwbJ+WgcXHQrVrjVGZVxKEJeuAvZCF/aYQbMrEAMWjgfxb1qifBY+oUaewQFyd/p6pVkwClWjVZrr8e2LvX7iqSxET5Edu2zbzs2CFJFRqAglIaQUEK9epJQOHubt+Sni7/kPftNSEr2wVuribUb+CCtm3lYlJQKYCxXM1Xpqh6XqP5ysqVcoHLzJR/0926AW+/Lf/SjZ7C9qpoRcGlxXhdbdpsyP3HWpzXVVr5UxxZWTJvnhHQbNxoXe1hBCoxMTJorRGg1K5dcMGgobRfl6MurKmp0hTtv//ke7F0qbnhp6urtJ957z0pxFX5/884HQYwhSssgGE36lJUal3r+p3ULipbj445ofXx47JoLf3g3n1X66eeku6y3btr3aKF1pMmyfakJKvq0gSESddVhEn33LNntW7aVOt27XRmxy56b8cR+tcb3tRvD92lhw3T+obrMnSgZ4pVjaubytQKWdKjFtnaVWVZbXdx0ToiQutu3bQeOVKS9/PPWm/bJsmx+br6ncx9OYcOSU/cV17Rul8/revXt67xrVJF686dtX7iCa1nzdK6f385p5dXyfJ61KjiHcdkkh7L585pffSo9AhWSms3t2ytlNaDBkmX0aSkgnsDl2Z6ylK/flo/+qjWW7fKbb9+jk6RqGxDA1TE917ripPPFTV/SktFyeeKCsBGXUAcwTYwKF6Jh9ZSg3LokLRkt6xKmD5dFhcX6SVrOTBoVpZxXyMrLQvZ6dnINgHZbl44ftw4giRi+oKamL4AUDDh1tsAf3+FgIU14G/ygb9fPfgHKPhXcUXA0cbwXwD4+/vC/62l8K/pD//EBEwcexFrsjtijMtU3JnWAns+DEZc413YswfYv80izf/JP7cmTdwx+EF3NG4ss503bgy8/vg5fP5rdXgiFRnwwMN3nsUr08Nw4ABw8CCsbo02rpbCwqRASEotcl7X/DBMz/PPyRjItG1b6WLYqpUstWtb/8tatKh06leLW09rjNDu5SWFS7bqsYtT+lZa9calqbTqxKlwFfG9r0iYP1QQViGh4C6VaWlAfLwEKXmXw4dttaWQqg0XpVG1qkbDWmnw1qlwVdlwDQuRnrXbt8D13Gm4pSXCVWfBFdlwrV4Nbn17IT0d+O+neBzJqIksuMMVWajhdRH1otyR7lkFiYlA4hUTEpNckJhYcG+KwkRGmoMT47ZxY+n5a8tddwE11CmMDP8dM070xkkdVmix9KVL+QOb3bulSsiye2lwMNC7t9QitWoljSvz9gZ2JiwGLj/M6/LBfC4fzOfCcTLHAnh7W/cUMEpOlJKGiidOWO/v5SUN5+rXB7pEp6N+wFnUdz+Oeh4n8OGmjpi9KBgeyECG9sDA859h2vmcodFr1wa2HpX743+QA9epY17q1weiZPPoZE/M+NUFXjklHn17ZWPaL9UtUiH9DI22GomJ5uXKFbk9elTGPtu6VUpZPDxkJPNp06wnjbWHBCthAB6EPX/Cq1SRjkDXXWe93mhPYXT1GziwYgz8RUREzumaC2C0ltKTFStk/Ig//7QOYry9pStb4wYZqB94AfU8TqC+Poj6z/RHWLgr1OuvyRT2ly6Zn+TqigtROzEKP2MkPsMMjMTJkNbAx9+bgxTD228Xmr7TKgyj7rIu8bBFKXNvGFtVFjt3yvQ0Hh7SYyNvMsobi4GJiKg0XRMBzLFjErAsXy63R3MKQ0JDgfAqiTh0yhceyEAm3DE8aj2m7esN/HfR+iDjjgKqttS3DB4sg1/Uqye3devil717ge7jgIwMTPV4Bvh1GRB9z1Wn9WpLPApiBAy2xnJwBLanICKi0uTUAUxBjW9PnbIOWA4elPVVqwK33JiGZ2/ciFuSFqLJth/Q/9hk9MApjMQMzMAjOHmxgxzUIjhBvXrSYhOQuo+BA/Mn5sYbS2cm2FJiBAyxscl46CGHJoWIiKjUOXUAY4zO+Pzz0iDUCFj27JHtgYEanVtewphmW3HLgGpoMbglXNZvBaI7SfFLp074pf8aafiSlYWpHuOA75YB0cVsnFHBpo4nIiKqrBwWwBw75oNTpwrvcmoyyUCvZ87I8NbG7dix1nOuzJkjCwD06pGNEbWX45ZL89Fm59dwXZ0kG9q9Cri0lNal+/cDDRqY++fefXeFKTkhIiKiojksgElNdcWwYTJBb94Axbg15j2xxcMDyMzU0FrBXWWha4N4fL68AWrXcgFqDpXI6KEHZIz5jh1loBNAusE0bGh9MJacEBERORWHViEtWSILIFPeVK8u81tERkrMYTzOe1utGvB4/xOYsTAMnjndluun7ULt2g0AKOlmZM9sY0REROSUHBrAeHkBt98uE8TVrn0VTzSZcDo2DqPwq7nxbUA36wMTERFRpeWwAEYpGYY9NPQqgxcAOHkSv3gOAtwvASaTNL6duawskklEREQVkMMCmDp1ktG7dzEHNAsPB/btkzHqV65k41siIqJrjMMCGE9P09UPaDZzpsyz/vHHMmb9jTfKQkRERNcUF0cnwG4LFshsiwcPFm8WQyIiIqo07ApglFI9lVJ7lVIHlFLjbWwPVEotUkptU0rtUko9UKqpXL1aRsdt1w6YN0+6QhMREdE1q8gARinlCmAqgF4AmgK4TynVNM9ujwHYrbVuBaALgA+UUh6lksIdO4A77gAiIoDffwf8/ErlsEREROS87CmBaQ/ggNb6kNY6A8D3AGLy7KMB+CulFAA/ABcAZKE0HD8OBAcDf/0lt0RERHTNs6cRbziAYxaPjwO4Ic8+/wdgIYAEAP4A7tFal6yhSnY24OoK9OolvY1YbUREREQ57AlglI11Os/jHgC2AugKoAGAv5VSq7XWV6wOpNRIACMBoHr16oiNjbV5QtfUVLR85hmcvP12nLr9djuSSAVJSkoqMJ+p9DCfyw/zunwwn8sH87n47AlgjgOwHGquFqSkxdIDAN7WWmsAB5RShwE0BrDeciet9QwAMwAgKipKd+nSJf/ZMjKAvn2BPXsQ+OabaGxrH7JbbGwsbOYzlSrmc/lhXpcP5nP5YD4Xnz1tYDYAaKSUqpfTMPdeSHWRpaMAugGAUioUQBSAQ1edGpMJGDFCJkiaMUMa7xIRERHlUWQJjNY6Syk1BsBfAFwBzNJa71JKjcrZ/imA1wDMUUrtgFQ5Pae1PndVKdEaGDcOmDsXePNNCWSIiIiIbLBrJF6t9R8A/siz7lOL+wkAbitxaoKDgSeeAMbnG2qGiIiIKJdDZ6POlZQk47tMmCAlMcpWu2EiIiIi4fipBH7/HahfH9i6VR4zeCEiIqIiODaAWbsWGDgQqFMHaNDAoUkhIiIi5+GwAMbzzBmgRw8gPBz44w/A399RSSEiIiIn47A2MB6XLsmd2bOBkBBHJYOIiIickGOrkFxdgX37HJoEIiIicj6ODWA8PACOQEhERERXyWEBTHpwMLBsGRAd7agkEBERkZNyWACTUbUqgxciIiIqFsePA0NERER0lRjAEBERkdNhAENEREROhwEMEREROR0GMEREROR0GMAQERGR02EAQ0RERE6HAQwRERE5HYcFMK5paYDWjjo9EREROTGHBTA+R48CBw866vRERETkxBxbhbR8uUNPT0RERM7JYQGMdnNjAENERETF4rAAJsvbWwIYtoMhIiKiq+SwACbb1xc4exbYudNRSSAiIiIn5bgSGF9fYMUKIDLSUUkgIiIiJ+XmqBNrV1egSxdHnZ6IiIicmGN7Ie3aBbz4IpCV5dBkEBERkXNxbACzcyfwxhvA5s0OTQYRERE5F8cGMEYVErtTExER0VVwbAATGgo0b84AhoiIiK6K4ydz7NoVWLMGSE93dEqIiIjISTg+gOnWDfDwAPbvd3RKiIiIyEk4rBt1rl69gHPnADfHJ4WIiIicg+OjBnd3R6eAiIiInIzjq5AAYOFCoFUrICnJ0SkhIiIiJ1AxAhhvb2D7dmnMS0RERFSEihHA3HSTVCWxOzURERHZoWIEMD4+QHQ0AxgiIiKyS8UIYAAZD2bzZuDCBUenhIiIiCo4x/dCMtx+u4wFk5gIVK3q6NQQERFRBVZxApjrrwe++cbRqSAiIiInUHGqkABAayA+3tGpICIiogquYgUwU6cCdesCJ086OiVERERUgVWsACY6Wm5XrHBsOoiIiKhCq1gBTOvWQJUq7E5NREREhapYAYyrK9ClCwMYIiIiKlTFCmAAoFs34PBhWYiIiIhsqDjdqA0xMUBICBAc7OiUEBERUQVV8QKY2rVlISIiIipAxatCAoBDh6RLtdaOTgkRERFVQBUzgFmxAhgzBoiLc3RKiIiIqAKyK4BRSvVUSu1VSh1QSo0vYJ8uSqmtSqldSqmVJUpV165yy95IREREZEORAYxSyhXAVAC9ADQFcJ9SqmmefaoAmAbgDq11MwADS5SqevVkRF4GMERERGSDPSUw7QEc0Fof0lpnAPgeQEyefQYB+EVrfRQAtNZnSpyyrl2lKik7u8SHIiIiosrFnl5I4QCOWTw+DuCGPPtEAnBXSsUC8Afwkdb6q7wHUkqNBDASAKpXr47Y2NgCTxpSowaaXLmCDd98g5SICDuSSbYkJSUVms9UOpjP5Yd5XT6Yz+WD+Vx89gQwysa6vN2D3ABcB6AbAG8Aa5VS67TW+6yepPUMADMAICoqSnfp0qXgs7ZvDzz3HNr7+9uRRCpIbGwsCs1nKhXM5/LDvC4fzOfywXwuPnsCmOMALAdmqQUgwcY+57TWyQCSlVKrALQCsA/F5eNT7KcSERFR5WZPG5gNABoppeoppTwA3AtgYZ59FgDopJRyU0r5QKqYSt4HevFioEcPICOjxIciIiKiyqPIAEZrnQVgDIC/IEHJj1rrXUqpUUqpUTn7xAFYDGA7gPUAZmqtd5Y4dampwJIlwIYNJT4UERERVR52TSWgtf4DwB951n2a5/F7AN4rvaQB6NwZUEq6U990U6kemoiIiJxXxRyJ11C1KtCmDceDISIiIisVO4ABgG7dgH//BVJSHJ0SIiIiqiAqfgDTo4dUJZ096+iUEBERUQVhVxsYh+rWTRYiIiKiHBW/BMaQmOjoFBAREVEF4RwBzLRpQLVqwOXLjk4JERERVQDOEcA0awZkZgKrVjk6JURERFQBOEcA06ED4OXF7tREREQEwFkCGE9PoGNHYNkyR6eEiIiIKgDnCGAA6Ym0Ywdw5oyjU0JEREQOVvG7URv69QP8/QEPD0enhIiIiBzMeQKYqChZiIiI6JrnPFVIAHD6NPDzz45OBRERETmYcwUw338PDBgAHD3q6JQQERGRAzlXANO1q9yuWOHYdBAREZFDOVcA06wZUL06x4MhIiK6xjlXAOPiAtxyi4wHo7WjU0NEREQO4lwBDCDVSCdOAIcOOTolRERE5CDOF8DcfTcQHw80aODolBAREZGDOM84MIagIFmIiIjomuV8JTCANOIdNgwwmRydEiIiInIA5wxgjh8HvvpK5kYiIiKia45zBjC33CK37E5NRER0TXJYAJOZWYJT164NNGrEAIaIiOga5bAA5sgRX0yZAmRlFfMA3boBK1eW4ABERETkrBwWwPj4ZOGpp4AbbgA2by7GAbp3l67UJ0+WetqIiIioYnNYABMenooffpAx6a6/Hnj6aSAp6SoO0L8/sGWLVCcRERHRNcWhjXjvvhvYswd4+GFg8mSgeXPgjz+u8iDZ2WWSNiIiIqq4HN4LqUoV4NNPgdWrAR8foHdv4J57gFOn7HjyrFmAvz/w+usMZIiIiK4hDg9gDB07So3Qq68Cv/4KNGkCzJhRxFh1AwcCMTHASy8Bt93G9jBERETXiAoTwACAp6fEIjt2AK1bA488AnTuDMTFFfAEf3/g22+BL74A1q4FWrUCFi8uzyQTERGRA1SoAMYQGSlDvMyaBezeLXHJxIlAWpqNnZUCRowANm4EwsKAAwfKPb1ERERUvipkAANIXPLAA1L6cvfdUrXUqhUQG1vAE5o2BdavBx57TB4vWQIcOlReySUiIqJyVGEDGENICPDNN8BffwGZmTKLwIMPAhcu2NjZy0sin8xMYORIoE0b4Mcfyz3NREREVLYqfABjuO02YOdO4LnngC+/lEa+334LaG1jZ3d3Kapp2lS6NI0cCaSklHeSiYiIqIw4TQADSDfrt98GNm0C6tYFBg8GevQoYFLqunWBVauA8eOBmTNltLwrV8o5xURERFQWnCqAMbRqBfz7L/Dxx8CGDfJ4xAjg+PE8O7q7A2+9JfVPffoAAQEOSS8RERGVLqcMYADA1RV4/HHg4EHgqaeAuXOl99ILLwCXL+fZ+dZbgXfekfvbtwP3329jJyIiInIWThvAGKpWBd5/H9i7F+jXD3jzTaBhQ+CTT4CMDBtP2LgR+O47GWjmv//KO7lERERUCpw+gDHUrSulMBs3Ai1aAE88IW14f/opT0PfESNk3gKtZfjf994rYrhfIiIiqmgqTQBjuO46YNkymRTS21vGkImOBtassdgpOlrmLYiJAZ59VkbyJSIiIqdR6QIYQIaC6dUL2LpVRvM9dgzo1Am4806Z/RoAEBQkxTPffw8MGybrli612IGIiIgqqkoZwBhcXWU03/37gTfekOkJmjcHRo/Ome1aKRknxsNDqpRGj5YBZrp0kfoom3MXEBERkaNV6gDG4OMDTJggPZYefVSGhWnYEJg0CUhKytlJKalnevttKbIZMgQID5ciHCIiIqpQrokAxlC9uowdExcnVUyvvCKBzGefAVlZAEJDZajf/fulOql7d6BGDXlyfLzMaZCa6siXQERERLjGAhhDw4bS/GXtWqBRI2DUKOmx9H//lzNYr4sL0K0b8MMPEukA0lbm/vulVObJJ2WabCIiInKIazKAMXToILMNzJ8vbXoff1zikzFjbLTlfeYZaUTTowcwbRrQrBnQtSu7YBMRETnANR3AANL05c47ZUy7//4D7roL+Pxzact7663AggVAdjakVOaWW2QQvBMnZPS866+X9QAwZYrMNklERERl7poPYCy1by8zXR8/LiP67t0rwU39+jITwblzOTtWrw48/bR5eoKTJ4Hnn5cR9KKjpaHNyZOOehlERESVnl0BjFKqp1Jqr1LqgFJqfCH7Xa+UylZKDSi9JJa/6tUlHjl0CPjlF2kzM348UKuWdMvetCnPE2rUkKjngw+AlBRg7Fipi1q40CHpJyIiquyKDGCUUq4ApgLoBaApgPuUUk0L2O8dAH+VdiIdxc1N5ldatkxqh0aMkMa/7dpJQcvcuUB6es7OwcEyq+S2bdLA9+WXgZtukm2ffSZtZ2bPBi5edNjrISIiqizsKYFpD+CA1vqQ1joDwPcAYmzs9ziAnwGcKcX0VRjNmknb3RMngI8+Ai5ckKFi6tQBXnpJCmByNWkifbSrVZPHbm7AgQMSAYWGAn37At9+64iXQUREVCkobTXToY0dpDqop9b6oZzH9wO4QWs9xmKfcADfAugK4AsAv2mt59k41kgAIwGgevXq1/3444+l9TrKnckEbNoUhF9/DcfatdWgFNCp01n07HkKEREpqF49HW5uFnmrNfz37UPI8uWoHhuL9JAQbPnkEwBA4LZtSIyKgsnLq9TTmZSUBD8/v1I/LlljPpcf5nX5YD6XD+Zz4W655ZZNWut2trbZE8AMBNAjTwDTXmv9uMU+PwH4QGu9Tik1BwUEMJaioqL03r17r+6VVFCHDwPTp8sIv0YNkYuLNIOJiJCZsiMiLO7XNqGOzzl41QmRJ4SGynQGffsC994L9OwJeHqWStpiY2PRpUuXUjkWFYz5XH6Y1+WD+Vw+mM+FU0oVGMC42fH84wBqWzyuBSAhzz7tAHyvlAKAYAC3K6WytNa/Xn1ynU+9esC770qt0bp1wJEjssTHy7J6tfS+zs42nuECIARhYUDdiCqI6HgMdS9sQcSiZYj4/jPU9X0DIdMnIb1rL6SmaKSmKaSmIt+SkpJ/Xd7tly41weHDQO/eQEiIo3KIiIiodNkTwGwA0EgpVQ/ACQD3AhhkuYPWup5x36IE5tfSS6Zz8PGRse1sycqS9jPx8ebgRm4VNh4JxS9HeyIzs6fsnAxgqPFMZff5PTwAb2/r5cyZKhgxQsa7iY4GYmKAO+4AoqJkHRERkTMqMoDRWmcppcZAehe5Apiltd6llBqVs/3TMk5jpeDmZq5Guvnm/NtNJpkh2whuzp4FvLwA74M74b10EbzjNsM79Ty8kQrvBuHw/n42fEL94e1pgrevC7y8ZPbtvFasWIsqVbpg4UIZlO+552Rp1EgCmZgYCWzc7AlliYiIKgi7Llta6z8A/JFnnc3ARWs9vOTJuva4uAA1a8py442WW5rLkpUlA9CsWCF9utv5y+YhQ2XEva5dZenYEfD1zX22UkCbNrJMnCgTbS9aJEPUfPyxDF1TrZpUMd1xh/T2ZnsyIiKq6Pi/21m4uQE33CCLpXbtgKNHZSqDd98F3N1l0skvvpDt5oY3AIDatYFHH5XlyhXgr78kmFm0CPjqK6mG6tZNgpm+faUh8tUymYBLl6Sr+YULwPnz5vsmE9C/vwwKSEREVFwMYJzdk0/KkpwM/POPTDgZFibbsrJw44ABMpTwddeZl+bNAQ8PBAQAAwfKkpUlT1+wQJbRo2Vp106Cmc6dpWGwZTBi3M+77uJFoLDObU8/LcHR6NFA9+7m6aSIiIjsxQCmsvD1BW67TRZDcjJO9eiBOmfOAN9/LyMCA8CkSTJS8OXL0j3quuvg1rIlOnf2ROfOUq0UF4fcdjMTJ9oOSAIDgapVpQqqalXpjWXct1xvue7yZZks84svgF9/ldjqkUdkigZj3D8iIqKiMICpzAIDcWjUKNTp0kUikEOHgM2bpQQGkDY1o0fLfTc3WX/ddVBPPYWmTZuiaVOZA+rUKWDLFglYjGAkKKh4DX+Dg4G335YY6uefgU8/BZ55BnjxReDuuyU5HTqwhxQRERWOhffXCqWABg2kvqhJE1l3yy0S1Pz0k0QRISFSLJKaKtt/+AFo1Qphzz+AXgf/Dzea1iCqxhVUr17yXkuensCgQcCqVcCOHcBDD8mpb7xRGhx/+imQmFiycxARUeXFEphrmVJS71OvHjAgZwJxy7qigADpFvX778CcOeb1p07J6MH//AOcOQO0bi1DDBez2KR5c+D//k9KZr79VkY1Hj1aYqr77wdGjQJatizuiyw9SUkyls/x49a3J04Ahw+3xk03SRvrDh2kmzrb9hARlR0GMGTNMgjp1UsWrYGEBPNM28aQvtOmmSelDAiQKOP664HJk2WdyXRVV3E/P2DkSODhh4H//pNSmNmzJaC58UYJagYMkPFxSpPW0vg4b2CS9/by5fzPDQqSHlUmk8I330haAaBKFaB9ewlojNvq1Us33URE1zIGMFQ0paQ/dXg4cPvt5vUzZgBPPCGBjbGsX2/eftttcuVv1cq8tGkD1KhR5Ok6dJBl8mQp/Pn0UymNefJJmdT7/vuly3dyskyZYHlr77qUFOlKnpAApKdbp8HFRTpz1aoloxZ36yYvv1Yt823NmjL6MgDExm5Bp05dsGePBF/G8sYbEscBUtBl9IS/4QbJijKYv5OI6JrAAIaKz9fX9tg0hp49gTVr5Er+ww/mdX/+KfcnTpQooUULoFkzKc7Io2pV4KmnJHBZvlxKOCZPBt57z74kurtLkOHra741lpAQKfWpWTN/cBIWdvXtfFxd5WU0ayZBFiCB0qZN5oBmzRrpEGakrVUr66CmUSM2YL7WaA3s2SO1sN7ejk5NxZSaKn9YbI02TtcuBjBUdsaNkwWQ+pft281VShkZwCefmKfvBiR6ePpp4H//k2KLrVulwbG3N1xcZMyY7t2lxOTvvyUAMIKRvEGKcevuXu6v2oqvr0wdYTl9REKCdSnNnDnA1KmyrVo1ifH69pXbwECHJJvKwdmzMnjkzJkSwAQHSzXpo4+ah3K61iUlSdu499+XgtuxY4EHHwT8/R2dMqoIGMBQ+QgMBDp1Mj/28JCGJ8eOydQIO3bIrfHLHR8vg+65uMhgMc2bS0nNwIGo2awZhg1zzMsoDTVrAv36yQLIYMm7d0sws3o18McfwNy5UgLUpYt5VOS6dcs3nZmZwOHD0mMsMFCaObFhcsmYTMCyZRK0zJ8veRwdDXz0kax//XXgnXekh97//lcxGq87gskk34Hx4yXgv/tuuf3f/6TgduRIqb2uXdvRKSVHYgBDjqMUUKeOLJZtawApivjxR3Ngs2OH/OIbdTRr10r3pCZNgKZNzbeRkY4vdrlKrq4Sm7VoId3Js7OBdetkIMGFC+WH+oknZPsdd8jSrl3pBhMmE3DggDRh2rBBli1bgLQ06/38/SWYsVyqVMm/Lu9StaoEbtdqAJSQIA3Sv/hCgsKqVaWk5aGHzMMyPfEEsH+/BDOzZ0vJXNeuUoXaq9e1k3f//SclLf/9J30C5s2TIA+Qz+fkyTJzyocfSmDz1FPyX4euPQxgqGKynOfAkJJi/hV3cZG/X+vXS6BjdP/+5x/psrR6tbS1MYKbxo2tJrmsyFxdgZtukuWdd+SiZkzA+fbb0jA4LAzo00eCmW7dzI2J7aG19KwyApUNG4CNG829rHx8gLZtpTqjVSsJqC5fzr9cuiS96PfvN6/LyCj4vD4+8lYYMaix1KlTOS/OWVnyEfz8cxmJwGSSoZfeeENK32w14G7USIYUePVVed4nn8j7HBUl7cCGDr2699qZJCRIicvXX8vne84caaxv+dlo317akMXHS6A3c6Z0hOzcWQKZPn0q52eJbFO6sElrylBUVJTeu3evQ859LYmNjUWXLl0cnYyylZIiM3LHxUldi7+//LqNGydXEUNEhFypg4OlRCcxUa6oNhoPX63yyucLF+SiuHCh3CYmSsPPW2+Vl96nT/72E+fOWQcrGzYAp0/LNjc3CVKuv968NGlS/IEK09LMwY1lsHP+vLTz2LVLloQE83N8fSXOzBvY1K5tu0Hz1eZ1aqp5ni5juXxZGnHXrStLabapOHwYmDVLloQEGTJp+HBpu9Go0dUdKzNTxpmcMkU+ulWrytQbY8ZIiVZZKq/PdFqalKq8+aa83qeeAiZMsO89uXxZgpiPPpLa6MhIqWZypkDvmviNLgGl1CatdTub2xjAVG7X9JcjM1PqRXbvluBm/375W6eUdBOaPVv2CwoC6teXUppvvpF1e/dKO53ate26mjsinzMygJUrzbOJx8fL+htukLYzhw9LsHL4sKxXSl6iZbDSqpVjunJfvChvixHQGMupU+Z9/P3zBzZRUcDq1f+hYcMbrAISy4lF8y7GwNKFqVrVHMzYWoq6mGZkyLxhn38OLF0q63r2lDGN+vQpea2m1lK4OGWK1KS6uQH33CMX67ZtS3bsgpT1Z1preS1PPw0cOSKlUu+/L1/Fq5WZKVOTfPCBBHrVqkkJ4mOPVfwG0df0b7QdnDKAuXLlCs6cOYPMzMxyTFXlk5aWBi8ONpJfVpb86mVmyv2sLPlFDQ2V7adPmxuAuLnJ4ukpDT4AeZ6ra255dUXI54wMuVinpMh9V1dJsoeH+baiF6+bTJJ2463JzJTHxlg6hXFxMb8lxmL5WGt3ZGSEIDAwAIGBUv11+LBcPPMueYOeggKcqlXlIvzll1LSVbu2xMYjRkjVWFk4dAj4+GNpT5OUJNUn//ufBEql2c24LC+s27dLldiKFdIG6MMPpSq0pLSWoQo++EACe3d3YPBgKdUx2hpVNAxgCud0AcyVK1dw+vRphIeHw9vbG4oDYxRbYmIi/Nnn8OolJ8tVLD3dvHh4yHxSgDQsTkvLjRIyXV3hHhRkHqU4LU1+PR00cMVVDoJc4WVmSpampQEZGanw8/POjStdXWUp7GdCa43U1FScOHECoaGhCAgIKGRf6eJsK7AxAh7Lxs1ublJ99/DDMnZjeb3lRvXJxx8DR4/KR3PsWGnQ6u9vvXh4XP3xy+LCeu4c8NJLMgZmlSrS6+rhh0s+t5ot+/dLYDR7tnyVb7tNSnu6di2b8xVXZQpgMjKkqnjbNvncde5c8hp6pwtgDhw4gJo1a8LHWSoxKzAGMGXk0iXjagqkpyM7NRWugYHSzkZr6cJjMskvpVEEUqWKlG1rLc/lyFzFUpLPdEpKChISEtCwYcNin19rKb05ckTauERHO7aaIitLSoEmT5bea7Z4eMgFxc8vf3BT0JKQsB233toSoaESlxcnCDJkZsrMI6+8Iu22HntMukNXrVr8Y9rr/Hngs8+kQbRRRRkUJFN7GEtwsPXjvEtZFq5eTQBj1Irv2WNe4uKkxtvb27pTpnE/LKxsBse8eFECla1bZdm2TaqBLStNlJIqzltukcCxY8erb2/mdAFMXFwcGjduzJKXUsAApnxY5bPW8u1OT88NcJCRYe5LnJUl33jAHOB4eMivaJUqEvhYBjj8HlgpyWdaa409e/agiTEjeyWzc6fM3pGYmH9JSrK93nLJzi742EFBUsOadwkLy7/O09P8vMWLpYprzx4pBZkyRS6s5S09XQK9vXulhM1Yzp0z31q2+bfk52c7sAkONgc/xn3ja2zv19ZWAHP5snWAYtw/eNA6jbVqSbu2qCipOo6Lk8Vy3rbAQNuBTUSEfaW0JpOUPBpBinF79Kh5n7AwaU/XurV51pjz56WKcPlyGfUiI0N+7q6/XoKZrl0l+C9q9GmnDGAq6w9MeWMAUz6uKp+NfsmWwU16uvwKBAfLL9Hu3bKvi4u5AUtYmPx9ycoyBzju7tdcgFPSzzR/X2wzCgYTE2WOsCVLNiM8vC1On0bucuoUrB5fuWL7WIGBEsh4eUl7l4YNJXDp3bvifly1loJVy+Am72IEO8aSd5wkg5ubFLbmDW7yBjrBwcCyZdvg6dnKKmCxbMzu7i691xo3No8IYQQttr4GWgMnT5qDmbg4cz8Go/chIIFDVJR1YNOkidSe5w1WkpLkOa6u8hwjUDFujaaDBUlJAf791xzQbNggP4OenhLEdO0qpTTt2+cv6WMAcw1jAFM+SjWfs7LkypCRYV7S06WFaECA/MoeOCD7KmUuwaldW/qOGvu7uztHy92rxACmfNhTtZGaKtVplkGNZaBz/rwMwvfEEyWrgqqItJYLs2UJTkH3jdvz581DVuVllJRYBimNG0uvrNJqs3Phgu3AxujBaCkgwFyaYgQqzZqVznxdV67IUF1GQLN1q+SLj48M2G5UObVtC7i5FRzAVKCmTM5v+PDhOHfuHH777TdHJ4WcmZtb4Y0DfH3lL61lcJORYf5re+mSdfmuUU3VoIH85UlJMc+OZ5TiVLIgh8qHt7dURUREODol5U8p81xs9r7+7GypXTYCnHPngCNHtuC++9ogJKTsS6eqVjUPkmkpOdlcTeXjIwFL3bpll56AACmN691bHl+4IENCLF8uy/jxsr6oueAYwBA5G3d3c3duW4KCpOzesgTH6FcNyC/oyZP5j9m8uexz+bK5F5UR5Li5McghKiFXV3PVkSE29nKRVTBlzddXeq85akqGqlWt54c7dQqIjZVg5vPPC34eAxiiysbdvfCR08LC5BfDMrjJzDQHKMZfREsuLkCbNvKX7NQp6wDHuGWvQSIqBWFhwL33ylJYAMO/VGUkPT0dTz75JEJDQ+Hl5YUOHTpgzZo1udszMzPxxBNPoGbNmvD09ETt2rUx3ig3A/DLL7+gZcuW8Pb2RtWqVdG5c2ectmyBRVRcrq5S9h8YKK0Kw8Oty4sjIqQMuWlTqaqKiJB9jO3p6VJKc/KkVJ4fOCCjqxkOHpTK9QMHZHtCggRFBntGpSMiKgJLYMrIs88+ix9//BGzZs1C/fr1MXnyZPTs2RP79+9HjRo18PHHH2P+/Pn4/vvvUbduXRw/fhxGo+ZTp07h3nvvxVtvvYX+/fsjKSkJ6woa4IGotCllHn3YVqmK0ehBa/NwuZZBiZeXVPanp0v3hawsqfQ2RrTatUvWGdVTHh7ST7VaNdluNEBmlRURFcK5AhhbLeLvvlvmpU9JAW6/Pf/24cNlOXcOGDAg//bRo2VSkWPHZOpTS7GxxUpmcnIypk+fjpkzZ6J3TiulTz/9FMuXL8fUqVPx+uuvIz4+HpGRkejUqROUUqhTpw5uvPFGAEBCQgIyMzMxYMAAROS0DmteUcfBpmuXZQ8oS+Hh1o9NJusAJyTE3PA4I0NaEGptHuRv5065tRwjJygod7trcrJ5+F2jbU5F7ZtLRGXGuQIYJ3Hw4EFkZmbiJoum3q6uroiOjsbunPE9hg8fjltvvRWRkZG47bbbcPvtt6NXr15wcXFBq1at0L17dzRv3hy33XYbunfvjgEDBqB69eqOeklExWdMRmSw1WLRsm9pRET+LuQZGbItKws+x49bP1cpCZrCwqQ0KD7eXIJkLH5+UjJkMknpUFZWxRpPnoiumnN9gwsrEfHxKXx7cHDh22vXLnaJS17G2Dq2RhI21rVt2xZHjhzB4sWLsXz5cgwbNgytWrXC33//DVdXVyxZsgTr1q3DkiVL8MUXX+D555/HypUr0apVq1JJI1GFYnxXlLLuopGXqytSateGj4eHeRLO7GxzVVd2tjQwNoIUIzCKiJAAJjUVOH4caNFCSoJq1pTgZ8IE4MYbZVCTDRtkXXi4lPqwKouoQnKuAMZJNGzYEB4eHlizZg3q58wNn52djbVr12LQoEG5+/n7+2PgwIEYOHAghg8fjg4dOuDAgQOIjIyEUgrR0dGIjo7Gyy+/jGbNmuGHH35gAEPXNhcXZPv4FDyhipeXedphraXEJSvL3IXc3V16YE2cKI2QT5yQRsbGBC7//APcdZf5eO7uEuT89JOMgb5tG7BkiTnwqVlTGkJfzdjxRFQqGMCUAV9fX4wePRrjx49HcHAw6tWrhylTpuD06dN49NFHAQCTJ09GjRo10Lp1a7i7u+Pbb79FQEAAatWqhXXr1mHp0qXo0aMHQkNDsWXLFhw7dgxNHTGBCJGzUsrcVsZgzGr4yiu2n9O1q0zcYgQ2J07IYlTf/vMP8Oyz+Z+3dy8QGQl8+aX0+6xWzXp5/HEZbOPYMRmG1FhfWHd3IioUA5gy8s477wAAHnjgAVy6dAlt2rTB4sWLUaNGDQBS+vLee+9h//79UEqhTZs2+PPPP+Hj44PAwED8888/+OSTT3Dp0iXUrl0bL730EoYMGeLIl0RU+QUGAh06FLz90Uelsb9lcHPunJTEAOZGx0eOAJs2ydjxaWkSwADAhx/KtNGGgACpMtu7V9rkfP21zGRuOVlOSIhM4wtIqRJLeogAcC6kSo9zIZUP5nP5cbq5kFJSZNwdpaQL+c6dEticPy/BT3IyMHOm7Pv448CcOebZ8wAJYIwxoPr3lwlkLAOcxo2Bd9+V7X//LQGT5XTJAQHFCnrsmQuJSo75XLjCJnNkCQwRUVmyHEunWTNZCvLJJ7KkpZkDnJQU8/Y+fYAaNcwT6Rw9au6hBQAvvQT895/1MW+8Uaq+AOCRR2QQQsvpkZs0kaozQGYdDAysfDMvUqXEAIaIqKLx8jL3hLL0wAOyFOSnn2SqB8spkS0nBj17VkqBzp2TGfQAmYDGCGCaNZN9AgJwg5+f9M686y5zu58PP5QAxzIACguTbupE5YwBDBFRZVG7tiwF+eUX8/2sLCnlsRxk8PXXpbrq7Flc2bUL3pYNoDMzgf/9L/8xn3oK+OADqQqLjrYOboKDgZ49ZX16OrB5swRUQUGysBEzlQADGCKia5GbW/5BBUeOzL0bFxuLUMu2GW5uQGKilN4YJTxnz0obHEAClPr1Zf327eZSnoAACWDi46U6y5K/v1SZDRsm82k995w5wKlaVZbu3WWurtRU4NIlCYoY+BAYwBARkT2UkqoiPz8JKPKqWhX49VfrddnZsgDSU+vPPyWouXhRbi9cAKKiZPvly1K9Zaw3xub55Rc536pVUpoDSIBjNFT+6CPguuuAPXuAxYvN640lLIyjLldSfFeJiKhsWI7D4+dnDkBsadNGZjEHpLt4SooEMsYkoI0bA1OnSqmP5WI0OP73X9tVXFu2yOzq330nbXiqVTOX8AQFSRVYlSoyi/qJE9ZVXEbvMaqQGMAQEVHFopQM/Ofra14XESHj8BRk+HDgzjvzBzj16sl2Ly9pgHzmjIy7c/GiVEmNGSPb58yRNkCWPDyknZCfHzBtmpQgGcFNYKBUjz39tLmL/KVLss7Y5u9vPZAilSoGMERE5PxcXMztZoxqKUv9+sliyWQyl7A8/DDQubO5euviRVmMIColRUpodu6U9VeuSAnNuHGy/c03gW+/tT5+cLAEUQDwxBPSxT0gwBzk1K0L3HyzbF+7VhpWh4TIwukpisQAhoiIrk2WE3XWqSNLQcaNMwcrgAQ/ycnmxy+9JI2Rr1wxL5YBSEiIBFeXL8s8XFeuALVqmQOYp54C1q0z7+/mJg2Y//xTHr/4opyvenU5VvXqQIMG1nN/XWMBDwMYuia98sormDdvHnbu3Fkqx1u9ejV69+6Ns2fPIriw2ZSJqHJwcbGeVLRxY3OPLFtefNH2+thYuZ01S2ZKP3tWqrnOnLHuJbZypUwmmphoXhcTY244XbOmBDi+vlLl5esrJU4TJ8r2Bx+UKjGjas7PTyYo7dJFgp+//pL1gYHmubq8vK4yU8oXAxgqc3Xr1sWYMWMwzvLfi4ONGzcOjxvz0xAROVqTJrIUZPVquU1NNbfv8fQ0b3/0UanaSkqSQCY5WaqqAAlQYmOttwHAk09KAJOSAvTqlf+cL70EvPqqtO0ZMCD/JKVduwItW0oX+mPHZF1goHXJVhliAOPkMjIy4MFhv+1mMpmgtYafnx/8OHporqysLLi6ukJdY0XQRE7H29t2dddLLxX8HKWkl5XBZJJAyODpKW1wkpIkWDHm6jLG7UlJkaDn6FFZf/GiBEX/938SwOzdC7RqJfsabZGqVAHef19KifbsAV57TUqsjMbNAQHAHXdII+sLF+QYltv9/Yvs/l4+YdI1ZNWqVejQoQP8/PwQGBiIG264ATt37sScOXPg5+eHRYsWITIyEl5eXrjllltw6NCh3OcePHgQMTExCAsLg6+vL9q2bYvffvvN6vh169bFK6+8ghEjRqBKlSoYPHgwAODVV19FREQEPD09ERYWhqFDh+Y+R2uNd999Fw0aNIC3tzdatGiBb775xu7XlJCQgMGDB6NatWrw8fFB69atsWLFCrvS3KVLF8THx+OZZ56BUsrqAvnvv/+ic+fO8PHxQXh4OEaPHo0rV67kbk9OTsbQoUPh5+eH0NBQvPXWW+jTpw+GDx+eu8/FixcxbNgwBAUFwdvbG927d8euXbtytxv5/scff6B58+bw8PBAXFwcXnnlFTQ36o5zfPnll2jRogU8PT0RGhpqdZ7JkyejZcuW8PX1RXh4OB566CFcunTJ7jy0dP78edx3332oVasWvL290axZM8yePdtqH601PvjgAzRq1Aienp6oVasWnn/+ebveE1uvzcgHg7HPnDlz0KBBA3h6eiI5ORmLFy9Gp06dEBQUhKpVq6JHjx6Ii4uzOlZB5z5y5AhcXV2xceNGq/0///xzBAcHI8Nyzh4ichwXF+teXm5uMgt79+5S0vLII8CECVI6A0j11Nq1wL59EsBkZsrtsGGyPTwc+PJLmWn9+eflGNdfL42YAQl4/vtPxvT55BPg5Zel9Mf4bVm9WoKlFi2kt1nVqjJY4cqVhb6Myl8Cs3atFJ116SKjQZahrKwsxMTE4MEHH8TcuXORmZmJzZs3wzWnG116ejomTZqE2bNnw8fHB2PHjkW/fv2wdetWKKWQlJSEXr164fXXX4e3tzd++OEH3HXXXdi+fTsaW9StTp48GS+++CI2btwIrTV+/vlnvP/++/juu+/QokULnDlzBussGoO9+OKLmDdvHqZOnYqoqCisXbsWDz/8MIKCgtC7d+9CX1NycjI6d+6MkJAQzJ8/H+Hh4di2bVvu9qLS/Msvv6BVq1YYMWIERo8enfu8HTt24LbbbsOkSZMwc+ZMXLhwAU8++SRGjBiBefPmAQCefvpprFy5EvPnz0fNmjXx2muvYfXq1ehn0ZNg+PDh2Lt3LxYsWICgoCC88MIL6NmzJ/bt2wdvb28AQFpaGl5//XV89tlnqF69OmrUqJHvdX722WcYO3Ys3nzzTfTu3RtJSUlYvnx57nYXFxd8+OGHqF+/PuLj4/H444/j8ccfx9dff23XZ8NSWloa2rZti+eeew4BAQFYunQpHnnkEdSpUwfdunUDAEyYMAHTp0/H5MmTcfPNN+Ps2bPYsmWLXe+JvQ4fPoxvv/0WP/30Ezw8PODl5YXk5GQ8+eSTaNmyJVJTU/H666+jb9++2L17Nzw8PAo9d926ddG9e3fMmjUL7dqZJ4+dNWsW7r//fpYUElUWrq7Wc2xVqwZY/GnOJzoaOHDA/DgzU9ryGAFUdLQ0Vk5MlMbNxm2DBoWnQ2vtkCUyMlIXZPfu3bY3dO6cf5k6VbYlJ+ff1rq11h4eWru6au3lJY/z7vP99/L8o0fzb7tK58+f1wB0bGxsvm2zZ8/WAPSaNWty1x05ckS7uLjov//+u8Bj3nDDDfq1117LfRwREaH79Oljtc8HH3ygIyMjdUZGRr7nnzx5Unt5eelVq1ZZrR87dqzu1atXka9pxowZ2s/PT589e7bIfQtL83vvvWe1z/33369HjBhhtW7Lli0agD59+rROTEzU7u7u+rvvvsvdnpSUpKtUqaKHDRumtdZ63759GoBeuXJl7j6XLl3SAQEB+vPPP9dam/N948aNVueaOHGibtasWe7j8PBw/dxzz9n9Gv/880/t4eGhs7OztdZa//777xrAVeWTpXvuuUc/+OCDWmutExMTtaenp54+fbrNfYt6T/K+Nq0lH3x9fa32cXNz06dOnSo0XUlJSdrFxUWvXr3arnP/9NNPukqVKjo1NVVrLd9lAHrHjh2FnudqXLlypUTPL/D3haysWLHC0Um4JjCfCwdgoy4gjqjcVUiXL0ukl50tt5cvl+npqlatiuHDh6NHjx7o3bs3Jk+ejGPHjuVud3FxQfv27XMfR0REoGbNmtidM/pkcnIynn32WTRt2hRBQUHw8/PDxo0bcfToUavzWP67BYCBAwciLS0N9erVw4MPPoiffvoJ6enpAIA9e/YgLS0NPXv2zG334efnh+nTp+OgZZ1oAbZs2YKWLVsW2LPG3jTntWnTJnzzzTdWabrpppsASLXUwYMHkZmZaZVfvr6+VlUjcXFxcHFxQbRFyVpgYCBatGiRm6cA4ObmhtatWxeYljNnzuDEiRO5pR+2LF++HLfeeitq1aoFf39/3HXXXcjIyMCpU6cKfZ22ZGdn44033kDLli1RrVo1+Pn54ZdffsnNs927dyM9Pb3A9BT1ntirVq1aCM0zF87BgwcxaNAgNGjQAAEBAQgNDYXJZMpNW1HnjomJgYeHB37JmTRw1qxZaN++fb4qLSKikrKrCkkp1RPARwBcAczUWr+dZ/tgAM/lPEwCMFprffVl2kUxupvZ4uOTf/vatUC3bkBGhnQfmzu34Gqk2rULP76dZs+ejSeffBKLFy/GwoUL8cILL+DXvPODFGDcuHFYvHgx3n//fTRq1Ag+Pj4YOnRovrYDvpajUwKoXbs29u7di2XLlmHp0qV4+umnMWnSJPz3338w5cw0u2jRItTJ0+jL3Y4J0SQALnma8zKZTHjooYfwPxtDf4eHh2Pv3r0AUGij0sLSZvk8T0/P3Gq8qz0OAMTHx6N37954+OGH8eqrr6JatWrYvHkz7rvvvmK163j//ffxwQcf4KOPPkKLFi3g5+eHCRMm4MyZM3alp6jtLi4u+fbJNOaVsZD3cwQAffv2RXh4OD777DOEh4fDzc0NTZs2zX2dRZ3b3d0dQ4cOxaxZs3D33Xfj66+/xquvvlroc4iIiqPIEhillCuAqQB6AWgK4D6lVNM8ux0G0Flr3RLAawBmlHZCiyU6Gli2TFo/L1tW5m1gDK1atcJzzz2H2NhYdOnSBV9++SUAuWhv2LAhd7+jR48iISEBTXK6zq1ZswZDhw5F//790bJlS9SqVcuuUhIA8PLyQu/evTFlyhRs2LABu3btwj///IPGjRvD09MT8fHxaNiwodUSERFR5HHbtm2L7du349y5cza325NmDw8PZBsTulkcd9euXfnS1LBhQ3h7e6Nhw4Zwd3fH+vXrc5+TkpJiNW5L06ZNYTKZsHbt2tx1V65cwY4dO9C0ad6PaMFCQ0MRHh6OZcuW2dy+ceNGZGRkYMqUKYiOjkZkZCQSEhLsPn5ea9asQd++fXH//fejdevWaNCgAfbt22f1ujw9PQtMT1HvSfXq1XH69GmrYGPr1q1Fpuv8+fOIi4vDhAkT0L17dzRp0gSJiYnIysqy+9wA8PDDD2PFihWYNm0aEhMTce+99xZ5biKiq2VPFVJ7AAe01oe01hkAvgcQY7mD1vpfrfXFnIfrANQq3WSWQHS0tIouh+Dl8OHDGD9+PP7991/Ex8djxYoV2L59e+7F1M3NDU8++STWrl2LrVu3YtiwYWjWrBm6d+8OAIiMjMT8+fOxefNm7NixA0OGDEFaWlqR550zZw5mzpyJHTt24PDhw5g9ezbc3d3RqFEj+Pv7Y9y4cRg3bhxmzZqFAwcOYOvWrfj0008xY0bRceagQYMQEhKCO++8E6tXr8bhw4excOHC3B4v9qS5bt26WL16NU6cOJF74Xvuueewfv16jBo1Clu2bMGBAwfw22+/4ZFHHgEA+Pn5YcSIEXjuueewbNky7N69Gw899BBMJlNu6UqjRo0QExODRx55BKtXr849f0BAAAYNGmTnuyZeeOEFfPjhh5gyZQr27duHrVu34oMPPsg9j8lkwocffojDhw/ju+++w4cffnhVx7cUGRmJZcuWYc2aNdizZw/GjBmDw4cP52739/fH2LFj8fzzz2P27Nk4ePAg1q9fj+nTpwMo+j3p0qULLly4gDfffBMHDx7EF198kdswujBBQUEIDg7G559/jgMHDmDlypUYNWoU3Cy6MhZ1buP1dezYEc888wwGDBiAAGMsCiKi0lRQ4xhjATAAUm1kPL4fwP8Vsv84y/0LWorViLeCO3XqlO7Xr5+uWbOm9vDw0LVr19bPPPOMzsjIyG1E+euvv+qGDRtqDw8PffPNN+v9+/fnPv/IkSO6W7du2sfHR4eHh+v33ntP9+7dO7fRqta2G8TOnz9fd+jQQQcGBmofHx/drl07vWjRIq21NHg0mUz6448/1k2aNNEeHh46ODhYd+/eXS9ZssSu13Xs2DF9991368DAQO3t7a1bt26d2/DMnjSvXbtWt2zZUnt6emr5yIkNGzboHj16aH9/f+3j46ObN2+uX3rppdztiYmJesiQIdrHx0eHhITot956S3ft2lWPGjUqd58LFy7ooUOH6ipVqmgvLy/drVs3vXPnztzteRuvGmw1dJ05c6Zu0qSJdnd316GhofqBBx7I3fbRRx/pmjVrai8vL921a1f9ww8/aAD68OHDWuura8R74cIF3a9fP+3n56erV6+un3nmGT169Gjd2aLheHZ2tn7rrbd0vXr1tLu7u65Vq5aeMGGCXe+J1lp/+umnuk6dOtrHx0ffc889+sMPP8zXiDfv69da62XLlulmzZppT09P3axZM7148WLt6+urZ8+ebfe5tdb6yy+/zNfAurSwEW/5YOPS8sF8LhwKacSrdBF12kqpgQB6aK0fynl8P4D2Wut8w5gqpW4BMA1AR631eRvbRwIYCQDVq1e/7scff7R5zsDAQDRs2LDI4MuZzJ07F+PGjcPJkyfL9bzZ2dmFtv9wJunp6WjWrBnGjh1b4UbRrUz5XBqmTJmCr776Krfrd2kqaV4fOHAAl8u4QX9lkJSUxMEeywHzuXC33HLLJq11O1vb7GnEexxAbYvHtQDkawCglGoJYCaAXraCFwDQWs9ATvuYqKgo3cUYJCePuLg4+FvOMVEJeOXMKVHerysxMdFp83LLli2Ii4tD+/btkZiYiHfeeQdJSUkYOnRohXtNzpzPpSkpKQl79uzBp59+ihdeeKFM8qSkee3l5YU2bdqUYooqJ6MNH5Ut5nPx2dMGZgOARkqpekopDwD3AlhouYNSqg6AXwDcr7XeZ+MYVEG9+eabVl2ZLZdetubGKGeTJ09GmzZt0LVrV5w+fRqrVq1CrVoVp4mVLb169SowT998801HJ69MjRkzBjfddBNuuumm3PZMRERlocgqJABQSt0O4ENIN+pZWus3lFKjAEBr/alSaiaA/gDic56SVVCRjyEqKkobXWXziouLy+2ZQyVT1L/VCxcu4MKFCza3eXt7Izw8vKySVqlY5vOJEyeQajnPiIWqVauiquUIlnTVSloCw98X+7BkoHwwnwunlCpRFRK01n8A+CPPuk8t7j8E4KGSJJIcgxfU0segj4io7FXukXiJiIioUmIAQ0RERE6HAQwRERE5HQYwRERE5HQYwBAREZHTYQBTgXTp0gVjxowp9X2JiIgqGwYwRERE5HQYwBAREZHTYQBTSj777DOEhoYiKyvLav2gQYMQExODgwcPIiYmBmFhYfD19UXbtm3x22+/ldr5L168iGHDhiEoKAje3t7o3r07du3albv98uXLuP/++xESEgIvLy/Ur18fH374oVX6IyMj4eXlherVq6NHjx75XgsREVFFwQCmlNx99924dOkSli5dmrsuOTkZCxYswJAhQ5CUlIRevXrh77//xrZt29C/f3/cdddd2LNnT6mcf/jw4fjvv/+wYMECrF+/Hj4+PujZs2fukPYvvvgiduzYgd9++w179uzBrFmzckeM3bhxIx577DFMnDgRe/fuxdKlS9GzZ89SSRcREVFZsGsqgYrgySeBrVvL95ytWwMWhRSFCgoKwu233465c+fmXvznz58PNzc39O3bF15eXmjVqlXu/i+88AIWLVqEefPm4cUXXyxROvfv34+FCxdi5cqVuPnmmwEAX3/9NerUqYMff/wRY8aMQXx8PNq0aYP27dsDAOrWrZv7/KNHj8LX1xd33HEH/P39ERERYZVWIiKiioYlMKVoyJAh+PXXX5GSkgIAmDt3LgYMGAAvLy8kJyfj2WefRdOmTREUFAQ/Pz9s3LgRR48eLfF54+Li4OLigujo6Nx1gYGBaNGiRW4Jz+jRo/Hjjz+iVatWGDduHFauXJm776233oqIiAjUq1cPgwcPxpdffonExMQSp4uIiKisOE0JjL0lIY7Up08fuLm5YcGCBejWrRuWLl2KJUuWAADGjRuHxYsX4/3330ejRo3g4+ODoUOHIiMjo8TnLWxGcaUUAKBXr16Ij4/Hn3/+iWXLlqF3794YOHAgZs+eDX9/f2zevBmrVq3C33//jbfeegsTJkzAhg0bULNmzRKnj4iIqLSxBKYUeXp6YsCAAZg7dy5++OEHhIWFoXPnzgCANWvWYOjQoejfvz9atmyJWrVq4eDBg6Vy3qZNm8JkMmHt2rW5665cuYIdO3agcePGueuCg4Nx//33Y86cOfjiiy/w5ZdfIj09HQDg5uaGrl274q233sL27duRnJxcqo2MiYiISpPTlMA4iyFDhqB79+44fPgwBg0aBBcXiREjIyMxf/58xMTEwN3dHZMmTUJaWlqpnLNRo0aIiYnBI488ghkzZqBKlSp44YUXEBAQgIEDBwIAXn75ZbRt2xbNmjVDVlYWfvnlF9SvXx+enp747bffcPDgQdx8882oWrUqVqxYgcTERDRp0qRU0kdERFTaWAJTym6++WaEh4dj9+7dGDJkSO76yZMnIyQkBJ06dUKvXr3QoUMHdOrUqdTOO3v2bLRv3x533HEH2rdvj5SUFCxevBje3t4ApHTohRdeQKtWrXDTTTchMTERixYtAgBUqVIFv/76K7p3747GjRvj/fffx8yZM0s1fURERKVJFdZ+oixFRUXpvXv32twWFxfHf/+lJDExEf7+/o5ORqXHfC4/Jc1r/r7YJzY2Fl26dHF0Mio95nPhlFKbtNbtbG1jCQwRERE5HQYwFdDq1avh5+dX4EJERHStYyPeCqhdu3bYWt6j9hERETkRBjAVkLe3Nxo2bOjoZBAREVVYrEIiIiIip8MAhoiIiJwOAxgiIiJyOgxgiIiIyOkwgCEiIiKnwwCmAunSpQvGjBnj6GRQKRs+fDj69OlTasebM2cOxwMiomseu1FTpaKUwk8//YQBAwY4Oim5PvroIzhqyg4iosqKAQzZLSMjAx4eHo5OhtPIysqCq6srAgMDHZ2UCoWfIyIqDZW+CunkSaBzZ+DUqbI9z2effYbQ0FBkZWVZrR80aBBiYmJw8OBBxMTEICwsDL6+vmjbti1+++23Yp/vl19+QcuWLeHt7Y2qVauic+fOOH36NADglVdeQfPmzTFz5kw0bdoU3t7euPPOO3Hu3Lnc52/YsAG33XYbgoODERAQgI4dO2Lt2rVW51BKYerUqbjrrrvg6+uLCRMmIDMzE0888QRq1qwJT09P1K5dG+PHj899TkZGBp577jnUqlULvr6+uP766/HXX3/Z/br27NmDO+64A4GBgfDz80N0dDR27NhhV5rr1q0LABg4cCCUUrmPAWDRokW47rrr4OXlhXr16uGFF15ARkZG7vbTp0/jjjvugLe3NyIiIjB79mw0b94cr7zySu4+R48eRb9+/eDv7w9/f3/cddddOH78eO52I9/nzJmDBg0awNPTE8nJyfmqkLTW+OCDD9CoUSN4enqiVq1aeP7553O3jx8/HlFRUfD29kbdunXx7LPPIi0tze48tGTP5y4jIwMTJkxAREQEPD09Ub9+fXz88cd2vSe2qseMfDAY+7zzzjuoVasWatWqBQD45ptvcP3118Pf3x8hISEYOHAgTpw4YXUsW+fetWsXVq1aBXd3d5zK88V+4YUX0LJly2LlFRE5l0ofwLz2GrBmDfDqq2V7nrvvvhuXLl3C0qVLc9clJydjwYIFGDJkCJKSktCrVy/8/fff2LZtG/r374+77roLe/bsuepznTp1Cvfeey+GDRuGuLg4rFq1Cvfff7/VPkeOHME333yD7777DkuXLsX+/fsxYsSI3O2JiYm4//77sXr1aqxfvx6tW7fG7bffbhXkAMCkSZNw++23Y8eOHXjsscfw8ccfY/78+fj++++xf/9+/PDDD4iKisrd/4EHHsDKlSvx7bffYseOHRg2bBj69u2Lbdu2Ffm6EhIS0LFjRyil8Pfff2Pz5s147LHHkJ2dbVeaN2zYAAD4/PPPcfLkydzHf/31FwYPHowxY8Zg165dmDVrFubNm4cJEybknnvYsGGIj4/H8uXLsWDBAnzzzTeIj4/P3a61xp133onTp09j+fLlWLFiBRISEnDnnXdaVQ8dPnwY3377LX766Sds27YNXl5e+V7nhAkT8Nprr+H555/Hrl278NNPP6F27dq52319fTFr1izExcVh2rRp+P777/HGG28UmX+22PO5GzZsGL766itMnjwZcXFx+OKLL1ClShW73hN7rVy5Etu3b8fixYuxbNkyABI4TZo0Cdu2bcNvv/2Gc+fO4b777st9TmHnvvnmm9GgQQN89dVXufubTCZ89dVXePDBB4uVV0TkZLTWDlkiIyN1QXbv3p1v3dixWnfubP/i4qI1kH9xcbH/GGPHFphEm+688049ZMiQ3Mdff/21DggI0KmpqTb3v+GGG/Rrr72W+7hz5876scceK/I8mzZt0gD0kSNHbG6fOHGidnFx0fHx8frKlStaa61Xr16tAeh9+/bZfI7JZNJhYWH666+/zl0HQI8ZM8Zqv8cff1x37dpVm0ymfMc4cOCAVkrp+Ph4q/UxMTF69OjRRb6uCRMm6Dp16uj09PQi9y0szT/99JPVfp06ddKvvvqq1br58+drX19fbTKZ9J49ezQAvXbt2tztR48e1S4uLnrixIlaa62XLFmiXVxc9OHDh3P3OXjwoFZK6b///ltfuXJFT5w4Ubu5uelTp05ZnWvYsGG6d+/eWmutExMTtaenp54+fbpdr1FrradPn64bNGiQ+3j27Nna19fX7ufnZfm527dvnwag//zzT5v7FvWeWL42w8SJE3WzZs2s9gkODtZpaWmFpisuLk4D0MeOHSv03MZn+r333tONGzfOXf/HH39oDw8Pfe7cuULPY+v3hfJbsWKFo5NwTWA+Fw7ARl1AHFFpS2DatwdCQgCXnFfo4iKPb7ih7M45ZMgQ/Prrr0hJSQEAzJ07FwMGDICXlxeSk5Px7LPPomnTpggKCoKfnx82btyIo0ePXvV5WrVqhe7du6N58+bo378/pk+fjrNnz1rtEx4ejjp16uQ+vuGGG+Di4oK4uDgAwJkzZ/DII48gMjISgYGB8Pf3x5kzZ/Klp127dlaPhw8fjq1btyIyMhKPPfYYfv/9d5hMJgDA5s2bobVG06ZNrWbP/v3333Hw4MEiX9eWLVvQsWPHAttH2JvmvDZt2oQ33njDKk2DBg1CcnIyTp06hT179sDFxcXqtdauXRs1a9bMfRwXF4eaNWtaVUvVr18fNWvWxO7du3PX1apVC6GhoQWmZffu3UhPT0e3bt0K3GfevHno2LEjwsLC4Ofnh//973/F+pwAKPJzt2XLFri4uOCWW26x+fyi3hN7NW/eHJ6enlbrNm/ejJiYGERERMDf3z83/y3TVti5hw0bhkOHDuHff/8FAMyaNQt33nknqlWrVqK0EpFzcJpGvB9+ePXPGT0amDED8PICMjKA/v2BadNKPWm5+vTpAzc3NyxYsADdunXD0qVLsWTJEgDAuHHjsHjxYrz//vto1KgRfHx8MHToUKt2GPZydXXFkiVLsG7dOixZsgRffPEFnn/+eaxcuRKtWrWy6xjDhg3D6dOnMWXKFNStWxeenp7o1q1bvvT4+vpaPW7bti2OHDmCxYsXY/ny5Rg2bBhatWqFv//+GyaTCUopbNiwAe7u7lbP8/b2LjJNuoieOvamOS+TyYSJEydi4MCB+bZVr17drh5CWmsopWxus1yfN79sHacw69atw7333ouJEydiypQpqFKlChYuXIhx48YVmUZbivrcFZWeora7uLjk2yczMzPffnnzJTk5GT169ED37t3x9ddfIyQkBOfOnUOnTp3sTlv16tVxxx13YNasWYiKisLChQuxaNGiQp9DRJWH0wQwxXH6NDBqFDBypAQyJ0+W7fk8PT0xYMAAzJ07F+fOnUNYWBg6d+4MAFizZg2GDh2K/v37AwDS0tJw8OBBREZGFutcSilER0cjOjoaL7/8Mpo1a4YffvghN4A5ceIEjh07ltuWYf369TCZTGjSpEluej7++GP07t0bgDRiPWlnBvn7+2PgwIEYOHAghg8fjg4dOuDAgQNo06YNtNY4depUgf/oC9O2bVt88803BfZSsSfN7u7u+dpntG3bFnv27Clwhu8mTZrAZDJh06ZNuCGniO748eNISEjI3adp06Y4ceIEjhw5klsKc+jQISQkJKBp06Z2v8amTZvC09MTy5YtQ6NGjfJt/+effxAeHo6XXnopd51lW5yrVdTnrm3btjCZTFixYgV69uyZ7/lFvSfVq1fH1q1brdblfWzLnj17cO7cObz55puoV68eAGmYfjXnBoCHH34YAwYMQP369REaGoru3bsXeW4iqhwqbRUSAPzyCzB1KtCqldzm+X0sE0OGDMFff/2FTz/9FIMGDYJLTh1WZGQk5s+fj82bN2PHjh0YMmRIsXuWrFu3Dq+//jo2bNiAo0ePYuHChTh27JjVhdTb2xvDhg3D9u3bsXbtWowaNQq9e/fOvWhGRkbim2++we7du7Fhwwbce++9dlUTTJ48Gd999x3i4uJw4MABfPvttwgICECtWrUQGRmJwYMHY/jw4Zg3bx4OHTqEjRs34v333893cbLl0UcfRVJSEu6++25s2LABBw4cwHfffZd7QbQnzXXr1sWyZctw6tQpXLx4EQDw8ssv49tvv8XLL7+MnTt3Ys+ePZg3bx6effZZAEBUVBR69OiBUaNGYd26ddi6dSseeOAB+Pj45JaudO/eHa1atcLgwYOxadMmbNy4EYMHD0bbtm3RtWvXot+0HP7+/hg7diyef/55zJ49GwcPHsT69esxffr03Nd44sQJzJ07F4cOHcL06dPx3Xff2X38vIr63DVq1Ah33303HnroIfz88884fPgwVq9eja+//hpA0e9J165dsWXLFsyaNQsHDhzAu+++i3/++afIdNWpUweenp74v//7Pxw6dAi///67VdBW2Lm3b9+eu8+tt96KatWqYdKkSXjggQdyv29EdA0oqHFMWS9X24jXWZhMJh0REaEB6O3bt+euP3LkiO7WrZv28fHR4eHh+r333tO9e/fWw4YNy93H3ka8u3fv1j179tQhISHaw8NDN2jQQL/zzju5241GlJ999pkODw/XXl5e+o477tBnzpzJ3Wfr1q26ffv22svLS9evX19/9dVXulmzZrmNVrW23SB2xowZuk2bNtrPz0/7+/vrm2++Wf/zzz+52zMyMvTEiRN1vXr1tLu7uw4NDdV9+/bVGzdutCv/du7cqXv16qV9fX21n5+fjo6O1jt27LA7zQsXLtQNGzbUbm5uOiIiInf9X3/9pTt27Ki9vb21v7+/vu666/Qnn3ySu/3kyZO6T58+2tPTU9euXVvPnj1b169fX7/99tu5+8THx+uYmBjt5+en/fz89J133pnb4NRoxGvZeNWQt6Frdna2fuutt3LzqFatWnrChAm528ePH6+Dg4O1r6+v7tevn542bZqWr6q4mka89nzu0tLS9DPPPKNr1qypPTw8dP369a3yprD3RGv5vIWFhemAgAA9evRo/fzzz+drxJu3oa/WWn///fe6fv362tPTU19//fV68eLFGoBVo0Zb5163bp3VcSZNmqSVUlYNrAvjzL8v5YmNS8sH87lwKKQRr9IOGiE0KipK79271+a2uLi43KoOunqvvPIK5s2bh507dyIxMRH+/v6OTpLTOXfuHGrWrInvvvsut/qlMMzn8pM3r0ePHo0DBw7g77//tuv5/H2xT2xsLLp06eLoZFR6zOfCKaU2aa3b2dpWqdvAENlr+fLlSExMRIsWLXDmzBm88MILCA4OttkuhCqGy5cvY9OmTfjqq6/w448/Ojo5RFTOWGFcAa1evdqqy2/exVmNGjWqwNc0atQoh6YtMzMTL774Ilq0aIG+ffvC29sbq1atKrJXkaM1a9aswDydO3euo5NXpmJiYtCnTx+MGDEit2E3EV07WIVUAaWmpuYbUt1SQb1pbKlIVRtnzpzBlStXbG4LCAhASEhIOaeo9Dgqn+Pj4212WwaA0NDQCvPel6aS5vW1/vtiL1ZtlA/mc+FYheRkvL29rypIcRYhISFOHaRURBEREY5OAhGRQ7AKiYiIiJxOhQ1gHFW1RUSVF39XiCqPChnAuLu7IzU11dHJIKJKJjU1Nd80F0TknCpkABMSEoITJ04gJSWF/5iIqMS01khJScGJEyfYDouokqiQjXgDAgIAAAkJCQX2sCD7pKWlwcvLy9HJqPSYz+WnuHnt7u6O0NDQ3N8XInJuFTKAASSI4Q9NycXGxqJNmzaOTkalx3wuP8xrIgIqaBUSERERUWHsCmCUUj2VUnuVUgeUUuNtbFdKqY9ztm9XSrUt/aQSERERiSIDGKWUK4CpAHoBaArgPqVU0zy79QLQKGcZCWB6KaeTiIiIKJc9JTDtARzQWh/SWmcA+B5ATJ59YgB8lTP79ToAVZRSNUo5rUREREQA7AtgwgEcs3h8PGfd1e5DREREVCrs6YWkbKzLOziLPftAKTUSUsUEAOlKqZ12nJ9KJhjAOUcn4hrAfC4/zOvywXwuH8znwhU44Zs9AcxxALUtHtcCkFCMfaC1ngFgBgAopTYWNMMklR7mc/lgPpcf5nX5YD6XD+Zz8dlThbQBQCOlVD2llAeAewEszLPPQgBDc3ojdQBwWWt9spTTSkRERATAjhIYrXWWUmoMgL8AuAKYpbXepZQalbP9UwB/ALgdwAEAKQAeKLskExER0bXOrpF4tdZ/QIIUy3WfWtzXAB67ynPPuMr9qXiYz+WD+Vx+mNflg/lcPpjPxaQ4WSIRERE5G04lQERERE7HIQFMUVMTUOlQSh1RSu1QSm1VSm10dHoqC6XULKXUGcthAJRSVZVSfyul9ufcBjkyjZVBAfn8ilLqRM5neqtS6nZHprEyUErVVkqtUErFKaV2KaXG5qznZ7oUFZLP/EwXU7lXIeVMTbAPwK2Q7tcbANyntd5drgm5BiiljgBop7XmGAOlSCl1M4AkyOjTzXPWvQvggtb67ZygPEhr/Zwj0+nsCsjnVwAkaa3fd2TaKpOcUdNraK03K6X8AWwCcCeA4eBnutQUks93g5/pYnFECYw9UxMQVVha61UALuRZHQPgy5z7X0J+mKgECshnKmVa65Na68059xMBxEFGUudnuhQVks9UTI4IYDjtQPnRAJYopTbljIJMZSfUGPso5zbEwempzMbkzHo/i9UapUspVRdAGwD/gZ/pMpMnnwF+povFEQGMXdMOUKm4SWvdFjJb+GM5RfJEzmw6gAYAWgM4CeADh6amElFK+QH4GcCTWusrjk5PZWUjn/mZLiZHBDB2TTtAJae1Tsi5PQNgPqT6jsrGaWMG9pzbMw5OT6WktT6ttc7WWpsAfA5+pkuFUsodclGdq7X+JWc1P9OlzFY+8zNdfI4IYOyZmoBKSCnlm9NQDEopXwC3AeDkmWVnIYBhOfeHAVjgwLRUWsYFNUc/8DNdYkopBeALAHFa68kWm/iZLkUF5TM/08XnkIHscrqJfQjz1ARvlHsiKjmlVH1IqQsgIy5/y3wuHUqp7wB0gcwiexrARAC/AvgRQB0ARwEM1FqzAWoJFJDPXSBF7RrAEQCPcN61klFKdQSwGsAOAKac1RMg7TP4mS4lheTzfeBnulg4Ei8RERE5HY7ES0RERE6HAQwRERE5HQYwRERE5HQYwBAREZHTYQBDRERETocBDBE5NaWUVkoNcHQ6iKh8MYAhomJTSs3JCSDyLuscnTYiqtzcHJ0AInJ6SwHcn2ddhiMSQkTXDpbAEFFJpWutT+VZLgC51TtjlFK/K6VSlFLxSqkhlk9WSrVQSi1VSqUqpS7klOoE5tlnmFJqh1IqXSl1Wik1J08aqiqlflJKJSulDuU9BxFVPgxgiKisTYLMq9MawAwAXyml2gGAUsoHwGIASZBJ7PoBuBHALOPJSqlHAHwGYDaAlgBuB7ArzzlehszV0wrADwBmKaUiyuwVEZHDcSoBIiq2nJKQIQDS8myaqrV+TimlAczUWj9s8ZylAE5prYcopR4G8D6AWlrrxJztXQCsANBIa31AKXUcwDda6/EFpEEDeFtr/XzOYzcAVwCM1Fp/U3qvlogqEraBIaKSWgVgZJ51lyzur82zbS2A3jn3mwDYbgQvOf6FTHbXVCl1BUA4gGVFpGG7cUdrnaWUOgsgxK7UE5FTYgBDRCWVorU+UMznKsgsvLbonO32yLTxXFaRE1Vi/IITUVnrYONxXM793QBaKaX8LbbfCPltitNanwZwAkC3Mk8lETkVlsAQUUl5KqXC8qzL1lqfzbl/l1JqA4BYAAMgwcgNOdvmQhr5fqWUehlAEKTB7i8WpTpvAJiilDoN4HcAPgC6aa0/KKsXREQVHwMYIiqp7gBO5ll3AkCtnPuvAOgP4GMAZwE8oLXeAABa6xSlVA8AHwJYD2kMvADAWONAWuvpSqkMAE8DeAfABQB/lNFrISInwV5IRFRmcnoIDdRaz3N0WoiocmEbGCIiInI6DGCIiIjI6bAKiYiIiJwOS2CIiIjI6TCAISIiIqfDAIaIiIicDgMYIiIicjoMYIiIiMjpMIAhIiIip/P/m+h8Nx8eh30AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", - "\n", - "pd.DataFrame(history.history).plot(\n", - " figsize=(8, 5), xlim=[0, 29], ylim=[0, 1], grid=True, xlabel=\"Epoch\",\n", - " style=[\"r--\", \"r--.\", \"b-\", \"b-*\"])\n", - "plt.legend(loc=\"lower left\") # extra code\n", - "save_fig(\"keras_learning_curves_plot\") # extra code\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAFFCAYAAADfMoXLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABnV0lEQVR4nO3dd3gU1frA8e/ZlE0PJRAgoQtIL1IVAQUFRAERFek2BNGr/sQGKmBDr4qKVyl6wQaKckHEgvSmoFQNEES69E4akHZ+f5xMdjd1Awm7Sd7P88yzu1N2zpwt75wyZ5TWGiGEEEJ4js3TCRBCCCFKOwnGQgghhIdJMBZCCCE8TIKxEEII4WESjIUQQggPk2AshBBCeFi+wVgpNV0pdVwptTWX5UopNUkptUsp9adSqkXhJ1MIIYQoudwpGX8CdMtjeXegTsY0DJh8+ckSQgghSo98g7HWehVwOo9VegGfaWMdUEYpVbmwEiiEEEKUdIXRZhwF/OP0+mDGPCGEEEK4wbcQ3kPlMC/HMTaVUsMwVdkEBgZeU7Vq1VzfND09HZtN+pe5Q/KqYCS/Ckbyy32SVwVTGvNr586dJ7XWFbLOL4xgfBBwjqrRwOGcVtRaTwOmAbRs2VJv2LAh1zddsWIFnTp1KoTklXySVwUj+VUwkl/uk7wqmNKYX0qp/TnNL4xTku+AwRm9qtsC57TWRwrhfYUQQohSId+SsVLqS6ATEKGUOgiMBfwAtNZTgB+BW4BdQBJwb1ElVgghhCiJ8g3GWut78lmugZGFliIhhBCilCldLedCCCGEF5JgLIQQQniYBGMhhBDCwyQYCyGEEB4mwVgIIYTwMAnGQgghhIdJMBZCCCE8TIKxEEII4WESjIUQQggPk2AshBBCeJgEYyGEEMLDJBgLIYQQHibBWAghhPAwCcZCCCGEh0kwFkIIITxMgrEQQghhWbsWJkwwj1dwW9+C700IIYRww9q1sGIFdOoE7doV3bZaw8WLkJRkpl9+gV274MYboXJl8/zCBTNdvGgeBw8GPz9YsgTWrDHz9+yBuXMhLQ0CAmDpUtiwAb7/3iy3Jj8/+O03s+9hw+Drr+H8eUhOBh8f8Pc32xbgmCUYCyFESVZYAbFtWxNszp83AS8sDEJC4Nw52LzZMT8pyTwvXx4GDTLBy2aDoUMhKsoEzvR0GDLE7OPPP+GLL8w8azp8GBYsgJQU8PWF1q0hMNDx/klJJkDWrg2TJsHjj5v3debjA6++CgMGwMcfZz+2O+6AMmVg0SJ4800TQJWC1FSzPDnZHDuYY7TbITQUIiLMo+Xaa03aNm82QT0tzbGtBGMhhPAyBQmK6ekmENnt5vV//wvr1kGDBlCrlglwtWpBy5bmz/+990wAcC69depkAkfnziY4+viY/YaFmYAzZAj07w9HjkCvXmZ/qalmSkmBfv1g4kTzXunpJlA5B7wZM0yA3bYNbrgh+zH072/SZAVY54Bos0GHDqaEuXs3/Oc/Zp5S5jE52bGt1vD331CjBgQFmQAaFGSCNJg8eP55My8oyOTx/PmOoFi2LKxebfIyIMDxaAXU116D1183+1271uRXcrIJztZn9dxzuX9WQ4eaKadtC0CCsRCi+LlS1Z/ubpuQAAkJBBw6BDExkJho/vCbNTPLX30Vxo83gc7HxwS/jh3h0UfN8q5d4cABiIuD+HgzDRoEn31m9vnAA9nT8tBDJhApBU8+6Zjv62sCTnCwKbElJ5v5aWmmujY62qxz8aJj/YgI8+jnZx59feHQIUdAVMqkt0sXR9Czjr9hQ1i2zOzLWhYYaALovHmO4LR4sSlFKuVI64oVcPvtpqSbNZ+dA9vcubl/VtdeayZLq1awcKFj29tvz/tz9nUKg+3amerlS/l+XM62SDAWQniCOwHRqqJUygSGfftMsNq4EV56yQQ2q13v9GnTTnjxoqOEqDV89JF5r7ffNn/QJ06YYJmebkpCa9aY/T/1lAkoVslPa9PW+OOP5vXw4SaY7N1rlikFTZuaqkkwbZPr19PWOf3XXWfeH0zJNSXFPE9NhR9+MGm3gnGlShAebkprYWHmsUULs2zFCpNWK80jRpj0RESY5TYbnDljArDdbl4757O/f95BrUIFx3Fm/Yxmz3Zs+9prOX9W4eE5l4yjojwT2C4zKNKuXcG3KYRtJRgLUZoVVimxeXM4edK1TS8xEdq0McFl2zbzB5mYCDt3mjbCtDQTPJYtMyW2d95xlAzj4kwnmxMnTND58EMTDLKy2uaOHjXrWAHJ39+U0CxWeuLiTFADE1Stdr1y5aBKFTPfKrlVrOjYvlIlEzydq2mtYAimZHr6NLEHDlD/mmtMqdR5+//+F+66ywTknDr3fPpp7vncqZM5JisoDhgAjRq5rlOmTM7bejKoWe/hgcB2Wdt6iARjIbzBpQZFrU1b4tKlUK8eXHVVZpUpCQmm9Fa3rukQ88EHrsv++Qc2bTIlNV9fU31pt5sgaU1TpjiCR79+Zl2rLc7qmGO3wzPPwLhx2dP3+++m2nDtWnjssezLU1LMcderZ0pS9es7SodhYWbfYHq+duxolu3ZY6ptrcBmdS56773c8+mFF8yUW7teXm2CYI6ta1fXbV96ybH87rsBOLZiBfVzaiu87TZz0uGFJb0jR8xHO3u2OecoyLbFUZ7HewX2DfXr5bRMgrEQhSVrQE1LM8HL6oSzfbspnSUmOkqP1aubdTp3NiVBHx/TxhUWZpb36GFKQmfPmvd1LnUmJcF995lSldXJJqv33jPB+MwZeOMN0/vVmhISTECztvP3N8HQx8cxlStn1qtUyZTsrPkbNphq4fR0E5zi42HaNEebYVCQKR1efbV57/79zXEFB5sTgC5dsneS6dMn97ytV89MYNatVcvrqj+PHIHHHmvGzz/n8ifvpUHx5ZdNbfpLL5nKhYK4nMCWb34V0X49dbzWviEoJKdlEoxFyXM5pczVq03bYLNmppTp4+OoEpw507RdxsWZSx3i4kzwevZZs8/27R2BzdfXBNn+/c12YC7PSEx03eewYaaXaHKy2X9qqrmko1w5E9CaNzfr2e0mcFtBzno8edLRycZmM/sbOtQRcKOizB/Iww2Y/U8KlSo7dZ7JWkr8739zzq8VK0wnnQ8+yH3bO+7IO6+tAA2ms00+ATHfPz0vrP58+WWIiQm/pD95a/tLDRKXIjDQnP9ZJk82k91uKlKCgsxz5/5WhZnmy8mv3PartTlvPX4cjh1znSZMMOfHFut4bTbzMyxb1kxlyuT8GB7uut8PPjCd1OPiHJPVwpJ13r//7brvnCid9dqsK6Rly5Z6w4YNuS5fsWIFnQrYNby0KnF5lVcwTUsznXVOnDC/uPh4UwUI5vKIOXNMQLV6gLZp4xgNZ8gQWL6ci4mJ2G02UyqsV89x8X6jRqZt01m7dvDrr+Z548awdav59YaFmV/nTTeZTkITJsCYMY7OPddfb0p/TZpAr14muHQ5yezntlApyscRnCpWNNWuzoEtS3tinoEpa1DMYaCBhx+GqVNN59tsf3r5nLgcOQLdup3l55/L5LzvywmoecgzzUXInTSfO2dq+A8eNI8PP+y4NNWZzWa+Hv7+jmZs69H5+b//nfP2AQHmz76wxcWZ881vvjFXADkH5KyUcq3ssKbNm3OuiPHxgYEDzbE7X6nkPE2enHNg8vExTe9K5T5NmJBzXillWjmOH3d0Hndms5nLnlNSHN0GbDYTaMPDzd/I2bM5v/fl8vU1rSvJyaYyS+uWaL0h2ymOlIxF0Vi71rSRtW1relrabCaIHjniGAnHmqx/rPXrzb/gpEmOS0BuuAF+/tn82h5/HN5/nyPpFenHV8ymH5WC4h2lzb/+gthY1w46Vg9WMMHUx4dTx49TpXp18yuJinIsv/pqU5WstUnvPffAyJGZi498uYJ+w8sw+xubawkTTEAKCHAExddfdwlQL7wAq2MjeGZxFyZNMqUSP7+MUkdkZJ4lxbxKAQmN2nHqizWcWvYHJ2u34dTeBpzaYArMr76ac0nAx8ecN4SEQHBwO0Ki2hFyBEIWudZih4TAiy+a0svYsfD++1k+42vamQkghz/AceNMup9+2jTJWlfsWFNCQvZ5n3zi+ifvXFpLTDRpL0ovvmjO5R54AHr3dgRc58f4+OzbWR+99SdfoYKp8DhzxnHJrHNHb+d5OQWmChXMScFPP5mKhPDwSz8mrWHHDtOB+8cfzfGlpppAFBVlzgX9/MxP5cYbzX6d++E5t4pYU5s25ud25ozj/DM42JQgV6xwHb/DGuPDmoKDzXs4Bz4fH/NzfO89s35uU07KljUVWdWqmZ9S1qlSJROIrY7o06Y5Pq+773b8prQ2x3n2rDmuM2ccz/fvNycvO3Y4uljUq2daXqKiXLs5WJM1z6pdsPatcysBa609Ml1zzTU6L8uXL89zuXC4nLw6fFjrDh20PnIkh4W//qr1a6+ZR621PnVK6zVrtJ4/X+sZM7R+6y2tn3tO60OHzPI5c7Ru1kzrihVdf0Nff22Wv/FG5rzDVNIdWKGPEKn10aNm+QsvZP/9RURoHR9vls+bp/Xzz+sR1/2hbSpdj+h5UOuYGK3T013THBiotY+PebTS7nS8TZqcyf1489h2xAitbTbzaElO1vrAAa3XrtV6zqs79KRbf9bPDDyoBw7U+sYbtVYq978Wm03r4GCtK1TQulo1revVM9nXrp3WnTub5Tltp5TWlStr7e+f19+W1uHhWoeEON5HKa0DArQOCsp7uys9KaV1WJjWUVFa166tdblyOR97cLDWbdtqPXy41lOmaL1undaJiQX8Tmutk5LM12buXPOVfPDB3PMaTF63aqV1nz5a/+tfWr/5ptZffml+Cvv2me/A8OHmPfz9U7N9R/KTmqr1Aw+YfPDzM/usWFFrX19H/jRtqvUjj2g9e7bj55bXMSclaf3DD1qPHKl1jRqOY2ncWOtnn9V61SqtU1K0vv12rR9+WOstW8zj7be7n27rmAMCsv8u3N32UvLrcvbrqeN13jcEb9M5xESppi4B8syrrFWJWpsiyYkTcOIED4+PZOrC6jw0XPHhyG3w1ltm2d69ppSptTm1W77cFAvuusv1/X18TPGnbVtTgv3gA9Ouunmz45R5zBhTvIuNNdW8AQHc958WfLK4Cnd3Oc2zr4WRgh/JZxJJ2fgnyWNfJSVVkewbRMqLL5Fcox7JyabK0rmga/HzMwXLzBLdjg2EbFxJ8E3XYrsue5XtlCma4cOVyxnxhQsZbTwrNxO3agtxV7cmvlpD4uLg3ntzr77KOiiRlZ4qVcwZc9my5qqdPXtM2v38TAH9ppvM2fX5845RBK3n1nTunDkjT0hwZGVEBFxzjen4XL68Y4qIcH1etqz5aKyzcetSU6vaNz3d7MO5c7XzdPCgufrojz8c6W7QALp3dx0JMCdxcaZEFxvr6PDcqpXZd7VqZnvnKSjItV0ya5rvuMPsd8sWk54tW0zegCnt1K1rOo03a2amr76Czz+HO+80lRt//22mXbvM4z//uKa3QgXTHH/qlDlua+Crbt1MJU21ankfL5i+Z5UrQ/Pm69m8uRVHjphLet1lbT9smDn2I0fMMfz2mynJrlljfspWJVCtWqYlpH178/juu6Zav317k6fLlpnvdFCQaS255RaTh+4cy+Wk2d1jvpz8upz9Xo7C2q9SaqPWumW2BTlF6CsxlbSScX5n45e17S+/mBLq6tVax8ZqvWGDObX96Set58zRv02fbtY7fVrr8eO1fvppcxrdo4cp5dlspqT36ada2+1agw4gKcdSQADnTfHsqqscM318zP6PHNH655+1Xr9e6z17tD571rVUaslSwjy76De9dKkpheRVAimKKSjIlDLyKqH6+BS8JFe5stb9+2s9dqzWU6dq/f33Wm/erPXx41qnpblmR2GUIC73bPxySgLeVnpJT9d6715TUTJ2rNa9e7uW/nKaypc3pepBg7R+6SWtZ80yX+MzZwonzZai/N9KTtb699+1njjR5EmFCnl/pxcu1Pr8+SJLTqEobv/zhQHYoHOIidJmXEjy7VWYU2eX5GQ4epSXx5RlzZpQXhqXzocRL5pTriNHTJfGAwdMI5XWpqiQpUfHESrxaORy5neHSmlJMHasYyi8tDTS09LZS01iLjYl5r9ViKnxGzFnokk+YYcsJTp/f2jSLIAHGm/m6sB91Js2iqtTt1LT7xC+nTqZxhenXi1HjkC/nq6dXRITYXNaOzYM28b6FUlsOFOLnTcHZm5TtaopBR054ig1tW1r2ugiI00JzN8/98fRo02Jwc/PZN9dd8ETT+RewrOm48dNKePIEVMq9PExpYROnczZbl5tPmFhZujb6dMdpbXevd3vWHTsmBkwyfmM2l2Xsy24nrk7d4YuyL6bN9+UWXop6LaXku780qyUaY+tUcN8DpYdO+CRR2DVKsd368YbzVgi1hVWRZXmK8HPz9QwtGplvvNam/+cUaPMoGTWjYb69DEDjl3pa2jF5ZFq6suU9fIAi6+v5r0XT5N67BSpR06Q9t0PpKYpUvElLbwcqRfTeP38v0jL4XzIjxRm1XqesAp2wuP+IXzHb4Tps4TbEgjqewtqQP/MS1sefqcOU+aUZ/hwxfhxmpg/0onZ7kNMDMSsjWfbdkUijsvaatUy1aSNGzvGirCuwrn6alNlt2OHCV6Z6fFN56o6NurVM+tYj1Onmktc27c3VwGtX2/6P1kdcKKizNC5rVqZx5YtTTVqblWn7ricqiJrv76+aaSm+lyx/RZ3xeW3CJf33SoMnsgrTx/z5ShO363Ckls1tQRjJ7ld1qC1aUbdOXcrfy/Zx86g5uxMrMLO2DT+3m3jYrIt9zfNhY9Kw6Y06dpGmlZAHhfzOW/nowkLU5w9m72t0llEREbQjThC49TNNL6lKg37NSbE6XLzvALMmTOmt+SOHa6Pf/+de/upzWZKkFbgrVw55/U83eZzqe16pVVx+sP09EmTJ/LK08d8OYrTd6uwSDB2w7Bh5i5fnTub0t7OHen8vT2FnXt8OJfgKMH6kUwttZe6+i/qspPf7dezJrmNOTO9mM6A6mt447Zf8K1ZFd9a1fBJOIfvg/fim5yEj78PPksXoa41VdVZz2qHDjU1zefOOcaVOLd+J+c27yEuqj7nylTn3DkzFO+6da7Vrk2bmstIOnY0Vb55Xax/qVJSTHXvmDGm5j0lpfhVjZXGP4DLIfnlPsmrgimN+ZVbMC5dbcZZ2m21hp1bk2nU3I/UNEfkWrLETArowkoG2nZT55ba1F04ibrpsVRnP75tW5sGy1p16TOpPiPqWWemNo4c6UCV9zu47rv2ghyvI82pnSpbj8db6gJ1sx2OI5Cbatc2bTKHyC0yfn7mRKVBA9NeZV2vFx5ePAKxEEJ4o9ITjDNGKkq44Mty9Rs/lR/IT2fasC+1KgChIemcv2Azd2VTF+kdvZ53eq+iUrNKcFVDUwe7fJljUIe3384MqnN7OnaTayeZXIbR81QHm8vl7Z1dhBCiOClxwTiz3fcrTaXE3ejFS4idt4OfLtzAT+cXsJr2JGs7wScT6VwllqebbKFb5xT+vb0H0z6xZ5T07JS9tT2VJrV3ffPLvZ1YIbMC+YoViTnee/xK7BsKfhIhhBDClVcG48u5m8fLzySwZlUQ99ZaRbULf7GQ7hxgOAAN1Tb+xX/o5reU9otexN7RcSvwY33cKOmVwNuJCSGE8DyvDMZ53c0jYelvHP1pM0evas/RkNoc/WUPRzcd5vX1nUnTNsi4jGfhhU5AJ2w2zbTJmm7dFVUPxsGKZOj0ArRr6/K+UtITQgjhKV4VjF2v2VWZg8QrZa6PPXo4jcTzbYA2Tls1xId6lA9MJCUglHPnTO9iu9308J04UTlK11WlZCuEEML7FPwC2SK0Z48ZS9ZZWJi5a0mbNvDQNRv4t3qGzxjEIm7iz2vu5ficVSQnpHAsKTSzJ3FAgLnkpkwZ6eErhBDC+3lVybhyZXOJjFLg52cu1xkwwKmqenkS9Hjf0aP5/aX5XiYkhBBCeDuvCsZgAuqIETlcrjNlirmj0FdfmRvA59CjWdp9hRBCFEdeF4xzvFxn1Sp49FG4+Wbo0QN69sx1eyGEEKK48ao24xzt329uaFq7NsyaZcZ9FEIIIUoQ7w7GiYnQq5fpjTV/vmlQFkIIIUoYt4KxUqqbUuovpdQupdSzOSwPV0otUEr9oZTappS6t1BSl5RkulN/+aW5b58QQghRAuXbZqyU8gE+AG4CDgLrlVLfaa23O602Etiutb5NKVUB+EspNVNrnXzJKdPa3Fx35cqiuf2QEEII4SXcKRm3BnZprfdkBNevgF5Z1tFAqFJKYYbAOg3kctdbNyxYQJOnn4azZyUQCyGEKPHc6U0dBfzj9PogrkNgAfwH+A44DIQCd2ut07O+kVJqGDAMIDIykhUrVmTbWdC+fbQYORJblSqs+u030u12d46jVEtISMgxL0XOJL8KRvLLfZJXBSP55eBOMM6paKqzvO4KbAFuBGoDi5VSq7XWcS4baT0NmAbQsmVLne2m0mfOwIMPQmgosa+9RoeuXd05hlKvNN6g+3JIfhWM5Jf7JK8KRvLLwZ1q6oNAVafX0ZgSsLN7gbna2AXsBa4uUEpSU+Huu82lTHPncrFChQJtLoQQQhRX7gTj9UAdpVRNpZQ/0A9TJe3sANAZQCkVCdQD9hQoJYcOQWysuTPEtdcWaFMhhBCiOMu3mlprnaqUegT4GfABpmuttymlhmcsnwK8DHyilIrBVGs/o7U+WaCUVK8O27dDaGhBj0EIIYQo1twaDlNr/SPwY5Z5U5yeHwZuvqQU/P47fP01vP66BGIhhBClkmdH4Dp8GHr3NgNSx8Xlu7oQQghREnnuRhFaQ58+Jgj//DOUK+expAghhBCe5LlgvGOHGe7yf/+Dxo09lgwhhBDC0zxXTZ2UBL6+ULmyx5IghBBCeAPPthlrDTL6ihBCiFLOs8HY3x9k9BUhhBClnOeCcVQULF0K7dp5LAlCCCGEN/BcMK5USQKxEEIIgaerqYUQQgghwVgIIYTwNAnGQgghhIdJMBZCCCE8TIKxEEII4WESjIUQQggPk2AshBBCeJjngvHhw5CW5rHdCyGEEN7Cc8H4yBGIifHY7oUQQghv4dlq6jVrPLp7IYQQwht4Lhj7+UkwFkIIIfBkMA4JMcFYa48lQQghhPAGng3GCQlw8qTHkiCEEEJ4A1+P7blCBdi3D2xydZUQQojSzXORUCkJxEIIIQSe7k39/vvQt69HkyCEEEJ4mmeD8ZkzMHcunD3r0WQIIYQQnuTZYHzddaY39bp1Hk2GEEII4UmeDcZt2oCPj1xvLIQQolTzbDAOCYFmzSQYCyGEKNU8d2mTpU8fc4mTEEIIUUp5PhiPHu3pFAghhBAe5R0X+moNiYmeToUQQgjhEd4RjK+/HgYP9nQqhBBCCI/wjmBcq5bcNEIIIUSp5R3B+Lrr4Phx2L3b0ykRQgghrjjvCMbt25tHucRJCCFEKeQdwbh+fShTBn75xdMpEUIIIa44z1/aBObuTRMmQM2ank6JEEIIccV5RzAGGD7c0ykQQgghPMI7qqkB0tJg40bpxCWEEKLU8Z5gnJwM7drBtGmeTokQQghxRXlPMA4MhJYtpROXEEKIUsd7gjGY643Xr4cLFzydEiGEEOKK8a5g3L69qa7euNHTKRFCCCGuGO8Kxtdeax5l8A8hhBCliPdc2gRQoQKsWgXNmknpWAghRKnhVslYKdVNKfWXUmqXUurZXNbppJTaopTappRaeckpuv56CA295M2FEEKI4ibfkrFSygf4ALgJOAisV0p9p7Xe7rROGeBDoJvW+oBSquIlp+jQIZg2jYB69S75LYQQQojixJ2ScWtgl9Z6j9Y6GfgK6JVlnf7AXK31AQCt9fFLTlFiIrz0EmU3bbrktxBCCCGKE3eCcRTwj9PrgxnznNUFyiqlViilNiqlBl9yiurUgQoVCI+JueS3EEIIIYoTdzpwqRzm6Rze5xqgMxAIrFVKrdNa73R5I6WGAcMAIiMjWbFiRY47bHj11YTGxOS6XLhKSEiQvCoAya+Ckfxyn+RVwUh+ObgTjA8CVZ1eRwOHc1jnpNY6EUhUSq0CmgIuwVhrPQ2YBtCyZUvdqVOnnPfYqxeMGkWnq6+GSpXcSGLptmLFCnLNS5GN5FfBSH65T/KqYCS/HNyppl4P1FFK1VRK+QP9gO+yrDMfuF4p5auUCgLaALGXnKr27UkNDISdO/NfVwghhCjm8i0Za61TlVKPAD8DPsB0rfU2pdTwjOVTtNaxSqmFwJ9AOvCx1nrrJaeqVSt+WbCAjh06XPJbCCGEEMWFW4N+aK1/BH7MMm9KltdvAm8WSqpsNrSPT6G8lRBCCOHtvGs4TCfl166FVq3MpU5CCCFECea1wVgrBRs2wO+/ezopQgghRJHy2mAc17AhKCX3NxZCCFHieW0wTg0NhYYN5Q5OQgghSjyvDcYAXHcdrF0LaWmeTokQQghRZLzrFopZdesGZ87AuXNQrpynUyOEEEIUCe8Oxr17m0kIIYQowby7mtpy7pynUyCEEEIUGe8PxiNGQJMmnk6FEEIIUWS8PxjXrw8HDsA//+S/rhBCCFEMeX8wvu468yjXGwshhCihvD8YN20KwcFyvbEQQogSy/uDsa8vtGsnJWMhhBAllndf2mR5/HGIi/N0KoQQQogiUTyCcY8enk6BEEIIUWS8v5raEhMD69d7OhVCCCFEoSseJWOAoUOhTBlYutTTKRFCCCEKVfEpGV93HaxbBykpnk6JEEIIUaiKTzBu3x6SkuCPPzydEiGEEKJQFZ9gbA3+IdcbCyGEKGGKTzCOioIaNSQYCyGEKHG8sgOX1rks+PZbqF79SiZFCCGEKHJeVzJOTYXu3WHhwkrZg3LTpqZHtRBCCFGCeF0wjouDCxfgjTeupm9fOHXKaeH58/Dqq3J5kxBCiBLF64JxuXIm1g4btpsFC6BxY1i0KGOh3Q5vvglff+3RNAohhBCFyeuCMYCPD9xzzz/8/juULQtdu8Jjj8H5iza49lrpxCWEEKJE8cpgbGnWDDZsgH/9CyZNgpYtYUvtO2D7dpg1y9PJE0IIIQqFVwdjgMBAeO89+PlnOHMGWk+9jzdrfUjagEHwv/95OnlCCCHEZfP6YGy5+WZzr4jbblM8vWcEnWvt40CTWz2dLCGEEOKyFZtgDFC+PMyZAzNmwMbjVWnSys6sjxLgtttg505PJ08IIYS4JMUqGAMoZW7g9Mcf0LAhDBgWQv/FQznT6manbtdCCCFE8VHsgrGlVi1YuRJeeQW+SetD0/NrWd7tDXjnnTyG8BJCCCG8T7ENxgC+vjBmDPz6qyKweiSd9WKe+r9ULr72tqeTJoQQQritWAdjS6tWsGmLjYceUrzFUzT/9HFWrPB0qoQQQgj3lIhgDBAcDJOnKH76CS6k+nLDDTCo9q8c/Wmzp5MmhBBC5KnEBGNLt26wbRu88Ng5vt5zDVffUpMPhq4nLc3TKRNCCCFyVuKCMZiBQl56N5yYtYm0KrOLRz5tRZvog6xfJxFZCCGE9ymRwdhSt205Fh1twuwuH3H4qI027RQPP2xG8hJCCCG8RYkOxgDK7s9dix9kx8SfeOyeE0ydCvXqpvPZJ+lyBZQQQgivUOKDsSXsift5Z1YkGzfCVT57GXKvjY51DrFtfZKnkyaEEKKUKzXB2NKsGayZvJWPa09g2+4AmrX24+nWK0jYcdDTSRNCCFFKlbpgDGC7vRf373qOv37ay5Caq3lzfSfqtwxi7lwZvEsIIcSVVyqDsSWiW0s+3nMjv/zvKOWqhXDHHdCl1VmWNfoX+n9zkeuhhBBCXAmlOhhbru1TiY1/+vPuu7BtdyCdt02ibd8o5lUZSfo770F8vKeTKIQQogSTYJzB1xceewz2HbEz5cN0TkY2pM/xKTT8v5v5pPbLJF9I93QShRBClFBuBWOlVDel1F9KqV1KqWfzWK+VUipNKdW38JJ4ZQUEwEMjbPx1MIQvvwR7nWrce+LfXFXXxnvvpJM4aDjMmwfJyZ5OqhBCiBIi32CslPIBPgC6Aw2Ae5RSDXJZ7w3g58JOpCf4+kK/frD5r2B++glq1oTH/89GtZkTGN9nC6cqN4InnoA///R0UoUQQhRz7pSMWwO7tNZ7tNbJwFdArxzWexT4H3C8ENPncUqZ8a5XroRffoHreoQzjvFUP/cn/zepOgeb3oLcIkoIIcTlcCcYRwH/OL0+mDEvk1IqCrgdmFJ4SfM+114L3y2wERMDffoHMEk9Ri2f/dz3SQd27ABeeskUpxctkp7YQggh3KZ0PhfWKqXuBLpqrR/IeD0IaK21ftRpnW+At7XW65RSnwDfa63n5PBew4BhAJGRkdd89dVXue43ISGBkJCQgh/RFXT0aABffx3NDz9UJiXFRtvIHTQ9tYY6KbFUDTtJeIco7Lc3RdeqVKTpKA555U0kvwpG8st9klcFUxrz64YbbtiotW6Zdb47wbgdME5r3TXj9XMAWusJTuvsBVTGywggCRimtf42t/dt2bKl3rBhQ677XbFiBZ06dcozbd7i+HF4/3348UfYvVtz7pxyWV6lCtSuraldNYXa9f2pXZvMqVw5UxWen7Q0SErKedqyZTPDhzfHbi+iAyxhitN3yxtIfrlP8qpgSmN+KaVyDMa+bmy7HqijlKoJHAL6Af2dV9Ba13Ta0SeYkvG3l5Pg4qRiRXj5ZTNprTh9Gnbvht3rT7N7l2b32fLsjjnPollnOOxaw094uAnKlSvDxYuQmJhzwL14Ma8UNGfsWLj9drj7bujcGfz8ivSQhRBCFKJ8g7HWOlUp9Qiml7QPMF1rvU0pNTxjeYluJy4opaB8eTO1bl3OseCfUzB1KknfL2PvH+fYTW12h7Vg980Pszu+IocPm/swBweb4B4UlPMUHJx93q+/xvD3342ZOxc++cTsu08fE5g7dQIfH0/lhhBCCHe4UzJGa/0j8GOWeTkGYa310MtPVglUtSq88gpBr0DDI0douHAh/PQTfGSHcGDiRPjuO+jSHW65BRo1cq/+GlDqFGPGwJQp8PPPMHs2zJoFH31kAnvfviYwt28PNhnmRQghvI78NXtC5cpw773w9demnhrM49mz8Oyz0KQJVKsGjzxSoDtXBARAr14mEB8/Dt98Ax06wPTp0LGjecsnnoB16y7thhgpKXDkCMTEwLJlMHeu2Y8QQojL41bJWFwB999vpkOHwCo1Hz7sKB3ff78J2O3aQdu2pqSdh6AgUyLu2xcSEmDBAlNi/vBDePddqF4d7rrLtDPbbHDiBJw8mffjuXPZ92O3w5Ah8OSTULdu4WeLEEKUBhKMvU1UlCMwW9LTYc8eU6R95x3Hev/3f2YC08Mrl+7UISFwzz1mOncOvv3WBOZ33oE338y+vr8/VKgAERHmsUYN19fWo78/fPqpmT76yJTKn3rKXI8thBDCfRKMiwObDZYvN+Nh//GHCcpr15rrogD/U6cgNBSaNzelZqv0XL16tnbn8HBTkh0yBE6dMoOHBQS4BtmQELebq7n2WjPWyX/+Y0rd335rdv/UU9Czp3QeE0IId0ibcXHi7w+tWsGjj5qG4aFDHcv+7/9MVP3oI1MErlkTvvzSLDtyBJYuNW3STsqXhzvugB49oHVrqFXLxHR3A7ElMtJc1nXggLne+uhR05u7fn2YOhXOn7+soxZCiBJPSsYlQHL58vD66+ZFSgps3WpKzh06mHnffw/DhpnndeqYgN6ypQnmZcsWWjqCg02fs+HDTeeuN980z194wZw/PPywOQEoavHxsH+/OTnYv9/1+YEDkJbWhs6d4frrTRbVq1fwExAhhChMEoxLGj8/U13dvLlj3p13mirrDRvMtGqVKVkPGWKWf/yxuQuGFaSbNs21/dkdvr6mc9idd5pdvfkmvPgiTJgA991nCvG1ahXsPbU2tfQJCWY6dix7oLWenzmTPT1Vq5os6NwZ9u5NYNGiQL74wiyvUMFc9mUF56ZNzTZCCHGlyF9OaVCmDNx8s5ksx49ntjlz5Aj88IMZMQRMQG/dGlavNkXGgwdNxCpggFbKXFLVsSNs3w5vv21q0SdPNtXjzZqZwJqY6Aiy1pTTvNzuvREaagJt9epw3XXmEi7rdbVqUKmSa9v1ihXb6NixE3//bU4WVq8207x5ZnlIiGkLt4Jz69amBUAIIYpKvmNTF5X8xqZevXo1lStXJiUl5Qqmqni6cOECAYURLVJTTfHz4kVTFHUO1snJps3a398E64AA87yA0tIgLs5UJVtfPZvNBG7r0fl5bstsNlN69fUt+EAmueVXaqo59AsXzKPzV89uN1NAgJlKU7V2oX2/roD0dHMil5ZmTtKcT8L8/PyoWLEiYWFhRbZ/T4y1HB8PX3wBLVpAmzZXdNeXTcamdvDKknFcXBxhYWFUqVKFwMBAVGn657sE8fHxhIaGFt0OKlc2RVNroOzUVNNAfNVVZvn+/SZSWeNzulHHm55uHq0AeyW5m1+pqY5SeXy8OfT0dHNeUqaMOVe5lA5vxU2Rf78KwcWLprLn5EnHydrFi6ZCp1Il8PPTnD9/nkOHDgEUaUC+kn76yfTLOHDAvO7WDcaONRdTiOLFK4Px8ePHiYqKIigoyNNJEWAiT5ky5rnWpshoRdO0NHPxcnKyY31/fxPAK1RwNPb6+7tEreIwLKevr+uhp6WZoHz6tJlOnjTrlC1rAnNBLglzR1qao7o+KclRG+DjYybredZ5Vi1CSae1yZvjxx39BMqVM0PA+vqaXv3Hj5sBaypUUFSqFERUVBSHDx8u9sH4xAkzmt7MmeaqhSVLYONG0z+jXTvo2tUE5XbtPJ1S4S6vDMYpKSn4X0IVqLgClHKtnvbxMcN3pqa63mbKKh1fuADbtpkIERhoSs6BgeaC52J2z0cfH0dwTk835yCnT5vrtU+cMLX3Zcua6VICs3MHNSsAWwICTPBJTc297dyiVPaAHRjoyP6AgOJxMpSb9HQTfI8dM3nk42NKvxUrun41a9Qw54RHjpjP58QJKF8+kPPni2/Tl9am7+Xjj5vv39ix8Nxz5qfUubO5YmHyZPj3v02/h5tvhnHjJCgXB14ZjAGpmi5ufH0hLMxMWedXr24uNk5KMtErLc1UcdvtJuocPeoaLex2ry/a2WyOwGtVDpw+bf7wjx83gblcObM8ODj74WhtssQ5+FqVCzab2aZyZRPUQ0Jc2z61NvtMS3MEZ+fnOT2eOOHaNOCc3db5UWH2ILdOHGy2whv4JSXF1EYcP26eBwSYDnrly+e+D7vdEZSPHoWTJxUnTsCkSSaIFbRXvyft3w8jRpiq6TZtzEUQjRq5rhMSYgbcGTHCNSjfdJMJyjI6nvfy2mAsSgg/P1NdbbGqua1/z9RUU3p2HpDEZjN1b4GBpp72wgVHzykvHNLLx8cE3nLlTPA7e9aU3I4fN6U3f38TlENDzfmIFXyt4Ojvb4JvZKT5Mw0KyvtcRClH5zV3Kxe0NtlonRMlJZkTiFOnHOv4+7sG56AgR0kzPd18VKmp5uOznuf02posfn6uHeCs53a7eycA58+bfDx1yhxHWJgJsGFh7p+z2e3mnLByZVi/Hj7/HGbMgEGDYPRoc/m9t0pLM6PbPfecef3eezByZN4/BSsoO5eUr7vOBOWxY81z4V0kGBeioUOHcvLkSb7//ntPJ8V7Za3mdq73PX/eMVlR5vRp809ssf7Z69Y1QfvCBfMPbbd7Rd2rj4/jftapqdkDM5hAV768o9R7JWrrnUvDVid5MIHUuXXh/HnX8yIfH9A6JPPEISe+vuZj8fV1lLCt12lpjh7qcXGuwd/a1jk4OwfspCSTZ3Fx5qONiDBV0YGBl54P/v7m+PfsMe2rU6bAZ5/BgAEwZowZAMabbNsGDzxgRsDt2tWkt0YN97cPDoZRo0xJecoUE5Tbt4cuXUxQbt++yJIuCkiCsfAOVt1scLDr/Kgo8y984YLrNUdW4D182ARscPybBwVBdLSZZ5XCPRCofX1N0iMiTGA+f94kzZsK935+pvneupMnmADqfF6UkpJCYKB/ZoC1Jj8/cywFaVGwgrPzdOGCqSmwPsas6YuKMpUrhVmNXqWKuVHKM8+Y698//NBcHtSvH/zrX2afYWGmNsMT53gXL5pBcl57zaTj88/NCcOltt4EB5s7qw0f7gjK119v2pnHjZOg7I70dNi505zItWrlWuFXGCQYC+9mdfzKrThUubKJJFagtv7ZLbt3m9f+/pnFLl8fH/MvC+YXdgX+bX19Hbv0dj4+jlI7QHz8RUJDC6dDpY+Poyo8K+uyMetj9PMzlSZF+fFUqmRKyE8/DRMnmhueWEO6W0JDTUAMD3d0i8jt+cGDEfj7m2BfufKl1XqsXWtKw9u3Q//+5panhfXHbwVlq6T8xhsmKIeHm7yIjHQ85vS8YsUr3+9Sa/jnH3Mf9ZgYM9pvTIxpZmnY0PQftaa6dc33pjD2eeCAadKwpo0bTS0NmJOiVq2ge3cztWx5+SfZEoyLyMWLF3nmmWf48ssvOXfuHM2aNeOtt96ifcYpaEpKCk8++SRz5szh1KlTVKxYkQEDBvB6xhjTc+fOZdy4cfz9998EBgbSuHFjvv76ayIjIz15WN4nr0AN5t8jNNRRDDtzBl/nf5OtWx3V3NYUEpK9I5oocjabo2uAc0n9SqhQwZRER40yN0g7e9b88Z47Zx6dn587Z/6orfnO537QiHHjHK/KlTOB2XmqXNn1daVK5lwxIcG0X//nP6Zi5/vvzU1cikJQkBmWdvhwU02/bZtpEjh2DLZsMY853b8czAmSc5B2nipWdH0s6NWpZ844gq4VeLdudU1L1arQuLEJxNu2weLFjgF6/P2hQQPXAN20qUlPXo4fdw2869ebTo9ggnvTpqZmomVLcw+e1atNR7qXXoLx402zU9eucMst5jEiomDHDRKMi8zTTz/N119/zfTp06lVqxYTJ06kW7du/P3331SuXJlJkyYxb948vvrqK2rUqMHBgwf566+/ADh69Cj9+vVjwoQJ3HHHHSQkJLBu3ToPH1Ex5dxAmuFCXBx+YIJwhQqujZopKWZeWJhZ/scfrj2Q7HYT3C+n4VJ4rfLloW/fgm1jXX8eFweLFm0gOrolhw+bFpQjR8h8vn276dHt3LnNEhHhuGRr5EhTPX0lalKCgkxAzsmFC44AfeyYSXvW5/kF7pAQR2DOKVhv2hTJjz86gm/GmCyACfqNG5sg2Lix6TneqJHjun9LcjL89Rf8+adjWrLEnGRYIiNdA3RkpEm7FXitQVOUMsG8Rw9T8m3VyqyftTbghhvMePunTsGiRSYwL1xoLju71FKzVw6HGRsbS3R0dPZRf3IaNu2uu0yXwaQkc1qS1dChZjp5Mudf2YgRcPfdph5k0CDXZStWuHEkzrsyHbhmz55N2bJl+fjjjxk8eDAAaWlp1K1bl3vuuYdXXnmFf/3rX2zbto0lS5Zku4xr06ZNXHPNNezbt4/q1avnu9/iMEKSN8kzv9LSTBC2eh8dOuTawKm1aVCsXNnxL+Dv7xge1CpZl6Dr5Eva9ys2Npb69esXyXvnN7xjerr5K8opWMfFmUBcHC8/unDBlCStYG11WMzp+YkTjqFwwfxk6tc3AdeaGjUyP7PLucLx5EkT4J2D9NatJq2W2rVNsLQCb4sWjuaZgkpPN1XZP/1kpt9+M8eZtdRcoUIxGg6zuNu9ezcpKSlc53T9gI+PD+3atWP79u2ACdw33XQTdevW5eabb+aWW26he/fu2Gw2mjZtSpcuXWjUqBE333wzXbp0oW/fvlQo7B4DIjvnU1gfH3Mhq8W6LMv6h9DaNMJlVH9nFnlq1jS/wMRE2LvX/NtYgdrf3xR5CqNhSxQ7NpspFVasaG6UUlIEBJjq46pV8183Lc1xvfjmzb/Tv3/rIrlLWkSEKcHecIPrvnftMidBTZrkWHF2yWw2R1DPq9Scm+IVjPMqqQYF5b08IiLv5VWrFrgknBurtiGngUuseS1atGDfvn0sXLiQZcuWMWTIEJo2bcrixYvx8fFh0aJFrFu3jkWLFvHf//6X5557jpUrV9K0adNCSaO4BFkvy7LbXUeNsLoKO68TEOAYWssaOqtePROMz541JW/nQO3vb6rI5R6OooTy8XFUW586lXRFv+o+PubndyUuYStfHu65x0zp6bBpkwnML76Y8/qevzCzBLrqqqvw9/dnzZo1mfPS0tJYu3YtDRo0yJwXGhrKnXfeyeTJk/nhhx9YtmwZu3btAkzQbteuHWPHjmX9+vVUqVKF2bNnX/FjEQVgdRW2/l2sm2k0aGDuL92smXlu9Wqx2UwQTk42p9EHD5rrJqwS9rFjps06Ntb0Cv/nHzPPCupWlboQwqvZbKY6/IUXcl9HTr+LQHBwMCNGjODZZ58lIiKCmjVr8s4773Ds2DEefvhhACZOnEjlypVp1qwZfn5+zJo1i7CwMKKjo1m3bh1Lliyha9euREZGsnnzZv755x+XQC6KIesCXUvW4UPT0kxgtnqLBASY5cnJ5oLfc+fMKbbVXHHokGNQbKt0bbeb9mylTFAv6IXAQgiPkGBcRN544w0A7r33Xs6ePUvz5s1ZuHAhlStXBkyp+M033+Tvv/9GKUXz5s356aefCAoKIjw8nF9++YX333+fs2fPUrVqVV544QUGDhzoyUMSRc26o4Ml62gc1qDU1oW34eHmeXKymawuvVWqmOX79pmqcOdAHRho6gdBgrUQXqR49aYWOSppvV2LWonOL60dwfXsWdOJ7OJFx2gafn6mqhxM9XdSkgnWVqk9JMSUrK3tgcTkZILDw0vM/Rk92ZtauCqN+aWU9KYWouRzDpTON2O2OJ98V6xoqr+Tkx13fLh40bF8/35IScFlgNJy5Ryd1nbvNsHZ6nhmXeJVzG6NKYQ3kGAsRGniHKzLl8973auvhpQUkuLjCfLzMwHbCrRamyCekuK49yOYAF+tmmnbjo11DdTW7akCAgr/uIQo5iQYCyFyltHOnKZ19uGglDIjNYDj+uvkZMd12unpjp7iiYmOHuLR0WYsxYsXYccO11s8+fqaE4TgYMfdKqz50rYtSjgJxkKIy2Ndf+18fbWvr7msy5KW5nofazAd0Jyrx1NTHXfuSkoyo5s578PX1wyoEhZmlp865RrM/fy89p7XQuRHgrEQouj5+LgGSbs95xvzWm3agYFQp44jWKemmskaueziRXNZV9YbLV99temEduqUGWPSCtJWwLbuGHD0qOmgFhlp2tWl1C08TIKxEMJ7WEHR1zfvWzeVLWumtDRHoE5JcbRH+/mZErZV6k5IMOtY12h//LFjBAY/P8edC5YuNcF58WIzsHHW2xJVqCCBWxQJCcZCiOLLKnFn7cGddUAVcO1Jfuedpld41jsZWHcJmDcPJk923d7X1wR2pcx989ascb0lUdWqjmu8z541I62VoBuGiKIlwVgIUTo4l2jzG6D4gw/g1VddA3V8vGPAFV9fU9res8csS0yE6tXhk0/M8n794OefTSnbCtbNmsF775nlc+ea2wdFRJhOaxERZgoOziExojSQYCyEEFkp5agKzylojxljJktiohmudOdO83rYMLjuOteSt3W3eoBx40w1uLNOnWD5cvO8Vy/zns6B+pproGdPs3zvXrMsNFSqzUsICcaiVBo3bhxz5sxh69athfJ+K1as4IYbbuDEiRNEREQUynuKYsTqBW4F4z59zJSb5ctNcD51ytxP8ORJ1+u+w8LMvC1bzDqnT0P//o5g3LixCdYBAabUXamSuT3QY4+Z6vjJk7O3d0vg9moSjEWRq1GjBo888gijRo3ydFIyjRo1ikcffdTTyRClVfnyeQ+68vnnrq/T0ky1NphgO2WKKW0fPeqoRrfExcHIkdnf84UX4KWXTHDv08eRBmu66SZTlX7hgil5R0SYmgG5necVIblczCU7j34k8pWenk5aWhplypQhxOqsI0hNTcXHxyfHe3ALL+Dj42hPVgryumlMaKgJ0lagPnrUVJW3a2eWW0F9504TmE+dMr3OP/zQBOMdO8wtPy3WsKrvvWdK5jt2wBtvmN7u1rLwcBPMo6NN2/rJk2Z+WJhc9+0muZ9xIVu1ahVt27YlJCSE8PBw2rRpw9atW/nkk08ICQlhwYIF1K1bl4CAAG644Qb27NmTue3u3bvp1asXlSpVIjg4mBYtWvD999+7vH+NGjUYN24c9913H2XKlGHAgAEAvPTSS1SvXh273U6lSpUYPHhw5jZaa/79739Tu3ZtAgMDady4MV988YXbx3T48GEGDBhA+fLlCQoKolmzZizPaNvKL82dOnVi//79PPXUUyilXP7sf/31Vzp27EhQUBBRUVGMGDGCuLi4zOWJiYkMHjyYkJAQIiMjmTBhArfeeitDhw7NXOfMmTMMGTKEsmXLEhgYSJcuXdi2bVvmcivff/zxRxo1aoS/vz9//fUX48aNo1GjRi7H+emnn9K4cWPsdjuRkZEu+5k4cSJNmjQhODiYqKgoHnjgAc5m3EihoE6dOsU999xDdHQ0gYGBNGzYkBkzZriso7Xm7bffpk6dOtjtdqKjo3nuuefc+kxyOjYrHyzWOp988gm1a9fGbreTmJjIwoULuf766ylbtizlypWja9eu/OU8+EYe+963bx8+Pj5kvQHMRx99REREhJw4Xik2m6mWbtoUbr4ZBg+GUaNMGzZAVBSsXAlbt8KRI6aHeFwcDBlillerBrNmwaRJMHasCfzXX++4RvvkSVi2DGbMML3Kn3gC7rsPrN/dkiWmp3q5co7Lxpo0MVXuAH/+CRMnwpdfUmbzZjNs6tmzpf7e3CW/ZLx2LaxYYTpHWGeGRSQ1NZVevXpx//33M3PmTFJSUti0aRM+GWeGFy9eZPz48cyYMYOgoCAee+wxbr/9drZs2YJSioSEBLp3784rr7xCYGAgs2fPpk+fPvz5559cffXVmfuZOHEizz//PBs2bEBrzfz583nrrbf48ssvady4McePH2fdunWZ6z///PPMmTOHDz74gHr16rF27VoefPBBypYtS48ePfI8psTERDp27EjFihWZN28eUVFR/PHHH5nL80vz3Llzadq0Kffddx8jRozI3C4mJoabb76Z8ePH8/HHH3P69Gkef/xx7rvvPubMmQPAk08+ycqVK5k3bx5VqlTh5ZdfZvXq1dx+++2Z7zN06FD++usv5s+fT9myZRkzZgzdunVj586dBGbcjvDChQu88sorTJ06lQoVKuRYIp46dSqPPfYYr732Gj169CAhIYFly5ZlLrfZbLz77rvUqlWL/fv38+ijj/Loo4/yedbqRDdcuHCBFi1a8MwzzxAWFsaSJUt46KGHqFatGp07dwZg9OjRTJ48mYkTJ9KhQwdOnDjB5s2b3fpM3LV3715mzZrFN998g7+/PwEBASQmJvL444/TpEkTzp8/zyuvvMJdd93Fjh078Pf3z3PfNWrUoEuXLkyfPp2WLR03pZk+fTqDBg3CXy7z8U5KuQ53Wq6caX/OTfv25iYiYKrP4+NNMLWu4W7RwvQqP3vWtHVbpXPrUrNVq+DJJwFoBvB//2fm//UX1K0LX31lpshIU+IODTXTQw+ZwWB27jTvFxpqLkWzHoODi3ebuNbaI9M111yjc7N9+3YdFxeXfUHHjtmnDz4wyxITsy9r1kxrf3+tfXy0Dggwr7Ou89VXZvsDB7IvK6BTp05pQK9YsSLbshkzZmhAr1mzJnPevn37tM1m04sXL871Pdu0aaNffvnlzNfVq1fXt956q8s6r732mq5bt65OTk7Otn1CQoIOCAjQq1atcpn/2GOP6e7du+d7TNOmTdMhISH6xIkT+a6bV5rffPNNl3UGDRqk77vvPpd5mzdv1oA+duyYjo+P135+fvrLL790OZYyZcroIUOGaK213rlzpwb0ypUrM9c5e/asDgsL0x999JHW2pHvGzZsyFwnLi5Ojx07Vjds2DBzXlRUlH7mmWfcPsaffvpJ+/v767S0NK211suXL9dAgfLJ2d13363vv/9+rbXW8fHx2m6368mTJ+e4bn6fSdZj09rkQ3BwsMs6vr6++ujRo3mmKyEhQdtsNr169Wq39v3NN9/oMmXK6PPnz2utzW8Z0DExMXnu50ravn17kb338uXLi+y9S4z0dK3PnNE6NlZvnjhR61mztJ440fyHa631Rx9p3aSJ1hUrmv9tU2bWOiHBLH/iCcc85yk11Sx/5hmt69bVum1brXv21Pr++7V+4QXH/rdu1XrjRvOfn5R0RQ9da62BDTqHmFiyS8bnzpm2EKv649y5vEf1uUzlypVj6NChdO3alc6dO9O5c2fuvPNOqlatCpjSVevWrTPXr169OlWqVGH79u106dKFxMRExo8fz/fff8+RI0dISUnhwoULNGnSxGU/zqUOgN69ezNlyhRq1qxJ165d6datGz179sRut7N9+3YuXLhAt27dXKqIU1JSqJHTcIRZbN68mSZNmuTaQ9jdNGe1ceNGdu3axezZszPn6YzPaffu3QQFBZGSkuKSX8HBwS7Vr7GxsdhsNto51XiEh4fTuHFjtm/fnjnP19eXZs2a5ZqW48ePc+jQocxSaU6WLVvGhAkTiI2N5dy5c6SlpZGcnMzRo0epYg304Ka0tDRef/11Zs+ezaFDh7h48SLJycmZ93Xdvn07Fy9ezDU9+X0m7oqOjiYyMtJl3u7du3nhhRf47bffOHHiBOnp6aSnp3PgwAG39t2rVy9GjhzJ3Llz6d+/P9OnT6d169bZqs1FKaZUZlvz2aNHTa2lswceMJMlJcX0HA8KMq8feQRuucVc5x0fbx7Pn3e0Tdeubdq+T5+Gfftg/XrTCe2ll8zy0aPhu+8c7x8cbNZfs8a8fucdOHjQxAprqloVrN/joUNmMJfw8EId1KV4BeMVK3JfFhSUffnatSYDk5NNps2cmXtVddWqeb+/m2bMmMHjjz/OwoUL+e677xgzZgzffvutW9uOGjWKhQsX8tZbb1GnTh2CgoIYPHhwtra24CwDA0RHR/PXX3+xdOlSlixZwpNPPsn48eP57bffSM8Yu3fBggVUq1bNZTs/a5zfPFgB8nLTnFV6ejoPPPAATzzxRLZlUVFRme2UeXUoyittztvZ7fbMpoKCvg/A/v376dGjBw8++CAvvfQS5cuXZ9OmTdxzzz2X1A761ltv8fbbb/Pee+/RuHFjQkJCGD16NMePH3crPfktt9ls2dZJSUnJtl7W7xHAbbfdRlRUFFOnTiUqKgpfX18aNGiQeZz57dvPz4/Bgwczffp07rrrLj7//HNesv4EhbgUfn6u9+WuVctxT+2cPPigmZw5f29fecW0cZ84YTq2nTjhOtjK4sWmTT0pyTGvXTtHMO7WzbS3g7m0LDzczLMGfLlExSsYF1S7dmas2SvUZmxp2rQpTZs25ZlnnqF79+58+umn3HzzzaSnp7N+/XquvfZaAA4cOMDhw4epn3ErujVr1jB48GDuuOMOwLQt7t69m7p16+a7z4CAAHr06EGPHj149tlnqVSpEr/88gvt2rXDbrezf/9+brzxxgIfS4sWLfjiiy84efJkjqUhd9Ls7+9PWlpatvfdtm0bVznf2cfJVVddhZ+fH7///js1a9YEICkpia1bt1K7dm0AGjRoQHp6OmvXrqVDhw4AxMXFERMTw7333uv2MUZGRhIVFcXSpUu56aabsi3fsGEDycnJvPPOO5lBPWvHuoJYs2YNt912G4MGDQJMgNu5cydlMv5wGjRogN1uZ+nSpdSpUyfb9vl9JhUqVODYsWNorTNPSrZYnWfycOrUKWJjY/nggw+44YYbANi0aROp1u0P3dg3wIMPPkj9+vX58MMPiY+Pp1+/fvnuW4gi5XxS37ixmXLz44/mMSXFdGw7d841mI8fb0rH1rJz50xb92Uq2cEYTAC+QkF47969TJ06lZ49exIVFcWePXv4888/Mzsu+fr68vjjj/Pee+8RGBjIE088QcOGDenSpQsAdevWZd68efTq1Qs/Pz/Gjx/PBesyhDzMnDkTX19f2rRpQ0hICLNnz8bPz486deoQGhrKqFGjGDVqFFprOnToQEJCAuvWrcNmszFs2LA837t///68/vrr9O7dmwkTJhAdHU1MTAyhoaHccMMNbqW5Ro0arF69moEDB2K324mIiOCZZ56hbdu2DB8+nIceeojQ0FB27NjBggULmDp1KiEhIdx3330888wzREREULlyZV555RXS09MzA0ydOnXo1asXDz30ENOmTaNMmTKMGTOGsLAw+vfvX6DPbsyYMTzxxBNERkbSo0cPkpKSWLp0KU8++SR16tQhPT2dd999lz59+rBu3TrefffdAr2/s7p16zJ79mzWrFlDREQE77//Pnv37qV5xuUkoaGhPPbYYzz33HPY7XY6dOjAqVOn2LhxIyNGjMj3M+nUqROnT5/mtddeo1+/fqxYsSKzU1xeypYtS0REBB999BFVq1bl0KFDPPXUU/g6XWea376t42vfvj1PPfUU/fr1IyzrGNFCFAd+fjlfD57XYC6XI6eG5CsxXVIHLi939OhRffvtt+sqVapof39/XbVqVf3UU0/p5OTkzA403377rb7qqqu0v7+/7tChg/77778zt9+3b5/u3LmzDgoK0lFRUfrNN9/UPXr0yOywpHXOnaFmzZql27Ztq8PDw3VQUJBu2bKlXrBgQeby9PR0PWnSJF2/fn3t7++vIyIidJcuXfSiRYvcOq5//vlH33XXXTo8PFwHBgbqZs2aZXZUcSfNa9eu1U2aNNF2u12br5yxfv163bVrVx0aGqqDgoJ0o0aN9AtOHS3i4+P1wIEDdVBQkK5YsaKeMGGCvvHGG/Xw4cMz1zl9+rQePHiwLlOmjA4ICNCdO3fWW7duzVyeteOS1jl34NJa648//ljXr19f+/n56cjISH3vvfdmLnvvvfd0lSpVdEBAgL7xxhv17NmzNaD37t2rtS5YB67Tp0/r22+/XYeEhOgKFSrop556So8YMUJ3dOo0mJaWpidMmKBr1qyp/fz8dHR0tB49erRbn4nWWk+ZMkVXq1ZNBwUF6bvvvlu/++672TpwZT1+rbVeunSpbtiwobbb7bphw4Z64cKFOjg4WM+YMcPtfWut9aeffpqtc523kA5c3qM05he5dOByK3AC3YC/gF3AszksHwD8mTH9CjTN7z1LYjDOS05BobCUtLzKzYULF3RkZKR+6623Lut9Skt+FZZLya/XX39d16lTpwhSc/kkGHuP0phfuQXjfKuplVI+wAfATcBBYL1S6jut9Xan1fYCHbXWZ5RS3YFpQJtCKLiLUmzz5s3ExsbSunVr4uPjeeONN4iPj+fuu+/2dNJELhISEtixYwfvvfceY5xvpCCEyJM7I3C1BnZprfdorZOBr4BezitorX/VWp/JeLkOiC7cZIqi8tprrxESEpLj1L17d08nj4kTJ9K8eXNuvPFGjh07xqpVq4iO9u6vV/fu3XPN09dee83TyStSjzzyCNdddx3XXXcdDz30kKeTI0SxoXQ+lyoopfoC3bTWD2S8HgS00Vo/ksv6o4CrrfWzLBsGDAOIjIy85quvvspxn+Hh4dSsWTPPy1GEQ1pa2iXn1enTpzlz5kyOywIDAwt8DW1xcDn55Y7Dhw9z/vz5HJdZw0wWJ0WdX1farl27OHfuXJG8d0JCgox5XgClMb9uuOGGjVrrllnnu9ObOqcLPXOM4EqpG4D7gfY5LddaT8NUYdOyZUvdKevF3hliY2Px8fEh1HmINpGr+Pj4S86r0NBQqlevXsgp8m6Xk1/uqJfXTeuLoaLOrystICAgs+d6YVuxYgW5/a+J7CS/HNwJxgeBqk6vo4HDWVdSSjUBPga6a61PFU7yhBBCiJLPnTbj9UAdpVRNpZQ/0A/4znkFpVQ1YC4wSGu9s/CTKYQQQpRc+ZaMtdapSqlHgJ8BH2C61nqbUmp4xvIpwItAeeDDjAEZUnOqExdCCCFEdm6NwKW1/hH4Mcu8KU7PHwCyddgSQgghRP7cqaYWQgghRBGSYOxFOnXqxCOP5HjF2GWtK4QQwrtJMBZCCCE8TIKxEEII4WESjAvJ1KlTiYyMdLn3K5hbzvXq1Yvdu3fTq1cvKlWqRHBwMC1atLise+JmdebMGYYMGULZsmUJDAykS5cubNu2LXP5uXPnGDRoEBUrViQgIIBatWq53AZw6tSp1K1bl4CAACpUqEDXrl2zHYsQQoiiIcG4kNx1112cPXuWJUuWZM5LTExk/vz5DBw4kISEBLp3787ixYv5448/uOOOO+jTpw87duwolP0PHTqU3377jfnz5/P7778TFBREt27dModlfP7554mJieH7779nx44dTJ8+naioKAA2bNjAyJEjGTt2LH/99RdLliyhW7duhZIuIYQQ+XPr0iZv8PjjsGXLld1ns2bg7j3ky5Ytyy233MLMmTMzA9m8efPw9fXltttuIyAggKZNm2auP2bMGBYsWMCcOXN4/vnnLyudu3bt4rvvvmPlypV06NABgM8//5xq1aoxc+ZMHnjgAfbv30/z5s1p3bo1ADVq1Mjc/sCBAwQHB9OzZ8/M4TGd0yqEEKJoScm4EA0cOJBvv/2WpKQkAGbOnEnfvn0JCAggMTGRp59+mgYNGlC2bFlCQkLYsGEDBw4cuOz97ty5E5vNRrt27TLnhYeH07hxY7ZvN3e6HDFiBF9//TVNmzZl1KhRrFy5MnPdm266ierVq1OzZk0GDBjAp59+Snx8/GWnSwghhHuKTcnY3RKqJ9166634+voyf/58OnfuzJIlS1i0aBEAo0aNYuHChbz11lvUqVOHoKAgBg8eTHJy8mXvN687b2WMiEb37t3Zv38/P/30E0uXLqVHjx7ceeedzJgxg9DQUDZt2sSqVatYvHgxEyZMYPTo0axfv75E3rVJCCG8jZSMC5Hdbqdv377MnDmT2bNnU6lSJTp27AjAmjVrGDx4MHfccQdNmjQhOjqa3bt3F8p+69WrR3p6OmvXrs2cFxcXR0xMDA0aNMicFxERwaBBg/jkk0/473//y6effsrFixcB8PX15cYbb2TChAn8+eefJCYmFmoHMyGEELkrNiXj4mLgwIF06dKFvXv30r9/f2w2c75Tt25d5s2bR69evfDz82P8+PFcuHChUPZ51VVX0atXLx566CGmTZtGmTJlGDNmDGFhYfTv3x+AF198kRYtWtCwYUNSU1OZO3cutWrVwm638/3337N79246dOhAuXLlWL58OfHx8dSvX79Q0ieEECJvUjIuZB06dCAqKort27czcODAzPkTJ06kYsWKXH/99XTv3p22bdty/fXXF9p+Z8yYQevWrenZsyetW7cmKSmJhQsXEhgYCJhS+5gxY2jatCnXXXcd8fHxLFiwAIAyZcrw7bff0qVLF66++mreeustPv7440JNnxBCiNypvNobi1LLli31hg0bclwWGxtLdHR0ibqheVEqaTd/L2qSXwVT0vIrNja2yGp9VqxYQadOnYrkvUui0phfSqmNOd3VUErGQgghhIdJMPZCq1evJiQkJNdJCCFEySIduLxQy5Yt2XKlRzgRQgjhMRKMvVBgYCBXXXWVp5MhhBDiCpFqaiGEEMLDJBgLIYQQHibBWAghhPAwCcZCCCGEh0kwFkIIITxMgrEX6dSpE4888oinkyEK2dChQ7n11lsL7f0++eQTud5ciBJGLm0SJYpSim+++Ya+fft6OimZ3nvvvTxvcymEEBKMhduSk5Px9/f3dDKKjdTUVHx8fAgPD/d0UryKfI+EyK7EV1MfOQIdO8LRo0W7n6lTpxIZGUlqaqrL/P79+9OrVy92795Nr169qFSpEsHBwbRo0eKy7hc8d+5cmjRpQmBgINWqVaNjx44cO3YMgHHjxtGoUSM+/vhjqlWrRmBgIL179+bkyZOZ269fv56bb76ZiIgIwsLCaN++vcv9kMGUMj/44AP69OlDcHAwo0ePJiUlhX/9619UqVIFu91O1apVefbZZzO3SU5O5plnniE6Oprg4GBatWrFzz//7PZx7dixg549exIeHk5ISAjt2rUjJibGrTTXqFEDgDvvvBOlVOZrgAULFnDNNdcQEBBA48aNGTNmDMnJyZnLjx07Rs+ePQkMDKR69erMmDGDRo0aMW7cuMx1Dhw4wO23305oaCihoaH06dOHgwcPZi638v2TTz6hdu3a2O12EhMTs1VTa615++23qVOnDna7nejoaJ577rnM5c8++yz16tUjMDCQGjVq8PTTT1/y7Tbd+d4lJyczevRoqlevjt1up1atWkyaNClz+c6dO3P9THKqgrfywWKt88YbbxAdHU10dDQAX3zxBa1atSI0NJSKFSty5513cujQIZf3yu37sGrVKvz8/Dia5Yc9ZswYmjRpckl5JYQnlfhg/PLLsGYNvPRS0e7nrrvu4uzZsyxZsiRzXmJiIvPnz2fgwIEkJCTQvXt3Fi9ezB9//MEdd9xBnz592LFjR4H3dfToUfr168eQIUOIjY1l4cKFDBo0yGWdffv28cUXXzB//nyWLFnC33//zX333Ze5PD4+nkGDBrF69Wp+//13mjVrxi233OISsAHGjx/PLbfcQkxMDCNHjmTSpEnMmzePr776ir///pvZs2dTr169zPXvvfdeVq5cyaxZs4iJiWHIkCHcdttt/PHHH/ke1+HDh2nfvj1KKRYvXsymTZsYOXIkaWlpbqV5/fr1AHz00UccOXIk8/XPP//MgAEDeOSRR9i2bRsffPABc+bMYfTo0Zn7HjJkCPv372fZsmXMnz+fL774gv3792cu11rTu3dvjh07xrJly1i+fDmHDx+md+/eLlXQe/fuZdasWXzzzTf88ccfBAQEZDvO0aNH8/LLL/Pcc8+xbds2vvnmG6pWrZq5PDg4mOnTpxMbG8uHH37IV199xauvvppv/uXEne/dkCFD+Oyzz5g4cSKxsbH897//pUyZMpmfyc0335zrZ+KulStX8ueff7Jw4UKWLl0KmJOA8ePH88cff/D9999z8uRJ7rnnnsxt8vo+dOjQgdq1a/PZZ59lrp+ens5nn33G/ffff0l5JYRHaa09Ml1zzTU6N9u3b9dxcXEu8x57TOuOHd2fbDatIftks7n/Ho89lmsSc9S7d289cODAzNeff/65DgsL0+fPn89x/TZt2uiXX34583XHjh31yJEj893Pxo0bNaD37duntdbZ8mrs2LHaZrPp/fv3Z85bvXq1BvTOnTtzfM/09HRdqVIl/fnnn2fOA/Qjjzzist6jjz6qb7zxRp2enp7tPXbt2qWVUi771VrrXr166REjRuR7XKNHj9bVqlXTFy9ezHfdvNL8zTffuKx3/fXX65deeinzdVxcnJ43b54ODg7W6enpeseOHRrQa9euzVznwIED2maz6bFjx2qttV60aJG22Wx67969mevs3r1bK6X04sWLtdYm3319ffXRo0dd9j9kyBDdo0cPrbXW8fHx2m6368mTJ7t1jFprPXnyZF27du3M1zNmzNDBwcFub5+V8/du586dGtA//fRTjuuOHj1aV61aNdfPxPnYLGPHjtUNGzZ0WSciIkJfuHAhz3TFxsZqQP/zzz+Z+87r+/Dmm2/qq6++OvP1jz/+qP39/fXJkyfz3M/27dvzXH45li9fXmTvXRKVxvwCNugcYmKJLRm3bg0VK4It4whtNvO6TZui2+fAgQP59ttvSUpKAmDmzJn07duXgIAAEhMTefrpp2nQoAFly5YlJCSEDRs2cODAgQLvp2nTpnTp0oVGjRpxxx138PHHH3PixAmXdaKioqhWrVrm6zZt2mCz2YiNjQXg+PHjPPTQQ9StW5fw8HBCQ0M5fvx4tvS0bOl6282hQ4eyZcsW6taty8iRI/nhhx9IT08HYNOmTWitadCggctdpn744Qd2796d73Ft3ryZ9u3b59qe6G6as9q4cSOvvvpqZnoqV65M//79SUxM5OjRo+zYsQObzeZyrFWrVqVKlSqZr2NjY6lSpYpL1XetWrWoUqUK27dvz5wXHR1NZGRkrmnZvn07Fy9epHPnzrmuM2fOHNq3b0+lSpUICQnhiSeeuKTvCZDv927z5s3YbDZuuOGGHLffvHkzbdu2vew23kaNGmG3213mbdq0iV69elG9enVCQ0Mz8985bXl9H4YMGcKePXv49ddfAZg+fTq9e/emfPnyl5VWITyh2HTgevfdgm8zYgRMmwYBAZCcDHfcAR9+WOhJy3Trrbfi6+vL/Pnz6dy5M0uWLGHRokUAjBo1ioULF/LWW29Rp04dgoKCGDx4sEu7pbt8fHxYtGgR69atY9GiRXz++eeMHz+elStX0rRpU7feY8iQIRw7dox33nmHGjVqYLfb6dy5c7b0BAcHu7xu0aIF+/btY+HChSxbtowhQ4bQtGlTFi9eTHp6Okop1q9fj5+fn8t2gYGB+aZJ59Pj2N00Z5Wens7YsWO58847AVN1a10aVKFCBbd6OmutUUrluMx5ftb8yul98rJu3Tr69evH2LFjeeeddyhTpgzfffcdo0aNyjeNOcnve5dfevJbbrPZsq2TkpKSbb2s+ZKYmEjXrl3p0qULn3/+ORUrVuTkyZNcf/31bqetQoUK9OzZk+nTp1OvXj2+++47FixYkOc2QnirYhOML8WxYzB8OAwbZoLykSNFuz+73U7fvn2ZOXMmJ0+epFKlSnTs2BGANWvWMHjwYO644w4ALly4wO7du6lbt+4l7UspRbt27WjXrh1PPPEEbdu2Zfbs2ZnB+NChQ/zzzz+ZbZG///476enp1K9fPzM9kyZNokePHoDpwHTEzQwKDQ3lzjvv5M4772To0KG0bduWXbt20bx5c7TWHD16NNeSVl5atGjBF198kWtvW3fS7Ofnl609s0WLFuzYsSPzTljx8fGEhoZmLq9fvz7p6els3LiRNhlVJwcPHuTw4cOZ6zRo0IBDhw6xb9++zNLxnj17OHz4MA0aNHD7GBs0aIDdbmfp0qXUqVMn2/JffvmFqKgoXnjhhcx5zm3XBZXf965Fixakp6ezfPlyunXrlm37Fi1a8Pnnn+f6mVSoUCHb7T7duf3njh07OHnyJK+99ho1a9YETKfErPvO6/sA8OCDD9K3b19q1apFZGQkXbp0yXffQnijEltNDTB3LnzwATRtah6z/NaLxMCBA/n555+ZMmUK/fv3x5ZRT163bl3mzZvHpk2biImJYeDAgZfcQ3bdunW88sorrF+/ngMHDvDjjz/yzz//uASFwMBAhgwZwpYtW1i7di3Dhw+nR48emQGgbt26fPHFF2zfvp3169fTr18/t6oiJ06cyJdffklsbCy7du1i1qxZhIWFER0dTd26dRkwYABDhw5lzpw57Nmzhw0bNvDWW29l+6PNycMPP0xCQgJ33XUX69evZ9euXXz55ZeZf+7upLlGjRosXbqUo0ePcubMGQBefPFFZs2axYsvvsjWrVvZuXMnc+bM4emnnwagXr16dO3aleHDh7Nu3Tq2bNnCvffeS1BQUGapt0uXLjRt2pQBAwawceNGNmzYwIABA2jRogU33nhj/h9ahtDQUB577DGee+45ZsyYwe7du/n999+ZPHly5jEeOnSImTNnsmfPHiZPnsyXX37p9vtnld/3rk6dOtx111088MAD/O9//2Pv3r2sXr2azz//HMj/M7nxxhvZvHkz06dPZ9euXfz73//ml19+yTdd1apVw26385///Ic9e/bwww8/uJyAuLNvgJtuuony5cszfvx47r333szfmxDFTk4NyVdiKmgHruIiPT1dV69eXQP6zz//zJy/b98+3blzZx0UFKSjoqL0m2++qXv06KGHDBmSuY67Hbi2b9+uu3XrpitWrKj9/f11zZo19RtvvJG53OpAM3XqVB0dHa0DAgJ0z5499fHjxzPX2bJli27durUOCAjQtWrV0p999plu2LBhZoclrXPuDDVt2jTdvHlzHRISokNDQ3WHDh30L7/8krk8OTlZjx07VtesWVP7+fnpyMhIfdttt+kNGza4lX9bt27V3bt318HBwTokJES3a9dOx8TEuJ3m7777Tl911VXa19dXV69ePXP+zz//rNu3b68DAwN1aGiovuaaa/T777+fufzIkSP61ltv1Xa7XVetWlXPmDFD16pVS7/++uuZ6+zfv1/36tVLh4SE6JCQEN27d+/MzkbO+Z5V1k5OaWlpesKECZl5FB0drUePHp25/Nlnn9URERE6ODhY33777frDDz/U5qdqFKQDlzvfuwsXLuinnnpKV6lSRfv7++tatWq55M1vv/2W62diHXelSpV0WFiYHjFihH7uueeydeDK2slLa62/+uorXatWLW2323WrVq30woULNeDSqSev74Nl/PjxWinl0rkuL9KBy3uUxvwilw5cSntoZKCWLVvqDRs25LgsNjaW6Ohol6pEkbus1a7jxo1jzpw5bN261YOp8l5Z8ysnJ0+epEqVKnz55ZeZVbyllTv55UkjRoxg165dLF682K31Y2NjM5trCtuKFSvo1KlTkbx3SVQa80sptVFr3TLr/BLdZiyEu5YtW0Z8fDyNGzfm+PHjjBkzhoiIiBzbUYV3OHfuHBs3buSzzz7j66+/9nRyhLgs0sDihVavXu1yaVDWqbgaPnx4rsc0fPhwj6YtJSWF559/nsaNG3PbbbcRGBjIqlWr8u0d7WkNGzbMNU9nzpzp6eQVqV69enHrrbdy3333ZXbqE6K4kmpqL3T+/PlswwI6s3oFW7y9GtFy/Phx4uLiclwWFhZGxYoVr0g6ikt+uWP//v05XkoEEBkZWSjHWZLyC6Sa2puUxvySaupiJDAwMFvALQkqVqx4xQJuaVG9enVPJ0EIUQikmloIIYTwMK8Nxp6qPhdClFzyvyK8lVcGYz8/v0saJlIIIfJy/vz5bEO1CuENvDIYV6xYkUOHDpGUlCRnskKIy6a1JikpiUOHDkm/BeGVvLIDV1hYGHFxcRw+fDjXnqLC4cKFCzneN1fkTPKrYEpKfvn5+REZGUlYWJinkyJENl4ZjAHS0tJKZI/iorBixQqaN2/u6WQUG5JfBSP5JUTR88pqaiGEEKI0cSsYK6W6KaX+UkrtUko9m8NypZSalLH8T6VUi8JPqhBCCFEy5RuMlVI+wAdAd6ABcI9SKusNXLsDdTKmYcDkQk6nEEIIUWK5UzJuDezSWu/RWicDXwG9sqzTC/gs4w5R64AySqnKhZxWIYQQokRyJxhHAf84vT6YMa+g6wghhBAiB+70plY5zMt68a8766CUGoapxgZIUEr9lcd+I4CTbqRPSF4VlORXwUh+uU/yqmBKY37lOKC8O8H4IFDV6XU0cPgS1kFrPQ2Y5sY+UUptyOnOFiI7yauCkfwqGMkv90leFYzkl4M71dTrgTpKqZpKKX+gH/BdlnW+AwZn9KpuC5zTWh8p5LQKIYQQJVK+JWOtdapS6hHgZ8AHmK613qaUGp6xfArwI3ALsAtIAu4tuiQLIYQQJYtbI3BprX/EBFzneVOcnmtgZOEmzb3qbAFIXhWU5FfBSH65T/KqYCS/Mii5EYMQQgjhWTIcphBCCOFhXheM8xt6U7hSSu1TSsUopbYopTZ4Oj3eRik1XSl1XCm11WleOaXUYqXU3xmPZT2ZRm+RS16NU0odyvh+bVFK3eLJNHoTpVRVpdRypVSsUmqbUuqxjPny/coij7yS71cGr6qmzhh6cydwE+ZyqfXAPVrr7R5NmBdTSu0DWmqtS9u1em5RSnUAEjAjxDXKmPdv4LTW+vWME76yWutnPJlOb5BLXo0DErTWb3kybd4oY5TBylrrTUqpUGAj0BsYiny/XOSRV3ch3y/A+0rG7gy9KYTbtNargNNZZvcCPs14/inmT6HUyyWvRC601ke01psynscDsZiRB+X7lUUeeSUyeFswlmE1C04Di5RSGzNGOBP5i7Sug894rOjh9Hi7RzLuxjZdqlxzppSqATQHfkO+X3nKklcg3y/A+4KxW8NqChfXaa1bYO6cNTKjqlGIwjIZqA00A44Ab3s0NV5IKRUC/A94XGsd5+n0eLMc8kq+Xxm8LRi7NaymcNBaH854PA7Mw1T1i7wds+4qlvF43MPp8Vpa62Na6zStdTrwEfL9cqGU8sMEl5la67kZs+X7lYOc8kq+Xw7eFozdGXpTZFBKBWd0hkApFQzcDGzNeyuB+U4NyXg+BJjvwbR4tSy3Qr0d+X5lUkop4L9ArNZ6otMi+X5lkVteyffLwat6UwNkdG1/F8fQm696NkXeSylVC1MaBjOa2izJL1dKqS+BTpi7wxwDxgLfAl8D1YADwJ1a61LfcSmXvOqEqULUwD7gIRl33lBKtQdWAzFAesbs0Zi2UPl+Ockjr+5Bvl+AFwZjIYQQorTxtmpqIYQQotSRYCyEEEJ4mARjIYQQwsMkGAshhBAeJsFYCCGE8DAJxkKIfCmltFKqr6fTIURJJcFYCC+nlPokIxhmndZ5Om1CiMLh6+kECCHcsgQYlGVesicSIoQofFIyFqJ4uKi1PpplOg2ZVciPKKV+UEolKaX2K6UGOm+slGqslFqilDqvlDqdUdoOz7LOEKVUjFLqolLqmFLqkyxpKKeU+kYplaiU2pN1H0KISyfBWIiSYTxmTORmwDTgM6VUSwClVBCwEEjADMR/O3AtMN3aWCn1EDAVmAE0AW4BtmXZx4uYcZabArOB6Uqp6kV2REKUIjIcphBeLqOEOhC4kGXRB1rrZ5RSGvhYa/2g0zZLgKNa64FKqQeBt4DojBu7o5TqBCwH6mitdymlDgJfaK2fzSUNGnhda/1cxmtfIA4YprX+ovCOVojSSdqMhSgeVgHDssw76/R8bZZla4EeGc/rA39agTjDr5gB+xsopeKAKGBpPmn403qitU5VSp0AKrqVeiFEniQYC1E8JGmtd13itgpzV5yc6Izl7kjJYVtp6hKiEMgPSYiSoW0Or2Mznm8Hmlr3vs5wLeb3H6u1PgYcAjoXeSqFEDmSkrEQxYNdKVUpy7w0rfWJjOd9lFLrgRVAX0xgbZOxbCamg9dnSqkXgbKYzlpznUrbrwLvKKWOAT8AQUBnrfXbRXVAQggHCcZCFA9dgKw3XT8ERGc8HwfcAUwCTgD3aq3XA2itk5RSXYF3gd8xHcHmA49Zb6S1nqyUSgaeBN4ATgM/FtGxCCGykN7UQhRzGT2d79Raz/F0WoQQl0bajIUQQggPk2AshBBCeJhUUwshhBAeJiVjIYQQwsMkGAshhBAeJsFYCCGE8DAJxkIIIYSHSTAWQgghPEyCsRBCCOFh/w9ffkAgvMpVqAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# extra code – shows how to shift the training curve by -1/2 epoch\n", - "plt.figure(figsize=(8, 5))\n", - "for key, style in zip(history.history, [\"r--\", \"r--.\", \"b-\", \"b-*\"]):\n", - " epochs = np.array(history.epoch) + (0 if key.startswith(\"val_\") else -0.5)\n", - " plt.plot(epochs, history.history[key], style, label=key)\n", - "plt.xlabel(\"Epoch\")\n", - "plt.axis([-0.5, 29, 0., 1])\n", - "plt.legend(loc=\"lower left\")\n", - "plt.grid()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "313/313 [==============================] - 0s 867us/step - loss: 0.3243 - sparse_categorical_accuracy: 0.8864\n" - ] - }, - { - "data": { - "text/plain": [ - "[0.32431697845458984, 0.8863999843597412]" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.evaluate(X_test, y_test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Using the model to make predictions" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0. , 0. , 0. , 0. , 0. , 0.01, 0. , 0.02, 0. , 0.97],\n", - " [0. , 0. , 0.99, 0. , 0.01, 0. , 0. , 0. , 0. , 0. ],\n", - " [0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]],\n", - " dtype=float32)" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_new = X_test[:3]\n", - "y_proba = model.predict(X_new)\n", - "y_proba.round(2)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([9, 2, 1])" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_pred = y_proba.argmax(axis=-1)\n", - "y_pred" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['Ankle boot', 'Pullover', 'Trouser'], dtype='" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# extra code – this cell generates and saves Figure 10–12\n", - "plt.figure(figsize=(7.2, 2.4))\n", - "for index, image in enumerate(X_new):\n", - " plt.subplot(1, 3, index + 1)\n", - " plt.imshow(image, cmap=\"binary\", interpolation=\"nearest\")\n", - " plt.axis('off')\n", - " plt.title(class_names[y_test[index]])\n", - "plt.subplots_adjust(wspace=0.2, hspace=0.5)\n", - "save_fig('fashion_mnist_images_plot', tight_layout=False)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Building a Regression MLP Using the Sequential API" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's load, split and scale the California housing dataset (the original one, not the modified one as in chapter 2):" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "# extra code – load and split the California housing dataset, like earlier\n", - "housing = fetch_california_housing()\n", - "X_train_full, X_test, y_train_full, y_test = train_test_split(\n", - " housing.data, housing.target, random_state=42)\n", - "X_train, X_valid, y_train, y_valid = train_test_split(\n", - " X_train_full, y_train_full, random_state=42)" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/20\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.9051 - root_mean_squared_error: 0.9514 - val_loss: 0.4030 - val_root_mean_squared_error: 0.6348\n", - "Epoch 2/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3843 - root_mean_squared_error: 0.6199 - val_loss: 0.8436 - val_root_mean_squared_error: 0.9185\n", - "Epoch 3/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3609 - root_mean_squared_error: 0.6007 - val_loss: 0.3744 - val_root_mean_squared_error: 0.6119\n", - "Epoch 4/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3416 - root_mean_squared_error: 0.5844 - val_loss: 0.4343 - val_root_mean_squared_error: 0.6590\n", - "Epoch 5/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3301 - root_mean_squared_error: 0.5746 - val_loss: 0.3085 - val_root_mean_squared_error: 0.5554\n", - "Epoch 6/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3168 - root_mean_squared_error: 0.5629 - val_loss: 0.4544 - val_root_mean_squared_error: 0.6741\n", - "Epoch 7/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3162 - root_mean_squared_error: 0.5623 - val_loss: 0.2941 - val_root_mean_squared_error: 0.5423\n", - "Epoch 8/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3045 - root_mean_squared_error: 0.5518 - val_loss: 0.3333 - val_root_mean_squared_error: 0.5773\n", - "Epoch 9/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2974 - root_mean_squared_error: 0.5453 - val_loss: 0.3446 - val_root_mean_squared_error: 0.5870\n", - "Epoch 10/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2921 - root_mean_squared_error: 0.5404 - val_loss: 0.2874 - val_root_mean_squared_error: 0.5361\n", - "Epoch 11/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2863 - root_mean_squared_error: 0.5351 - val_loss: 0.4141 - val_root_mean_squared_error: 0.6435\n", - "Epoch 12/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2942 - root_mean_squared_error: 0.5424 - val_loss: 1.0956 - val_root_mean_squared_error: 1.0467\n", - "Epoch 13/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2864 - root_mean_squared_error: 0.5352 - val_loss: 0.3063 - val_root_mean_squared_error: 0.5534\n", - "Epoch 14/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2804 - root_mean_squared_error: 0.5295 - val_loss: 0.2709 - val_root_mean_squared_error: 0.5205\n", - "Epoch 15/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2784 - root_mean_squared_error: 0.5276 - val_loss: 0.3680 - val_root_mean_squared_error: 0.6066\n", - "Epoch 16/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2757 - root_mean_squared_error: 0.5250 - val_loss: 0.2730 - val_root_mean_squared_error: 0.5225\n", - "Epoch 17/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2739 - root_mean_squared_error: 0.5234 - val_loss: 0.3668 - val_root_mean_squared_error: 0.6056\n", - "Epoch 18/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2694 - root_mean_squared_error: 0.5191 - val_loss: 0.4188 - val_root_mean_squared_error: 0.6472\n", - "Epoch 19/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2677 - root_mean_squared_error: 0.5174 - val_loss: 0.9663 - val_root_mean_squared_error: 0.9830\n", - "Epoch 20/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.2755 - root_mean_squared_error: 0.5249 - val_loss: 0.2978 - val_root_mean_squared_error: 0.5457\n", - "162/162 [==============================] - 0s 508us/step - loss: 0.2806 - root_mean_squared_error: 0.5297\n" - ] - } - ], - "source": [ - "tf.random.set_seed(42)\n", - "norm_layer = tf.keras.layers.Normalization(input_shape=X_train.shape[1:])\n", - "model = tf.keras.Sequential([\n", - " norm_layer,\n", - " tf.keras.layers.Dense(50, activation=\"relu\"),\n", - " tf.keras.layers.Dense(50, activation=\"relu\"),\n", - " tf.keras.layers.Dense(50, activation=\"relu\"),\n", - " tf.keras.layers.Dense(1)\n", - "])\n", - "optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)\n", - "model.compile(loss=\"mse\", optimizer=optimizer, metrics=[\"RootMeanSquaredError\"])\n", - "norm_layer.adapt(X_train)\n", - "history = model.fit(X_train, y_train, epochs=20,\n", - " validation_data=(X_valid, y_valid))\n", - "mse_test, rmse_test = model.evaluate(X_test, y_test)\n", - "X_new = X_test[:3]\n", - "y_pred = model.predict(X_new)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.5297096967697144" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rmse_test" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.4969182],\n", - " [1.195265 ],\n", - " [4.9428763]], dtype=float32)" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_pred" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Building Complex Models Using the Functional API" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Not all neural network models are simply sequential. Some may have complex topologies. Some may have multiple inputs and/or multiple outputs. For example, a Wide & Deep neural network (see [paper](https://ai.google/research/pubs/pub45413)) connects all or part of the inputs directly to the output layer." - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "# extra code – reset the name counters and make the code reproducible\n", - "tf.keras.backend.clear_session()\n", - "tf.random.set_seed(42)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "normalization_layer = tf.keras.layers.Normalization()\n", - "hidden_layer1 = tf.keras.layers.Dense(30, activation=\"relu\")\n", - "hidden_layer2 = tf.keras.layers.Dense(30, activation=\"relu\")\n", - "concat_layer = tf.keras.layers.Concatenate()\n", - "output_layer = tf.keras.layers.Dense(1)\n", - "\n", - "input_ = tf.keras.layers.Input(shape=X_train.shape[1:])\n", - "normalized = normalization_layer(input_)\n", - "hidden1 = hidden_layer1(normalized)\n", - "hidden2 = hidden_layer2(hidden1)\n", - "concat = concat_layer([normalized, hidden2])\n", - "output = output_layer(concat)\n", - "\n", - "model = tf.keras.Model(inputs=[input_], outputs=[output])" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"model\"\n", - "__________________________________________________________________________________________________\n", - " Layer (type) Output Shape Param # Connected to \n", - "==================================================================================================\n", - " input_1 (InputLayer) [(None, 8)] 0 [] \n", - " \n", - " normalization (Normalization) (None, 8) 17 ['input_1[0][0]'] \n", - " \n", - " dense (Dense) (None, 30) 270 ['normalization[0][0]'] \n", - " \n", - " dense_1 (Dense) (None, 30) 930 ['dense[0][0]'] \n", - " \n", - " concatenate (Concatenate) (None, 38) 0 ['input_1[0][0]', \n", - " 'dense_1[0][0]'] \n", - " \n", - " dense_2 (Dense) (None, 1) 39 ['concatenate[0][0]'] \n", - " \n", - "==================================================================================================\n", - "Total params: 1,256\n", - "Trainable params: 1,239\n", - "Non-trainable params: 17\n", - "__________________________________________________________________________________________________\n" - ] - } - ], - "source": [ - "model.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/20\n", - "363/363 [==============================] - 1s 1ms/step - loss: 122.3226 - root_mean_squared_error: 11.0600 - val_loss: 305.9134 - val_root_mean_squared_error: 17.4904\n", - "Epoch 2/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 5.5425 - root_mean_squared_error: 2.3543 - val_loss: 183.4622 - val_root_mean_squared_error: 13.5448\n", - "Epoch 3/20\n", - "363/363 [==============================] - 0s 979us/step - loss: 3.0631 - root_mean_squared_error: 1.7502 - val_loss: 87.2228 - val_root_mean_squared_error: 9.3393\n", - "Epoch 4/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 1.5796 - root_mean_squared_error: 1.2568 - val_loss: 35.3699 - val_root_mean_squared_error: 5.9473\n", - "Epoch 5/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.9536 - root_mean_squared_error: 0.9765 - val_loss: 12.3882 - val_root_mean_squared_error: 3.5197\n", - "Epoch 6/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.6322 - root_mean_squared_error: 0.7951 - val_loss: 4.1676 - val_root_mean_squared_error: 2.0415\n", - "Epoch 7/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.5069 - root_mean_squared_error: 0.7120 - val_loss: 1.2937 - val_root_mean_squared_error: 1.1374\n", - "Epoch 8/20\n", - "363/363 [==============================] - 0s 980us/step - loss: 0.4525 - root_mean_squared_error: 0.6727 - val_loss: 0.4837 - val_root_mean_squared_error: 0.6955\n", - "Epoch 9/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4293 - root_mean_squared_error: 0.6552 - val_loss: 0.4343 - val_root_mean_squared_error: 0.6590\n", - "Epoch 10/20\n", - "363/363 [==============================] - 0s 962us/step - loss: 0.4120 - root_mean_squared_error: 0.6419 - val_loss: 0.3996 - val_root_mean_squared_error: 0.6321\n", - "Epoch 11/20\n", - "363/363 [==============================] - 0s 988us/step - loss: 0.4203 - root_mean_squared_error: 0.6483 - val_loss: 0.4149 - val_root_mean_squared_error: 0.6441\n", - "Epoch 12/20\n", - "363/363 [==============================] - 0s 952us/step - loss: 0.3916 - root_mean_squared_error: 0.6257 - val_loss: 0.4569 - val_root_mean_squared_error: 0.6759\n", - "Epoch 13/20\n", - "363/363 [==============================] - 0s 957us/step - loss: 0.4147 - root_mean_squared_error: 0.6440 - val_loss: 0.3736 - val_root_mean_squared_error: 0.6113\n", - "Epoch 14/20\n", - "363/363 [==============================] - 0s 949us/step - loss: 0.3824 - root_mean_squared_error: 0.6184 - val_loss: 0.4550 - val_root_mean_squared_error: 0.6745\n", - "Epoch 15/20\n", - "363/363 [==============================] - 0s 982us/step - loss: 0.4003 - root_mean_squared_error: 0.6327 - val_loss: 0.8553 - val_root_mean_squared_error: 0.9248\n", - "Epoch 16/20\n", - "363/363 [==============================] - 0s 960us/step - loss: 0.4245 - root_mean_squared_error: 0.6516 - val_loss: 1.9204 - val_root_mean_squared_error: 1.3858\n", - "Epoch 17/20\n", - "363/363 [==============================] - 0s 987us/step - loss: 0.4580 - root_mean_squared_error: 0.6767 - val_loss: 2.0632 - val_root_mean_squared_error: 1.4364\n", - "Epoch 18/20\n", - "363/363 [==============================] - 0s 961us/step - loss: 0.4692 - root_mean_squared_error: 0.6850 - val_loss: 3.5730 - val_root_mean_squared_error: 1.8902\n", - "Epoch 19/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4367 - root_mean_squared_error: 0.6608 - val_loss: 3.9989 - val_root_mean_squared_error: 1.9997\n", - "Epoch 20/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4683 - root_mean_squared_error: 0.6843 - val_loss: 2.2966 - val_root_mean_squared_error: 1.5155\n", - "162/162 [==============================] - 0s 612us/step - loss: 0.5723 - root_mean_squared_error: 0.7565\n" - ] - } - ], - "source": [ - "optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)\n", - "model.compile(loss=\"mse\", optimizer=optimizer, metrics=[\"RootMeanSquaredError\"])\n", - "normalization_layer.adapt(X_train)\n", - "history = model.fit(X_train, y_train, epochs=20,\n", - " validation_data=(X_valid, y_valid))\n", - "mse_test = model.evaluate(X_test, y_test)\n", - "y_pred = model.predict(X_new)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What if you want to send different subsets of input features through the wide or deep paths? We will send 5 features (features 0 to 4), and 6 through the deep path (features 2 to 7). Note that 3 features will go through both (features 2, 3 and 4)." - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "tf.random.set_seed(42) # extra code" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "input_wide = tf.keras.layers.Input(shape=[5]) # features 0 to 4\n", - "input_deep = tf.keras.layers.Input(shape=[6]) # features 2 to 7\n", - "norm_layer_wide = tf.keras.layers.Normalization()\n", - "norm_layer_deep = tf.keras.layers.Normalization()\n", - "norm_wide = norm_layer_wide(input_wide)\n", - "norm_deep = norm_layer_deep(input_deep)\n", - "hidden1 = tf.keras.layers.Dense(30, activation=\"relu\")(norm_deep)\n", - "hidden2 = tf.keras.layers.Dense(30, activation=\"relu\")(hidden1)\n", - "concat = tf.keras.layers.concatenate([norm_wide, hidden2])\n", - "output = tf.keras.layers.Dense(1)(concat)\n", - "model = tf.keras.Model(inputs=[input_wide, input_deep], outputs=[output])" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/20\n", - "363/363 [==============================] - 1s 2ms/step - loss: 1.2768 - root_mean_squared_error: 1.1300 - val_loss: 0.9497 - val_root_mean_squared_error: 0.9745\n", - "Epoch 2/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4767 - root_mean_squared_error: 0.6904 - val_loss: 1.4311 - val_root_mean_squared_error: 1.1963\n", - "Epoch 3/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4433 - root_mean_squared_error: 0.6658 - val_loss: 0.4258 - val_root_mean_squared_error: 0.6525\n", - "Epoch 4/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4057 - root_mean_squared_error: 0.6370 - val_loss: 0.4016 - val_root_mean_squared_error: 0.6338\n", - "Epoch 5/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3940 - root_mean_squared_error: 0.6277 - val_loss: 1.4914 - val_root_mean_squared_error: 1.2212\n", - "Epoch 6/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3873 - root_mean_squared_error: 0.6224 - val_loss: 2.6759 - val_root_mean_squared_error: 1.6358\n", - "Epoch 7/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3914 - root_mean_squared_error: 0.6257 - val_loss: 3.0592 - val_root_mean_squared_error: 1.7490\n", - "Epoch 8/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3735 - root_mean_squared_error: 0.6112 - val_loss: 3.3043 - val_root_mean_squared_error: 1.8178\n", - "Epoch 9/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3712 - root_mean_squared_error: 0.6093 - val_loss: 2.1298 - val_root_mean_squared_error: 1.4594\n", - "Epoch 10/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3693 - root_mean_squared_error: 0.6077 - val_loss: 1.7402 - val_root_mean_squared_error: 1.3192\n", - "Epoch 11/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3578 - root_mean_squared_error: 0.5982 - val_loss: 0.6127 - val_root_mean_squared_error: 0.7827\n", - "Epoch 12/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3605 - root_mean_squared_error: 0.6005 - val_loss: 1.3970 - val_root_mean_squared_error: 1.1819\n", - "Epoch 13/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3527 - root_mean_squared_error: 0.5939 - val_loss: 0.9449 - val_root_mean_squared_error: 0.9721\n", - "Epoch 14/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3436 - root_mean_squared_error: 0.5861 - val_loss: 0.7757 - val_root_mean_squared_error: 0.8807\n", - "Epoch 15/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3421 - root_mean_squared_error: 0.5849 - val_loss: 0.8920 - val_root_mean_squared_error: 0.9445\n", - "Epoch 16/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3405 - root_mean_squared_error: 0.5835 - val_loss: 0.9334 - val_root_mean_squared_error: 0.9661\n", - "Epoch 17/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3394 - root_mean_squared_error: 0.5826 - val_loss: 1.3433 - val_root_mean_squared_error: 1.1590\n", - "Epoch 18/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3384 - root_mean_squared_error: 0.5817 - val_loss: 2.6406 - val_root_mean_squared_error: 1.6250\n", - "Epoch 19/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3459 - root_mean_squared_error: 0.5881 - val_loss: 2.2482 - val_root_mean_squared_error: 1.4994\n", - "Epoch 20/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3503 - root_mean_squared_error: 0.5919 - val_loss: 1.4407 - val_root_mean_squared_error: 1.2003\n", - "162/162 [==============================] - 0s 672us/step - loss: 0.3388 - root_mean_squared_error: 0.5821\n" - ] - } - ], - "source": [ - "optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)\n", - "model.compile(loss=\"mse\", optimizer=optimizer, metrics=[\"RootMeanSquaredError\"])\n", - "\n", - "X_train_wide, X_train_deep = X_train[:, :5], X_train[:, 2:]\n", - "X_valid_wide, X_valid_deep = X_valid[:, :5], X_valid[:, 2:]\n", - "X_test_wide, X_test_deep = X_test[:, :5], X_test[:, 2:]\n", - "X_new_wide, X_new_deep = X_test_wide[:3], X_test_deep[:3]\n", - "\n", - "norm_layer_wide.adapt(X_train_wide)\n", - "norm_layer_deep.adapt(X_train_deep)\n", - "history = model.fit((X_train_wide, X_train_deep), y_train, epochs=20,\n", - " validation_data=((X_valid_wide, X_valid_deep), y_valid))\n", - "mse_test = model.evaluate((X_test_wide, X_test_deep), y_test)\n", - "y_pred = model.predict((X_new_wide, X_new_deep))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Adding an auxiliary output for regularization:" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "tf.keras.backend.clear_session()\n", - "tf.random.set_seed(42)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "input_wide = tf.keras.layers.Input(shape=[5]) # features 0 to 4\n", - "input_deep = tf.keras.layers.Input(shape=[6]) # features 2 to 7\n", - "norm_layer_wide = tf.keras.layers.Normalization()\n", - "norm_layer_deep = tf.keras.layers.Normalization()\n", - "norm_wide = norm_layer_wide(input_wide)\n", - "norm_deep = norm_layer_deep(input_deep)\n", - "hidden1 = tf.keras.layers.Dense(30, activation=\"relu\")(norm_deep)\n", - "hidden2 = tf.keras.layers.Dense(30, activation=\"relu\")(hidden1)\n", - "concat = tf.keras.layers.concatenate([norm_wide, hidden2])\n", - "output = tf.keras.layers.Dense(1)(concat)\n", - "aux_output = tf.keras.layers.Dense(1)(hidden2)\n", - "model = tf.keras.Model(inputs=[input_wide, input_deep],\n", - " outputs=[output, aux_output])" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)\n", - "model.compile(loss=(\"mse\", \"mse\"), loss_weights=(0.9, 0.1), optimizer=optimizer,\n", - " metrics=[\"RootMeanSquaredError\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/20\n", - "363/363 [==============================] - 1s 2ms/step - loss: 1.3490 - dense_2_loss: 1.2742 - dense_3_loss: 2.0215 - dense_2_root_mean_squared_error: 1.1288 - dense_3_root_mean_squared_error: 1.4218 - val_loss: 1.5415 - val_dense_2_loss: 0.9593 - val_dense_3_loss: 6.7806 - val_dense_2_root_mean_squared_error: 0.9795 - val_dense_3_root_mean_squared_error: 2.6040\n", - "Epoch 2/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.5101 - dense_2_loss: 0.4785 - dense_3_loss: 0.7952 - dense_2_root_mean_squared_error: 0.6917 - dense_3_root_mean_squared_error: 0.8917 - val_loss: 1.3624 - val_dense_2_loss: 1.0094 - val_dense_3_loss: 4.5401 - val_dense_2_root_mean_squared_error: 1.0047 - val_dense_3_root_mean_squared_error: 2.1307\n", - "Epoch 3/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4618 - dense_2_loss: 0.4404 - dense_3_loss: 0.6546 - dense_2_root_mean_squared_error: 0.6636 - dense_3_root_mean_squared_error: 0.8091 - val_loss: 0.5361 - val_dense_2_loss: 0.3975 - val_dense_3_loss: 1.7837 - val_dense_2_root_mean_squared_error: 0.6305 - val_dense_3_root_mean_squared_error: 1.3356\n", - "Epoch 4/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4252 - dense_2_loss: 0.4059 - dense_3_loss: 0.5985 - dense_2_root_mean_squared_error: 0.6371 - dense_3_root_mean_squared_error: 0.7736 - val_loss: 0.5182 - val_dense_2_loss: 0.4590 - val_dense_3_loss: 1.0517 - val_dense_2_root_mean_squared_error: 0.6775 - val_dense_3_root_mean_squared_error: 1.0255\n", - "Epoch 5/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4106 - dense_2_loss: 0.3931 - dense_3_loss: 0.5690 - dense_2_root_mean_squared_error: 0.6269 - dense_3_root_mean_squared_error: 0.7543 - val_loss: 0.4049 - val_dense_2_loss: 0.3588 - val_dense_3_loss: 0.8196 - val_dense_2_root_mean_squared_error: 0.5990 - val_dense_3_root_mean_squared_error: 0.9053\n", - "Epoch 6/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3944 - dense_2_loss: 0.3780 - dense_3_loss: 0.5424 - dense_2_root_mean_squared_error: 0.6148 - dense_3_root_mean_squared_error: 0.7365 - val_loss: 0.4168 - val_dense_2_loss: 0.3934 - val_dense_3_loss: 0.6275 - val_dense_2_root_mean_squared_error: 0.6272 - val_dense_3_root_mean_squared_error: 0.7921\n", - "Epoch 7/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3837 - dense_2_loss: 0.3694 - dense_3_loss: 0.5126 - dense_2_root_mean_squared_error: 0.6078 - dense_3_root_mean_squared_error: 0.7160 - val_loss: 0.3661 - val_dense_2_loss: 0.3430 - val_dense_3_loss: 0.5747 - val_dense_2_root_mean_squared_error: 0.5856 - val_dense_3_root_mean_squared_error: 0.7581\n", - "Epoch 8/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3731 - dense_2_loss: 0.3608 - dense_3_loss: 0.4840 - dense_2_root_mean_squared_error: 0.6007 - dense_3_root_mean_squared_error: 0.6957 - val_loss: 0.8555 - val_dense_2_loss: 0.8704 - val_dense_3_loss: 0.7218 - val_dense_2_root_mean_squared_error: 0.9330 - val_dense_3_root_mean_squared_error: 0.8496\n", - "Epoch 9/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3672 - dense_2_loss: 0.3567 - dense_3_loss: 0.4624 - dense_2_root_mean_squared_error: 0.5972 - dense_3_root_mean_squared_error: 0.6800 - val_loss: 2.6877 - val_dense_2_loss: 2.9011 - val_dense_3_loss: 0.7675 - val_dense_2_root_mean_squared_error: 1.7033 - val_dense_3_root_mean_squared_error: 0.8761\n", - "Epoch 10/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3837 - dense_2_loss: 0.3765 - dense_3_loss: 0.4481 - dense_2_root_mean_squared_error: 0.6136 - dense_3_root_mean_squared_error: 0.6694 - val_loss: 3.6017 - val_dense_2_loss: 3.8004 - val_dense_3_loss: 1.8132 - val_dense_2_root_mean_squared_error: 1.9495 - val_dense_3_root_mean_squared_error: 1.3466\n", - "Epoch 11/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3728 - dense_2_loss: 0.3656 - dense_3_loss: 0.4377 - dense_2_root_mean_squared_error: 0.6046 - dense_3_root_mean_squared_error: 0.6616 - val_loss: 0.6115 - val_dense_2_loss: 0.6325 - val_dense_3_loss: 0.4226 - val_dense_2_root_mean_squared_error: 0.7953 - val_dense_3_root_mean_squared_error: 0.6501\n", - "Epoch 12/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3750 - dense_2_loss: 0.3688 - dense_3_loss: 0.4303 - dense_2_root_mean_squared_error: 0.6073 - dense_3_root_mean_squared_error: 0.6560 - val_loss: 0.9371 - val_dense_2_loss: 0.9545 - val_dense_3_loss: 0.7799 - val_dense_2_root_mean_squared_error: 0.9770 - val_dense_3_root_mean_squared_error: 0.8831\n", - "Epoch 13/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3570 - dense_2_loss: 0.3499 - dense_3_loss: 0.4203 - dense_2_root_mean_squared_error: 0.5915 - dense_3_root_mean_squared_error: 0.6483 - val_loss: 0.4224 - val_dense_2_loss: 0.4245 - val_dense_3_loss: 0.4039 - val_dense_2_root_mean_squared_error: 0.6515 - val_dense_3_root_mean_squared_error: 0.6355\n", - "Epoch 14/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3493 - dense_2_loss: 0.3421 - dense_3_loss: 0.4148 - dense_2_root_mean_squared_error: 0.5849 - dense_3_root_mean_squared_error: 0.6440 - val_loss: 0.3410 - val_dense_2_loss: 0.3221 - val_dense_3_loss: 0.5105 - val_dense_2_root_mean_squared_error: 0.5676 - val_dense_3_root_mean_squared_error: 0.7145\n", - "Epoch 15/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3496 - dense_2_loss: 0.3432 - dense_3_loss: 0.4076 - dense_2_root_mean_squared_error: 0.5858 - dense_3_root_mean_squared_error: 0.6384 - val_loss: 0.6461 - val_dense_2_loss: 0.6671 - val_dense_3_loss: 0.4570 - val_dense_2_root_mean_squared_error: 0.8168 - val_dense_3_root_mean_squared_error: 0.6760\n", - "Epoch 16/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3435 - dense_2_loss: 0.3370 - dense_3_loss: 0.4022 - dense_2_root_mean_squared_error: 0.5805 - dense_3_root_mean_squared_error: 0.6342 - val_loss: 0.6875 - val_dense_2_loss: 0.6841 - val_dense_3_loss: 0.7182 - val_dense_2_root_mean_squared_error: 0.8271 - val_dense_3_root_mean_squared_error: 0.8475\n", - "Epoch 17/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3458 - dense_2_loss: 0.3393 - dense_3_loss: 0.4037 - dense_2_root_mean_squared_error: 0.5825 - dense_3_root_mean_squared_error: 0.6354 - val_loss: 1.1564 - val_dense_2_loss: 1.2129 - val_dense_3_loss: 0.6483 - val_dense_2_root_mean_squared_error: 1.1013 - val_dense_3_root_mean_squared_error: 0.8052\n", - "Epoch 18/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3446 - dense_2_loss: 0.3385 - dense_3_loss: 0.3994 - dense_2_root_mean_squared_error: 0.5818 - dense_3_root_mean_squared_error: 0.6320 - val_loss: 3.9325 - val_dense_2_loss: 4.0947 - val_dense_3_loss: 2.4722 - val_dense_2_root_mean_squared_error: 2.0235 - val_dense_3_root_mean_squared_error: 1.5723\n", - "Epoch 19/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3563 - dense_2_loss: 0.3511 - dense_3_loss: 0.4029 - dense_2_root_mean_squared_error: 0.5925 - dense_3_root_mean_squared_error: 0.6347 - val_loss: 1.4560 - val_dense_2_loss: 1.5433 - val_dense_3_loss: 0.6697 - val_dense_2_root_mean_squared_error: 1.2423 - val_dense_3_root_mean_squared_error: 0.8183\n", - "Epoch 20/20\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3546 - dense_2_loss: 0.3498 - dense_3_loss: 0.3981 - dense_2_root_mean_squared_error: 0.5914 - dense_3_root_mean_squared_error: 0.6310 - val_loss: 1.1709 - val_dense_2_loss: 1.1945 - val_dense_3_loss: 0.9589 - val_dense_2_root_mean_squared_error: 1.0929 - val_dense_3_root_mean_squared_error: 0.9792\n" - ] - } - ], - "source": [ - "norm_layer_wide.adapt(X_train_wide)\n", - "norm_layer_deep.adapt(X_train_deep)\n", - "history = model.fit(\n", - " (X_train_wide, X_train_deep), (y_train, y_train), epochs=20,\n", - " validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid))\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "162/162 [==============================] - 0s 778us/step - loss: 0.3446 - dense_2_loss: 0.3381 - dense_3_loss: 0.4031 - dense_2_root_mean_squared_error: 0.5815 - dense_3_root_mean_squared_error: 0.6349\n" - ] - } - ], - "source": [ - "eval_results = model.evaluate((X_test_wide, X_test_deep), (y_test, y_test))\n", - "weighted_sum_of_losses, main_loss, aux_loss, main_rmse, aux_rmse = eval_results" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:5 out of the last 5 calls to .predict_function at 0x7fb250e69310> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" - ] - } - ], - "source": [ - "y_pred_main, y_pred_aux = model.predict((X_new_wide, X_new_deep))" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [], - "source": [ - "y_pred_tuple = model.predict((X_new_wide, X_new_deep))\n", - "y_pred = dict(zip(model.output_names, y_pred_tuple))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using the Subclassing API to Build Dynamic Models" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "class WideAndDeepModel(tf.keras.Model):\n", - " def __init__(self, units=30, activation=\"relu\", **kwargs):\n", - " super().__init__(**kwargs) # needed to support naming the model\n", - " self.norm_layer_wide = tf.keras.layers.Normalization()\n", - " self.norm_layer_deep = tf.keras.layers.Normalization()\n", - " self.hidden1 = tf.keras.layers.Dense(units, activation=activation)\n", - " self.hidden2 = tf.keras.layers.Dense(units, activation=activation)\n", - " self.main_output = tf.keras.layers.Dense(1)\n", - " self.aux_output = tf.keras.layers.Dense(1)\n", - " \n", - " def call(self, inputs):\n", - " input_wide, input_deep = inputs\n", - " norm_wide = self.norm_layer_wide(input_wide)\n", - " norm_deep = self.norm_layer_deep(input_deep)\n", - " hidden1 = self.hidden1(norm_deep)\n", - " hidden2 = self.hidden2(hidden1)\n", - " concat = tf.keras.layers.concatenate([norm_wide, hidden2])\n", - " output = self.main_output(concat)\n", - " aux_output = self.aux_output(hidden2)\n", - " return output, aux_output\n", - "\n", - "tf.random.set_seed(42) # extra code – just for reproducibility\n", - "model = WideAndDeepModel(30, activation=\"relu\", name=\"my_cool_model\")" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - "363/363 [==============================] - 1s 2ms/step - loss: 1.3490 - output_1_loss: 1.2742 - output_2_loss: 2.0215 - output_1_root_mean_squared_error: 1.1288 - output_2_root_mean_squared_error: 1.4218 - val_loss: 1.5415 - val_output_1_loss: 0.9593 - val_output_2_loss: 6.7806 - val_output_1_root_mean_squared_error: 0.9795 - val_output_2_root_mean_squared_error: 2.6040\n", - "Epoch 2/10\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.5101 - output_1_loss: 0.4785 - output_2_loss: 0.7952 - output_1_root_mean_squared_error: 0.6917 - output_2_root_mean_squared_error: 0.8917 - val_loss: 1.3624 - val_output_1_loss: 1.0094 - val_output_2_loss: 4.5401 - val_output_1_root_mean_squared_error: 1.0047 - val_output_2_root_mean_squared_error: 2.1307\n", - "Epoch 3/10\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4618 - output_1_loss: 0.4404 - output_2_loss: 0.6546 - output_1_root_mean_squared_error: 0.6636 - output_2_root_mean_squared_error: 0.8091 - val_loss: 0.5361 - val_output_1_loss: 0.3975 - val_output_2_loss: 1.7837 - val_output_1_root_mean_squared_error: 0.6305 - val_output_2_root_mean_squared_error: 1.3356\n", - "Epoch 4/10\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4252 - output_1_loss: 0.4059 - output_2_loss: 0.5985 - output_1_root_mean_squared_error: 0.6371 - output_2_root_mean_squared_error: 0.7736 - val_loss: 0.5182 - val_output_1_loss: 0.4590 - val_output_2_loss: 1.0517 - val_output_1_root_mean_squared_error: 0.6775 - val_output_2_root_mean_squared_error: 1.0255\n", - "Epoch 5/10\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.4106 - output_1_loss: 0.3931 - output_2_loss: 0.5690 - output_1_root_mean_squared_error: 0.6269 - output_2_root_mean_squared_error: 0.7543 - val_loss: 0.4049 - val_output_1_loss: 0.3588 - val_output_2_loss: 0.8196 - val_output_1_root_mean_squared_error: 0.5990 - val_output_2_root_mean_squared_error: 0.9053\n", - "Epoch 6/10\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3944 - output_1_loss: 0.3780 - output_2_loss: 0.5424 - output_1_root_mean_squared_error: 0.6148 - output_2_root_mean_squared_error: 0.7365 - val_loss: 0.4168 - val_output_1_loss: 0.3934 - val_output_2_loss: 0.6275 - val_output_1_root_mean_squared_error: 0.6272 - val_output_2_root_mean_squared_error: 0.7921\n", - "Epoch 7/10\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3837 - output_1_loss: 0.3694 - output_2_loss: 0.5126 - output_1_root_mean_squared_error: 0.6078 - output_2_root_mean_squared_error: 0.7160 - val_loss: 0.3661 - val_output_1_loss: 0.3430 - val_output_2_loss: 0.5747 - val_output_1_root_mean_squared_error: 0.5856 - val_output_2_root_mean_squared_error: 0.7581\n", - "Epoch 8/10\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3731 - output_1_loss: 0.3608 - output_2_loss: 0.4840 - output_1_root_mean_squared_error: 0.6007 - output_2_root_mean_squared_error: 0.6957 - val_loss: 0.8555 - val_output_1_loss: 0.8704 - val_output_2_loss: 0.7218 - val_output_1_root_mean_squared_error: 0.9330 - val_output_2_root_mean_squared_error: 0.8496\n", - "Epoch 9/10\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3672 - output_1_loss: 0.3567 - output_2_loss: 0.4624 - output_1_root_mean_squared_error: 0.5972 - output_2_root_mean_squared_error: 0.6800 - val_loss: 2.6877 - val_output_1_loss: 2.9011 - val_output_2_loss: 0.7675 - val_output_1_root_mean_squared_error: 1.7033 - val_output_2_root_mean_squared_error: 0.8761\n", - "Epoch 10/10\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3837 - output_1_loss: 0.3765 - output_2_loss: 0.4481 - output_1_root_mean_squared_error: 0.6136 - output_2_root_mean_squared_error: 0.6694 - val_loss: 3.6017 - val_output_1_loss: 3.8004 - val_output_2_loss: 1.8132 - val_output_1_root_mean_squared_error: 1.9495 - val_output_2_root_mean_squared_error: 1.3466\n", - "162/162 [==============================] - 0s 781us/step - loss: 0.3652 - output_1_loss: 0.3570 - output_2_loss: 0.4387 - output_1_root_mean_squared_error: 0.5975 - output_2_root_mean_squared_error: 0.6624\n", - "WARNING:tensorflow:6 out of the last 7 calls to .predict_function at 0x7fb250b9d820> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" - ] - } - ], - "source": [ - "optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)\n", - "model.compile(loss=\"mse\", loss_weights=[0.9, 0.1], optimizer=optimizer,\n", - " metrics=[\"RootMeanSquaredError\"])\n", - "model.norm_layer_wide.adapt(X_train_wide)\n", - "model.norm_layer_deep.adapt(X_train_deep)\n", - "history = model.fit(\n", - " (X_train_wide, X_train_deep), (y_train, y_train), epochs=10,\n", - " validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid)))\n", - "eval_results = model.evaluate((X_test_wide, X_test_deep), (y_test, y_test))\n", - "weighted_sum_of_losses, main_loss, aux_loss, main_rmse, aux_rmse = eval_results\n", - "y_pred_main, y_pred_aux = model.predict((X_new_wide, X_new_deep))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Saving and Restoring a Model" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "# extra code – delete the directory, in case it already exists\n", - "\n", - "import shutil\n", - "\n", - "shutil.rmtree(\"my_keras_model\", ignore_errors=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: my_keras_model/assets\n" - ] - } - ], - "source": [ - "model.save(\"my_keras_model\", save_format=\"tf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "my_keras_model/assets\n", - "my_keras_model/keras_metadata.pb\n", - "my_keras_model/saved_model.pb\n", - "my_keras_model/variables\n", - "my_keras_model/variables/variables.data-00000-of-00001\n", - "my_keras_model/variables/variables.index\n" - ] - } - ], - "source": [ - "# extra code – show the contents of the my_keras_model/ directory\n", - "for path in sorted(Path(\"my_keras_model\").glob(\"**/*\")):\n", - " print(path)" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "model = tf.keras.models.load_model(\"my_keras_model\")\n", - "y_pred_main, y_pred_aux = model.predict((X_new_wide, X_new_deep))" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [], - "source": [ - "model.save_weights(\"my_weights\")" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.load_weights(\"my_weights\")" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "my_weights.data-00000-of-00001\n", - "my_weights.index\n" - ] - } - ], - "source": [ - "# extra code – show the list of my_weights.* files\n", - "for path in sorted(Path().glob(\"my_weights.*\")):\n", - " print(path)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using Callbacks" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "shutil.rmtree(\"my_checkpoints\", ignore_errors=True) # extra code" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - "363/363 [==============================] - 1s 2ms/step - loss: 0.3775 - output_1_loss: 0.3706 - output_2_loss: 0.4402 - output_1_root_mean_squared_error: 0.6088 - output_2_root_mean_squared_error: 0.6635 - val_loss: 0.3369 - val_output_1_loss: 0.3234 - val_output_2_loss: 0.4587 - val_output_1_root_mean_squared_error: 0.5687 - val_output_2_root_mean_squared_error: 0.6773\n", - "Epoch 2/10\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3556 - output_1_loss: 0.3480 - output_2_loss: 0.4242 - output_1_root_mean_squared_error: 0.5899 - output_2_root_mean_squared_error: 0.6513 - val_loss: 0.4940 - val_output_1_loss: 0.4650 - val_output_2_loss: 0.7551 - val_output_1_root_mean_squared_error: 0.6819 - val_output_2_root_mean_squared_error: 0.8689\n", - "Epoch 3/10\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3612 - output_1_loss: 0.3547 - output_2_loss: 0.4198 - output_1_root_mean_squared_error: 0.5956 - output_2_root_mean_squared_error: 0.6480 - val_loss: 0.3443 - val_output_1_loss: 0.3355 - val_output_2_loss: 0.4241 - val_output_1_root_mean_squared_error: 0.5792 - val_output_2_root_mean_squared_error: 0.6512\n", - "Epoch 4/10\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3493 - output_1_loss: 0.3425 - output_2_loss: 0.4110 - output_1_root_mean_squared_error: 0.5852 - output_2_root_mean_squared_error: 0.6411 - val_loss: 0.4676 - val_output_1_loss: 0.4635 - val_output_2_loss: 0.5046 - val_output_1_root_mean_squared_error: 0.6808 - val_output_2_root_mean_squared_error: 0.7104\n", - "Epoch 5/10\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3525 - output_1_loss: 0.3465 - output_2_loss: 0.4069 - output_1_root_mean_squared_error: 0.5886 - output_2_root_mean_squared_error: 0.6379 - val_loss: 1.3020 - val_output_1_loss: 1.3842 - val_output_2_loss: 0.5623 - val_output_1_root_mean_squared_error: 1.1765 - val_output_2_root_mean_squared_error: 0.7499\n", - "Epoch 6/10\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3512 - output_1_loss: 0.3453 - output_2_loss: 0.4039 - output_1_root_mean_squared_error: 0.5876 - output_2_root_mean_squared_error: 0.6356 - val_loss: 1.6719 - val_output_1_loss: 1.7502 - val_output_2_loss: 0.9670 - val_output_1_root_mean_squared_error: 1.3230 - val_output_2_root_mean_squared_error: 0.9833\n", - "Epoch 7/10\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3533 - output_1_loss: 0.3477 - output_2_loss: 0.4038 - output_1_root_mean_squared_error: 0.5897 - output_2_root_mean_squared_error: 0.6355 - val_loss: 0.6855 - val_output_1_loss: 0.7149 - val_output_2_loss: 0.4210 - val_output_1_root_mean_squared_error: 0.8455 - val_output_2_root_mean_squared_error: 0.6488\n", - "Epoch 8/10\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3409 - output_1_loss: 0.3348 - output_2_loss: 0.3965 - output_1_root_mean_squared_error: 0.5786 - output_2_root_mean_squared_error: 0.6297 - val_loss: 2.0126 - val_output_1_loss: 1.9280 - val_output_2_loss: 2.7742 - val_output_1_root_mean_squared_error: 1.3885 - val_output_2_root_mean_squared_error: 1.6656\n", - "Epoch 9/10\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3441 - output_1_loss: 0.3375 - output_2_loss: 0.4028 - output_1_root_mean_squared_error: 0.5810 - output_2_root_mean_squared_error: 0.6347 - val_loss: 1.6894 - val_output_1_loss: 1.8009 - val_output_2_loss: 0.6859 - val_output_1_root_mean_squared_error: 1.3420 - val_output_2_root_mean_squared_error: 0.8282\n", - "Epoch 10/10\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3517 - output_1_loss: 0.3468 - output_2_loss: 0.3962 - output_1_root_mean_squared_error: 0.5889 - output_2_root_mean_squared_error: 0.6294 - val_loss: 1.2969 - val_output_1_loss: 1.3365 - val_output_2_loss: 0.9407 - val_output_1_root_mean_squared_error: 1.1561 - val_output_2_root_mean_squared_error: 0.9699\n" - ] - } - ], - "source": [ - "checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(\"my_checkpoints\",\n", - " save_weights_only=True)\n", - "history = model.fit(\n", - " (X_train_wide, X_train_deep), (y_train, y_train), epochs=10,\n", - " validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid)),\n", - " callbacks=[checkpoint_cb])" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3405 - output_1_loss: 0.3349 - output_2_loss: 0.3910 - output_1_root_mean_squared_error: 0.5787 - output_2_root_mean_squared_error: 0.6253 - val_loss: 0.6245 - val_output_1_loss: 0.6502 - val_output_2_loss: 0.3937 - val_output_1_root_mean_squared_error: 0.8063 - val_output_2_root_mean_squared_error: 0.6275\n", - "Epoch 2/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3400 - output_1_loss: 0.3344 - output_2_loss: 0.3900 - output_1_root_mean_squared_error: 0.5783 - output_2_root_mean_squared_error: 0.6245 - val_loss: 0.9552 - val_output_1_loss: 0.9508 - val_output_2_loss: 0.9947 - val_output_1_root_mean_squared_error: 0.9751 - val_output_2_root_mean_squared_error: 0.9974\n", - "Epoch 3/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3442 - output_1_loss: 0.3389 - output_2_loss: 0.3921 - output_1_root_mean_squared_error: 0.5821 - output_2_root_mean_squared_error: 0.6262 - val_loss: 0.3574 - val_output_1_loss: 0.3552 - val_output_2_loss: 0.3766 - val_output_1_root_mean_squared_error: 0.5960 - val_output_2_root_mean_squared_error: 0.6137\n", - "Epoch 4/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3347 - output_1_loss: 0.3289 - output_2_loss: 0.3865 - output_1_root_mean_squared_error: 0.5735 - output_2_root_mean_squared_error: 0.6217 - val_loss: 0.4521 - val_output_1_loss: 0.4401 - val_output_2_loss: 0.5609 - val_output_1_root_mean_squared_error: 0.6634 - val_output_2_root_mean_squared_error: 0.7489\n", - "Epoch 5/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3363 - output_1_loss: 0.3311 - output_2_loss: 0.3832 - output_1_root_mean_squared_error: 0.5754 - output_2_root_mean_squared_error: 0.6190 - val_loss: 0.4903 - val_output_1_loss: 0.5018 - val_output_2_loss: 0.3869 - val_output_1_root_mean_squared_error: 0.7084 - val_output_2_root_mean_squared_error: 0.6220\n", - "Epoch 6/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3300 - output_1_loss: 0.3245 - output_2_loss: 0.3801 - output_1_root_mean_squared_error: 0.5696 - output_2_root_mean_squared_error: 0.6165 - val_loss: 0.8351 - val_output_1_loss: 0.8434 - val_output_2_loss: 0.7602 - val_output_1_root_mean_squared_error: 0.9184 - val_output_2_root_mean_squared_error: 0.8719\n", - "Epoch 7/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3324 - output_1_loss: 0.3270 - output_2_loss: 0.3814 - output_1_root_mean_squared_error: 0.5718 - output_2_root_mean_squared_error: 0.6176 - val_loss: 0.6880 - val_output_1_loss: 0.7171 - val_output_2_loss: 0.4259 - val_output_1_root_mean_squared_error: 0.8468 - val_output_2_root_mean_squared_error: 0.6526\n", - "Epoch 8/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3286 - output_1_loss: 0.3231 - output_2_loss: 0.3774 - output_1_root_mean_squared_error: 0.5684 - output_2_root_mean_squared_error: 0.6143 - val_loss: 4.4284 - val_output_1_loss: 4.2604 - val_output_2_loss: 5.9404 - val_output_1_root_mean_squared_error: 2.0641 - val_output_2_root_mean_squared_error: 2.4373\n", - "Epoch 9/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3378 - output_1_loss: 0.3322 - output_2_loss: 0.3886 - output_1_root_mean_squared_error: 0.5764 - output_2_root_mean_squared_error: 0.6234 - val_loss: 1.7043 - val_output_1_loss: 1.7984 - val_output_2_loss: 0.8578 - val_output_1_root_mean_squared_error: 1.3410 - val_output_2_root_mean_squared_error: 0.9262\n", - "Epoch 10/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3401 - output_1_loss: 0.3354 - output_2_loss: 0.3824 - output_1_root_mean_squared_error: 0.5792 - output_2_root_mean_squared_error: 0.6184 - val_loss: 0.6170 - val_output_1_loss: 0.6282 - val_output_2_loss: 0.5169 - val_output_1_root_mean_squared_error: 0.7926 - val_output_2_root_mean_squared_error: 0.7190\n", - "Epoch 11/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3230 - output_1_loss: 0.3177 - output_2_loss: 0.3706 - output_1_root_mean_squared_error: 0.5637 - output_2_root_mean_squared_error: 0.6088 - val_loss: 0.3558 - val_output_1_loss: 0.3490 - val_output_2_loss: 0.4170 - val_output_1_root_mean_squared_error: 0.5907 - val_output_2_root_mean_squared_error: 0.6457\n", - "Epoch 12/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3253 - output_1_loss: 0.3201 - output_2_loss: 0.3727 - output_1_root_mean_squared_error: 0.5658 - output_2_root_mean_squared_error: 0.6105 - val_loss: 0.4612 - val_output_1_loss: 0.4597 - val_output_2_loss: 0.4745 - val_output_1_root_mean_squared_error: 0.6780 - val_output_2_root_mean_squared_error: 0.6888\n", - "Epoch 13/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3221 - output_1_loss: 0.3167 - output_2_loss: 0.3699 - output_1_root_mean_squared_error: 0.5628 - output_2_root_mean_squared_error: 0.6082 - val_loss: 0.3120 - val_output_1_loss: 0.3056 - val_output_2_loss: 0.3694 - val_output_1_root_mean_squared_error: 0.5528 - val_output_2_root_mean_squared_error: 0.6078\n", - "Epoch 14/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3204 - output_1_loss: 0.3149 - output_2_loss: 0.3695 - output_1_root_mean_squared_error: 0.5612 - output_2_root_mean_squared_error: 0.6078 - val_loss: 0.4120 - val_output_1_loss: 0.4013 - val_output_2_loss: 0.5076 - val_output_1_root_mean_squared_error: 0.6335 - val_output_2_root_mean_squared_error: 0.7124\n", - "Epoch 15/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3196 - output_1_loss: 0.3144 - output_2_loss: 0.3662 - output_1_root_mean_squared_error: 0.5607 - output_2_root_mean_squared_error: 0.6052 - val_loss: 0.3304 - val_output_1_loss: 0.3269 - val_output_2_loss: 0.3619 - val_output_1_root_mean_squared_error: 0.5718 - val_output_2_root_mean_squared_error: 0.6016\n", - "Epoch 16/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3166 - output_1_loss: 0.3113 - output_2_loss: 0.3639 - output_1_root_mean_squared_error: 0.5579 - output_2_root_mean_squared_error: 0.6032 - val_loss: 0.4455 - val_output_1_loss: 0.4414 - val_output_2_loss: 0.4819 - val_output_1_root_mean_squared_error: 0.6644 - val_output_2_root_mean_squared_error: 0.6942\n", - "Epoch 17/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3186 - output_1_loss: 0.3134 - output_2_loss: 0.3650 - output_1_root_mean_squared_error: 0.5599 - output_2_root_mean_squared_error: 0.6041 - val_loss: 0.3255 - val_output_1_loss: 0.3212 - val_output_2_loss: 0.3643 - val_output_1_root_mean_squared_error: 0.5667 - val_output_2_root_mean_squared_error: 0.6035\n", - "Epoch 18/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3143 - output_1_loss: 0.3091 - output_2_loss: 0.3611 - output_1_root_mean_squared_error: 0.5560 - output_2_root_mean_squared_error: 0.6009 - val_loss: 1.6360 - val_output_1_loss: 1.6925 - val_output_2_loss: 1.1276 - val_output_1_root_mean_squared_error: 1.3010 - val_output_2_root_mean_squared_error: 1.0619\n", - "Epoch 19/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3169 - output_1_loss: 0.3122 - output_2_loss: 0.3601 - output_1_root_mean_squared_error: 0.5587 - output_2_root_mean_squared_error: 0.6001 - val_loss: 1.2441 - val_output_1_loss: 1.3093 - val_output_2_loss: 0.6572 - val_output_1_root_mean_squared_error: 1.1442 - val_output_2_root_mean_squared_error: 0.8107\n", - "Epoch 20/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3245 - output_1_loss: 0.3201 - output_2_loss: 0.3641 - output_1_root_mean_squared_error: 0.5658 - output_2_root_mean_squared_error: 0.6034 - val_loss: 1.5466 - val_output_1_loss: 1.5582 - val_output_2_loss: 1.4424 - val_output_1_root_mean_squared_error: 1.2483 - val_output_2_root_mean_squared_error: 1.2010\n", - "Epoch 21/100\n", - "363/363 [==============================] - 0s 1ms/step - loss: 0.3202 - output_1_loss: 0.3153 - output_2_loss: 0.3640 - output_1_root_mean_squared_error: 0.5615 - output_2_root_mean_squared_error: 0.6033 - val_loss: 0.6704 - val_output_1_loss: 0.6907 - val_output_2_loss: 0.4873 - val_output_1_root_mean_squared_error: 0.8311 - val_output_2_root_mean_squared_error: 0.6980\n", - "Epoch 22/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3150 - output_1_loss: 0.3103 - output_2_loss: 0.3573 - output_1_root_mean_squared_error: 0.5570 - output_2_root_mean_squared_error: 0.5978 - val_loss: 0.4909 - val_output_1_loss: 0.4955 - val_output_2_loss: 0.4493 - val_output_1_root_mean_squared_error: 0.7039 - val_output_2_root_mean_squared_error: 0.6703\n", - "Epoch 23/100\n", - "363/363 [==============================] - 1s 1ms/step - loss: 0.3104 - output_1_loss: 0.3054 - output_2_loss: 0.3552 - output_1_root_mean_squared_error: 0.5526 - output_2_root_mean_squared_error: 0.5960 - val_loss: 0.3845 - val_output_1_loss: 0.3803 - val_output_2_loss: 0.4228 - val_output_1_root_mean_squared_error: 0.6167 - val_output_2_root_mean_squared_error: 0.6502\n" - ] - } - ], - "source": [ - "early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=10,\n", - " restore_best_weights=True)\n", - "history = model.fit(\n", - " (X_train_wide, X_train_deep), (y_train, y_train), epochs=100,\n", - " validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid)),\n", - " callbacks=[checkpoint_cb, early_stopping_cb])" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [], - "source": [ - "class PrintValTrainRatioCallback(tf.keras.callbacks.Callback):\n", - " def on_epoch_end(self, epoch, logs):\n", - " ratio = logs[\"val_loss\"] / logs[\"loss\"]\n", - " print(f\"Epoch={epoch}, val/train={ratio:.2f}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch=0, val/train=2.29\n", - "Epoch=1, val/train=1.03\n", - "Epoch=2, val/train=2.07\n", - "Epoch=3, val/train=1.76\n", - "Epoch=4, val/train=3.56\n", - "Epoch=5, val/train=1.86\n", - "Epoch=6, val/train=2.45\n", - "Epoch=7, val/train=7.86\n", - "Epoch=8, val/train=11.20\n", - "Epoch=9, val/train=1.14\n" - ] - } - ], - "source": [ - "val_train_ratio_cb = PrintValTrainRatioCallback()\n", - "history = model.fit(\n", - " (X_train_wide, X_train_deep), (y_train, y_train), epochs=10,\n", - " validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid)),\n", - " callbacks=[val_train_ratio_cb], verbose=0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using TensorBoard for Visualization" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "TensorBoard is preinstalled on Colab, but not the `tensorboard-plugin-profile`, so let's install it:" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [], - "source": [ - "if \"google.colab\" in sys.modules: # extra code\n", - " %pip install -q -U tensorboard-plugin-profile" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "shutil.rmtree(\"my_logs\", ignore_errors=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "from time import strftime\n", - "\n", - "def get_run_logdir(root_logdir=\"my_logs\"):\n", - " return Path(root_logdir) / strftime(\"run_%Y_%m_%d_%H_%M_%S\")\n", - "\n", - "run_logdir = get_run_logdir()" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [], - "source": [ - "# extra code – builds the first regression model we used earlier\n", - "tf.keras.backend.clear_session()\n", - "tf.random.set_seed(42)\n", - "norm_layer = tf.keras.layers.Normalization(input_shape=X_train.shape[1:])\n", - "model = tf.keras.Sequential([\n", - " norm_layer,\n", - " tf.keras.layers.Dense(30, activation=\"relu\"),\n", - " tf.keras.layers.Dense(30, activation=\"relu\"),\n", - " tf.keras.layers.Dense(1)\n", - "])\n", - "optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3)\n", - "model.compile(loss=\"mse\", optimizer=optimizer, metrics=[\"RootMeanSquaredError\"])\n", - "norm_layer.adapt(X_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2022-08-01 17:25:59.099970: I tensorflow/core/profiler/lib/profiler_session.cc:110] Profiler session initializing.\n", - "2022-08-01 17:25:59.099982: I tensorflow/core/profiler/lib/profiler_session.cc:125] Profiler session started.\n", - "2022-08-01 17:25:59.100137: I tensorflow/core/profiler/lib/profiler_session.cc:143] Profiler session tear down.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/20\n", - "261/363 [====================>.........] - ETA: 0s - loss: 2.3165 - root_mean_squared_error: 1.5220" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2022-08-01 17:25:59.430946: I tensorflow/core/profiler/lib/profiler_session.cc:110] Profiler session initializing.\n", - "2022-08-01 17:25:59.430962: I tensorflow/core/profiler/lib/profiler_session.cc:125] Profiler session started.\n", - "2022-08-01 17:25:59.510100: I tensorflow/core/profiler/lib/profiler_session.cc:67] Profiler session collecting data.\n", - "2022-08-01 17:25:59.524969: I tensorflow/core/profiler/lib/profiler_session.cc:143] Profiler session tear down.\n", - "2022-08-01 17:25:59.539451: I tensorflow/core/profiler/rpc/client/save_profile.cc:136] Creating directory: my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00\n", - "\n", - "2022-08-01 17:25:59.549606: I tensorflow/core/profiler/rpc/client/save_profile.cc:142] Dumped gzipped tool data for trace.json.gz to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.trace.json.gz\n", - "2022-08-01 17:25:59.558338: I tensorflow/core/profiler/rpc/client/save_profile.cc:136] Creating directory: my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00\n", - "\n", - "2022-08-01 17:25:59.558474: I tensorflow/core/profiler/rpc/client/save_profile.cc:142] Dumped gzipped tool data for memory_profile.json.gz to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.memory_profile.json.gz\n", - "2022-08-01 17:25:59.559618: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00\n", - "Dumped tool data for xplane.pb to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.xplane.pb\n", - "Dumped tool data for overview_page.pb to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.overview_page.pb\n", - "Dumped tool data for input_pipeline.pb to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.input_pipeline.pb\n", - "Dumped tool data for tensorflow_stats.pb to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.tensorflow_stats.pb\n", - "Dumped tool data for kernel_stats.pb to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.kernel_stats.pb\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "363/363 [==============================] - 1s 1ms/step - loss: 1.8866 - root_mean_squared_error: 1.3736 - val_loss: 0.7126 - val_root_mean_squared_error: 0.8442\n", - "Epoch 2/20\n", - "363/363 [==============================] - 0s 907us/step - loss: 0.6577 - root_mean_squared_error: 0.8110 - val_loss: 0.6880 - val_root_mean_squared_error: 0.8295\n", - "Epoch 3/20\n", - "363/363 [==============================] - 0s 836us/step - loss: 0.5934 - root_mean_squared_error: 0.7703 - val_loss: 0.5803 - val_root_mean_squared_error: 0.7618\n", - "Epoch 4/20\n", - "363/363 [==============================] - 0s 832us/step - loss: 0.5557 - root_mean_squared_error: 0.7455 - val_loss: 0.5166 - val_root_mean_squared_error: 0.7188\n", - "Epoch 5/20\n", - "363/363 [==============================] - 0s 985us/step - loss: 0.5272 - root_mean_squared_error: 0.7261 - val_loss: 0.4895 - val_root_mean_squared_error: 0.6997\n", - "Epoch 6/20\n", - "363/363 [==============================] - 0s 887us/step - loss: 0.5033 - root_mean_squared_error: 0.7094 - val_loss: 0.4951 - val_root_mean_squared_error: 0.7036\n", - "Epoch 7/20\n", - "363/363 [==============================] - 0s 894us/step - loss: 0.4854 - root_mean_squared_error: 0.6967 - val_loss: 0.4862 - val_root_mean_squared_error: 0.6973\n", - "Epoch 8/20\n", - "363/363 [==============================] - 0s 868us/step - loss: 0.4709 - root_mean_squared_error: 0.6862 - val_loss: 0.4554 - val_root_mean_squared_error: 0.6748\n", - "Epoch 9/20\n", - "363/363 [==============================] - 0s 780us/step - loss: 0.4578 - root_mean_squared_error: 0.6766 - val_loss: 0.4413 - val_root_mean_squared_error: 0.6643\n", - "Epoch 10/20\n", - "363/363 [==============================] - 0s 819us/step - loss: 0.4474 - root_mean_squared_error: 0.6689 - val_loss: 0.4379 - val_root_mean_squared_error: 0.6617\n", - "Epoch 11/20\n", - "363/363 [==============================] - 0s 795us/step - loss: 0.4393 - root_mean_squared_error: 0.6628 - val_loss: 0.4396 - val_root_mean_squared_error: 0.6630\n", - "Epoch 12/20\n", - "363/363 [==============================] - 0s 852us/step - loss: 0.4318 - root_mean_squared_error: 0.6571 - val_loss: 0.4505 - val_root_mean_squared_error: 0.6712\n", - "Epoch 13/20\n", - "363/363 [==============================] - 0s 910us/step - loss: 0.4260 - root_mean_squared_error: 0.6527 - val_loss: 0.3997 - val_root_mean_squared_error: 0.6322\n", - "Epoch 14/20\n", - "363/363 [==============================] - 0s 796us/step - loss: 0.4202 - root_mean_squared_error: 0.6482 - val_loss: 0.3956 - val_root_mean_squared_error: 0.6290\n", - "Epoch 15/20\n", - "363/363 [==============================] - 0s 816us/step - loss: 0.4155 - root_mean_squared_error: 0.6446 - val_loss: 0.3916 - val_root_mean_squared_error: 0.6257\n", - "Epoch 16/20\n", - "363/363 [==============================] - 0s 759us/step - loss: 0.4112 - root_mean_squared_error: 0.6412 - val_loss: 0.3937 - val_root_mean_squared_error: 0.6275\n", - "Epoch 17/20\n", - "363/363 [==============================] - 0s 826us/step - loss: 0.4077 - root_mean_squared_error: 0.6385 - val_loss: 0.3809 - val_root_mean_squared_error: 0.6172\n", - "Epoch 18/20\n", - "363/363 [==============================] - 0s 832us/step - loss: 0.4039 - root_mean_squared_error: 0.6356 - val_loss: 0.3793 - val_root_mean_squared_error: 0.6159\n", - "Epoch 19/20\n", - "363/363 [==============================] - 0s 747us/step - loss: 0.4004 - root_mean_squared_error: 0.6328 - val_loss: 0.3850 - val_root_mean_squared_error: 0.6205\n", - "Epoch 20/20\n", - "363/363 [==============================] - 0s 755us/step - loss: 0.3980 - root_mean_squared_error: 0.6308 - val_loss: 0.3809 - val_root_mean_squared_error: 0.6172\n" - ] - } - ], - "source": [ - "tensorboard_cb = tf.keras.callbacks.TensorBoard(run_logdir,\n", - " profile_batch=(100, 200))\n", - "history = model.fit(X_train, y_train, epochs=20,\n", - " validation_data=(X_valid, y_valid),\n", - " callbacks=[tensorboard_cb])" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "my_logs\n", - " run_2022_08_01_17_25_59\n", - " events.out.tfevents.1638910166.my_computer.profile-empty\n", - " plugins\n", - " profile\n", - " 2022_08_01_17_26_00\n", - " my_computer.input_pipeline.pb\n", - " my_computer.kernel_stats.pb\n", - " my_computer.memory_profile.json.gz\n", - " my_computer.overview_page.pb\n", - " my_computer.tensorflow_stats.pb\n", - " my_computer.trace.json.gz\n", - " my_computer.xplane.pb\n", - " train\n", - " events.out.tfevents.1638910166.my_computer.22294.0.v2\n", - " validation\n", - " events.out.tfevents.1638910166.my_computer.22294.1.v2\n" - ] - } - ], - "source": [ - "print(\"my_logs\")\n", - "for path in sorted(Path(\"my_logs\").glob(\"**/*\")):\n", - " print(\" \" * (len(path.parts) - 1) + path.parts[-1])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's load the `tensorboard` Jupyter extension and start the TensorBoard server: " - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%load_ext tensorboard\n", - "%tensorboard --logdir=./my_logs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Note**: if you prefer to access TensorBoard in a separate tab, click the \"localhost:6006\" link below:" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "http://localhost:6006/" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# extra code\n", - "\n", - "if \"google.colab\" in sys.modules:\n", - " from google.colab import output\n", - "\n", - " output.serve_kernel_port_as_window(6006)\n", - "else:\n", - " from IPython.display import display, HTML\n", - "\n", - " display(HTML('http://localhost:6006/'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can use also visualize histograms, images, text, and even listen to audio using TensorBoard:" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": {}, - "outputs": [], - "source": [ - "test_logdir = get_run_logdir()\n", - "writer = tf.summary.create_file_writer(str(test_logdir))\n", - "with writer.as_default():\n", - " for step in range(1, 1000 + 1):\n", - " tf.summary.scalar(\"my_scalar\", np.sin(step / 10), step=step)\n", - " \n", - " data = (np.random.randn(100) + 2) * step / 100 # gets larger\n", - " tf.summary.histogram(\"my_hist\", data, buckets=50, step=step)\n", - " \n", - " images = np.random.rand(2, 32, 32, 3) * step / 1000 # gets brighter\n", - " tf.summary.image(\"my_images\", images, step=step)\n", - " \n", - " texts = [\"The step is \" + str(step), \"Its square is \" + str(step ** 2)]\n", - " tf.summary.text(\"my_text\", texts, step=step)\n", - " \n", - " sine_wave = tf.math.sin(tf.range(12000) / 48000 * 2 * np.pi * step)\n", - " audio = tf.reshape(tf.cast(sine_wave, tf.float32), [1, -1, 1])\n", - " tf.summary.audio(\"my_audio\", audio, sample_rate=48000, step=step)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Note**: it used to be possible to easily share your TensorBoard logs with the world by uploading them to https://tensorboard.dev/. Sadly, this service will shut down in December 2023, so I have removed the corresponding code examples from this notebook." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "When you stop this Jupyter kernel (a.k.a. Runtime), it will automatically stop the TensorBoard server as well. Another way to stop the TensorBoard server is to kill it, if you are running on Linux or MacOSX. First, you need to find its process ID:" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Known TensorBoard instances:\n", - " - port 6006: logdir ./my_logs (started 0:00:31 ago; pid 22701)\n" - ] - } - ], - "source": [ - "# extra code – lists all running TensorBoard server instances\n", - "\n", - "from tensorboard import notebook\n", - "\n", - "notebook.list()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next you can use the following command on Linux or MacOSX, replacing `` with the pid listed above:\n", - "\n", - " !kill \n", - "\n", - "On Windows:\n", - "\n", - " !taskkill /F /PID " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fine-Tuning Neural Network Hyperparameters" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this section we'll use the Fashion MNIST dataset again:" - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "metadata": {}, - "outputs": [], - "source": [ - "(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist\n", - "X_train, y_train = X_train_full[:-5000], y_train_full[:-5000]\n", - "X_valid, y_valid = X_train_full[-5000:], y_train_full[-5000:]" - ] - }, - { - "cell_type": "code", - "execution_count": 92, - "metadata": {}, - "outputs": [], - "source": [ - "tf.keras.backend.clear_session()\n", - "tf.random.set_seed(42)" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "metadata": {}, - "outputs": [], - "source": [ - "if \"google.colab\" in sys.modules:\n", - " %pip install -q -U keras_tuner" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "metadata": {}, - "outputs": [], - "source": [ - "import keras_tuner as kt\n", - "\n", - "def build_model(hp):\n", - " n_hidden = hp.Int(\"n_hidden\", min_value=0, max_value=8, default=2)\n", - " n_neurons = hp.Int(\"n_neurons\", min_value=16, max_value=256)\n", - " learning_rate = hp.Float(\"learning_rate\", min_value=1e-4, max_value=1e-2,\n", - " sampling=\"log\")\n", - " optimizer = hp.Choice(\"optimizer\", values=[\"sgd\", \"adam\"])\n", - " if optimizer == \"sgd\":\n", - " optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)\n", - " else:\n", - " optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)\n", - "\n", - " model = tf.keras.Sequential()\n", - " model.add(tf.keras.layers.Flatten())\n", - " for _ in range(n_hidden):\n", - " model.add(tf.keras.layers.Dense(n_neurons, activation=\"relu\"))\n", - " model.add(tf.keras.layers.Dense(10, activation=\"softmax\"))\n", - " model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=optimizer,\n", - " metrics=[\"accuracy\"])\n", - " return model" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Trial 5 Complete [00h 00m 24s]\n", - "val_accuracy: 0.8736000061035156\n", - "\n", - "Best val_accuracy So Far: 0.8736000061035156\n", - "Total elapsed time: 00h 01m 43s\n", - "INFO:tensorflow:Oracle triggered exit\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I1208 09:51:50.359315 4451454400 1158129808.py:4] Oracle triggered exit\n" - ] - } - ], - "source": [ - "random_search_tuner = kt.RandomSearch(\n", - " build_model, objective=\"val_accuracy\", max_trials=5, overwrite=True,\n", - " directory=\"my_fashion_mnist\", project_name=\"my_rnd_search\", seed=42)\n", - "random_search_tuner.search(X_train, y_train, epochs=10,\n", - " validation_data=(X_valid, y_valid))" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": {}, - "outputs": [], - "source": [ - "top3_models = random_search_tuner.get_best_models(num_models=3)\n", - "best_model = top3_models[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'n_hidden': 5,\n", - " 'n_neurons': 70,\n", - " 'learning_rate': 0.00041268008323824807,\n", - " 'optimizer': 'adam'}" - ] - }, - "execution_count": 97, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "top3_params = random_search_tuner.get_best_hyperparameters(num_trials=3)\n", - "top3_params[0].values # best hyperparameter values" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Trial summary\n", - "Hyperparameters:\n", - "n_hidden: 5\n", - "n_neurons: 70\n", - "learning_rate: 0.00041268008323824807\n", - "optimizer: adam\n", - "Score: 0.8736000061035156\n" - ] - } - ], - "source": [ - "best_trial = random_search_tuner.oracle.get_best_trials(num_trials=1)[0]\n", - "best_trial.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.8736000061035156" - ] - }, - "execution_count": 99, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "best_trial.metrics.get_last_value(\"val_accuracy\")" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - "1875/1875 [==============================] - 3s 1ms/step - loss: 0.3274 - accuracy: 0.8799\n", - "Epoch 2/10\n", - "1875/1875 [==============================] - 2s 1ms/step - loss: 0.3155 - accuracy: 0.8827\n", - "Epoch 3/10\n", - "1875/1875 [==============================] - 2s 1ms/step - loss: 0.3049 - accuracy: 0.8867\n", - "Epoch 4/10\n", - "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2962 - accuracy: 0.8914\n", - "Epoch 5/10\n", - "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2886 - accuracy: 0.8931\n", - "Epoch 6/10\n", - "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2831 - accuracy: 0.8935\n", - "Epoch 7/10\n", - "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2795 - accuracy: 0.8962\n", - "Epoch 8/10\n", - "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2701 - accuracy: 0.8999: 0s - loss: 0\n", - "Epoch 9/10\n", - "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2661 - accuracy: 0.9009\n", - "Epoch 10/10\n", - "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2628 - accuracy: 0.9012\n", - "313/313 [==============================] - 0s 744us/step - loss: 0.3625 - accuracy: 0.8753\n" - ] - } - ], - "source": [ - "best_model.fit(X_train_full, y_train_full, epochs=10)\n", - "test_loss, test_accuracy = best_model.evaluate(X_test, y_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 101, - "metadata": {}, - "outputs": [], - "source": [ - "class MyClassificationHyperModel(kt.HyperModel):\n", - " def build(self, hp):\n", - " return build_model(hp)\n", - "\n", - " def fit(self, hp, model, X, y, **kwargs):\n", - " if hp.Boolean(\"normalize\"):\n", - " norm_layer = tf.keras.layers.Normalization()\n", - " X = norm_layer(X)\n", - " return model.fit(X, y, **kwargs)" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": {}, - "outputs": [], - "source": [ - "hyperband_tuner = kt.Hyperband(\n", - " MyClassificationHyperModel(), objective=\"val_accuracy\", seed=42,\n", - " max_epochs=10, factor=3, hyperband_iterations=2,\n", - " overwrite=True, directory=\"my_fashion_mnist\", project_name=\"hyperband\")" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Trial 60 Complete [00h 00m 18s]\n", - "val_accuracy: 0.819599986076355\n", - "\n", - "Best val_accuracy So Far: 0.8704000115394592\n", - "Total elapsed time: 00h 08m 44s\n", - "INFO:tensorflow:Oracle triggered exit\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I1208 10:00:59.856360 4451454400 3169670597.py:4] Oracle triggered exit\n" - ] - } - ], - "source": [ - "root_logdir = Path(hyperband_tuner.project_dir) / \"tensorboard\"\n", - "tensorboard_cb = tf.keras.callbacks.TensorBoard(root_logdir)\n", - "early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=2)\n", - "hyperband_tuner.search(X_train, y_train, epochs=10,\n", - " validation_data=(X_valid, y_valid),\n", - " callbacks=[early_stopping_cb, tensorboard_cb])" - ] - }, - { - "cell_type": "code", - "execution_count": 104, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Trial 10 Complete [00h 00m 13s]\n", - "val_accuracy: 0.7228000164031982\n", - "\n", - "Best val_accuracy So Far: 0.8636000156402588\n", - "Total elapsed time: 00h 02m 10s\n", - "INFO:tensorflow:Oracle triggered exit\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I1208 10:03:10.004801 4451454400 1918178380.py:5] Oracle triggered exit\n" - ] - } - ], - "source": [ - "bayesian_opt_tuner = kt.BayesianOptimization(\n", - " MyClassificationHyperModel(), objective=\"val_accuracy\", seed=42,\n", - " max_trials=10, alpha=1e-4, beta=2.6,\n", - " overwrite=True, directory=\"my_fashion_mnist\", project_name=\"bayesian_opt\")\n", - "bayesian_opt_tuner.search(X_train, y_train, epochs=10,\n", - " validation_data=(X_valid, y_valid),\n", - " callbacks=[early_stopping_cb])" - ] - }, - { - "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%tensorboard --logdir {root_logdir}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise solutions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. to 9." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Visit the [TensorFlow Playground](https://playground.tensorflow.org/) and play around with it, as described in this exercise.\n", - "2. Here is a neural network based on the original artificial neurons that computes _A_ ⊕ _B_ (where ⊕ represents the exclusive OR), using the fact that _A_ ⊕ _B_ = (_A_ ∧ ¬ _B_) ∨ (¬ _A_ ∧ _B_). There are other solutions—for example, using the fact that _A_ ⊕ _B_ = (_A_ ∨ _B_) ∧ ¬(_A_ ∧ _B_), or the fact that _A_ ⊕ _B_ = (_A_ ∨ _B_) ∧ (¬ _A_ ∨ ¬ _B_), and so on.
\n", - "3. A classical Perceptron will converge only if the dataset is linearly separable, and it won't be able to estimate class probabilities. In contrast, a Logistic Regression classifier will generally converge to a reasonably good solution even if the dataset is not linearly separable, and it will output class probabilities. If you change the Perceptron's activation function to the sigmoid activation function (or the softmax activation function if there are multiple neurons), and if you train it using Gradient Descent (or some other optimization algorithm minimizing the cost function, typically cross entropy), then it becomes equivalent to a Logistic Regression classifier.\n", - "4. The sigmoid activation function was a key ingredient in training the first MLPs because its derivative is always nonzero, so Gradient Descent can always roll down the slope. When the activation function is a step function, Gradient Descent cannot move, as there is no slope at all.\n", - "5. Popular activation functions include the step function, the sigmoid function, the hyperbolic tangent (tanh) function, and the Rectified Linear Unit (ReLU) function (see Figure 10-8). See Chapter 11 for other examples, such as ELU and variants of the ReLU function.\n", - "6. Considering the MLP described in the question, composed of one input layer with 10 passthrough neurons, followed by one hidden layer with 50 artificial neurons, and finally one output layer with 3 artificial neurons, where all artificial neurons use the ReLU activation function:\n", - " * The shape of the input matrix **X** is _m_ × 10, where _m_ represents the training batch size.\n", - " * The shape of the hidden layer's weight matrix **W**_h_ is 10 × 50, and the length of its bias vector **b**_h_ is 50.\n", - " * The shape of the output layer's weight matrix **W**_o_ is 50 × 3, and the length of its bias vector **b**_o_ is 3.\n", - " * The shape of the network's output matrix **Y** is _m_ × 3.\n", - " * **Y** = ReLU(ReLU(**X** **W**_h_ + **b**_h_) **W**_o_ + **b**_o_). Recall that the ReLU function just sets every negative number in the matrix to zero. Also note that when you are adding a bias vector to a matrix, it is added to every single row in the matrix, which is called _broadcasting_.\n", - "7. To classify email into spam or ham, you just need one neuron in the output layer of a neural network—for example, indicating the probability that the email is spam. You would typically use the sigmoid activation function in the output layer when estimating a probability. If instead you want to tackle MNIST, you need 10 neurons in the output layer, and you must replace the sigmoid function with the softmax activation function, which can handle multiple classes, outputting one probability per class. If you want your neural network to predict housing prices like in Chapter 2, then you need one output neuron, using no activation function at all in the output layer. Note: when the values to predict can vary by many orders of magnitude, you may want to predict the logarithm of the target value rather than the target value directly. Simply computing the exponential of the neural network's output will give you the estimated value (since exp(log _v_) = _v_).\n", - "8. Backpropagation is a technique used to train artificial neural networks. It first computes the gradients of the cost function with regard to every model parameter (all the weights and biases), then it performs a Gradient Descent step using these gradients. This backpropagation step is typically performed thousands or millions of times, using many training batches, until the model parameters converge to values that (hopefully) minimize the cost function. To compute the gradients, backpropagation uses reverse-mode autodiff (although it wasn't called that when backpropagation was invented, and it has been reinvented several times). Reverse-mode autodiff performs a forward pass through a computation graph, computing every node's value for the current training batch, and then it performs a reverse pass, computing all the gradients at once (see Appendix B for more details). So what's the difference? Well, backpropagation refers to the whole process of training an artificial neural network using multiple backpropagation steps, each of which computes gradients and uses them to perform a Gradient Descent step. In contrast, reverse-mode autodiff is just a technique to compute gradients efficiently, and it happens to be used by backpropagation.\n", - "9. Here is a list of all the hyperparameters you can tweak in a basic MLP: the number of hidden layers, the number of neurons in each hidden layer, and the activation function used in each hidden layer and in the output layer. In general, the ReLU activation function (or one of its variants; see Chapter 11) is a good default for the hidden layers. For the output layer, in general you will want the sigmoid activation function for binary classification, the softmax activation function for multiclass classification, or no activation function for regression. If the MLP overfits the training data, you can try reducing the number of hidden layers and reducing the number of neurons per hidden layer." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 10." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "*Exercise: Train a deep MLP on the MNIST dataset (you can load it using `tf.keras.datasets.mnist.load_data()`. See if you can get over 98% accuracy by manually tuning the hyperparameters. Try searching for the optimal learning rate by using the approach presented in this chapter (i.e., by growing the learning rate exponentially, plotting the loss, and finding the point where the loss shoots up). Next, try tuning the hyperparameters using Keras Tuner with all the bells and whistles—save checkpoints, use early stopping, and plot learning curves using TensorBoard.*" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**TODO**: update this solution to use Keras Tuner." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's load the dataset:" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [], - "source": [ - "(X_train_full, y_train_full), (X_test, y_test) = tf.keras.datasets.mnist.load_data()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just like for the Fashion MNIST dataset, the MNIST training set contains 60,000 grayscale images, each 28x28 pixels:" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(60000, 28, 28)" - ] - }, - "execution_count": 107, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train_full.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Each pixel intensity is also represented as a byte (0 to 255):" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dtype('uint8')" - ] - }, - "execution_count": 108, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train_full.dtype" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's split the full training set into a validation set and a (smaller) training set. We also scale the pixel intensities down to the 0-1 range and convert them to floats, by dividing by 255, just like we did for Fashion MNIST:" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": {}, - "outputs": [], - "source": [ - "X_valid, X_train = X_train_full[:5000] / 255., X_train_full[5000:] / 255.\n", - "y_valid, y_train = y_train_full[:5000], y_train_full[5000:]\n", - "X_test = X_test / 255." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's plot an image using Matplotlib's `imshow()` function, with a `'binary'`\n", - " color map:" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAGHElEQVR4nO3cz4tNfQDH8blPU4Zc42dKydrCpJQaopSxIdlYsLSykDBbO1slJWExSjKRP2GytSEWyvjRGKUkGzYUcp/dU2rO9z7umTv3c++8XkufzpkjvTvl25lGq9UaAvL80+sHABYmTgglTgglTgglTgg13Gb3X7nQfY2F/tCbE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0IN9/oBlqPbt29Xbo1Go3jthg0bivvLly+L+/j4eHHft29fcWfpeHNCKHFCKHFCKHFCKHFCKHFCKHFCqJ6dc967d6+4P3v2rLhPTU0t5uMsqS9fvnR87fBw+Z/sx48fxX1kZKS4r1q1qnIbGxsrXvvgwYPivmnTpuLOn7w5IZQ4IZQ4IZQ4IZQ4IZQ4IZQ4IVSj1WqV9uLYzoULFyq3q1evFq/9/ft3nR9NDxw4cKC4T09PF/fNmzcv5uP0kwU/4vXmhFDihFDihFDihFDihFDihFDihFBdPefcunVr5fbhw4fite2+HVy5cmVHz7QY9u7dW9yPHTu2NA/SgZmZmeJ+586dym1+fr7Wz253Dnr//v3KbcC/BXXOCf1EnBBKnBBKnBBKnBBKnBBKnBCqq+ecr1+/rtxevHhRvHZiYqK4N5vNjp6Jsrm5ucrt8OHDxWtnZ2dr/ezLly9XbpOTk7XuHc45J/QTcUIocUIocUIocUIocUKorh6lMFgePnxY3I8fP17r/hs3bqzcPn/+XOve4RylQD8RJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4Qa7vUDkOX69euV25MnT7r6s79//165PX36tHjtrl27Fvtxes6bE0KJE0KJE0KJE0KJE0KJE0KJE0L5vbU98PHjx8rt7t27xWuvXLmy2I/zh9Kz9dKaNWuK+9evX5foSbrC762FfiJOCCVOCCVOCCVOCCVOCCVOCOV7zg7MzMwU93bfHt68ebNye/fuXUfPNOhOnTrV60dYct6cEEqcEEqcEEqcEEqcEEqcEGpZHqW8efOmuJ8+fbq4P3r0aDEf569s27atuK9bt67W/S9dulS5jYyMFK89c+ZMcX/16lVHzzQ0NDS0ZcuWjq/tV96cEEqcEEqcEEqcEEqcEEqcEEqcEGpgzzlLv0Ly2rVrxWvn5uaK++rVq4v76OhocT9//nzl1u48b8+ePcW93TloN7X7e7fTbDYrtyNHjtS6dz/y5oRQ4oRQ4oRQ4oRQ4oRQ4oRQ4oRQA3vO+fjx48qt3Tnm0aNHi/vk5GRx379/f3HvV8+fPy/u79+/r3X/FStWVG7bt2+vde9+5M0JocQJocQJocQJocQJocQJocQJoQb2nPPGjRuV29jYWPHaixcvLvbjDIS3b98W90+fPtW6/8GDB2tdP2i8OSGUOCGUOCGUOCGUOCGUOCHUwB6lrF+/vnJzVNKZ0md4/8fatWuL+9mzZ2vdf9B4c0IocUIocUIocUIocUIocUIocUKogT3npDM7duyo3GZnZ2vd+9ChQ8V9fHy81v0HjTcnhBInhBInhBInhBInhBInhBInhHLOyR/m5+crt1+/fhWvHR0dLe7nzp3r4ImWL29OCCVOCCVOCCVOCCVOCCVOCCVOCOWcc5mZnp4u7t++favcms1m8dpbt24Vd99r/h1vTgglTgglTgglTgglTgglTgglTgjVaLVapb04kufnz5/Ffffu3cW99LtpT5w4Ubx2amqquFOpsdAfenNCKHFCKHFCKHFCKHFCKHFCKJ+MDZhGY8H/lf/PyZMni/vOnTsrt4mJiU4eiQ55c0IocUIocUIocUIocUIocUIocUIon4xB7/lkDPqJOCGUOCGUOCGUOCGUOCGUOCFUu+85yx8HAl3jzQmhxAmhxAmhxAmhxAmhxAmh/gWlotX4VjU5XgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.imshow(X_train[0], cmap=\"binary\")\n", - "plt.axis('off')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The labels are the class IDs (represented as uint8), from 0 to 9. Conveniently, the class IDs correspond to the digits represented in the images, so we don't need a `class_names` array:" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([7, 3, 4, ..., 5, 6, 8], dtype=uint8)" - ] - }, - "execution_count": 111, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_train" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The validation set contains 5,000 images, and the test set contains 10,000 images:" - ] - }, - { - "cell_type": "code", - "execution_count": 112, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(5000, 28, 28)" - ] - }, - "execution_count": 112, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_valid.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 113, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(10000, 28, 28)" - ] - }, - "execution_count": 113, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_test.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's take a look at a sample of the images in the dataset:" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqIAAAEkCAYAAAD0AFOrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABl3klEQVR4nO3debxN1fvA8c+iIkNJplSiEoki9S19FQ1Ko6SkwdAgRfMslG+ERmmSSEShUUWpNBkqoZCvMvySkG+mZAhF+/fHvs/a59xz7nzOWfuc87xfLy/3nnvuueuuu/c+az/rWc8ynuehlFJKKaVUqpVy3QCllFJKKZWddCCqlFJKKaWc0IGoUkoppZRyQgeiSimllFLKCR2IKqWUUkopJ3QgqpRSSimlnNCBqFJKKaWUciLlA1FjzM/GGC/Ov8mpbksYGGN6GGMWGGM25/z7yhhzrut2hYEx5r6cY+MZ121xyRhzgDFmtDFmnTFmhzFmkTGmhet2uWCMOcUY864xZnXOsdHFdZtcMsaUNsb0M8Yszzk2lhtj+htj9nDdNlf0GIlljOkecYzMNcac7LpNrhhjKhpjnjTGrDDGbDfGfGmMOd51u1wIy/XDRUT0eOCAiH/HAh7wmoO2hMEq4B78fjgO+BSYaIw52mmrHDPGnAh0BRa4botLxphKwEzAAOcCRwI3AWsdNsulCsBC4BZgu+O2hME9QA/gZqA+fr/0AHq6bJRjeoxEMMZcCgwBBgBNgC+BD4wxtZw2zJ0RwFlAZ6AR8BEw1RhzoNNWuRGK64dxvbOSMaYXcBdQ0/O8P502JiSMMRuBnp7nDXPdFheMMfsC3+IPRO8HFnqed6PbVrlhjBkAtPA879+u2xI2xpitwI2e541y3RZXjDGTgA2e53WOeGw0sL/neee5a1k46DECxphZwALP87pGPLYUeMPzvKy6YTHG7A1sAdp5nvdOxONzgQ88z+vtrHEOhOX64TRH1BhjgGuAsToItWHyDvh39F+6bo9DL+BfJD913ZAQuBCYZYyZYIxZa4yZZ4y5MefcUWoGcKoxpj6AMaYBcBrwvtNWqVAwxuwFNMWP+kX6CDgp9S1ybg+gNLAj1+Pbgeapb45zobh+uM4jagXUwQ+VZy1jTCPgK6AssBVo63ne925b5YYxpitwONDRdVtC4lCgOzAYGAQ0Bp7O+VpW584qAB4GKgKLjDG78a/pD3me95zbZqmQqII/8Pot1+O/AWekvjlueZ63xRjzFdDbGLMQ+B9wGdAMWOa0cW6E4vrheiDaFZjted48x+1wbTH+AKMS0A4YbYxp6XneQpeNSjVjTD38PKaTPc/7y3V7QqIUMCdiCu07Y0xd/DweHYiqS4FOwOXAf/GvI0OMMcs9z3vRZcNUqOTOwTNxHssWHYGR+OszduOngY3DX6eRbUJx/XA2EDXGVAPa4L+hZrWcQZfcjc3JWcF3G37aQjZphn8HvzBi5rk0cIox5nqgvOd5O101zpE1wKJcj/2An1Su1KPAY57njc/5/HtjzCH4iw10IKrW4w+2auR6vBqxUdKs4Hne/wEtjDHlgX08z1tjjJkALHfcNBdCcf1wmSPaBdgJjC/gedmoFFDGdSMcmIi/irFxxL85+MdIYyAbo6QzgXq5HjsCWOGgLSp8yuEPNCLtRmtEK2yQYy5+GlykVmT3OgQ8z9uWMwjdD38V/TsFfU8GCsX1w0lENGehxbXAeM/ztrhoQ1gYYwYBk4GV+LkalwMt8Uv1ZBXP8zYBmyIfM8ZsAzZmW5pChMHAlznVJSbgl1+5GbjPaascMcZUwM8hBv9iWcsY0xj/GPnFWcPceQ+41xizHH9qrQlwO/Cy01Y5pMdIjCeAMcaYb/BvbK8HagLPO22VI8aYs/CPix/xj5NH8dPjXnLZLkdCcf1wUr7JGHMqfr3MEzzP+yblDQgRY8wo4FT8qZM/8OtmPup53ocu2xUWxpjPyeLyTQA5GxwMwI+M/oKfG/q057r2mgPGmJbAZ3G+NNrzvC4pbUwIGGMqAv2AtvjTrWvwZxAe9Dwv98rgrKDHSCxjTHfgbvza3QuB2zzPm+a2VW4YY9oDA4GDgI3Am0Avz/P+cNowB8Jy/XBeR1QppZRSSmUnzSNSSimllFJO6EBUKaWUUko5oQNRpZRSSinlhA5ElVJKKaWUEzoQVUoppZRSThRURzTdl9Sbgp9SJNof0bQ/oml/xNI+iab9EU37I5r2RzTtj2gZ2R8aEVVKKaWUUk7oQFQppZRSSjmhA1GllFJKKeWEk73mlVLF988//3DHHXcA8MwzzwDw1VdfAXDcccc5a5dSSilVVBoRVUoppZRSTmhEVKk0sXbtWgD69OnDCy+8EPW15cuXA9kXEe3atSsAY8eOZebMmQAce+yxLpukQujBBx9k/PjxAEyaNAmAQw891GWTUmrRokUAPPnkkwAMHz6cbt26AfD888+7apYKgbVr1zJ//nwA3nnnHQCmTZvGwoULAbjqqqsAOOywwwC44447KFOmTNRrbNy4kcqVKxe7DRoRVUoppZRSTmhENARWrFgB+HepAA899BDG+OW2PM8vG3bkkUcC0L9/fy666CIHrVSurFmzBoBHHnkEICoaevLJJwNwwgknpL5hIXDIIYcAsGPHDpYuXQpoRBRgxowZDBs2DPCjxbnJcSPXkk6dOpUoohFWGzZsAPxr66pVqwD49ttvgeyJiI4ePZo+ffoA2D4wxvD+++/Hff7YsWNp06YNABUrVkxNI1XKjRgxAoABAwbYMYjwPM+OQUaNGhX1tb333pvbbrst6rHLLruMDz/8sNht0YGoI+vWrQNg4MCBvPLKKwCsX78e8C8SchCIxYsXA35Y/JRTTgGgSpUqqWpu0vz1118AnH766YD/BioqVaoEwIIFCzj44INT3rYw2LVrFw899BAAzz77rH28R48eADzxxBMA7LXXXqlvXAjIQBT8N1yASy+91FVznNm1axcAffv2Bfxj5Y8//gCIuZYATJ8+HQjOt3nz5sW84WQCOSZkAJYN/v77bwA7MLjuuuvsY/kZOnQoADfffDN16tQBoF+/fkBmnVP/93//Z1MUJJ3nhx9+sCkKnTt3dtW0lJBB54ABA6I+B3+QCVChQgV73ZBxyT///APAnXfeyb777gvA1VdfDcCvv/5aojbp1LxSSimllHIiZRHRl156CfDvzvfff3/AvwsBaNasmZ0qynT9+/cHsFMlxhg7/S53ILVq1aJq1apR3yd3JT///LONiEoCejqSSOg111wDREdCL7zwQgDuvfdeAGrWrJnva/32228AVK9ePdHNdK5nz55RkVCAbt262bJNKpCtUWGAXr16AfDoo48C0VNruZ1yyil88cUXUY999NFHbNmyBcis6djPP//cdRNSTmZJevbsmedz6tevzy233BL1mLzH7N69m2XLlgFw/fXX26+na1RUosETJkwA/IinXCvkvJkzZ07WRETlGiGR0L322otLLrkEwE65N2nSxD7/tddeA2DQoEEAzJ8/nx07dkS9ZkHv0QXRiKhSSimllHKiyBHRV199FYDvvvsOgJEjRxbq+zZt2hT80D38HytRsbJly1KuXDkAjj76aCAYheeODKY7KY8g0YrIqEWDBg0A/y4+d/6n5HS1aNHC5oums8cffxyIXUjRo0cPHnvsMcA/Lgpyxx132Gj7/fffD8Ctt96awJa68cADDwDYvgC48cYbgSDioeDtt9+2H1922WUOW5J6khfaq1evmGOifPny3H777QC0bdsW8GdaAPbZZx+b2yX56VWqVLHX5UwgMyySA5gNJPInpXjikVz7F154gebNmxf4mpJn3K1bN+bMmQMEEbWwk/GFzD7KYs+jjjqKwYMHA9CqVSvAzyFeuXIlELzXSr5kppXEGzduXNTnzZs35+WXX87z+e3btwegWrVqQLCeI5IsbiuuQl955KI2ZMgQIEhcLQ45QMSOHTtsqFemUmQaYNy4cRkx5SppCD/++CMQvClUrVrVDjrlzaR3797cd999Uc+T1AWZxodg9fR1112X7OYn1MKFC20SvJDpwCeffLJQb4izZ88G/BV9v//+e+Ib6cjXX38NwNNPP20fk3p/cu6VKqUTGXIjPHnyZMAfSF1wwQUum5RyMoiMHBjUq1cP8G/kGzVqlOf35k5jOPzww+0bbybYuHFj1P+Zbvfu3fY4kHqpkSSd68033wSw6XGRzj33XMCvSTxmzBj7ugCbN2/mqKOOSnzDk2Tnzp1ce+21QBDskPNh1KhRMZU1DjroIPseJL+nVKr5+OOPU9LmVJFzQoJghf271q1bF/BT4Bo2bBj1tZKMB0Gn5pVSSimllCOFjoi+/vrrQDDylSn0vO6i//3vfwPBwpP8TJ061YaGf/75ZwA+++wzwJ9ukyTjdJ6ml7srieRJFDRyCl4inC+88IKNckpE9K233gKiSzulaz3RQYMGsX37dgD23HNPAN59912AQk8PypT1xo0bbXSnMMda2El6gUR5zz//fDu1pJHQgMyqyP+lSpXKqIheYcjiAc/zaNy4MQBTpkwB4i/c+/PPPwF/0YZMXcv1R64vmaxGjRqAH/3KNLNnz6Z3795xv3bSSSfx3nvvAfkvRJMo4ciRI+1iNtmxLV3s3LkT8FObJBIqYxUpZyXHQW4yxlm9ejUQzBps27aN8uXLJ6/RKSapOpImOGHCBFvOKh5Jybj77rsB2Lp1qy0pKJH2kr436TubUkoppZRyotAR0U8++QTA7j8qSb6JKPVx8skn25IJkqciuZSfffaZjZbecccdJf5ZrtWvXz/Pr0l0ol69ejaHR5KqI6MfEhlO14L2c+fOtR+3bt0agJYtW9rHJC8pdy4x+MWIgajyM+3atQOgdu3aiW5qyn3//fdRn3ft2pUDDzzQUWvCS3LdlD9LIteHyEiozF7NmzcPgCuvvBLwr62Say7X20wj181IEhk78cQTU92cpJFcTolQRTrppJMA/707997gmUoivw8//LCdTZRZgrwioSJyQTUEG6pkUjQUsNHPJUuWAP5mOVLqS8o3TZs2zR5T8p67bds2+xoyY/3ll18C2BnO4tKIqFJKKaWUcqLQEdEjjjgi6v9Ek31/ZTW1FFiFIBqYCRFRMW3aNMCPTkhkU/JIFy9ebPcOX7t2LRCscKtWrRoffPBBqpubNJLTI7755hub61SY1Yo1atSwFQbS2aRJkwD43//+BwT5v+edd56zNoXZmjVrXDchVKS0SiSJhMYrPyMzEfFWWGeCeJt9ZEIOuZAolVz7JK8Rgrw9iQ4WNRq6dOnSqOgXwL777mvfo8Now4YNANx1112Av0WlFKg/4IADCvz+NWvW8MYbbySvgSEikWIpEdihQwdb2kr+z29DjH/961+cddZZQLCSvlu3biUan2VO4bg0I/VYX3jhhZidlTzPswNQ+ZpMx990000xpSfSzT333MNVV10FBCH+0047DfCn3ItSCqJr164xpSTSUe7FIhdffDEQf5/w/Pzzzz+6qClLyNQhBIOPY445BvDfIHK/scqA5KabbuLBBx8EClerN1NkUhqCpCNFDkCF1NMtbtrc888/b99/xIEHHmiPsTCSeqey2LlJkyacffbZeT5f0r9GjRoF+Puu//TTT0ltY1hIEKyw9ahbtGgBYHfzO+ywwxKe6qHvWEoppZRSyonQRESfe+45ICgVEEkSYWWRS9OmTVPXsCSLjHjF+1juQuXuJd2joQC//PKL/Vh2A5HIKASLCaTMxOrVq3nqqafivlam7HqRu/B2vILT8Xz11VcAdhpq1apVtgxJ5cqVE9jC8Pjrr79iysrktwgwU7344osANGzY0E6lyuKBmTNnxkTT5Rzq2rVrCluZemPGjLERMlGhQgVKly7tqEWJ9dprr9nFvKJ8+fI0a9YMKH7kV9KCpIxgpJLuJZ5qK1eutNfB3GXd3n33XbtzoxwntWvX5p577gH8hU5Q8OKmdDNx4kQgKBEoC8/j8TzPXi9kR7/8RG60UxwaEVVKKaWUUk6kLCIqiwvGjh0bt7RGfosP5G5f8ghz3+2mo8svvxyAFStWsH79eiAoWbV161b7PMnlyoRIqLj66qtjthgUHTp0sPshSwRj4MCBMc+TfZLPOeecJLUydX7//XdbHq0wtm3bZmcFJDIYWepKtuOV/KdMs23btpg9xM844wxHrUk9KUYveeZ5RSPkcVmkk+mRUCm/8+KLL8Ysgrztttsypgzazz//HFParmHDhnz00Uclet3hw4cD0WV6JBdQooVhVadOHSBYgPOf//zH7pEej7zHyOLo66+/3u41LxFRKX+VCdauXcstt9wCYH9PmTEpU6aM3R5Ziv7/8ccflCtXrtCvX9S1DLklbSA6depUIJhOHzZsGFCynRquvvrqkjcsJGTKPTIBXAaivXr1smF0WYkmK+XTtXZopIMOOoh777230M+PV8ft5ptvBgq/E1OY7dq1K+rmIy/jxo0D/JWNixcvzvN5mXCjlp94N62yCjxT/fTTT/b6JzV05eIf+Sbwr3/9C/Dr8spe9J9++ikQVKGQGtCZRgaikTWGZSB12GGHuWhSyrRp06bY3ys3LLKAJ5KkSZ1++unFfv1UkHOgb9++ADRo0MC+hwqZam/fvn3cWrJSFUB2KZNaxXntWJUOZNB5zDHH2PcFWcQmv9fVV19tU8G6d+8O+KleUnWhS5cuQP67J91www0laqdOzSullFJKKScSGk5aunQp4Ie55S48nkMOOQSA/fbbzz4mIXIpJyIJspGRn3RJmF63bh0QlFwqLFlw8eabb9rSE7IrhOybe+uttyaolekj8k5MPj788MNdNSfhypUrR7169QBiIp2bN29mwoQJAFx33XWFer1M33NdrhUQ1FnNpNSVSLLgolOnTjHTzeKEE06wC1QkolG5cmU7NSkL+mRqLl6NzUwQb3cXeY+Rnfsy1b///e9if+/kyZOBIA0skqTDpZv27dvnOzUfz5YtW4Bg4WhhF4yGWf/+/QF/lkxSU2QRUry6urJofPny5bz77rtAkAIkO7PFI9ed4tKIqFJKKaWUciIhEVFZfCQFT3/66ScqVKgA+DsyQLCHac2aNW0SsERG45HvgyCnIR12mZk2bZrN65QIp+wHXBSyY4YkD+eXE5jpIsuJnHnmmYBfsDhTlC9f3h4r8nfu06cP4CeZS5HmwmjcuLHdSzhTRS7skohXppTmEXLed+rUCfB3IJMC9rJnuuwPfeqpp8Zd/Ce5blKuZcCAAYC/e5nkkmYSifhGkh1gMt39998fVQKvIOvXr7flv2SBTyTJqe3YsWNiGpgGZCZTygtK+cB09s4779iPJbIpC33z06ZNG7v4Tfaczy8iWlIaEVVKKaWUUk4kJCIqRbVli6wLLrjARgWLui2Y7I+8YsUK+5isfJS92MNI7qa6detG9erVgeJFQsEvn9GtWzeg5IVi05ms8tu8ebN9LFNzZOXvLSsVv/nmm0J9n6wWldI8/fr1i7vveCb47bffgGAThEw2f/58AJsXesghh9hV74XNj5YSP7NmzQL86gyR/2cKufb+/vvv9jHJbZRZuky3Zs0au91nvDJVEuWTSgpDhw5l1apVeb6eVOioXbt2glsaXp9//nnU55lQoUbGD57nFWmDk/bt29uZbtnuVd6H99lnnwS3MkEDUdnVRaaMSlLuYNmyZUDwpgPpUSPw7bffBvyp1ZYtWxbrNX744QfA30dYpmhloJGNO8fIYGzFihV26jFTdwuSxWkyiJRdTvIi+0lLPdp0SFspKVmsJWV6IPj9M5W8kVx88cVFWqC3efNmLr74YiAo25SpZEo6clc+qYEo5d127dqVEaXewJ8ulwWM3333HQBLliyxg+9418gNGzYAwftrPJIq16FDBxo2bJjQNqeD3LvbZQJJsVi/fj2PP/44EKT05Hc9KV26tH3PleutTNXLdSXShx9+WKI0GJ2aV0oppZRSTiTkFlHuwBJR+FWm+UWlSpVs8fIwO/nkkwE/giEFlaXk0pFHHml3whGSejB9+nTeeustINgL1vM8GwmVqeh4ifiZ7qabbrIfy+K3448/3lVznLjqqqvsopNrrrkG8EtYZXqJpkgyhSibY0AwS5Kpi1GOOeYYIChnFznF3KtXLwC7eAmCiJfMpFx++eV2OlauJQ0aNAAya6FfXiZNmgQEpcz69OkTtzxROjrggAPse63MCOzcudOWTyysPffcEwhS3iTKKqXkVPqTjQ5mzZpld9qTknAS9Y53DR0yZIhNjZMUhfPPPz/Pn3PnnXdqRFQppZRSSqWf0CTNNGrUCAi2uRRnnnkmzZo1c9GkIpG7yosuushGNqX0ijEmpuC2RCvWr19v88Ait+qTO950iAYnS2QBb4kQZQspOty9e/eMK01UVJIsL4sxIChQXtI9jsNKoguPPvoo4F8HJMdr5MiRQPRCUNn4Qs6ZyFmVE044AQj2Es+0aLrMyEnJv8gtbiXqlyn7zAspLSQzbYsWLYrKnS5IgwYNbNmmSy65JOHtywSy5iWdySLYJ5980l5HZTtpWcQo/0eKvH7IuSOLxuMp6UxlaAaiUitRVnTKRSXdVkk///zzdpAZmTwvH8sfN3LwKYn1Mpjt2bMnF110UcranA6yZTAWbx91Fe3kk0/mggsucN2MlJBrQv369e1AQ46RyBqBudWvX58rrrgCgLvvvhsgbq3RTCBpGpK+0LFjR5vOItVbklkD0aUZM2YA8Ouvv9o6kbJHugwwBg4cGHP9vOSSS/Kt462gbt26rptQYpK+M3v2bHsjKoGyhQsX5vl9LVq0sNP6ch3Jj9wcF5dOzSullFJKKSdMAXUqU1LEcty4cfaOtXz58gCMGDECoMj7xeaS6Hm7QvXH+vXrgWB3HIBhw4YBfmkmiK5RJguRUlCiyUl/FFedOnUAP1ou0RxZqCG7xZRQWvVHCiRjnlv7JFqx+0NK2uVeFDp16lRbu1hmUiQKmgSh6Y+Q0P6Ilrb98dhjjwFw1113AX66A5S4fnna9keSxO0PjYgqpZRSSiknnOaIyg4pjzzyiI14SbHUEkZCnZJo59ChQ+1jkR+rwpHyTf369bP5caVK6b2Tyk4S9ZRcL6VU4snOQRUrVnTckuyh7+pKKaWUUsoJpzmiskJ+8ODBdpVjq1atEvkjND8jmvZHNO2PaJojGkuPkWjaH9G0P6Jpf0TT/ogWtz9CsVgpifQgiKb9EU37I5oORGPpMRJN+yOa9kc07Y9o2h/RdLGSUkoppZQKj4IiokoppZRSSiWFRkSVUkoppZQTOhBVSimllFJO6EBUKaWUUko5oQNRpZRSSinlhA5ElVJKKaWUEzoQVUoppZRSTuhAVCmllFJKOeFkIGqM6W6MWW6M2WGMmWuMOdlFO8LAGNPDGLPAGLM5599XxphzXbfLFWPMKcaYd40xq40xnjGmi+s2uWSM6WmMmZ1zbKwzxrxnjGnoul2uGGN+zjkucv+b7LptLuk11afnSyxjTEVjzJPGmBXGmO3GmC+NMce7bpcrxpgDjDGjc46PHcaYRcaYFq7b5ZLr60fKB6LGmEuBIcAAoAnwJfCBMaZWqtsSEquAe4BjgeOAT4GJxpijnbbKnQrAQuAWYLvjtoRBS+A54CTgNGAXMNUYU9lloxw6Hjgg4t+x+NveveayUS7pNTVKS/R8yW0EcBbQGWgEfITfJwc6bZUDxphKwEz8rSbPBY4EbgLWOmyWU2G4fqR8ZyVjzCxgged5XSMeWwq84Xlez5Q2JqSMMRuBnp7nDXPdFpeMMVuBGz3PG+W6LWFhjKkA/AFc6Hnee67b45oxphdwF1DT87w/XbfHBb2m5i3bzxdjzN7AFqCd53nvRDw+F/jA87zezhrngDFmANDC87x/u25LWITh+pHSiKgxZi+gKf4dWaSP8O9gs5oxprQxpgN+VPBL1+1RoVQR/7z93XVDXDPGGOAaYGwWD0L1mpq/bD9f9gBKAztyPb4daJ765jh3ITDLGDPBGLPWGDPPGHNjzrUk64Tl+pHqqfkq+CfFb7ke/w2okeK2hIYxplFO9G8n8DzQ1vO87x03S4XTEGAe8JXjdoRBK6AO/tRjttJrav6y+nzxPG8L/u/e2xhzYE6w40qgGX5qS7Y5FOgO/ISfrjAEGAT0cNkoh0Jx/dgjVT8ol9z5ACbOY9lkMdAYqAS0A0YbY1p6nrfQZaNUuBhjnsCPYjT3PG+36/aEQFdgtud581w3JAT0mpqLni9WR2Ak/nqE3cC3wDj8/OpsUwqYEzHl/J0xpi7+QPQZd81yzun1I9UR0fX4J0LukXY1YkfkWcPzvL88z1vmeZ6cIPOA2xw3S4WIMWYwcBlwmud5P7luj2vGmGpAG2C467Y4ptfUOPR8CXie93+e57XAT/k62PO8fwF7AsvdtsyJNcCiXI/9AGTjwj4IyfUjpQNRz/P+AubiT6lFaoXmREYqBZRx3QgVDsaYIcDl+G+qP7puT0h0wU9lGe+4HU7pNTWWni/xeZ63zfO8NcaY/fCnpd8p6Hsy0EygXq7HjgBWOGiLc2G5friYmn8CGGOM+Qb/oLgeqImfG5l1jDGDgMnASvzE+svxS5BkZS3RnFWuh+d8WgqoZYxpDGz0PO8XZw1zxBjzLP7U2oXA78YYuXPd6nneVmcNcyhnYcG1wPicHLhsp9fUHHq+xDLGnIV/Lf0R/9r6KH462Esu2+XIYODLnGobE/DLFd0M3Oe0VW45v36kvHwT+MVTgbvxk6UXArd5njct5Q0JAWPMKOBU/ND4H8AC4FHP8z502S5XjDEtgc/ifGm053ldUtqYEDDG5HWC/sfzvL6pbEtYGGNOxa+3e4Lned+4bk8Y6DXVp+dLLGNMe2AgcBCwEXgT6OV53h9OG+ZIzoYxA/Ajo7/g54Y+7bkYDIWE6+uHk4GoUkoppZRSute8UkoppZRyQgeiSimllFLKCR2IKqWUUkopJ3QgqpRSSimlnNCBqFJKKaWUcqKgOqLpvqTeJPj1tD+iaX9E0/6IpX0STfsjmvZHNO2PaNof0TKyPzQiqpRSSimlnNCBqFJKKaWUckIHokoppZRSygkXe80rpZRSSfHPP//w888/Rz02atQoGjduDECzZs0AOOCAA1LcMpUOevfuDcD69esBuOqqqzjhhBNcNinjaURUKaWUUko5oRHRFJszZw4AP/zwAwC//fYbixcvBmDatGkALFmyhIMOOgiA+++/H4CuXbumuqnO3HTTTQA8++yzAHz66ae0bNnSYYuUSg8SCXzvvfd46623APj8888BMCZ2wepnn30GQIsWLVLSvmSaPXs2AI888ghvvvlmzNc9z19wXK1aNQD7nObNm6eohSqs5s+fb99jFyxYAMDOnTvt/xJNL1OmjJP2pcoTTzwBQMuWLe2MQSpmDjQiqpRSSimlnEh6RFTuQsePHw/Af/7zHxsBjKdevXoAfPLJJwBUr16dPfZI/8DtpEmTAGjbti0Au3btAqKjFNJXxhhWr14NwI033hj1/BtuuCE1DXZI+kT+/+ijjzI+Ivq///0PgA8++AAIIuaLFi3i/fffB+COO+4A4JxzzuHII48EYO+99wZg3333BWD37t28/PLLAGzbtg2Abt26seeee6bi11COyHFz3333AUFUB2LPp0gXXngh4EeEatWqleRWJtb27dsBuPLKKwH48MMPAfjzzz/tc84991zAj+ps2bIFgAkTJgDQpk0bAFatWmXPI5VdevbsCfjjk9x5xWLUqFH2eUcccUSqmpZ0MsYaMmQI8+fPB2DlypUAVKpUyUZ/DznkEAC+/vrrpLUlaSO8f/75BwimV2+++Wb7tVKl/EBs+fLlAX+QJRcVGaTK1HTDhg2ZOnUq4A9K05VMA+3evRsI3hQqVqzIcccdF/Xco48+mq1btwIwduxYAMaNGwfAtddem3WDioULF/L3338DZOTvPnr0aK666iog/mBBHnv88ceBYPoE4NBDDwWwg8/p06fbi6Zo0aIFjRo1SnzDlVN//fUX4B8PMgCNd/zk548//gDgmWee4ZFHHklsA5NMBpJffPEFENykn3feeZx00klAMJVaunRp+54k1+A33ngD8H/3u+66K3UNTxG5Zq5cuZL//Oc/QHCdyM/NN9/MAw88AMB+++0HFP24CrOtW7fatJXnnnsOgM2bN+f5/KOOOop99tknJW1LhQ0bNgBw++23A/77a25yXQDYtGkTgD2nXn31VWrXrp3QNunUvFJKKaWUcsLIdHAeir2d1AsvvAD404KR9thjD3u3JWUSfvnlF3s3PmzYMCCYigY/Kgowc+ZMgKLcnYRmey2JcJ5zzjlAEN0dPHiwjf7Gc/fddwPw2GOPAf7de/fu3YvbjND0R34kei7RdM/z7B1axYoVE/mjnPbHr7/+CkCjRo34/fff/QbFiTzI1IhMHeUXnfA8z369SpUqgD+lUqdOncI0yfkWn2PGjAFg1qxZxf6BMrvy0ksv2cckGlYMoTtn5Jr98MMPA9CrV6+otJ68ni8LHwH69esX9bXatWszefJkAJv2kYfQ9IdcCySaGfn75UcWjEq6T69evWJmEYogNP0hx7hcJ84++2wAli5dWuzGSBrDJZdcUthvCU1/5KV79+4MHTq0wOcdeOCBgP9+JO/DxRCa/pDZ1eeffx6Ar776KuY5ck7tt99+7NixA4C1a9dGPefWW2+1s3MSLa1UqVJhm6FbfCqllFJKqfBISo7o7t27bcmQ3O69914bCRW1atXimWeeAYIyIrfccgsAa9assTkMkoSejvkaFSpUAILfSyJU+UVDI79PvP322yWJiKoQkWRxuauEYPFI37597WMS2Vy3bp19fpcuXQBYsWJFzOtWrlwZCKIZhYyGhsKMGTMAGDFihH0sv2hf5HNyf10+P/zwwxPdTCdkQYHMGsn/kSR364ILLrALI0855ZSo5yxdutRGRMWKFSv45ZdfgAIjoqFT1AUkkpMv+dWZ4vvvvwegSZMmMV+T3PrI98769esDQeF2+X/Tpk02j3bQoEEAtGrVqihRr1CS80cWf+ZFxicdO3YEMmOB0jvvvEOnTp2A/K+j77zzDuCPw9asWQMEC/6k/6ZNm2YXzkrJyREjRnDMMccUu31JGYiuXbvWLq4RRx11FOAvtsmPTAEMHjwYwHZGpmjXrl2Jvj+vlX0q/UROD8nCPXkTkRXAAMcffzwQ1El877334g5AhdzcpGOlAVmI1b9/f1tpY+PGjUD+F9B169bZhQdCbvoefPDBZDQ1pTzPy3cAKik/AwcOBMiKxWmS/hVvsUV+5M3zxx9/THibUk0GjEuWLKFDhw5xn3P00UfbxUqywCseSYfp16+fHax99913gJ8GIsdWupAxyPXXXw8Ei7ckdSdS2bJl7XklVRhkUXU6k+n4Tp06kVca5pVXXhl3EZvUD61bty4A8+bNA/zUlrlz50Y994ILLsj3Pakg6d/TSimllFIqLSUlIjpx4kT78V577QVgFyPJwouCvPrqq4C/L7DUWBw9ejQAd955J6VLl05Uc0NJEonffvvtqMczbTopm8mU6ezZs+1itvwWXMSboi5btizgp7yAf57JFMrHH38M+NNq6UIiw+XLl7c7bBXGxx9/bCOiMv0o5Ulyp7ekk8gSTfEioeDvFCR1irPJZZddVqzvk8hY5ILYdCPXi+uuuw4I6nRH6tGjB+AveD344IPzfC2pNyyL3wqauk4H48ePtyls+ZVmkn6566677NR1Jhg5ciQQzApFvmfIGOyVV14B4qdyRJIpdyl3lvv1wK+DLelUBc16x6MRUaWUUkop5URCI6Kyc0VkwW1JnpccpsKS7+vcubO9U5Ooz4UXXmh3YMokshhr0qRJNjImBf4lypN7oZdKX7IQYO3atYwaNQooXOHoQw45xN7F3nnnnUBQbHjr1q22tIbstpNOEdHikiR7CBajFLQQMB1I3lWvXr1iviYF3CUqpgon9yxTOpK1E5GRUJl9lJkAOT7yi4YCdo/1yJlMIQuU9t9//xK1N1Xee+89AK644opClWyTUl7VqlVLartSTaKTkbuM1axZE4DXX38dIGYjnbzIoq0+ffrY15EyT0uWLAH82QWJ0heHRkSVUkoppZQTCY2ISj7TsmXLEvaaDRo0iHls2LBhUVHXdCR9NHPmTLuv+JQpU4DofaKF3N2efPLJKWqhSpX777+/SPluDRs2tCsa8yPHVTZ49tlnbTS5efPmjluTOLLCO3LFq+R4SQ5gccotyetFvm4Bm5ukPSlPJbMPonHjxqlvTAls376d888/P+qxo446ys4cFnb2Ud6DJCoY6ayzzgKCKgxh7yOpnHDppZcC+W9gcd555/Hiiy8CQWm8eKRKSWTlnmOPPRYI92zLn3/+afOgI8nMSWEjoUKi4VIOsG7dujYSGlmpQVbe33rrrUVuc9L2mheyO0E227hxI02bNgWC3XRy73ucF5lePfPMM5PYQuVS7dq1E7Z376JFi+zH6VYPsiSMMXYgmgn7YkvNWClRFPk7SYm74v59+/fvH9NHLVu2jKk3mmmkDJgszmndujUAZ5xxhrM2Fce4cePsQECm4/v161ek9LdJkybZKdfIfcWFpMGFfQAq5H00XmkmIfUwR44caRd5yoJO2cUvkgzQIwei0h+dOnXixhtvBIIarWHRrVs3vv3226jH2rRpU+idx3IrV64cABdffLF9TI6/SLJItjh0al4ppZRSSjmR0IioFE+NdNVVVyXyR6SlLVu2FLvYq0QuMqG4bmHlnjbM9CnDRJBppPfff5/q1asDQTpHJpOp60gbNmwA/MgA+FOQMnUn51Pv3r1tRCOMJBoTOW0qxcgjd90qimuuuQaI3ixB3H777TbykYlmzJgRs7PMo48+CoQvolWQyGiUpGfIjmwFueeeewAYPnx43EgoQPXq1WnYsGHJGpliskgpHlmsKeWH3njjDbuY54svvijSz5Gi7vPmzeP0008H/A0DwkDSFaUsEwQL1d56662k/MzI9+aSpEtmz+hGKaWUUkqFSkIjosuXL0/ky2WM/fff3yb1rl69GgjyVWrUqGGfJ4X7n3/+ebuVp+TqCEkiz2Txcv1km0aJYiif5ESdd955gH+HKseUbM2WjjZt2mSjD5LbJ8nykT766KOYx5555pmYx1q0aAEEkSMpWRNW8SIYskipuJHLGTNmAEH+KQT9ks6LINeuXQvAu+++C/jRvty5gkuWLGHnzp1AcF158803Ab/0TLrkQuZ2+OGHF/iczZs32/Jmw4cPB/zzKy/jx49Pm3JNQspMxSOzRVLyce3atezYsSMVzUqp77//Hoh+3yyoWH1xLFmyhPvuuy/mZ5VE0hcrKX9nF9kpqjCuvfbamNpukkzdqlWrrJqmF1KRQfmkZm/nzp0BWL9+PeBfGOQmJx198803gD91/sknnwDxd5TKjwyuIgek8apvhJlMGUZOfQ0ePLhYryWLm5YuXRrzNZna3XfffYv12q5s376dBx54AICnn34awA408yLXTVngI/uvDxw40K5Clxu6jh072gWlMpBZtWoVEPRnGMjA8oILLrCDsS+//BIIpqK/+eabQi0kkcVbJ5xwQhJamlzx9koXMujOb/BtjLHngKQspFtKmOw8aYyhUaNGALY6QCI999xz/PTTT1GPVatWzVYsKI7sG9EopZRSSqlQSFpEVPaMrlWrVsJfOxN3VYpUuXJlO20kO+bIXtJvvPEG7du3d9Y2FQ6yo0rkjkLglxeRKFc6kn2up06daqcdJYIln0eWMuvfvz/gl1iR8yLevtvppqSlqLZt22br+cm1JPK1ZJeUyJIs6UAWnV177bU2ei4pKHKtbNmyZcwi2Ro1ajBs2DAgiP5Kms+8efNsH8n/v/76K7///jsQRJUk4uM6InrYYYfZjyV95ZRTTrG77xW3jI7sLiSljbKBXCsrVKhg0xEGDBgA5B9BbdKkCVWrVk16+4qre/fuQMl2xPrtt9+AIJWnX79+gL8zU+7rUtmyZQtV2zovGhFVSimllFJOJC0iKpX9N2/eXKzvl10wHnvssZivub4jLYjsubrHHn73luQOU/J2vv76a8DPZ9KIaHaSBRjXXHONjRyKo446CvAjhCW5M3VNfo9bb73V3oHL7Eo8Q4cOBYKFftlO8hnvvvvuuKWtwN9kJN3K6n322WdAEMH68ccf6dKlCxBENuW6K3nTEOyAM3nyZJs3J6SA/8qVK21h82uvvRaAXr162chp7969AbjjjjsS+0sV09VXX21ziGXtQX4Lhffff3/7u0oJq48//pjnnnsu6nmZPtMYj2wY43leoRZbSySwc+fOob7OHnPMMSX6/nnz5tm8admEJz8XXHBBiX6eRkSVUkoppZQTCY2IRhZ2lVXOkm+Re2/cglx55ZVAUJIAsHvphnmF57p16+zKy8svvxyAW265pUiv8ffff9t8ptyr7eWuX6U/WeX4wQcf5FtY+fjjjwdg1qxZQLBCPpKUrknUVqGuyGxHcWY90i3KV1SSv9iuXbuYr8k1RmaS8oqGgh8Vk1JQ6UJ+9x9//BGAhg0bUrNmTSCIoktJns2bN9vfTwqd51eg/eCDD7bbXcq1+4UXXghtaavSpUvb2QJZ2f/f//7Xzj5KbuPZZ58N+OeFFHUXgwYNsh9LX6Xz+SObNciMQGHlXv2dlzJlygBw/fXXA0V/T0+FyFX+kie/YMECwC9XN3fuXCCI6ka+58j7x+effx71nIJ+jpSXlHFecSV0ICo7f8hBAUENwMIaOHAgELzpAtSvXx8IdkopXbp0idqZTN9//71Nopek8XXr1uV7kr/99ttAdL1EmSbIXbpmyJAhyWm4ShmpfRl5TORXokgWqkU+Ry6McsOS7gPQopI3W9k3HDJrkUXz5s2B6JJLUo5Kpsrkb79o0aJ8jx/5mlxbZXeddJK7huzChQvtwiUhi3gGDRpkBwyFJbsryYIdmY4Pqzp16gBBoGLjxo02HU7KWMVbKCy1ZCMXNDVr1gyIrmmdbuQGQoJhMgBLhCZNmjBlyhQgOD7CKHKB41NPPQUE6YH9+/e3NyryvHg7axV2kWSib150al4ppZRSSjmR0IioRCQaNmxo71Yl9C37Ot9+++0ceuihMd87depUAFukWO7u6tevb/dGDvOUvKhRo4bdpUNKawwYMICHHnoICO404kUw4j229957A36/ATFTLJlm9+7dGZ9+IHfX8e46C1OuxxhD06ZNAb9UTTaSc2vFihVuG5IkN9xwAxCUs1q7dq2dbs897R55zER+LFPWV1xxBRBcQ9KRRChvu+02wD/upVyRLOiUVCh5PJtUrly5UM975JFHAKJ2FrrpppuS0qZUOvDAA4HgfJk8eTJ33nknEGz+kZ8999yTY489NuoxmYFt3bp1qCOhQqKUkp4D/q5h4G/GUNSNQYTMvsl7zsknn2wjoYnavU8jokoppZRSyglTwDZWxdrj6rfffuOMM84AiMnjqVu3ri22KkaPHs3//d//AbF3L88++2zM84sgMRuhBgrVH3PmzAGCArBTpkzJd4tKuUORHKeff/7Z3qVedNFFQJAzVkJO+qMoVq9eHZPbtNdee9lFB3JcJUjK+2PLli2cdtppAHz77bfBNxbibjXec2TBhuRE7bfffkVtc6RE9wck4RiBIKle+rJMmTI2UiiLuxLE6Tkjiwjatm2b/4vmHBsVK1YE/Fy5sWPHAiR6YZKT/pAZMtlm88ADD7QbHTgW+msqBHnFMoOybNkym2cqeaMJKkcUmv6Q3Hop7SbvqeXKlbMLn0XZsmXtAukES1l/yHavAwYMsOe8LMJbsGCB3S5couGy6HWPPfaw7yOy+K1UqVK2v2SNzjnnnJOI9sftj6QMRCHY51b28809IM3LEUccAWCn42vVqlWSvdVDcVJMnz7dvinISumzzjoL8Aea8vtdeOGFACxZssSGwRMsFP2Rny1bttj6dnIMPPDAA3YFa4KlvD/mz58fMwUEeQ9Ezz//fDv4luc89dRTMas916xZA5Q4mT7tBqKnn3464O8lH1lhI4GcnjOyKGvs2LH5rtSVY0N2AUriCujQX0NSLC36Q6bkZZUzBANQ2ZEqQdKiP1IodP2xZMkSIEhjqFixYtQC8ySL2x86Na+UUkoppZxIWkRUSLKs7Fs6bNgwpk+fDkTXZ7v66quBYCcMKTtQQqG7G3FM+yNayvvj119/tYtGXn/9dft4uXLlALj//vuBYHeYypUrx5wLf/zxhy3R8t///hcIpqMrVKhQkvanbUS0c+fOjBw5Mhk/Ss+ZaNof0ULfH6tXr7YpLFIOrHXr1jbdKcHlEEPfHymm/RFNI6JKKaWUUio8krbXvP0BOdEcKa/w4IMPJvtHKhVaNWvWtLteyP9FFVnGLB3KiiSDbAogSrrXsVKZauXKlVEbIwC0aNEi1BvDqOyiEVGllFJKKeVE0iOiSimVaLJ5RqNGjYCg4oRSKtqJJ55oy/IoFUZJX6zkmCYKR9P+iKb9ES1tFiulkB4j0bQ/oml/RNP+iKb9EU0XKymllFJKqfAoKCKqlFJKKaVUUmhEVCmllFJKOaEDUaWUUkop5YQORJVSSimllBM6EFVKKaWUUk7oQFQppZRSSjmhA1GllFJKKeWEDkSVUkoppZQTOhBVSimllFJOpHwgaow5xRjzrjFmtTHGM8Z0SXUbwsYYc4AxZrQxZp0xZocxZpExpoXrdrlgjPk557jI/W+y67a5oOdLLGNMRWPMk8aYFcaY7caYL40xx7tulwt6vsTS62nAGNM3zrHxP9ftckX7I5oxprQxpp8xZnnOubLcGNPfGLNHKtuR0h+WowKwEHg5519WM8ZUAmYCM4BzgXXAocBah81y6XigdMTnBwBzgdfcNMc5PV9ijQCOBjoDq4ArganGmAae56122rLU0/Mlgl5P41oMtIz4fLejdoSF9kfgHqAH/rX0e/zr6mhgJ9AvVY1I+UDU87z3gfcBjDGjUv3zQ+huYI3neZ0iHlvuqjGueZ63LvJzY8w1wGbgdTctckvPl2jGmL2BdkA7z/M+z3m4rzHmfOAGoLertrmg50sMvZ7G2uV5XtZG/eLQ/gicBLzned57OZ//bIx5FzghlY3QHFH3LgRmGWMmGGPWGmPmGWNuNMYY1w1zLacPrgHGep73p+v2qFDYAz8CuCPX49uB5qlvTnjo+QLo9TSeQ3NSe5YbY8YbYw513SDHtD8CM4BTjTH1AYwxDYDTyAl+pIoORN07FOgO/AScBQwBBuGHy7NdK6AO/lSsUnietwX4CuhtjDkwJ8fpSqAZ/rR0NtPzRa+nuc0CugBnA12BGsCXxpj9XTbKIe2PaA8DY4BFxpi/gf8Coz3Pey6VjXCRI6qilQLmeJ7XM+fz74wxdfEvnM+4a1YodAVme543z3VDVKh0BEbi54fuBr4FxgHHumxUCOj5otfTKJ7nfRD5uTHma/xBemfgCSeNckj7I8alQCfgcvxBaGNgiDFmued5L6aqERoRdW8NsCjXYz8AtRy0JTSMMdWANsBw121R4eJ53v95ntcCfyHXwZ7n/QvYkyzOBdTzxdLraT48z9uKP+Co67otYaD9waPAY57njfc873vP88bgD8h7FvB9CaUDUfdmAvVyPXYEsMJBW8KkC/7KvfGO26FCyvO8bZ7nrTHG7Ic/DfuO6zY51AU9X0Cvp/kyxpQF6uMP2LOe9gfliK0asJsUjw1TPjVvjKkAHJ7zaSmgljGmMbDR87xfUt2eEBiMn6PSC5gANAFuBu5z2iqHchYWXAuMz8kJzFp6vsQyxpyF3xc/4vfNo/glWV5y2S5X9HyJotfTCMaYx4D3gF+AakAfoDx+iZ6so/0R4z3gXmPMcvzIcBPgdlJcKtB4npfKn4cxpiXwWZwvjfY8r0tKGxMSxphzgQH4d/K/4OcyPe2l+o8TEsaYU4FPgRM8z/vGdXtc0vMlljGmPTAQOAjYCLwJ9PI87w+nDXNEz5doej0NGGPGA6cAVfBrqn4N9PE8L3f6QlbQ/ohmjKmIXy+0Lf7AfA3+rMqDnuflrkySvHZk4bmplFJKKaVCQHNElVJKKaWUEzoQVUoppZRSTuhAVCmllFJKOaEDUaWUUkop5URB5ZvSfSVTovcX1v6Ipv0RTfsjlvZJNO2PaNof0bQ/oml/RMvI/tCIqFJKKaWUckIHokoppZRSygkdiIbQokWLqFy5MpUrV6Z79+50794dz/PQmq9KKaWUyiQ6EFVKKaWUUk4UtLNSuofg0ipRePv27QD06NGDl16K3jb7r7/+AmDPPfcsyY9Iq/5IAe2PaLpYKZYeI9HSqj9mzZoFwJgxY5g2bRoAO3b4OxeeeeaZ9v+zzjoLgDJlyhT1R6RVf6SA9kc07Y9oulhJKaWUUkqFR8ojolu3bmXAgAEAdOzYEYAjjzwy0T9GpNXdyIwZMwA4+eST7WM1atQAYOXKlQDssUdBFbfylVb9kQJp2R+vv/46l156KQCvvfYaABdffHEiXlojorHS8hhJorTojzlz5gBw3nnnAbBu3TqbY29M7K/QpUsXAF588cWi/qi06I8U0v6Ipv0RTSOiSimllFIqPEoUXiuOuXPn8vjjjwPYyGi227p1KwBPPfVUzNcuu+wyoMSRUJVB+vXrFzeqo5Tyc0AvuugiwI+EAvzrX//i8ssvB6BDhw4ANg//jTfeYNSoUUCQI/rcc8+lsslKZTUnoxtZeDN69GgAOnfu7KIZoTFlyhTAn3IVderUAeCGG25w0qZkGj58uP2d5fc744wz8v2eVatWAfDJJ58A2XnMjBs3DoClS5c6bklqPfPMMwDcdNNNANSvX5/9998fCNJZsslXX30FwL///W8AmjZtyjvvvANAzZo1nbXLtW3btgH+NPvq1asBqFSpEgAPPfQQp512WtTz7777bgCuuuoqLrjgAgA++OADADZt2mS/V/l++OGHqM+TmFKXEFu2bAGCgNehhx4KwPfff2+f89FHHwFQtmxZ5s+fn+drdevWDYAhQ4YAxVrUFlpz5861Hz/00EMATJw40aayyN+5atWq9vNbbrkl6mslpVPzSimllFLKCafzvbt27XL540Nh27ZtPPbYYzGPjx8/HoC6deumuklJ8/777wNw++2323SETz/9FIDDDz8cgLZt23LggQcCQSQMYPPmzQD8+uuvALRq1QrIrgjQ4sWLgWBGIdMNHDgQgN69ewPBIr6///6b//73vwBcf/31APTt29cu7MsWkp7x7bffcsQRRwBw7rnn2q8fe+yxAJxyyikA9jkSTc40kr4kCzsBjjnmGICYaGikqlWrMnnyZAD+97//ASUukxdaEtXs1KkTs2fPLvD5b731FuCfiz/++GPU13r27AnAfffdl+BWJsbHH38MwMMPP1yo5+eX7vTdd98B8NtvvwFQq1atErbOHUlXkevrk08+aX/3eAv65H1H/v4zZsywUVT527dt27ZEbdKIqFJKKaWUciLlEVGJZECQI3rNNdekuhnO7d69G/AjGFJ0WRhj2GeffVw0K6kkR6datWo2Irpp0yYgKLci/xdk8ODBADz66KMJbmV4Pfjgg0D+d+6ZRGYFJEI+ZswYAA455BDOOeccAIYNGwbAUUcdZXNIs9Gff/4J+AtvhHwsUY4El/oKnZEjRwLwzTff2MckGlyQypUrR/2faSQKJou4Fi9ebK+1cj2Rgv8TJ060H0dGynJHzWSmIqwR0dyk/U2bNrVRvuuuuw7wz4nly5cD2Pzidu3a2e+tVq0aAOXKlUtZexNNjgH5XXL/PSM/rl+/PuXLl4/7Oj/++KM9dnr16gX4syyFPdfiSflAtGLFivZjSX7NRn/88QcAX3zxhX1sr732AvxBVv369Z20K5nkd2rXrl3MAFIO+jp16lChQgUAvv7669Q2MOQKqPmbUaZMmcKCBQsAePXVVwF/ACqOPvpoIFhckk0iFxcURb9+/QB/kdMBBxyQyCaFgixKMcbYhUY9evRw2KLw6NSpExBMsxpj+Ne//mU/huhpWXks8qZXPpaFO+lG0jQib1QinXDCCalsTsrJVHzuv23btm3tgFLUr18/z0H3gAED7E2IHE8jRoywrxdZB72wdGpeKaWUUko5kfKIqCxYAez0WjaKXIgj5A61e/fuqW5OSvXt29fu9ywlqyT5e8KECZQtWxYIppGkXA0EkdNM76N4Iu9kq1SpAsBBBx3ksklJE1nKTPYBjzRo0CAgWIjw2WefZc3UvEybSgSrZcuWdtGfLOabMGGCff7tt98OBGVrVqxYkVERUYlwyZSqMcZG7bJ51k1cf/31fPjhh0D8adh4n8s5J4tQZAo7nUycODHu41988YU9T9577z0gOl1F3ocz7doqaSfyd5ap9DfffDPmuT/88AMrVqwAgn6UNChjTMyxM2bMGMaOHRv1+vL+He/1c9OIqFJKKaWUcsJp+SYpTp5Ni5XkTiwy4rP33nsDcO211zppU6qVK1fO7iIlOVwSBT3kkENYuHAhEJRSiSQlWqTgfzaQIsqRpBTPiSeemOrmJJWUplqwYAFnn302kP8CkmbNmgHBeZUNcud4rVmzxn5Nypnddttt9rE77rgj6vmZJvcOfdWqVYtaaJKt+vfvD8Dbb79t//YSBYtXiLxr1672Yyn9la7++ecffvnll6jHFi1aBEDr1q3ZuXNn1NdkYST4Cx8hmG3JlJlb+b3kWJByTJEbFci5NHHiRLtBRO7rTby84dwfAzRo0KDQbdOIqFJKKaWUciLlEVEZlQMsW7Ys1T/eOSkQLFE/CMpgZOO2lfXq1Yt57KeffgKw5TQAqlevDgTbXGaLDRs28Pzzz8c83rFjRwetST7Zlm/OnDl228r87LvvvkBQBiwbLVmyJO7juc+VRo0aAdHX4Ezwf//3f1Gf9+jRg6ZNmzpqjTtSnkdmUCS65XkeLVq0AODzzz930rZU++KLL2wutSjsRiBSYlJyq08//fSM2NJT8n0vvPBCIMj9bNCgQdzKCbnzQCPPKckfle/r16+fzQmV9QtFkfKBaHGW9meSyDqqQuokKt8TTzwR85iU6zn11FNT3Rynxo0bFzPQaNy4Meeff76jFiXXu+++az+uXbt2ns+TxPgpU6YA/lR0ly5dADjjjDMAuPLKK5PTSMdk2lTqhOY16IpcGApw6623AtEl9NKZnBeSliFvnNn4HrNu3To7hSzlvSKnSku68026kZq58Zx++uk27UcWJkGwCFACQ3J8Sc3vdCdBMJmSz29a3RjDyy+/DART7JHpGrKjnQw+zzzzzBK1TafmlVJKKaWUE04XK2UTuQuJTIoGP7G+ffv2eX6fLOSSfXPfffddGjdunJxGhsDHH38ct+Bwtt3Ri+nTp9tIj/xft27djCq/E+nf//63/Vj+5hK9kAVaQEy6guy0Bdhi5pkaEb3nnnuAIPIbLyI6b948G12W40Y2isgUEgmVtIz8FmMtW7bMLo6V0lbNmzcHgh3L0tkpp5xii4vHK8ski9fkvJk7d25a7xJUkL333tv+frJAS3ZyrFSpEnvuuWfM98j1RSKiYsSIEdx8883JbG7SjR071i5aXLt2LZD/zkpt27a1JbzilUCLly5WEhoRVUoppZRSTmhENEW+/fZbIHZRRcuWLW35JrFr1y5bkFn2TxZt27aNWsSTKaRo/fDhw9m+fXvM12X7U4mCSJmabJA70nP//fc7aknySV5o+/btbZ7Xs88+m+fzJYJap04dW7BdirtnuvwW5EybNo2tW7cCmVu2qTCmTp0K+NsKy0I46Y/p06cD/sJRyZ9LN1J6Z/HixXHz/HJ/LFHTt956K2NnDMBfZyDvofEWxBZFvPejdCHH9R133MH69euBYK95ye/s2rUrDz30EOCX+gJ/IZNsqRxvzUaiOR2IynT14sWLS3ywpKt4Sb7jx4+PGYCKf/75J9lNSqkZM2YAwTSsnCy5SY1VmU6TOqxVqlSxtUWzhawUz0RywzFhwgQ7hSp/68jafzJgleMB/B27INh1af78+UCwx3Q22LBhAwBDhw61j0kfZdNCPxmgSWrT1q1b7a5sstBPjq9MqLhwxRVX2PdTWax13333Af5CJhl0y+BswIABGT0QhZIPQNOZ1ACVNIO1a9famxEZc0ReI2T3o8iBq6Q7yXnTr1+/pLVXp+aVUkoppZQTTkNJMlUi/2ey/fbbDwgiPrt27QL8CKdMH0kUVD6PZ/PmzXaHiKLsXBBWMtWeVyQ0N4mgymKdxx9/3NZ7yySyYGvWrFn2sfPOOw/If6ehTHTJJZcU6fkSOZXFOtkUEZXaoZElv2S2QaIdkTvoZKKHHnrI1n1ctWqVfVxKfsmilUwgOySNGTMmz+dUqVLFXl8jp+glahxvlyWV3mSKXVIxjDE2OnrQQQcBQWpKZLkzma6fMWMGTz75ZNRraURUKaWUUkplnJRHRPfff39bUDkbIqEidwFdiexdd911RXqdRo0aZUQkVEiUb+bMmUB0+Z7CeOeddzIyIirFx1euXGkfk/IbuRe3qfjy2nEoE8kMy4cffgj4ZVjkOhu573wmadmyJRDkPUrOW7wZpfHjx9tr74033ggEpWqkvE8mk91u5P/169fbnZg0IuqT2blMMHz4cCA4xq+44gpbgqqwOx/J96ZiXYpGRJVSSimllBMpj4g2bNjQbmkpq/yyyaWXXgoEEdHCkiiYbOuXKaTosOStlClTJmp1NPh5K5dddlnc7y/OvrZhJlG8NWvWANHFhmW/aBVfJuwHXVySByrbehpjMrrMV6RevXoBQZHteOWq9t57b/s8iXyVLVsWgNatW6eimQkl+b6S01cQiXpK3xhjMmpmLRGkhFFuHTp0SHFLEkf+3tddd12R3yvle0uVSn680sliJTnxZSC6atUqjjvuOBdNSbmOHTsC8MorrwDw9ddf5/v8Ro0aAXD33XcDQQ2wTFOrVi0Abr/9dgYOHBj1tQYNGnDxxRe7aFbKScmhX375BfAvBpm8k1YiyTEiZWuyxZIlS5g8eTIQvHmcfvrp3HTTTS6blTIS2MjPZZddxp9//gkEfSTpLyeeeGLS2pYsste3/E4FlWLq378/EOyqc/3112fcTXxJTJ8+nUmTJkU91qlTJyB4b0on+++/PxAEMiQNoyBSsumVV16xv3dkmadk0al5pZRSSinlhJOI6IUXXghgywMMGjSI008/HQimakuXLu2iaUknxchl95cNGzbYhUwLFy4E/L3EZVpNpl4yeV9glT+Joqv81a1bFwgWBK5evdplc1ImXlmVM844w5aKyxYSGY236CRydxyZVWrXrl1qGpYEEs0cMWIE4O+yldeio/79+/Pwww8Dwe+e6SW8IIgCSmkrmYmNTEn47LPPAP9YkJQweY++/PLLgfTcmSwyBaMoZJHT+vXr7Zgj3l7ziaYRUaWUUkop5YSTiOhJJ50EQPXq1QG/aLfczc2dOzfqa5lKFh8ddNBBdo9sFd/EiRNtPpfkviiVF4kCSLRj/fr1GZkPJxtgvPLKKzYX7N577wWCnPJsIptAjBo1yi48kUhoo0aNePXVVwHYZ599gGCBZDqS66Esem3QoIF9D5VjQYqZ16tXz275KNu9HnvssalsrhOS2/joo48CRJX5kxJeslbjjz/+sF+TNQrxtt9OF1dccQUAH330EQBDhgyxe8c3bdoUCCLGH374oc2HlWPHGMPjjz8OQP369ZPeXicD0T333BMIVni2bt3aXhwyfQCq8nfSSSfZ1aw7duwA/JQFuZBm20C0c+fOWVHnMJGkNq3sSvX6669zww03uGxSQkn95SFDhgD+m4YMtLt37+6sXa7Jbms9e/akZ8+ejluTXFJ/WgafY8eOtQPPyMEE+ANSSUNIxcKTsPj8888B+Ouvv4BgIPrWW2/ZxaCiQoUKNsWlqLW9w0h2S5LrwvTp0zn33HMBOPjgg4FgN8MVK1bETOG3a9eu0BUZEkGn5pVSSimllBMmsk5hHPl+MQ0kOstY+yNaUvrjhBNOAIKpNvDv2iDhpTTSoj9SKBlZ+SnvE9ldSBYnnHHGGfaxYtTEC90xItOyTz/9tH1s9uzZQEqmXEPXH4457Q/ZL37AgAF51uVu06aN3Wc8BUJzfFx11VUAjB49OuZrMisr9alvvfXWZJXJC0V/GGNs1DN3xNzzPLuITab077vvvmSlM8XtD42IKqWUUkopJ5zkiCqVH9kBpU2bNo5botLRqaeeCkD79u0BeO2113j77beB9C7ZIyQXUgwdOjQrFp+oWJIjKiWKVEBmDmRh8LJlywC/z2TWTUo0ZbopU6bYRVjTpk0Dgohot27dbDkvV9cRjYgqpZRSSiknNEe0aLQ/oml/RNP+iKV9Ek37I5r2RzTtj2jaH9Eysj80IqqUUkoppZzQgahSSimllHKioKl5pZRSSimlkkIjokoppZRSygkdiCqllFJKKSd0IKqUUkoppZzQgahSSimllHJCB6JKKaWUUsoJHYgqpZRSSikndCCqlFJKKaWcSOlA1BhT2hjTzxiz3BizI+f//saYPVLZjjAxxvQwxiwwxmzO+feVMeZc1+0KA2PMfcYYzxjzjOu2hIH2h15DcjPG/JxzTOT+N9l121zQ62ksY8wBxpjRxph1OefMImNMC9ftCgO9pobj+Ej1xfseoAfQGfgeOBoYDewE+qW4LWGxCr9fluLfGHQGJhpjmnqet8BpyxwyxpwIdAWytg8iaX9Yeg2JdjxQOuLzA4C5wGtumuOcXk8jGGMqATOBGcC5wDrgUGCtw2aFgl5Tw3N8pHogehLwnud57+V8/rMx5l3ghBS3IzQ8z3sn10O9jDE3AM3I0hPEGLMv8ApwDXC/4+Y4p/0RRa8hETzPWxf5uTHmGmAz8LqbFrml19MYdwNrPM/rFPHYcleNCQu9plqhOD5SnSM6AzjVGFMfwBjTADgNeD/F7QilnGnHDkAF4EvX7XHoBeANz/M+dd2QkND+COg1JA/GGIP/xjrW87w/XbfHNb2eAnAhMMsYM8EYs9YYM88Yc2POsZLN9Jrqu5AQHB+pjog+DFQEFhljduf8/Ic8z3suxe0IFWNMI+AroCywFWjred73blvlhjGmK3A40NF1W8JA+yOGXkPy1gqoA4xw3RCX9Hoa5VCgOzAYGAQ0Bp7O+VpW5kXqNTVKKI6PVA9ELwU6AZcD/8X/pYcYY5Z7nvdiitsSJovx+6IS0A4YbYxp6XneQpeNSjVjTD1gAHCy53l/uW6Pa9ofcek1JG9dgdme581z3RDH9HoaKAXM8TyvZ87n3xlj6uLnWWfdQFSvqTFCcXwYz/NS9bMwxqwEHvM8b0jEY72BLp7nHZ6yhoScMWYqsMLzvGtctyWVjDFdgJeA3REPlwY84B+gvOd5Ox00zQntj1h6DYnPGFMNf6FOD8/zhrtuT5hk6/UUwBizAvjY87xrIx7rCDzveV55dy1zQ6+p0cJyfKQ6IlqO6AOAnM+1nmm0UkAZ141wYCIwJ9djL+GvgB0AZNsd7ES0P3LTa0h8XfArB4x33I4wytbrKfgrouvleuwIYIWDtoTBRPSaGikUx0eqB6LvAfcaY5bjT6s1AW4HXk5xO0LDGDMImAysxM99uxxoiV9KIat4nrcJ2BT5mDFmG7AxG6fVtD/i0mtILjkLC64Fxnuet8V1e1zS62mMwcCXxphewAT88+Vm4D6nrXJEr6kxQnF8pHogehN+rb/ngGrAGmA48GCK2xEmNYCxOf//gV9i5GzP8z502iqlwkmvIbFaAnWBKx23Iwz0ehrB87zZxpgL8aN9fYBfcv7XxX0qNMdHSnNElVJKKaWUEtmeV6WUUkoppRzRgahSSimllHJCB6JKKaWUUsoJHYgqpZRSSiknClo1n+4rmRK9X6r2RzTtj2jaH7G0T6Jpf0TT/oim/RFN+yNaRvaHRkSVUkoppZQTOhBVSimllFJO6EBUKaWUUko5oQNRpZRSSinlhA5ElVJKKQXAzz//zCWXXMIll1xCjRo1qFGjBvPnz3fdLOXY0qVLWbp0KYMHD6ZmzZrUrFmTOnXqUKdOHS677LISvbYORJVSSimllBMFlW9SSTZ69GjefPNNACZNmgSA53kYE7/qQ58+fbj22msBqFatGgBlypRJQUuLT34X+b9MmTJ8/fXXABxzzDHO2qWUUsq3cOFCAFq3bs2vv/4K+O9FAOPHj9drdZZZtmwZAMOGDQNgzJgxAPz2228xz92xYwfr1q0DoGrVqkX+WRoRVUoppZRSThi548lDUoqnnnrqqQB8/vnn9rEHHngAgL59+ybyR4W2mOzo0aMBuP/++1m1alX0D8knIhr5tTfeeAOAtm3bFvbHOumPUqX8+53SpUvbx84991wAJk6cmOAmFUlojw9H0q6g/WuvvQbAwIEDmTdvXqG/r0uXLrz00kuFeWoojpGqVavSqVMnAB5//PGENqiIQtEfADt37gTgu+++A2DGjBkAzJw50864/O9//4v5Prn2PPbYYwDUr1+/uE2AEPVHcb3//vsAdqYtss9kfPDss8/SvXv3wrxc2vdHgqVVf+zevRuAF198kTvvvBOALVu2AFClShUAmjVrRtOmTf3G5Bwfo0aN4osvvgDgkEMOye9HxO0PJwPRvAZZkT777DMAWrZsWaIfVZJvjiNh/TF79mwATjzxRPvYEUccAcSfrl6yZAkA8+bNs/0nz/viiy+oWLFiYX6sk/6YNWsWEB3ib926NQBvvfUWAHvuuWe+r/HXX38BcOuttwLBm8hee+3FHnsUO8MktMfHH3/8AUCdOnVo3LgxAJ9++mmhvlem2OrUqQNA+fLlC/tjQz0QXbRoEeAfR+PGjQNg8+bNQHB8FJYxxg7sChiQhuIYqVatGuvXrwewA+6jjz46YY0qglD0B8C9994LwMMPP1ys75frxuzZs+05Vgyh6Y+iGjFiBAA9e/YEYMOGDQBUr16dBx98EPCvrwBXXnllVCAhH6Hrjx07dgBw/vnnA37w5+STTy7pyxZW6PojHhmAduzYEYBx48bZv/1pp50GwODBg4H4N25Dhw7lyiuvBChoLKI7KymllFJKqfAIRUS0ZcuWUdP0kT777LOSREVDezeyadMmAB566CEOP/xwADp06ADAvvvuG/N8CY+fdtppfPvttwBccsklgJ9IXkhO+6NPnz4ADBo0yD4mkc1bbrkl3++96qqrABg7dmzU4+PHj6ddu3ZFaUak0B4fcnc5btw4GymfOXMmAJUrV87z+5YtW2afL7MKLVq0KOyPDXVEtFatWgAxqSwl9c8//+T35VAcI5ER0bPOOguA119/HYAKFSokqGmFEor+AJgyZQoAZ599NoCNap544ok22nnNNdfY599xxx1A7MzCuHHj7LW3GELTH0UxadIkGyGU92OZUv3kk0849NBDi/vSoeuP/v37A8H7z8iRI+37SX4kReHRRx+1KYOFnHmMFLr+yG39+vW2P2TBNARpTzLOSBCNiCqllFJKqfAIRfmmFi1a2OiNREZlQdOpp55qI6KyoKmEeaOhUKlSJcC/2yoMuRNr0qQJc+fOBWDx4sWAHy0txp1a2pg9e7b9nTPd8OHDAWxJL4DDDjsMyD8SKjmSktsFfgI5FCkiGiqStyQRjdWrVxfq+w466CAgiGjs2rUrCa1zRyKBEuGR3K1sc8YZZwCwfPlyIDg/9tlnnyK9zgEHHJDYhoXYtGnTgCBfEoL8fCnPU4JoaKhIzuszzzwDQO3atQEKjIbKdUOOr2XLltlZiDPPPDMZTXXqrLPOsrOskhc6c+ZMjjvuuJS1IRQD0UgyyJSUgb59+/Kf//wHCAapBaQTZJTvv/8ewK5IGzFihJ1KOfDAA521KxVkIDJ79mx++OGHqK/JdIFcLDJFt27dgGC67Mgjj+T5558v8PtkGuWVV16xj+23335JaGHqbN++HYCnnnoKiD7vDz74YAC7krdu3br2a1Jfd86cOYCf/iJvSpFkFWi6Gjp0KACNGjXi6quvLvT3LVmyxD7/iiuuAOCGG25IfAOTTKbfZYCRn1mzZtkFokIGXPXq1Ut428Jm6dKlQFCVxhhjB6ByY9O8eXMnbUuWDz/8EAjqXt5///35Pl9udKWqwn//+1/ATwnKxAHoXXfdBfiLH+WaKelfki6YKjo1r5RSSimlnAhdRDS3vn37Jrq2aOj9+eefNtIjdTZlsVKk3r17A8VKoE4LsrtHvIVMMg0Xb2FXOpJyRLm99dZbdqo5HokaRk7PSiQ0HaNckaTslNQ3jExjeffdd4HoUmcSMZXIx0MPPZTnaxtj7PmTDjzPs4vQOnfuDEC/fv0Af0GOXB9k2nGfffbh77//BoLyaRIhfvjhh+30o5SFS/djJTdJVZEZpVtuuSXmGipli2rUqJHaxjnw9NNPA9G1uz/55BMg8yKhQlKTCktmB+bPnw8EKQv5XUfS0YIFC4BgoTAE19ZUR0KFRkSVUkoppZQToYiISv5jQSQymgkRUrk7l6LCECxU2bRpU9z9XIXkhh177LFJbKE7r776KhDk+GS6JUuWcOONNwJBVE/yIiUKlhcp5i27y+y333426hGZN5mO5Bwp7II+iYIVJoJRtWpVbr755uI3LsWMMbaAvUTyZBFb586due222wB48sknAShbtqwtSyX5gfE0atQoWU12qkePHkD09VVI/0mkPdP179/fvreUKVMG8K8vmRoJFWvXri30cx9++GG+/PLLqMdOOukkICill+5kk5Tc5Q579epF+/btXTTJ0oioUkoppZRyIhQR0c8//zwmyilR0niF7lu2bJl2JZxkH2TZ0lJ+P4lkRYrcT75cuXIAtGrVCvDzQmWf10wgxe2bNGkCwC+//GJzQmX7xkiyQragFZDp5Ndff7UbHMjfXVZ5S9FyCFZxNmvWzEY2ZLW8fF+fPn0yJsoluc+ylWPkRggS1ZJ9siE4xwpj69at9hxMl/JWDRs2jPpcohilSpWiV69eQBD9jLyGxHPkkUcCQe5gpvnoo49iHqtatSqAnX3IdFICbtCgQezcuRPA7h/etWtXZ+1yRWZANm7caEs6yfvx999/H7OxRaZVZFm2bFnU/1J1595776Vs2bLO2gUOBqJ57aAkJZpyk9qhEJR2SrdBKMCECRMAeO6554BgCjavNwuphSf7YLdt2zbZTUw62fmkSpUqdpcY+f/0008v1GtIArmUm0hn27ZtA+Duu++O+VpkPdDcSpcubfd9lulouWhm0pusnBtykyK/8+7du23dYbluzJkzp9ApPgADBgxImwEowI8//pjnosSLL77YTiNK+a6RI0fy888/A9hBiKhUqRKjR48GoEGDBklqsVuyeE92Vtq0aRPr1q0DsOXQ8jvHMoEs1tm2bRutW7cGMv93zo/swBVZxkvqZu6zzz42GCBksWQm2LZtG1OnTo167OWXXwZSvjNbXDo1r5RSSimlnEjZXvO5d0zKi0Q6EhT1DM0+rxKxkFIq0u8nnXQSf/75JxAsTHnttdfo0qUL4Ec2EigU/dG8eXPbD0UlC3AWLVpUrO/PxWl/SDJ95M4u+UXKZSrF8zxb2koi51KmJr9ST4UQ6r3mZfpIosBFIekssnjl4IMPznenqgihOGeK6rfffrORZCnVJAYNGhQ3Cl9IadUfW7duBfwUBFnEJmWtvvrqK6DEiz5D1x+S5iazBRUqVGD69OlA9PVBNgSQXf4SJDT9IQs5ZQcy+bvvscce9v1Y0n7+/vtv2rRpAwRlnCRiWKpUieJ1oeiPTZs22XQmuY4WtCObTOEPGzYMCBa63XvvvSWJoupe80oppZRSKjxSliMamRsamfcJ0fmh6Zj/WRiSHC77Xp9zzjkA3HPPPfYxyQHr27evTaI+8cQTAXj77beBzNgXefz48XbLNMkR/f333wH/7l1+R9ni86effnLQyuTbe++9Ab+IsNx9Ciks3KZNGxsdlwhehw4dbERUvlbCSGgorVy5EgiOkaJu7SvF7o855hibOxtZAD8TSdm3U045hTVr1kR9Ta5BJYiGph2J3PTs2dNuZSn7rcvitkwrgyeF6sWuXbvshgWyVfKee+5pF+dIgfNM2zL6nnvuAYLZENn8o0yZMjFbdsp1FODxxx8HShwJDZVNmzbZnGHZ9CIeec/t06ePXdCVeyOI2rVrJ7z0WcoXKz3wwAMZVQ+0sOSPn99BIOrXr29Pgm+++QYIwuOZ0GcHHXSQnVqXlZ2SktGkSRO7wEAGIrIndKaRG4/FixcX6vmyy9YXX3xh3zwHDBiQlLa5ItPuP/zwA5dccglAzCA9LzLFeOGFFwLBOSML3DKZ3Mz2798f8GvTSnqH1A3Ma0FotpBzRgaiUjEgnerJ5kcqJuRedLNz5047AJVatN98841dxCZ7rGfaQFTkt/pdBuFvv/02Bx98MBBMQWeSrVu3smPHDgAuuOCCmK/LDazs2pZfDe+FCxcmvH2ZM+RXSimllFJpJWkRUZmKl7twmY7PtKl3uauUu9Hctf6KSxYu1atXD4Bzzz03Ia8bNhKtyb3bg4olSffGGFsPUKb309nu3bttZEIWGEh91MKqVKmSjapn+vR7bmvWrLHT7pF1VeUactdddwGZkdZTEj/++GPU5xIF2rp1ayhK2JSUTClLvWFRtmxZu6/4qlWrADjvvPPs1LXsHCTlfWrVqpWS9oaBLNjZvHkzF110EZDwxVuhMHfuXPvx8uXLo762fv16W9oqsq65zEjJLNU777yTtPZpRFQppZRSSjmR9Iio/C/FozMtIip7gsud5pAhQxLyurn3CZcI0fHHH5+Q11fpQxZVLFmyxD5Ws2ZNV81JuC5duthC7MVVoUKFrIuEim+++SYqEgr+5hHyWLZHQsHfQSf3Ih4p57Np06aMiIjKgsXci/r69+8fd3GJRERlNm/evHlAdkVEZQc7gB49ejhsSXJJuSqAL7/8EsAuYDvrrLNsJFR2LnzkkUdsQX+JFMvn8n2JpBFRpZRSSinlhNO95iNXcUp+V7qRaIPsff7333/bbTyLa8uWLbz44otAEAWLzPHIZlLmSaIbhd0aNJ3JVo2yMvrggw/OiK0ZL7vsMqDo+aAnnngiX3/9ddRjq1evtls3Xn/99YlpYMjJKlj5vSNNmTKF6tWrp7pJoSHRzltuuQWA4cOH2/NHSF56ppQ+k9k5qZYgf/927drZtQwycyeVSSAobC/bXWYDKV0VeUxk0pae+ZkzZw7gl1EEPxJ+5JFHAjBp0iTAvyZLhR45dqRCi6xbSaSUDUQjyw7F210pXafspQSP/LGef/55u5dt7969AWjWrFnM3uhSmmjNmjX2gJDw+Oeff24vJuXKlQPg9ttvT+avkTakpqQsznj55ZftNPWtt94K+DcFAwcOBII3JPHuu++mqKWJsX379pgdMJ566imqVq3qqEWJI8d9vF2k8iNTiZE8z4v5W2eqzZs3A/4e8wAff/yx/Zo8lo2DUBlUjB8/nieeeAKIXnwh5P3n0UcfTV3jHJAdtc4880xbgzjejnbnn38+gN2PPhvIwrUPPvgA8Mta1ahRw2WTkqpy5crUr18fCH736667DvAH5VKvXIIDUjYSoFOnTgDcdNNNSWufTs0rpZRSSiknUh4RbdmyZdQuS5C+0/IArVq1AoJk4K+++opvv/0WgLZt2wJQpUqVmCjw66+/DsSPBhlj7ONy13LeeeclofXhJoWF4+08JBHlVq1a2b6SiNjUqVNt8ep03x3j4YcftlGd/fbbD8DuiZytIhcYiOrVq9tyI5lO9seWcjvGGA477DAg2B87U8mMyNixY+1jsiGEpGvIoptIZcqUsSXP5L1IpqQzxb777gsEfSTizSBAsIB4xIgRyW1YGqhdu7a9vmai/fff384GNmrUCIjeMemll16K+R4p/9avXz8guRuDpPe7tFJKKaWUSlspuyWUhUmRC5Qyoci95HCOHDkS8IvA5t4Ca8OGDbzxxhuFfs327dvbvMds3pZP8mpfffVVu72lJORv3boV8PPCJB8uMgFfir+na9RDIr6vvfaajfjK75QpZLtb2QO5OMqWLQvAkUcemdE5XhBEQIcOHQpEz6Z069YNyIwNDuKRBXsyyxQv6hlJolvHHXcc4G/nmYxFFmEiC1xzv5+WLVuWK664AoB99tkH8BcwRZb0UZlPSkKOGTMG8McZuUlh++OOO84u+kxFqUCTu+ZYLvl+MT8y/Z7fwqQUTMkXbRVEwQrsj7Vr19pV85MnTwawU/UATZs29V8op99r1qzJOeecAwS7JyVxFWfK+yPRpAaa7FH/1FNP8dFHHwHxj7UChLY/5Jj48MMP7WrW+fPnA8GUSRIkuj8gnz6RG7bzzz/f/u3khmPTpk12IWC8wZWshj7qqKOA+PsnJ0hojhG52ZUbLpkqGzBggF3MmIJUFCf9UZh94WVHnKuvvpqePXsCflpUkoXm+AiJtOiPRYsWAdHXjyTtHJQW/ZFCcftDp+aVUkoppZQTSYuICol0SIT0gQceiCrllGR6NxJN+yNa6Ppj27ZtADRv3hyABQsW2Gm1FCxESWlENJ5ff/0V8NMxZCGg4x2TQnOMyN7okoIgdf0k+pciTvpDUlVkwdGKFSvslKEs3pO6oCneJSk0x0dIpEV/aETUGY2IKqWUUkqp8Eh6RNQxvRuJpv0RLXT9IXmTEgXce++9mT59OgBNmjQp6csXxHlENIRCd4w4pv0RTfsjWlr0h8wudOjQAfA3oknSYra06I8U0oioUkoppZQKD42IFo32RzTtj2jaH7G0T6Jpf0TT/oim/RFN+yNaRvaHRkSVUkoppZQTOhBVSimllFJOFDQ1r5RSSimlVFJoRFQppZRSSjmhA1GllFJKKeWEDkSVUkoppZQTOhBVSimllFJO6EBUKaWUUko5oQNRpZRSSinlxP8DWAmHs2FmCG0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "n_rows = 4\n", - "n_cols = 10\n", - "plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2))\n", - "for row in range(n_rows):\n", - " for col in range(n_cols):\n", - " index = n_cols * row + col\n", - " plt.subplot(n_rows, n_cols, index + 1)\n", - " plt.imshow(X_train[index], cmap=\"binary\", interpolation=\"nearest\")\n", - " plt.axis('off')\n", - " plt.title(y_train[index])\n", - "plt.subplots_adjust(wspace=0.2, hspace=0.5)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's build a simple dense network and find the optimal learning rate. We will need a callback to grow the learning rate at each iteration. It will also record the learning rate and the loss at each iteration:" - ] - }, - { - "cell_type": "code", - "execution_count": 115, - "metadata": {}, - "outputs": [], - "source": [ - "K = tf.keras.backend\n", - "\n", - "class ExponentialLearningRate(tf.keras.callbacks.Callback):\n", - " def __init__(self, factor):\n", - " self.factor = factor\n", - " self.rates = []\n", - " self.losses = []\n", - " def on_batch_end(self, batch, logs):\n", - " self.rates.append(K.get_value(self.model.optimizer.learning_rate))\n", - " self.losses.append(logs[\"loss\"])\n", - " K.set_value(self.model.optimizer.learning_rate, self.model.optimizer.learning_rate * self.factor)" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [], - "source": [ - "tf.keras.backend.clear_session()\n", - "np.random.seed(42)\n", - "tf.random.set_seed(42)" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [], - "source": [ - "model = tf.keras.Sequential([\n", - " tf.keras.layers.Flatten(input_shape=[28, 28]),\n", - " tf.keras.layers.Dense(300, activation=\"relu\"),\n", - " tf.keras.layers.Dense(100, activation=\"relu\"),\n", - " tf.keras.layers.Dense(10, activation=\"softmax\")\n", - "])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will start with a small learning rate of 1e-3, and grow it by 0.5% at each iteration:" - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [], - "source": [ - "optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3)\n", - "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=optimizer,\n", - " metrics=[\"accuracy\"])\n", - "expon_lr = ExponentialLearningRate(factor=1.005)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's train the model for just 1 epoch:" - ] - }, - { - "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1719/1719 [==============================] - 3s 2ms/step - loss: nan - accuracy: 0.5843 - val_loss: nan - val_accuracy: 0.0958\n" - ] - } - ], - "source": [ - "history = model.fit(X_train, y_train, epochs=1,\n", - " validation_data=(X_valid, y_valid),\n", - " callbacks=[expon_lr])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now plot the loss as a functionof the learning rate:" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'Loss')" - ] - }, - "execution_count": 120, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEOCAYAAACNY7BQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAl1ElEQVR4nO3dd3hUZd7/8fd3UkgCKUAgJKH3XkMvxg4oggXL2teVde3rurqu+zzr+lu3Wh67YtdVURQFFcHVNdKkVxFxg7RQRJAWirT798cMJGcMkGByJpl8Xtc1FzPnnDn5zk3gM/e5z7mPOecQERE5LBDpAkREpHJRMIiIiIeCQUREPBQMIiLioWAQEREPBYOIiHjERrqAnyomKdV1bNOCuBhlXEXatWsXNWvWjHQZUU/t7I/wds7fVEhMwGiWXn3aft68eZudc/VKWlflgyE2tT5vfJhH2wYpkS4lquXl5ZGbmxvpMqKe2tkf4e084vHppCTG8fLPe0WuKJ+Z2eqjrfPta7aZNTKzT81smZktNbNbStgm18y2m9nC0ON/S7PvPfsOln/BIlJt6DJfLz97DAeA3zjn5ptZMjDPzP7tnPsybLupzrmzy7LjPfsVDCLy01ikC6hEfOsxOOc2OOfmh57vBJYB2eWx770KBhH5KTQ1kEdExhjMrCnQDZhVwuq+ZrYIWA/c7pxbWsL7RwGjAOIbtOT2MfN4MDepAiuWwsJC8vLyIl1G1FM7+yO8nXfs3IPba2r7EN+DwcxqAW8DtzrndoStng80cc4VmtlQ4F2gVfg+nHOjgdEANTJbue/3Oq6atIv5/3M6dWrGV+wHqKY0KOoPtbM/wtv5oS+mUbtmPLm51Wfw+Vh8PcfTzOIIhsKrzrlx4eudczucc4Wh5xOBODNLP9Y+M1ISjjzv/v/+Xb4Fi0i1oANJXn6elWTAc8Ay59yDR9mmQWg7zKxXqL4tx9pvvVo16N2szpHX0/M3s3XXPqZ8/R2HDumvW0RKR4PPRfw8lNQfuBxYYmYLQ8t+DzQGcM49BVwA/MrMDgB7gIvdcW4YYQZv/LIv67bt4ZT787j02aJhi4Gt0nnsku6kJsWV/6cRkaihsWcv34LBOTeN44Syc+4x4LET2X92WiIf33YSuffncfCQo3PDVKb+dzNd7v2Iv5/fiSGdMkmuEUuoQyIi4qH/G4pU+Sufi2tUJ4n8+4ZwyEFMwJixYjM3vDqfO99ewp1vL6FFvZrcclprzu6USSCgXwIRkZJEVTBAMPVjQv/n92uRzpy7T2P2qu/5+MtNTFi0jptfX8Bz01ZyRZ8m9GpWh0Z1dJqrSHXnNPzsEXXBEC42JkC/Fun0a5HO3We1Y/zCdTzw0df8ZuwiAPo2r8uNp7SkX4u66kqKVGP6118k6oOhuJiAcV73hozoms1XG3fy6fJNvPL5ai59dhYt69diQMt0ft6/GY3rqhchUp1o8NmrWgXDYYGA0T4rhfZZKVwzoBlvzl3LxCUbeG3WGv41czWDWtfj/O4NOa19fWrExkS6XBHxgQ4YFKmWwVBcQlwMV/RtyhV9m/Ltjr08P20lExat54bX5pOWFMfwLlmMzGlEx+zUSJcqIuKLah8MxWWkJHDX0HbcMbgt0/M38+bctbw+Zy0vfb6adpkpDOuSycCW9WiflUKMzmoSiRo6lOSlYChBTMAY1Loeg1rXY/vu/YxftI635xXwj0nL+QfLqZ0Ux1mdMzm3WzbdG9fWoLVIVNC/48MUDMeRmhR35FDTpp17+XzFFj5etom35hXwr5lryEipwfndGzK4YwM6ZqXq+giRKkgdBi8FQxnUT05geNdshnfNZufe/Uz6YiMTl2zg6Snf8ETeCtKS4ujfMp0hHRtwUut6JCdoKg6RqkId/yIKhhOUnBDHyJxGjMxpxPehSfum5W8mb/kmPli8gfiYALlt6jEypxG5beoRF+PrRLYiIidMwVAO6tSMZ0S3bEZ0y+bgIce81VuZ9MVGJixax0dffkt6rRqc2y2LEd2yaZ+ZojEJkUrmOHN1VjsKhnIWEzB6NatDr2Z1uGtoW/KWf8fYuWt5Yfoqnpm6klb1azEypyEjumVTPznh+DsUEV/o61oRBUMFiosJcHr7DE5vn8GWwh+YtHQjb80r4C8Tv+Lvk5bTv2U653fP5oz2DUiM14V0IlI5KBh8UrdWDS7t3YRLezchf9NOxs1fx/iF67llzEJq1YhlSMcGnNe9Ib2b1dGZTSIRoCO8RRQMEdCyfjJ3DG7L7We0Yfaq7xk3v4CJSzYydl4B2WmJjOiWxfndG9K8Xq1Ilyoi1ZCCIYICAaNP87r0aV6XP53TkY++3Mi4+et4Mm8Fj3+6gkGt63F1/6ac1KqeehEiFUhjz14KhkoiMT7myDUSm3bsZcyctbwyczVXvzCH5uk1ubJfU87v0ZBaNfRXJlIRTMPPR+jk+kqofkoCN5/aiul3nsLDF3clOTGOP05YSt+/fMK9733J6i27Il2iSFTRjXq89PWzEouPDRzpRSxYs5UXpq/i5c9X8cKMlZzatj6/PKkFPZvWiXSZIlFBg89FFAxVRLfGtenWuDZ3n9WOV2eu5tVZaxj51Of0b1mXW09rrYAQkXKjQ0lVTEZKAred0YZpd57CH85qx/KNOxn51Odc+uxM5qz6PtLliVRJGnz2UjBUUYnxMfxiYHOm3uENiMuencXCtdsiXZ5IlaNDSUUUDFVceEB8uWEHIx6fzi9fmcvX3+6MdHkiVYI6DF4KhihxOCCm3HEyvz6tNdPztzD4/6Zw17jFfLfzh0iXJ1Lp6XTVIgqGKFOrRiy3nNaKqXeczJX9mjJ2bgEn35/Hk3kr2Lv/YKTLE5EqQMEQpWrXjOePwzow+deD6NO8Dn+f9BWnP/QZE5ds0BTDImH0b8JLwRDlWtSrxbNX9uRf1/QmKS6W61+dz0VPz2RJwfZIlyZSuehI0hEKhmpiQKt0Prh5APed25EV3xVyzuPTuH3sIr7ftS/SpYlEnPoLXgqGaiQ2JsClvZvw6W9zGTWwOeMXruOMh6bwybJvI12aSMSpw1BEwVANpSTEcdfQdoy/YQDpteK55qW5/HbsIrbtVu9BRBQM1Vr7rBTG39if63NbMG7BOk578DMmLFqvgTipfvQr76FgqOZqxMZwx+C2vHfjALLTErn59QVc+/I8NmzfE+nSRHxluvT5CN+CwcwamdmnZrbMzJaa2S0lbGNm9oiZ5ZvZYjPr7ld91V37rBTGXd+fu4e2Y1r+d5zx4BTGL1wX6bJEfKEOg5efPYYDwG+cc+2APsANZtY+bJshQKvQYxTwpI/1VXsxAePaQc2ZfOsg2jRI5pYxC/n1GwvZuXd/pEsTqXDqLxTxLRiccxucc/NDz3cCy4DssM2GAy+7oJlAmpll+lWjBDWpW5Mxo/pw62mtGL9wHUMfmUr+Vl01LVJdROR+DGbWFOgGzApblQ2sLfa6ILRsQ9j7RxHsUZCRkUFeXl5FlVqtdY2Fu3ol8PTivfxl1iG+3voRg5vFEdCx2ApTWFio32cfhLfz7t272bRpr9o+xPdgMLNawNvArc65HeGrS3jLjw7/OedGA6MBcnJyXG5ubnmXKSG5wEVD9vPzJz/hza/3syVQmwcv7EpqUlykS4tKeXl56Pe54oW3c+KcT8nISCM3t1vkiqpEfD0rycziCIbCq865cSVsUgA0Kva6IbDej9rk6FIS4rihaw3uGdaeKf/9jmGPTePL9eGZLlJ1afDZy8+zkgx4DljmnHvwKJtNAK4InZ3UB9junNtwlG3FR2bGVf2bMWZUX344cJDznpzOe4uU2RI9dIC0iJ89hv7A5cApZrYw9BhqZteZ2XWhbSYC3wD5wDPA9T7WJ6XQo0lt3r9pIJ2yU7np9QX87cOvOHhI37dEoolvYwzOuWkcJ5Rd8JLbG/ypSE5UveQavPqLPvzpvaU89dkKvtq4g4cv7kZqosYdpGrSxf5euvJZTkh8bID7zu3Efed2ZHr+ZkY8Pp38TbqVqFRduvK5iIJBfpJLezfhtWv7sHPvfkY8PoOPv9RMrVL1OA0/eygY5Cfr2bQOE24cQNP0JH7x8lzumbCUPft0QZxULeovFFEwSLnISkvkrev6cVW/prw4YxXnPjGdtd/vjnRZInICFAxSbhLiYrjnnA68cHVP1m3bw/DHpzN75feRLkvkuDT47KVgkHJ3cpv6vHtDf9IS4/jZMzN5YfpK3eNBKj8dSzpCwSAVokW9WrxzQ39y29TnT+99yS1jFmrcQSotfW/xUjBIhUlNjGP05T347ZlteG/xes5/cobGHaTSMnUZjlAwSIUKBIwbTm7J81f2ZO3W3Zz1yFQmfbEx0mWJyDEoGMQXJ7etzwc3DaRpek2u+9c8/vz+lxw4eCjSZYlICRQM4pvGdZN467p+XNm3Cc9OW8llz81ic+EPkS5LBABd+FxEwSC+io8N8KfhHXnwwi4sWLONsx+ZxoI1WyNdllRzOmvOS8EgEXFe94aMu74fcbHGRU/P5LVZa/SPUyJKHYYiCgaJmA5Zqbx34wD6tqjL799Zwp1vL2bvfp3SKhJpCgaJqLSkeJ6/qic3n9KSN+cWMPKpzynYqlNaxV/qq3opGCTiYgLGbWe04Zkrcli1eRfDHp3GZ19/F+mypJrR4HMRBYNUGqe3z2D8jf3JSEngqhdm89C/v9bd4cQXGt7yUjBIpdK8Xi3eub4/53bL5uFP/stVL8xmi05pFR/oyuciCgapdBLjY3hgZBf+dl4nZq38nrMfnca81TqlVSqObtTjpWCQSsnMuLhXY8b9qh9xMQEuevpzRk9ZwSEdWpIKojGGIgoGqdQ6Zqfy3k0DOLVdff4y8SuufnGOrpYWqWAKBqn0UhPjeOqyHvy/ER35/JstDHl4KtPzN0e6LIkiGnz2UjBIlWBmXN6nCeNv6E9qYhyXPTeLf07+ShPxSbnRoaQiCgapUtplpjDhxv5c2KMRj3+6gotGz9QFcfKTqcPgpWCQKicpPpa/X9CZRy7pxvKNOxn68FQmfbEh0mVJlacuw2EKBqmyzumSxQc3D6BZek2u+9d8/vDuEs21JFIOFAxSpTWpW5Ox1/Vj1KDm/GvmGoY+PJX5msZbykiDz14KBqny4mMD/H5oO179RW9+OHCIC56cwV8/XKbeg5SJBp+LKBgkavRvmc6kWwdyUc9GPP3ZNwx7dBqLC7ZFuiypEtRlKE7BIFElOSGOv57XmZd+3oudew9w7hMzeOCj5ew7oNNa5djUYSiiYJCodFLrekz+9SDO7ZbNo//J55zHpvHFuu2RLkukSlAwSNRKTYzj/pFdeO7KHLbs2sfwx6fzj0lfaexBfkSDz14KBol6p7bL4ONfn8S53bJ5Im8Fpz/0mW4EJD+iwecivgWDmT1vZpvM7IujrM81s+1mtjD0+F+/apPol5oU7D28dm1vasTGcOXzs/nt2EV8v2tfpEuTSkAdBi8/ewwvAoOPs81U51zX0ONeH2qSaqZfi3Tev2kAv8ptwTsL1nHKA3m8PnuNpvMW3ainGN+CwTk3Bfjer58ncjQJcTHcObgtH94ykDYZydw1bgnnPTlDg9MiIZVtjKGvmS0ysw/NrEOki5Ho1iojmTGj+vDQRV0o2Lqbcx6bxj0TlrJj7/5IlyY+cxp99jA/G8TMmgLvO+c6lrAuBTjknCs0s6HAw865VkfZzyhgFEBGRkaPMWPGVGDVAlBYWEitWrUiXUaF2bXfMe6/+/jPmgOk1DAuaRNP78wYzOcRyWhv58oivJ1v/GQXvTNjubx9jQhW5a+TTz55nnMup6R1lSYYSth2FZDjnDvmHVlycnLc3Llzy6dAOaq8vDxyc3MjXUaFW1ywjf959wsWFWynX4u6/OGs9rTPSvHt51eXdo608Hbueu9HnNMli3uHH/e/pqhhZkcNhkpzKMnMGljo65mZ9SJY25bIViXVTeeGaYy7vj9/HtGRLzfs4KxHp3LbmwtZt21PpEuTCqah5yKxfv0gM3sdyAXSzawA+CMQB+Ccewq4APiVmR0A9gAXOx34kwiICRiX9WnCsM5ZPPFZPi9MX8X7izdwzYBm/Cq3BSkJcZEuUaRC+RYMzrlLjrP+MeAxn8oROa7UpDjuGtKOK/o25YHJy3kybwVvzFnL9bktuKxPExLiYiJdopQTfQX1qjSHkkQqq+y0RB68qCvv3TiADlkp/PmDZZxyfx5vzlmre05HEb9PNKjMfnIwmJn61VItdGqYyivX9ObVX/QmPbkGd7y9mFMf/Iy35hUoIKo4HbX2KlMwmNnNZnZ+sdfPAXvMbLmZtSn36kQqof4t0xl/Q3+euSKHWjViuX3sIk5/aArj5hdwUFdQSxQoa4/hZuA7ADMbBFwI/AxYCDxQrpWJVGJmxuntM3j/pgE8fXkPEuJiuO3NRZz+4GeMX7hOASFVWlmDIRtYFXo+DBjrnHsTuAfoU35liVQNZsaZHRrwwU0DePLS7sTFBLhlzELO/L8pTFi0XgFRRehvyauswbADqBd6fjrwSej5fiChvIoSqWoCAWNIp0w+vGUgj/+sOwGDm19fwOD/m8L7i9drkr4qQGPPRcoaDB8Bz4TGFloCH4aWdwBWlmdhIlVRIGCc1TmTSbcM4tFLuuGAG19bwJCHp/LugnXs1yB15aTc9ihrMNwATAfSgQucc4dnS+0OvF6ehYlUZYGAMaxLFpNvHcTDF3flkHPc+sZCcv+ZxzNTvmH7bk3UV9lo2u0iZbrAzTm3A7iphOV/LLeKRKJITMAY3jWbYZ2z+HT5Jp7+7Bvum7iMB//9NcO7ZnFZnyZ0zE6NdJkiHmUKBjNrDxx0zi0PvT4duBJYCvzDOaeb6YqUIBAwTm2XwantMli6fjuvfL6adxeuY8yctXRplMblfZpwdufMSJdZbelIkldZDyU9B3QDMLOGwHigDsFDTH8u39JEolOHrFT+dn5nZv3+NO4Z1p7Cvfu5fewi+vz1E95Yvo81W3ZHusRqSYPPRcoaDO2A+aHnI4FZzrmhwOXAMedCEhGv1MQ4rurfjI9vO4nXru1NvxZ1mbxqPyfd/ylXvzCbT5Z9q9NdfaIrn73KOoleDHD47umnAhNDz1cAGeVVlEh1Ymb0a5FOvxbpvDPpP6wMZPP6nLVc89JcstMSubhnIy7q2Yj6KTojvCKpw1CkrD2GLwhOjT2QYDBMCi3PBo55Qx0ROb7aCQFuO6MNM353Ck9e2p1m6TV54N9f0+9v/+H6V+cxPX+zromQClfWHsOdwLvA7cBLzrkloeXnALPLsS6Rai0uJsCQTpkM6ZTJys27eG3WasbOK2Diko00S6/Jz3o15oIeDaldMz7SpUYFRa1XWU9XnWJm9YAU59zWYqueBjRiJlIBmqXX5O6z2vObM9rw4RcbeHXmGu6buIx/frScszplcmnvxvRoUlvTRv9Ear4iZb5Rj3PuoJntMbOOBIN2hXNuVblXJiIeCXExnNutIed2a8hXG3fw2qw1jJu/jncWrKNNRjI5TWszsFU6uW3q6yZCZaSxZ6+yXscQC/wVuBGIJzhe84OZPQrc7ZzT5ZwiPmjbIIV7h3fkzsFteW/ResbMWcuERet5ddYakhNiGdYli5E9GtK1UZp6EqWkdipS1h7DPwielnodMC20bCDBsAgQHHsQEZ/UrBHLxb0ac3Gvxhw4eIgZK7bwzoJ1jJtfwGuz1tCkbhLndMlieNcsWtZPjnS5UkWUNRh+BvzcOTex2LIVZvYd8CwKBpGIiY0JMKh1PQa1rsefhndg0pKNTFi0nsc/zefR/+TTLjOFsztnMrhjA1rUqxXpcisVp+Fnj7IGQyrBaxbCrQDSfnI1IlIuUhLiuLBnIy7s2YhNO/fyweINTFi0nn9OXs4/Jy+nRb2anNmhAWd2aEDnhqk6jIKuYyiurMGwiOBd3G4IW35LaJ2IVDL1kxO4un8zru7fjA3b9/DR0m+ZvHQjT0/5hifyVpCdlshZnTMZ1jmLjtkp1TIkNPjsVdZguAOYGJo873OCZyX1BbKAIeVcm4iUs8zURK7s15Qr+zVl6659fPLVJj5YvJ7np61k9JRvaFI3iaGdMhlcHXsS1eijHs+JXMfQmmCPoS3BphxLcGqMWykakBaRSq52zXgu6NGQC3o0ZNvufUxeupH3F29g9JRveDJvBZmpCZzZoQFndMggp0kd4mPLOlGCVFUnch3DeuDu4svMrAtwfnkVJSL+SkuK56KejbmoZ2O27d7Hx8s2MXnpRl6fvYYXZ6wiKT6G3s3q0L9lOgNapdMmIzmqehM6kuRV5mAQkeiWllTUk9i97wBT/7uZ6fmbmZa/mU8/WAZAeq0a9G9Zl/4t0+nfMp3stMQIV/3T6Q5uRRQMInJUSfGxR85eAli/bQ/T8zczY8UWpuVvZvzC9QA0T68ZCom69G2eTmpSXCTLLjt1GTwUDCJSallpiYzMacTInEY45/jvpkKmhXoU4+YX8MrM1QQMOmWnBg87tUynW+PaJMZX3ik6Dhw8xL6Dh0iqxDX6rVTBYGYTjrNJSjnUIiJViJnROiOZ1hnJ/HxAM/YfPMSitduYlh8MitGh02EDFpzCo1+LuvRrWZeeTeuQnFB5ehS7fgjekbhmDX1PPqy0LbGlFOtX/sRaRKQKi4sJkNO0DjlN63Draa0p/OEAs1duYeHa7cxeuYWXZ67m2WkriQkY7TNT6NwwlW6Na9O7WR2y0hKJCUTmGP+ufQcAqKkewxGlCgbn3NUVXYiIRJdaNWI5pW0Gp7QN3txx7/6DzF+9lRkrtjBv9VYmLAxO+gcQF2N0yk4lMT6GVvWT6dGkNh2yUmhcJ4nYmIo9TXb7nuDcn7US1GM4TC0hIr5IiIuhX8t0+rVMB+DQIcfXm3YyZ+X3rPl+NwvXbqNw7wHemLOWF2esAoKB0TojmS6N0ujaKI2OWak0qZtUqsM+mwt/4Mv1OwCIjw0QHxugZnwssTHG6h0HWbV5F+u37WHcgnVA8L4XEqRgEJGICASMtg1SaNvAO0S5/+Ahlm/cybINO8j/rpCl63bw3sL1vBbqXQBkpyXSOqMWDWsnkZWWSNsGybRpkExmagJmxpjZa/jduCXhP9JrRt6Rp72a1qFdAw2VHmauik8SUqdJO3f675+PdBlRb9u2baSlpUW6jKindi6Zc469+w+xe98B9h44xJ59B9m97yD7Dh7iYLF7YMcEjMS4GAp/OEByjVga1k7EDA654D4Ohv7cs3s3NRITiY8JEBcTICk+Jqou2CuNN6/rN885l1PSOt96DGb2PHA2sMk517GE9QY8DAwleJvQq5xz8/2qT0QqLzMjMT6mxNNeDxw8xO79B4+ExZ59B0mMi6FZes2jnia77cAe0pITKrrsKsu3HoOZDQIKgZePEgxDgZsIBkNv4GHnXO/j7TcnJ8fNnTu3vMuVMHl5eeTm5ka6jKindvaH2hnM7Kg9Bt9mxXLOTQG+P8YmwwmGhnPOzQTSzCzTn+pEROSwyjT4nA2sLfa6ILRsQ/iGZjYKGAWQkZFBXl6eH/VVa4WFhWpnH6id/aF2PrbKFAwljfyUeJzLOTcaGA3BQ0nVvUvoB3W9/aF29ofa+dgq0wTrBUCjYq8bAusjVIuISLVVmYJhAnCFBfUBtjvnfnQYSUREKpafp6u+DuQC6WZWAPwRiANwzj1F8C5wQ4F8gqerahoOEZEI8C0YnHOXHGe9I3jLUBERiaDKdChJREQqAQWDiIh4KBhERMRDwSAiIh4KBhER8VAwiIiIh4JBREQ8FAwiIuKhYBAREQ8Fg4iIeCgYRETEQ8EgIiIeCgYREfFQMIiIiIeCQUREPBQMIiLioWAQEREPBYOIiHgoGERExEPBICIiHgoGERHxUDCIiIiHgkFERDwUDCIi4qFgEBERDwWDiIh4KBhERMRDwSAiIh4KBhER8VAwiIiIh4JBREQ8FAwiIuKhYBAREQ9fg8HMBpvZcjPLN7PflbA+18y2m9nC0ON//axPREQg1q8fZGYxwOPA6UABMMfMJjjnvgzbdKpz7my/6hIRES8/ewy9gHzn3DfOuX3AGGC4jz9fRERKwc9gyAbWFntdEFoWrq+ZLTKzD82sgz+liYjIYb4dSgKshGUu7PV8oIlzrtDMhgLvAq1+tCOzUcAogIyMDPLy8sq3UvmRwsJCtbMP1M7+UDsfm5/BUAA0Kva6IbC++AbOuR3Fnk80syfMLN05tzlsu9HAaICcnByXm5tbYUVLUF5eHmrniqd29ofa+dj8PJQ0B2hlZs3MLB64GJhQfAMza2BmFnreK1TfFh9rFBGp9nzrMTjnDpjZjcBkIAZ43jm31MyuC61/CrgA+JWZHQD2ABc758IPN4mISAXy81ASzrmJwMSwZU8Ve/4Y8JifNYmIiJeufBYREQ8Fg4iIeCgYRETEQ8EgIiIeCgYREfFQMIiIiIeCQUREPBQMIiLioWAQEREPBYOIiHgoGERExEPBICIiHgoGERHxUDCIiIiHgkFERDwUDCIi4qFgEBERDwWDiIh4KBhERMRDwSAiIh4KBhER8VAwiIiIh4JBREQ8FAwiIuKhYBAREQ8Fg4iIeCgYRETEQ8EgIiIeCgYREfFQMIiIiIeCQUREPBQMIiLioWAQEREPBYOIiHj4GgxmNtjMlptZvpn9roT1ZmaPhNYvNrPuftYnIiI+BoOZxQCPA0OA9sAlZtY+bLMhQKvQYxTwpF/1iYhIkJ89hl5AvnPuG+fcPmAMMDxsm+HAyy5oJpBmZpk+1igiUu3F+vizsoG1xV4XAL1LsU02sKH4RmY2imCPAqDQzJaXb6lHlQps9+n9pdn2WNscbV1Jy0uzLB3YfJx6yova2R9qZ39U1nZuctQtnHO+PICRwLPFXl8OPBq2zQfAgGKvPwF6+FVjKT7DaL/eX5ptj7XN0daVtLw0y4C5ame1s9o5utv58MPPQ0kFQKNirxsC609gm0h6z8f3l2bbY21ztHUlLS/tMr+onf2hdvZHVWpnACyUIBXOzGKBr4FTgXXAHOBnzrmlxbY5C7gRGErwMNMjzrlevhQox2Rmc51zOZGuI9qpnf2hdj4238YYnHMHzOxGYDIQAzzvnFtqZteF1j8FTCQYCvnAbuBqv+qT4xod6QKqCbWzP9TOx+Bbj0FERKoGXfksIiIeCgYREfFQMIiIiIeCQX4yMxthZs+Y2XgzOyPS9UQrM2tuZs+Z2VuRriXamFlNM3sp9Ht8aaTriTQFQzVnZs+b2SYz+yJs+TEnPCzOOfeuc+5a4Crgogost8oqp3b+xjl3TcVWGj3K2ObnAW+Ffo/P8b3YSkbBIC8Cg4svONqEh2bWyczeD3vUL/bWP4TeJz/2IuXXzlI6L1LKNid4Me3h6XgO+lhjpeTnXElSCTnnpphZ07DFRyY8BDCzMcBw59xfgbPD92FmBvwN+NA5N7+CS66SyqOdpWzK0uYEZ11oCCxEX5jVAFKio01meDQ3AacBFxy+YFFKpUztbGZ1zewpoJuZ3VXRxUWpo7X5OOB8M3uSyE6fUSmoxyAlsRKWHfVKSOfcI8AjFVdO1CprO28BFLw/TYlt7pzbhWZaOEI9BilJZZ/MMFqonf2nNi8FBYOUZA7QysyamVk8cDEwIcI1RSO1s//U5qWgYKjmzOx14HOgjZkVmNk1zrkDBGe5nQwsA94sPguulJ3a2X9q8xOnSfRERMRDPQYREfFQMIiIiIeCQUREPBQMIiLioWAQEREPBYOIiHgoGER+IjO7J3xqZ5GqTNcxSJVgZi8C6c65SjfrqJnVAmqE5jKqlMzMASOdc7rJjxyXegwiRxGaMuG4nHOFkQgFMwuE7i8gUq4UDBIVQje4+cDMdobu2vW6mTUotr6nmX1kZpvNbIeZTTOzvmH7cGZ2g5mNM7NdwF8OHyYys4vNbEVo/++aWXqx93kOJZnZi6Gb69xiZuvMbKuZvWBmScW2qWlmL5tZoZl9a2Z3hd7z4jE+41Wh7YeGft4+oN3xPpuZrQo9HRv6jKuKrRtmZvPMbK+ZrTSz+0obiBK9FAxS5ZlZJjAF+ILgjVhOA2oBE8zs8O94MvAKMDC0zUJgYvH/4EP+CEwEOlF0N7qmBG9Zei5wBtANuO84ZQ0EOoZqOfzeW4qtfwA4KbT8FKBL6D3Hk0DwTnm/JHgHstWl+Gw9Q39eC2Qefm1mZwKvAo8BHYCfAxcAfylFHRLNnHN66FHpHwRv0/j+UdbdC3wStqw2wXsb9DrKewzYAFxWbJkDHg3b7h5gL5BabNndBO8CVnybL8JqXQvEFlv2DPBx6Hktgt/2Ly62viawFXjxGG1wVajGHsdpq6N9tgvCtpsC/E/YshFAIaHxRz2q50M9BokGPYBBocMshWZWSNFduloAmFl9M3vazL42s+3ATqA+0DhsX3NL2P9q59z2Yq/Xh957LF+64EyeJb2nBRAHzD680gVvFFOaM5sOEOwRHFGGzxauB3B3WLu9RjCkGhz7rRLNdAc3iQYB4APg9hLWfRv68yUgA/g1sAr4AfgECD+evquEfewPe+04/mHYY73Hii0rqx+cc+E3qy/tZwsXAP4EjC1h3XcnUJtECQWDRIP5wIUEv9mH/4d82ADgZufcBwBmlkHweHsk5BMMjl7AylA9SQTHJFacwP5K89n2A+FnMM0H2jrn8k/gZ0oUUzBIVZJiZl3Dlm0jOEh8LfCGmf2d4Lfd5gTD4jfOuZ3A18BlZjaL4KGSfxA8zu8751yhmT0P/N3MNhMcD/gDwW/wJ9KLKM1nWwWcamafEex1bCU4NvO+ma0G3iR4mKojwXGZO06gDokSGmOQqmQgsCDscb9zbj3QHzgETAKWEgyLH0IPCJ5xUwuYB4wBnif4n2Wk3A5MJXhbyU+BxQTHN/aewL5K89l+A5xMcOxlAYBzbjJwVmj57NDjd8CaE6hBooiufBapBMysBsFTT//pnHsg0vVI9aZDSSIRYGbdgHYEv6UnA3eG/nwjknWJgIJBJJJuA9pQdArqIOdcQUQrEkGHkkREJIwGn0VExEPBICIiHgoGERHxUDCIiIiHgkFERDwUDCIi4vH/AbWD/DtDgfa6AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(expon_lr.rates, expon_lr.losses)\n", - "plt.gca().set_xscale('log')\n", - "plt.hlines(min(expon_lr.losses), min(expon_lr.rates), max(expon_lr.rates))\n", - "plt.axis([min(expon_lr.rates), max(expon_lr.rates), 0, expon_lr.losses[0]])\n", - "plt.grid()\n", - "plt.xlabel(\"Learning rate\")\n", - "plt.ylabel(\"Loss\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The loss starts shooting back up violently when the learning rate goes over 6e-1, so let's try using half of that, at 3e-1:" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [], - "source": [ - "tf.keras.backend.clear_session()\n", - "np.random.seed(42)\n", - "tf.random.set_seed(42)" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [], - "source": [ - "model = tf.keras.Sequential([\n", - " tf.keras.layers.Flatten(input_shape=[28, 28]),\n", - " tf.keras.layers.Dense(300, activation=\"relu\"),\n", - " tf.keras.layers.Dense(100, activation=\"relu\"),\n", - " tf.keras.layers.Dense(10, activation=\"softmax\")\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [], - "source": [ - "optimizer = tf.keras.optimizers.SGD(learning_rate=3e-1)\n", - "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=optimizer,\n", - " metrics=[\"accuracy\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "PosixPath('my_mnist_logs/run_001')" - ] - }, - "execution_count": 124, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "run_index = 1 # increment this at every run\n", - "run_logdir = Path() / \"my_mnist_logs\" / \"run_{:03d}\".format(run_index)\n", - "run_logdir" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2363 - accuracy: 0.9264 - val_loss: 0.0972 - val_accuracy: 0.9720\n", - "Epoch 2/100\n", - "1719/1719 [==============================] - 2s 997us/step - loss: 0.0948 - accuracy: 0.9702 - val_loss: 0.1035 - val_accuracy: 0.9706\n", - "Epoch 3/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0667 - accuracy: 0.9792 - val_loss: 0.0783 - val_accuracy: 0.9770\n", - "Epoch 4/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0463 - accuracy: 0.9848 - val_loss: 0.0827 - val_accuracy: 0.9766\n", - "Epoch 5/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0359 - accuracy: 0.9881 - val_loss: 0.0698 - val_accuracy: 0.9826\n", - "Epoch 6/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0297 - accuracy: 0.9908 - val_loss: 0.1048 - val_accuracy: 0.9758\n", - "Epoch 7/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0245 - accuracy: 0.9917 - val_loss: 0.0932 - val_accuracy: 0.9794\n", - "Epoch 8/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0239 - accuracy: 0.9922 - val_loss: 0.0816 - val_accuracy: 0.9798\n", - "Epoch 9/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0154 - accuracy: 0.9952 - val_loss: 0.0775 - val_accuracy: 0.9838\n", - "Epoch 10/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0126 - accuracy: 0.9960 - val_loss: 0.0805 - val_accuracy: 0.9812\n", - "Epoch 11/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0111 - accuracy: 0.9964 - val_loss: 0.0962 - val_accuracy: 0.9804\n", - "Epoch 12/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0118 - accuracy: 0.9963 - val_loss: 0.1044 - val_accuracy: 0.9774\n", - "Epoch 13/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0114 - accuracy: 0.9961 - val_loss: 0.1055 - val_accuracy: 0.9802\n", - "Epoch 14/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0150 - accuracy: 0.9948 - val_loss: 0.0993 - val_accuracy: 0.9826\n", - "Epoch 15/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0054 - accuracy: 0.9981 - val_loss: 0.0955 - val_accuracy: 0.9822\n", - "Epoch 16/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0046 - accuracy: 0.9984 - val_loss: 0.0982 - val_accuracy: 0.9822\n", - "Epoch 17/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0055 - accuracy: 0.9983 - val_loss: 0.0908 - val_accuracy: 0.9844\n", - "Epoch 18/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0070 - accuracy: 0.9978 - val_loss: 0.0883 - val_accuracy: 0.9840\n", - "Epoch 19/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0025 - accuracy: 0.9992 - val_loss: 0.0978 - val_accuracy: 0.9838\n", - "Epoch 20/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0058 - accuracy: 0.9983 - val_loss: 0.1011 - val_accuracy: 0.9830\n", - "Epoch 21/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0039 - accuracy: 0.9989 - val_loss: 0.0991 - val_accuracy: 0.9840\n", - "Epoch 22/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 9.2480e-04 - accuracy: 0.9998 - val_loss: 0.0963 - val_accuracy: 0.9840\n", - "Epoch 23/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 1.2642e-04 - accuracy: 1.0000 - val_loss: 0.0970 - val_accuracy: 0.9846\n", - "Epoch 24/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 6.9068e-05 - accuracy: 1.0000 - val_loss: 0.0970 - val_accuracy: 0.9854\n", - "Epoch 25/100\n", - "1719/1719 [==============================] - 2s 1ms/step - loss: 5.1481e-05 - accuracy: 1.0000 - val_loss: 0.0977 - val_accuracy: 0.9850\n" - ] - } - ], - "source": [ - "early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=20)\n", - "checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(\"my_mnist_model\", save_best_only=True)\n", - "tensorboard_cb = tf.keras.callbacks.TensorBoard(run_logdir)\n", - "\n", - "history = model.fit(X_train, y_train, epochs=100,\n", - " validation_data=(X_valid, y_valid),\n", - " callbacks=[checkpoint_cb, early_stopping_cb, tensorboard_cb])" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "313/313 [==============================] - 0s 908us/step - loss: 0.0708 - accuracy: 0.9799\n" - ] - }, - { - "data": { - "text/plain": [ - "[0.07079131156206131, 0.9799000024795532]" - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "agCqWDwsIm2Q" + }, + "source": [ + "**Chapter 10 – Introduction to Artificial Neural Networks with Keras**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lnJI6iGTIm2V" + }, + "source": [ + "_This notebook contains all the sample code and solutions to the exercises in chapter 10._" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A_Is8FQqIm2W" + }, + "source": [ + "\n", + " \n", + " \n", + "
\n", + " \"Open\n", + " \n", + " \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [], + "id": "oB04wMm-Im2W" + }, + "source": [ + "# Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7V7UNHKIIm2X" + }, + "source": [ + "This project requires Python 3.7 or above:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "unraRTEuIm2X" + }, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "assert sys.version_info >= (3, 7)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_DnxsKaNIm2Y" + }, + "source": [ + "It also requires Scikit-Learn ≥ 1.0.1:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "tRtHq9XBIm2Z" + }, + "outputs": [], + "source": [ + "from packaging import version\n", + "import sklearn\n", + "\n", + "assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DjkRAhDyIm2Z" + }, + "source": [ + "And TensorFlow ≥ 2.8:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Drp0xzGmIm2Z" + }, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "\n", + "assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kGzLkF4kIm2a" + }, + "source": [ + "As we did in previous chapters, let's define the default font sizes to make the figures prettier:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "IHZsHnFFIm2a" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.rc('font', size=14)\n", + "plt.rc('axes', labelsize=14, titlesize=14)\n", + "plt.rc('legend', fontsize=14)\n", + "plt.rc('xtick', labelsize=10)\n", + "plt.rc('ytick', labelsize=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DWuR_GOlIm2a" + }, + "source": [ + "And let's create the `images/ann` folder (if it doesn't already exist), and define the `save_fig()` function which is used through this notebook to save the figures in high-res for the book:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "D-IHqyuvIm2a" + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "IMAGES_PATH = Path() / \"images\" / \"ann\"\n", + "IMAGES_PATH.mkdir(parents=True, exist_ok=True)\n", + "\n", + "def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n", + " path = IMAGES_PATH / f\"{fig_id}.{fig_extension}\"\n", + " if tight_layout:\n", + " plt.tight_layout()\n", + " plt.savefig(path, format=fig_extension, dpi=resolution)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "R3sFniqSIm2b" + }, + "source": [ + "# From Biological to Artificial Neurons\n", + "## The Perceptron" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AXhsT6nQIm2b" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from sklearn.datasets import load_iris\n", + "from sklearn.linear_model import Perceptron\n", + "\n", + "iris = load_iris(as_frame=True)\n", + "X = iris.data[[\"petal length (cm)\", \"petal width (cm)\"]].values\n", + "y = (iris.target == 0) # Iris setosa\n", + "\n", + "per_clf = Perceptron(random_state=42)\n", + "per_clf.fit(X, y)\n", + "\n", + "X_new = [[2, 0.5], [3, 1]]\n", + "y_pred = per_clf.predict(X_new) # predicts True and False for these 2 flowers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gpXBeaPqIm2b", + "outputId": "7fd3e72e-3cb5-454e-8847-72aa874fc3c4" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ True, False])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_pred" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JBhkUAp3Im2c" + }, + "source": [ + "The `Perceptron` is equivalent to a `SGDClassifier` with `loss=\"perceptron\"`, no regularization, and a constant learning rate equal to 1:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "skGYiDk_Im2c" + }, + "outputs": [], + "source": [ + "# extra code – shows how to build and train a Perceptron\n", + "\n", + "from sklearn.linear_model import SGDClassifier\n", + "\n", + "sgd_clf = SGDClassifier(loss=\"perceptron\", penalty=None,\n", + " learning_rate=\"constant\", eta0=1, random_state=42)\n", + "sgd_clf.fit(X, y)\n", + "assert (sgd_clf.coef_ == per_clf.coef_).all()\n", + "assert (sgd_clf.intercept_ == per_clf.intercept_).all()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YcTMAsSgIm2c" + }, + "source": [ + "When the Perceptron finds a decision boundary that properly separates the classes, it stops learning. This means that the decision boundary is often quite close to one class:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HSwHIIiGIm2c", + "outputId": "71ce734c-ec89-4468-b745-73ffc9edfc6a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAccAAADYCAYAAACeCyhIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+RElEQVR4nO3deZzNZfvA8c81YxjbkJjJMnaSNZHlIfRkSxSP9NMilSUVLUpJpcxgpKwT2bVrkxayPCWEMDMMKk9RZM2Ssi8zXL8/zpnVLMecbWZc79frvMy5v9t1TnLN/f3e132LqmKMMcaYFAH+DsAYY4zJbSw5GmOMMelYcjTGGGPSseRojDHGpGPJ0RhjjEnHkqMxxhiTjs+So4iEi8h3IrJNRH4SkScy2EdEZLKI7BCRLSJyQ6ptHUXkF+e2ob6K2xhjzJXHlz3HROBpVb0OaAY8JiK10+1zK1DD+eoPvAkgIoHAFOf22sDdGRxrjDHGeITPkqOqHlDVjc6fTwDbgPLpdrsDeEcd1gElRaQs0ATYoaq/q+p54EPnvsYYY4zH+eWZo4hUBhoC69NtKg/sSfV+r7Mts3ZjjDHG4wr4+oIiUgyYDzypqsfTb87gEM2iPaPz98dxS5ZChYo2Cgur5Ua0xhhjcrvduzPfVrFi+u27UD2SUU5Jw6fJUUSCcCTG91X1swx22QuEp3pfAdgPFMyk/RKqOgOYAVCpUmMdNizWA5EbY4zJrQYMyHzbsGHptzd26Zy+HK0qwGxgm6qOz2S3L4H7naNWmwHHVPUAEAPUEJEqIlIQ6Onc1xhjjPE4X/YcWwC9gK0iEu9sGwZUBFDVacDXQCdgB3AaeNC5LVFEBgJLgUBgjqr+5MPYjTHG5FIhIXA8/UM6Z3tW27Mi+XnJKrutaowxJrUBAyROVbO9t+rzATnGGGOMLz37bOqeY6NGrhxj08cZY4zJ1y73lipYcjTGGGMuYcnRGGOMSceSozHGGJOOJUdjjDEmHUuOxhhj8rWkesfLYaUcxhhj8rWxY1N+HjAgLs6VY/J1cjxyZCcnT/5FsWJX+zsUY4wxbshq/lQRyGg+GxF4882cXS9f31Y9ffooERF1iI//3N+hGGOM8ZLMJnpzZwK4fJ0cAY4fP8i0ad2YPfseTp484u9wjDHG5AH5OjkGBQUm/xwTM48RI+qwaVNGK2UZY4wxKXy5ZNUcETkkIj9msn2IiMQ7Xz+KyAURKeXctktEtjq3uTyTeO3aFenV6+bk9ydOHGL69O7MmtWTEycOu/2ZjDHG5E++7Dm+BXTMbKOqvqaq16vq9cDzwEpVPZpql5ud211bqRIIDAxg9uwn+PzzFylXrlRye2zsR0RE1CEu7tPL/hDGGGPyP58lR1VdBRzNdkeHu4F5nrp2p06NiY+fTO/etyS3nThxmJkzezBjxl0cP37IU5cyxhjjYyKX1+7SOX25nqOIVAYWqmrdLPYpAuwFqif1HEVkJ/A3oMB0VZ2RxfH9gf4AFSuWabRjx8w025csieORR6ayb99fyW3FipWmZ88pNG58V04/mjHGmDzA1fUcc2Ny/D/gPlXtkqqtnKruF5FQ4L/AIGdPNEuNGlXXdevGXdJ+7Ngpnn12LnPnfpOmvWHD7tx99xRCQsJc/kzGGGPSr5mYIiQkbRG+P6SNrTGqsdn2KXPjaNWepLulqqr7nX8eAhYATdy5QIkSRZk+fSALF75MhQopEwRs2jSfESPqEBPzIb78pcEYY/K6zNZMzMlaip6W59dzFJESQGvgi1RtRUWkeNLPQHsgwxGvl6t9+4Zs2jSZhx5ql9x26tRfzJ59N9Ond+fYsT89cRljjDF5jC9LOeYBPwDXisheEekjIgNEJPWkQN2AZap6KlVbGLBaRDYDG4BFqrrEU3GVKFGUadMeY9GilwkPL53cHh+/gIiIOmzY8IH1Io0x5grjs7lVVfVuF/Z5C0fJR+q234EG3okqRbt2jl7k0KFvMWvWMgBOnTrKnDn3Ehf3Cffc8yYlSlzj7TCMMcbkArnqtqq/hYQUYerUR1m8eASVKpVJbt+8+XNGjKjN+vXvWy/SGGOuAJYcM3DLLQ3YuHEy/funzFlw+vTfzJ17H2++2ZVjxw74MTpjjMl9MlszMSdrKXpaTmLwaSmHr2VWynE5li/fzMMPv8Eff6RMN1ekSEnuumsyTZveh7hTZWqMMcancmWdo695IjkCnDhxhhdeeIdp0xanaa9XrzP33judkiXLuX0NY4zJy9ytc/RVnaSrydFuq7qgePHCTJ78MMuWRVKlSsoEAVu3LiQiog4//PC2PYs0xlzR3K1zzG11kpYcL0ObNvWIi5vIo492Sm47ffof3n77AaZM6czff+/zY3TGGGM8xZLjZSpWrDATJ/bnm29GUrVqSi/yxx+/JiKiDmvXzrVepDHG5HGWHHOoVau6xMVNYuDAzsltZ84c4513HuKNNzpx9OgeP0ZnjDHGHZYc3VC0aDDjx/fl229HUa1aygQBP/20hIiIuqxZM9t6kcYYkwdZcvSAm26qQ1zcJB5/vEtyacfZs8d5992+REd35OjR3X6O0BhjvMvdOsfcVidppRwetmbNz/Tr9wY7duxPbgsOLk737uNo2bKv1UUaY4wf5bo6RxGZA3QGDmW0nqOItMGxGsdOZ9Nnqhrh3NYRmAQEArNUdYwr1/RHcgQ4ffocr7zyPpMmfZXmtup117XjvvtmcvXVlXwekzHGeLOWcMCAzLdNm5b9td2J7ZFHIKNUJgJvvpn713N8C+iYzT7fq+r1zldSYgwEpgC3ArWBu0WktlcjdVORIoUYO/YhVqyIokaNlAkCtm37LxERdVm1aro9izTG+Jw/awmzu7Y7sWX2z2lSe65ez1FVVwFHc3BoE2CHqv6uqueBD4E7PBqclzRvXovY2AkMHtw1+XbquXMn+eCDAUya1I4jR3b5N0BjjDEZym0DcpqLyGYRWSwidZxt5YHUdRF7nW0ZEpH+IhIrIrFHjvh/CerChQsxZswDrFwZRc2aKWH/73/fEhlZj5Ur3+TixYt+jNAYY0x6uSk5bgQqqWoDIBr43Nme0b3hTO9JquoMVW2sqo1Ll84F08E7NWtWi5iY8Qwe3JWAAMfXfu7cSebNe5RJk9py5MjObM5gjDHGV3JNclTV46p60vnz10CQiJTG0VMMT7VrBWB/BqfI9ZJ6katWjeHaayskt//yy3dERtZjxYqp1os0xphcINckRxG5RpwP5kSkCY7Y/gJigBoiUkVECgI9gS/9F6n7mjSpSUzMeJ555j+pepGn+PDDx5g48RYOH/7dzxEaY/Ijf9YSZndtd2LLrEIuqT1Xr+coIvOANkBp4CDwMhAEoKrTRGQg8AiQCJwBBqvqWuexnYCJOEo55qjqKFeu6a9SjssRE/MrfftGs21bymPVggWL0K3bq7Ru/Why8jTGGOM+j9Y5ikgw8ARwCxBKuh6nqtbPYZxelReSI8DZs+cZOfIjXn99QZrbqjVqtOL+++dQpkw1P0ZnjDH5h6eT4xygG/AJjud9aQ5S1RE5jNOr8kpyTBIbu52+faP5+eeU6eaCggrTrdsY2rQZaL1IY/I5Xy34mxPZFdpnJ7vPdnmF/Jce7ypXk2MBF8/XFeihqt+4HoK5XI0b12D9+nGMGvUxr702nwsXLpKQcIaPP36CjRs/pVev2YSF1fB3mMYYL8ltC/6mll2hfXay+2w5LeT31nfjalfkNGlrDY2XFCoURETEvaxZM5Y6dSomt+/Y8T0jRzbg228ncvHiBT9GaIwx+Z+ryXEsMFhE7L6ej9xwQ3XWrx/HsGF3ERjo+NoTEs7wySdPMW5caw4e/NXPERpjTP6VabITkS+TXkBb4P+Anc7Za75Mt914QcGCQbzyyj2sXfsa9epVTm7/7bc1jBzZgG++GW+9SGOM8YKseoJ/pXstAJYDf2awzXhRw4bV+OGH13jxxf+jQIFAABISzvLpp0/z+us38eefv/g5QmOMyV8yHZCjqg/6MhCTtYIFgxg+/G5uv70pfftOZsuWXQD8/vsPjBp1PV26RNK27VMEBAT6N1BjTI6FhGQ+ItPfRDIfTeqK7D5bduf39XfjainHcuA/qvpPuvYQ4HNV/bd3wnNPXivlcNX58wmMHfsZo0d/TGJiym3VKlWa0bv3XK65ppYfozPGmNzL03WOF4FrVPVQuvZQYJ+qBuU4Ui/Kr8kxyebNO+nXL5r4+JTp5goUKESXLhG0a/e09SKN8QJ/1iJmt6BwdrWCWW0H9+oMvbmYsSe5mhyzHH0qIjeIyA3Ot/WT3jtfNwL9gX0eiNfkQIMGVVizZiyvvHIPQUGOO+SJiedYsOA5xo79F/v3/+znCI3Jf/JyLWJW292tM/TmYsb+kF1pRiyOib8VWOZ8n/RaDzwPRHgzQJO1oKACDBt2F+vWvU7DhlWT23ft2sDo0Q1ZsmQMFy4k+jFCY4zJe7JLjlWAajjWVGzifJ/0Kg+EqOocVy4kInNE5JCI/JjJ9ntFZIvztVZEGqTatktEtopIvIjEunK9K029epVZvXosI0bcm6oXeZ7PP3/e2Yv8yc8RGmNM3pFlclTVP1R1l6oGqGqs833S64CqXk6R3VtAxyy27wRaOycxjwRmpNt+s6pe78q94itVUFABnn++B+vXj+OGG1ImK//jjxhGj76BxYtHWy/SGGNckGkph4jc7+pJVPUdF/ZZJSKVs9i+NtXbdTgWNTY5ULduJVavHsu4cQuIjPyQ8+cTSUw8zxdfvMCmTZ/Ru/dcypev5+8wjTEm18pq4vEp6d4XxLH+YtKaSgFAAnAOyDY5XqY+wOJU7xVYJiIKTFfV9L1Kk06BAoE899yddO7chH79oomN3Q7A7t1xjB7diNtuG06HDs8RGJgrBxobk2vl5VrE7La7U2fo7vbcxtVSjtuAV4AncQzEAWgKjAciVXWhSxdz9BwXqmrdLPa5GZgKtFTVv5xt5VR1v7N05L/AIFVdlcnx/XGMoqVixTKNduyY6Upo+Vpi4gUmTPiCESM+4Pz5lNuqFSvewP33z6VChVy5HKcxxnicp+sctwEPqeoP6dqbA2+p6rWuBJVdchSR+jimqbtVVTOcWVtEXgFOqurr2V0vv9c5Xq6ff95Dv36TiYnZntwWGBhEp04v0bHjUOtFGuNn3q4VdOd4b9cp+qoO0iN1jqlUBk5l0H4aqJhB+2UTkYrAZ0Cv1IlRRIqKSPGkn4H2QIYjXk3WatcOZ+XKMURF9aZQIUcivHAhga++Gs6YMU3Yu3eznyM05srm7VpBd473dp1ibquDdDU5rgcmi0j5pAbnzxNwDJ7JlojMA34ArhWRvSLSR0QGiEjSnA/DgauBqelKNsKA1SKyGdgALFLVJS7GbdIpUCCQp5/uRkzMBJo2Tenw79kTz+jRjVm4cASJief9GKExxvhfVgNyUusDfA7sEpGkGXHKA78AXV05garenc32vkDfDNp/BxpceoRxR61aFVixYjSTJ3/Fyy9/wNmz57l4MZGFC18hPn4BvXu/RXj49f4O0xhj/MKlnqOq/gbUB27DMQhnAtAJqKeqO7wXnvGmwMBAnnqqKzExE2jePGWy8r17NxMVdSNfffWy9SKNMVckV2+rog7LVHWyqk5S1f+qK6N5TK537bXlWb58FK+99hDBwQUBuHgxkUWLIoiKupHduzf6OUJjjPGtTJOjiAwWkeBUP2f68l24xlsCAwN54onbiY2dwL/+dV1y+759WxgzpglffvkSCQnn/BihMflfZjV/qWsFL+e4yz2/t451hbfPf7kyLeUQkZ1AY1X9y/lzZlRVq2ax3W+slCNnLly4wNSpX/Pii+9y5kzKbdVy5erSu/dcKlWyGfyMMXmTR+sc8ypLju7ZseMA/ftHs3p1ytJXAQGBtG//HLfdNpygoEJ+jM7kZbllbT9fyytrHuZnHq1zFBFbNfcKVL16Wb75ZiQTJvSlSBFHIrx48QJLlowmKqoRu3bF+DlCk1fltpo2X8lvax7mZ64OyDkmIktF5HkRaW7J8soREBDAY491Ji5uIq1a1Ulu37//J159tRkLFjxPQsJZP0ZojDGe52py7IZj0ePbgBXAP6mTpbeCM7lHtWplWbYskkmT+if3IlUvsnTpGEaPbsTOnRv8HKExxniOq3WO/1XVF1W1JVASR7LcD0QAq70XnslNAgICeOSRTmzcOInWrVOmxz1w4GfGjm3OZ589Z71IY0y+4HKdo4iEicj/4ZgEYArQE1iDI0GaK0jVqtewdGkEkyf3p2jRYMDRi1y2bCyjRjXk999dmlHQGGNyLVcH5PwE/A4MAP4EHgZKqmobVR3hxfhMLhUQEMCAAY5eZJs2KQsn//nn/3jttRbMnz+E8+fP+DFCk5vltpo2X/F2HaPxHFeXrNoLhADfA985Xxtz+ww5VsrhGxcvXmTWrGUMHfoWJ0+m3FYNC7uW3r3nUrWqPZY2xuQOHq9zFJHqQBvnqzVQDGeyVNUJLhw/B+gMHMpoPUcREWASjjlbTwMPqOpG57aOzm2BwCxVHeNKzJYcfWvXroMMGDCF5cu3JLeJCLfcMpjbb4+kYMHCfozOXCkeeSTzFe3ffNP7x3uzVtHqJN3n6fUcUdUdqjoL6A3chWOVjluBbBcddnoL6JjF9luBGs5Xf+BNSK6xnOLcXhu4W0Rquxq38Z3KlcNYvHgEU6c+QrFiSc8ilW++GceoUdezY8caP0dorgSZ/b7v6n0ud4/3Zq2i1Un6jqvPHG8UkWdFZDHwN45yjuuAcTh6etlS1VXA0Sx2uQN4xznB+TqgpIiUBZoAO1T1d1U9D3zo3NfkQiJC374d2LRpMm3bpqw0dvDgr4wbdxOffDKY8+dP+zFCY4zJnqs9xzU4yjc24+g1llLVZqo6VFWXeiiW8sCeVO/3Otsya8+QiPQXkVgRiT1yxH5d8pdKlUJZtOgVpk17jOLFHbdTVZVvv51AZGQDtm//3s8RGmNM5lxNjlepanNnMlyiqqe8EItk0KZZtGdIVWeoamNVbVy6tA3x8icR4aGH2rFp02Tat2+Y3H748A7Gj2/Nxx8/yblz3virZIwx7nF1EgBf/Au2FwhP9b4CjokGMms3eUTFimX46qvhzJgxkJCQIoCjF7l8+SRGjmzA9u2r/ByhMcak5fKAHB/4ErhfHJoBx1T1AI5p62qISBURKYhj8oEv/RmouXwiwgMPtCU+fjIdOtyQ3H748G+MG9eajz563HqRxiMko3tNWbR7+nhv1ipanaTv+GzJKhGZh6MMpDRwEHgZCAJQ1WnOUo43cIxoPQ08qKqxzmM7ARNxlHLMUdVRrlzTSjlyJ1Xl3XeX8/TTszl2LGVwTunSVenVazbXXtvGf8EZY/I1W88RS4653b59f/Hoo1NZvDguTXvr1o/RrdsYgoOL+SkyY0x+5fE6R2M8rXz5q/n88xeZPfsJSpYsmty+cuUUIiPr8csv3/kxOmPMlSzTnqOIDHb1JKo63mMReZD1HPOO/fuP8uijU/n669g07a1aPcJ//vMqwcHF/RSZMSY/cfu2qojsdPFaqqpVLyc4X7HkmLeoKh98sJLBg2fx998nk9tLlarE/ffPplatW/wYnTEmP3D7tqqqVnHxlSsTo8l7RIR7721DfPxkOnduktx+9OgfTJzYlvffH8DZsyf8GKEx5kphzxxNrlO2bCnmz3+et956iquuShmU8/3304mIqMu2bd/4MTpjzJXgclblKIWjzKIiUDD1NlXNlQse223VvO/PP/9m4MBpfPnl+jTtLVv2o3v31ylc2Aq4jDGu82gph7MofxFwDigD7APKOt/vUtX67oXrHZYc8wdV5aOPvufJJ2dy9GjKbdWrrgqnV69Z1K7d3o/RGWPyEk+XcrwGvI9jwu+zwL9x9CBjgVdzGqQxrhARevZsxebN0XTt2iy5/e+/9zB5cgfefbcvZ84c82OExpj8xtXkWB94Qx3dzAtAIVU9CDwHvOKl2IxJIyysJB999BzvvfcMV1+dUtqxZs1sIiLq8tNPS/wYnTEmP3E1OZ5P9fNBoJLz55NAOY9GZEwWRIS77mrJ5s3RdOvWPLn977/3Eh19K++88xCnT//jvwCNMfmCq8lxI3Cj8+cVwEgR6Q1MBrZ4IS5jshQa6uhFfvDBEFIvTbZ27VwiIuqydevXfozOGJPXuZocXyBlmagXgcNANHAV8LCrFxORjiLyi4jsEJGhGWwfIiLxztePInLBOUoWEdklIlud22IvPbu5Et15Zws2b47mzjtbJLf9888+pky5jbfffpBTp/72Y3TGmLzKl6tyBAK/Au1wrNEYA9ytqj9nsn8X4ClV/bfz/S6gsaoecfWaNlr1yjJ//loef3w6hw+nDM4pUaIc9903g3r1bvNjZMaY3MKjo1VFZLmIlMygPURElrsYUxNgh6r+rqrngQ+BO7LY/25gnovnNobu3f/F5s3R3HXXTcltx47tZ8qUzrz1Vm/rRRpjXObqbdU2pCv8dwoGbsqgPSPlgT2p3u91tl1CRIrgmHBgfqpmBZaJSJyI9HfxmuYKU7p0CO+99zQfffQcoaElktvXrXuHiIg6bNnylR+jM8bkFVkmRxG5QUSSlm2vn/Te+boR6I9jQgBXZLSOdmb3dLsAa1T1aKq2Fqp6A3Ar8JiItMok5v4iEisisUeOHHcxNJPfdOvWnPj4aHr2TPlrcuzYAaZOvZ25c3tx6tTRLI42xlzpsus5xuJ4NqjAMuf7pNd64HnA1anj9gLhqd5XIGWQT3o9SXdLVVX3O/88BCzAcZv2Eqo6Q1Ubq2rj1KMYzZWndOkQ3nlnMJ98MpSwsJLJ7evXv8eIEXWIj//Cf8EZY3K17JJjFaAajl5fE+f7pFd5IERV57h4rRighohUEZGCOBLgl+l3EpESQGvgi1RtRUWkeNLPQHvgRxeva65wd9zRjPj4ydxzT+vktuPH/2TatK7Mnn0vJ0/+5cfojDG5UZbJUVX/UNVdqhqgqrHO90mvA6p6wdULqWoiMBBYCmwDPlbVn0RkgIgMSLVrN2CZqp5K1RYGrBaRzcAGYJGq2nQoxmVXXx3CW289xfz5w7jmmquS22NiPiAiog6bNi3wY3TGmNzmclbluBV4DKgKdFDVPSLSF9ipqt96McYcs1IOk5GjR0/w9NOzef/9FWnaGzfuSc+e0RQrVto/gRljvM7TpRz3Ah8D23HcUg1ybgoEns1pkMb4Q6lSxZk790k++2wYZcum9CJjYz9kxIg6bNw4P4ujjTFXAldLOZ4F+qnqU0BiqvZ1wPWeDsoYX+jcuQnx8dH06nVzctuJE4eYMeNOZs78P06cOOzH6Iwx/uRqcqwB/JBB+0nAhoSaPOuqq4oxe/YTfP75i5QrVyq5PS7uYyIi6hAX96kfozPG+EsBF/fbD9QE/kjX3gr4zaMRGeMHnTo1Jj5+MkOGzOXttx2P0E+cOMzMmT2Ii+tBz55vEBIS6uco8xeRi4SGHiEs7B8CA10e22dMpi5cCOTgwZIcOlQaVVf7fhlzNTnOACY7B+AAhIvITcBYbD1HkwscOrSS3bvf49y5IxQqVJqKFe8jNLR19gemUrJkMWbOHET37v/ikUemsm+fo8Rj48ZP+PXX7+jZcwqNGvVAJKP5LMzlqlp1L2XLCqVKVSYwMMi+V+MWVeXChQRCQg5SrNhefvutolvncym1qupY4DPgv0BR4DtgGjBNVae4FYExbjp0aCW//TaVc+cOA8q5c4f57bepHDq0Mkfn69ixEfHxk3nwwbbJbSdPHmHWrP9jxoweHD9+0EORX9lCQk5Rpkx5ChQoaInRuE1EKFCgIGXKlCck5FT2B2TD5X6nqr4AlMYxGUAzoIyqvuR2BMa4affu97h48VyatosXz7F793s5PmeJEkWZPn0gCxe+TIUKVye3b9o0nxEj6hAT8yG+WtEmPxNx79aXMel56u9UdnOrFhGRKSKyT0QOAbOAXaq6QVVPeiQCY9x07lzGq5hl1n452rdvyKZNk+nTp11y26lTfzF79t1Mn96dY8f+dPsaxpjcJ7sUOwJ4AFiEY4mpdsCbXo7JmMtSqFDGRfuZtV+uEiWK8uabj7Fo0cuEh6ecMz5+ARERddiw4QPrRRqTz2SXHP8D9FHV/qr6OHAb0NW5cLExuULFivcREFAoTVtAQCEqVrzPo9dp187Ri+zXr0Ny26lTR5kz516mTevGsWMHPHo9Yy5X165tGDp0oL/DyBeyS47hwPdJb1R1A45JAMp5MyhjLkdoaGuqVXuUQoXKAEKhQmWoVu3Ryx6t6oqQkCJMmfIIixePoFKlMsntmzd/wYgRdVi//j3rReZzgwY9QGioMH78yDTta9asIDRU+Osv12/nu5rMBg16gHvv7ZztfnPnfsaLL0a5fH1PCw0Vvvoqf9QGZ5ccA4Hz6doScb0ExBifCA1tTePGM2nRYgGNG8/0SmJM7ZZbGrBx42T69++Y3Hb69N/MnduLN9+8g3/+yWw1NuNJdepAaOilrzp1vHvd4OBg3nhjLEeO5I5ZlM6fd/wzfdVVpShWrLifo8kfskuOArwnIl8mvYBgYGa6NpeISEcR+UVEdojI0Ay2txGRYyIS73wNd/VYYzJz6NBKYmP7sWZNN2Jj++W4xCO94sUL88YbA1i6NILKlVMmCNiy5SsiIuqwbt071ov0ssOZ5KbM2j2lRYubCQ+vzPjxkVnu98MPq+jYsSnh4cHUrh3GSy89lZzIBg16gLVrVzJnzhRCQ4XQUGH37l0uXT+pJzl58qs0aFCB66+vAFzaE1248DNat65PxYqFqVmzFHfc0ZpDhzIvRXr77ek0a1aT8PBgrruuDHfd1YHExJQZQ+fNm0vLlrUJDw+mWbOaTJs2gYsXLwLQqFFlAPr06UFoqCS/TzpvkybVKV++IE2aVOfdd2e6fN1Nm2Lo0aM9tWqVpmrVEDp3bklMTEYTtnlWdj3AtzNoy9H4eOdzyik4BvXsBWJE5EtV/Tndrt+rauccHmtMGkk1kEmlHkk1kIDHepc331yfjRsnMWzYO0ybthiA06f/4a23ehMX9zH33DOdq64q75FrmdwhICCAl14aQ+/eXenX7wmqVKl2yT4HDuzj7rtv5c47ezF58lvs2vUbTz3VF5EAIiLGMWrUJH777Vdq1KjFsGGjAShduswl58nM2rUrKV68BB9+uCTDX8IOHvyThx/uyQsvRNG5c3dOnTpJXNy6TM8XHx/L0KGPER39Nk2btuTYsX9YvXp58vZ3353Jq68OJyoqmvr1G/G///3I4MH9CAoKok+fgSxdGkPt2qGMHz+Tdu06ExjoGJqyaNECnn9+IJGRE2jTpj3ffbeU5557lNDQa+jQoUu21z158gQ9evRi1KhJiAizZ7/BPfd0Yt267Vx9tfdW0MkyOarqgx68VhNgh6r+DiAiHwJ3AK4kOHeONVewrGogPXnrtVixwkye/DD/+c+/ePjhN9i50/Hb+dati4iIqEOPHhNp3ry3FbvnI23bdqJJkxZERb3AjBkfXrJ97typhIaWZezYqQQEBFCz5nW89NIYnnnmYYYOjSQkpAQFCxakcOEihIVdc9nXDw4OZtKkORQqVCjD7QcP7ichIYEuXe4kPLwSANddVzfT8+3du5siRYrSsePtFCtWnPDwStSt2yB5+/jxkQwfPpYuXe4EoFKlKjz++FDmzp1Knz4DkxN7iRIl03yeqVNfp0ePXvTp4+jRVqtWk82b44iOfpUOHbpke92bbvp3mjijoqJZuHA+y5cvoUcPzw66S82XFbjlgT2p3u91tqXXXEQ2i8hiEUl6cuDqsYhIfxGJFZHYI0eOeyJuk4d5swYyI23a1CMubiKPPtopue3MmWO8886DvPHGbfz9916vXNf4x/DhY/nyy0+Ij4+9ZNuvv26jcePmBASk/DPbpElLzp8/z86dO9y+dq1adTNNjAB16jSgVau2tGpVlwcf7M7cuW9m+Yy0TZt2VKhQicaNqzBgwL18+OHbnDx5AoAjRw6zb98ehgx5mMqViyW/Ro4cyq5dWU+vvX37Npo0aZGmrWnTlvz668/ZXhfg8OFDPP30wzRrVpNq1UpQpUpxjhw5xL59u7P9jtzhy+SY0a/M6e8FbAQqqWoDIBr4/DKOdTSqzlDVxqrauHRpWzDkSuftGsiMFCtWmIkT+/PNNyOpWjUsuf2nnxYzYkQd1qyZY88i84mGDW+kc+fuREY+d8k2Vc30ToEn7iAUKVI0y+2BgYF88skyPv54GbVr1+eDD2bTrFkNfvxxc4b7FytWnG+/3cjMmR9ToUJFJk+O4l//qsWff+5Pfq44duw0li+PT36tXPkjq1b9lG2sGX3epLasrgswaFBv4uNjiIycwKJFa1m+PJ5y5SokP7v1Fl8mx704SkOSVMCx2kcyVT2eNPOOqn4NBIlIaVeONSYjvqqBzEirVnWJi5vEwIEpj9DPnj3Ou+/2ITr6Vo4e3ZPF0cYVZTJ5RJdZuzcMGzaadeu+Z/nyJWnar722NrGxPyQnFoANG1ZTsGBBKld2PKMMCirIhQveW5FERLjxxuYMGfIyy5bFcM015fjii48y3b9AgQLcdNO/efHFKFas2MLp06dYtmwhoaFhlC1bnl27fqNq1eqXvJIEBQVd8nlq1LiO9etXp2lbv341NWvWzva6Sfv27TuIdu1uo1atOhQrVpyDB71fU+zLkowYoIaIVAH2AT2Be1LvICLXAAdVVUWkCY7k/RfwT3bHGpORpOeK7q7YkVNFiwYzfnxfunVrTv/+0fz2m2O6uZ9/XkpERB3uvHM8LVr0sWeROfRT9p0Wr6tatTq9evVn5sxJadoffPBRZsyYyLPPPkr//k/wxx+/Exk5lIceGkiRIkUAqFixMps2bWD37l0ULVqMq64qleY2rDtiY9exatU33HxzB8qUCWPr1k3s27cnTVJKbdmyheza9RvNm7eiZMlSrFnzHSdPnqBmzesAGDLkFYYNG0SJEiVp27YTCQkJbNmykT//3McTTzwPQHh4Zb7//luaN29NoUKFKFnyKh57bAh9+/agfv1G3Hxze5YvX8L8+e8zd+5nLl23WrWafPrpe9xwQ1NOnz5FRMSzBAUV9Mh3lBWfJUdVTRSRgcBSHPWTc1T1JxEZ4Nw+DbgTeEREEoEzQE913H/K8FhfxW7yttDQ1j5Lhpm56aY6xMVNYvjw94iOXoiqcvbsCd57rx8bN37CfffNpFQp95bYMf7z9NPD+eijtIP7y5Ytz7x5ixkxYgj//vf1hISUpHv3e3jhhdHJ+zz66DMMHNibm26qzZkzZ4iN3UnFipU9ElNISAk2bFjDrFnRHD/+D+XKhTN48EuZDmIJCSnJ4sWfM25cBGfOnKZy5WpMmDCLZs1uAuC++/pSpEhRpkx5jVGjnic4uDDXXlsneaANwIgR4xg+fDDz5oVTtmx54uJ20alTV0aPjmbq1Nd56aUnqVChEq++OpUOHbq4dN2JE+fwzDP9adeuEWFh5Rgy5BX++sv79aWSn599NGpUXdetG+fvMAzur7e4detwjh/fkvw+JKQ+9epFuHR+d6/tibUiU1uz5mf69XuDHTtSngwEBxene/dxtGzZ94rpRTZsuI0qVa7zdxgmH9q5cxubNmX8d2vAAIlT1cbZncPWizFe5+56i+kTI8Dx41vYunV4tud399qeXisSoEWL2sTGTuDJJ29PToRnz57g/ff7M2lSe/76648cn9sY4xmWHI3XubveYvrEmL49q/O7e21vrBUJUKRIIcaOfYgVK6KoUSNlquL//e8bIiLqsmrVdBvRaowfWXI0XuftWsOszu/utb0de/PmtYiNncDgwV2Te5Hnzp3kgw8GMHFiW44c2eWR6xhjLo8lR+N13q41zOr87l7bF3WShQsXYsyYB1i5MoqaNVPmtvjll+VERtZl5co305QDGGO8z5Kj8Tp3aw1DQupn2Z7V+d29ti/rJJs1q0VMzHiefrpb8nD+c+dOMW/eo0ya1JYjR3Z6/JrGmIxZcjRe5+56i/XqRVySIFOPVs3q/O5e25drRYKjFxkV1ZtVq8ZQq1aF5PZffvmOyMh6rFgxxXqRxviAlXIYk0udPXueyMiPGDduQZqEWKNGa+6/fzZlyly6EkReYqUcxls8UcphixYbn9ixYxoHDy4DLgIBhIW1p3r1Acnb3aljzI6n6xR9JTi4IKNG9aJr16b07RvNtm2O6ea2b19JZGR9unUbQ+vWj3lsRhVjTAr7v8p4nSMxLsGRGAEucvDgEnbsmAa4V8eYHW/UKfrajTfWZP36cTz7bHcCAx3/y54/f5qPPnqcCRNu5tAh91d4MMakZcnReJ2jx5h5uzt1jNnxVp2irwUHF2TkyF6sXj2W2rVTppnbvn0VkZH1+fbbSfYsMpfp2rUNQ4cOzH5HkytZcjQ+kNk/2q79Y+5OraGv13P0tkaNqrN+/TiGDu2R3ItMSDjDJ588yfjxrTl4cLufI8z/Bg16gHvv7ZztfnPnfsaLL0b5IKKMhYYKX331qd+un9f5NDmKSEcR+UVEdojI0Ay23ysiW5yvtSLSINW2XSKyVUTiReTSlUVNLpbZXzPX/vq5U2voj/Ucva1QoSAiIu5lzZqx1K1bKbl9x47VjBzZgG++mcDFi95bBim3+eef9/n118r89FMAv/5amX/+ed+v8SStM3jVVaUoVqy4X2MxOeez5CgigcAU4FagNnC3iKRfO2Un0FpV6wORwIx0229W1etdGWlkco+wsPZZtrtTx5gdf67n6G033FCddeteZ9iwu9L0Ij/9dDCvv96Kgwd/9XOE3vfPP++zf39/EhL+AJSEhD/Yv7+/TxNkUk9y8uRXadCgAtdf7yjBSX9bdeHCz2jduj4VKxamZs1S3HFHaw4dOpjped9+ezrNmtUkPDyY664rw113dSAxMTF5+7x5c2nZsjbh4cE0a1aTadMmJN9ab9SoMgB9+vQgNFSS3yedt0mT6pQvX5AmTarz7rszXb7upk0x9OjRnlq1SlO1agidO7ckJuYHt76/3MqXo1WbADtU9XcAEfkQuAP4OWkHVV2bav91OBY1Nnlc0qjUzEar1qsXkeVoVXfWZPT3eo7eVrBgEK+8cg933OEY0bp16y4Afv99LSNHNuD220dyyy1PEhAQ6N9AveTQoRdQPZ2mTfU0hw69QMmS9/osjrVrV1K8eAk+/HBJhnPiHjz4Jw8/3JMXXoiic+funDp1kri4dZmeLz4+lqFDHyM6+m2aNm3JsWP/sHr18uTt7747k1dfHU5UVDT16zfif//7kcGD+xEUFESfPgNZujSG2rVDGT9+Ju3adSYw0PHff9GiBTz//EAiIyfQpk17vvtuKc899yihodfQoUOXbK978uQJevToxahRkxARZs9+g3vu6cS6ddu5+uq8ezcmI75MjuWB1Euf7wWaZrF/H2BxqvcKLBMRBaaravpeJQAi0h/oD1Cxog+XAzdZql59QJrSjfRSl21kxJ01GXPDeo7e1rBhNX744TXGjPmUMWM+JTHxAgkJZ5k//xk2bvyU3r3ncs01tfwdpsclJOy+rHZvCQ4OZtKkORQqVCjD7QcP7ichIYEuXe4kPNxxK/y66+pmer69e3dTpEhROna8nWLFihMeXom6dZOfMjF+fCTDh4+lS5c7AahUqQqPPz6UuXOn0qfPQEqXdvzbV6JEScLCrkk+burU1+nRo1fyGozVqtVk8+Y4oqNfpUOHLtle96ab/p0mzqioaBYunM/y5UsyXScyr/JlcsxokboMZyAQkZtxJMeWqZpbqOp+EQkF/isi/1PVVZec0JE0Z4BjEgD3w75yuFMPmF0dY1zcIM6eTfndKDg4nEaNopPfr1nTHUj9nCyQFi3mp9p+F3A+1faCtGjxcfK79esfIjHxaPL7AgVK0bTpHLc/lyeO95WCBYMYPvxubr+9KX37TmbLll0A7Ny5jpEjr+f22yNp23ZwvupFBgVVdN5SvbTdl2rVqptpYgSoU6cBrVq1pVWrurRp055WrdrSpcudyUksvTZt2lGhQiUaN65CmzYdaNOmPZ07/4dixYpz5Mhh9u3bw5AhD/Pss48kH3PhQmK2K7ls376Ne+55KE1b06YtWbr0y2yvC3D48CHGjHmJNWu+4/Dhg1y4cIGzZ8+wb59vfxnxBV8OyNkLhKd6XwHYn34nEakPzALuUNW/ktpVdb/zz0PAAhy3aY2HuFMPmF0dY/rECHD27B7i4gYBGSVGgAvO9owSI8B5Z/uliREgMfEo69c/lCvXc/S266+vyg8/vM7w4XdToIAjESYmnuOzz57ltddacODANj9H6DmhoaMQKZKmTaQIoaGjfBpHkSJFs9weGBjIJ58s4+OPl1G7dn0++GA2zZrV4McfN2e4f7Fixfn2243MnPkxFSpUZPLkKP71r1r8+ef+5OeKY8dOY/ny+OTXypU/smrVT9nGmtFi2kltWV0XYNCg3sTHxxAZOYFFi9ayfHk85cpVSB6ElJ/4MjnGADVEpIqIFAR6Al+m3kFEKgKfAb1U9ddU7UVFpHjSz0B74EefRX4FcKceMLs6xvSJMUlKe2YjK5PaM/sfz9GePjEmSUw8mmvXc/S2oKACvPji//HDD69z/fVVk9t37lzPqFENWbp0LBcuJGZxhryhZMl7KVduBkFBlQAhKKgS5crN8OnzRleJCDfe2JwhQ15m2bIYrrmmHF988VGm+xcoUICbbvo3L74YxYoVWzh9+hTLli0kNDSMsmXLs2vXb1StWv2SV5KgoCAuXEj7/1aNGtexfv3qNG3r16+mZs2UsZGZXTdp3759B9Gu3W3UqlWHYsWKc/DgAU98PbmOz26rqmqiiAwElgKBwBxV/UlEBji3TwOGA1cDU52/ySQ6R6aGAQucbQWAD1R1ia9ivxK4Vw/oXh2jN+X29Ry9rUGDKqxZM5bXXvuMUaM+JiEhkcTEcyxY8BybNs3n/vvnUq5c+kHjeUvJkvfmymSYWmzsOlat+oabb+5AmTJhbN26iX379qRJSqktW7aQXbt+o3nzVpQsWYo1a77j5MkT1KzpmC90yJBXGDZsECVKlKRt204kJCSwZctG/vxzH0888TwA4eGV+f77b2nevDWFChWiZMmreOyxIfTt24P69Rtx883tWb58CfPnv8/cuZ+5dN1q1Wry6afvccMNTTl9+hQREc8SFFTQB9+g7/l0blVV/Rr4Ol3btFQ/9wX6ZnDc70CD9O3GcwoVKu28dXhpe/YCyDgR+n+OCfc+l/vH5wZBQQUYNuwuunRpQt++k9m06XcAdu3awOjRDenceQTt2j1DYKBNtewtISEl2LBhDbNmRXP8+D+UKxfO4MEvZTqIJSSkJIsXf864cRGcOXOaypWrMWHCLJo1uwmA++7rS5EiRZky5TVGjXqe4ODCXHttneSBNgAjRoxj+PDBzJsXTtmy5YmL20WnTl0ZPTqaqVNf56WXnqRChUq8+upUOnTo4tJ1J06cwzPP9Kddu0aEhZVjyJBX+OuvS///yA9sVQ4DpDxbS30LMSCgkEvLM6U8c0wrLKwj1asPyPCZI6QMysn4mSMkDcrJ+JkjJA3KyeiZIzgG5VSp0jvHnwvc+15yo4SERMaNW0Bk5EckJKTcVq1UqTH33z+X8uUzH0HpabYqh/EWT6zK4f9f7U2u4M66hdWrDyAsrCMpf50CkhMjQKNG0QQHh6c5JvVoVceo1PQjKFNGqzpGpaa/dZMyWrVp0zkUKFAqzdak0ap5bT1HbwsKKsDQoT1Yv34cjRqlPJ/6449YoqIasXjx6HzxLNIYd1nP0ZgrVGLiBcaP/5yIiHmcP5+SECtWbETv3nMpX76eV69vPUfjLdZzNMbkWIECgTz7bHc2bJhA48Y1ktt3745j9OhGfP31SC5cSPBjhMb4jz2BNy7zZjF8dpMIZLfd5Fzt2uGsWjWGCRO+YMSIDzh/PpELFxL48suX2LTpM3r3fosKFTKe/9aY/Mp6jsYl3iyGz24Sgey2G/cVKBDIkCH/YcOGCTRpUjO5fc+eTURFNWbRogiv9CLz82Md4x+e+jtlydG4xJvF8NlNIpDdduM5tWuHs3JlFFFRvSlUKAiACxcS+Oqrlxkzpgl79sR77FoJCUEkJJzx2PmMAcfKNAkJQW6fx5KjcYl3i+Gzm0Qg904ykB8FBgby9NPdiImZQNOm1ya379kTT1TUjXz11SskJro/Xdju3aEcOLCP8+dPWw/SuE1VOX/+NAcO7GP37lC3z2fPHI1LvFsMn90kArl3koH8rFatCqxYMZrJk7/i5Zc/4OzZ81y8mMiiRSOIj19A795vUbFiwxyf//jxELZvh3Pn9hMUZAN/jPsSEoLYvTuM48dD3D6XJUfjkooV78uwGN4TiwaHhbXPZBKB9i5tN94TGBjIU091pVOnG+nfP5offvgfAPv2bWHMmCZ07Pg8nTq9SIECOZtC7PjxEH780f1/yIzxNPvV27jEm8Xw2U0ikN12433XXlue5ctH8dprDxEc7EiEFy8m8vXXkURFNWb37o1+jtAYz/LpJAAi0hGYhGM6lFmqOibddnFu7wScBh5Q1Y2uHJsRmwTAGM/bvn0//fpFs3ZtytJXAQGBdOgwlE6dXiIoKPN1DY3xt1w3CYCIBAJTgFuB2sDdIpJ+SvpbgRrOV3/gzcs41hjjAzVqlOPbb0cyblwfChdO6kVeYPHiUURFNeaPP2L9HKEx7vPlbdUmwA5V/V1VzwMfAnek2+cO4B11WAeUFJGyLh5rjPGRwMBABg3qQlzcJFq2TPk9df/+H3n11WZ8/vkwEhLOZXEGY3I3XybH8kDqpRn2Ottc2ceVY40xPla9elm++WYkEyb0pUgRx+3UixcvsGRJFKNH38CuXTF+jtCYnPHlaFXJoC39A8/M9nHlWMcJRPrjuCULcK5gwa4/uhyhSVIayBur+eYu9r2lcuDAz4wZ08SVXe17yxn73nLm2ux38W1y3AukXreoArDfxX0KunAsAKo6A5gBICKxrjx4NWnZ95Yz9r3ljH1vOWPfW86IiEsPxX15WzUGqCEiVUSkINAT+DLdPl8C94tDM+CYqh5w8VhjjDHGI3zWc1TVRBEZCCzFUY4xR1V/EpEBzu3TgK9xlHHswFHK8WBWx/oqdmOMMVcWn86Qo6pf40iAqdumpfpZgcdcPdYFMy43RgPY95ZT9r3ljH1vOWPfW8649L35dBIAY4wxJi+w6eOMMcaYdPJlchSRjiLyi4jsEJGh/o4nrxCROSJySESs/MVFIhIuIt+JyDYR+UlEnvB3THmBiASLyAYR2ez83kb4O6a8REQCRWSTiCz0dyx5iYjsEpGtIhKf3ajVfHdb1TnV3K9AOxylITHA3ar6s18DywNEpBVwEscsRXX9HU9e4JzBqayqbhSR4kAc0NX+vmXNOY9yUVU9KSJBwGrgCefMWCYbIjIYaAyEqGpnf8eTV4jILqCxqmZbH5ofe4421VwOqeoq4Ki/48hLVPVA0uT4qnoC2IbN3pQt5xSRJ51vg5yv/PWbupeISAXgNmCWv2PJz/JjcrSp5oxfiEhloCGw3s+h5AnOW4PxwCHgv6pq35trJgLPkvEK4CZrCiwTkTjnbGqZyo/J0eWp5ozxFBEpBswHnlTV4/6OJy9Q1Quqej2OGa+aiIjdys+GiHQGDqlqnL9jyaNaqOoNOFZ4esz5KClD+TE5ujJNnTEe43xmNh94X1U/83c8eY2q/gOsADr6N5I8oQVwu/PZ2YfAv0XkPf+GlHeo6n7nn4eABTgew2UoPyZHm2rO+IxzYMlsYJuqjvd3PHmFiJQRkZLOnwsDbYH/+TWoPEBVn1fVCqpaGce/bctV9T4/h5UniEhR56A5RKQo0B7IdGR+vkuOqpoIJE01tw342Kaac42IzAN+AK4Vkb0i0sffMeUBLYBeOH6Dj3e+Ovk7qDygLPCdiGzB8Qvtf1XVyhKMN4UBq0VkM7ABWKSqSzLbOd+VchhjjDHuync9R2OMMcZdlhyNMcaYdCw5GmOMMelYcjTGGGPSseRojDHGpGPJ0Zg8zLnKwDNZbH9ARE5mtt3XROQtW0nC5AWWHI1xk/MffHW+EkTkdxF53Vlo7MrxlZ3HNvZ2rL6SHz+TubIU8HcAxuQT3+CYDCAIuAnHiglFgUf8GZQxJmes52iMZ5xT1T9VdY+qfgC8D3QFxxRzIvKsiPwmImeci62mnvJrp/PPGGdva4XzuBtFZJmIHBGR4yKyWkSauxuoiHRxrkpwVkR2isgo51SLSdt3iciLIjLded29IjIk3TlqishK5zl+EZFOInJSRB7I6jOlOv4JEdknIn+LyFwRKeLu5zLGkyw5GuMdZ3D0IgFGAn2Ax4DaQBQwXURuc25Pmvy4I45p1f7jfF8ceBdHT7QJEA98LSKlcxqUiHTAkbjfAOoADwF3AqPT7foUsBW4AXgVGJuUmEUkAMekzYlAM+AB4GWgUKrjM/tMOD9PXRzzqf4f0A14IqefyRhvsNuqxniYiDQB7gG+dT53HAy0V9XvnbvsdO7zGLAIOOxs/0tV/0w6j6ouT3feQUB3HAknpysxvAC8pqpzne9/E5HngPdEZIimzCe5TFXfcP4cLSKPA7fgmHu3HXCt8zPtc8b2FLAm1XUy/ExOx4FHnPMgbxORT5znjsrhZzLG4yw5GuMZHZ2jQgvg6DF+AQzC0VMMBpaISOqJjIOAXVmdUERCgUjgZhyTJgcChYGKbsTZCMfaic+lagtwnvca4ICzbUu64/YDoc6fawH7kxKjUwyuL777szMxpj53UxePNcYnLDka4xmrgP5AAo7EkQAgIlWc27sAu9Mdk5DNOd/GkRSfwpFIzwHfAgWzOCY7AcAI4JMMth1O9XP62JSUxzCCewuIZ3VuY3IFS47GeMZpVd2RQfvPOJJapfS3SVM57/wzMF17S+BxVV0EICJhOJ7fuWMjUCuTWF21DSgvIuWSFo8FGpM2wWX2mYzJEyw5GuNFqnpCRF4HXncujLwKKIZjIMtFVZ0BHMIxgKeDc4X3s6p6DPgVuE9E1uMoCxlLStLJqQhgoYj8AXyMY1BNXaCJqj7r4jn+C/wCvO2cgKAwMN55rqQeZWafyZg8wW5lGON9LwGvAM8AP+FILt1xljs4n789DvTF8fztC+dxD+FIpHHAh8AcsnlOmR1VXQrchuM55gbnayiX3vLN6hwXcYwwLeQ8/m1gFI7EeDabz2RMnmCLHRtj3CYiDXCUmjRW1Tg/h2OM2yw5GmMum4h0A04B24HKOG6rCtBQ7R8Vkw/YM0djTE4UxzE5QDjwN7ACeMoSo8kvrOdojDHGpGMDcowxxph0LDkaY4wx6VhyNMYYY9Kx5GiMMcakY8nRGGOMSceSozHGGJPO/wOQABSAoEj7NgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# extra code – plots the decision boundary of a Perceptron on the iris dataset\n", + "\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.colors import ListedColormap\n", + "\n", + "a = -per_clf.coef_[0, 0] / per_clf.coef_[0, 1]\n", + "b = -per_clf.intercept_ / per_clf.coef_[0, 1]\n", + "axes = [0, 5, 0, 2]\n", + "x0, x1 = np.meshgrid(\n", + " np.linspace(axes[0], axes[1], 500).reshape(-1, 1),\n", + " np.linspace(axes[2], axes[3], 200).reshape(-1, 1),\n", + ")\n", + "X_new = np.c_[x0.ravel(), x1.ravel()]\n", + "y_predict = per_clf.predict(X_new)\n", + "zz = y_predict.reshape(x0.shape)\n", + "custom_cmap = ListedColormap(['#9898ff', '#fafab0'])\n", + "\n", + "plt.figure(figsize=(7, 3))\n", + "plt.plot(X[y == 0, 0], X[y == 0, 1], \"bs\", label=\"Not Iris setosa\")\n", + "plt.plot(X[y == 1, 0], X[y == 1, 1], \"yo\", label=\"Iris setosa\")\n", + "plt.plot([axes[0], axes[1]], [a * axes[0] + b, a * axes[1] + b], \"k-\",\n", + " linewidth=3)\n", + "plt.contourf(x0, x1, zz, cmap=custom_cmap)\n", + "plt.xlabel(\"Petal length\")\n", + "plt.ylabel(\"Petal width\")\n", + "plt.legend(loc=\"lower right\")\n", + "plt.axis(axes)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EgBtburnIm2c" + }, + "source": [ + "**Activation functions**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EZDIHcnCIm2c", + "outputId": "87ac2a58-21b8-481e-91fb-77b20ad34842" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAADPCAYAAABRAPaGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABpV0lEQVR4nO3dd3gU1frA8e/ZTe89JCT0GqQXEURCFyxY0CuKilLEckWxIPK7lmvvqNgQFRWuvWNBRCKIIE16ryEkEBIS0uue3x+zWVIhCZvdDbyf55lndnfOnHl3N9mZd+bMOUprjRBCCCGEEEIAmJwdgBBCCCGEEMJ1SIIghBBCCCGEsJEEQQghhBBCCGEjCYIQQgghhBDCRhIEIYQQQgghhI0kCEIIIYQQQggbSRCEQymlWiiltFKqlwO2laCUmu2A7TRRSv2qlMpVSjm932Cl1AGl1P3OjkMIIRobpdR4pVSOg7allVJjHLEtIepKEgRxSkqp7kqpUqXUinqsW90B+iEgCthgj/is26npB/0qYIa9tnMK9wPRQDeM9+YQSqnHlFJbqlnUG3jTUXEIIYSjKKXmWQ+stVKqWCmVqpRaqpS6UynlbodNfAa0skM9NtaYF1azKAr4wZ7bEsJeJEEQpzMJ42DzPKVUxzOtTGtdqrU+orUuOfPQTrut41rr7IbeDtAGWKe13q21PuKA7Z2S1vqY1jrP2XEIIUQD+Q3j4LoFMBzjIPtxYLlSyre+lSql3LXW+VrrVLtEeRrWfWGhI7YlRF1JgiBqpJTyBq4H3gW+BCZUU6avUup3a/OaE0qpJUqpaKXUPGAgcGe5sz0tyjcxUkqZlFJJSql/V6qznbVMd+vzaUqpTdZtHFZKzVVKBVmXxQMfAL7ltvOYdVmFKxhKqWCl1IdKqQylVL5S6jelVKdyy8crpXKUUkOUUlus21uqlGp5is/oADAauMm67XnW16tcOq7c9MdaZrJS6gvrtvYppcZVWidaKbVAKZWulMpTSm1QSg1SSo0HHgU6lXvf42vYTjOl1DdKqWzr9LVSKqbc8ses7/c6pdRea5lvlVJh5cp0tn63WdblG5VSg2r6XIQQogEVWg+uD2utN2itXwbigR7AgwBKKQ+l1HPWfUyuUmqNUmpEWQVKqXjr7+YopdRqpVQRMKL8Fely+6LO5Tdu/d1OU0q5K6XMSqn3lFL7rfuV3UqpB5VSJmvZx4CbgUvK/VbHW5fZ9hNKqZVKqZcqbSfAWueVtXxP7kqp15RSyUqpQqXUIaXUs/b84MW5QxIEcSpjgINa603AxxgHwbZLuEqprsBSYA/QH+gLfA64AVOBlRgH71HW6VD5yrXWFuAT4IZK270B2Ka1/sf63ALcA3TCSFj6AK9bl/1lXZZXbjsv1vB+5gHnYxzQ97Gu84syEqEynhjNkm4FLgCCgLdrqA+M5jy/Wd93lPV918UjwHdAV4xL2+8rpZoDKONM2B8YZ8muBDoD/7Wu9xnwErCTk+/7s8qVK6UU8C0QCQwGBmE0h/rWuqxMC+Bf1u0MB7oDT5Vb/j8gBeNz6w48BhTU8b0KIUSD0FpvAX4Brra+9AHGSarrMX47PwR+sO63ynsO+D+gA/B3pTp3AWupfh/1mda6GOM46jBwLdARmAk8DNxiLfsixv6h7KpHFMZ+q7L5wHVliYXV1UA+8GMt39PdGL/h1wFtMX7Td1azLSFOT2stk0zVThgHp/dbHyvgAHB1ueULgFWnWD8BmF3ptRaABnpZn3exPm9TrsxuYMYp6r0YKARM1ufjgZxTbR/jx1IDF5VbHgicACaWq0cD7cuVuQEoKttWDfEsBOZVek0DYyq9dqDs8yxX5plyz90wkpZx1ueTgGwgrIbtPgZsqeZ123aAYUAp0KLc8lYYSdfQcvUUAIHlyswE9pR7ngXc7Oy/SZlkkuncnjBO9CysYdmz1t/Q1tbfuGaVln8LvGl9HG/9Db66UpkK+xOMkz4HAWV9Hmut+4JTxPgs8NvpYi6/nwBCrfuaIeWW/wa8Y31cm/f0GrCkLFaZZDqTSa4giGoppdpgXBX4H4DWWmMkBBPLFeuO8WNUb9q4OrEZ44wISqnzMX4I/1culsFKqcXWy6rZwNeAB9CkDpvqiPHjurLctk9Ytx1Xrlyh1rr8GZdkwB3jSkJD2FQunhLgGBBhfak7sElrnXYG9XcEkrXWB8ptZx/G+yr/vg9aP48yyeXiAHgZmKuM5mQzlVIdziAmIYRoCArjoLuH9fE2a7PRHGuzoUsw9i/lrT1NnZ9gXHUdYH1+PbBPa23blyilpiil1iqljlm3cy/QrC6Ba63TgUVYr1YopaIwrvjOtxapzXuah9FZxi6l1BtKqUsqXZEQotbkD0fUZCJgBhKVUiVKqRLgIWC4UirWWkbVuHbdLODkJdwbgOVa64MA1uY2PwLbgWuAnhjNf8BIEmrrVLGW75q08s3TZcvq+r+iq9lmdT1sFFezXtm27PH5lu0wq1P+9VPFgdb6MYyE4lugH7BJKXUrQgjhOuKAfRi/XRqjCWi3clNHTu4/yuSeqkJt3LD8GxX3UQvKliul/gXMwjg4H2HdzpvUbf9UZj5wtVLKCxiL0Sz3T+uy074nrfV6jKv0D1vLfwgsliRB1If80YgqlFJuGDdVzaDiD1FXjDPeZW0r12O0a69JEUaScToLgDZKqb4YbSbnl1vWC+OH9l6t9UpttAmNrsd2tmH8vV9Q9oJSKgCjHee2WsRYV8co1+WpUiqSuneBuh7oUv5m4Upq+76bKqValIulFcZnWKf3rY1eml7TWl8CvEfFq0lCCOE0SqnzMJqffgn8g3FypInWek+l6XA9qp8PXKOU6omxzyi/j7oQ+FtrPVtrvV5rvYeqVylquy/8zjq/FGsiYr16T23fk9Y6W2v9hdb6doyrC4MxetoTok4kQRDVuQQIA97VWm8pPwGfArdaz0i8AHRXSs1RSnVVSrVXSk1USpVdWj0A9FFGz0VhNZ3F0FonAcswbgYOBL4ot3g3xt/pPUqplkqpsRg3JZd3APBSSg2zbsenmm3sxvjxfUcpNcDaK8V8jLb1/6tc3g5+x+jBqZcyemOaR91v6v0fkIpxQ/EA6/u/vFzvQQeA5kqpHtb37VlNHb8BG4EFSqmeyhigbgFG8vF7bYJQSnlbL1fHW7/L8zF2ig2RWAkhxOl4KmOAymjrvmcaxj1n64AXrSeSFgDzlFJjlFKtrL/F9yulrqrH9r7BuAL8HrDauj8pswvooZQaqZRqq5T6D8aNxOUdwOgqvL31t7ra8Rq01gUYTWj/D6NJ0fxyy077npTR499YpVRHazPh6zH2cUn1eM/iHCcJgqjOBGCptU1kZV8AzTFucN0ADMXo/WEVRg8Q13GyucqLGGdOtmGcUT9Vm8yPMa5Q/Ki1zix70XqPwlRgmrWeiRgDk1GuzF8YycUn1u08WMM2bgFWA99b5z7AxVrr/FPEVV/3YVzqTsA4ozUX42C/1rTWuRg7msMY/Xxvxejru+yM0lfATxj3gRzDuCRduQ4NXGFdnoDR69QR4IpyZ6ZOpxQIxrhcvRNjZ7kS4zsRQghHG4rRq1oixu/f5Ri/jRdZfzfB+L3/AHge2IHRmcRFGDcc14k2xpX5BmMfNb/S4ncwein6H7AGo4nPS5XKvIvRTHYtxm9x/1NsrmxfuF5rvb3SstO9p2zgAYz923qMK/8jtYyLI+pB1f4YQQghhBBCCHG2kysIQgghhBBCCBtJEIQQQtSLUup9pVSqUmpLDctvUMYo6JuUUn9VM0iVEEIIFyQJghBCiPqah9FzTE32AwO11l2AJ4A5jghKCCHEmXFzdgBCCCEaJ631svJd6Faz/K9yT1cBMQ0elBBCiDMmVxCEEEI4wgTgZ2cHIYQQ4vSccgUhLCxMt2jRwi515ebm4uvra5e67M1VY3PVuMB1Y3PVuMB1Y6tPXCUnSsjfmw8aPCI98IypbmgH58TmCPaOa926dWla63C7VVhP1rE7JmCMn1FTmcnAZABvb++esbGxNRWtE4vFgsnkmufCJLa6c9W4wHVjc9W4wHVjc9W4wL6x7dq1q+Z9hNba4VPPnj21vSxdutRuddmbq8bmqnFp7bqxuWpcWrtubHWNK31Ruk7wTNBLWap33b1LWyyWhglMnz2f2ekAa3UD/55j9Pu+5RTLuwB7gXa1rVP2Ec7nqrG5alxau25srhqX1q4bm6vGpbV9YzvVPsI10yMhxDkl4/cMtozegi7URN8eTZtZbVBKOTsscYaso6p/DdyojZFghRBCNAJyk7IQwqkyl2Wy+bLNWAosRE2Kou3stpIcNBJKqU+AeCBMKZUEPAq4A2it3wYeAUKBN63faYnWupdzohVCCFFbkiAIIZzmxIoTbBq1CUuehSa3NKHd2+1QJkkOGgut9djTLJ8ITHRQOEIIIexEmhgJIZwma00WllwLkTdG0v7d9pIcCCGEEC5AriAIIZwm9p5YfNr5EDIiBGWW5EAIIYRwBXIFQQjhUNn/ZBtdmVqFjgqV5EAIIYRwIZIgCCEcJndbLhuHbuSfgf9QkFjg7HCEEEIIUQ1pYiSEcBjPWE98O/niFuSGRxMPZ4cjhBBCiGpIgiCEcBg3fze6/NwF5aYwecgFTCGEEMIVyR5aCNGg8nbmseuuXVhKLACYfc2YPOWnRwghhHBVZ3wFQSkVC3wENAEswByt9atnWq8QovHL253HhkEbKEopwjPKk+Yzmzs7JCGEEEKchj1O45UA92mtOwJ9gTuVUnF2qFcI0Zglw8bBGylKKSJwYCAx98Q4OyIhhBBC1MIZJwha6xSt9Xrr42xgO9D0TOsVQjRe+QfyYRoUJhUSeGEgnRd2xuxrdnZYQgghhKgFuzYEVkq1ALoDf9uzXiFE41FwqICNgzfCUQi4IIDOP3XGzU/6QxBCCCEaC7vttZVSfsBXwD1a66xqlk8GJgNERkaSkJBgl+3m5OTYrS57c9XYXDUucN3YXDUucLHYjgH3AMlQ2q6UrIez+HPdn04OqiqX+szKcdW4hBBCnFvskiAopdwxkoMFWuuvqyujtZ4DzAHo1auXjo+Pt8emSUhIwF512ZurxuaqcYHrxuaqcYHrxFaYUsiG2zaQn5yPXw8/ch7PIf5S58dVHVf5zCpz1biEEEKcW864iZFSSgHvAdu11i+feUhCiMam6GgRG4dsJH9XPn7d/Oi6uCv4OTsqIYRoGInPJ5KxNOOUZTKWZpD4fKKDIhLCvuxxD0J/4EZgsFJqg3UaZYd6hRCNQNGxIjYM2UDe9jx8O/vSZXEX3EPcnR2WcACl1PtKqVSl1JYaliul1GtKqT1KqU1KqR6OjlGIhuDf259t126rMUnIWJrBtmu34d/b38GRCWEfZ9zESGv9J6DsEIsQohE6/vNx8rbm4RPnQ9ffuuIR5uHskITjzANmY4yFU52RQFvrdD7wlnUuRKMWPCiYuM/j2HbtNjp+0hFLgQW+hrScNExeJraP3U7c53EEDwp2dqhC1It0LSKEOCNNbmoCQPDwYDwiJDk4l2itl1l7r6vJaOAjrbUGVimlgpRSUVrrFMdEKETDCR4UTMdPOrJ51GYwA4Ww9ZOtUAqdf+osyYFo1CRBEELUWXFmMSXpJXi39gZOJglCVNIUOFTueZL1NUkQRKP3xx/wx8sW+haDR7EGQBcY803DNp12fb8efvRa18v2PEElABCv422vre25lpz1OXWKq/L6rIfstdn49zSaO+2cvJOUd+v2L9hzbc8q67d7px3Rk6MBSJ6TzK7bdtWpznbvtIN2VFg/alIU7ee0ByB7XTbreq2rU53VrV/T53w6CRjlHPU95azPqfZzPlVsldnze5IEQQhRJyVZJWy6eBOFiYV0/b0rvh18nR2ScF3VNT/V1RaUrrBdiqvG5gpxJSV58+qrbUlO9mZG00Tcla7hr/rUcrKrfy8VXsuue73Vrb9u7bqTdSXXvc7q1t+1cxe7EqwHmzvrXueunbvIibZ+Btb1U5JTSElIqXed1a1f0+dcW+fq9yQJghCiTpRZYfY2ozyMuRCnkATElnseQw27PekK27W4amzOjuu772DaNHj4YbjzTjixqBlbr9lqu3IAoLwUx//diSkfhjFzJvz736Bqc6dmdUlG3U7KV7t+lc8svqbCtVTd+vHAS3WvyhZbdevHA7fVvc7Trl+LZO6Uf2cN9D1VUcPma/0/UF2ReCp+zqf4u5QEQQhRJ2ZfM51/7ExxejFesV7ODke4tu+Bu5RSn2LcnHxC7j8QjdUHH8B//gM//ADnW2+1N3mZoNRICnShRnkqKIWBw02suh2uuAKSk+GZZ2qZJAjhIiRBEEKcVmleKUmvJBH7YCwmdxNmHzNmH7l6cK5TSn2CcU4qTCmVBDwKuANord8GfgJGAXuAPOAW50QqxJmZP99IDn7/HdpZ281nLM1g+9jtdP6pM5YCC1u+2UKnKztV6MXo99+DGTQIPDzgv/917nsQoi4kQRBCnFJpfilbRm8h47cMChILaP9Oe2eHJFyE1nrsaZZr4E4HhSNEg1ixAu67D5YurZgcbLt2m60r08KUQrgO/J/0xzPK09YFatzncSxZEky/ftCmDdx0k3PfixC1ZY+B0oQQZ6nSglK2XrWVjN8ycI9wJ+beGGeHJIQQDnP4MFx7LcybB3FxJ1/PXpNdcZwDDeRia59eNk5C9ppswsPh22+NJGPtWsfGL0R9yRUEIUS1LIUWto7ZyvFfjuMe5k6337tJj0VCiHOGxQLjxsHtt8PIkRWXNXuw2WnXDx4UbEsgOnWCt9+Gf/0LNmwAfxlgWbg4uYIghKjCUmxh67+2cvzH47iFuNF1SVd8O0lyIIQ4d7z6KpSUwIwZ9qnv6qshPt64kiCEq5MEQQhRgaXYwrax20j/Lh23YDe6/tYVvy5+zg5LCCEcZscOePpp+PBDMNuxP4ZXXoHFi+Gnn+xXpxANQRIEIYSNpcTC9hu3k/ZVGuZAM10Xd8W/u1wLF0KcO7Q2mhX95z/QqpV96w4IgDlzjDEU8vLsW7cQ9iQJghACAF2q2TF+B8c+O4bZ30zXRV1tQ7YLIcS5YsECOHEC7rijYeofNswYR+GppxqmfiHsQRIEIQTaotk5cSepC1Ix+5np8ksXAs4PcHZYQgjhUFlZ8MAD8NZb4FaHblyUh4Lu1nktvPyycSVh15mOwCtEA5EEQQhB5tJMjsw7gsnHROefOhPYL9DZIQkhhMO99BIMHXpypOTa8gjzgJet81qIjjYSkenT6xGkEA4gCYIQguAhwbR7ux2df+xM0IAgZ4cjhBAOd/QozJ4NTzxR93VL80vhd+u8lu6+G/75B5Ytq/v2hGhokiAIcY7SWhujf1pF3xZNcHywEyMSQgjnefJJuPFGaNGi7uuWZpXCe9Z5LXl5GT0l3X+/cWO0EK5EEgQhzkFaa/ZO28va7mvJ3Zbr7HCEEMKp9u2DTz6BmTPrt75HpAcssM7r4LrroLAQFi6s33aFaCiSIAhxDtJFmtwtuZQcL6HgYIGzwxFCCKf6z3+MJj/h4fVb31JkgW3WeR2YTPDoo/DYY3IVQbgWSRCEOAeZPE2c9/15dP29K6EjQ50djhBCOM2GDfD77zBtWv3rKE4rhjut8zq64gooLYUffqj/9oWwN0kQhDiHHP30qO0Ml9nbTNCFQc4NSAghnOzxx2HGDPBz0oDxchVBuCJJEIQ4Rxx48gDbx25n27+2oWUvJOxEKXWxUmqnUmqPUuqhapYHKqV+UEptVEptVUrd4ow4hajO1q2wciVMmuTcOK64wkgOvv/euXEIUUYSBCHOAYnPJXLgPwfABOHXhKNU7QbzEeJUlFJm4A1gJBAHjFVKxVUqdiewTWvdFYgHXlJK1e1OTiEayDPPwD33gLe3c+NQSq4iCNciCYIQZ7lDLx1i30P7QEGHDzoQeX2ks0MSZ48+wB6t9T6tdRHwKTC6UhkN+CsjK/UDjgMljg1TiKr27YNffoHbb3d2JIbRo41E4bvvnB2JEFCHgcSFEI1N0qtJ7L1/LwDt57anyU1NnByROMs0BQ6Ve54EVB6DdjbwPZAM+AP/0lpX6epFKTUZmAwQGRlJQkKCXQLMycmxW132JrHVnT3jevnldowaVcQ//xw488rSjNnKv1ZCWP2rGT06nJkzYwgM/Ad7Xeh11e8SXDc2V40LHBebJAhCnKUOv3mYPffsAaDdO+2IujXKyRGJs1B1hzCVG0iMADYAg4HWwGKl1HKtdVaFlbSeA8wB6NWrl46Pj7dLgAkJCdirLnuT2OrOXnEdPgx//gm7dkFYWIszrq8wuZCVrOSCfhfgGe1Z73oGDICPPwZ393guvPCMwwJc97sE143NVeMCx8UmTYyEOAslz0lm9527AWj7RluiJ0c7OSJxlkoCYss9j8G4UlDeLcDX2rAH2A90cFB8QlTr5Zfh5psh7AzO9pdnDjDDZOv8TOoxGyMrP/+8feISor4kQRDiLJPyfgq7btsFQJtX29D0jqZOjkicxdYAbZVSLa03Hl+H0ZyovERgCIBSKhJoD+xzaJRClJORAR98YByI24ubnxuMtc7P0M03w+rVsG2bHQITop4kQRDiLHLkoyPsnLgTgNYvtibm7hgnRyTOZlrrEuAuYBGwHfhca71VKTVFKTXFWuwJoJ9SajOwBJiutU5zTsRCwJw5cNll0NSO506KM4rhOev8DHl7w113wYsv2iEwIepJ7kEQ4iyRvzefHbfuAA2tnm1F7H2xp19JiDOktf4J+KnSa2+Xe5wMDHd0XEJUp6gIXn8dfvzRzhUrwIvq78qphzvugDZt4Ikn7JvICFFbdrmCoJR6XymVqpTaYo/6hBB1593am3ZvtaPlky1pNr2Zs8MRQgiX88UX0KEDdO1q33rdg9xhqnVuByEhcNNN8OqrdqlOiDqzVxOjecDFdqpLCFEXhScfRk+KpvnM5s6LRQghXJTW8NJLMG2a/esuyS6Beda5ndx7L7z3HmRlnb6sEPZmlwRBa70MY/AbIYQDpX2fBuMgZ3OOs0MRQgiX9scfkJ8PFzfA6czS7FL40Dq3k+bNYdgwI0kQwtHkHgQhTkcp4p0dQw3CwIiti3PjqE58PdcrxUQuvuThQxEeFaZi3Gv1mgUTpZht8/KPy+ZLWH7aMhZMaJRtAso9h1KlrJPx2M2icLcYZQrMiizPk2Us1jJl82aZCpO1voMBijx3sCiFha/RCiwotFIEFEBslrHNQjNsCzPq0MoYcMCYK7SCDscgoMj4HE/Uvyt2Ic5KL79snJU3NaLuWaZNg2uvhX//G9zkiE04kMP+3GSUTNfhqnGBa8YW7+wAGgkLigyCOU5ItfOyx1kEkIuvbcrDp8LjYtzxIQ9v8vGiAA+KcKe4UgpQVOPr7hRjphSFhVJzKSVmCyXmUkrcSik2Wyi2zttlFBFUZMFMKTvDLOwJrVTGzUKx2YJ/kYXb12FLC6YNhxxPjcVUNh6YBmU8/tcWzfA9xuNVUZqv+lQtUzaO2JTvNX7FxuMnumm2RlqXK20rg9L0T9TcstLY/hEvza+DKFdXeZqpv0PXo8azzQHw5zF7fbtCNG67dsGqVfDZZ86OpG769IHYWPj6ayNREMJRHJYgyCiZrsNV4wIXjU1rDowfT4t585wdCQDZ67LxPc8Xk6dxGswRn1lpKSQlwb59sH8/JCdDSkrF+dGj4OMDoaEQHAxwnNatQwgONm64iwqGuGAIDARfX2Py8an62MsLlPJHaz+yi7JJz0unWWBLzCZjAKKvt3/N1tStpOenk1GQQXZhNmmFWWQVZnFhswt5ecTLAOw9vpc2r7ep8T39csMvjGgzAoCHlzzMvD9fqLZcbEAsk9Ym2p7PeCGCrDzjyNvD7IGH2QNPsyceZg/6PzSDG8//NwAx+5fyz+8z8XTzrFDGw+yBp5sn1yx4DX9PfwCy1s9lf8Z+kg4l0aZlG8wmM24mN9xMbrQPbc8l7S4BILswG6/tX+NmcqtQxs3khlmZ6T23N2E+xshPFxVm8bBXYD2/cSHOLrNmwZQpRheijc1998Ezz8A114CyUy9JQpyOXLASohHJSMhg86jNBMUHcd4359mSBHvJzjYG59myxZi2bzeSgsRECA+HVq2gRQuj272OHWHwYIiOhqgoaNLEOLgvk5CwqUriklecx5GcIxzNOUq4bzhtQowD+LXJa3lqyVMcyz1Gen46x/OPczz/OCUW44a/lPtSaOLXBIAPNnzAwl0Lq42/7OAYIMAzAH8PfwI8A4zHnicf5xzPIdIv0lb2kraXEOkbiY+7D97u3vi4+9gmfw//CtvYe/dePN08cTe5o06xtx7UchB/TfjrtJ85wMQeE62fWQLxA+NrLOfv6c/N3W6uVZ0BngG1KifE2S49HT75xPg9a4wuuwweeAD++gv693d2NOJcYZcEQSn1CUZLjDClVBLwqNZabqsRwo4yl2ey+ZLNWPIteER7oNzP7FRSbi6sW2dcdl+1Cv75x7gK0LEjdO4M550HQ4dC69ZGUlD+4L8yrTVpeWnsST3KeRHn2V6/48c72Jy6mSM5RziSc4ScopM3Uz/Y70GeG/YcYJwZ/3bHt1Xq9XX3JcQ7hNyiXNtrYzqOoUtEF0J9Qgn2CibQK9CWCET4RtjKhfuGkzWj+u4/EhIS6Nakm+15/2b96d+sdnvesrP+QojG4Z134MorjZMYjZHZDPfcY/TAJAmCcBS7JAha67H2qEcIUb0Tf51g86jNWPIsRN4cSfs57VGmuiUIOTmQkACLFhlnonbsMBKBvn2Ntq3PPmskA2bzqevZeGQj3+z4hv2Z+zl04hCHsg6RlJVEQUkBHmYP8mfmY1LGlY1VSav458g/tnU9zB408WtCpG8kUf5Rtte7RHbhi2u+INwnnFCfUEK9QwnxDsHTreqdtrU9gy6EEIWFMHu28bvXmI0fD489Bnv3Gr/TQjQ0aWIkhIvLWp3Fpos3UZpTSsQNEXR4r0OtkgOtYfNm+OUXY1qzBnr3hhEjjB1m9+4VrwpYtIVDJw6x5/ge9mbstc33Ht/L1POnckv3WwDYnLqZx/94vMr2gryCiA2IJaswiyCvIABeGv4SGk20fzRN/JoQ6BlYbbOcUJ9QxsSNqd8HJIQQNfjsM+NqaOfODbsd93B3mGudNwBfX5g0ybiX4vXXG2QTQlQgCYIQLix7XTYbh2+kNLuU8H+F02FeB5S55uRAa9i40Rgt9PPPjZuLR40yusqLjwc/PyguLWZvxl7+TE5iaKuhtnWbvdKMw9mHq61367Gttse9o3vz8IUP0zK4Jc0CmxEbEEtsYCx+Hn5V1hvUclD937wQQpwBrY2uTZ97ruG3ZXI3QWvrvIHcdZeR7Pz3v2UdQQjRcCRBEMJFZf+TzcZhGyk9UUrY1WF0/LgjJrfqdz5pafDxxzB3LuTlGU2GPv0UmndIZ9XhlWw8spGPft7I1mNb2Z2+m2JLMR5mD3IfzsXNZPwMxAbGUmwppl1oO1oHt6ZNSBtaB7emdUhr2oW2s22rfVh7nhrylEM+AyGEqK/ff4fiYhg+vOG3VXikEMZA4ZZCPJs0zCAk0dHGDcvvvAMPPdQgmxDCRhIEIVxQzuYcNg7bSElGCaGjQ4n7JK7KmSmtYeVKePzxOP75R3PhsAwun/Y3lw8P5oLYvgDM3/QzN35zY5X6mwc2Jy48jhMFJwj1CQVg6c1L8XI7xZ3IQgjRiLz8snH11BFdg7oFucE067wBTZt28qqwh0eDbkqc4yRBEMLF5G7NZeOQjZSklxBySQidPutUITkoKYHX5iXxxqsepKUrvPu+Q95dr/Gjexo/JkHuln/bEoSeUT0Z1GIQXSO70rVJVzpHdKZDWAd8PXyrbFeSA1EfSqmLgVcBMzBXa/1sNWXigVmAO5CmtR7owBDFOWjbNqOXtq++csz2zF5m6GedN6CuXY2e5j77DG6seu5HCLuRBEEIF1KSXcLGoRspPlZMyMUhxH0Rx/7c/azdvZYr24/h88/MPP44HCWd7J6PQvsfyDJZUCjah7anW5Nu9I3pa6uvY3hHfr/5dye+I3E2U0qZgTeAYUASsEYp9b3Welu5MkHAm8DFWutEpVREtZUJYUcvvwx33nnq7pntqehYEdwBRX8U4RHesKf277sPHn4Yxo2TgdNEw5EEQQgXUuxVTOojqSxds5S9g/ey6vVVpOelw9ZraLXxCqIizMyZAyvMP7DxqDu9o5/BPdWdCaMmyMBYwhn6AHu01vsAlFKfAqOBbeXKXA98rbVOBNBapzo8SnFOOXLEuHKwe7fjtqmLNWy3zhvYiBFGkrB0qTFYpRANQRIEIZwovzgfb3dvtNbsSNtB17e7UmwphubAXuBwL9x+/RkfFcz9zyQx5V+tUQoG8X+2OhISEiQ5EM7SFDhU7nkScH6lMu0Ad6VUAuAPvKq1/sgx4Ylz0RtvwNixEBZ2+rKNkclk3IPw8suSIIiGIwmCEA6itWbP8T0kHEhgWeIyViSuoHlQc3666Ce2jtlKq3db4enmScfgjnT3G8neLyaxa3VznnnKzPjxClPD9Z4nRH1V18Ch8ilUN6AnMATwBlYqpVZprXdVqEipycBkgMjISBISEuwSYE5Ojt3qsjeJre5OF1d+vonXX+/L7Nn/kJCQ77jA0ozZyr9WggMSk2bNTPz1V18+/HADzZvnnbKsq36X4LqxuWpc4LjYJEEQooEt3b+Uuf/MJeFAAsnZyRWW5RXnceC5A+Ssz+Hwo4c5+lUqn8735qFpxsiZP34MAXJxQLiuJCC23PMYILmaMmla61wgVym1DOgKVEgQtNZzgDkAvXr10vHx8XYJMCEhAXvVZW8SW92dLq4334RBg2DcuMoXshpWYXIhK1nJBf0uwDO6Ybo5rWzqVPjrrz7cfJrB5V31uwTXjc1V4wLHxSYJghB2Uv4KQbcm3ejdtDcAezP28r/N/wMgzCeM+BbxDGw+kAubXUjniM6oYoVnqCcl1zbj8lFuZGTAr79Ct26OjT8rK4vU1FSKi4vtUl9gYCDbt2+3S1325qqx1TUuX19fYmJiMDnv8tIaoK1SqiVwGLgO456D8r4DZiul3AAPjCZIrzg0SnFOKC01mt18+KGzI3GM22+HDh3gySchPNzZ0YizjSQIQtRT+YQg4WBChSsEU8+faksQLm5zMbNHzia+RTxx4XEopSg6WoQ50IzZZEZ7wNJWrZg+BKZPh3vvBTcH/2dmZWVx9OhRmjZtire3N8oOXWNkZ2fj7+9vh+jsz1Vjq0tcFouFw4cPk5aWRkSEczoG0lqXKKXuAhZhdHP6vtZ6q1JqinX521rr7UqpX4BNgAWjK9QtTglYnNW++844UO7Xz9mROEZEBIwZA2+9BY884uxoxNlGEgQhaklro2l12cHziPkjWLxvcYUy4T7hxLeIp39sf9trMQEx3NnnTtvzwiOFbIjfgFdzL5p+cB63TzWzcyf88Qd06uSAN1KN1NRUmjZtio+Pj3MCEHVmMpmIjIzk4MGDTksQALTWPwE/VXrt7UrPXwBecGRc4tzz4otG7z5O6frTBIRa5w50771Gk6oHH3Rcl67i3CAJghA10Fqz+/huEg4k8GP4Mta83JTltyyndUhrAOLC49hwZAPxLeJtU8ewjqc8+16UWsTGIRvJ35nPppIAnuhj4sqr4eOPnfvjXlxcjLe3t/MCEPXi7u5OSUmJs8MQwun++svo3vTKK52zfc8mnvClde5AHTtCz56wYAFMmODQTYuznCQIQpSTV5zH/E3zjWZDBxJIyUkxFvgBObA88WSC8PSQp3llxCu1bo5TlFbExqEbyd2Wx8ImLZl/ohnvz1NcckkDvZk6skezIuFY8p0JYXjpJeNsurlhBzKukaXYAnvB0t9SYeR7R5g2De6+G269VQZOE/YjCYI4Z2mt2Zm+k73H93JJO+Mo3aRMTP1lKgUlBcDJJkOdlyVy9SPv0zGso219H/faN8cpPl7MpmGbSNucz6sB55ESGsLK7xWtWtn3PQkhxLlm926jiaYzb04uPlYME6F4ZLHDejEqM3gwuLvDzz/DqFEO3bQ4i0nP6uKcUTYY2dtr3+a6L68j6qUoOr7Rkeu+uo4Si9FMw8vNixkXzuDNUW+y9Y6tHL3/KJ9f8zk3Znew3WBcV8WZxWwcvpG9G4qZ6tmT0OHBrFxtkuSgkVq+fDlBQUG1Kjty5Eief/75GpfPnz+fFi1a2CcwIc5Rzz0Hd94Jfn7Oi8EjygMWW+cOppTRwcXTT4Nu+IGcxTlCriCIc8KiPYu4+dubOZp7tMLrkb6RDGwxkMyCTMJ8jNFtHhlov+4gSk6UsGnEJtauU/zH3JP7HzTx4ONmuQx8BuLj4xk6dCj/93//V6vX7W3AgAFkZmbWquzPP//coLEIca47dAi+/tq4iuBUGiiwzp3w+37ttUZPRsuWwcCBjt++OPtIgiDOGkWlRaxLXseKQytYcWgFvaJ6MfOimYDRk9DR3KM08WvCwOYDbTcVtw9t32DtuEuyS9g0chM/rvbkFVN75ryjuWaC/MsJIYS9vPCCcXNuaKhz4yg6UgSXQdHhIoc3MQLj3ouHHoKnnpIEQdiHNDESjdryg8uZ8dsMLvrgIgKfDaTf+/14YPEDfLvjWxbuXmgrFxcex447d5A8LZlPx3zKlF5T6BDWoeGSg5wSNo/azHsrA5htbsuP35VyzQTHX3o+VyUmJjJmzBiioqKIiopi8uTJZGdn25Y//vjjtGrVCj8/P1q3bs2sWbNsy8aMGcO9995bob4PPviA1q1bo7UmISEBt3IDVfz22290796dgIAAwsLCGDp0qG1ZfHw8Tz75pO356tWr6dWrF35+flx44YXs27evwnby8vK4//77admyJSEhIVx88cXs2bPHXh+LEGeVo0dh/nzjJl0BN94IO3bAmjXOjkScDSRBEI1CqaWULalbeP+f922DkQH8b/P/eHbFsyxPXE5BSQFx4XFM6jGJD6/4kAVXLbCVU0rRPqzhrhaUpy2azZdv4aU/Q1jo1pQ/EzT9Lm1kHVQrdcaTf0BA7cvbUUFBAYMHDyYuLo59+/axbds2kpKSmDp1qq1M+/bt+fPPP8nOzubdd99lxowZLFq0CIBbb72V+fPnVxhRet68eYwfP77av5+bbrqJu+++mxMnTnD48GFmzpxZbVwnTpxg5MiRjBkzhuPHj/PKK6/w5ptvVihz1113sWPHDlatWsWRI0c4//zzufTSS+02urUQZ5NZs2DsWIiKcnYkrsHDAx54wLiKIMSZkvYOwuVorUk8kcjqw6tZk7yG1YdXszZ5LbnFuQB8fOXHjOsyDoCrOl5FoFcgFza7kAtiLiDUx8nXmQGLVrxMO9a5W1i2XNP8fBlfwN6eeuopXnzxxQqv5eTkMHToUBYuXIjWmv/+978AeHt788QTT9CvXz/effddzGYz1113nW3E4sGDB3PJJZewZMkSRowYwYgRI/Dw8GDhwoVceeWV7N27lxUrVjB//vxqY/Hw8GDv3r0cPXqUJk2aMGjQoGrLLVy4EF9fX6ZPn45Sit69ezNhwgQWLDAS2bS0NL788ksOHjxIZGQkAI8++iizZs3i77//5sILL7TLZyfE2SAjA+bMgXXrnB2Ja5k40bhZefNm6NzZ2dGIxkwSBOF0R3KOcCDzAH1j+gJQbCmm3ex2FJUWVSjXIqgFvaN7E+V38nTRsNbDGNZ6mEPjPZXCQhg3Do4rH1YeKiUo0kmdcp8pO3SFkZ2dbTsIt7eZM2dWe5MywP79+0lMTKzS05BSiiNHjtC0aVPeeustPv74Y5KSktBak5+fz/XXXw+A2Wzmxhtv5IMPPuDKK69k3rx5DBkyhNjY2Gpj+e6773j66afp3Lkz4eHhTJ48mXvuuadKuaSkJJo3b17hKkTLli1tj/fv3w9Aly5dKqxXXFzMoUOHavW5CHGumD0bLrsMpBOwiry94Z57jCThk0+cHY1ozCRBEA5TaillV/ouNhzZYExHjXlqbir+Hv5kPpQJgIfZgyEth6DR9InuQ5+mfejdtDcRvhHOfQOnYCm0sO6mnUw/2Jbgpm78+CN4eTXS5KCRa968Oe3atWPr1q3VLl+xYgWPPvooS5Ys4fzzz8dsNjNmzBh0uaTolltuoXPnzqSkpPDRRx/x3HPP1bi9rl278tlnn6G15s8//2T48OF06dKFwYMHVyjXtGlTDh48iNbaliSUJQVlcQPs3r2b8PDwer9/Ic52GRnw2muwYoWzI3FNd9wBbdrA1q3QqZOzoxGNldyDIOxOa82hE4dYtGcRW1NPHqS9/8/7xL0Zx/VfX8/zfz3Pr3t/JTU3lUDPQHpE9SCzINNW9qcbfuLnG37m8UGPc0m7S1w6OQDY/uxhbvk8Gr/tx/n0fxa8GtktB2eTsjb7Tz/9NNnZ2WitOXz4MN988w0AWVlZmM1mwsPDUUrx448/VumOtH379vTq1YsJEyaQnZ3NlVdeWe22ioqK+PDDD0lLS0MpRXBwMCaTqcJNzOXjysnJ4YUXXqC4uJj169fz/vvv25ZHRERwzTXXcMcdd3D48GEAMjMz+eabb8jJybHXxyNEo/fSS3D55dCunbMjcU3+/sa9CI/Yr8ducQ6SBEGcsd/3/85Lf73EhO8m0HduXwKfDaTZrGZcvOBi5m2YZyvXPao7zQKbcXn7y3nkokf4+tqv2Xf3PjKmZ5AwPoEQ7xDnvYkzkJ0NkxfFcF4HC/MTfHD3lH8rZ/Lx8WHJkiVs27aNDh06EBgYyJAhQ9iwYQMAI0aM4LrrrqNPnz6EhYXx5ZdfVpsA3HLLLfz8889cf/31eHrW3G3hZ599RocOHfDz8+Pyyy/n8ccf56KLLqpSLigoiB9//JHPPvuM4OBg7r77bm6//fYKZV5//XXat29PfHw8/v7+dO7cmS+++MIhN9cL0RhkZrrz1luud/Br8jbBxda5C7jjDli1Su7REPUnTYzEKRWVFnEg8wC703ez5/ge9hzfw77MfXx/3feYTUYTmhlLZrD68OoK64X5hNEpvBMtg0+2se4V3YuD9xx0aPwNyVJiIeu45pIrzXTpqnjjjWBMrrFvOKslJCSc9vXY2Ngabyo2mUy88sorzJ0795TbmTRpEpMmTaryenx8PCUlxsjbHh4e/PTTT7WO9YILLmBdpT32I+WOdHx8fHjyyScrdI0qhDjpf/9rxtixYG2R5zLcg91hunXuAnx84OGHjUTqgQecHY1ojCRBOMflF+eTeCKRxBOJRPlHcV7EeQAkHEjg1u9u5eCJg1i0pcp6SVlJNA8yfqGvaH8FvaN7ExceR6fwTsSFxxHue3a3odalmnVjdzF5cQx9xvjwxhsmSQ7EOUkpdTHwKmAG5mqtn62hXG9gFfAvrfWXDgxRnCUOH4ZffmnCjh3OjqSqkpwS+ARKepXg5ucah1YTJxoDyW3ZEoC1Dwchas01/oqF3ZVaSknLSyM1N5XOkSf7OnvijydYvHUxebvySDyRyLG8Y7ZlU8+fyqyLZwHg7ebN/sz9KBQtglrQJqQNbYLb0Da0LW1C2lToTnTGgBkOe1+uQJdq1o3bxYQvm9DCPZsX7gSTyc/ZYQnhcEopM/AGMAxIAtYopb7XWm+rptxzwCLHRynOFk89BaNGpRAd3czZoVRhKbDAGuvcRXYHnp7GFYTZs1ty113OjkY0NpIgNBIllhIy8jNIz08nPS+dmIAY2xn8v5P+Zs66ORzJPUJKdgpHco6QmptKqS4FoPD/CvEwG6P4/rznZ1amrbTV625yJzYwlmaBzWgV3Mr2epfILmy/czstg1ri6eb4YeNdlbZo1o/fza2fRtLcLZ8Pl/gQ0N1F9gZCOF4fYI/Weh+AUupTYDSwrVK5fwNfAb0dG544W+zdC599Bu+9dwhwvQTBI8wDXrbOXchNN8Gjj3qyeDEMc50ewUUjYJcEobaXmAUcyz3GoaxDZBVmkVWYxYmCE7bHbiY3Huh/srHgkI+GkHgikbS8tAo9/AA8O+RZpl84HTCa+7y/4X0qC/UOJco/iqzCLMJ8wgB46MKHWL9pPSMvGEmzwGZE+kViUlXbxni7e9MhrIMd33njpy2afybs5pb5ETQz5/Phr94EDwh0dlhCOFNToPwgDUnA+eULKKWaAlcCg5EEQdTT9OkwbRoEBbnmqOKl+aXwO5SeX4rZ23W6uHZzg0mT9nHffefxzz9gdp3QhIs74wShtpeYXU2ppZSi0iIKSwuNeUkhhaWFNA9sjrvZuMloa+pWkrOTySvOI684j9ziXNvj2IBYbuhyAwCZBZlM+mHSyXJFRrnj2ccpWVPCR1d+xMVtLgZg9urZ/HfZf6uNKcI3okKCsOf4HhJPJAKgUAR7BxPmE0aod2iFNv69onvxzqXvEOUXRRO/JkT5RxHhG2G7alDe5e0vJyAlgPNjzq+yTJyChg237eGWedbk4BcvQgYFOTsqIZytuu6VKo+yNwuYrrUuPVVvTEqpycBkgMjIyBpvRq+rnJwcu9VlbxJb7WzcGMjy5R2ZNGm1S8VVQRrwBCzvshzCnB1MRd275/DVVzFMn36USy9NcXY4Fbjq9+mqcYHjYrPHFYTaXmK2OZZ3jDdWv0GJpaTCVKpLuarjVbYbZZfsW8J3O7+rUq7EUoKnmycfjP7AVufN397MoROHbMvLH/hP7DGRB/s/aKtzxPwRtuY3le29e6+tqc1jfzzGl9uqv5duSMshtgQBqLEcwPH847bHzYOa061JNwI8AwjwDCDQM9D2uOwsf5nvr/seb3dvQr1DCfIKsvUaVFnzoOZM7jm5xu2LM5O/P5/cBE/GJ4YTY8pn3kJPQocGOzssIVxBElB+iOkYILlSmV7Ap9bkIAwYpZQq0Vp/W76Q1noOMAegV69eOt5Od1UmJCRgr7rsTWI7PYsF7r8fXnkFRoy4yGXiqqwwuZCVrOSCfhfgGe1azXITEhJ4//0gLr00iEceaU9AgLMjOslVv09XjQscF5s9EoTTXmKuLDEzkbt+rv6OmZK78ji+JR6Ar/p9yVvD36u2nHehFx9cMY946/Ol/47kUOjRasuufWIVyxb9AsDW5psovcVIDjxLrFMpqNJg3Eo8yW/dDzKMeqIvGkDP5t3xKvbEs9jTNvcu9iLmu6Ysu9mos8RUymMdHsar2JMuxa8TUpyGTzEkF08mr3ggvZ+YA6VGMjGcq2nDMzV+Nsv4pcLzE0AQUzCzFIAkrmYfE2nK17TmXQAy6cImah7ptTITsJfJVdYPZDNdMRKpErz5i69rXSdQ7fpm8unPVbYya5hLPk1PGVv5z6Cm9XsxER+MwaS2M51jtr+E2qlu/Q48T0SlzxkgF28e414jOfjeg7CLG+d4DUI0gDVAW6VUS+AwcB1wffkCWmtbX8dKqXnAwsrJgRA1+fhjo5nM2LHOjqRx69kTRoyAZ54xJiFOxx4JQm0uMVe4fBwYGEj86njMFnOVqfmxtlgwhqHttr8Pd/3sjZ8lhZaWr3CzgLK4s9fyIJ6lFih3oP1/304i2y3IVo9HqQdupW64l7gTmB9oq7NTYk8W/3cxHpZCLuJS2/p/8yr5xNKSG22v3bZsIFcypMY3Xtb5p8kCA7cZd//04V18rK+biSCVaNzLfcwaky2W2tLlxrMrW19XqFPVo86q61uo2H9zXeusbn2FpdJrHnWqt+b1T/7ZadzrHGt161f3Oedj4iE6E8caJs3zYKsvkFDHTTUwe1xuDAwMJDs72z4BWZWWltq9Tntx1djqE1dBQYHTLoVrrUuUUndh9E5kBt7XWm9VSk2xLn/bKYGJs0JuLsycCV98ATJW4Jl7+mno3Bluuw1atHB2NMLV2SNBqM0l5oqXj3v00l998dVpKx7AAOOBCcxe5rJ6sORbDxp9nrZdapmQX1pNWnIaPidX6GVd3+SVCCbjl6hDoYX2pXWrtPz6qb8mMODCASiPX8HNOPhsWmwhurhudVa3vnK7CDzeBCCoVDOgsOpYBTVZvmw5rQbPrrq+aQB43QOAWWsG5Ne+TqDm9av5nE8V24CLBlR8sYG/p7L1K3/OgZmay6420aMV3HiTB4MHx9dpG45ij8uN27dvx9/f3z4BWWVnZ9u9Tntx1djqE5eXlxfdu3dvoIhOT2v9E/BTpdeqTQy01uMdEZM4Ozz/PAwYABdc4OxIzg7R0TB1qjFw2hdfODsa4erskSCc9hJzFSYw+9TvVnqlVLXrnmmvAdWtb/I8w5GvPKq+T5O7Cc5goMXq1lfm6j+TGnmByePke6tu/Zo+59qq9/fkdeq/jYb4nqpbP7/IxOhroVVreO89WLbsjDYh7Cg+Pp6VK1fi7u6O2WymZcuWzJw5k2uuuea06yYkJDB06FAyMjKqLGvRogVPPvkk48aNq9XrQoiGs2MHvPEG/POPsyM5uzzwAJx3Hvz8M4wc6exohCs747FftdYlQNkl5u3A51rrrWdarxDOkpsLl10GzZvD3LnICMku6D//+Q85OTmkp6czfvx4rr/+evbs2ePssIQQdqA1TJliDPIVG3v68qL2vL3hrbfgjjuMfZ0QNbHLoY/W+ietdTutdWut9VP2qFMIZ8jNhUsvNXZK770nfUa7Ojc3NyZNmkRJSQkbNmwA4Ntvv6Vnz54EBQXRsWNHFixY4NwghRB18sEHkJcHd97p7Ehqzy3YDf5jnbu44cOhXz947DFnRyJcmev/JQvhINnZcMkl0KYNvPuuJAeNQVFREW+99RYA7dq1Y/HixUyYMIFvv/2W/v37s3btWkaMGEFsbCwXXXSRk6MVQpxOairMmAGLFjWu32CztxkGn3lzZ0d55RWjqdENN0C3bs6ORrgiSRCEALKyYNQo6NgR3nlHmhUBJKiEOpX36+FHr3W9bM/XBawDIF7H215b23MtOetzKqxXfnltPfXUU7z44otkZ2fj7u7O3Llz6dKlC5deeilTp05lwADjRvc+ffowbtw4PvroI0kQhGgEpk2Dm25qfAetRWlFMA2Kfi3CI6zqIKWuJiLC6O508mRYubJxJWPCMeQwSJzzTpww+ofu3FmSg8Zi5syZZGZmkpaWxqhRo/j9998B2L9/P8899xxBQUG2ad68eSQnV+lYrQp3d3eKi4urvF5cXIy7+xn0LCCEqJXvv4e//mqcTV9MXibobZ03ErfeCr6+8NJLzo5EuCK5giDOaRkZRnJw/vnw2mvS13Z59TmzX17PrJ5Vuuwsf4XBHoKDg5k7dy6tW7fmu+++o3nz5owfP54HHnigznW1aNGiyo3OOTk5HD16lFatWtkrZCFENY4cMc5mf/WVcdDa2Lj5ucFY67yRUArmzYNevWDoUOjRw9kRCVfSeFJdIewsNRWGDDFu1pLkoPEKCQlh2rRpPPzww9xzzz3MmjWL5cuXU1paSlFREevWrWPt2rUV1ikoKKgwlZSUMH78eObMmWNbNyMjg6lTp9KpUyenjjMgxNlOa7jlFpg0Cfr3d3Y09VOcUQzPWeeNSPPmMGuWcS9CXp6zoxGuRBIEcU46eBAuvNDoseiVVyQ5aOymTp1KSkoKycnJzJkzhwceeICwsDCioqK49957yck5ed9DaWkpEREReHt726a77rqLG264gaeffpo777yTkJAQzjvvPPLz81m4cCFubo3nrKAQjc3s2XD8uNGtaWNlybfAL5wcyLURueEG6N7dGCNBiDKy1xPnnG3b4OKL4b77jFElReOSkJBQ5bWAgACOHz9ue37JJZdUu258fDxa6xpHLJ40aRKTJk2yW6xCiFPbuhX++1/j3gO51cd53nzTuDF81CijNz8hJEEQ55S//4bRo+HFF0EGxhVCCOfJzoZrroHnnoO2bZ0dzelprTmUdYi84jwKSgooKCkgvzifgpICTKkmPPG0lc3Iz+Bw9mGCvYIJ9g7G280b5cKXqoOC4OOPje9j1Spo0cLZEQlnkwRBnDMWLzYupb7/vtG0SAghhHNYLEZ3pgMGGL3pOJPWmqO5R9mfsZ8DmQfYn7mf/Rn7ScpOIsAzgM/GfGYr2+71dhSWFlapIzQrlC/50vb8t32/ce2X19qee5g9CPIKItwnnJiAGOZfNZ8wnzAAth3bhr+HPzEBMU5NIgYMgIcegiuvhBUrwMfHaaEIFyAJgjgnfPghPPig0UOGtYt8IYQQTvLkk0ZHEZ9+6tjtJmcns/noZrpEdiHKPwqABxc/yIsrX6y2fIRvhO2xUooukV3ILMjE290bLzcvvN288XTzxC/Dr8J6AZ4BdAzrSEZBBhn5GRSWFpKam0pqbipbj23Fz+Nk+SkLp7A8cTm+7r60D2tPh7AOdAjtQJfILvRu2pto/+gG+CSqN3UqrF8PEyfCggVyf965TBIEcVazWIwb3z75BBISjIHQhBBCOM/33xuj1a9eDZ6epy9fX8dyj7E2eS1rktewNnkta5PXkpKTAsCHV3zITV1vAqBdaDtCvENoGdSSlsEtaRnUkhZBLWgW2IxI38gKda6etLrabRUmF7Ly7pW25yPajGBbm2225wUlBWTkZ5Cam8qRnCN4uXnZlkX7RxPhG0FqbirrU9azPmW9bdnE7hN59/J3ATiac5TlicvpH9vfltzYm1LGeEADBhjjI9x/f4NsRjQCkiCIs1Z+Ptx8MyQnG20qw8OdHZEQZx+l1MXAq4AZmKu1frbS8huA6danOcDtWuuNjo1SuIqNG42z0z/8AFF2PMbVWpOam0qkn3FAX1hSSOwrsVWaAwV6BtK1SVcCPANsr03oMYFJPRu2cwIvNy+i/KOI8o+iK10rLPt0jHEZ5Xj+cXam7WRH2g62HdvGhqMbGND85CXvZQeX2ZottQxqSb/YfvSP7U+/2H6cF3EeZpN9hkP29oavvzbGB+rQQZrknqskQRBnpQMH4OqrjR+3334DL6/TriKEqCOllBl4AxgGJAFrlFLfa623lSu2Hxiotc5QSo0E5gDnOz5a4Wx79xq95Lz5pnHweSa01uxK38XifYtZnric5QeXk1ecR/qD6ZhNZjzdPBnYYiAFJQX0iupFr+he9G7am9bBrau08zepM+/x3aOJB/xgnddTiHcIF8RewAWxF1S7PMgriGGthrEqaZVxn0TmfhZsXmBbdnjaYXzc7XPjQLNm8N13RnIgTXPPTZIgiLPOr78aN79Nnw733CNtKIVoQH2APVrrfQBKqU+B0YAtQdBa/1Wu/CogxqERCpeQkgLDhxtNPseMqX89iXmJTP5hMov2LiLxRGKFZWE+YSRlJdE8qDkAv9zwi+Nu+lWAl3XeQIa1Hsaw1sMotZSyJXULKw6t4K9Df7Hi0ArCfMJsyYHWmq5vd6V9WHuGtByCX54fWus6fxZ9+hj3IYwZY+xXu3Y9/Tri7CEJgjhrWCzw7LPGoDuffgrx8c6OSIizXlPgULnnSZz66sAE4OfqFiilJgOTASIjI6sd76I+cnJy7FaXvZ0rsWVnu3HPPd0YNCiV9u0TqW21pbqUndk7KbIU0S2oGwAZORm8u91okx/oHkjP4J50D+pO54DONPNpxv4N+9nPfrvEXSdpwDXwxxd/QJhjNhlHHHEhcUwMmUhBaYHt+0rMS2Rz6mY2p27my21Gz0r3bbqPHkE96Bnck76hffFz8ztFzSe5u8Ptt4czdGgbZs36h6ZNC+z6Hlz1f8BV4wLHxSYJgjgrJCcbVw0KCowb32LkHKUQjlDdKUldbUGlBmEkCBdWt1xrPQej+RG9evXS8XbK8BMSErBXXfZ2LsSWng4jR8Lll8PLL/uhVKtTlk88kciiPYv4dd+v/LbvNzILMukX2497rrgHAMtSCy/EvMCgFoPoHtXdLs2D7MFSbGHZ3GVcNPoiTO7OjUlrTb++/ViybwlL9i9h0a5FpBam8svRX/jl6C+suHUF/WL7AZCUlUS4TziebjXfLR4fb9wvMnNmXxYvtu+YFa76P+CqcYHjYpMEQTR6330Ht90Gt98OM2eCm/xVn9MWLFjA888/z8aNzrsPdsqUKbi5uTF79uxql//5558MGDAAras9lm5MkoDYcs9jgOTKhZRSXYC5wEitdbqDYhNOlpICw4YZI/M+++ypm3su2LSAJ5c/yY60HRVebxPSht7RvW1NZEzKxP39XK9rHZO7CVrj9OQAjO5Y24S0oU1IG27rdRu/L/2dkI4h/LbvN5YnLqdP0z62srd8dwsrElcwsMVAhrcazvDWw4kLj6vSHOm228BsNpKFX36Bzp0d/KaEw8mhlGi0MjONLtiWLDFuourf39kRCUfZt28f06dPZ/ny5eTk5BAcHEyvXr347LPPuOGGG7jhhhucGt/bb7/t1O070BqgrVKqJXAYuA64vnwBpVQz4GvgRq31LseHKJzhwAEYOhQmTIAZM06+rrVm09FNLNq7iAtiLrD10qPR7Ejbgb+HP0NaDWF4q+GMaDOCVsGnvuLgKgqPFMIYKNxSiGeTBuy7tR5MykS3Jt3o1qRbheRKa012YTb5Jfn8sucXftnzC2B0uzqs1TAmdJ9QoReliRPB39/4Xr///sxvNBeuTRIE0Sh98w3cdReMHm10mxcQcPp1xNlj1KhRDB8+nJ07dxIQEMDhw4dZuHDh2XBGvlHRWpcope4CFmF0c/q+1nqrUmqKdfnbwCNAKPCm9axkida6l7NiFg1v/Xq44gqjo4g774TU3FQW713Mor2L+HXvrxzNPQrA5B6TbQegl7S9hGXjl9E3pi/uZncnRl9PFiDdOm8klFKsmriKIzlH+G3fb/y691d+3fsrydnJfLjxQ/rH9rd9P9uPbSc5O5nRV/fHz8+Lyy6D99+XLlDPZs6/FiZEHSQmGj0qPPSQcSPym29KcnCuSU9PZ+fOnUyZMoXAwECUUsTExDBlyhQ8PT2ZN28ebdq0sZXPzs7mpptuIiQkhObNm/PRRx8RHBxsu8nrscceY8iQIUyfPp3w8HBCQ0N5+eWXOXjwIIMHD8bf35+ePXuyfft2W515eXlMnTqV2NhYwsLCuOKKK0hMPNmjyvjx45k4caLt+e7du4mPj8ff35+uXbuydu3ahv+gHERr/ZPWup3WurXW+inra29bkwO01hO11sFa627WSZKDs9gnn8CIEfDKK0ZycOM3NxL5YiTjvhnHx5s+5mjuUaL9o7ml2y2M7jDatl6wdzADmg9onMlBI9fErwnjuozjoys/IuW+FDZN2cSLw15kZNuRtjLvrHuHoR8PJeS5EGZnjmTsU58wcXIxTz2lkfMyZye5giAahdxceP55eOMN48rB/PkytkFDU4/X3GD4nUvfYXLPyQDMWTeH2xbeVmNZ/ejJvUfPOT0rjBJaeXlthIaG0qlTJyZOnMiUKVPo1asXHTt2rLELv6lTp7Jv3z527NiBl5cXkyZNorS0tEKZZcuWMXbsWI4cOcKvv/7KpZdeyk8//cQbb7xBmzZtuOWWW5g6dSq//vorAPfeey8bNmxg1apVBAUFMXXqVC677DLWr1+P2VxxsKKSkhIuu+wyhgwZws8//0xSUhKXXXZZnd6zEK7Moi1sSN7MtAcLWb04lk++LGD0wJYAxPjH4OXmxUXNL2JE6xGMaD2i2jbuwjUopegc2ZnOkRVvMmgZ1JKukV3ZeHSj0RyJX2Ds/Tw+5wcWLPZgzY/n4evrpKBFg5ArCMKllZTAvHnQsSPs2mVcun7sMUkOznVlvTjMmjWLbt26ERkZyRNPPFGliZHFYmHBggX897//JSIigoCAAJ5++ukq9bVr146JEydiNpsZOXIkoaGhjBgxgo4dO+Lu7s7111/PmjVrbHV+9NFHPPnkkzRt2hRfX19mzZrF9u3bWb16dZW6//77b/bv388LL7yAt7c3bdu25b777muYD0YIBzmcdZh5G+Zxw9c3EPF/veh5YTp//JVD/vjOHPT6wVbuwf4PcvzB4ywat4hpF0yjU0QnSQ4aoal9p7JhygZS7kvh4ys/5sYuN9Ik2kLxjf3APZc+fWDDBjh04hDTF09nyb4lFJTYt0tU4VhyBUG4pNJSownR448b3at98onchOxotT2zP7nnZNvVhPKys7Px9/ev8Nq6yevsEltYWBhPP/00Tz/9NHl5eXz++edMmjSJpk2bYjKdPO9x7NgxioqKaN68ue218o/LREVFVXju4+NT4TUfHx+ys7NtdRYUFNCq1cmbJ/38/IiIiODQoUNccEHFUVCTkpKIiIjAx+fkCKctW7as5zsXwjmO5x8nxDsEgBJLCR3f6Eh2YTZsugEW/YJ//HtccesuRrR9leGth9vWC/YOdlbIogGUNUca12UcWmu2pG7B+14fVv5kDIQ34F8pfB3yIs//9Tzebt6n7R1JuC5JEIRLKSw08e678NJLEBoKb78NgwbJaMiiZj4+PowfP57XX3+dDRs20KNHD9uy8PBwPDw8OHjwIK1btwaocK9AfYSHh+Pp6cn+/fttdebk5JCamkpsbGyV8k2bNiU1NZW8vDxbkrB/vxMGchKiDlILUpm/aT5/HPiDPw7+QeKJRDIfysTLzQs3kxtDI25k1bvXoVPjmP3DCa4a9JAc/J1jypojAbS5EQYOhKvHxtH0xB78rp7GzpJvK/SO1DKoJbv/vRuzyXyqaoWLkARBuISUFCMZeP31vvTrZ9x8LImBqE5GRgbPP/88N9xwA+3bt0cpxXfffceWLVt46KGHyM3NtZU1mUxcf/31PPbYY3Tu3BkvLy9mzpx5Rts3mUzcdNNN/Oc//yEuLo6goCDuu+8+OnToQJ8+faqU79u3L82bN+ehhx7iueeeIzk5mVdeeeWMYhCiIew5vocnlz3J8sTl7MvYV2GZn4cfu9J30SG4C6+9BsuefYOJE+HRR8HbO9RJEbsO5a6go3V+jmrWDP5e7sfs2X488cQ3TBmbS4/rFvJn6k/8uvdXWgW3siUHxaXFtJ/dnmhzNFd4XEH/2P70iOpxygHbhGPJPQjCaUpKjL6UR4+GuDg4ehRmzdrAwoUweLAkB6J6Hh4epKamctVVVxESEkJ4eDhPPvkkr7/+Otdcc02V8q+++irNmjWjXbt2nHfeeQwbNgylFJ6e9d8RvfLKK/Tq1YvevXvTrFkzUlJS+P7776vcoAzg5ubG999/z8aNG4mIiOCqq65i8uSqTbKEcJRjucf4YecPzFwyk1dXvWp73aRMfLjxQ/Zl7MPX7MuotqN4fujz/D3xb44/mMGhtV3o2tUYe+avv4zBz7y9nfhGXIhHuAe8aZ2fw0wmuPtu2LIFCnN8eeyafxGf8SGJdyfz+TWf28ptOrqJ/Zn7WZG+ggcWP0C/9/sR+GwgAz4YwEO/PUTiiTO70ivOnFxBEA5VWgorVsDnnxuDm7VqZQyks2AB+PlBQkKes0MULs7X15f33nuvxuXjx49n/PjxtucBAQHMnz/f9nznzp1orW33Ijz22GNV6jhw4ECF5/Hx8ZSUlFSI4fXXX+f111+vNoZ58+ZVeN6hQwf++OOPCq/dc889Nb4HIexpXfI6luxfwvqU9axNXsvejL22ZV0iuzC171TAaALy1iVv0Tu6N5k7MxkyaAhaGyPnXniV0Zvcc8/BZZfJCZzKSgtK4S8o7VuK2Uua0ERGGuMkrFpljIfxzDOK//wnhOuvN0Zk7hHVg93/3s3cX+dy3Pc4fyb+yfa07fyZ+Cd/Jv7JzV1vttX19tq3SclOoXfT3vSK7kUTvyZOfGfnDkkQRIPLyYHff4effjKuGEREwLXXwrJl0Lats6MTZ7v9+/eTkpLC+eefT1paGvfeey/9+/cnOjra2aEJYTdaaw5nH+aflH9Yn7KesZ3H0i60HQCfbf2MF/56wVbWx92H3tG96RvTl/6xJ3t/UEoxpdcUAH7b9geffw4vvwzZ2UZTojFjjDPEoqqSzBJ4GUpuLcHcRBKEMn37QkICLF1q/A09+SRMmwbjxinahLTh4iYXEx8fD0B6Xjork1ay+vBq2oe1t9Uxb8M8/j78t+15U/+m9IjqQZfILgxtNZT4FvGOfVPnCEkQhN3l5cHff8Py5UYS8PffxpDsI0caPxLt25++DiHsJT8/n8mTJ3PgwAF8fHy46KKL5B4A0egVlxYze/Vsth7byrZj29h2bBsnCk/Ylkf5R9kShOGth5NXnEf3Jt3pEdWDzpGdcTNVv/s/cgTeew9mzepLXBw88IAxKnI1redEOZ5NPOFL61xUoJTRbHjQICNZeO01mDkTbr4ZevQ42UYt1CeUS9tdyqXtKg7P/NCFD/HXob9Ym7yWdSnrOJx9mMPZh/lh1w9kF2bbEoSdaTt5avlTdI4wxnGIC48jJiAGk5Kstj4kQRBnpLQUdu82+j9ev95ICjZvhs6dYcAAmDoV4uOhUm+XQjhMXFwcW7ZsqfBaWZelQriqrMIs9hzfU2EqthTz8ZUfA+BmcuOxPx4jqzDLtk6IdwjdmnSjR5MedGvSzfb60FZDGdpqaI3bys2Fb74xBqD8+2/jSsEzz2xi4sTeDfb+zjaWYgvsBUt/CyZ3OSCtjlJGkjBoEBw4YHRG8u9/d+eNN2DcOKNlQVhY1fWu6HAFV3S4AjAG5duVvouNRzayOXUzA5sPtJVbfXg1H2/6uMK63m7etA1tS/vQ9rx72bsEegUCUFBSgJebDKh0KpIgiFopKTH+oXftMhKCbdtg40bjRqQmTaBrV+jeHZ5+2rhaUK7LdyGEEJUUlRaRkp/CHwf+oHVIa2ICYgCYu34uDy95mGN5x6qs42H24IPRH+BmckMpxcwBM/Fx96FTeCfiwuOI8I2odVejR4/Cjz8azT6XLoULL4Tx4+Hrr43f74SE3NPWIU4qPlYME6F4ZDGe0XIV4XRatIDnn4fhw1dSVDSQ+fNhxgzo3Rsuv9y4z6W64WJMykSHsA50COvAv/hXhWUXNruQty95m82pm9mcupmdaTs5mnuUTUc3sTNtJ59c/Ymt7EUfXMSBzAO0Cm5Fi6AWtAhqQcuglrQIasF5Eec18LtvHM4oQVBKXQM8BnQE+mit19ojKOFYWkNmJiQlnZwOHz75eP9+OHjQGLCsbVto1w7OO8/I+Lt2hYAAZ78DIYRwHXnFeWQWZBLtb9znYtEWHvrtIQ6eOEjiiUQSTySSkp2CRsNqeGPUG9zR+w4AvNy8OJZ3DC83L9qEtDGmYGNe1mSozIP9H6x1TDk58Oefxv1gS5caJ3qGDzeuFrz3njHujBCO5uamGToURo0yrmQtXmwkrU8+afxNDhx4cjrdbWMtg1tyW6/bKryWWZDJ7vTdpOSkVBh/ISkriWN5xziWd6zC/Q0AD/Z7kJHuIwHjBv9n/nyGaP9omvo3NeYBTW3P/T3P3uYRZ3oFYQtwFfCOHWIR9WSxGP9Y2dnGTiA7u+qUk2MkAWlpsH17HCaT8TgtDdLTwcsLYmIqTn36wFVXGZl+q1ZGGSGEONeUWkrJKMggPS+dKP8oAjyNsyJL9i1h4a6FHMk9Qkp2Cik5KRzJOUJWYRYtg1qyb6oxloBJmfhgwwek5aXZ6jQpE+Ee4bSNaEuw18nRhi9vfzlJ9yYR5R9V77bTxcVGU881a05Ou3cbZ2cHDzYGojz/fDiDnn7F888bH+igQTWXWbrU+PAfrH0idy7z9TXud7niCqP58saN8Mcf8NlncNddEBJiNF3u3t2YunY9ffPlIK8gejet2lQuaVoSydnJHMg8wIHMA+zP2G/MM/cbzfPSjXLbjm3jq+1f1Vj/sQeOEeZjtIt6ZvkzJGcnE+4bTrhPeIV5tH80QV5B9fpcnOWMEgSt9XagzqMn5uQYXV1qXVZP/R9v2BBMQcGZ13Mmjy0W44+5tNRoilP2eOfOGNasqX5Z+cfln5eUQGHhyamgoOLzyq8VFBg3BXt7G/8oZZOfX8Xn/v4QGGic+Q8PP8bAgRGEhRnt/UJD5eBfCFE/SqmLgVcBMzBXa/1speXKunwUkAeM11qvd3ScuUW5ZBZkklWYVWUK9g62tXE+UXCCsV+NJT0/nfS8dNLz08ksyLTV89W1X3FVx6sAo83zrL9nVdmWh9kDD3PF/vCfHfIsXm5eNAtsRrPAZkT7R7Ni+QpbDy5lAjwDbAnI6eTkwN69sGMHbN9+ctqzxzip07u3Md12G3TpIgmBXfXubTSa//zz6pOEpUtPLhd1ZjZDjx7GdO+9xnHWli3GseOGDcb9Mlu2GFcVunWDDh2MFg5lrRxOd0XMpEzEBMQQExDDhc0urLI8ISEBgIEtBvLp1Z9yOPswydnJJGcn2x6n56UTWm6QwM+3fc6GIxuq3d74buP5YPQHAOxI28Et391CkFeQMXkGEewdbHt+VcerbElHWl4aFm3Bz8MPbzdvh45W7rB7EJRSk4HJAO7unbntthPW18uW6wr9Ktf29ZKSaL744vgZ11Pd6+VfO9XrSmlMJjCbNSaTMZnNmtJSE2lph2zPT86rlnV313h5YX1ssU0eHhY8PE79mpdXaZ16mGjePAez+RgZGZCRYZxZchU5OTm2f0xX4qpxgX1iCwwMtPuNu6WlpS57M7CrxlafuAoKCpz2t6mUMgNvAMOAJGCNUup7rfW2csVGAm2t0/nAW9Z5jQpLC1mfsp684jzyi/PJK86zTe1C2zGg+QAA9mfs56WVL9mW5ZcYZbMLs8kqzOKHsT/Y6py8cDL/2/y/arfXL7afLUHwcvPi5z0/V3yfKIK8ggjzCatwVn9IqyG8YH6BJn5NiPKLMub+UQR7BVfZkU/oMeFUb7mC0lLj6u7RoxWnpCSjuefBg8Y9Yfn5Rjvtjh2N6fLLjT7n27c3zsaKBjRokHHwf+218MkncLgQ8IXFv0FTTxg7tubkQdSZyWQkuV26nHytpMS4L3LjRmO+aBHMnm08NpmMkZ1jYqBpU2Mq/zgiwrgi4Xaao+CyhL46WusK/+ePDnyUA5kHOJZ7zNZ8qexxy6CTN1QczTnKqqRVNW6zf2x/W4Jw/6/38+HGDwHjd8jXwxcPPAjZHEK/2H58eIWxrLi0mEk/TMLPw882+br74u3ujZebFwObD6RlsBFDSnYKydnJ+Lif+mbR0yYISqnfgOpGpZiptf7udOuX0VrPAeYA9OrVS69dG1jbVU8pISGhyhkYV+GqsblqXOC6sblqXGCf2LZv346/nbuays7Otnud9lJdbC1atODJJ59k3LhxToqqfp+Zl5cX3bt3b6CITqsPsEdrvQ9AKfUpMBoonyCMBj7SWmtglVIqSCkVpbVOqanSvcf30nNOz2qX3dbzNluCkJaXxhtr3qgxuOP5x22PI3wiiPIzmgcFegXaztQHeAbQPvRk38uebp4sHLuQYO9gQr1DCfUJJdgruEL7Zdubb9qHPk37AMbBSn4+5GdDYqpxZTc//+Q8P98443/ihDFlZsL27W15552Kr6WlwfHjEBRkDDZVNkVEGAc4/foZzT6bN4fwcBmwzKkGDTKSg1GjwBQOLIDbJoPlmDHwjyQHDcrNDeLijKk8rY3/o0OHTt5Tefiw0e162eNjx4wTpH5+J1tSlE2BgXD8eCtWrKi+ZYafn9HqwstL4eVlXJnz8oLR7a+o1f9j96jurLh1BZkFmWQWZJKRn2F7nFmQSaRfpK2sl5sXYT5h5Bblkl+ST05RDgDHjx+nRVALW7mcohxbIlGdT6/+1JYgfLzpY6b/Nr3KVc4qn+/p3ojWuua+0YQQwoH8/PxsjwsLCwHwLNduIicnx+ExneOaAofKPU+i6tWB6so0BWpMEGITY3nnsZpvbUsgwfZ4KUtJccvl48CdmC0mTBYT954wTjPOeXwtZq34H7sYwQhGM7pWdfriSxFF3EI6xWRRTBLTyKEZJTxOE/bgSzHuTOAow8iosc4y7tYpANjMfjRHCeQE42lDMK0pZBF+LCOQE5jpylEmQRrGtLVqfblUzMDa8RLRLAQgmUvZxX1EsZD2vARANu1YV8dbBaNYCAyqsL4fu+jFyZtAE1hapzprWj+ekwfSa3mHHNpVWbe88t9VTev35Db82QXATu4jhYp9659OdetX9zkbh1G/nlyxsBAohmHD6rS9hhTv7ABOIb4B6lRAuHXqcYpyFhSZJ4JIPxFK+t5Q0jGmLALIxp9s/DlinWfjTw5+tnkBXhTgRSGetsdFeOJBIV4U4Gmdlz12owQ3SjBTWu6xJ26EYiaowrJ/s9j22ExvrqI7ZkoxUUqJWVNi0pSYLZi05r6bXsKEhVKlGRn+LMVmCyVmTZFZU+JmsZbVLHlpGzuzH0Gh+SfKQlTMDMxYSOK5Gj8f6eZUCNFolE8AJk6cSElJCfPmzXNeQKK682W6HmUqNENtd5oDxMoCSooZmp6ECQsKDRgJQne9GRMWTFjwJRSo281WL/AA7hTjTjE53EspzXiTO/BlD+4Uk8qtZFC3A8GHebbSgWdrOrOFaP4CIJmWHK1TjcJVNGceZvKcHYaoJROaEDIIIYO27Dnj+iwoivCokDSUPS7BjVLM1tTg5OOa5jUt06XKmIoVFkxoFBqFRZuISLU+Lv+67bGJYuvjjimK9inG45rTA4w2VPWdgCsxzgYVAkeBRbVZr2fPntpeli5dare67M1VY3PVuLR23dhcNS6t7RPbtm3bzjyQSrKysuxeZ3kTJkzQN998s+35jBkzdMuWLbWvr69u1aqVfuWVV2zL9u/frwH90Ucf6Y4dO2o/Pz89bNgwnZycbCvTvHlz/dRTT+nBgwdrX19f3alTJ71ixYoGfQ+V1eczO9V3B6zVZ/Abf7oJuKD87z4wA5hRqcw7wNhyz3cCUaeqV/YRzueqsblcXD/8oLWXV1m/Jcbk5WW87iJc7jMrx1Vjc9W4tLZvbKfaR5zRcH9a62+01jFaa0+tdaTWesSZ1CeEEPUVFxfHn3/+SXZ2Nu+++y4zZsxg0aJFFcp89tlnLFu2jB07dpCbm8sjjzxSYfn777/Pa6+9xokTJxg2bBg333yzI99CY7QGaKuUaqmU8gCuA76vVOZ74CZl6Auc0Ke4/0CIRsXLy7ir3MsLrVSF50I0ZjIeuBDirDBu3Diio6NRSjF48GAuueQSlixZUqHMo48+SlhYGAEBAVx//fWsXVtxbMfbbruNTp06YTabmThxInv27OHEiROOfBuNita6BLgLWARsBz7XWm9VSk1RSk2xFvsJ2AfsAd4F7nBKsELY29KlRm9FP/0EX3zBgVtugS++MJ6PHWssF6KRknsQhBDVOvPeUWrfG4+u0iK97l577TXeffddkpKS0FqTn5/P9ddfX6FMVFSU7bGvr2+VLkUrLwejZ6HAQPv0unY20lr/hJEElH/t7XKPNXCno+MSokGVH+fA2lvRQT8/Wpb1KFfWBap0dSoaKbmCIISoVsVGtXWfsrKya132TK1YsYLp06fzzjvvkJaWRmZmJpdddllZm3chhLCvNWtOffBfNk7CmjWOjUsIO5EEQQjR6GVlZWE2mwkPD0cpxY8//sjPP/98+hWFEKI+Hnzw9FcGBg0yygnRCEkTIyFEozdixAhuvPFG+vTpg1KK0aNHc+WVVzo7LCGEEKJRkgRBCNEozZ071/bYZDLx1ltv8dZbb1VbtkWLFlWaG40fP57x48fbnh84cOC06wghhBDnAmliJIQQQgghhLCRBEEIIYQQQghhIwmCEEIIIYQQwkYSBCGEEEIIIYSNJAhCCCGEEEIIG0kQhBAAWCwWZ4cg6kh6WRJCCNEQJEEQQuDr68vhw4cpKiqSg85GQmtNeno6Xl5ezg5FCCHEWUbGQRBCEBMTQ1paGgcPHqSkpMQudRYUFLjswaurxlbXuLy8vIiJiWnAiIQQQpyLJEEQQmAymYiIiCAiIsJudSYkJNC9e3e71WdPrhqbq8YlhBDi3CJNjIQQQgghhBA2kiAIIYSoM6VUiFJqsVJqt3UeXE2ZWKXUUqXUdqXUVqXUVGfEKoQQom4kQRBCCFEfDwFLtNZtgSXW55WVAPdprTsCfYE7lVJxDoxRCCFEPUiCIIQQoj5GAx9aH38IXFG5gNY6RWu93vo4G9gONHVUgEIIIepHEgQhhBD1Eam1TgEjEQBOeYe7UqoF0B34u+FDE0IIcSac0ovRunXr0pRSB+1UXRiQZqe67M1VY3PVuMB1Y3PVuMB1Y3PVuMB1Y7N3XM3PZGWl1G9Ak2oWzaxjPX7AV8A9WuusGspMBiZbn+YopXbWZRun4KrfNUhs9eGqcYHrxuaqcYHrxuaqcYF9Y6txH6Ea+6BISqm1Wutezo6jOq4am6vGBa4bm6vGBa4bm6vGBa4bm6vGVR3rAXy81jpFKRUFJGit21dTzh1YCCzSWr/shDhd9jOV2OrOVeMC143NVeMC143NVeMCx8UmTYyEEELUx/fAzdbHNwPfVS6glFLAe8B2ZyQHQggh6kcSBCGEEPXxLDBMKbUbGGZ9jlIqWin1k7VMf+BGYLBSaoN1GuWccIUQQtTW2TCS8hxnB3AKrhqbq8YFrhubq8YFrhubq8YFrhubq8ZVhdY6HRhSzevJwCjr4z8B5eDQKnPlz1RiqztXjQtcNzZXjQtcNzZXjQscFFujvwdBCCGEEEIIYT/SxEgIIYQQQghhc1YlCEqp+5VSWikV5uxYAJRSTyilNlnb3f6qlIp2dkxllFIvKKV2WOP7RikV5OyYyiilrlFKbVVKWZRSTu9FQCl1sVJqp1Jqj1KqutFinUIp9b5SKlUptcXZsZSnlIpVSi1VSm23fo9TnR0TgFLKSym1Wim10RrX486OqTKllFkp9Y9SaqGzYzkbudo+Alx3PyH7iDrFI/uIOnDVfQS4/n7CkfuIsyZBUErFYtwol+jsWMp5QWvdRWvdDaObv0ecHE95i4HztNZdgF3ADCfHU94W4CpgmbMDUUqZgTeAkUAcMFYpFefcqGzmARc7O4hqlAD3aa07An2BO13kMysEBmutuwLdgIuVUn2dG1IVUzFGGxZ25qL7CHDd/YTsI2pB9hH14qr7CHD9/YTD9hFnTYIAvAI8CLjMTRWVBgTyxbVi+1VrXWJ9ugqIcWY85Wmtt2ut7TVI0pnqA+zRWu/TWhcBnwKjnRwTAFrrZcBxZ8dRmdY6RWu93vo4G+PHrKlzowJtyLE+dbdOLvM/qZSKAS4B5jo7lrOUy+0jwHX3E7KPqDXZR9SRq+4jwLX3E47eR5wVCYJS6nLgsNZ6o7NjqUwp9ZRS6hBwA65zZqiyW4GfnR2Ei2oKHCr3PAkX+SFrDJRSLYDuwN9ODgWwXZ7dAKQCi7XWLhGX1SyMA1iLk+M467jyPgIaxX5C9hE1k33EGXC1fQS49H5iFg7cRzSabk6VUr8BTapZNBN4GBju2IgMp4pLa/2d1nomMFMpNQO4C3jUVWKzlpmJcblvgaPiqm1sLqK6Lhpd4myCq1NK+QFfAfdUOkvqNFrrUqCbtT31N0qp87TWTm+fq5S6FEjVWq9TSsU7OZxGyVX3EeC6+wnZR9iF7CPqyRX3EeCa+wln7CMaTYKgtR5a3etKqc5AS2CjUgqMy6DrlVJ9tNZHnBVXNf4H/IgDE4TTxaaUuhm4FBiiHdzfbR0+N2dLAmLLPY8Bkp0US6OhlHLH+OFfoLX+2tnxVKa1zlRKJWC0z3V6goAxoNjlyhhEzAsIUErN11qPc3JcjYar7iNOFVs1HLqfkH2EXcg+oh5cfR8BLrefcPg+otE3MdJab9ZaR2itW2itW2D8s/Zw1A//qSil2pZ7ejmww1mxVKaUuhiYDlyutc5zdjwubA3QVinVUinlAVwHfO/kmFyaMo7C3gO2a61fdnY8ZZRS4WU9sSilvIGhuMj/pNZ6htY6xvobdh3wuyQH9uHK+whw3f2E7CNqTfYRdeSq+whw3f2EM/YRjT5BcHHPKqW2KKU2YVzedpmuvIDZgD+w2Nq93tvODqiMUupKpVQScAHwo1JqkbNisd6kdxewCONGqs+11ludFU95SqlPgJVAe6VUklJqgrNjsuoP3AgMtv5tbbCe9XC2KGCp9f9xDUbbUulOVDibq+4nZB9RC7KPqBdX3UeA7CdsZCRlIYQQQgghhI1cQRBCCCGEEELYSIIghBBCCCGEsJEEQQghhBBCCGEjCYIQQgghhBDCRhIEIYQQQgghhI0kCEIIIYQQQggbSRCEEEIIIYQQNpIgCCGEEEIIIWz+H+oBQAT3kJ4pAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# extra code – this cell generates and saves Figure 10–8\n", + "\n", + "from scipy.special import expit as sigmoid\n", + "\n", + "def relu(z):\n", + " return np.maximum(0, z)\n", + "\n", + "def derivative(f, z, eps=0.000001):\n", + " return (f(z + eps) - f(z - eps))/(2 * eps)\n", + "\n", + "max_z = 4.5\n", + "z = np.linspace(-max_z, max_z, 200)\n", + "\n", + "plt.figure(figsize=(11, 3.1))\n", + "\n", + "plt.subplot(121)\n", + "plt.plot([-max_z, 0], [0, 0], \"r-\", linewidth=2, label=\"Heaviside\")\n", + "plt.plot(z, relu(z), \"m-.\", linewidth=2, label=\"ReLU\")\n", + "plt.plot([0, 0], [0, 1], \"r-\", linewidth=0.5)\n", + "plt.plot([0, max_z], [1, 1], \"r-\", linewidth=2)\n", + "plt.plot(z, sigmoid(z), \"g--\", linewidth=2, label=\"Sigmoid\")\n", + "plt.plot(z, np.tanh(z), \"b-\", linewidth=1, label=\"Tanh\")\n", + "plt.grid(True)\n", + "plt.title(\"Activation functions\")\n", + "plt.axis([-max_z, max_z, -1.65, 2.4])\n", + "plt.gca().set_yticks([-1, 0, 1, 2])\n", + "plt.legend(loc=\"lower right\", fontsize=13)\n", + "\n", + "plt.subplot(122)\n", + "plt.plot(z, derivative(np.sign, z), \"r-\", linewidth=2, label=\"Heaviside\")\n", + "plt.plot(0, 0, \"ro\", markersize=5)\n", + "plt.plot(0, 0, \"rx\", markersize=10)\n", + "plt.plot(z, derivative(sigmoid, z), \"g--\", linewidth=2, label=\"Sigmoid\")\n", + "plt.plot(z, derivative(np.tanh, z), \"b-\", linewidth=1, label=\"Tanh\")\n", + "plt.plot([-max_z, 0], [0, 0], \"m-.\", linewidth=2)\n", + "plt.plot([0, max_z], [1, 1], \"m-.\", linewidth=2)\n", + "plt.plot([0, 0], [0, 1], \"m-.\", linewidth=1.2)\n", + "plt.plot(0, 1, \"mo\", markersize=5)\n", + "plt.plot(0, 1, \"mx\", markersize=10)\n", + "plt.grid(True)\n", + "plt.title(\"Derivatives\")\n", + "plt.axis([-max_z, max_z, -0.2, 1.2])\n", + "\n", + "save_fig(\"activation_functions_plot\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MCnWCgJTIm2d" + }, + "source": [ + "## Regression MLPs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "sOeMzDZPIm2d" + }, + "outputs": [], + "source": [ + "from sklearn.datasets import fetch_california_housing\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.neural_network import MLPRegressor\n", + "from sklearn.pipeline import make_pipeline\n", + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "housing = fetch_california_housing()\n", + "X_train_full, X_test, y_train_full, y_test = train_test_split(\n", + " housing.data, housing.target, random_state=42)\n", + "X_train, X_valid, y_train, y_valid = train_test_split(\n", + " X_train_full, y_train_full, random_state=42)\n", + "\n", + "mlp_reg = MLPRegressor(hidden_layer_sizes=[50, 50, 50], random_state=42)\n", + "pipeline = make_pipeline(StandardScaler(), mlp_reg)\n", + "pipeline.fit(X_train, y_train)\n", + "y_pred = pipeline.predict(X_valid)\n", + "rmse = mean_squared_error(y_valid, y_pred, squared=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zKf2oiBxIm2d", + "outputId": "7eb8611e-30bf-4933-c67d-fd987072a84b" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.5053326657968465" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rmse" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yQ4r-MeiIm2d" + }, + "source": [ + "## Classification MLPs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "favsW4P_Im2d", + "outputId": "9f779d00-5002-4a3b-c39e-f95b8ba9172e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – this was left as an exercise for the reader\n", + "\n", + "from sklearn.datasets import load_iris\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.neural_network import MLPClassifier\n", + "\n", + "iris = load_iris()\n", + "X_train_full, X_test, y_train_full, y_test = train_test_split(\n", + " iris.data, iris.target, test_size=0.1, random_state=42)\n", + "X_train, X_valid, y_train, y_valid = train_test_split(\n", + " X_train_full, y_train_full, test_size=0.1, random_state=42)\n", + "\n", + "mlp_clf = MLPClassifier(hidden_layer_sizes=[5], max_iter=10_000,\n", + " random_state=42)\n", + "pipeline = make_pipeline(StandardScaler(), mlp_clf)\n", + "pipeline.fit(X_train, y_train)\n", + "accuracy = pipeline.score(X_valid, y_valid)\n", + "accuracy" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8ODgFJTZIm2d" + }, + "source": [ + "# Implementing MLPs with Keras\n", + "## Building an Image Classifier Using the Sequential API\n", + "### Using Keras to load the dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "T4V5nJ9rIm2d" + }, + "source": [ + "Let's start by loading the fashion MNIST dataset. Keras has a number of functions to load popular datasets in `tf.keras.datasets`. The dataset is already split for you between a training set (60,000 images) and a test set (10,000 images), but it can be useful to split the training set further to have a validation set. We'll use 55,000 images for training, and 5,000 for validation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zULWroqQIm2e" + }, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "\n", + "fashion_mnist = tf.keras.datasets.fashion_mnist.load_data()\n", + "(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist\n", + "X_train, y_train = X_train_full[:-5000], y_train_full[:-5000]\n", + "X_valid, y_valid = X_train_full[-5000:], y_train_full[-5000:]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EbYcTjNZIm2e" + }, + "source": [ + "The training set contains 60,000 grayscale images, each 28x28 pixels:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "b9sQjdDZIm2e", + "outputId": "f065aabf-3f91-4a81-fcdb-7d88ae93c5eb" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(55000, 28, 28)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8gRv-ustIm2e" + }, + "source": [ + "Each pixel intensity is represented as a byte (0 to 255):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9Oa5jBW_Im2e", + "outputId": "8e4903b1-214f-43de-9107-ca13c479b9b8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('uint8')" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.dtype" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WCVBMq_SIm2e" + }, + "source": [ + "Let's scale the pixel intensities down to the 0-1 range and convert them to floats, by dividing by 255:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "l6a3PGkqIm2e" + }, + "outputs": [], + "source": [ + "X_train, X_valid, X_test = X_train / 255., X_valid / 255., X_test / 255." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hgwq55-tIm2e" + }, + "source": [ + "You can plot an image using Matplotlib's `imshow()` function, with a `'binary'`\n", + " color map:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wR2Y4LBwIm2e", + "outputId": "34c553d0-fcb6-4b42-8c16-f4c12704eda2" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAKRElEQVR4nO3dy2/N3R/F8d3HpbSSaqXu1bgNOqiIqNAhISoxMDc1MiZh4C8wNxFMS4iRSCUGNKQuIQYI4hZxJ6rUtTyDX36/Ub9rPTkn/VnN834Nu7JPz6UrJ+kne++G379/FwB5/vrTTwDA+CgnEIpyAqEoJxCKcgKhppqcf+UCE69hvB/yzQmEopxAKMoJhKKcQCjKCYSinEAoygmEopxAKMoJhKKcQCjKCYSinEAoygmEopxAKMoJhKKcQCjKCYSinEAoygmEopxAKMoJhKKcQCh3NCb+z9zFUg0N456i+I+NjIzIfHBwsDLr6+ur63e71zY2NlaZTZ36Z/9U67nwq9bPjG9OIBTlBEJRTiAU5QRCUU4gFOUEQlFOIBRzzjC/fv2S+ZQpU2T+4MEDmR8+fFjmM2fOrMyam5vl2hkzZsh83bp1Mq9nlunmkO59devreW5qfltK9WfKNycQinICoSgnEIpyAqEoJxCKcgKhKCcQijlnmFpnYv91/vx5mZ87d07mHR0dldm3b9/k2tHRUZkPDAzIfNeuXZXZvHnz5Fq3Z9K9b86nT58qs7/+0t9xTU1NNf1OvjmBUJQTCEU5gVCUEwhFOYFQlBMIRTmBUMw5w0yfPr2u9VevXpX548ePZa72Pbo9kVu2bJH5jRs3ZL53797KbO3atXJtd3e3zLu6umR+5coVmav3tbe3V67dsGGDzFtaWsb9Od+cQCjKCYSinEAoygmEopxAKMoJhGowRwLWfu8ZKqn33G19clu+1DiilFI+fPgg82nTplVmbmuU09PTI/MVK1ZUZm7E5I62fPnypczd0ZfqWM8TJ07Itbt375b5xo0bx/3Q+eYEQlFOIBTlBEJRTiAU5QRCUU4gFOUEQjHnrIGbqdXDzTnXr18vc7clzFGvzR0v2djYWNfvVlcIuvdlzZo1Ml+5cqXM3Ws7e/ZsZfbw4UO59vnz5zIvpTDnBCYTygmEopxAKMoJhKKcQCjKCYSinEAojsasgZu5TaTW1laZv3jxQuYzZ86Uubrm78ePH3KtuiavFD3HLKWUL1++VGbuPR8cHJT5pUuXZO5m169evarMtm7dKtfWim9OIBTlBEJRTiAU5QRCUU4gFOUEQlFOIBRzzklmdHRU5mNjYzJ31/ipOej8+fPl2jlz5sjc7TVV5+K6OaR73WqG6n53KXq/57Nnz+TaWvHNCYSinEAoygmEopxAKMoJhKKcQCjKCYRizlkDN3Nzs0Q1M3N7It0ZqO7sWHfP5ffv32t+7ObmZpkPDw/LXM1J3XxXPe9SSpk1a5bMP378KPPu7u7K7PPnz3LttWvXZL527dpxf843JxCKcgKhKCcQinICoSgnEIpyAqEYpdTAHdPoti+pUUp/f79c646+bG9vl7nbOqWemxsZPH36VObTpk2TuTqWc+pU/afqju10r/vt27cy3717d2V28+ZNufbnz58yr8I3JxCKcgKhKCcQinICoSgnEIpyAqEoJxCqwWx/0nuj/qXc3MrN5JShoSGZb9u2Tebuir96ZrD1XvHX1tYmc/W+ujmmm8G6qxMd9dr27Nkj1+7cudM9/LiDc745gVCUEwhFOYFQlBMIRTmBUJQTCEU5gVATup9TzVDrvarOHU+p9g66696ceuaYTl9fn8zdEY9uzumOkFTcXlE3//369avM3bGdivtM3Gfu/h5v3bpVmbW0tMi1teKbEwhFOYFQlBMIRTmBUJQTCEU5gVCUEwhV18Cunr2BEzkrnGgXLlyQ+cmTJ2U+ODhYmTU1Ncm16pq8UvTZr6X4M3fV5+Kem/t7cM9NzUHd83bXDzpu/qse/9SpU3Lt9u3ba3pOfHMCoSgnEIpyAqEoJxCKcgKhKCcQinICoWLPrX3//r3Mnz9/LvN79+7VvNbNrdRjl1JKY2OjzNVeVben0d0zuXDhQpm7eZ46H9bdYele9+joqMx7e3srs5GREbn24sWLMnf7Od2eTPW+zZ8/X669c+eOzAvn1gKTC+UEQlFOIBTlBEJRTiAU5QRC1TVKuXz5snzwAwcOVGZv3ryRaz98+CBz969xNa6YPXu2XKu2upXiRwJupKDec3e0ZVdXl8z7+/tl3tPTI/OPHz9WZu4zefz4scydpUuXVmbu+kF3ZKjbUuY+U3XF4PDwsFzrxl+FUQowuVBOIBTlBEJRTiAU5QRCUU4gFOUEQsk559jYmJxzbtiwQT642ppV75Vt9RyF6K6qc7PGeqm52Lt37+TaY8eOyXxgYEDmhw4dkvmCBQsqsxkzZsi1ak5ZSinLly+X+f379ysz976oKx9L8Z+5mu+WorfSubn4kydPZF6YcwKTC+UEQlFOIBTlBEJRTiAU5QRCUU4glJxzHjlyRM459+3bJx982bJllZnaH1eKPwrRXSenuJmX25+3ePFimS9atEjmai+r2odaSikvX76U+enTp2WurtkrpZRHjx5VZu4zu379el25ukKwnuNGS/FHgjqqJ+6xh4aGZN7R0cGcE5hMKCcQinICoSgnEIpyAqEoJxCKcgKh5KbKuXPnysVu3qdmlW5utWTJkpofuxS9/87t3Wtra5N5Z2enzN1zU/si3Z5Jt3dwx44dMu/u7pa5OnvW7al0n6k7L1jtyXSv212d6GaRbv+wmnOas5/tlZEdHR3jPye5CsAfQzmBUJQTCEU5gVCUEwhFOYFQcpTiRiXu389V/yIuxW8/clcEun/Lt7e315SV4reUue1qbr3atuWuulPbqkopZc6cOTK/ffu2zNVVem681draKnO3XU19Lu4oVXc0plvvrulTW/VaWlrk2ps3b8p806ZN4/6cb04gFOUEQlFOIBTlBEJRTiAU5QRCUU4glBz+rF69Wi5225OOHj1amS1cuFCuddfFua1Val7otg+5mZfajlaKn3Oq5+7WNjSMe4ri/zQ1NclcXfFXip5du21b7rm72XQ9WwzdY7vcbTlTc1R1nGgppcybN0/mVfjmBEJRTiAU5QRCUU4gFOUEQlFOIBTlBELJKwBLKfrMP+PMmTOV2cGDB+Xa169fy9ztyVRzLbcP1V0n5/Zzuj2Xah7ojll0c043a3QzXpW7x3bP3VHr3TGtjptNu78JtZ9z1apVcu3x48dlXkrhCkBgMqGcQCjKCYSinEAoygmEopxAKMoJhJJzzl+/fsnBlZsN1eP8+fMy379/v8xfvXpVmQ0PD8u1bl7n5phupqbOUHW/28373By0nrOI1Zm2pfj3pR5uv6Xbx+pm15s3b5Z5V1dXZdbb2yvX/gPMOYHJhHICoSgnEIpyAqEoJxCKcgKhKCcQakL3c6a6e/euzN3doO4eymfPnsm8s7OzMnPzPHeeLyYl5pzAZEI5gVCUEwhFOYFQlBMIRTmBUP/KUQoQhlEKMJlQTiAU5QRCUU4gFOUEQlFOIBTlBEJRTiAU5QRCUU4gFOUEQlFOIBTlBEJRTiAU5QRCVd9F9x/6PjkAE4ZvTiAU5QRCUU4gFOUEQlFOIBTlBEL9DRgW8qPu1lMTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# extra code\n", + "\n", + "plt.imshow(X_train[0], cmap=\"binary\")\n", + "plt.axis('off')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "a3oLKSMAIm2k" + }, + "source": [ + "The labels are the class IDs (represented as uint8), from 0 to 9:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3XwM9AY7Im2k", + "outputId": "876a6eeb-bc93-4b16-b4f6-21c930d051b4" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9, 0, 0, ..., 9, 0, 2], dtype=uint8)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rkH7dEcTIm2k" + }, + "source": [ + "Here are the corresponding class names:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GQ9nC1fXIm2k" + }, + "outputs": [], + "source": [ + "class_names = [\"T-shirt/top\", \"Trouser\", \"Pullover\", \"Dress\", \"Coat\",\n", + " \"Sandal\", \"Shirt\", \"Sneaker\", \"Bag\", \"Ankle boot\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZejaoRa8Im2l" + }, + "source": [ + "So the first image in the training set is an ankle boot:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jRHnDUeaIm2l", + "outputId": "3bfcfa7a-a0ea-43ad-a3e7-e0b7ba9ea1d2" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'Ankle boot'" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class_names[y_train[0]]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nFz-bkb2Im2l" + }, + "source": [ + "Let's take a look at a sample of the images in the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "TPuxGBYZIm2l", + "outputId": "8db1480c-c77f-47aa-f5af-4925c854dd79" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAFJCAYAAACy802jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADmp0lEQVR4nOydd5gdVfnHP2c3m00nhZDQk1BD702Q0HtHRaSJCD8VpSgoCIiKioIFLKCgIiCiSEd6B0NHeighBEhCGiFs2m62zO+Pme+Z2XPv3b7ZW97P8+xz996ZO3fmnXdOedtxURRhGIZhGIZhGIZRCVT19QkYhmEYhmEYhmGsKGwCZBiGYRiGYRhGxWATIMMwDMMwDMMwKgabABmGYRiGYRiGUTHYBMgwDMMwDMMwjIrBJkCGYRiGYRiGYVQMK2wC5Jyb5JyLnHMrt7FP5Jw7spu/0+1jlBrOuXHJdW/TnX2MGJOnUcyYfvY+zrkTnHOLC703+gbn3KPOud/19Xn0NaafxYlz7kjnXKfWljGdLkxvy7PDEyDn3JbOuWbn3H87czLlSHcHF8l32/q7podPGeBDYFXgpXbO7ULn3GttbH/TOXdIRya0KwqTZ/HhnLsmI/9G59xc59wjzrlvOOdq+vr8ViSmnyuePPo3zTl3qXNucF+fWyninBvtnPuDc266c67BOTfHOfeQc26vvj63UsT0s3cxfe1ZylWe/Tqx71eBPwDHOecmRlE0pZfOqRJYNfP/gcBVwWfLevoHoyhqBma3tU97A1Pn3AbAWsADwHY9d3bdxuRZnDwIHAtUA6OB3YEfAsc65/aIomhJ+AXnXP8oipav2NPsdUw/+wbpXw2wC3A1MBj4Wl+eVHdwztVEUdTYBz99MzAI+AowFVgF2BUY1Qfn0mM45/oBzVHfrAhv+tl7lKW+9iHlKc8oitr9AwYCC4HNgD8DlwbbxwERcARxZ7kUeAPYK7PPpGSflZP3tcCtwIvAKslnEXBk5jurAzcCnyR//wHWa+dcI+DUZN+lwPvAMcE+mxI3PsuABcA1wEqZ7VXA+cRW1AbgVeCQ4Deyf492RI4FzvfI+Da0u9+awO3J+S4F3gSO6oT8tc82wf3YH3gWWJ7ILby2EzLHODs5h3F59rsmc19/A8wB6oGngZ3z6MGBxNbpeuAFYOuuytDk2Xvy7MZ9uAa4K8/nmySy+WHyfjpwIfAX4jbmpuTznYDHEtnPBK4AhmWO89lEFouBT4FngE2SbSsB1wFzE3lMA07vS3mYfq5Y/cynf8QTz48SfXst2HYCsLij75PPTiEeDCxPXr+a2fYP4OZg/yriPuWM5L1LZPwucV/0Kpm+KiP3LwIPJ/uc2gc6Ozw5jz3b2Gc6cB7wR6AOmAGcFeyzEvAn4udyEfHzvU1m+6hEbjOSa30d+HJwjEeB32Xe70HcbpySvG9zzKB7n9zPd4FmYEgfyNT0s2/19RjguUQP5wI3Aatntk9KjrEHcd+yFHge2Co4znHEY8ylwF3AN8i078A6xG3obGAJ8Xj3wLZ0utj+ylmeHRXAscDLmQuZC9TkeRDeBA4C1gP+BnxM0rhkBLAyMAx4hLgBzA5qIpIJEPFs823ihmIzYENiC8n7wKA2zjVKfvcUYH3g+0AL6UBgEPGA6jbiidCuye/cnDnGGcSN+NHJMX5E3FBukWzfNvmdfYCxwMhuKFdHB0R3Eg92NgfGA/sC+3ZC/tonHBC9CuwNTCAedF2aHGds8jcwcw6TgROJLfqHJ9/fKNlvpWSfy4gb8QOAicSN+mJg1eB330zktwnxwzK7rftq8uwbeXbjPlxDnglQsu0Okg6eeOBUR9zRrpvIetPkGr+dvN8eeAr4d/KdfsSDm0uJG8QNiZ/Vicn23xIPtrdL7tMk4HN9JQvTzxWvn/n0D7gcmE8PDDCBw4BG4knk+sA3k/cHJdsPIJ7sDc98ZzegCRibvP8J8FZyb8cnOrwEOCC4h9MTvRkPrNEHOtuPeGBzOTCgwD7TE/07lfg5/mZy7jsm2x3wJPGEZLtknx8TP/vSldWBs4AtEv08mXjwvkfmdx4lGdwQGwDqgM8n79sdMyT3fglwP7BVoo/9+kCmpp99q68nEhuDJiT6+AjweGb7pOTank3ksiFwHzAFcMk+2xOPLb+fyPgU4mcgyhxnc+D/iPu0dZN9lwMb5tPpYvwrZ3l2VACPAd9J/neJwh+R2a4H4ZTMZ6snn+0cCGAisQXwjlCYtJ4AnQi8I+Ekn1UnAvl8G+caAVcFnz0IXJ/8/1Vii/HQPDdn3eT9TOCC4BiPZo6h692m0Hl0Qrk6OiB6BfhBgW0dkX+rc85c8xHBsS4kaHyTz8cQN6Cjg++vnNlncKKMxwX37F3gouB7X8rsM4TYineSybO45NmN+3ANhSdAFwNLk/+nA3cG268F/hx8tkVynasAI5P/dy1w/DuAv/bVtZt+9r1+hvpH3CnPB/6Z75rp/ADzv8Bf8vzmk8n//YgNhV/JbL8auC8ju2XALsExfgPcHdzDbxeB3h5B7I2sJzZGXApsn9k+HfhH8J13gPOS/3cnnhgPDPZ5CTi7jd+9Ebg68/5R4HfEk6NPgb0z29odMyT3vhEY08fyNP3sQ33Ns/+GybWskbyflLzfJ7PPZ4J9bgAeCI5zNe2078Re8vNCne5rmVWiPNstguCcWzc50RvQmcDfgZPy7P5K5v9ZyesqwT73E7u4D4+iqL6Nn96a2KKwyDm3OKlw8ikwgtjq2xZP5Xm/UfL/ROCVKIoWZbZPJp55buScGwasRtyAZHkyc4xeRdeb/F2ZfHwZcJ5z7inn3EXOua3zfLUj8g95voOndRDwdBRF89rYZx3ieGYvuyjORcjKXzyV2WcxsWW6V+Rr8iw6HHHDJ0KZbQ0ck71vpDJYJ4oiha3e55z7j3PuTOfcmpnvXwF83jn3cpJYvGsvXUePYPrZa+ybyFSd9uPElvCeYCJt9BFRFDURD2a/BOCcqyUeRFyf7LsRMAC4N9Dzr5Hbv3X0nvUaURTdTNwvHgTcQxyi+rRz7tzMbq8EX5tFqo9bE3to5gXXuwnJ9Trnqp1z33fOveKc+zjZfjhxHlqWQ4DfE3tE78983tExw4woiuZ0QQw9jelnL9GevjrntnLO3e6ce985t4j0GkJda6uNnUj+sabHOTfYOfcL59wbzrlPEhluk+d3ippylWdHiiCcRGxF+cA5588jOZk1oyj6MLOvT36LoihK9g8nWXcBnyd2Yf2vjd+tIrYOHZVn24IOnHchwsFXlqjA/2191htskfm/DiCKoj875+4jdjPuCUx2zv0siqILM/t2RP4hOYnoBTiUOPayLaQgfSm7fGyR+d/k2fdsRJyXI0KZVRFbfn6d57szAaIo+rJz7jfE4RkHAz9xzh0aRdF9URTd45xbG9iPOOb4P865m6Io+nIPX0dPsUXmf9PPnuNxYk9BIzArSpKznXMtpOcuulKZsL3rvp74vq1OHN7RnzjvFdL7dBDwQXCMMIm8o/esV0kMlg8kfz9yzl0NXOicuzTZJTzviPQ6q4jzxHbJc+i65PU7xGGvpxFPkBcDPyV3Uv9KcuyvOOeeToyy+o2XaH/MUBTyxPSzV2lDX39PHH6lIhRziVMzniCWQZbstWb1DHLvUT4uJe6jvkPsnVxKHOEQ/k7RU47ybLOzTCqkHA+cQ9xJ629z4kaoKwOK84ErgQedc1u0sd+LxDF+86Momhr8tTcB2iHPe1WtewPY3Dk3NLN9J2JZTImiqI54ZrpzcIydk+9CHPYB8cSwxwmudW7m8xlRFP0piqLPAxcQN549zXKC63Jxac49iPOmsvsR7KuESy8751w1sCOp7MQOmX0GE1sCe6WyoMmzeHDObULcgP27jd1eBDbO89xPjaLIV0yLoujlKIp+HkXRJGK39/GZbfOjKLouiqITiCvXHJ9YOYsO089eY2ki0/ej1pWp5gFjXMaiR+tJaEeYQtt9BFEUPUMcDvhFYkv7bYn3i2S/BmDtPDr+fifPpa94g9iIOqAD+75IHFbZkud6pfM7E4fDXhdF0UvEsls/z7HeIw6p2Rv4U+Y+dmfM0BeYfq5YpK9bEA/Qz42i6PEoit6kfc95oePlG2tm2Rm4Noqim6MoeoU4+qm9CKZSoeTl2Z4H6ADiC7sqiqKPsxucczcCX3POXdTZH42i6PvJw/2gi8vhvpxnt78Tz/Jud85dQGyFWJPY/X1lFEXvtPEThzvnniMeFB1J3JlvnznuD4Frk+OOIK5cc0sURVOTfS4hnuG+Q5yvdAyx5UphKHOJ42P3cc5NB+qjKPq0k2LoFM65y4hdj28TF5HYl9xBRk8wHVjbObcVscwXEScvT8vIB+LE0gg4wDl3J7AsiqLFzrkrgIudc/OJO6oziDu+PwS/c55zbh7xZPMC4oHUDb1wPXkxea4Qap1zY4mNC6OJn8NziZ+pS9v43s+J3etXEj+bi4hjig+KougU59x44gTJO4g9QhOIk56vAHDO/Yh4MPQ6cRt3OLG8G3r8CnsJ089e5VHiPLJzk35sEnE/0RkuAW5yzr1AHNa9L/Eg8vBgP4WLjyNOTAcgiqJFiefk0qQvfJw4N2oH4knCnzp5Pr2Gc24UceGKvxAbPhcRh52cDTwURVFd67F6Xh4kDsm63Tl3NmnhjX2BB6MoeoJY17/gnNuZOB/mm8QhbTmRIlEUTXPO7UZ8L//knDuZ7o0ZiolHMf3sMu3pK+nk7tTEezGRuCBHZ7mc2IN2DrFBbxIZGSa8DRzmnLud2PvxAzpmMCgaylqeUdvJRXcA9xfYNoG4Q9ybAkUBaF3UYBK5SbQ/I27oNg/3T96PAf5KPOFoIO5g/5I9Rp7ziogrn9xLPEn5ADg+2GdT4hu3jLia1DUULoO9nNgdf2hwjJOSYzezYspg/5bY5VdPbCG6kaTMYAfl32qffPcj+byWWPk+SbafQOxi/GmeczqfuAJUC/nL4jZQuCzuwcQPUwPxYHXbrsrQ5Nl78uzGfbgmOa+IuLLQfOKO/ZtA/8x+00kKrATf34b4Ga4jDrF4FfhRsm0McAvx5KeB+Dn8BUllSuLKMK8Tu8cXAHeTVIjr6z/TzxWjn7RRhCPZfgrxpG5JItvT6HyZ4f8j9oI1EpQZzuyzTnL9cwiqjRGHfHyTdAAxjzi8ZK+27nMf6GwtcSjac4meLE1081ckFVDJ8xyTW7J6KHFu2wzifvXDRPbrJNtHED/XKqX7C+KJ9KNtHHOd5Dh/SuTZ5piBAkU/+kCmpp99q69fIPZ+1RNXJtsnuZZJyfZJ5I5Xc66XOArqA+Kx5D0kSwtktq9NPPlfkuj9d4jTQK4ppNPF9lfO8lT5OcPISxLSMhfYL4qiZ3vgeJOISySOjqJofnePV2qYPI1ixvTTMAzDqATarQJnVDyjiJPRn+vrEykTTJ5GMWP6aRiGYZQ9HakCZ1QwUZyg2uk8LyM/Jk+jmDH9NAzDMCoBC4EzDMMwDMMwDKNisBA4wzAMwzAMwzAqht4IgSsnl1JHFmbqTdqVpTx4bZUhnTIlXm7j1FNPBeDzn/88AFtuuSX9+8frR/XrF6vC66+/DsCtt94KwIQJEwA4++yzGT58eKcvIENfyxK6qZtz58bLVVxzzTUAHHfccQCMHTu23e++9NJLALz55psAHHHEEdTUdGVtO09Jy/O9997jscceA+D22+P1NkeOHAnAscceC8BWW23l5XXzzTcD8OCDDwIwePBgAI455hgATj6520vklLQ8u8usWfGi3KuttlpPHbKo5dmRdlPP+8MPPwzAVVddBeDbwYkTJ1JbGy8t9cknnwDw1FPxwuU77BAvX/HTn/4UgIEDB3bpHDIUtTxLkJKQZxih05auqD1dZ514WZQ11lgjZ5/33nsPgOeffx6Az33ucx081XYpCXmWECbPniWvPM0DZBiGYRiGYRhGxdAbOUBlP2tcgeTIsj2r4f/+9z8A/vnPf3qreXV1vHj74sXxIs/Lli0DYMGCwotjr79+vAB3VVU8R37zzTe9p2OfffYB4Nvf/jYAm266aUeupa9lCd3QzcWLF3PjjTcC8Jvf/AbAe89Gjx7t38urI1k3NMRrb3744YcAHHrooQDsuOOO3bW+lZQ877nnHgB+/etfA7FFfPny5QAMGBCvY1ZXVwekXsg5c+Ywbtw4IPVQrrrqqgCstNJKQCrfGTNmsOeeewJw+eWXd+VaSkqeIbvvvrv3Qqy88spA6rGQDLPI47PbbrsBaZuw1lprAXDfffd5L1sXKUp5Fmo/58+PK3RfdtllQOxprK+vB1Jvo/RVXslFixb57+u5X3311YFUTyXXkSNHsuuuuwLwzW9+E4ARI0Z05lqKUp4lTEnIs6WlBUj7YTFjxgz+8pe/APDLX/4SSNvPjqDjSW9//vOfc9ppp3XqHAJKQp4lhMmzZzEPkGEYhmEYhmEYlY15gNqmr2fh7cpSVh/lo7z88svxF6OIIUOGAGn8uazo8gg1NTXx6aefAjBo0KBW2/J5mGQRlVVTFtGdd94ZgOuvv76tU+1rWUI3dfOmm24CUnn+5Cc/AVJr+pw5c7xHQnkCQ4cOBfDeiaOPPhqIPUTyBnWRkpDnu+++C8CFF14IwCqrrALEOhRaFqWf8pZBqofSy2HDhgGp5VLfGTVqFDNmzABS2csy2kFKQp6FmDRpkpe1dFDPqdqBI4880j+jzc3NQOp9k8yk22pHukFRyjP0AElmBx54IJDm8w0YMMDrmHRP+T7KVVu8eHHONrWJ8+bNA+I2FuJ70tjYCKRt7SmnnALA4Ycf3pFrKUp5ljBFLc9CXpctt9wSgHfeecc/59InvaqfHjFihH+uP/roIyBtE/Sca9/Fixd7vd5jjz0AuOGGGzp0TglFLc9uHTRpM1paWvy1h+OjzuRqTZ48GYCddtoJgLfeestH3GS+V7by9AfPyKyDeZCtUP7vmWeeCcQ5wxC3tWqPM+T9gZKZAOULXVAIwpNPPgnAfvvtl/MddfQaKLV3/OA3+loJ25WlGqsPPvgAiAeCEF+Drl2ddEhLS4vv5LWv/+E29CK8F2pc7733XiBODs5DX8sSuqmbGjyOGTMGiCc8AL/97W+BOBE6nABtvfXWAHz5y18GYPr06UAcNrfvvvt253RKQp5f//rXgXSgLZ1ZsmSJ73ylnwo10rO60kor+X30PclXZCf16tRfe+01IC2moMFtO5SEPAtx+OGH88ILLwDpQEghrkrmj6KIz372swC88sorQKrLGpwrXE6J/92gJOSpgjAKgVNYWlNTk9c5tZEa/Khzra2tzZn4yKAkeWbbUQ0gta9eVQREE9UClIQ8S4iilGehEM0dd9wRSIsXjBkzxuuP9tVkW3q6ZMkSf7zQCCr9VLuc/b6ehUMOOQSA2267Lecc8wxYi1KePXLQzASo0FiqLR599FEAXn31VSCevELaBkdRxP333w+QHbiXtDzz6Ug+3W5v4ig9ramp8fI78sgjAXj77beBXD1dvny5T0/IHjrfeVoInGEYhmEYhmEYFUNvlMHuFWQ9q66uZurUqQBcffXVQGrdkAVZVo3tttsux/OTnc1n32f3a89zUgzI2ivPjxKfZcWB1N09c+bMVu917f369fPXGrq1ZV2S9XPo0KG+rGYoU31X96OToUclg8LZZCFbe+21gfR6Z86c6UNfZEnXfdF3dH8qZQHiE044AUiLH6hgxJgxY7wHNywHLuuNZAlp6Ju8GyH9+/dn4cKFQFr+tYOen7JgnXXW4emnnwZyQ7aySC+feOIJIC17rbZh6dKlvX2qRYG81rNnzwZS/ZLFsV+/fl4WS5YsAXL7herqat/2yVOp74RJ5tXV1d7Do/5Jx73jjjuANDzWqFxCC7iWo9CzveaaawJxHy5d1XfC12HDhhUc74R665zzupothAJpARtF2HQlXKkUKOR9C8Ows1x77bVAWvZe7erll1/u21aFEyvMTaFaKqa0xRZb9NQlFA3OuYLenWy0kfRS4yKN5fW5dPLxxx/nsMMOA9LxwYYbbgjA73//+1a/05nlRcwDZBiGYRiGYRhGxVAyHqCs9U3x6Q888ACQWkWUHyAr3P33389Xv/pVII11LzSbX7x4sbeKFLIyFxOPPPIIkF6zLDm6hpaWFm8B/sUvfgGkpVklr1mzZvnPwhm3PEAq5/ziiy/68sKy4ssCpd9U2e1y9QCFOvPxxx+3er/yyiv7JGrpoLxvYXGJcrWihWy33XZAGsOufIftt9/eW30kKyXhZsuLy1qufaRzKoOt/BZIvRgXX3xxL11N8TJx4kT/DEu35BGXPBVzDqkXQlY6yVWekHJHJcPlAdLzme1D9JnaQrVzWat6mH8h9Hk2wkAeTXmFdVwt7mseoMqmubk5p49RgQzpjLzmw4cP93116AmSLjrnCpauDj+vqqryuiq9VB7r/vvvD6Re07Fjx/rfaC+3utzQovK6fuX3KDdLeZfHH3+8L3svj4/20ava5alTp7LuuuuugLNfsRQa42R1XP+HXhvppwoi7b///j4CR3MBjTO19EAnF5aOf6fDexqGYRiGYRiGYZQ4JTN9z1Z1eO6554C0opYsn3rde++9gXhR0LPPPhuAbbbZBkgX7VSlsmeffdYfU2UJZa2WlbkY+fe//w2kM+hsXg/EFkydv7xgqjSi/KETTzyRP/7xjwBsvPHGQOpJ0ixbZYvPOOMM/vCHPwCpxSlcKFALBL799ts+3rWcCC0Mkr1kpRyUjnw3tBiXO9/61reANO557bXX9p5E6Y88r1kvhOSkffU+9Fh8+umnPka9UrwYWdZYYw3/7EsfZcmVl3fLLbf0slGelNoNUcxtXk8ib5j0SZ6gbF8iL5li+ddZZx0gzaMaNGhQTv6pLJnyJKly0Z133un3VTsh77pygYzKJmsZV2UreWGUP6Yxz/Dhw3PyzERY0bUtsmWdw7GE2mM9B/J2HHXUUUWdH91VCnkOFH0wefJkH+GhdvLEE08E0hxXeSPOPPNMH52g4ypn5cUXXwTSCKYBAwaUpQeovQV058yZ4z1miqbR2FQVdtU+jxw50stelTY1pu8O5gEyDMMwDMMwDKNiKHoPUGg5f+CBB3wMpayZsqCpLrhet912Wz+zlrVNi1DdcsstQOox2W677bjqqquA1Nu0++6799ZldRtVFlE+j6w+2XVSNFMW++yzD5Bak6ZMmcKll14K4Cts3HnnnUA689bCay+++GIr7xKkM3u96lyeeuqpsvQASYckY1nGspX09H9YASX0Usp7Vu6EseL//e9/Afj+97/v95GlUZbM7GJ9kqc+U15b6LloaWnhoIMO6pVrKAVWXXVVLz/pXhhfvfHGG3vPmeQnS6Z0OpRruXLUUUcBsMsuuwDw97//HUjXkDr33HO9xTZE7d+yZcu8XqoPCr3iyuv52c9+xrbbbguk3ibp/bRp03rqsowy4amnnmr1Plz/LGtVL5RX2pFKo9nvhhXiwkgPRd4cddRRZZnDGlbE1TWq36+trfXtg7xhiqDRGogaY0EaPSPkEVKuq/KD//KXv/CZz3wGgE022aQHr6hvCeWpRadPP/10IPaEK6/n9ddfB1Jv+xtvvAHEC3xD7FnTM6AxQEeiaNqr6GweIMMwDMMwDMMwKoai8wC1Z7U4//zzfTUSIYtcuP7Fk08+6b1Fms2rIsd6663X6ju/+93vvCVO1cyKEcWUKycizEPJWsxlaRCaZUs+H330kbfES+6hFTlriVIuwaxZs1r9tmSrGPfHH3+c448/vruXWnSEa/jkW2OhvXWm9Hln4rRLmbBKkHRowoQJvPfee0DqSZM1SBajAQMGeHnJa6lKWqE8tXZFpTJ69GifHyDPRaFKb5D7nEvmeVbQLkuUG6rr3m233YDU411XV+flKBkp4mDUqFFA60pcYdU3ed9lMV533XW9l0m6rOPkW6+pHGlvXZCqqqqcHMlCVcZaWloK5haI7JpOpeaxUF+qPL586xmGVeDCHEDIzREO70HWMi6Zq92QxV3ezBtuuAEo3yqvoedH6F5EUeQrEB9zzDEAXHnllR0+vvJc6urqANh6662BuM2VrLWP2oZSJsxNUw7lNddcA3TsGjXOra+v996xL3zhC0DqLQo9Tc3NzXnX98xH0U2A2muoRowY4SdAUkwpjxoCuSwHDBjgQxR03CeffBJIQ+EkqDlz5rDvvvv22HX0Fj//+c+BNCRIjVMYnjZgwACvgJoE6uFS4lljY6NPNtO+avzU8Cph95///KcvHRsm8+q95K9EtnIjTA7Vg5ftXEJXa6jPlTLYaY8oivxzqoZLz7EmQsuXL/f6GA7MQzmH4QaVhhJEIXfCkw1rCweYepUujxgxovdPtghQqMpDDz0EpEYvFYo5/vjjfdEXTWa0ALf01jmXU5RDeiqd1kBp6NChvjy72gDJWuHY6pNCw1W5UKhvz1e+ttDARffkoosu8oa4QnRmQcRiQaHtMvQoRFVhaNKv+vr6nBDscLJTXV2dEx4XyjprsJPM9Zn6e+lruZe8LqSf6o8++9nP8tnPfrbVNo3DdC+yxwhlrXGrnnsZVPbbbz+/7f333wfKYwJUCF1bS0uL191Cz6oMUzfffLOX22OPPQbAd7/7XSB3LJB9396E0kLgDMMwDMMwDMOoGEpuSr906dIcy7s8ELKCarY3ffr0nMXrwqRqba+urmbGjBkr4hK6hUp1y3Mjq6SslPIArbfeev7att9+eyCdGWeLF0iGsmCGrkPJa9iwYb6wgRJ+Q7e6XJKHHnpoT11uUREmiOdzvRZKIpelWNY03b9KISyJufrqq/tSxNom2Wif+vr6Vv9D+qzL4jZ//nwgLesM7YfPlCuSSSGcczkl3EOrb6WUEP/e974HpNevtkvLI9xxxx386Ec/avUdWSmlp1kLu44TeoTUVg4fPty3w+qnZN1UoZ5y9fyEhJbxfM+pwq1eeuklAG666SYg1fHRo0fzxS9+EYB//OMfeX9HUQy/+MUvOO+883ro7HsX6U/Yj4Te8iiKckKyw/64ubm51cLo2W2h1TwbvRBa5XWMUhgf9Sb55CmyXrdCyKunENjsfdP9rYQ+K/v8h56fsO8+7rjjgPj51/c05s0WS8ryxhtv8I1vfANIy5Jff/31ec/FPECGYRiGYRiGYVQMRTfdDK0ZmlFrhjxr1ixvgVM8rCw9+lx5MZ9++qn3Bskzon01C1dC2qabbuqtdcqZ6YmFlnqar3/9661eFaf7zjvvAHDFFVcAcZlGWRS1+KsWVZMM2ip5G96HAQMGeC/TZpttBqRWukrgk08+ySlxLQtmW3KUxShMMF26dKn3arRnuS9Hxo0bl7Ngp3R57bXXBmIrkGJ4Ff8ry5Ce/Y4mO1YChWLYs/H+YU6AdFfv1XaWOyr7rxwg5S1qMd2DDz7Yl61VgQ3pq7w7y5YtyylmIj0MS7svWrTIx/dr0US9V0ldFWDQazmRT/eE+q6bbrrJF91RLtaECROA1MOrfIzp06dz9913t/mbN954IwDPPPNMT1zCCkGLZKpNDHN11O4NHDjQj1dCK7q+ky0qkY1SyO4T5gBm/5eFXYnoGjM988wz3ptZSWS9O/pf3oewHcjqu9D9+tvf/gbAgQceCMSl8iXb0JtRjrSV5x8WNpGMRowY4XPOFaWgtlvLr6hNh3Qs0d4Y1TxAhmEYhmEYhmFUDEVnNg1LY2qm/c9//hOIK2nIIiELhfbRDPuDDz4AYsuIKkvJMpe13kGaQ/CNb3zDxxt3ZIGlYkGW8e222w5IvWAPP/ywl6VkIPno+rKz7bC0c1iZq6amxnsslIdUSdTW1nrZtmdph1wPmpBer7TSShXp+RGDBg3KiZcO46uzOUDSc8VRyyMsZDGtZAotIaDPm5qacnL7wsWM5fUod6ZMmQKknhrl5eywww5AvGCvlhwo5OnN5lSFsg/lO3bsWL8o6hZbbAHA+PHjgdSCucEGG/TEpa1Qwtw+PYdh1cZs2yhL7rnnngukffvgwYN9mXz1Z+qvFcGh0uQzZ87k/PPPb/Ub0l0d78wzzwTgzTff9B4+lR4uVsJ+OFzMON++2qb+OZvLU0g/RXaMoIpzals1TtDxNRb4zW9+UzDvqtTIV4GwK4T5U9nPhKKR5OFVpNEpp5ziFwkt57FVPlmH+l7oPqy55posWrQISKsYhwufjxkzBoj1VfmVak8KYR4gwzAMwzAMwzAqhqLzAMnqEFqQtAhSbW2ttwqFXiJZgGRZHzlyZMGqPLIoy/p2ww03cNZZZwGpFbCYCdf6kLw0gx46dGiOfMLZdb441UJkrZ/KJRKhtbPUFp3rCM65bi1eGnrjKo0wtrdfv37ekyvdDdegGT58uN8mj62sPPIEVUrOSkdozwPU0tKSYxEOrbxaTLXckcVVz/SHH34IpJ6gQYMGeZmEVZuyXrSwzdM+8ljoGHPnzvXeJlnYZ86cCaQekdmzZwNp3kuxk134WRRaSPehhx7yay0pLl85qhtvvDEQy1V5psrNVU6EnnNZzceOHesXlr3kkkta7aucV7W19fX1Pneo2JGuibAiWzb3sVB/1FZOqghzihYuXOh1WF489fM6XnYNonKhp8cq+arAKbJo8803B/DVC++66y4A7rvvPi9zjUfLkc7k/oS8/PLLPvdcayYpx09txQUXXADE7etee+3VoXPq9QlQ9kENSzGGZRahcDKzklOHDBmSs0qy0IBKnXp9fX1Og6zjh0mBr7zyincBlwJSpkKr7Q4bNqzgZDJfUnQhwkITQI6cOlICstTJdjaFSmG2ty37eXV1dU74SDkTXmtdXV3OwroqeCBGjx7tB5IaGIW6rOMq7BUqtyBCOBjNt/p7GGoQGkkqZQIkOchYJp3RQHnp0qU5z3JYBKWlpSVnmYXwO9mCMyuvvHKrc1Aoh9ppLexZKhMg51zBNv/yyy8H0qI8c+bM8YM7GTMl8+ySAIUW7pRc1cdr0ANp2NCtt97a6hwuuugiAH7/+9/7wioqh6vS48XGT3/6UyDt18PwM+nMqFGjCho8OoJ0We1pdXV1zoLymoypDdYE/rbbbuux0LFyIWxHIV20Xvfs//7v/wC47rrrgDQkbv/99/ftbiEDQjmSHX+qDQyN9dKz2tpa3zYX0vuf/OQnQNzWfu5zn+vQOZT/yMswDMMwDMMwDCOh10yl2RlxZyyyjz/+OIB3lz/55JNAan0YNWqUt1SEC6lpH/12Q0ODd9cWKvMqC93gwYO55ZZbgNzkqmIm9L7Iml5bW+uvXVakcLFT51xOElrouciWbS60iFolUF9fX9A6KXm0tLQUDEsILWbOOa97lVAMIfRyjR492oe+qMywLI2Sx5w5c7xFTBZcbZMFWEmOCieqVN5+++2c0rnhs5wvZCkM61JRmHIn9I6FxTaWLVuW480Jrd35iiCEFvvswpYK35QOq93QPkryLXZUqvmBBx7grbfeAtKwKHmxdC0Ko1pjjTW8F1ey0XsxaNCgnMU9dQ/Ud+n9wIEDvRxV5lptgcLctQji+uuv79uWq666Ckit88XGtGnTgLSYkWSlZ1vtYLY/7g5ZvdU9k6zDdkR927hx48zzExB60C+88EKvy6ussgqQjmnXW289IJXzrFmzStbzU2gRXsgtsNMWhdIntBTNbrvtxn333Zf3u3o2pJ9rr712jre94O92aC/DMAzDMAzDMIwyoNc8QPm8BIqFlJXo7bffbvX+lltu8Z/JAqKZpTw3H3/8MautthqQWtI0k1Yssb67dOlSHx8s68YTTzwBpDNO5bPU1NTw9NNPd+ua+4JwxpyddRfyWGS/m89KnG/fqqqqnGIHhc6hHMlazwvFP3fEIpfdpyPJquXKE0884fPVQu+OYn0XLVrkE8Tl3ZWlTG2GmDNnji+CIotbJeVYTZkyxS8WKRnJ6i2am5sLlmtWm6lE/MmTJ5d1SVYhK62eZRVBCGUHuV6JpqYmr2Pha76yuJJxaDUNS5MXK7/73e8AfKTEsmXLcpLp1Rerv9b2xYsXe7npWZZ3KHsP5EnS9+QBkaxUDKW+vt5bftWHS+by4skbt2zZspLwrs2cOdNfnyzYYTGNbO5ymH8mHZYc8i0NoO9on2yORZhnqfZYspOeZvMtS4V8OTpdOYbkJdlKl1VWX4W01l9/fV9Y5Ze//CWQO15QcYRp06ax4447dvm8ept8EUPh2LK7UUFhH3344YcD+MIHf/3rX/22sF9X+yHPb2cWki7/kYFhGIZhGIZhGEZCr3mAnnrqKSAuTaeStbLmhrHVsgRVV1d7629oLVNuy0477eQXOtt2222BNB9AFotsJaNXXnkFSEuPykoqC5UsLEuWLCmrCkizZs3ycg0ti4W8PPnIxgiHpXMriY5YZ7MWEhFaTCS75ubmipBjaK2RVeyNN97w1a5UDU5V4FShacmSJT4mXlbdbPWnLEOGDPHldU8//fRWv1kJPPTQQzkx+6Hs81V9DPNbJPsrrriirD1AhbzW0rPssxla2mUJz5YVD48XenWiKPLWfbXLYUn8Yi8vfOyxxwJpv/vf//6X1157DYD3338fSL0FeqblEerXr5/XNXlqlW+W9WrIsh7mqwpVJhs8eHCrCmaQ3gONA7JWeo0nDjjggG5IoHdRdArkenHkAdK1LViwIGfpi3zLXXQ0OqO2ttaPiXQ/wgVR9dulGLkQeijyRcN05Bh6nuX5Ue7pr371KwB23313IM5Lu+mmm9o8XrYSp45XjHSmavCbb74JwF/+8hfvDVPlRpHtl9TmSbfOO+88IF3mQt7mLGG/Hs4nFFmic85eQ86x2rwawzAMwzAMwzCMMqLHPUCaIZ922mlA7IkI194JK7HJEjZw4EDv6RGKS5WF6Xvf+57fR2sMqPqLZpGaha+zzjq88847QGpdliUlW50HYguVcgdKiUIz26zFQ1ak0JKZzWsJ84TCRdFqa2tzvBjtnUM5EUVRwRr1WYtYvkpR4T76rnR72LBhvXPSRUBorVEll4022shbf3T9esZVvenNN9/0MpfnVh5dVdTScz1ixAhvjdMzr2o7lcDTTz/t29mwkpbI58WUXupeyFI+efLkXjvXUqC+vj4nTyL0rEHhHEztI3kuXLjQe4Ckl8oByC5uWczo/LSOz/bbb++3qQ9/7733AJg6dSqQRmPMmjUrJ78n9FCOGjXKR4BojRR5y5Tno/eDBg3KsZqrrwrluPLKK/sxRzH3Vdk1/cIcaF2Tomiam5tbeSIhV/daWlr8MQu1Bdn1BDV+0nfkxdO+5bS+Wmf0IDsmCj1JF154IYDPS1f/pCilttD9mj9/flFWgQu9sFVVVV4H5Km5+uqrgTR3Urz33nvcfvvtAL5SpMiOQ6VzigyR1+zuu+9u9Z1ly5b5cX+o79JT3dOdd97Zf888QIZhGIZhGIZhGAk9PqX/29/+BqTW3AkTJvjqDIoPDld8l8Xy008/9ZZeWYFlNZPF9/jjj+e2224D0vV6ZHXS77zwwgsAPPLIIzlVjsK6+qJfv37+M81GtXJ1KVJbW5tTkSicOTvnvOxl9QlXiA/XWoLUClVJNDY25q11n33fEauS5JiteFRJyEK22WabeXnquQtzIvLlYYRx/npWhw0bluNJqiQP0PTp033+SiF9bG5uLqijYZWt2bNn+/uhtrOckKdBeQ6hh3bZsmW+TVT7ma/6ZZhPGXrHs94d/YbWvXr++eeBVL7FXgVO3hf1sx999FFOWzhy5EgAJk2aBJCzFh3k9i1ZL6S2hblAOo7u17x583LWrQmjO5TfO3ToUN/uquLkpptu2nkB9DK77rqr/1+ykc6F3p6ampocL1EYodHU1OSt5pJRWJ0w2/+HVV7D75QyYZuoMYwqB3/00UdeZ0PytZk/+MEPgPS+qF+79dZbc/YN24QwP7BY117LPrMhWgtM8guf5VVWWcXn+t15551A7vqaWbl+8YtfBGDfffcFWufxADmRYVlUuVRe3s7krvb4BEhhZJrILFq0yD+oavjDhkuJzSNHjvQNlPbRQCe7eNxhhx0GpI2Y3OyaWOn3hg8fntOJqUPKFxamh0SluEt5ApSv0co3MCrk3s4XEpctK5pv33KmqanJyyLswDtCKN9sUYlKQEYKhavW19f7hGZ1ENLZrH6F4bPhJElhMLNnz/ZGEyVQVgJy/8+bN8+3vZJRvoU884XBZr+z9957A/Cvf/3LG5LKqRhCuFisrj8MQ21sbCzYJmYHhoVCi8JJU9bYNG7cuFbHCQecxY4GGmEoO6TPbjh4Xrx4sdex8Dols5aWlpx+K2xrNXFdffXVcyadhQb51dXV/lwVqlSM/Oc///H/a5yiV7VpMgT379/fX3+oR7r+rBE0NGzmmzSFRQ5CXS7liVDYV7/xxhtAawOaJsxtFSRQmLVChDUxzxawKPTbhZYPKday4o8//jiQnt+RRx7pdeSjjz5qta9CVGWEGzhwoH/mlA4TToAADjnkEABef/11AB821xmUSpDvvrU3xrIQOMMwDMMwDMMwKoYe9wDJ86PZ7pprruld5rJiyJWu8nh6bWpq8lYiWXVC13dzc7NPkNQsXpZkeZg0C62vr/fHljVPXgy9z4Z8aBar5NQ99tijG5LoW/KFU+TzWBSaIYcuzWwCYL5FAsudbMhkaNHpTFnQbNKpnotKQJa27OJlkqmecT2TWQuxPBxh2IDah/HjxwNx4QNtk0VICy8rLKcc+d///uf/D9u0UD+zi0eGBT3ULiphtbm52S/uV04eoLBstXRN3kORDRcMLbf5ishkF6CGXAt7v379fFSDQjNDy305eIQVqhKGrKhPNgpz7733+v/1LCuaRbqjwk9f+tKXvP5o/CM9ktcou3h5oWIdanvr6+t9u6lQPIUSa7yWRaFP8kgVA22FoofbutqmffWrXwXSKKG77rqr3e+ExVSE7oFKRxcbWoLilFNOAeD888/3uiZPmN6r/1A/P3PmzJy28OyzzwbgpJNOAuC73/0ujzzyCAB77rknkBY/6QzyRsk7nKW9KB3zABmGYRiGYRiGUTH0uAdoiy22APB5On/961993K0SmxRHKK+OrJLLli3zVo1w8S29d875WD/lE4Sxr9p3+PDh3nKSzQvKvspaUlNT4/MUismq0R5tzXDb80xkLRKhxyhfqefQCl9JLF++PKcgRGcstmFBipqaGt59910Attxyy5481aIkLDs/aNAg70nUMx8ubFhVVeWf39AiKgvUNttsA8TxymoP9FvyHpWzB0gWyJVXXrlg0r7a2SiKvGz0mXJfJF8llFZXV/Pqq6+uiEvoE0IPd5gb0tzcnJObE+ZPZD1DoYU5n9VXFvaNN9641XEKFVcxKouGhgZvxVbbGHofNa761re+5Rd+Vhspj7fawWy+ZCGPr9qB6upqX9ZcORuPPfZYq+9kc4DuuOMOIPWIFANtjYXCbXrW9t9/fyDuT773ve8BcPTRR+c9xo9+9CPvpdNi290ppqH2RP1UsXHCCScA8Kc//QmII650rtJLlb+WHqm4xMorr5xT9v6SSy5p9Tp69GjvKf7hD3/Y6rfztbGF0G/m81S2933zABmGYRiGYRiGUTH02spW5557LhB7hC699FIgrQSlvJzsomYQz/pktQhj/bMWNn2W9Rzl2zf7v34jtJZohjh79mw222wzAI455pjuXfwKpFDca//+/XOqtYlsbGahEtki6wkKq+uE+5Qzs2bN8v+H8f2SWb4yw6Fcdb/69evHyiuv3LsnXUSoQqOe2dGjR/Paa68B6fOrHDzt069fvxwvsTzCKjt6wAEHAHFbon1kpQrLj5Yj8iIuWrTIe2/0fCqeWp/feeedHHjggUCaoyFLs2K5xdKlS31lnnIk9HCr+qiora31/ZSs8mEVrH79+uVdHDV7XPVn9fX1XpfDfKMwcsGoTJxzfnySz5qd5eKLL+biiy/Ou02W90WLFuWMD/Qqb3tHFuEOq80NGDDAlzYuJg/Qo48+CqTXNnToUO/9V0UyRRCE1YWnTp3KL3/5SyDNR1FVzfvvvx+Ayy67zJfKLiT7tig0Nij2ZQZUtfLpp5/2efbqa5ULpmtRP9LQ0JBzvcoDzF6vPEihJ62tMaXaVPVh8qxnI7f0DOj+FsI8QIZhGIZhGIZhVAw97gEKLd7777+/j7N8+OGHgdQ7pPV7NIOLoshbL2VtCPMtVlllFT87VMU5zfI0+8yXoyKrQNbbBLDXXnsBMHHixLKqdgS5eSfZfB69FvJQiDBWHiozB2jAgAFeJ8M1FSSz6urqHNko1jpcZG7x4sXemlIJqAKk9GjUqFE+dleyUR6GrEsjRozwlrtC+Wx65keMGOHvi76j6jAbbLBBj15LMSGPzqOPPppTkSys1pj18oRVMcPPBwwYUJSLRXaXcP0jEVYQamhoyFnEU15MySjfOkBC+ioL+5IlS7w+qr8KK56Gi3MblcWf//xnbrnlFiBdbLYzuRAi9G50FVn+w+q99fX1fOYzn+nWsXsDjSf1OnfuXO9R0zMsL4TGRFrr8ZhjjvERQA8++CCQrvWjXMidd97Ze4k0nuzOYtHyYOyzzz6d/u6K5JxzzgHgH//4h6/ypnZP7abaOckhG6mlcVM4/ly0aJHPYxMd0fewzVU7nfUAdbQyr3mADMMwDMMwDMOoGHrcA9TWzG333XcH4ljCLKqDPm/ePD9DnzFjBpDGZmvGrUpyRkyhWMnVVluNd955B0gtluFaFcuXL2+1Unn2Nd+aLKISc4C22247X/tfnovQwhZFkZdbIZnIClxVVVXWnokQWTTlgc1WvpEFR8+4LEfz5s3zeRjhWmJ6VQ5MVVVVTry7rH/ljGLwTz75ZH/9yv0Jc1aybbPyz6TLkn1dXZ1/VTWockJtV1hxMLQqHnnkkV4W0kF9NyvX0AsceuHUHqy00kq+YqEIq/ZVomfdSBk+fLhfe0fRKNLBQpXJsoT5aC0tLTn9UKH1gPK1n/vuuy8AV199NZBW+jrggAP47ne/25lLWyGoalk+5L3VuFI54HofRZGXvTw/kr0imI4++mjvMRLdyd+RB+hXv/oV559/fpeP09soEiCKIl8F74ILLgDgueeeA1JZdYZddtmF3XbbrdPfC+cYul/ZSp4dHZP2WhGEzrDhhhu2egXYZJNN+up0yoKFCxf6BkuTGDUC2XKu+SY4kLvw5BprrOGT1TXoFF1x05cagwYN4rjjjgPwi3fNnz8fSAfnTU1NOSFFkp/kqbCC3Xff3U8GKgFNxrVwqSY9kOqPQrY0sdxpp528i1yTIi1OHHb2Cxcu9PKcMGECQJca11LllVde8SEcIuyc586d6/9XYQTdB+mpJo333XdfTmGAckBtWD79yaKwj94kDC8Oz8GoPMIkcz2PGqiLJUuW+FBfERo4O0vYV2lJE73XeOLUU0/t0vH7EhmFurLQZm+hsUApyVOTYr0KGYdfeOEFIO6PtFSFJptq71QE5sorr/TfDw1HbRH2a1pgNWtQloGrPcp3xGoYhmEYhmEYhhHgemHxtXJaza2vY7valWWhMthnnXWWT9BT8mLo7WlpafGJ0WFZ2DBsrqamxlsot9tuOyBNwO4gfS1L6IZuRlFU0K0qC8fs2bN9QQ/tqzKPes2GzRW6dx2kpOQpD470qqWlxeuWPIryOCjRUt6iFURJybMtnnjiCQCmTJkCpMVnfv3rX/tFEs866ywg9Qp94QtfANJwjx6gqOV55plnAqlHSOXU1aZl+8XeCvFVMSAtDyEP83777Zdv96KWZwlSlPKU3l177bVAuoiznluFUTY1Nfm2tKcIQzxVkOGkk04CUsv73/72N/bee+/w60UpzxLG5Nmz5JWneYAMwzAMwzAMw6gYesMDZBiGYRiGYRiGUZSYB8gwDMMwDMMwjIrBJkCGYRiGYRiGYVQMNgEyDMMwDMMwDKNisAmQYRiGYRiGYRgVg02ADMMwDMMwDMOoGGwCZBiGYRiGYRhGxWATIMMwDMMwDMMwKgabABmGYRiGYRiGUTHYBMgwDMMwDMMwjIrBJkCGYRiGYRiGYVQMNgEyDMMwDMMwDKNisAmQYRiGYRiGYRgVg02ADMMwDMMwDMOoGGwCZBiGYRiGYRhGxWATIMMwDMMwDMMwKoY+mQA558Y55yLn3Dbd2aeScc5NSuSzchv7RM65I7v5O90+htEa59yRzrmok9951Dn3u946p1LG5NlzVIpcrP00SgUbL614nHPTnXPf6e4+RnHToQlQ8mC19XdNL5zbh8CqwEvtnNuFzrnX2tj+pnPukI50eCsS59yWzrlm59x/+/pc+pq+arydc6Odc39IGrIG59wc59xDzrm9VuR5lAsmz65jsusc1n6mrKj2s4/GASWHjZeKnx5qb7cF/tDO75S1HLM458Y45y5zzr2byHSmc+4e59z+PfgbPTrp7NfB/VbN/H8gcFXw2bKeOiERRVEzMLutfZxzNe1s3wBYC3gA2K7nzq5H+Crxw3Occ25iFEVT+vqEKpCbgUHAV4CpwCrArsCovjypEsbk2XXKUnbOuX5AcxRFnfLQdQBrP1c8nRoHOOdqoihqXBEn1ll6+dxsvFT8dLu9jaJoXlvbnXP9u3OCpYRzbhzwX2ARcA7wMrGDZQ/gSmK9Kj6iKOrUH3Bk/LV291sTuB1YACwF3gSOSraNAyLgCOKHbSnwBrBX5vvaZ5vk/aTk/f7As8By4NTks+zfCZljnJ2cw7g8+12T7FML/AaYA9QDTwM7Z46h3z2Q2LpSD7wAbN1Z2WWOORBYCGwG/Bm4NNjeEfnovFbOXMetwIvAKslnEXBk5jurAzcCnyR//wHWa+dco0TO/0nO433gmGCfTYEHiRv2BcA1wEqZ7VXA+cRWqgbgVeCQ4Deyf492VbaduAfDk9/as419jgGeI36o5wI3AavnuQd7AM8k8nke2Co4znGJ3JYCdwHfIPMMAeskejobWJLcwwODYzwK/K635WLyLFrZTQfOA/4I1AEzgLOCfVYC/pTIdhHwGEn7mWwfBfwj+e4y4HXgy23JJbkXC4FTkvdttiHAhcBrwAnAu0AzMKSH5WXtZ9+3n63GARmZfxF4OLmWUztw7vreNsHxQ9lfkMiugfi5vjazzRH39e8mv/tqVsaFzm0FPds2XurmeKkX7slweqa9nQ58J9DZbwC3EPc7/y4kx3L7A+4GZpGnrQdGJK9rEbexi5K/W4A1Mvu12W8T902t5Nnt8+7ChXb0gb4zeVg3B8YD+wL7Jtv0gL0JHASsB/wN+FgCbOOBfhXYG5hA3GhcmhxnbPI3MHMOk4ETgWrg8OT7GyX7rZTscxnwEXAAMJHYWrMYWDX43TeBfYBNiAdus4FBXVSWY4GXM8efC9RktndEPjqvlYFhwCPEA55hwQN5ZPL/IOBt4s51M2BD4GriTqXgdSTH+Bg4BVgf+D7Qkrkvg4CZwG3EHfmuye/cnDnGGcSNyNHJMX5EPDDaItm+bfI7+yT3ZuQKeGD7ET+ElwMDCuxzInEHMoHYIvYI8Hhmu+7Bs8BuiUzvA6YALtln+0Re30+u/ZREnlHmOJsD/5fIb91k3+XAhsHDXxQDdpNnn8huenKdpybX9M1EVjsm2x3wJPFAe7tknx8nz53astWBs4AtkntwciKXPfLJhXjAVQd8PnnfbhtCPAFaAtwPbEXcXvbrYXlZ+9n37WehCdD0ZNt4YI0OnLu+V3AClNHDA4gHUduQmcAAPwHeIh5jjE9+awlwQFvntoKebRsvdXO81Av3pNvtbWafcAI0Fzgpkfc6heRYTn/ASOI27dw29nHEE5rJxO3VNsST5+dJ+/Y2++3kdz4Efij97fa5d+FiO/pAvwL8oMA2PaynZD5bPfls52Cf8IE+IjjWhcBreX5jDNAIjA6+v3Jmn8GJgI/LfFZNbEm6KPjelzL7DCG2QJ7URYV5TA9OohjTs9fVQfnovCYSW1juIHiYad2JnAi8I2XLXOvHJAOcAucaAVcFnz0IXJ/8/1XgU2BoZrvObd3k/UzgguAYj2aO0eper6g/4o51AbGV6inizmH7NvbfMDnPNYLr3Cezz2eCfW4AHgiOczXtPEPEjcN5gbyKYsBu8lzxsiNuI/4RfOcdXROwO/FAZGCwz0vA2W387o3A1aFciCdHnwJ7Z7a124YQt8eNwJhelJW1n33cflJ4AvTtYL8unXsg+zOJJzg1ec5jMLFHZ5fg898Ad7d1bn0hpzb2s/HSir0v3WpvM/uEE6DfBt/JkWO5/REb3CLgsDb22YvY8DEu89kE4olTW564sN9uJfPu/vVIFTjn3OLM35XJx5cB5znnnnLOXeSc2zrPV1/J/D8reV2lnZ97voOndRDwdNR2nOY6QA1x7CIAURxL+xTxjD3LU5l9FhNbVsJ92sU5ty7xoO6G5FgR8Hdiq0FIR+RzP7F79vAoiurb+OmtiS1Li3SviDveEcRyaIun8rzXtU8EXomiaFFm+2Rixd7IOTcMWI2MjBOepAvy60miKLqZ+NwOAu4BdgKeds6dC+Cc28o5d7tz7n3n3CJS3QvjWdu6TxPJLz+Pc26wc+4Xzrk3nHOfJPdmmzy/U9SYPLtOe7JLeCX42ixSuWxN7E2Yl22PiS2w6wA456qdc993zr3inPs42X44uXI5BPg9sQX6/sznHW1DZkRRNKcLYmgXaz89fd5+FsD3zz147jcBA4D3nHN/ds59zjlXm2zbKNl2b6D3XyP3vnR07NCr2Hip7+mB9rYQRaFjKxjXgX0mArOiKJquD6IomkYs042gb/rtjhZBaI8tMv/XAURR9Gfn3H3EIS97ApOdcz+LoujCzL4+CTGKosg5B+1XplvSwXM6lDiesC1046I82/J91hOcRGw1+SC5Xn8ezrk1oyj6MLNvR+RzF/B5Yrfh/9r43Spia/BRebYt6Pjp5+AoLKuowP9tfbZCSQY9DyR/P3LOXQ1c6Jz7PXH41YPEITdzicNlngDC5MZsMq2uSfepI43DpcQhD98htjItBa7N8ztFj8mz67Qhu0uTXcKk7YhULlXEcfm75Dl0XfL6HeDbwGnEA5LFwE/J7dRfSY79Fefc08kkQ7/xEu23IR1to7uCtZ9tf9bX5Lv3bZ17S/Ka3swgWT+Kog+TBP09iMcSvwR+4JzbnvR+HgR8EPxG+Lz0pl52hi0y/9t4qY/oZntbiGLRsRXJO6Te9FsL7NORdm6F99s94gGKomhq5m9u5vMZURT9KYqizxMnMZ7cE78XsJy4Q/Q45wYTN5a3BfsR7Ds1+XznzHergR2Jkwyz7BAcfxPi3IQOk1REOp64SsYWmb/NiQcdX+7M8RLOJ66y8aBzbos29nuROK5yfnC/pkZR1F4HvkOe97r2N4DNnXNDM9t3ItatKVEU1RHP8ndufQh2JpVxvnvTV7xBbBjYgniAfm4URY9HUfQm7Vt/Ch0vn/yy7Eyc1HtzFEWvEFuk27Mqlwomz64j2Q3owL4vEoextOR5vtUm7wzcGUXRdVEUvUQcurJ+nmO9Rxy6sTfwJ5fONLrThnQbaz9bUaztp6eD5y6PQ7ZK2hZ5jlUfRdF/oig6gziHYGNiT+AbxIUR1s5zX97vuavpOWy8VLR0pr3tKEX5bPYkSft3H3Cqc25IuN05N5xYtqsn1eL0+QRiL5x0pyP9do7+doee8gDl4Jy7jNi1+DZxkum+5D4kPcF0YG3n3FbEFqBFxMl306IomprZ733imeYBzrk7gWVRFC12zl0BXOycm0/c8Z9BPJAI67uf55ybR9ygX0B8I27o5LkeQDwIvCqKoo+zG5xzNwJfc85d1MljEkXR95NByoPOuT2iKHo5z25/J55Z3+6cu4BYVmsSh7tcGUXRO238xOHOueeIY7ePJG4st88c94fAtclxRxBXTrklI/9LiC0s7xDH2x9DbKmWm38ucRz3Ps656UB9FEWfdlIMncI5N4o4tOIvxIOnRcTu1rOBh0g71lMT78VE4qTyznI5sTXvHOKqMJOAw4J93gYOc87dTmx1+gE92wj3OibPrtOe7KIoqst4OwrxIHFoyu3OubNJE533BR6MougJYrl8wTm3MzCfOLF3PHk8H1EUTXPO7Ub8zP/JOXcy3WtDegJrP4uk/ewEbZ57FEXLnHNPA991zr1LXMnwZ9kDOOdOIB6rPEPstfwC8XP9ThRFixKL/aXJPXycOOdkB2JjwJ96/xK7j42XVhw91N52lLxy7KmDFxFfJw7dfd45dz6xXB1xMaNzgLWJS2P/3Tn3rWTbb4kNSw8nx+hIvz0d2MU5dz3QEEXR/G6dddT5hKeOJvX9ltiNVU9s5bmRpOQtHUt8bLUPBZLJiMsy/pu4LGlEXH71WuCnec7pfOIKJi3kL+vYQOGyjgcT39QG4pu2bRdkdwdwf4FtE5Lf2buD8smRB3HHMR/YPNw/eT8G+Ctxh9lA3ID9JZRpnt88FbiXuJP9ADg+2GdT4kHusuQ+XEPhMq7LicNvDg2OcVJy7GZWTBnXWuLwn+eSc16a6OuvSKooEXe07yY6/CxxRxEBk9q4Bzn3jtgy/UEin3sSeUaZ7WsTD2CXEFs9vkMcmnNNZp9HKaKkfZPnCpfddILkz/AagKHEuQQzkufsQ+J2d51k+wji0qMqQ/4L4oHLo20cc53kOH8i7rTabEMokGTdQ3Ky9rN42s9CRRBCmXfk3CcST96XJtt3Ce7VocQ5JQuJn+nnaF0e1xFP5mVkmUcc1rRXW+e2Iv5CObWxn42XVtw96an2ttU+BO1FW3Isxz9iL+5vgWnJfZ9F3D/vl2xfi9jLqDLYt9K6DHZH+u0diCdS9R15rtr7U/m5siFxyc4lFvqzPXC8ScQlUkdH3Z1tGoZhGIZhFAE2XjIqmR7JASoyRgG/Jp7dG4ZhGIZhGLnYeMmoWHotB6iviOKkwk7HgRuGYRiGYVQKNl4yKpmyC4EzDMMwDMMwDMMoRDmGwBmGYRiGYRiGYeSlN0LgOu1SWrIkXjvq/PPPZ/LkyQAcd9xxAHz961/v9AncdNNNAFx99dXst99+AJx++umdPg4dW3SxN+l199xbb70FwL333gvAyJEjARgwIK4+uNNOOwGw+uqrt3sseRMLlJDsa1lCCS7W1gYmz57F5NmzmDx7lpKX53PPxWkm1157LQCjRo0CYOjQeAmkfv36MX9+nDevPmStteJF4F966SUA5s6Nl82ZN28ejzzySHdOp+TlGfLxx3Fl+JVWWgmI5dkV1I/rtaqqQ3byopRnS0u8zq6uIXwvli9fzgcfxOvovv766wBsv31cqX7s2LHt/vD778dLTr3xRly5fN999y00Dip4DgFFKc/2yHdtixfHVb8lV71uttlm1NbWAvDRRx8BMGbMGAA233zz1icSRQXl2UHyftk8QIZhGIZhGIZhVAy9kQPU4QP+3//9HwCPPfYYEM8eNQPULHH06NEArLnmmgCst9563sKxYEG8ALe8RsuXx4vu1tXVAbDqqqt679Iaa6wBwFVXXQXAhAkTOnKKfT0L79Gbk89Ds/vuuwPw7LNxBcympiYAGhoaWn33pJNO4uWX4/UBly5dCsBnP/tZAH75y18CMHDgQACam5uprs5ZrLevZQlmEe5pTJ49i8mzZzF59izdkucll1wCwN133w2k/dB7770HxJZieYBGjBgBpN6M4cOHA7DyyisDMHXqVP+9LlLS8oyiiPvuuw+Af/3rXwDeIzZnzhwA6uvr/Rjrf//7H5Ba6KdMmQLAhhtuCMTRMptttlnB34KCkR2iKOXZnjfrlFNOAeLxjrwRkp/GkbruxsZGttxySwCWLVsGpF42eX7kzZwwYQILFy4E4OCDDwbgiCOOaPXb7XiCilKenUHRRYsWLQJSnXvhhRcA2GWXXfxzrudekUfy/G6xxRbdOYUs5gEyDMMwDMMwDKOy6RMP0MMPPwzAz3/+cyCNBa6rq/Oz4vr6eiCO9YU0T2js2LFss802QBpTrH1lJZIXae7cuX6Gqdn4sGHDALj11ls7ci19PQvv0ZuTz+Kw0UYbAeksXV60/v37A6ncmpqavJxramqA2CIC8M1vfhOAyy+/HIitI/IGZehrWYJZhHsak2fPYvLsWUyePUu35HnhhRcC+FwLRXDoVf0TpBEI+iz0AD3xxBM+8mPcuHFdOZ2SkqdyTD7/+c8D8Xjo008/BdL+XPm76pfff/99HzkTess0hsr2++rfTz75ZAC+973vtT7ZEszxLeRlOeeccwB49913AVhttdX82EfRK5Kv8lMOO+wwvva1rwGw4447AulYc/DgwUCqn01NTV5e0u8ddtgBgDPOOAOII2WyvxdQlPLsKO+++y7Tp08HYO211wbglltuAVJd/NKXvuSfXd0HzQU07pRHSPraDfLKs0/WAXrggQeAtOFSY1dTU+MfXimSXIxSpubmZh8ep0H2kCFDgNT9OHPmTAAGDRrkv6cQOLk1n3zySQB23nnnHr++YiVsDLKJf3qAFQKnCadkO2LECK+4mhxJtnqgRQeTJg3DMIwK4e233wZSo6aSo9XXLFmyhFVWWQVI+yGNBzRQV5/T1NTE448/DnR5AlRSnHDCCQB88sknQNwfq89Wf6uJiYy+48eP96FFe+yxB5AagDUOUv+eTTJXiOIdd9wBpCkG3UxC7xPCMc+0adMAeO2114A0taKhocFfn/ZV4SeNTz/44ANfYGvQoEFAOk6VXDWpqaqq8sdZbbXVAHj11Vdb7aOJT4GUgZJm4cKFfnKo0EKNwa+77jogdkLsv//+AOy5554ATJw4EUgnlppEFTCqdxsbqRqGYRiGYRiGUTH0iQdo1qxZQDprznqANDvWZ/I2yFIhNyWkM2hZM5Scr9n5kCFD/Cxcx9Usv5I8QLKaZUMMIA5FlPVN3rNwH8l7yZIl/p7IKqekSR1j9uzZQBym2MFSj4ZhGEYFIG+EvDnqNxRqNHLkSN9Pq8/SPuq31Qc1NTV5b0g5o6JNSsyXx6G5uTmnb5XM1D8vXbrUW80lR8kv9EJUV1f7cCMVntK46uabbwZyk/hLgbAU+EMPPQSk4xKNGQcMGOC9jkJ6uuqqqwKx5/LOO+8E0uR8eTFVFEHHramp8WOg8L488cQTAEyaNKnV9lJG1yoP2+LFi33pennZ5FGbOnUqEI/tNb7UnEDeRkUmKTRujTXW4Itf/KL/v6ew0alhGIZhGIZhGBXDCvUAaZYoy4JKXOpVSXiQzpZlqdBMu6mpyXuFtI+Oqxm83jc2NnqrhpAlSfHIlYCuWXITzz33nF/kS0mmKl2o78ibprhtSD13hxxyCAD3338/AFtvvTUQe4DKwaphGIbRFsoJuPLKKwHYeOONgTTnQm2kkXp6ZFGXtVwlhD/55JOc/jrsR9QfRVHkv1fO/OEPfwBa50ALFSMKZaS+O/u5PCH6vsYC+ry2tjZn/CTvkHI2StEDFCKdCT2M/fv3z4l+0fXLS1FbW5sTiaT8Fo1FpdMDBgzw+q5xre6L8o/kAerqgrXFhDw/8twMGjSIddddF4BXXnkFgO222w5IF5adPn2694Zpm5ZjkddIy7RUV1fz3//+F4D1118fwJck7w7mATIMwzAMwzAMo2JYoVNPVRHTTFtxk/IojBgxIqfqi2bHmnFHUeRn1JrFyxIiC0a2XKNm5LIcCVWKqwQKla/UwmmQeoD22msvIJ3R6zvz5s3zca+K7dQ9kWVI5Q6hYGnHikHVS2bMmAFURq6ZYVQaTz/9NJD2V1qa4be//S0Ap512GgC/+c1vCh5DVuiLLroIiPM9/vjHPwJp31bqNDQ0+MgPecnkhVAfs3DhQt8vK+JDY4Ow6taYMWN8eeJKQGMm9bkNDQ2tvGGQm2+bHf9IxhpP6X3W6yPvm/KG9Jvqy5SnoapmpYhySiQHjTeXLVvmr196KdllKw+GVYk1ztHnem1oaPDf1zhX38lG05QLKlutKo4LFy70Orb33nsD6bOsPKq9997beyTl6ZH8pJcqIT548GB/r/Tcr7feekBaH6ArmAfIMAzDMAzDMIyKYYV6gDRzU9xkOMNee+21/YxQVcm0TRahmpqaVpU2IJ3Fy3KhWXn//v19vLGsbDqOFlzSbFyVT8oRyTSMNZ02bZqvgiJLphZTk9yVnzVp0iTvzVA1jp/+9KetjtfOQmkVgXICzj//fAD23XdfIPWwbbLJJp0+5vXXX+/jXhUraxjGiiXfwoWKS1c7KU+Q4vsvu+wyAI499lifIylkNdW+H3/8MRBXpjr++OMB2HXXXXv4KvqGBQsW+D5dfa36Xnk1li5d6vsOWc0/85nPAOlYQbIfMGBAWeeZnnjiiUAqB/XTH374IRBb05VLofGU5Jhdz6ZQJEZ2DRohz4equapqn+7bY489BqT9fymhMaK8BfJG6ppnzpzp807kCQpzy6F1FWJIq+rlk7MileTF0PEVXVMOSD8lF40xBw8e7LfpOZc8FCnU1NTkxzOqEKc1PjW21z1oaWnJyVHTeHTDDTfs8vmbB8gwDMMwDMMwjIphhXqAZOGSV0ZVMrSi85e+9CUfXypvkWbY8u5kK5lptqnPNEPU56ussor3bMiCpJVmZQF48803gfL2AIXWCVXemDt3rvdI6N5kV5qGdPY+duxYX79dMqxUwjWOFLf+rW99y/8/YcIEIK2AcvLJJwNpnfss8kr+5S9/AVLLmywoQ4YMKem460K05zG8/PLL2WqrrYA0tljPs55XrUUlC1JH+NnPfubzEA4++OAunLlRiYR6umDBAp/XKiuk+ivFu6sS0jbbbMORRx4JwFprrQXAr371KwDGjx8PpNWR6urqfIRCufDJJ5/k5FbIKq/Pm5ubfZUutXeqKjVu3DggHQcMGzasbPKj8vHNb34TSCusSkbqExobG31Ui8Y76uezeqr/w8pwkt3gwYOB2OuhnCJVKdNv6bsap5WiB0jjSXnSpIPqexcsWMAGG2wAkLMWld5XVVX5vj9fpT1I5Tpw4EBefPFFIJWx9F2e33JAYxXJRd6z+vp6H02kNlH6pOu/+uqr/T7yOoqw0nO/fv38PdQ2rY3VHQ/QCp0AaTCtMAEl4evzF154gc9+9rNAOnBU6JAuuqWlxSuZ3G6a+MjFpoZh7bXX9g/1M88802ofLab08ssvA7DLLrv04JUWF2HHff311wPxwyvZqcNVBxMWltDnAJ/73OcAOPPMM4G0I882CuUcBhc2enJxv/XWW76jDgfs0nHJfrfdduOuu+4C4NZbbwXSBkK6qDCYroTNlQKFQjMffPBBAI466ig/0ZGMVIBDz7XKxE6YMIFtt90WSMuxa6KuJF4tgvf+++97WVfqBEg6LFlrwr7OOuv47eX8DHeFMMn8hhtu8P2TBgDSZRmUpKcbbLAB99xzD5D2T9JPhTDJILh06VIf3lEuz359fb0fCAoNbjQIXXnllb3OSa4aUOkZVj/Vr1+/nHCkckIlfqUHKjSkvmbChAl+cqiBe7YEM7QO3dIgVPqobbondXV1fjCqsZHen3HGGQC+fS1FNBkJdUYTomyBg7CkdVhIIos+C43M1dXV/nga8MvAIR2WTmvMUIpoPK1Xje2HDx+eM9lUOycdvP322334r2SgNjAMd1u2bJmfAKkYVzhp6goWAmcYhmEYhmEYRsWwQj1AJ510EpCWWtbM+PLLLwfiECCFpIUlCTVzr6qq8jN0WTG1j2aWmoU+++yzPildXgqFKGnhOs1Ky5F8SbuQutVHjRrl5aHZehiWIGTRhDihN3tcLfZ3++23A+VRBCF0dWevKZTnpptuCsQWMyXxKYRQ3gjJT6ENa6yxBptvvjkA3/72t4HU2qsQUZH11JV62Ec2fFAWsilTpgBpAQlZPe+++24vR123wof03exiykoQVilieY+07+c//3kgDocot4WQO+KxmTZtGj/60Y+A1OKmxOaDDjoISL26nXmGf/e733mrXCWVe//JT37i9U8h1WGZ3OySDUqClmyVXC5vpNqVxsZG7zlWEZVSxznXKooA0rZAMswubKrnXknrKnkrr0d9fb2XXyVw8803t3p/9NFH+6gCeXc0ZpLFvbm52etUvpLOkOrrwIEDfbt777339tp19BUKlxIa98kbO2zYsFbhVpDqp2TW0tJS0OMTLkrb2Njof0NFD+Sp0z6KZihlD5A8NnpONfYeMmSIH0NKP4Xauz333NO3ifosG0IHtDqGxvf6LFwOpyvjTvMAGYZhGIZhGIZRMaxQD5BQGbxbbrml1eebbLKJT9BXHGq+UpfZ0niQejqUeCpre3Nzs49j1SJzlUQ4I1ZelWJPx48fn2M9Cks1Krk8G/+u+6cSsF/60pd64/RXKGFhgzDevyNccskl7LHHHkDqDZNlRJ6LMWPGALHVvKMlbp1zJef50XMbvmYtZ7I0/vrXvwbg1FNPBdJ8lKyXRhY86bQ8lophb2lpyVnAT7JXzpru6YcffuiLfcjqqfam2Anbw3weSlky5Y284447AFotHPnqq68CaQ6U5KH2t62cyBdeeAGAr3/96/5Yhx56KFCeHqDQwqjCB7Nnz/Zx/bJGynocWif79evn+ylFM6hvEvpuVVUVTz31VO9cTB8RRVFOm6r36oOUCwRp8Qjl6MoDJCvwp59+WtGLbWf1Se2edE5tYratkKzCsVM20T+bM5SlrWiIUkELoKpt1HhHOVXrr7++18dQDtnr17awHdZxdU+GDBni/9er5KbjvfXWWz1ybX2B+t+wnLjaxsGDB/s8vlBv1P4NHTq04Fhecs4uJquCC/pM3juN97VIcmcwD5BhGIZhGIZhGBXDCvUAZWMps6+ybm+66abeahvOlrMxq6ElSdv0HVmJlBOQJbvwF+RfwKpcCOWk3B/Ju7a21lsuJENZ4WSVUznSefPm+e8pDluLfYoTTjgBgGuuuaYnL6PHyBcrqs9CWanCyHXXXQfAPffcw8MPP9zm8bfffnufZ6KKT2E8sax1N910U44HSLqpuFrdi2XLljFr1iwgjY1XzkWxEso1tHptsMEG/PCHPwTS8t+y6Kgs8DHHHFPw+MofvO+++4A4nlpeS1lAVdFMsfLyIi1dutTrcjF5gEJvmXMux9ralvVVz+W5554LpDKX93HcuHHe66D8CXmHZK1Ttb1nnnnGVyuSrJSfqd/RIpXTp0/3pXPLCcWlK5Zfslce1ejRo33UQSHLumhubvZtrWSv93rNlr1/9NFHe/6C+hDnnG8L1T+rLdTzmc0R0sLPijKQxV4et48++iinL68kZHnPEub8NjY25pQTDnNVRHV1dU6VPtGVaIhiQ/2nvGRq7+TJqK2tzRlHinx6Vkgm2UVp1VdL9mob1K9nPfKlRpgLpb5bepkvtz6fVyfMC5Rssp5ziKNB1FdLntJXjdXMA2QYhmEYhmEYhtEGK9QDFM4aw1m0vD+QW+lBM8Hm5uYc75COE8bAhpXMsvuWYhxrZ8hWgJE3R9X25D146623fDymZBVW1tGs+t13383JtZKnRzlBslreddddHHjggT19ST1GGNOc5fTTTwfiCoKQXusnn3zicx609kw+/vjHPwLwj3/8A0hlorwrVUn529/+5j2UqoooC4esKFmvpyx3ioUvRg9QthKZnjPJUTkmv/vd7wDYfffd+c9//gOkspHHR9XgILdakZAF7wtf+IJ/lRfi97//PQAPPPAAkFqMZAXMWueKibZi7EProeKh5Y1ZsGAB77zzDpDm8anKoKoNNTc3e93V9e+5556tfkftwIwZM7x+qo2QVU/V9WQ93X///b13TZbAQtbkUiGKohzr5J133gmk7d66665bsPqb7mH2c3kxJEfJL1ybZMSIEX7RaXk499lnnx66sr5DMtEzHa5Xo2caYKONNmr1XcX5S76jR48u+z68LRYsWOD1M7Ssh1Ez2c/0qrGB+vSampqyroirXB/1BSL0SkJuPkrWW6b/9cxKjtJljbWccwXXvdIYQP1RKaJrkdz0Xjo0atQo/8yGz73kO3jwYK/Dkme4/qRYsmSJ73dUNTJcg6gr9EkRBBEuhNjY2Oj/lyDU4WcT/bQtXHxOIQTqxOVGz9KdknmlRDa0TwUgNKBRR7Pmmmv6kCQpYKGBS3V1dc6EU/ckLKRw9913+4HB0Ucf3TMX1AN0JIlz4403BuDvf/87kE441l13XR8e9L3vfQ9IQ4uySDc1+NSAUzJS2NCWW27py2erDOZ2223Xal/Rr18/35hogdVioK3k2CuuuAJIJzeSqxY+e+CBB/z/Tz75JBAPpKH1cxuuuF3oPaQTfHUsal/U4Ugnhw8f7o0tCvEsJiTXN998s9UEB1ovlgmpwaKpqcnLRINHrdyuULYxY8Z4/ZEswtA/TWA233xzH2aoNkFtsX5boYorrbSSn+hqYlaME6AoinLCDEVoGMvq1c9+9jMAfvzjHwPpyuNNTU1ex7KhL/mOn11oMRyE6jWr02pLVQSg1CdAURR52YQlbiX7rPFNi26Gg/msUS87aK005s+f741zGvfomZNOZss2i3DyqWd52LBhrQzQ5YZkpGdM77PtVaEiENk+R7KV/IQ+ly4vX768YNlmPQelHMIpvQkLPKifamhoyOmrw/avpaXF7y/dDY1D2TmCQt1kbFO/1p0JkIXAGYZhGIZhGIZRMfSpByhk5syZ3oIezupkmcyWA9Zsu9ACVlVVVTlJzvnKapcToZcG0pANeX7kCRo2bJj3QijkQqFK8krI6puvDLOsKLLc7b777kDbIWJ9iSwvsi6stNJKORayr371q0AawiYvxQUXXMAOO+wApGEp2lfyfPrpp30ivvR3s802A1KLpiwdDQ0NPnTw+eefb3UcWd4VytTS0uL1WF6SYqCt5Fg9b1tuuSWQWh7lUdtkk038NW211VZAGgKYDcUoVKQkvG/33XcfV111FZAuHqky2grjlEVupZVW8sctJg/Q9ddfD6QexhNPPNG7/WXtldVL1ySr7bx58/y+sqopTFIyX7ZsmS81rnYwLHoii5vaAYC5c+cCqbU09M6/+OKL3tNXzOQrKlGIO+64g7PPPhtIC3fIq5tN4pX8pd9qE9UXZT1KYdiRZC69zJbJlndd97LUaW5ubrVIJKQ6FnouoXU4HJC3RHG5R3FA4YiVlpYW74WQV1gyy1eII4y2CUO5li9fnuPVKIdomTCaQv2y2jK1kcOHD/eehbDoSdZjobYvDKULwxEbGhr8khfq8/WboUeksbGx5Ja50LWE3qysVzZbjAPSZzibmiLZSvcUmZD1pEHc76ltDb+Tr9hZRzEPkGEYhmEYhmEYFUOfeoBCy8JTTz3lZ8Ka+Wm2p1n5smXL/P+aYYYxsFlrnKyXskiH8delTmilyVrllbQry7osRJJXXV2dz4+QdVNyf//994F0Zj98+HB/7DAhXQtX/vnPf+6py+oVtBiaPDhRFOWUp5ZFV5Yi5f0MGTLEWy5OPvlkIDexsn///j4/QJYneSOee+45IF1YFlLLnRad1EK1WkxV962pqYkNNtgAKJ2SpGHxAyEr24ABA7wHTDk7uj9Z9CyrZKhkNnPmTCD1DM+aNYubb74ZSHOzlOivdkFtS//+/b0XMNTlvmS//fYD0nN69tlnC5aXltdVz/J7773nvyfd0za9Zhc7lBy1TXqVtXDK6yT5hUsUiNraWn9ftUiq7m2xopy6Bx98EEgLRdx1110AvPbaaz4XTd7bsFx1//79C0YU5CvekfX+QtoHaR+1L01NTa3alHKgsbHRy03eSz3Tkoc83pDqd5gUne2/y0U2XWH58uW+b1ZfJVll8120TxglEy6M2tDQUDJ9S2cI+x/JI/Q0ZD06hRZDz/esh1FH2aJS6pvkFVFEgrxO2nfu3LmtxgWlgOSla9C1SQ5jx471fVc4phJZ+epZ1nhUfbeiY1ZaaSXvUVNfo/shb1RXKD+NNwzDMAzDMAzDKECfmj/DGfbUqVNzvDphCdZspbjQi6MZZrY0n+K3lWdQyvGs+Wjrei644AIgzedRLoBiJuvr633svipxyeqpe/PII48AsaVDXpIw/jVfFY5ijB+WJUJemvXXX98v7ihrt6wLJ554IpDK7L333uO0004D4NBDDwVSncrqqEoRywL+6quvAqn3TdbO5cuXeznqO9rniSeeAFKvXEtLi/eSFFMVOOnMLbfcAsCqq67qr0HPoKxg0hHp0OLFi5kyZQqQ6ooswPfeey/QunKWjhN6IWVV33DDDf026fcbb7wB5C44WVNT4z3DX/nKV4DikKssuEcddVSr147Q2Njor186Fi56mH1O1XZqH71293mVBa+YUCn6H/3oR143dP+VA6Z8JunTLrvs4mWh51vvs9bKcBkBtSPh4ocDBw7MqZqoZ0VW6WwlKZ3Pjjvu2O3rLxa04GnoCZMM11133ZzvqM3WvtlqsOVctUwU6kfr6+tzqumFuXnOuZxKY6FnMrvMSJhvVkx9d1dRPq2uU8+gIgDUTzc0NOR4c/ItZhzKJByDZtsMjVk32WQTIO2XdL90b9S3lRLStWzeIqQ5qsuXL/cyDp9TXW9tba3XVXnkJBu1je+99x4Q5weqSq7GB8pf133SWE7ju45gHiDDMAzDMAzDMCqGPvEAhZXKZJWYN29eTgWOcBaenVmHFU3CuNaamhrvARLlGOcKuTJ97rnnfFy7qkMpD0Wz6/Hjx3urmyy3L774IpDO2nfeeWcgrnAWWjt1j7QwVZZitB7Jeqj8kQULFnjLw8iRI4E0Zlgyk9Vmiy228GuyyPMj747iVYcOHeotyvLYyPIULpTW0NDg75l+S9YUyVN177NrvBTT2heybEmeM2fO9LkVitddddVVgVQOkvf8+fO9LGQF0jVq3apx48Z5K1K4RkO4nsurr77q5aZX6WDosdxoo438OR933HFdu/heQN4Dyaiurs7rRJgvEn4O6fWG63KF7SLkyi/8vKWlpVV+AOSuxSJaWlp82yBPWrigcl8gb+7XvvY1IG63lH+iV8lTOqO2bcGCBTlrGRVaTDKL2l99V/dkyJAhXg+V+xLmt0rXGxoafFv12c9+tvMXXoRUV1f7qI5sbiOkz2e+dftkUZYlX3rVmYp+5cjaa6/t+2w952F755zzz3NYBS6sjtbU1FRwHZxSJhyzZJ8xSNfXeuWVV3LWlwzHp9k+W/IMF6HN5mPptxVF8q9//QtI+zudUyl6gPQsZ9flgnS8WFVVlbMulchWyAx1Tt/R8y7ZQdpmq00Ix6FdyQUqz9mAYRiGYRiGYRhGHvrEAxRaHWXxHDVqlI/NljVUVo4w5hDS2Xdo5dCMsKmpya9vIzRTL8YclY4QWiELVSz57ne/m2MZ0ntZv6dPn+4/U5UxrcUg66mqwW2yySY+xlKzfs3A5QEpdqRTktWwYcNyrLCyMMrKIGvNG2+84feVjso6kc9CJC+b4lEVXy2PyJtvvul/U9YTWaHljZI1aa211vKyL6a4d13jF77whZxtYYUiWbkkz5aWlpy436zlEmIrkOQpz5r0VTKXRW/hwoX+szAWXvqq+z9o0CBfFVKyLiZ0nno1uobWI5MldqWVVipYiUiylp5WV1f7/6WPslzqOwMHDvS6FeYYyFOr3/7www+9R3fs2LFA2haorVHbU11d7S2goReqHAgt3uqL8z2Lek6VL5h9/ktt7ZSuEPbzktXSpUu9PuYbG2X3hVQPpa+hN7eqqqqgB6hUx0qQW+UzXIMnm1su/SvkARo8eHBOnqXkKvQsV1VV+egReUXUX6qfU1+ufrCUUJ+ta9BzGXrRsqiNzHrb5UlS+6uxqb6vCsMzZ870kTLq1yV75Q53pa0sigmQFKWuri4njCNMQG1sbMwJK9K2cGHOfv365QyuwhtUCuWwswvI6XoKhfJdcsklQByytuuuuwIwefJkIL1WKWC23KrCMjS4F1dffbU/nkLqwkRfKWaxI9np+t966y3/mULfVB5YD3Y2JEjoujWpkeu1oaHBT9i1f5iAL4YNG+bvoWSv50CDp2w4qEpnlkoIp3RNjZJei6HYgFEZhAU0Bg0alLPQtp4nTU6ygz31L3oOtW92gBQeR/2WOnINbiZNmsSPf/xjoHUZfsgdwC5evLhbpV2LlTABPVzcPJ8hTe2FDECaGC5cuLDkSgf3BNKRKIpyjJ/hBKapqSlnIBq+zz4jxRC22tOEyx2EoejZCZDaAOmhxpPq51dZZRX/v8YNkplCvxUmP3z48FbFKCBtY5S8r3PR75QSarukcxoTaty0ZMmSvCkp2e80NTXl7KNtYdGoefPm+bmAiiHo3ipcuCv6WxqjKcMwDMMwDMMwjB6gKFYBlHWnrq4uJxk99OA0NTXleIC0j6xDmmkOGDDA7yvLvhKpCi1gV4yE5VchtQTJ4vDb3/4WgF//+tdAXD5VFoeddtoJSAscyEtRW1ubdwFVgDvuuAOAgw46CIC7777bbwvd8WERhCiKitpdfvjhhwOx1UElqCUrecCmTZsGpJ6L+vr6nIRpWSvGjx8PxJajbBgLpGEusirl8+DoXuq3pb/ZBRPzFZowDKMw559/PpCWX3744Yf9c67nSZZHWS6z5YHDsrh6zYbC6TNZgPV8n3nmmQCcfvrpOed13XXXAWnbEIbhNjY25oTWlAOhtVcWXFmP8y1sGiY8S/bLly8vqkWMVxTZUMtwQfjQA9TS0pKTFhBa2nWM7MKdIaUcAqfnSJ4bjQP1nGa9NOGCsmGJ53nz5vmx6g477ACkHkodX99ZtGiR/w2FvOpVYfEae5Tisy6d0/VqrKLxtRYwzSJd03eyC0nLU64xve6LGDJkiB/rKl3j8ccfb3Vcjf87g3mADMMwDMMwDMOoGIrChKLZc3YxKs3UZQHKWjJCK4asd2GpzKwFRJY/zVBLkX//+998+ctfBtJrD5N6Zdl8/fXX2XrrrYG4xCPAOuusA8Brr73mjyFrh+Rz6623AqnnR4QJlpBahJSgLlpaWkoit6qqqspbE/TaF4TeIsMweo7LL78ciD0rv/nNbwC49tprgTRXRxEH8vgOHTrUex3CBaCzeT7adt555wFw7rnntns+ao9l0dTzL4/I6NGjfRGasIxvqZJduFRWX+U+hP1HFi3iLTnIQgy5Ce7lSBipks9LU6gIVLawQVgGW2St8dK/ckKehNCjILk888wzQDwuVHl2PWv6TnbpAY0fpcvaR3LUePW1117zUR8PPPAAkLYbGu/Kc6FnvZRROygGDBjQKtcHUjmqvauurs4pXKQ2Qbqo8eywYcN8+xsuIC0kz85gHiDDMAzDMAzDMCqGoqgC99577wG0KmupmbXK4GUX7pJ3SDPscMauWWRtba33FinvpdA5FDOqEnbWWWf5WXShcsjZmMynnnoKSONVldei786dO9dblA477DAADj300LzHzVogs6UzIZ2Ri1KSrWEY5U22CtFZZ50F4F/Fww8/DKR5kq+99ppfAkCRBbJyytJ46qmn8r3vfa9Dv53N/bv44ouBtNpjWFJ2+PDh3ntfLjQ2Nvp+Q94c9elh/5FFORbyauh1+fLlJRFl0NNo7NPc3JyT16PXsLog5FrhNU7IWtHDSqXlgPJqteC7nmWNB5WXU19f759rjR8lP8kz68UMdTlcamHJkiXeW6l99N233noLaL0gaKmiZ3ittdYC0lyeN954w1e7Cz2UWa9kNl8fUm9YWHmzpqbG/1boxSxUBr4jmAfIMAzDMAzDMIyKoSiCaDV7HjBgQCvvDaSzO82ilyxZ4mMoVX0rrKKhmWB1dXXO4ooi30JNxYoqsi1YsMBbLOS5CReczFocNfN+7rnngHRRuW222QaIrZ3Tp08H4JZbbmn1m2Gd/OwiU6G8x4wZ063rMwzD6C06snbW7rvv3uq1N3/7+OOP79HfKAUaGxtzFi5V/yRPWPazcPHu0CI8bNiwVvlA5UqhHKBspdVQx7Jjm9Aqrr4737qIpTQm6iiht1F6pHW2JMOBAwfmLOoZyn7hwoV+zClCHZYMR48e7e+Ljht6j3QupZjLJg+a1i7UOoXymk+fPp3NN98cyM0/y67Bqfw/VdGUbCRPeZQGDRrkvXnhwtSq8tkVj7B5gAzDMAzDMAzDqBiKYuqpGOjq6mo/Y1fsr2bRmi1nY3+1ZpAqRshLka9ufWgt6ohVsFg47rjjAPjXv/7FlClTAHJWGc7OqiG+PsWsa9u7774LpHGxCxcu5JFHHsn7m4XiLLPbwip8orm5uSStGoZhGEbvoJxdIStvtoJU2I+pqlZ27SWI+71K8ACFyAOUL19H46is10d9tGQl+eYbD8kaX8rr/oRoTCiPhaoKKpdK3oPFixd7fdRn0jUdY8iQId6TpEgloePr86qqKi8/VXvUGEqveh5Cr1IpsMkmmwDpuatamzw5hxxyiB+XS5/0DOt9bW2t11ndD1Vwlp6rHRg4cKD32mmOoPUcJfvQw9wRimKU+vbbbwPxgFwXobKketVFf/zxx94tNnXqVCBNnHrppZeAeBFQiJVawi7lMqLqIB566CFfqvGaa64B4D//+Q+QJu92ZFEthcvdfffdTJo0qUPnsN566/n/lUioAhUbb7xxq30rMTnVMAzDyM+8efO84U2lhMMFzSF3AhQuCq1BZWNjY05p43IknITomqMo8gPCWbNmAbmL+0ZR5CdAGsyHi25r3/Hjx/vlMdS/hxPWUkRjE01uVIL+Jz/5CZAOyj/++GOvl5rEaKFSpSCMGzfOy1FjVslIct57772BWK6So46rQb4WCVXxj8985jM9dLUrDhV70KvQOBRyy1KHJdyrqqr85EXPu/YJl3dZvHix111NKFXYQpOmrlA6bhDDMAzDMAzDMIxu0iceoDD8TEn58+fP96Fvmj2OHj0aSGeIs2bN8hYPlQqVdUgJWLKaDBo0yHuFVDyg0DmUCipkoIX39CpkmZg2bZr3nilUUB6brDeno5x11llsu+22QBqeqOMqTEFY+JthGIYhNt10U7+4tqzl6j922203v1/YL6vfDssYjx49OifyoBwJ+9J9990XgPvuu88XMJInSFZzeYkWLVrkI0IkV4XOyVsk+Q4ZMsSPD0LPTymHwilU67vf/S4ATz75JAAHH3ww0LHIoPPPP79HzkUeoNNOOw2AnXfeGSiP8ZKeaY3bBwwY4PUxXCRVXt3Gxkbv/Q0LGmjcL4/QsGHD/HFCr1O+pQY6SmnOAgzDMAzDMAzDMLqAs0UrDcMwDMMwDMOoFMwDZBiGYRiGYRhGxWATIMMwDMMwDMMwKgabABmGYRiGYRiGUTHYBMgwDMMwDMMwjIrBJkCGYRiGYRiGYVQMNgEyDMMwDMMwDKNisAmQYRiGYRiGYRgVg02ADMMwDMMwDMOoGGwCZBiGYRiGYRhGxWATIMMwDMMwDMMwKgabABmGYRiGYRiGUTHYBMgwDMMwDMMwjIrBJkCGYRiGYRiGYVQMNgEyDMMwDMMwDKNisAmQYRiGYRg9gnNunHMucs5t0519jMI4505wzi0u9N4wjPZZYRMg59w1SYMXOecanXNznXOPOOe+4ZyrWVHnUUpk5FXo75q+Psdyxjk3xjl3mXPuXedcg3NupnPuHufc/j34G9Odc9/pqeMVO0E7EDnn5jvn7nLObdjX51ZqmH52HeuPUvqon/kQWBV4qZ1zu9A591ob2990zh3inJuUnOvKPXyevUIe/ZvmnLvUOTe4r8+tUrD2s2cpRXn266kDdZAHgWOBamA0sDvwQ+BY59weURQtCb/gnOsfRdHyFXuaRcOqmf8PBK4KPluW3dk5VxNFUeOKOLHOUsznlg/n3Djgv8Ai4BzgZWKDwR7AlcBafXZypY/aAYDVgEuAW4GJfXZGJYbpZ49g/VFMp/qZniCKomZgdlv7tDcRdc5tQKznDwDb9dzZrTCkfzXALsDVwGDga315Ut2hVPp5az97lpKVZxRFK+QPuAa4K8/nmwDLgR8m76cDFwJ/ARYCNyWf7wQ8BiwFZgJXAMMyx/ks8DSwGPgUeAbYJNm2EnAdMBeoB6YBp6+oa+8h+R0Z3y7/fhwQAV8EHibupE4lVrrziS1sDcCrwCF5vrdNcPwIODLz/gLg/eQYs4FrM9sccDbwbvK7rwLHtHdufS3DTsr7bmAWMCTPthHJ61rEA/dFyd8twBqZ/dYBbk/ktwR4ETgws/3RRE7+r6+vewXINacdIB50RcDA5P3FwFuJ3kwHfgEMCL5zDjAned6vBX4ATO/r61uBcjT97GE9TD6v6P6IoJ9pY781E91ZkMjgTeCoZNu4RF+OIJ6cLAXeAPbKfF/7bJO8n5S83x94NrkHp4b6B5yQOcbZyTmMy7PfNck+tcBvkraiPrknO2eOod89kNgbVQ+8AGy9ovWPeOL5UaJvrwXbTgAWd/R98tkpwNREllOBr2a2/QO4Odi/injccEbyvmz7eaz9NHlGUd9PgJJtd+iBJ+5w6pIHb11gPWBT4o7k28n77YGngH8n3+kHfAJcmghxQ+BoYGKy/bfEjdt2yUM7CfhcXytNJ+VXaAI0Pdk2HlgDOCOR39HA+sCPgGZgi+B7BSdAxB1XHXBAorTbZBs24CfEA9R9k989OlHYA9o6t76WYSdkPRJoAc5tYx+XPKCTgW0TGT0NPA+4ZJ/Ngf9L9Hdd4PvEndGGmd/5kNjqPBYY29fXvgJk26odAIYSDwZfyXx2PvCZRI/2Bz4AfpzZfhTxQOWkRMfPIR5kTu/r6zP9LI2/UA+DbRXbH9HxCdCdxJObzZP2fV9g32TbOOL2/03goERGfwM+JhkgUXgC9CqwNzCBeJJ1aXKcscnfwMw5TAZOJPbgHZ58f6Nkv5WSfS4jnlQcQOxhviq5d6sGv/smsA/xBPgm4kHYoBWpf8DlwHx6YAIEHAY0Ek8i1we+mbw/KNl+AHEbOjzznd2AJpLnnDLt57H20+Sp81qBQsp54DPbLgaWJv9PB+4Mtl8L/Dn4bIvk4VslEUwE7Frg+HcAf+1rRemm/ApNgL4d7DcTuCD47FHg+uB7bU2Azkwavpo85zGY2NKzS/D5b4C72zq3UvkjHphEwGFt7LMX8cRyXOazCUlDsGcb33saOC/zfjrwnb6+5hUo22uIO9nFyV9EPMHZpI3v/B8wNfP+KeDKYJ/7qZwJkOln92Vo/VH+c+voBOgV4AcFtqn9PyXz2erJZzsH+4QToCOCY11IMBlIPh9DPKAfHXx/5cw+g4kHUMdlPqsm9mhcFHzvS5l9hhB7+05aUfqXPNPzgX/mu2Y6PwH6L/CXPL/5ZPJ/P2IP5Fcy268G7svIriz7eaz9NHkmf8VSBc4RC1A8H2zfGjjGObdYf8QPOMA6URQtIH6473PO/cc5d6Zzbs3M968APu+cezlJNNy1l66jL/Cycs4NI86p+G+wz5PElrGOchMwAHjPOfdn59znnHO1ybaNkm33Bvfja8TWzrznVmK4DuwzEZgVRdF0fRBF0TRiN/BGAM65wc65Xzjn3nDOfZLIaRuKNR52xfE48YBxC2Lr+cPA/XpmnXNHOueedM7NTmT2a1rLbEPiMJksz/T2SRcRpp+9i/VHGbLX6Zy7Mvn4MuA859xTzrmLnHNb5/nqK5n/ZyWvq7Tzcx3tMw4Cno6iaF4b+6xDnF/j+8Mozj16itz+8KnMPouJPVGd6TO7wr6JTOuT33+c2FPTE0ykjXFAFEVNxJOtLwEk/fsRwPXJvuXcz1v72bOUrDyLZQK0EXEctAiTT6uIrRNbZP42J3atvwQQRdGXiQdTjwMHA2875/ZJtt0DrE3sTl8Z+I9z7q+9cSF9QE6iLq077/CzluTVK22YbBpF0YfABsQxxHXAL4EXkgo10pmDaH0/NiYOXWjv3EqBd4jl1VZSfjhIyqLPLwU+RxzStSuxnJ4F+vfIWZYuS6Mompr8PQt8BRgGnOyc2wG4EbiPWMe2BM4jHshkKST7SsD0s3ex/qg1W2T+LgCIoujPxCFPfyUOsZrsnLsw+J5Pho8S8y3tjzk62mccSpwv0Bbq49rqD/sSGYI2IM5xPDyKornEfXQ4qOxKZcL2rvt6YFfn3OrEIXH9iXM0oLz7eWs/e5aSlWefT4Ccc5sQx5j+u43dXgQ2zgyasn++Qk0URS9HUfTzKIomEYd9HZ/ZNj+KouuiKDqBeMB1fMarURZEUVRHPKPeOdi0M3ESKoAsZtkqP1vkOVZ9FEX/iaLoDOKYzY2J8zLeIC6MsHaee/F+z11N35FYcO8DTnXODQm3O+eGE8th9aT6iT6fQOyBk6x3Ji4ecXMURa8AM8i1ni0nDsuoZCLiTn8QsY7NjKLox1EUPRdF0TvEg8Usb5Jb9akUq0B1CdPP3sP6o1yC65ub+XxGFEV/iqLo88QTo5N74edz9C8xxO0B3BbsR7CvCgD4/tA5Vw3sSPoMiB2C428CTOneqbeLDEHvR60rp80DxjjnspOgLTp57Cm0PQ4giqJniMMBv0jsCbot8X5BGffz1n72LKUszxVdBrvWOTeWeOI1mrgRO5e46sqlbXzv58DTifv9j8QVJDYkTug7xTk3nthbcQdxDswEYDPiUAOccz8i7rReJ77mw4FpURQ19PgV9j2XAD9yzr1DLNdjiEtsbg0QRdEy59zTwHedc+8SVyT6WfYAzrkTiOX0DHGexheIrXnvRFG0yDl3KXBp0kA/ThwzvQPQEkXRn3r/ElcIXydO2HveOXc+cTiHI04UPYd4UP4y8Hfn3LeSbb8l1rOHk2O8DRzmnLudWH4/IA4ryDId2MU5dz3QEEXR/N68qCJB7QDACOJE3SHEidVDiRvKLxGHhexD3EFnuQz4q3PuOeAJ4oTf7YkTzysF08/uY/1RF3HOXQbcQ6xDw4gnjeGkoieYDqztnNuKOFdwEXGbMC2KoqmZ/d4nNqQc4Jy7E1gWRdFi59wVwMXOufnAe8RFgsYAfwh+5zzn3DxiA+IFxAOtG3rhejrCo8R5ZOc6524kzlM6spPHuAS4yTn3AnF+5L7Ek5zDg/3+TlxMZhxxOwpABfTz1n72LKUpz55KJmrvjzgmOkr+mogT/h4ljnntn9lvOnmSnIhjAe8lDslaQhyj+6Nk2xjiknozia0WHxCXzq1Jtn+fuLNZSly2826Sijyl8kfhIghhMYNsGezliZwODfZRfPDSZPsutC6CcCjx4HNhIuvnaF2O0CX3TVaiecQVgfZq69xK7Y/YS/Zb4nCYBuLO8R5gv2T7WsRWSJV1vJXWZR3XJl7rYQmxNeM7wF0kJVqTfXYgbhjqs/e3XP+CdiBKnudnySQ/E0/I5xFPvm8hjjuPguOcS5zEqzLYFwNT+vr6TD9L4w/rjwrJpaNFEH5LHPpSnzyrNwKrJ9vG0X6hnVb7kKeIQfJ5LbE37pNk+wnJ8/7TPOd0PnHFtxbyl8FuoHAZ7IOJB20NxIOybVeA/uUtwpFsP4V4Urckke1pdL4M9v8Re8EaCcpgZ/ZZJ7n+OUC/YFtZ9/NY+1nx8lT5OcMwjJLFOXcrcQd+UF+fi2EYvUMSwjaXeFAVFkLpyvEmAY8QV5MrV+u8YRh5WNEhcIZhGN3COTeI2Ct0L7H1/gjgkOTVMIzyZRRxVcjn+vpEDMMobWwCZBhGqREB+xGHwQ0kDsU5NoqiW9v8lmEYJU0UF2G4qK/PwzCM0sdC4AzDMAzDMAzDqBj6vAy2YRiGYRiGYRjGisImQIZhGIZhGIZhVAy9kQPUbkydwu5ar/MV88gjjwAwbVq8EPdXvvKVTp/AH/4Ql/jfbLPN2HnncC2wTpF7giuWLscnLlu2jIEDB/bYiTQ1NdGvX7fUpa9lCV2QZ74Q0VBvZ86cCcBdd93FJ5/ES9E0Nsbr2u22224AOXoYRZE/TlvPQxuUpDyLmLKR5w03xMuXPPTQQwDMnx8Xt2psbKSurg6AlVdeGYDPfOYzAJx11lk98dNZykaeQrIbNmxYwX1eeOEFALbeeuue/GkocXlOnjyZxx57DIC//vWvAJx66qkAbLPNNgAMHz6cxYvjdTjffz9ea/Pvf/87AM8//zwA3/jGNwA46qijGD9+fFdPB4pUnp3pC+6//34ArrzySgBmzJgB4OWyZMkSf5zm5mYA3nnnHQA23HBDAM4++2wAdtllly5egqco5dmXtLS0AFBVFfsZOtnPl608n3zySQCGDBnix5SLFi0CYMsttwRgwIBw+Z9uk1eevZED1OkJkAaNRxxxhP+/pqYGgB133BFIH+CqqiqvWAsWLGh13NmzZwMwd+5cv68E+eyzXaqY2ddK2K2bs3x5vDi25LL66qvHB83c82XL4oXL6+vrW73/+OOPARg5ciQAa6+9dndOBfpeltDNCVDYcN11110A/OlP8ZpwI0eOZPTo0UDa+H300UcA7LnnngCceOKJbf5Gvt8pQEnKs4gpKXmGnSvAiBEjAPj0008BWGmllQAYOzZec3bJkiUMHjwYgIULF7baV8dTOwBdnpiLkpJnPjQp1HOuPkivO+64I6+//joAU6fGa3IOGjQISNvaM844A4Bjjz22O6cCJSJP9ckvvfQSgJ/0fPzxx14mH374IQBXXHFFuz+odvOkk04C4K233gJi/V1zzTUB2GOPPYDY4NkJSkKeYvr06UA6aZw8eTJLly4F4okjpM/wvHnzCh5Hhg8909p35MiRXn6aoI4bN66jpwclJs+wbauvr+fee+8F0onlm2++CaTynT9/vh+w6zPdgx122AGAI4+M16vdZJNN/G+pvaiuru7MtZSUPDvCxIkTgfT5X3XVVX3/JTlqvK6JumhpafH3qif7IwuBMwzDMAzDMAyjYugTD1DICSecAMQz7/XWWw9IZ8uySMras2jRIvbbbz8AnnrqKQAf6vXqq6+2+m51dbWfSf785z9v9VsdpK9n4d26OV/+8pcBvGVDVgvd89raWh+qJeuRZtdySerzWbNmdedUoO9lCd2QZ0tLi7dW3HprXG352muvBVIdXXXVVb0FY9SoUa2+/9577wGpVXnzzTfPa8XvBCUtzyKkpOU5depUH3a1/vrrA6mXR5b3qqoqb41UOFdtbS2QWpjVZvzsZz/zx+6inpa0PC+44AIuuiiutqy+R+1mQ0MDEPcvYbs5ZMgQIG0TFI1w//33s+uuu3b1dKAI5ZkNi77llluANGRd3gPp3siRI32/rH5oyZIlQNq3ZEOsFXGgCASFd0nOixcv9t51bVt33XUB+NWvfgWkFucCFJ08IZYppLJ4+eWXATj44INbfT5q1Cgvz/79+wOpNzfrCZb85TnT8y6dVnjs0qVLfZugMcFNN90EpOHb7XiEi1KeIbo2RRgpOmaXXXbxz+x2220H4L27ut7hw4f7511tq8aeGrfKEzxx4kQfiuxProxC4Apdi6KOpJMAv/jFLwD47W9/22pbc3Ozvw+6LzqeImnyRW5pXz0L3ZFnn06ApEyKQ4f0IZYApJQS7ODBgxkzZgwAb7/9NkBObooe8paWFv89hXapIeggfa2E3bo52267LZA2qkId+Pz5833MtTocxbdLbnrAJ0+e3J1Tgb6XJXQjBC77kKmT1+RaHfFee+3l9VUNoTogdfLqpK+44grfEJTqADNKhNNFl3SObMP3zc3NXiaF9sm+L+eQrULXpon1ueee62OrNcnRcy89W758uQ810ABIbaf2Vdt51FFH8b3vfa/Vb3VST4tanu2x7bbb8u677wK5hqOs7kl+ko1kHw5KN9poI5/f2kWKWp4yMCp0+oADDgDSfkR9ThaFY2b1SbKVPmqS5E8gY7xbZZVVgLRPv/322wG8gfS4445r61qKWp5ir732AtKJ0GqrrQbE1y/Zqs9WW6A+fejQoay66qpAauDQgFPHUcpB//79ve5KZ9VGPPPMMx25lqKWZ6H28/LLLwfgnnvu8fknCmO9+uqrW+07fvx4P9lW/77VVlsBsPvuuwOpvv7vf//j3//+N5COATpJUctTtNUnKNz/f//7H5D2NQq7HDp0KEOHDgXS8ZF0ThNTjfV//OMf+3zqnJPsWL9vIXCGYRiGYRiGYVQ2feoBUjiQqhX179/fW4rkxs1X8ECzzdBdrJm7LBnLli3zbmLNDr///e8DccGFDtDXs/Bu3RzNphVGIIubkqMnT57s95GnJ6y+8d///hdI70M36GtZQg+FbF1yySUA3kKsUIts0Q29ykonS9trr73mjyEvZ6jHHaTo5Pnqq696C6OskKrwVAIUnTzbQta1Bx54AEiTmwHmzJnTal89u6uuuqqvrimrsTyWahukkx9//LFPir7tttvyHq8dT1BJyTNk7NixORb2fJbGMDFXfY88aTrGBx980N02tCjl+fjjjwNpiNbxxx8PpGFpClfJFtcIq2Jl9UifhbJS25j1COnYinRQsY/nnnsOSMPyClCU8hR6huWVkCVc7Wttba3vNyQr9eGqmLfBBhv4fXQ/pJcK81Jkx+qrr+7vg8ZM8uY9+uijQDqeKEBRyzPk4osvBtJ+OYoif/0K35RuS49GjBjh+zXJ9Ze//CWQejV0LxobG/2+O+20ExB71TtBUcuzkNdFYX/XX3+9jzaQl0eVHdUWfPzxxz7sUp5KPcOSnfqlxsZGNt98cyBNYynkESqAeYAMwzAMwzAMw6hsemMdoHbRLFlFDLJ5P7JQCM00NRNUbGD2OIpn1b7K92lpackp7/z73/8e6LAHqKSR9VEWHXnXFJ8+ZswYv00WDVlB5MHQDP/999/viVLYZcGUKVOA1CupvJ7XX3/dr68gWcsKIj2UNaSuri6nZHY3c1hWOLq2f/3rXwDccccd3msgPZIVba211gLS5NG6ujqfOCrrmeQhFi5c6NsDHU8Wdn0nWwI2bDskRz0H0vGGhgb/fXlS1IYUO8ojUb6PZNjS0uKtw2or9ZxnC5so31JFTmQZloVd+jlmzBiv5z/+8Y8BOP/884EuF+0oKebMmeOt7oXyz5xzrQruQG4OkLwUURTxwQcfAOmzUA7IWq7iGXrGZMHdeOONgfiaw+gCySyb56f/wyiP8DuffPKJtyjL4yPvUDfXByoKfve73wHpeEeyU/TGvHnzvLVcz7v6kWzeqcoxv/LKK0BaIEW6qONl20/pueT55z//GYALL7ywZy+yD5DOqDjJhAkTgFie8kaoz1K/Ljm///77/tnffvvtgbTwlqJBtGzL6NGjvex1PJV0z3rrS5VwjHLKKacA8MYbbwCxt0x9qtpAPdMqEJUtgpD19EAqc+l9dXW1L5995plnArDvvvsCrQv2dJby78kMwzAMwzAMwzAS+sQDpJmgrJiq1vLcc8/lLOoli5oslCNHjvRxm4obDOODdfz6+nq/r+IFZa0ud+rr672VQxZHWc80yx48eLCPG5b1R5Y7odn6rFmzKsIDJOtXvvh0WcLWWGMNILVuZnMsZFmX5VIW+4022qjV8W677Ta+/e1vA+RUgysVD9Cdd94JpIseXnTRRTzxxBNAWnpdFpwtttgCSCsV1dTUeA+wLGKKe1dp1kGDBnmvkBalkz7qc1ngBg4c6NsO6bIsb4pl1zlsuOGGvq1QJb9S8QBdd911QNrmybsFqd7o+vW8633W4qZtstzLuqbKmkuXLvV5mPIEVQJqGyHX8yOZ6X2/fv1y2otwsdRs9TPlU5aTB+i+++4D0ufosMMOA9K2Uf3vlClTvO6FOUAiu8i59lH/FJZvB1hnnXUA+OY3vwmkOSrKQ5Auy+tRSqjfUHunZ1jP5KxZs3j66aeB9PqkV8r5/eSTT/xzLZQnrTZW+1ZXV3uZqx3WaxcXkS9KlB+lsaM8DyNHjvSykmzUn8hLtGTJEi8/eYelg/LUZZ9t9THykmpR4HKKPtKzJy/seeedB8QexjvuuANIn0uNgfQMf/LJJzm552ovNY6SvKuqqvy9kjxVplzLkqjt6QzmATIMwzAMwzAMo2LoEw9QiBaUPOKII3xFOFlrlbsj60RLS4u3imQXRYM0z0LW0bq6Os455xwgjRusFBYsWODlIKuRZtUimzOhGbhm5/quYjGVp1XuhNWcpHcPP/wwL7zwApBaJSUj7TNs2DAvJ1nWDjrooFbvlXMxY8YMTjvtNAAuu+yyVscplVwgeU1kGX/++ee9tVCx5XqVN0aLQc6cOdM/94rl1VoVOt4XvvAF78VUvpHyrvRe3omddtrJtwuy/Mr6rPukal7z5s3znip5QEoFeSjCNTvWWWednOdbyBvZ1NTkvyfdkmdN+8jqO3jwYG+xD63I5czMmTP9//lyVCB9PrP5KdommcmSma1mls1fLRfk0ZWXVbkr8mprcd6ddtopR44iX/XLbL4epDKXRXjx4sV+nRXldchSrzHE4YcfDpSmB0jtm/oa5U6qz95www29LJTPI1npeldbbTW/fpBkruNssMEGrb47ZMgQL2O1scol0po35YCuP1xvKotko/xK5bfcd999vo9R5UGNm9RPScez3iLJVesFlgO6JvW18vIo/+61117L6as0llfbUFVV5ftkLSC96aabAqmssu2n7pXG+aoK94Mf/AAwD5BhGIZhGIZhGEab9KkHKIz3vfnmm70VWDNsxVhmLUGaUYbVs4QqUSxatMjPwiuNBQsWeOtRNq4d0hk55F/dHFLLk+IuFRdbKcj6KyZPnpyTYyJrsaq9vPXWW/5/eSVlEVaeiyymq666qve2yeImL5H0OjyHYkMrsEsOH374ob9+VcXR86wqRMrFmz17tq+yI+uxrEDZOGpZi2Rh0rOt35RVCdK4bOUm6b3OSZbM5557zntLst8vBfQchvH6q622mtdLWcrCnJXm5mavW5KrvDt6rypwr7/+ureESkbK85BltByRnkLaJspDEXrPmpqa/P9hNThZ8CdNmgTAP//5T/9MlBNq11T9Stcty7i8CPfee6/fJvJ50sK+XcfJejEhHhccffTRANx4441AGq2gz7P5V6WGqlSKsCprXV2dv171G3o+lY+x+eab+330DOtV0QxZL3mYpypvR3YNxlInu44UpHpWU1PTalwEqRdC8pgwYUJOrrQ88NI1HaO6utrrt8Zf5eQBVv6Z9FReR1UKnDt3rm83Qzmq762pqcnxskvXdF+knwMHDvTHk9dSY1O1QcqHVV/WEfpkAhQmmGeVRhcjBQuTTFtaWnwjEBZKCBdRq9TJT4hchhqMi4aGBt+hhO7asDx2Ntm6nCkUflZXV9cqARfSAbsG2h988IHv5PV9DVj1IEvn6+rqvExVRGD33XcHSmcCpI5X7v+xY8f6QZ6uIbsN0onRbbfd5hdJ1SBcLu2HH34YiCeLcomrU9eiclqcT5PSF198MacUsSZfaqTV+Q8fPjyncyoVwjA36dDs2bN926kOIOzQBw4c6J/nsFyzXiWj+vp6r8NqPzTpLOcJkAaRkA6WwnYzW4AibCfCpRh23nlnIJ4A5Qu3KXXuuusuIG0D1W9Lv26++WYgNnzI4CHjmnQuW+o+XLhcSJ46/pNPPukNMNJPLRqqwej//vc/APbbb7+euNQVikKlVXBH16T2Khu+rjZA90B9zosvvuj7KIUaadCoCZUMS3V1db5tlhFEfZnOpRyQHPVsS6823HBD37ZKRmFJ9jlz5njdVWh3uBBy9v6ovZQcw8lXKaO+NTQgykBZU1PjdUztpyaA6rMHDx7MrFmzgFR3dX+yhZAg7vckY31fEyFNsGS86szi6xYCZxiGYRiGYRhGxdAnHqDQupN9Hy5mqBm1ZoYDBgzIKTka7psvqbJUEst7iuXLl3vLheQha5AsZsOHD/dhLkpel6VIctIxit0b0VOE3hd5D5YuXerLL8qyo4Q/eSecc94aIc+FvBsKJ5AV+PXXX/deEZVylgeoVHQ0XHhwl1128eWvZRmaOHEikOqVQrZOP/107+mRtUfJy1qsc5dddvGy3n///QF8Uq+KH3zxi18E4kIKskrJkyQ3fRjCsdFGG/kFa2V5KhVk9VYZ8GyYj9q40FqcfZZDT670MfT8OudyQoulpwrrKkeyBR/kUQsX8pOMsp4htbFhP5O1+mYTessFPUeSkcLR/v73vwOpN+G+++5rtQg0pN7MbJK09FM6LP2Ut0jli4cNG+a9Twpxvf3221vtIyt9KbLKKqsAqRzCRZ0HDx7sPQvSU/U98tC+9dZb3ksfhglJL3WMDTbYwI8LJHPd09ADWspI96RP2cWJsyWxIe3DVESquro6p9iJ5Cj5ZvU2jKJRH1gOqB/XtSmMXbq3wQYbeG+Q5Kjxju5BQ0ODL5Kifl3eHbW1iiBZbbXV/JhK0R+hB7kr7at5gAzDMAzDMAzDqBiKogx21uKtmbVmd5phZq0QsmJkF6QDy/3Jsnjx4pxksNAiUVtb62UmS5Bm4OGidaG3rVwJrd5azGv06NHeWyZ9k7VHyaNz5871MeryOkgXFQ8rq+eSJUu8RShMjsznwSxGZAWSd+ull17y1h3pj5JEdY2y9Oyxxx5+H3k1Lr30UiCV2XXXXec9QCpXLe+DFgrMJuqrLK5KnSrnQJZNxRsvW7bM37NCpaOLDemT9EslyLPJt7JG6nqlX3rf3Nzsn+cwH0XWXrWtVVVVOfHtSpwuZ6TTAN/5zncA+OlPfwrkWhj79euXs3ixXtX2ZheWDheZLnWWLVvmnx95LKRfKv//2muvAfCHP/zBe4tksZWnRp6hIUOG+P/VBki/ZWFWe5LNS/nGN74BpJbhvfbaCyjNnAtdp55PyUP9ctZDJhnI8y0LuaIWBg0a5D3cahP1nCsaRNb5xsZGr5/yLod5LeWA9FXtp65x6dKl3mMYLjKdfcbDNkDjBXmAsjmW8ngowiHMIS5lVMxJ+qNr1DXPmDHDP+/qu1QyOytzeYmkcxoTyAun7w4fPtxHIOhZ0G9qXNuVIhPmATIMwzAMwzAMo2LoU1NzW3k5suzK4iOLUFNTU071t7D6UynH/vYU9fX1OQt1hh6glVde2VtCRGjt0THCEqblSqiLsqZFUeQtjJLn2muvDaTWtdmzZ3uLXWit0HFl0VhppZV8zLEsb7J2hnlwxYrid2+77TYg9rjIqvvYY48BaQzv6aefDqQW9p///Of+Oi+55BIgtR5pYdj58+d7S/pTTz0FpJblb33rW0Bq9Z09e7bP/VHboXLYyutQrsDy5cu9J2qHHXbolgxWFIpVDz0OorGx0VvP9JyHnsSqqqqcSpnZbVn69euX4w3VOZQzWU/3nnvuCcDFF18MpJ40eXOrqqpyFi8OqwuqyhaUXsn19nj11Ve911VtgfRK7aAqMv3gBz/wVdrU3oXeyEWLFvltkp+Op1xCfZ7VTVmazzvvPCBtY//73/8CcMwxx3gvdbGjZyyMIJB1W562rBdblnVdr9rVgQMH5lTTUp8TVkF7++23ffuh74d9vsZipTi+0rMrL0y4iHe/fv1yqgmHC/dmPUDhQqphWztgwADvzVN7oQiEckDPYXj9qna7cOFCr8PSJ+VSSeeccznLhYQRR/KsLViwwHvv5L3UfZIn1DxAhmEYhmEYhmEYbdCn6wC1Ve1Ks71wMb/+/fv7WaOsTOFaNppFfvLJJ37WWYlV4EI0y87KUvJRffvOHK8cCavdKYZ9q6228pYMWdzkndBaDc4574WQlULIEixrRX19fc4iYFqDRJ6KYkfWxHvuuQeAjTfe2Fdlk/VLr7r+G264AYgtce+//z6QemG06PGxxx4LwC233OItbltttRWQxh7LWyaLk3PO/5YszXqvfbQeyF//+ldvEQy9HMWKPGd6hsOFi51zOZUbZUULLZvZ74drhKk9mD17ditLHXRugblSJesB0vOuvijMLQ29ZtnPJNesxbiUF+bMx8CBAznhhBOA9HlUTL9Q3/zDH/7Qe2ZFaDV3zuWsAyQ5Sq758nq22GILIM0j0Osee+wBxF7oUvEAhYvlSh7qN9SONjQ0eFmH1cV0LxoaGnx0glCbrT5Lz3RdXV1ORE3oJZYHoxQ9QHqGw3GM3n/66af+ec/KD1q3CeE6auE6idk2Vh4zeUvkUevKgp3FhnRBOpIvVz9cKym8/ubmZr+P+ppwwd9sTQDls0mu4W92pVphUZTBlhCrqqr485//DKQKphAiCSgbdqAGVAoWuovPOeccrrzySv+9SqK5uTmnww1LadbU1OSsHh82gmEZ8kpBg2ZNZObMmePD2jTJUcjWtGnTgLjx00Ouh1UhdBq4ZxcKfPPNN4FUN1VOu1QmQCpeoMlJVVWV75R32WUXINUfhWdsttlmQNxpq5T1WmutBcD111/f6rgHHXRQq4UPIW3kNOjRxH306NH++f/Pf/4DpKtTn3HGGUA6cW1ubvbPQqks8ic9KrSYZk1Njb+m8BkOQzmyqA3VdyTD+vr6HKOROp5yJjuAkW4pbEaJuW19Lyzio2PU1taWzGS7ozzxxBM5RQrC8F0NwDfddFPfTkjXNBjXd/r375+TeC99zy4gDWnpfUgn7Zoc6LgTJkwA4rZbIXTFThiCrvGPjEXZ/XSdGkTK8KN2rqamxstPrwr9kswVxj1r1izfxqjNVduge1IqBWPyERokhPRz2bJlXp5CuqbvLl682I8HsoN4yA1fb2xs9J+FBSj0eSlPgBSKrlB3hbup36+qqvKfSWYaG2WXsQkNRpqYh5PGrIE+nHyqn1PBpM5QWbMCwzAMwzAMwzAqmqKot5u1TGoxxLCwgaivr/cz5zBRUq+ayVdC2dZCNDc3e3mESX2yQIwYMcJ7MbJeoex3RDmVwuwIkoesQHvvvbdP6Jf8ZK2QlW7OnDlMnToVSC0aSkKVpS0bVqQkVllPu5LE15do0bPsQmcKc7nuuuuAtES4LLAXXXQRADvuuKO/3rvvvhtIvRwqWrB48WLvEtfCiocccgiQykpJw8OGDfMLAR588MFAep9uvfVWALbffnsgTthW4QZ5iYodeST1vApZv8eOHVswrC+7uG+hRai1j2S23XbbeQuenoUwnKYcycpHcgy9EPnCqcOQRLWXCtmqrq4umeImHeXpp5/2beIrr7wCtC4jDmn7ueuuu/piBdIxyVP6lU26lxzDfkkyzGftlZdZocTyCE2dOrVkFu+VvsirE0auZMP9NTZSJIE8NvKOjRgxghdffBFI2195d3S/xPTp0713SO1wdgHQ7LmVInoes0sCQBouOWjQIK9z2agCaB12HLYF8m7ovcamy5cvz1kKQu+l50rhKEXC6AJdo7yPEydO9PoTehSzRczUFkiO0j0dX173hQsXtgrXhFSOOoeuLDNgHiDDMAzDMAzDMCqGovMAyYIUxrNr9hhFkbcKyRqkfcMEynxJUdl8o3InTJgOZ8qrr766XywyuwAi5Fp7CuUelCs333wzQKuYX8nkmWeeAdLkf33+4Ycfcs455wDwz3/+E0itSfJGylKy5557+phqWTPlJSoVZFVT3G99fb1foPT5558H0phzeXIUl688H0j1c/fddwdSC8+8efP8M65F/rbbbjsg9TrJgjR//nzfVsjyK0uwPECyLh122GHeS6TPip3weiUzWYpHjx7tZao8ntADHEVRTj5QWCJfv7PeeuvlxMBXQhuQjTUPPWphXiTk5lWFcel675wruee7Pa699lrv8Q7zI4U8Db///e+9F0J6JRllFz8NdVbvw3zfMPEf0lL7ekZUmlu5R6WAPL2SjdpNXb+8sCNHjvQFEyRXbVN/NG/ePC/bcIFZ/Y76oyFDhvhoBbWjahv0TJSyB0jPYaHyzcuWLWuV7wvp8y8519TU+HHSSy+9BKSFe9SXS87Zgh6SsTxK5VAOX+XvpU+6fslswYIF3mMTFpPI5qWFBRJ0vDAXsH///v6Zl16G+UHS6c5Q/rMAwzAMwzAMwzCMhKJbCFVx/JqZa0apvJ5sBacwJjusflRXV1dRHp8sDQ0NXk6SpWbk2YowWlhN1p1wMUW9r7QcIFkXZBV67bXX/CKf//vf/4BUb2W1GDBggI97ldxk7QlLEU+dOtVXipN3Qx6LUkHPatYyo3woXZO2XXvttUBqXRs5cqS33Ch2XzqnXJ3111/fy++b3/wmkHrSwpLX8+bNY/r06QA8/PDDQFr2WhZgWUhbWlq8l6hUKnPJEhxa0ZRXMWrUKO/ZlVdI+2bzfNQOhq+hxW3VVVf1VQnD42ifrpQdLXay7VxY9a5QmXHILZ+vNkH5GYsXL87ZpxxQBIFeQ1TR8sorr/TPXFgyWLodRVGOlzHMuZDOyQKf5ac//WmXr6PYCHMs9F7P9rx583wOpjw3iiTIlhfX+EdVSOWFUPsp63xTU1NOWxBG1JRyJVg9q9IfjXd0zdkS98o7UXuqcurPP/+8l22YvxsuOj906FDffsg7Ig9wKctRhHnQyjXL5u7k07Hsq3POyy1cfFfjCH13+fLlOd5L3VONuboi18qaFRiGYRiGYRiGUdEUnQcorIIS5gBlvyf0/TAee+nSpX4WrllipdDQ0NAq9h9SWUomQ4cO9R4gWT7De6LZerZCTyUQLtpVX1/vrbnh4ryiX79+ObHrhRbgnT9/vreIKia+K1VM+hJ5d7SWzuzZs9lmm22ANPdH8dN6P27cOCCuOiSrz2677QakspZXY8GCBd4aJ8+R9tHChlofY+TIkd6jJk+PPEuqTLf//vsDcaUaWU0POOCA7glhBRF6X/ReljLnXE6+ROj9DitqZrfpO2p/R40albMQqCz1WgSv3HJaIM1DW3/99XMsimF72tjYWFDW0kG1rz/5yU9KZn2vjpJt/8L2TnJRTuD3v/997xWWjoVrsjQ0NLRaODYfsuBPnz7d5x7uvPPO3b+YIiFcHFZ9teSqhaavvPJK/zzKS64xk6Jlhg8fzssvvwyk67RIfmorpZ/V1dW8/vrrQOFomVLxlucjjOhQXyt969+/f46XSNuya1CGi25K5morpdv9+/fPqb6re1sOYymNgXRNeq/qrBMnTvTyU5+t8YI+//jjj/19CHPdJKMwzz/7fclVxzUPkGEYhmEYhmEYRhsURRW4LKuvvjqQWh3D1YijKMpZnyFcgyFrLZXlo9I8QFEU5VQ8EZp1yxoP6SxaOVdhJal81uNyRlbunXbaCYgtPqp0JLmGugm5VuJwjapsJSnFyCqvRdYjvYYrUxcb4bpSTz31lM9j0vXKEn7YYYcBqc5NnjzZW4T1quNcddVVQCzzlVdeGUh1dt999wXwnqaf//znALz++ut89atfBdJKVD/72c+ANFdJbcqMGTN8/Ly8b8VOvjUUAJ+Xlq2oE1bMyuaehNaz8FXWzhEjRvjqUqp2GFbbKUcP0CmnnOL/nzx5MpC7Jk02pypcRynMmZQH81vf+lZvn/oKJ9vuFcpvUjs6adKknD5G35Fe1dTUFPQyhBXJFixY4D3PIYW87qVAeO5qE/X5Zz/7WQAuvfRSb20P1wzSWixLly5ls802A9JqfNOmTQNSi7uiEIYMGeL1W4TjqlKuXqY+VR5z9QXyhNXW1uashaY2Vl6IpqYm37aG++j4kqtzLscjIf0v5Wp6IryGMIenuro6J+cn/O7gwYO9zNUmqL1U+5mNeND3wvGX2oSu6GdRhMCJ5ubmVgtFQu4kJ7sYVUhYBCGKIj/4UbnCSiJMmNYDKcVRSWLITfxTQ1FpKORAcpCOvvvuuz5sqi3CCZAIB0h1dXVe1/fcc08A7r///la/XewTIHUeaoAmTpzodUwTH4Wd7brrrkBaQGLHHXf0+qdGU9/VJGnOnDleFtqmstWvvfYaABtvvDEQh2wpTE4Jv3rmJXtNdpxzPhRCoXTFjgqYhAMjGYzeeecdv0+hUtfZTjlcKiAMk3PO+fugDidc9K4cyZbH1YBQxrMwlLixsdEPeEIZSa9k5Mh+rxyLIRSadGih1K233tob1cJJtwhD4rKEg6nq6mq/VMFRRx3VoXMpBWRcCAuMqL1Sv1xXV5czidGznQ0j1LOqfXQPNBGSwWrzzTdniy22ANLFpYX6IY2lShE9yxrnhCW/+/fv7+Un2as9zRYwCkORwxQNDeRramr85F/o3oUTzVIkNPBqAqQ++OOPP84xEIeTmiVLlnh9zJYPz+4jdtxxRx566CEg1XPdn+5MgCwEzjAMwzAMwzCMiqFPPUChhaa+vr5gCFE+13j4WZh01tLSUtJu2+5QU1PjrWVhMrNm5lkPg6wTsrhnrZxQOWXE5WGQZV2LSzY1NflwIxVDUOiBcM7lWN3DV7lxZ8+e7Y+j0qSybLzxxhtA6mEpViSbG2+8EYgLHciSo9C1G264AUiLISjc7b333vMhLHvvvTeQeodkNZfVE1LLqBZelIVdibuDBw/2n6lErsI+wtCDfv36ecvn008/DVD0CeqhNU1WRFl2X3rpJW8JayuRPEyyDhN/dQy1FdnjiY54QkuVrMxknQw9P/kWlg1llK94Tyl6JLqKPLR33303EJfJlqdX/ZJkpNdsmfawDLTQszxw4EBvAS4n1N+qLZMHR94ZjWeWL1/uPZN6HmV9X3/99YE4/FAeD/VdagO11IDakfnz5/vlAtSvqa3NFp4oVUKvoNo59TW1tbXee6N+WLLOeoT0Wfj9MDRutdVW822odFjjsHJKJwiLFmgsM3z4cB+JEUYZ6B40Nzf70u1jx44F0j5fbYTGYXPmzPFjCo1bw/FtWx7kQlTGqNYwDMMwDMMwDIMiK4LQr1+/VrNDyC05nPX6hPlBoeWzqqrKx8lWGoMGDfKy0uxccpGVPhuLHno3ZCkKy5qWO7LofPjhh0CaJ7Xeeutx6623ArmWnKxlN2vNzG5TTozyUtZbbz1/H7JJwFA65UZ1/vLg1NfXe8uvZCRLY5gkWVdX569XRSBCL2T2N5Tro2c+jEefM2eOt1DqHqy11lpAek9lMR43bpzPb1GJ7GInTKgNE3Sbm5tznlE935JZFEU5ixuGuiZdzO4bWtpKrVx7VwkLT4T9TEtLi5dRIQ9QOS4Wm4/Qu6V8u9NOOw2A8ePHt8rfgVyrfLaoROjxDHPUGhoa/EK98uaqsEkpE+qa2q4DDzwQaK1PilaQTLR8gLw648aN81Z4yV4Wdnk7sh5fWda1ZIHyhPR5KXvcpD/qf6R7KiTR0NDgt4WlnfPlBUp+Ya5KdsylbfIkZyMQSp0wskX9kxZEHjp0qO8nwvw1edGqq6u9LCRjyVf9vryaM2bM8IWP5BV95plngFzPfKeuo9PfMAzDMAzDMAzDKFGKaipaW1ubU02jrbjpQtuyM0HFDOfbVu6MHz8eSK0Umnlnq78JxVoqpyK0xFWKJ01WNVkrZIFYtmyZt5aFFeJEvhjU0EJ8wgknALFFb6+99gJST4UoVOWw2JCVV3G/jY2NPPjggwBsueWWAGy33XZAmhP0xBNPAHGcuSxuyu9RqWx5hD744ANvYZJVUpYheejklWhsbMwpcSrvjmLaVc55jz328JYmeY20qGKxIuuhLMDZXDLIXzEwn9c8XDQ63EfH/+STT7zuSsayAKttLney3jDILWnf1NSUk6OqZzesjlRp/OY3vwHS3L+GhoYcncu3eGroQQ/J9kvSeeXvlYMHKN/SCpCWnFcO5ejRo32eUGiFz0bPyNOtvl+y1rOclb2WfJgyZQoAjz/+OJA+76W8gKfaNbVpuhb1DePHj/d9gsY6enazHhu1CWHUhu6FjjthwgTvDdFitIXubSkSLqcgL5e8kIMGDcqRleQrGY0aNSpnnCl9lDzVfiiCBtKxQHYRW2idt9pRzANkGIZhGIZhGEbFUFQeIEhn3Yrza6v6mGaLmtWHVWWqqqq85VmUw+y7I7z33ns+fliVYDSLlqUni7wQkp2sPppVl3IFmM4gi5DkITksXLjQyyK0oktHV1llFV/7P8xnkR7++te/BuD73/++X7BTliJ5T0plnZWNNtoIaB3b/LnPfQ5I9UgV7ZRjptfNN9+cu+66C0g9SPK2yWu7ySabeEuQvJi6H/JY6nhz5szx7YBkLy/RKqusAuAX9pwxY4aPjf/CF77QTSmsGNTWyQOmtTok58GDB/tY67CSlshW2Qp1WEhWdXV1Xl6F1iAqd0Kvdz5PULgwbVgxrlLXU1Ouo66/tra24AKQ2VzK0KsunZMOylI8dOhQ35+FuSml3Mfr+tV3q9Kb2jkxb948/1m43p+e8eXLl+csICsrfDavBeJ8nzXWWANI+3o952qfZXkvRaQT6lvkEdP6dI8//rjPeQoXRN166639dyRH9VWqNCqyeabqo1TdVPc2zBsqRcKKwtIneRwXLlzo+x/JROOabG6VtsmDJO+QInGke4MHD/YRJ6oYp747W8mws5gHyDAMwzAMwzCMiqHoPEDh6rnhWgxZClmLZPXo16+f/36h75QrG2ywgc8B0oxZFg6tKZBls802A1KLkzwhsi7ts88+vXq+xYIsQ7I2KD/l008/9V4hWd9lgZSMli9fzoIFC4DUgqfvy1Iii8cGG2zgZaz1dFTpJ18+RzGieHS9dpbjjjuuJ0+nIpAHSFZKWdrvv/9+b2GTFz1cbwUKW8fDikfTpk3z1tFClXrKHXltw6pN2f5FXqKwgpT6GVlEs5+VE2ElNxG2ezU1NXlzT7P7RFGUc7wwh1K6l7Uwq18ThSrJlgLyGqgPUH8kT7h4/fXXvX6Gsm9Lz8J9Jft58+b59YPksQi9xDvssEMnr6Z40DhQeiQvjCqYnnfeeb7Pluzl7dH4qbm5Oee+6DvKBVLEx4cffsivfvUrAB5++GEgd3xaymiNQnmCJBfp0Ny5c3nooYdafUdtpKI4li1b5r1sakfDqrnqy+bPn++jE3bbbTcATj75ZCDNAVRf2BmKaiFUSB90JfcKKdbixYu90PQadlBS3HwLTpWye7wzHHjggX5A3RE02Hn00UeB0uo0ehI9cErEV/jgGmus4Rf1FEpu1KT9448/9uWaDzroICDVwbCc87rrruu3HX744a2OI5e7YQh1sO+//z6QduQycuyzzz6+wES4IGo22bzQApN6r0nUTjvt5JPK1WFpcl/OC6Fm5aJnVmEYWrRP8ly2bJkfAGnfcPkAPe/hscsFySKcQN90000AvnTtlClTfH8dTnKyZdrDwbv69lB2NTU1frD1/PPPA3DBBRf01GX1GZrUaLCogfqOO+7Yaj+FH/cUMnxCOhY499xzgXSQr4lAKSJdU/smvdU13XbbbV067llnnVVwm8awejbC3y5l3n77bSANzZSe6vOf/vSnPpRSk5uwEEVLS0vO8622QKGKCuseNGgQJ554IgDHHnsskBuKrd/uDOXXIhuGYRiGYRiGYRSg6DxAcgHLtSbXpSzx/fv3zykJK6uRZpFyn9XX1+eUwa4Uli9f3u7CZfX19X4GHi7+JbIJlpVQ0lXWL5VxlY5dcsklOfuqiIFes6gMdFtI1tJ56bjKYxuGkDdXhTJkRVRYwNe+9jW+9rWv9cpvH3zwwUDaFhxxxBG98jvFQL4+SaEWCuk45JBDgPgZv/HGG4HchSblmdP9KVdCz4z6kcceewxILcRLly7NKcARRmg45wpGaGTDDiHW/zASpL1zKwW22morIF0SQH1uWEyjqanJX1+hMMTO0Nzc7Ps6eX6PPvpoIA1vyhc6XyrMnTsXSL3ZKjwkb3lvoLZAJczlASqHxZF/8YtfAHDnnXcCqUdSbSXAH/7wh175bXmAJEe9ytvcGUqvhTAMwzAMwzAMw+girhwTMw3DMAzDMAzDMPJhHiDDMAzDMAzDMCoGmwAZhmEYhmEYhlEx2ATIMAzDMAzDMIyKwSZAhmEYhmEYhmFUDDYBMgzDMAzDMAyjYrAJkGEYhmEYhmEYFYNNgAzDMAzDMAzDqBhsAmQYhmEYhmEYRsVgEyDDMAzDMAzDMCoGmwAZhmEYhmEYhlEx2ATIMAzDMAzDMIyKwSZAhmEYhmEYhmFUDDYBMgzDMAzDMAyjYrAJkGEYhmEYhmEYFYNNgAzDMAzDMAzDqBjKcgLknDvSORd18juPOud+11vnZJQXzrnpzrnvdHcfI8bk2XGcc+Occ5Fzbpvu7GMYpYb17THOuROcc4sLvTeMYqJY+/denQA550Y75/6QXFiDc26Oc+4h59xevfm7lYBz7ppkgBM55xqdc3Odc484577hnKvp6/MrdXpId7cF/tDO70xK7uHK3Tvj4qaS5Zl5Tgv9XdMLP/shsCrwUjvndqFz7rU2tr/pnDukGOXaGwTtauScm++cu8s5t2Ffn1sxYX1798jTf09zzl3qnBvc1+dWqvRRO2tQuv17v544SBvcDAwCvgJMBVYBdgVG9fLvVgoPAscC1cBoYHfgh8Cxzrk9oihaEn7BOdc/iqLlK/Y0S5Ju624URfPa2u6c69+dEywxKlmeq2b+PxC4KvhsWU//YBRFzcDstvZpz1DinNsAWAt4ANiu586u6FG7CrAacAlwKzCxz86o+LC+vftIz2qAXYCrgcHA1/rypLqDc64miqLGPvr5TrWzfXyubVLM51aA0uzfoyjqlT9gOBABe7axzzHAc8AiYC5wE7B6Zvuk5Bh7AM8AS4Hnga2C4xwHvJ9svwv4Rnxpfvs6wO3EA4IlwIvAgcExHgV+11vy6AX5XgPclefzTYDlwA+T99OBC4G/AAuBm5LPdwIeS2Q2E7gCGJY5zmeBp4HFwKeJ/DdJtq0EXJfcs3pgGnB6X8tkBevudOA84I9AHTADOCvPPt/JvI8S3bwl0cN/J59l/67p6+s3efaqLI7Mtk1t7Ldm0mYtSJ7RN4Gjkm3jkms7gnhyshR4A9gr833ts03yflLyfn/g2aSNODWPvE7IHOPs5BzG5dnvmmSfWuA3wJykLXga2DlzDP3ugcTeqHrgBWDrvr4XBeR+DUG7mpx7BAxM3l8MvEU8oJoO/AIYEHznnEQmi4FrgR8A0/v6+npIRh15nq1v77yeXQV8RNxfvxZsOwFY3NH3yWenEA9GlyevX81s+wdwc7B/FbHn+IzkvUvagHcTXX8VOCaz/7jkHn4ReDjZ59S+lm1ybq3a2ULnmlzz+cl1NyTXeEie720THD8Cjsy8vyDR04ZEF6/NbCtZOXZQ1sMp0f69N4XSj7jxu5ygc8jscyJxhzyB2ML4CPB4Zvuk5CKfBXYDNgTuA6YALtlne6AF+D6wfvLQfxwo/+bA/wGbAusm+y4HNszs8yhF1ki2I99ryDMBSrbdQdKAJkpVlzyA6wLrJXJYDHw7eb898BTw78y9+wS4lLiD2RA4GpiYbP8t8WBmu+ThnQR8rq9lsoJ1d3qiZ6cmcv1moqs7Bvv8f3tnHiZXVef9z+3O0ktCEkJIwIR9S4KAyC6bMuyyCQy8uLDII6ODow7vvAiKMw+CIMg+DA4iyA6jIItsgsAEZEcWCYkkgARCIAuB7nQn6e2+f5z6nnv63Kqkk3TTXbd/n+fpp7qq7r1V91dn/a1xh54PnFxq85sCXym9PgWYAIzq7/s3efapLHq6AboXt7nZFtgYOAA4oPTeRqV7nAkcUurD15fkNyI6Jt4A/RXYrySvSaU+PrMkqwmUFvmlc57CjdG1leQKXIZbtB2Ms5D8Cje2rBd97kxgf5yC5re4RUJDf/8eZeT+G4JxFRiJU/a8Grx2FvCFkowPAuYAPw3ePxa30TsZNyedgVMi/b2/76+XZGRzey+3s9JrlwML6YUNEHAE0I4bT7fAjaftwCGl9w8utdHRwTlfBDqACaXn5+I2+gfgxqDjcAvRg0vvb1T6Df+OG9c2Bib2t2xL363SBqjbdwV+gFsfHVeS09lAJ7BddF7FDRBOEdVUkukGwA4EG5hqlmMPZV2183tfC+ZInAZzGW6B/Qtg5xUcv1Xp5iaWnu9der5/cMwXomNuAR6OrnMNK1lk4DSVPw6eP84AGyRX8v1/Q+UN0PlAa9Co7o3evwH4dfTadiW5rgusXfp/rwrXvwe4rr9l0MfyXWHbLcn11uicWVGbKtehr4jOURtfp7/v2eT5qcihpxugV4F/r/DeRqV7PCV47TOl13aPjok3QEdG1/oPosVW6fXxuAXTuEpyxbnrtAHfCF6rxWk6z4nO+2pwzAicNfrk/v49ytz3b3CLwCWlvxS3wdl6Bef8EzA7eP408MvomD9SkA1Q6X5sbl/zdhZutHfCbX5uL9cnWfUN0J+Ba8t85pOl/4fgFpffjGT7UOn/RpwlYo/oGpcC95f+36j0e53W3/IsI99KG6DTouPmAj+JXnscuCk6b0UboH/FbXCGlvkeVS3HVZB3Vc7vfZoEIU3TO3A+1IcAD+Dcrp5JkuRMgCRJtk+S5O4kSd5JkqQZZwIHt4sOeTX4//3S47qlx8k4gYd0e54kSWOSJBckSfJ6kiSLS9lSdijzOUUhwTUS8UL0/ueBryVJskR/uAETYNM0TT/CDZYPJUlyX5Ik/5okyaTg/KuAf0yS5JVS4OZefXQf/cbK2m6JV6PT3idrl5WIf4tBgcmzMmE/TJLkl6WXLwN+nCTJ00mSnJMkyefLnLqicbESPZXXIcAz6Yr9sjfFxS9o7CB1sUdP4zR0IU8HxyzBWaLiYwYK03AKoe1wVohHgT9qDExcJrInkyT5oDR2XkL3uWQrnGUj5Nm+/tKfJja39woHlPq8Fo3TcJrx3mAyQb8s8SSlPpemaQdus/VVgCRJhuMWsTeVjp0C1AEPRuuEb+P6fUg1jcH+uyZJshauDVeUUw/5LU5WbydJ8uskSY4uyROKK8duVOv83udpsNM0XZam6cNpmp6dpuluwK+B/0iSZBTO5N2KCwTcEWciBIiDncJgMC3s9d2THnyNXwBH41wX9sJNbM+V+ZyiMAUXlyPiZAg1OG3PdsHftjhXmpcB0jQ9ETf5TwMOBd5IkmT/0nsPABvi5LoOcF+SJNf1xY30Jytou2o3cZBiysr7VC4xxWDB5FmR7YK/nwCkafprnCvEdTjXjKeSJPmP6Dwvr7SkHqP35HU4LrZiRWjsTcu8V+61aqE1TdPZpb/ncIG9awHfSpJkF+A23Nx1CPA5nG97nFCimu+/R9jcvsZoo70lznXoK2mazse5/cX3vjqZXVfWL28C9kqS5DM4961huGQfkP0Gh9B9fJqKc6ENqaYxuNx3XZGcukqP/veIk8ekafou7jc8BecKdxHwYimjX1HlmKMa5/f+qAP0Os78uh1u8XxmmqbT0jSdycp3g5Wut0v0Wvx8d1xQ2h1pmr6KC8CKd9+FIEmSrXGTze9WcNhfgKnBJB/++UwpaZq+kqbpz9M03RtnFj4+eG9hmqY3pml6Am6BcHyg9Sgqart1vXhNZeSr7cVrVgsmTyDqf/OD199L0/TqNE3/Ebcx+lYffHwbkaxKE/c+wF3RcUTHKsB69+DcWmBX3G8bsktwTCMuFmjGmn31T40UtxBqwLlpzU3T9Kdpmj6fpuksnDIoZCb5rHmDIYueze2rhjba76TdM34tAMYnSRJugrZbxWvPIOiXJXYn6Jdpmj6Lc1f9PzhL0F0l6yyl45YDG5ZZI7yzit9lQJKmaRPOCrEiOckCHmaT267MtZalaXpfmqY/wG34p+LGisLLcQUM+Pm9z9JgJ0kyFmcavBZn+mrGmab/H/AnsoZxapIkV+JMtj9djY+6HKcdPQO36N8bFwAY8gZwRJIkd+N2of9O7/4o/cXwJEkm4Day43CLljNxWZZ+sYLzfo4zT/4Sl5WjGee2cUiapqckSbIxTptxD85HdhNgG5zrG0mSnI3bRE3HtaGvAG+labq81++wH1hZ203TtKn73LRGvINbYB2cJMm9wNJgEioEJs9VJ0mSy3CuBG/grA8HkN9U9AZ/BzZMkmR7XKxLMy5ZwVtpms4Ojisr1yRJrgLOT5JkIfA2Lqh4PPl6Dj9OkmQBbsHxE9xEdksf3E9voHEVYAwucHcELjHFSOAzSZJ8Fee2tD9uARlyGXBdkiTPA0/g5qOdcYllqh6b2/ucx3FxuGcmSXIb7r6PWsVrXAj8NkmSF3HxZwfgNjlfiY67GRdkvhGBbNM0bU6S5BfAL0obsWm4PrAL0JWm6dWr+H0GKhcCZydJMgu3bvoaLiX55wHSNF2aJMkzwOlJkryJy4B7XniBJElOwK2DnsXFDR6Da4uzBoMcq3p+741AonJ/uPSoP8OlwlyMM4fPAi4G1i4dcwxOA7EMZ7bev3Rze6cVAp4oE5QGnIibvJfiFg2n0j0AbkNczv0WnIbo/+JSav4mOOZxBlig5Erk+xuyVIAduADKx3E+xMOC4/5OEFgWvL4D8CDOZNuC88k/u/TeeFzqwbm4iWwOLtXr0NL7P8JtflpxgW/3U8oQV4S/HrbdnFzjNhQfQ5Q6M3j9LFwmrS4GWNpmk2evy6KnSRCuKMloGU4LeRulNML0LDC32zFUCB4t/Ta/K/0uKS6Y+gbgZz2RK93TYC+nchrsQ3GT43Kc8mTH/v4tKsj9N3RPs9qEm5uODI45r/SbLMGNk9+Of1OcImo+WRrs84EZ/X1/vSQjm9t7p52VTWJUev8U3GKvpdT3v8eqp8H+J5yVtp0oDXZwzKYlmX8IDIneS3DrCW1oF+AyU+5b6fcaKH9UToIQj5lhGuw23Dro8OgYxVO1lt7fg+5j7eE4ZcjHpd/reYJU7NUsxx7Kumrnd6WbNAzDMAY5JRe2+cCBqYt/WdPr7Y1LgTwuTdOFa3q9aiVJkt/jFpiH9Pd3MQzDMPrQBc4wDMOoOsbispo9399fpFpJkqQBZxV6EGedPxI4rPRoGIZhDABsA2QYhmEAkLokDOf09/eoclLgQJwbXD3OHeTraZr+foVnGYZhGJ8a5gJnGIZhGIZhGMagoT/SYBuGYRiGYRiGYfQLfeECVySTUq/l7ltNVlmWsuiFaQe/853vAPDd77oi05MnT654/ksvvQTAr371KwD+67/ibLarTX/LEnogT8lPjzU1lXUETz31FABz5swBoKmpiQkTXPbc+fNdOZf33nsPgE022QSAb3zjGyv9kl1dXSv9bKpEnis8OWqry5YtA2CLLbYAYOLEiXR2dgLw+usuA7Ta8M9+9rPctdYw1WbVy1MyeuSRR4BMVj2Ryze/+U0Azj//fADGjRu3Jl8FCiDPmI6ODgCGDHHT5qxZs3x//t///V8Ahg3rs/qbhZPnmvD888/7uWr69OkAzJs3D4B11lkHgH/7t38DYOONNy53iQEnz9AbR3223Hwe89Zbrub5E088AcDxxx9f8dgXXngBgI8++giA/faLa3Fm848+s4ffZcDJc1Vpbm4G4MwzzwTc/AP4OaimpsaPAR988AEAQ4e6mqh1dXXdXr/88ssZOXLkmnydqpSn2k6aptTWdi/VI9nsuuuugJOnjh89ejQAF1xwAQD77rtvt3M7Ozt9u1vJuqgSZeVpFiDDMAzDMAzDMAYNlgShwGh3PWLECABOP/30bs833XRT2ttdAeo333wTyLQ7W2655af6XfubOBZOcihnjVm6dCkA3/rWt4DMovbBBx8wduxYAF555RUgs/zIWqTnu+++e+4ze2j5KQyxJlEauNAiJJkcdthhAF6+K7tWUVGbeecdV0RcWrXRo0d7q81vf/tbAJ588kkgs1wsWrSIhoaGbtfTMaeeeioAa6+9NgAzZ87MWTw0JgwWWQu1QclBlsonnniCa6+9FoArr7wSgB/84AfdzhksfbmvkSeCrDwjR470bfmAAw4AXPsGuOiiiwDYYYcdur0+0EmSJOeBEPe1lpYWwHlqvPjii0DW1h5++GEA7r//fgCefvpp3n33XQC+9KUvAbDWWmsBeOuE5v111lmHnXbaCYANN9ywt2+tKrjmmmsA+M///M+Kx6g/S+ZCliCtp/baay9OOOGEPviWA5N4riiHLLJ///vfARg+fLhv33pN4+drr73W7dzQmtSTz+opNjobhmEYhmEYhjFoMAtQgdHuWtqezTbbDMg0mIsWLfL+rdpNr7/++kDm9xrSE3/kaqXSPZV7/YgjjgCyWJWPP/4YgEmTJvn/jzrqKCDTGD300ENAFls1adKknKZNWo7BkJmxqamJxYsXA5lFbauttgLguOOOA1w8itqljpF2t62tDcBrOEePHs2oUaOA3tEMDVRkWZQGUm1o7bXX9vEn06ZNA1yMCsAPf/hD/7oskPvssw8As2fPBmD8+PHdPmerrbbyFjlp0KVxlmZ9sKIYq9GjR3vrr2KBpME0y0/vIo2wvBfq6+vZfPPNAdh///27Hfvqq68CcOONNwKuH+jYgUy5OMa5c+cCWZ9+4403/HuShaw6sjjIGnHQQQf5OUVjoqxmTU1NAHz44YeA69vPPefqHmu9sOOOOwKZha2I835I7IEgi7esbu3t7X5u1vpI8lQM0Ntvvw3g57aiEq8F4zn3zjvv5MILLwTgmWeeAbI5Zr311gPcvKLryPPgk08+ATJ5/sM//AMAhx56qPe46c35vbgrhUFKGLCo/7UoHzNmDJANcDU1Nb4xLV++HMgWOxp4Bzv33nsv4NwJXn75ZSDrpFrkzJgxA3Adc9111wWySej2228H8BOwAndPOukk77L05S9/GYCvfe1rQDEnGk24ctlqbGz0bS92a9tjjz0AePTRR5k6dSqQbdrlSqhFjwbKlpYW33bVvjXQFgG5/mjC1T1q09PW1kZrayuQ9XNt0O+8886VXl/9X+4FIfosbbrkrrDRRhut8n1UI7E722OPPQbAiSee6I+pr68H8rIxV7jeQS5waqf33HMPd9xxBwBnnXUWkG3qNa5I4ffAAw9UxQYoHPc1T2izrXtSu0qSxC/CtYjUPK/r1NbW+g2QFEg6Zvjw4UC2eRo/fry/no559tlnu50rxV8R5yfIlEFC87zaXJqmNDY2+v8hm9fk+iYZ/u1vf+v7L9yPxG0g7ovz5s3LtVmhDWV9fb1vn3HCCLXLP//5z4BTAFxyySUAXHrppUBe8bE62KhsGIZhGIZhGMagwSxABaOcm5pMjzKZa7e9dOlSr/ENrUKQaYhCiqr5Kccvf/lLAK6//nrAadplUZBpXFoKaTS22mor76IkTZDSjMbubgsWLPAuRfoMPZemo0jIJUCm7uHDh+esDe+//z4A2223HeCsPXEqTWnYZe2QRq69vd1r4aXBlAZPrnHViDSLM2fOBDI3wQULFgCZ9ayhocH3XblyyFoUyzC8btzf9dje3u5lLOub3pPbjOQdu88VjdjlQm4uW2+9tX/tyCOPBOAvf/kLMHisY31FJXdrtcGjjz6ao48+GsjGFrnLbLPNNgAceOCBQDYeVANKT62EBkoPHCcvgXzgvazBegytRHFCJKH+v3z5ct/OtRaQN4PcD3fbbTcAX+qhaMi9ULKOS2F0dHTkQgPkgRCPo5rLio6sY0qiozY0YcIE76YuOcbp1RsaGnxb1VytNZXmdTFs2DCWLFkCwLHHHgtk7uAbbLDBan9/swAZhmEYhmEYhjFoMAtQwSinOZNGQ5YKaSlqamq8FkmP2tHrechg8GeX/JQeOLT6fOYznwEyLZ20FNKIDRkyxGsnLr74YiDTQuo3kD/1mDFjfMIJBZUraF3av7gYWDUizU5shVi2bJl/LQ4o1eOHH37o5SVNqIoc6hxpmbq6uny7lBZJ/tnVbAGStUWWHmm7dY+Ke1p//fV7ZKGV3NS/1d4V8ycLXV1dnZenjlG7l9ZTv21RLUBxulUVmixXWFPxJ0p2IlY0Zg6G8XRVCONW47asZCeKZ5s2bZq3TGjOOuecc4DM2i7NcDUFpKuYcTzuqd9KLqElQv1RY6EehwwZ4tuW+rvOk8zC68YJkWQB1rmyfBbVAqSxVlayuC0OHTrUW8Pj9imZyaKxcOHCvv/CAwB5q0gushq2tbXlUoVr3RmuNSVHtXMRFlTV9eRxIEvQj3/8YwBuuOGG1f7+NvIahmEYhmEYhjFoMAtQwSinTdTOW77QoeZRWs5Yoy4Nc8hgiAF6+umngcwCNGnSJMAVjZVfrywUkqM04/X19V5L8dWvfhXIYlYkZz3fdtttfbpWxQsow5ksTUWwAOm+pcmRZrO+vj7XntQGZVno7Oz0VjZdJ8xyCN3be1y8tgjpxNVeNt10UyDLBict2Gc/+1nApfx99NFHAdhzzz2BTBunGIG5c+d6Lafi2KQtVxtWDMuiRYt8jIWyyul3USptXauoxBpMZTqSfEMUD3TPPfd0ez2MH5CW2Cw/5UmSJCcbPVcWOFlCTz75ZG9dj1Gpgc997nNAPu5lIKPCpJpHQmtO+HpDQ0Oufcr6EGaHi9MU6z2tCULLvI7VGK1HzXeKQ9x1113X9DYHJLKkabyUfCWj5uZm/5oe5V0g2amtlYuhLiJxwVK116FDh+ZifsJseuDGRMk27vfx2JimaW4+V/bdNcFGYMMwDMMwDMMwBg1mARoESDMU+/2H/8fapNgnEwaHBUhWmIkTJwKZhue1117zWvhYy3P88ccDcMYZZ3D55ZcDWRY5FZdTZi5l2Bk/fryPGzjooIOAzP87LHZX7UjDozYoOdTV1fk2F2snQ62kZBxnlBF6PnToUG+RiDPzVDOy8MjyI1nJGimN8Z577uktE7LqnH322UCmefvud7/LP//zPwN4687NN98MZFZH+VV3dXUxffp0IIszkvZZv6HisYqK2qxQXZTzzz+/4jmynKsOiCxt4fhahHbZF5QrBCpZ7bzzzgDeyvnQQw9x2mmnAVmsiorR7rTTTkA2TleTBUheGoqp0LinsTHMnBmPc3G2ws7OzlzsZZwVTrS1tfnP0vV0rPq9YiqLimSlNqi5R7/F0KFDvUVecVCyFmmdoDFjsFiAYi8AzTVArmhsPHeHbVNtT6htiyRJct5K8khYE2wkNgzDMAzDMAxj0GAWoEGAdtfS3EpbMWTIEK+p0K5aGo3BYO0phzKxqZaE/J4/+ugjr52TlkdZ3K677jrAVR6/+uqrgcxvWtrI559/HoDvf//7ANx///0+Tkia+m233RbI4juKgLQ2kpm0tTU1Nd6fX77mIqxFI62jNEKxr3CYFUlZDmVli7Wc1Yj6qu5XlgX1U7XJuro6Nttss27nyjJ5//33Ay7Dm7IUKnObLD5xtqjm5mafPWvatGlAVgdEVg3FBhUd+bmrLYfaybg96vdSBXPJqqamxmJ/VsKK5pzDDz+822OI5rXLLrsMyLL1ffnLXwbKW5YGKtKKKxujxkZZeqVx32233fycrfEuzlpYV1fnX9NjbOUILfKybsi6rP6uMaFI81I55PUiy4LmId13V1eX79+yCmkskHxlAS4XQ11E5JkgQguj2li5OnTQ3ZqpNiy0TlBbTpLE94W43t2aYBugQYCCxeLCiAsXLvSNSQsimSm1ERhsKN2qCk6K7bff3nfG+fPnA3DFFVcAmSuQ3OYgC4rWovy4444DsjS5kyZN4tJLLwWyYF11+iIs3IU233Fhs/b29pyJPAwYB9dOYxfNOI2zTO51dXV+s6TfI9xIhedUI5og5Kr24IMPAlmbW7x4sZe1+rk2mN/+9rcBJ1e5vmlSl8wkZ7XB2bNn+99MRT712YNl4yNuuukmAL7whS90ez1MvS4mT54MwLXXXgvASSedBPQsDbZtkPLE/T9cTMk186qrrgKytizFUniNatgApWnq+58W0LrfOHnJ+uuv72UTuxCH16vkHhcXQO/q6vJtV3IVGmP13drb26t6LK2EksYoOVGc7Ch0iY0D+yVHFaieOnXqp/CN+x+1S7Wv0M1tZX2us7Mz13bj9hq6uEvWmteVuGdNsJHWMAzDMAzDMIxBg1mACka5QqjSYEhLod32+++/7/+XO5e0HnKtGWxIfrIaSBNx0kkn+SJ8Sobwhz/8AcgsDqNGjeKDDz7o9p4sa0p1vcceewBw/fXXe7cGWZuklfvjH//YF7fWL8SF+3SPNTU1OXfLOE1wbW2t1zRKMxSnzQyLo0lDFBfwlOm8CFpLFeaV69rdd98NOBcZyU/9XFYeWWwkb8j3b8lMrh2tra2+4KfSXg9W1Jcfe+yxbq+Xs9Rsv/32AJx++ukrvW58vll+8sRuNLfddhvg3N3UVo844ggAfvjDHwKZ+1i1WdQ6Ozv9PY0bNw7I+ukhhxwCZGUZZsyY4S0WoSsRdB8rK5UCCDXr4Ny+1M+/9KUv+c8A2GKLLbp9l/nz53trcJHQPHzXXXcBmRw1boaWb93/e++91+0askpojVB0ZHWVt4D6aU1NTc6qsyLiJAjlzolLX4Tz2epSHSODYRiGYRiGYRhGLzCgLEAvv/yyDzqXNkIaD/lfyq+9HOWsH4ONUAYKYpaWXJYK+W3utNNO3q9Xmgv5HofFKKF7EG+loLZqRtoEaeCUklqxUI899pjXiF988cUAXHPNNQDceuutgNMGqd0qFbGuI/kqLfaUKVPYZZddgEzGcduXViROx1tNqC/GFjUgZ92Jz+no6MgF7wrJTJqnhoaG3GfERVOLiCyMM2fO9GNj7LuuYNFQ9koNHGvJ5f/f0dGRC0wtwviqQq/q52EQOGRtcvLkyZxwwgkAPh34woULgSwpwrhx4/x4KVlVKhbb0tLiLZSySOo76LpKvCJrsZFx1llnAVl8xpVXXumtbTHV2k7b2tpyhSB1L/LQ0HjX3NzsXwut6pC15dbW1lypAaHnGlebmpr8uDFlyhQgSyah5Cr6HK0ZiobiduPYVN23Ul9DZg2SBUhyVB/ffPPNP4Vv3P/ERWPD4qflipmGj6GFMrb0lpv3Y6tlueLqq4pZgAzDMAzDMAzDGDT0ugWoksYW8hoZZb/S6yeffLIvRClNmnxhpQ1funSpTy2slJjKjKLrhLvQVaHaNEblCO/hr3/9K9C9kBdkGseJEyd6DagsFNL2SN7Sfko7WVRia4S0sLK+vPvuu/zP//wPAOeeey4At9xyCwAvvPAC4LQ/Sh16zz33APD2228Dma/sBhtsADgNsVJjS+O23XbbAVkxVmmTimABiguifvTRR15jI9/yUDMErh9LBko/KtTH9X5nZ2cupkifVWQLUJjxLtbyxoR+1rGmWciSUaRivCFK9atYPWnUpTUPCxgqhkrFaBUDpLHhjTfe8G1M2R51Pcnx4YcfBlzMgOY0aSylYZ4zZw6QaZUHqwUoTdOcn7/GTVk3FfMWEhdQrtZ5vKOjw99DXOxR6yq1xVtvvdXH5mgsVP/WNVpaWrylV3KNM2lJzosXL/YZJXW+LD1xAcqw2GWR0HpUxNYIrUUha4+al+LCnSppUVSUCVfEZS7CNNgxanPLly+vGB9ULquc2l3cz1UaQuunVcEsQIZhGIZhGIZhDBp63QK0Mi0kwO9+9zsg28HJLxvgO9/5DpDt/J555hkgKwQ2atQov/tUDIa0IscccwzQXYu3Kqyo5kC1EO66pcWNLQiy+nR1dXmtkbTwumdp5yX3bbbZpirlsapIIyEfXsUA3X333d5H+Pe//z2QxVF8/vOfB5wmV/LceeedgaxOiyxoigm67777vNVN5+y///4AvPLKK0DvZDnpL9SHYo2utGkLFizI9bPYUpMkSa7QXGxR0nXb2tq8Zj3WEFWzHGNin2lZGhoaGnLZoCQ7Pba1tfljYp9tjRGKaWlra+vRWF5tSHMrbaL8+nWvGhsnTJjgMz1J5qqTomNDq5ssyNKSKzZL1veWlhYve1mJNE8p7qoIWQp7wqrE6Kh/Kxa4HOrvL7/8crdHxXCVq9c0EGlra/P9UI+ygKmdqs00NjbmCkir7UoeoVVCx8ZjYWiZj/tGfN1q9kToCerf6oeStQqkhvX5JIvY20DnFN0CpHWMiC2XSZLkYnDj57W1tblYt0rndHZ25upcCa3RVscC1Osz3IsvvghkDSFMHaibUjE+uSOIjo6OXADzrrvuCmSN86qrrvKLU6W9VFDqf//3fwNw2GGHAVkgek9ZWeXaamL58uU+QE8LbHVgDYYdHR3+fyVMiE3kKuxVdCQHTTiSlQbDvfbaKzcJa1J66aWXAGciV/uVm6FclFRdW2b2oUOH+t9F6UxlPpbbgzb6SutaTcRuE/GGZfz48X5xKOJNEuRN4bFbW+imIPnpOmEyhaIiedTV1XXbDELeza1cgd3YfSZMpV30BQ+QW0SqDX388cfevUXJT+bOnQtkm8Thw4d72UpWOkep7DWuTpkyxRdZjov6StkUf5eiUmmREyIZScmkAH2lJB89erR3Y9R4qXE4LkJZLRuglpaW3HiptqE2KMaMGePbljY6UoZokzNs2DDfpuKxIHZnC9deul5c7FMUfaOuFNbxelBurpC13VhJFBdQLypyOxOSkeb0pqamnNv6ivp7nCAhprOz08/j8XyutdXqMPBHBcMwDMMwDMMwjF6i1y1At99+O5AFjO677765FI6nnnoqkKX9lctPmPZWu0Rp0mWGXbhwoU8tGqcqlvZeO8J99tnHay+ktZBFI9R8gNO0SHMilzolW6hG5s2b1y1AvBzt7e057UYcSF7UlJcx77zzDkBOyyD5jBgxwmvYpEWTdUeuA8OHD/dWTbl17rvvvkBmxVEShGeffdZblCRrBV1L+ykLUDVqlWJtj2Qmt7/GxkZvZYz7omTe3Nzsz5c2qVJa7XHjxuU060V04YoJNdtxSuvY8lvOoqP3Qjc5Hau+r3G7WoPLQ6ShlPUgto6p7bS1tfk+q0QmOmbvvff2zzVu6lHzlFxe9Xnz58/3Gvv499BzyXmwUC5NfSVLjcaKK664AnDtNW6POje2pFWD9QdcG4rdgnXfcYrf2tpa37ZiN0w9dnR0+P91bOyqJDo7Oyumyo7H3KIXSZeXhlKux0khILNIxt4GlVKzFw1Zs+NC52oz6667rm8nartxiEmapjlX7EreG3V1db4ta72gY9bES6k6RgbDMAzDMAzDMIxeoNdVpBdccAEAl19+OQD33nuvt+JodydNl9I0S7M+d+5cnwI09lcPfdWlpdSOUtoN7Qi183zllVdyFqVYI60da0NDg9+pKiajmvnwww9zu/JYpm1tbX5XHfq3hkhjv2zZslyqxyKhhBGSw5NPPglk2obGxkZvYZQ8Ze2R1nfOnDk+acSRRx4JZDEAcZuvra31bVHtV8G7cVHKakZabmnRpJ2dOHFiRZ9eUV9fn9NY6li1W2klx4wZ4y1y+p0UiF5kn3W1xWHDhnkZSWsca9VWhOQaxhQp5iVM/1rt6F5k3dGYH6YIB1fgcM899wSygpCS58EHHwy4tqz2LJmr7akthr+B5hWNMZK1NJirU8hvoFEukYlQ+4zjJ8JjZAXXMUqYJCucLOjNzc1+PopLDOy3334Vv8NAprm52QfcC8VQx3HJixcv9seq3cRFKRsaGrxs1NbicTQMWo/HC/UVrc9Cy3yR0f3G81L4XPLUuKE2pvjAoiPvFMlBaxh5e+2+++7cdNNNQOa9Eaf/DxMlxHOU2prWT5tttpmfz1V2RJ+9JuskswAZhmEYhmEYhjFo6DMn+X/5l3/xj9o5K9ZHVgXF8shi09HRUbGomTRC6667rt+ha2cpbZ40QtIsdXZ2+tfibD3SCkt7UjQt8bx587rJAfKZs1paWvz/snTE1jU9nzdvXi4TTZGQdlaP0jYok15ra6vX7kjTJo2GLEFz5szx2mFlQ1SRQ2UmlPZs2bJlzJs3D4D11lsPyNJgP/TQQ0B1t0nJKM42JEvYqFGjclqfOB4jSZKK6TFj3+G2tjYfUxVbM6tFA9wT4nvR2Dl06FD/nvp9nPK6J2g8HDFihM+uVSQkE/VDzQ9x0cORI0d6Laf6t7Sciu+bMGGCjwuIU7lL8y7q6upy8ZXqC5JzEbLuVepraZquNLvqOeec4z1ILrnkEiArcn7iiScC8P3vf98fr99Ba43jjjtulb7TQCPsbxrDlAUvvofOzs6cVUeoDba3t+diNMqVD4DuGePULmUBiotYV0tM1eoSxz+r34blVSQLjRcaGyrFWxcNeXVpvpClZo899gBc2vpKBXNDb6xycYAhYQzQjjvuCGTeOcrCuyYxacVuyYZhGIZhGIZhGAGfSpokaSRVMNLoexYsWJDTEIWadXBa+VgLGRem0jkffPBBoS1A0lZIIyxL0PPPPw+4zIKSm/yy9Sht7/Dhw30B1FjjJmQRWrBggZexCi7usMMOQKbZqGbibEbSuCt7Tn19vdewSVZxXF5ra6v/XWTtjbOV6XOGDBniLWnS2MftvYgofiSsSRNbgFZEXHtJVvn6+nofjxG35UptuxpQ+1O7knY3tuo2Njb6+9Q4qvYqGY0dO9a/FhffjmXT1NSUi++Qll/tdHULeA9E4roeNTU1Pjur+qMySd1yyy0AzJ4922eIfe655wC4+eabgazNyQr/8ccfe6tQbPmpVDR5oBPGN8v6H2dhDeVaybqj5+3t7bm6P7EFKM6mGSILkH63SrHERUMyV/9Ue9pll138Mao1dddddwGZFUJjZtHRfC5vLFmAVEMpnHsqzb9dXV05C1C87lR7/eijj7x1SVbi3shUbBYgwzAMwzAMwzAGDcUvlDFI+fjjj3NanVgz1tbW5nfwsmLEsVfy8XzzzTfZdddd+/6L9xPScil7kx5l5VlvvfW8BnfzzTcHMu3Z9OnTAadVvu+++4CsloB8ZWU9kwZ6yZIlvhaJtCdCWmhpmqsRaRjjLIOy4NTV1fnXKsU61dbW5mI0pCHSOaG/u9qqtHBx5sciorZSX1+fi6GKNbZdXV05//1KY8S4ceO8lk/Z4JRlq5pjANSHZVGMfc91/+3t7d2yFUGmaSxXn0syiWuvSfZDhw717V1W99j6Xm3a49AKERP3vZdfftnX1TviiCMA+PnPfw7AaaedBsBPf/pT/7to3FVW2LjOUm1tLaecckrZz67W+l+NjY1+ThGxfDVPL1u2LFczJbZ0lft9KllvwvhrobWB4ls0FldzbGpPkGUytqDvtttu/v9tt90WyNerUcxw0dFYFc8FWhs98sgjuX4Yx/PG/6/o+ZIlS7zMRW9kJazOkcJYKQsWLPCuVFpgx2mxly1b5gdEDXJxI9WjXLeKShyIPGPGDCCbiMeOHevlpkWOFlMKVG1sbPQyf/TRR4GsIKImDSXseO+99/zkfvjhhwOZu51+g2oOqNTgFBfaLRf0qGPUFsNCZ3ILqpQMQY8dHR1+QRm35WpxgVkdtCAaNWpUzvUt3hCFr4l4QaT3m5ubfZvVJl4boGreUCpNvfq72pcUE5JHe3s7f/vb37odqwWgUjJPnTrVyzwu9SDZ6f2lS5fmEvHoucaEauzvsWuVErgopb+UOJ2dnVx77bVA1j+1EZJibe211/ayVrsOCydDVsD20EMP9XOSxk2Nw/ou2qBOnDixt263Txk9enS3QryQzT8iDPhW24rdOMMNUbmCp9A93T24MVdJeeRmqGPj8hdFL9grF+o4HEApniFzgYsX+bNmzfoUvmH/U2kjrcLvN9xwg1dIxhvJcA6P53Gh5xqfW1pacteJE9esDtWryjMMwzAMwzAMw1hFzAJUMLQbDjWOcYG00F2jUiCZztEuW8HWRWXatGlApt2VBm7y5MlA90K50vrIDCwXoYaGBp8+e/vtt+92Pf0usvosWbLEazulLX788ccBvCZOAYXVSFxYM04lGqa4rpSmvb293V8nLu4p1H7b29u95lLnyJIkzXCRqampqWjNiV3iwtfCNKPQPeBflok1CTIdaMi9RZaKDTfcEMgX5ZwwYYK3NsiqG7t9zJkzp2JxT7VXWYaGDBmSS3Mt7b76/9ixY3vpLj8dkiTJuaaq1IUSklx00UUAnHfeeTkt79FHHw3ASy+9BDg5xO5WsjbIQqfHG2+8kauvvhrI2rDkKZmfeeaZABx77LG9cbt9ztChQ31bULuK3c1C60Ts8iv5atwrZwGKvRgkz8bGxorphMNU2eW+U9FQGxSSa9h/44QlGjeKXiR2ZWgMW7JkSa4Miwg9CGILUDxGqI0vXLjQr7Pic9fEJdssQIZhGIZhGIZhDBrMAlQwZD0Ii6DFRSNDrbkI4y4g0xSF6TjDgOuiMWXKFCDzsZblRs9D7Y/koDSh0kQsWrTIy0bnKeZgs802AzLrRhjEescddwCZ1UhaT1mLqpE4gFxaRN1TmAIzDuKVPFtbW3NF+OJj1YZDv/TwfCCXfrgIxEXmQi1bueQHMfF7seZ92LBh/jdTey8XxFptyDIhq6CsBrpXtavW1lafCl+xJArQVxueP3++1wRrnIx/F31eZ2enl6O0pGrTGrP1frXw5JNPeuuN+l8cmH/NNdcAbjyVxXvRokVANo8ouPndd9/146b6tYLK9bpk1dHR4S1zkmOcgCIMWq8WdN+V4hffeustwI1pcdHyctbxOEZF7TWWVX19fc56EX92HNdZVGQV0/wRt2nIWzXKzUNFplx8KWTJpJqamnJeG/H80dHRkYvxjePUy6WD12uS+ZqsR80CZBiGYRiGYRjGoMEsQAXjnXfeAdwOPSyIFqIdeVtbW24HH2vudW5HR4e3Zmy99dZ99O37D2kRjjrqKCCLCVKmobfffttrySUzaR5nzpwJuFiB2267DciyFUnbq4xSDz74IJBlRQuRzJW1aE2ym/Q3sU+vNI7l/HZji4LkPHz4cB/XI2K/Ymnc5s2bx6RJk4Asq5Y0pJX86asZZccSY8aM8bEAum9pMtVOu7q6cjE/Olavh20uTOEM1W35EZKFMtqpf8bxkpBlIotTXCurZm1trddMxtrxuFBgGM+mc+KYojj2YKDT0tLCAw88AGT9UFnf1Gb0+ogRI/z9xtmbJOdFixblLECx9l1Wn5qaGv9eXNxTY0S1FZQO4/gkG5VjEGp7DQ0NOYthpZTu8WeEx+oazc3Nfs4SkqvGCFH0QqgqTC5ro6zFSvEMWduKLRQaV4qOPFrkKSM0hjU3N+eyCapfhnN4vB6Ii/uGGQjjuGKdq3ludTALkGEYhmEYhmEYgwazABUMadBqa2u9Fk0anFhz09bWlssQFx8Txv3Iv7OIFiBlhxK6b/mnv/LKK76mj7Q/0m4qFminnXbiueeeAzIL0IEHHghkhVB1venTp/vzZA2S9kRakLhAajURFyoNC6DqdWl9KhXn7OzszMWtqS3H2t6mpiavhZOmPv4ORULtU9qwpqamXJYxEWZ/jOODYl/uUL5hRknItPLVbElTXE8cqxOPg01NTd6KIy28+mmY0TC2MupRMgtlF8dbCY3Zxx9//Brf36fJVlttlWs/ei5rj+aMcnU8YivPiBEjKsZQqG3Hcg7P16Os+ZX6w0AlnHs13sX3MHv2bMDVpKlkAQprM8XxOjqnnFVcFg+h+AxZMeO4oaKi+V33KQtDGEsquaq9KvOgskoWnc9+9rMA/OEPfwCyuMgwPieea+LYnY6OjpxFMm6vYVuTdS2u96fYzNXBLECGYRiGYRiGYQwazAJUMKZPnw44DVKsRdJuWpqdxYsX+/8VdyItjzT12mXX1NR468Z+++3X5/fxaSPNg+KcpKX43ve+B8AJJ5zg46tUE0maB2k7Z86c6f1eL730UgD+9Kc/AZn2OPRbf+2117p9xmOPPQZk2qRqtrRJMy7/aVnEpIFfe+21fXuUZjj2A07TNBd3omN0ruS68cYbew2d4mP0m8aZkIqAZBbWpoqtYiLUzsf9WseWOzf22VasRrXVqwnZcsstuz3XeCkLraivr89ZG6QJ1/PW1tayGaIgn9GwsbEx58MejwmqOVYtbLDBBt4iobFQ9615RePhkCFDfJtTm9WxskoMGTIkl+UxtBhDvn4VZJplWeyq1ULZ1taW04DHmd7EkiVLcjWDRKhxD8fSctcNf4PYQqe1gB7jjF1FZZNNNun2fEV15JRFUvWZqq0Pry4aw+J5Q9aZlpaWXIxePN8PGzbMXye2isfXT9PU/y6y0MlrJ45xXxWKtzIY5Cid84wZM5g1axaQpRLVAlEL7Pfee88X7lR6TTUqNWRtCEaOHJkbGIqECvZV4oILLuCYY44BMpcVDX7q/I888ogPoLz++uuBrLM+9dRTQNbRlyxZwiGHHALAEUcc0e2xCMSulNokapHS1dXlZRGnula63NBErok8LkAnt7dwklLBNL1XhOD9GKUSDtGiJt7UVHI1hLzrUhjwHB+vBXs1b4DE6aefDsC5554LZElK5O7S1dXl/9eCL3YJjIPDIZNZPIEPHz7ct31dR2PvOeec02v39WmSJInfQF544YUA3HDDDUCm8NDiJEkS/3+cyKTcglrtMl7chMfqOlp06npf/OIX1+i++otPPvnEJ9TROCclmMawK6+80j+vVDyyJ8QbozBBipDsY9fiohf7jJPJlEtYJOIi0ZWKyRYNJYfS/arvKTnCGWecwXnnnQdkSk+1uTDRidqUxknJWomM9FzXBXj11Ve7nRO7M68K5gJnGIZhGIZhGMagIekDc2aR7KP9rTpebVkuXbqUGTNmAFlq0hdffBHIgsk6Ojp8oT4Ftd18881A5hIibc9BBx3kj11N+luW0Ettc/78+UCmNZbFYfny5V4boWO22GILIAukllxjl5vVoKrkKe1i6GIVp2CW1ldtrr293bvQxNrjsGAndA+eVPIIWTx7aAGqKnlKAyfa2trKWiQgs6hBPmWwHiVP/RZrrbWWd/nSa7KI6PWVUBXyVJuT+6kCwdW3IdMwxvJdZ511vCzion9C7faTTz7xVnVpRL/+9a+vyr1UhTyF5Cc33zfffNN7Iqg9yWorl7hRo0b5/yUrtcv42BEjRuTeU3+XZX4lDDh5NjU1eZdC3YOshGuS6nd1kadI7BY+derUcjIecPJcXbRu+tGPfgRknhnl+uudd94JZJbPM844A4Cdd955Tb/GgJankptcffXVQLa+OfXUU/0x8iaSjGQtlnV46dKl3gtE7pya32UBkkfTT37yE39dhRW8/vrrABx77LFAloyqAmXlaRYgwzAMwzAMwzAGDX1hATIMwzAMwzAMwxiQmAXIMAzDMAzDMIxBg22ADMMwDMMwDMMYNNgGyDAMwzAMwzCMQYNtgAzDMAzDMAzDGDTYBsgwDMMwDMMwjEGDbYAMwzAMwzAMwxg0/H8UgFisMsbjMAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# extra code – this cell generates and saves Figure 10–10\n", + "\n", + "n_rows = 4\n", + "n_cols = 10\n", + "plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2))\n", + "for row in range(n_rows):\n", + " for col in range(n_cols):\n", + " index = n_cols * row + col\n", + " plt.subplot(n_rows, n_cols, index + 1)\n", + " plt.imshow(X_train[index], cmap=\"binary\", interpolation=\"nearest\")\n", + " plt.axis('off')\n", + " plt.title(class_names[y_train[index]])\n", + "plt.subplots_adjust(wspace=0.2, hspace=0.5)\n", + "\n", + "save_fig(\"fashion_mnist_plot\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nerNBbujIm2m" + }, + "source": [ + "### Creating the model using the Sequential API" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XWpM2-DoIm2m" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42)\n", + "model = tf.keras.Sequential()\n", + "model.add(tf.keras.layers.InputLayer(input_shape=[28, 28]))\n", + "model.add(tf.keras.layers.Flatten())\n", + "model.add(tf.keras.layers.Dense(300, activation=\"relu\"))\n", + "model.add(tf.keras.layers.Dense(100, activation=\"relu\"))\n", + "model.add(tf.keras.layers.Dense(10, activation=\"softmax\"))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Rl_13CK6Im2m" + }, + "outputs": [], + "source": [ + "# extra code – clear the session to reset the name counters\n", + "tf.keras.backend.clear_session()\n", + "tf.random.set_seed(42)\n", + "\n", + "model = tf.keras.Sequential([\n", + " tf.keras.layers.Flatten(input_shape=[28, 28]),\n", + " tf.keras.layers.Dense(300, activation=\"relu\"),\n", + " tf.keras.layers.Dense(100, activation=\"relu\"),\n", + " tf.keras.layers.Dense(10, activation=\"softmax\")\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "81kbA6NUIm2m", + "outputId": "1d250cee-7728-47d8-f9a4-d9b899c0683d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " flatten (Flatten) (None, 784) 0 \n", + " \n", + " dense (Dense) (None, 300) 235500 \n", + " \n", + " dense_1 (Dense) (None, 100) 30100 \n", + " \n", + " dense_2 (Dense) (None, 10) 1010 \n", + " \n", + "=================================================================\n", + "Total params: 266,610\n", + "Trainable params: 266,610\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1kHMQMGxIm2m", + "outputId": "6ffd1239-83b7-41be-d5b0-6dfec9feffd6" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAIECAIAAADuFAIlAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOy9fzyUWf/4f4ZBIaO12rSkDeu3Vt2FrLU/UFKRtEqljdBm27vctVuPfny6Pah73/Xe2LfaVKKNLCGlX6vWr61Ii5JfdZeEIqFhRowfc33/ON+97uueMWNcjJnR6/nXnNc51+t6nTPm5brOeZ3XYRAEgQAAAABaKMnaAAAAAAUGfCgAAAB9wIcCAADQB3woAAAAfZjUQmFh4Y8//igrUwAAAOQfBweHsLAwsvhfz6ENDQ1paWljbtJbQWNjI4wtbdLS0hobG2VthbSAvw0FoqioqLCwkCphUGObUlNTfX19IdpJGsDYjgQGg5GSkvLll1/K2hCpAH8bCsSKFSsQQufOnSMlMB8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf5tBNAEABqa2tjYiICA8P19fXl7Uto0NdXR0ZVfPhhx/OmTOHrOrv7y8uLuZyuW1tbQghMzMzW1tbspbNZl+9epUsLly4cPLkyWNl9f8Ph8M5e/bs06dPjY2N/fz81NXVqbVcLjc1NbWurs7e3t7V1VVFRUVKOktLS3V0dAwNDclmtbW1d+7cwZ9NTU1nz5497L4RFFJSUgQkwGgBYzsSEEIpKSnDugRHn1y5ckVKJo0iEv5tJCYmIoSSk5Obmpo6OztJOZvN3r9/f2dnJ5fL3bt3L0KIxWI9fPiQbMDn80tKSqytrS0sLHJzc/l8vlS6IZqampqpU6eamJioqqoihIyMjJqamqi1xsbGly9fxj5x+vTp+fn5UtLZ19e3ceNGqn4ul1tXV/fHH3+oqKhs3bp1yPv6+Pj4+PhQJeBDxwgY25FAw4cSBPHq1StpGEPl9OnTI1cyLB/KZrOpwsbGxiVLllCF2KeYm5tT/SxBEPipfOTW0sDd3f3+/fsEQbS0tGzYsAEhFBAQQK0NDAwki+vWrXNycpKezv7+fnd39/LycgGFM2bMoOdDYT4UGLe8++67UtWfk5Ozc+dOqd5iSMLCwpYtW8ZisUiJsbGxm5tbdXW1v78/QYnb19HR0dbWHnsLS0pKVq9ebWNjgxDS1dUNDw9XUlK6ffs22aCpqamyspIsqqmp8Xg86elUVlYOCwsLDg4ejc4hBGtKwHiFz+fn5ubevXsXFxsaGqKjo/l8fkVFRWRk5JkzZ/h8Ptm4sbHx6NGjBEHk5eXt3LkzJiamu7sbIZSVlRUVFXXy5EmEEIfDOXLkSFRUFH5szM3N9fLy4nK5sbGxWVlZCKHW1tYDBw68fPlyzPpYXFx8+fJlHx8fqpDJZP76669GRkaZmZkRERGkXElJSUnpv37vHA4nJSVl3759cXFxDQ0NpFz8WCGEXrx4cerUqfDw8N9//31II2fMmOHn50cW9fT05syZQ52Q9fb2Lioqwk/ZXC73/PnzW7ZskapOFxcXDoeTkZExpPESQX0ohfdN6QFjOxLQMN/lKysrsWf5+eefCYK4ePGirq4uQujw4cPr169fvHgxQmj//v24cWJi4uTJkydOnLhx48aAgIBFixYhhObOndvb20sQhKWlpb6+Pm7Z2dmppaXl4OBAEERZWZmjo6Ourm5ubm5ZWRlBECdOnEAI/fTTT8PtHe13+eXLl7u4uAg0s7GxIQjiwYMHmpqaDAYjKysLy2NjY2NiYshm9+7ds7a2Tk9Pb2lpOXTokKamJp6XED9WBEHk5OQEBQWVlpampqZqampu2rRpuP2dOnUqdVahubnZ1NQUIbR161Y3N7eMjIzhKqShMzg42NbWliqh/S4PPnSMgLEdCcP1oQRBlJeXkz6UIIgdO3YghG7cuIGLs2fPnjNnDtl4zZo1DAajoqICF/fs2YMQOnbsGEEQPj4+pA/FF2IfShCEl5eXgYEBWcXlcs+ePSswCykJtH2oiYkJfmGngn0oQRDp6ekMBoNcX6L6UB6PZ2ZmtnfvXvIqPz8/VVXVyspKQuxYcTicmTNncrlcXAwMDEQIFRYWSt7Z/Px8fX19DodDFba0tBgZGSGEHBwcmpubJddGW2d0dDSTyeTxeKQE5kMB4L9QU1OjFidOnIgQMjMzw0ULC4v6+nqyVkNDg8lkWlpa4uKOHTuYTGZBQcGQd2EwGFQlq1atmjRp0siNl4Te3t7a2lo9PT1RDby9vXft2tXR0eHl5cXhcKhV165dq6mpsbe3JyULFizo7e2Ni4tDYscqOTm5u7v7u+++Cw0NDQ0NbWpqMjIyevz4sYQ2DwwM7N279+LFi5qamlR5XFycs7NzQEBAYWGhnZ0d9auRkk4Wi9Xf3y+55WKA+FDgbURZWZkQnSdJXV1dX1//1atXQ+qh+tAxpr29fWBgAPs7UYSHh9+/fz8rK8vf33/hwoWkvKqqCiFEdTpOTk4IoerqamEl1LGqrKzU09M7cuQIPZu3bdsWFhZGjV1FCMXHx6ekpNy9e5fJZDo6OoaEhISGhuIpZunpxH1vbGy0sLCg1xcSeA4FAEF4PF5zc/PMmTOHbClDHzp16lRtbW2BB0wBGAxGYmKimZlZZmZmdHQ0KX/nnXcQQtQ8mIaGhioqKkPG3isrKz98+LCvr4+GwcePH7e1tV26dKmA/PTp0+7u7kwmEyEUEBAQFBSUnZ3NZrOlqvP169cIIQMDAxodEQB8KAAIUlRU1NPTg5dTmExmT0/PoM0YDMbAwMDYmvZfWFpatrS0UCUEQbx584Yq0dLSyszMZLFY1GdMOzs7hBB1sqKioqKvr8/BwUH8HWfNmtXV1XXs2DFSwmazjx49OqSp58+fJwjC39+flOTn5+MP5eXlVO/m6enZ29srSXjDSHQ2NTUxGIwPPvhgyLsMCfhQYHyC4wFbW1txsbOzEyHU29uLi62trXg9gWzf399Pepm0tDRnZ2fsQ93c3FpbW+Pj47u6uuLj49va2mpra/FTjJ6eXnNzc21t7ZMnT7q6ukpKSubNm5eXlzdmfXRycnrw4AFV0tTU9Pz5cwGnb2pqmpSURA1smjVr1rp16woKCshZwps3b5qYmOCoSTFj5evra2BgsG3btoMHD1ZXV6empgYHB69duxa3DA4OXrRokbD7u3Hjxg8//NDX1xcTExMTExMdHR0SEoIX/RBCXl5e58+fJ8OnioqKbGxsTExMpKcTIVRXV+fm5jZhwgQJhnkoqAtMsHYsPWBsRwIa5rp8UVERjm2ysrK6dOlSXl4efjHfsGFDU1NTcnKylpYWQmjfvn19fX0EQYSEhCgrK3/zzTfbt29fuXLlkiVLyOV1DoeD117Mzc0zMjK8vb0XLFhw4sQJgiByc3OZTKa2tjaOZ8Lr4LhqWNBel29vb58yZcrjx49x8dy5c5988glCyNXVNScnR+DyyMhIamxTd3d3aGiopaVlQkLCyZMnPTw86uvrCYIYcqyqqqo+/PBD7D0sLS1LS0tJnXgd/NChQ9T7lpSUaGhoCLidCRMmtLW14QZdXV2BgYFWVlZRUVEbNmxYunRpbW2tVHXyeDwdHZ3r169TdUJsk7wDYzsShutDh0tISIiKigpBEPX19R0dHcINWlpa8Ifu7m6qnM1mU4OZBr12SEay1/PYsWOhoaES3ujly5cCEjabfevWrYaGBgk1kNTV1T179kxA2NPTk5KScuHCheFqIwiiq6urqqqqvb19DHSmpqZ6enoKCCG2CQBGAQMDA/zYJQAOO0cICbz9sVgsajDToNeOLgL7IIOCgtra2srKyiS5dsqUKQISFos1f/58GqmtDA0Np0+fLmxbYWEh3qQwXNTV1c3NzYUXtUZdZ01NTVJSUnJyskBj2lPbENsEAOjNmzf9/f1cLlcgxlCuUFFR0dLS2rBhg4ODw9y5c11cXBBCSkpKCQkJmzdvDgoKmjt3rmwtLC4u3r9/P14Nl0+dz549O3DgwKlTp8iYsIqKimvXrtXX13d2dtKbHqVvWVVV1dWrVx89emRvb6+lpcVkMj09PWlrkwYKl0GyoKDg+fPnZFFbW9vd3V3aN83OzsZJJzE2NjZkqPlbQlJSUnZ2NkEQ33//fVBQ0EcffSRriwbnyy+/HPRkUzU1tePHjw8rLl1KYLcuzzpVVVUTEhKoEWlWVlZWVlYIoZ9++omeTprv8nfu3AkICPj73/8+b968b7/91sfHp7S0lJ4q6VFaWhofHy+wcCnP2NvbT5w40c/Pz8/Pr7W19dNPPx2Dm9ra2hYVFfn5+a1duxYnZByDm8oVixcvrqmpef36dWRkJN5krYgIv1kDwujp6Y16SC9NHxoZGenk5MRkMgMDA2tqaiS/8JdffhFTHF18fHxevXol7Ue5UeyCqqqqp6cnTlC2Zs0a8VtQRghptq6uLo6w++ijjz777DOcffKtgsViaf+FVMccGJfQ9KHZ2dlkLkLJkxIK5Fscg/SLCpdBksFg4DUKakbIUUfAbHxH4WARAACGZNjzoU+fPr158yaPx6upqUlLS0MICe/iePToUVFRUXl5uaOj47Jly7AQ51tkMBixsbHTpk3T1NSkFpcsWYIQevHixbVr1xobGx0dHb/44gt8YUNDQ0ZGxubNm6uqqi5cuDB9+vTVq1cLZEIcFD6fn5+fr6mpiefaxetpbGy8ePHi119/nZ+f/9tvv73//vuBgYETJ07Mysp68uSJpqbmhg0bOBzOL7/80tfXp6en5+vrK9Aj3IVRR37MFv5af//9d5x3Uk1NzdvbW01Nrbi4uKqqavLkyXhyfNAvFCH0+vXr5OTkTZs2Xb16tby8/B//+MfoLkQAwNhBDXSSJE7t5cuXFy5cQAht3br19u3bt2/fxnlYyTxahw8f/vTTT/l8/tOnT2fMmIFT2xJC+RaF0y8OmpdwyGyGopBJBkkxSB4fivfwDgwMjJnZDx8+RAh98sknYqwa9Gvt6urCC1BPnjwhW5qZmeFka6ISTSYkJKirqzOZzP/7v/+bNWsWQggf6iAGJOX4UNkCscMKxOjE2OO1YzLXLJfLpfpQY2NjMujXy8tr0aJF5IUC+RapRTF5CcVnfhTD2GeQFAM9Hzo2ZkviQ0V9rRcvXkQIkZtzXrx4gf/CxCeaXL16NUIIZ8atrq4eckzAhwJygrAPHf0XqLy8PDyzVlVV1dDQgPfekggsipFFMi8hLpJ5CfFSNfrvbIa//fabJJYMmUGSqkc4g+SBAwcKCgpCQkLE30XamXvkxGxRX+vixYvNzc1//PHHwMBABoNx9uxZvEIl5gtFCE2bNg0hhN/3ya6Jx9fX19fXd1g2KxYyTAEFDAvBw1dG/Qbvv/9+dnb2pUuXnJ2djYyMSkpKqLWifKjkeQnFZ36UHAXNICkrs0V9rQwGY/v27QEBAVeuXPHw8Lhx48bf//53NNQXiudzJZnUJtmyZcuQWYUUlMLCQvKYJkDOOXz4sIBk9H3onj178PrGxIkT09PTBWpF+VAyL6GKisqom0QDnEFywYIFQ7aUq8eHUTe7paWFxWKpqamJ+VpXr169Z8+e//3f/50xY4alpSVeHRr1L9TBwWHQCPPxQVRU1Dju3Xji3LlzApJR3i//9OnTiIgIMrZR4DhAgXyL1CLtvIRSQlEySAow6mYHBQUpKyuL/1pVVVW3bNmSm5u7ffv29evXY6G8faEAICXo+FD8y8SHx6K/sg3iVAh4fSk5Obmzs/OPP/4oKCh4/fo1l8vF2bYF8i1Si4sXLxaVl3DIzI+iGPsMkjQGUxhsJznhOAZmP3v2jHoLzJs3b7799lsmk8lkMsV/rQihkJAQFovV2tpKzsyKTzSJx4q6xxQAFBXqApMk64O1tbX4ZGdzc/PLly83Nzd/9dVXCCFTU1O8dhwQEMBkMo2NjY8dO5aWlqaqqvr555/jvH4C+RYFioPmJRwym6EoZJJBUgySjO3169c3bNiAR8Db2zs9PX0MzE5KSpo3bx5CiMFg2NnZffHFF/Pnz7e0tMTv4MePH8faxHytmI0bNx45coTaHVGJJk+ePPn+++8jhL788ss7d+6IHxMMgnV5QD4Yo/yh1IyKPT091CqBfIsCRUJEXsIxYLQySIpCSr8TaZtNRczXShCEq6vr69evha8alS8UfCggJ4xFbBP6a+8gRiDASGALo/CORkNDQ8lvtGnTJlFVwcHB9BLwiDqmSkwGSRp3GXXGwGwxX+v9+/dnzpw56K7fYX2hAKBwKPYGu88++0xUFek7JEQhMkgKI1uzS0pKvvvuO2tr67y8vMzMzLE34K2irq6OPInzww8/nDNnDlnV399fXFzM5XLxFLOZmRn1rGA2m3316lWyuHDhwiHP7xx1OBzO2bNnnz59amxs7Ofnp66uTq3lcrmpqal1dXX29vaurq4SxnLQ0FlaWqqjo0P9v15bW3vnzh382dTUdPbs2cPuG/Wh9K19p0hMTHzvvfcQQps2bRpy1yY9pDG2Y2C2eIqLiydNmsRisVJTU6V6IwTv8n+dBZKcnNzU1CQwIbZ///7Ozk4ul7t3716EEIvFwtttMXw+v6SkxNra2sLCIjc3l8/nS6UboqmpqcFpFXFWMCMjo6amJmqtsbHx5cuXsU+cPn16fn6+lHT29fVt3LiRqp/L5dbV1f3xxx8qKipwnhJ92Gz267948+aNNG4hjbEdA7OHpK+vj9yWKj2k7UNPnz4tQz0jOU+psbFxyZIlVCH2Kebm5gLz3TgfOQ3zRo67uztOidDS0oJXTQMCAqi1gYGBZHHdunVOTk7S09nf3+/u7l5eXi6gEM5TGhEKmkFSHsxmMpnD2m4kh4xWAsMxyOUoTFhY2LJly6iz28bGxm5ubtXV1f7+/gQlBk5HR0fyNJWjSElJyerVq21sbBBCurq64eHhSkpKt2/fJhs0NTVVVlaSRTU1NYEzo0ZXp7KyclhYGD4FelRQ7L9+AKDC4XBSUlL27dsXFxeHk/JhsrKyoqKiTp48idscOXKE3FuJMwFyudzY2NisrCyEUGNjI85KlZeXt3PnzpiYGDIUelh6WltbDxw4IHww+ihSXFx8+fJlwe3bTOavv/5qZGSUmZkZERFBypWUlAT+24karoaGhujoaD6fX1FRERkZeebMGYFdFS9evDh16lR4eDjO2SaeGTNm4GhIjJ6e3pw5c6gTst7e3kVFRfgpm8vlnj9/fsuWLVLV6eLiwuFwMjIyhjReIqgPpW/tu/wYAGM7EpAE7/L37t2ztrZOT09vaWk5dOiQpqYm9c1awkyA4tMJSq6HIIgTJ04gSnozMdB+l1++fLmLi4tAMxsbG4IgHjx4oKmpyWAwsrKysDw2NpZ6vryo4Roy26SolIaSM3XqVOqsQnNzMz6CZevWrW5ubjibl7R1BgcH29raUiVwvry8A2M7Eob0oTwez8zMjEzASBCEn5+fqqpqZWUlLkqeCVBMOsFh6eFyuWfPnh3F2GFhH2piYoJf2KlgH0oQRHp6OoPBINeXqD5U/HCJSbcoPqWhJOTn5+vr63M4HKqwpaXFyMgIIeTg4NDc3Cy5Nto6o6OjmUwm3vKHgflQ4K3m2rVrNTU1eF8WZsGCBb29vXFxcZJcTs3AIpxOkMlkFhQU0NCzatUqalDt6NLb21tbW6unpyeqgbe3965duzo6Ory8vMhduRjxwyWcbpE8NJRMaRgaGhoaGkqmNJTQ5oGBgb179168eFEgFC8uLs7Z2TkgIKCwsNDOzm5YZ5TS08lisfr7+yW3XAyKHR8KAJiqqiqEEPVX5OTkhBAiMwmIR0wWK8nTCYrXM+q0t7cPDAyIX0sMDw+/f/9+VlaWv7//woULSfmwhouablHyHJWDsm3btrCwMGrsKkIoPj4+JSXl7t27TCbT0dExJCQkNDQUzylLTyfue2Njo4WFBb2+kMBzKDAeeOeddxBCZAg6QsjQ0FBFRUXCYHIxvg+nE8RZC0aiZ9SZOnWqtra2wAOmsD2JiYlmZmaZmZnR0dGknPZwkSkNaRh8/PhxW1vbpUuXCshPnz7t7u6OUyYGBAQEBQVlZ2ez2Wyp6sTJd0Tt7hsW4EOB8YCdnR1CiPrGXVFR0dfXR6Ztpp0JkJpOcCR6pIGlpWVLSwtVQhDEmzdvqBItLa3MzEwWi0V9xhxyuERBO6Xh+fPnCYLAZxxg8vPz8Yfy8nKqd/P09Ozt7ZUknmEkOpuamhgMxgcffDDkXYYEfCgwHpg1a9a6desKCgrIaa+bN2+amJiQYYDDSmAoKp3gsPSUlJTMmzcvLy9Per12cnJ68OABVdLU1PT8+XMBL29qapqUlEQNbBI/XGLSLYpPaRgcHLxo0SJh93fjxo0ffvihr68vJiYmJiYmOjo6JCQEH3eGEPLy8jp//jwZPlVUVGRjY2NiYiI9nQihuro6Nzc3gSQSNKEuMMHasfSAsR0JSILYpu7u7tDQUEtLy4SEhJMnT3p4eNTX15O1kicwFJNOcFh68LI4eVqfGGivy7e3t0+ZMuXx48e4eO7cuU8++QQh5OrqmpOTI3B5ZGQkNbZJ1HANmW5RVEpDgiDwOvihQ4eo9y0pKcEncVGZMGECmTixq6srMDDQysoqKipqw4YNS5cura2tlapOHo+no6Nz/fp1qk6IbZJ3YGxHgiQ+FMNms2/dutXQ0DBorSSZAIdMJyihHoIgRF0uwEj2eh47dow8b3VIXr58KSARP1xiGDSlYU9PT0pKyoULF4arjSCIrq6uqqqq9vb2MdCZmprq6ekpIITYJgBACCEWizV//nx9ff1Ba8VkAhQOQjIwMMCPYLT1iLp8JAjsgwwKCmpraysrK5Pk2ilTpghIxA+XGAwNDadPny5sW2FhId6YMFzU1dXNzc2FF7VGXWdNTU1SUlJycrJAY9pz2RDbBAD/hdxmQVRRUdHS0tqwYYODg8PcuXNdXFwQQkpKSgkJCZs3bw4KCpo7d65sLSwuLt6/fz9eDZdPnc+ePTtw4MCpU6fImLCKiopr167V19d3dnbSmx4FHwoA/yEpKSk7O5sgiO+//z4oKIheGm8p8eWXXw569qeamtrx48eHFZcuJbBbl2edqqqqCQkJ1BA0KysrKysrhNBPP/1ETyf4UAD4D4sXL/bw8MCfBXL1yznCb9aAMGK2ddEGfCgA/Ac5OdkFUCBgTQkAAIA+4EMBAADoAz4UAACAPoPMh6ampo69HeMenN8BxpY21AQZ4wz421AgGhsbBcNpqQH3eL8EAAAAIAqBfUoMgnJqFQDIGwwGIyUlZdC4SACQB2A+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoAz4UAACAPuBDAQAA6AM+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoAz4UAACAPuBDAQAA6AM+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoAz4UAACAPuBDAQAA6AM+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoAz4UAACAPuBDAQAA6AM+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoAz4UAACAPuBDAQAA6AM+FAAAgD7gQwEAAOgDPhQAAIA+TFkbAAD/xYkTJ9rb26mSCxcuPH36lCyuX79+ypQpY24XAAwOgyAIWdsAAP9h48aNsbGxampqwlV9fX2TJ09ubm5mMuF/PyAvwLs8IF+sWrUKIcQbDGVlZT8/P3CggFwBz6GAfEEQxPvvv9/U1DRo7e3btx0cHMbYJAAQAzyHAvIFg8FYvXq1qqqqcNW0adPs7e3H3iQAEAP4UEDuWLVqVW9vr4BQVVV13bp1DAZDJiYBgCjgXR6QR0xMTB4/fiwgLC8vt7a2lok9ACAKeA4F5JE1a9aoqKhQJcbGxuBAATkEfCggj6xZs6a/v58sqqiorF+/Xob2AIAo4F0ekFM++uij8vJy/PfJYDCePHnywQcfyNooABAEnkMBOcXf319ZWRkhxGAw5syZAw4UkE/AhwJyyqpVq/h8PkJIWVnZ399f1uYAwOCADwXkFD09PUdHRwaDwefzV6xYIWtzAGBwwIcC8svatWsJgvj000+nTp0qa1sAQASEXJKSkiLrgQEAQI7w8fGRtVsaHLlO3zA+PGlhYWFUVNT46Iswvr6+W7Zskd4e9sOHDwcHB2toaEhJv3jG93enQBw+fFjWJohErn3ol19+KWsTRoeoqKhx0xcBfH19HRwcpNe7jz/+eNq0aVJSLgnj+LtTIM6dOydrE0QC86GAXCNbBwoAQwI+FAAAgD7gQwEAAOgDPhQAAIA+4EMBAADoI9fr8sC4pLa2NiIiIjw8XF9fX9a2jDL9/f3FxcVcLretrQ0hZGZmZmtrS9ay2eyrV6+SxYULF06ePHmMLeRwOGfPnn369KmxsbGfn5+6ujpZxeVyU1NT6+rq7O3tXV1dBXIPjq7O0tJSHR0dQ0PDUeyazJB1gOrg4Ig8WVsxOoynvgiDEEpJSRnWJThO5cqVK1IyaRQZ1nfHZrP379/f2dnJ5XL37t2LEGKxWA8fPiQb8Pn8kpISa2trCwuL3NxcPp8vHatFUlNTM3XqVBMTE3zUipGRUVNTE1llbGx8+fJl7BCnT5+en58vPZ19fX0bN26U8BYEQfj4+MhtjL2c/rbHk98ZT30RhoYPJQji1atX0jCGyunTp0euRPLvrrGxccmSJWw2m5Rgn2Jubt7Z2UltiZ/BR24bDdzd3e/fv08QREtLy4YNGxBCAQEBZFVgYCDZct26dU5OTlLV2d/f7+7ujtMbDok8+1CYDwVkwLvvvitV/Tk5OTt37pTqLQQICwtbtmwZi8UiJcbGxm5ubtXV1f7+/gQlS6+Ojo62tvZY2oYpKSlZvXq1jY0NQkhXVzc8PFxJSen27du4tqmpqbKykmyspqbG4/GkqlNZWTksLCw4OHg0OidLwIcCYw2fz8/Nzb179y4uNjQ0REdH8/n8ioqKyMjIM2fO4JR3mMbGxqNHjxIEkZeXt3PnzpiYmO7uboRQVlZWVFTUyZMnEUIcDufIkSPkpszc3FwvLy8ul0Y4DQAAACAASURBVBsbG5uVlYUQam1tPXDgwMuXL6XUo+Li4suXL/v4+FCFTCbz119/NTIyyszMjIiIIOVKSkpKSv/1u+NwOCkpKfv27YuLi2toaCDl4kfmxYsXp06dCg8P//333yUxcsaMGX5+fmRRT09vzpw55ISst7d3UVFRYmIiQojL5Z4/f37Lli3S1uni4sLhcDIyMiSxX36R9YPw4Iyn99/x1Bdh0DDf5SsrK7Gv+fnnnwmCuHjxoq6uLkLo8OHD69evX7x4MUJo//79uHFiYuLkyZMnTpy4cePGgICARYsWIYTmzp3b29tLEISlpaW+vj5u2dnZqaWl5eDgQBBEWVmZo6Ojrq5ubm5uWVkZQRAnTpxACP3000/D7Z2E393y5ctdXFwEhDY2NgRBPHjwQFNTk8FgZGVlYXlsbGxMTAzZ7N69e9bW1unp6S0tLYcOHdLU1MSzEOJHJicnJygoqLS0NDU1VVNTc9OmTcPtGkEQU6dOJWcVmpubTU1NEUJbt251c3PLyMigoZCGzuDgYFtb2yHVyvO7vJz+tseT3xlPfRFmuD6UIIjy8nLShxIEsWPHDoTQjRs3cHH27Nlz5swhG69Zs4bBYFRUVODinj17EELHjh0jCMLHx4f0ofhC7EMJgvDy8jIwMCCruFzu2bNnBeYlJUHC787ExAS/sFPBPpQgiPT0dAaDQa4vUX0oj8czMzPbu3cveZWfn5+qqmplZSUhemQ4HM7MmTO5XC6WBwYGIoQKCwuH1bX8/Hx9fX0Oh0NKWlpajIyMEEIODg7Nzc3D0kZbZ3R0NJPJ5PF44jXLsw+Fd3lgrFFTU6MWJ06ciBAyMzPDRQsLi/r6erJWQ0ODyWRaWlri4o4dO5hMZkFBwZB3oZ5Er6GhsWrVqkmTJo3ceGF6e3tra2v19PRENfD29t61a1dHR4eXlxeHw6FWXbt2raamxt7enpQsWLCgt7c3Li4OiR6Z5OTk7u7u7777LjQ0NDQ0tKmpycjISPgoaTEMDAzs3bv34sWLmpqapDAuLs7Z2TkgIKCwsNDOzo76LUhPJ4vF6u/vH5bx8gbEhwLyhbKyMiH6nER1dXV9ff1Xr14NqYfqQ6VKe3v7wMAA9neiCA8Pv3//flZWlr+//8KFC0l5VVUVQojqdJycnBBC1dXVwkrIkamsrNTT0zty5Ahtm7dt2xYWFkaNXY2Pj09JSbl79y6TyXR0dAwJCQkNDcWzyVLVifve2NhoYWFBuzuyBZ5DAUWCx+M1NzfPnDlzyJZj5kOnTp2qra0t8IApbExiYqKZmVlmZmZ0dDQpf+eddxBChYWFpMTQ0FBFRUV87L2ysvLDhw/7+vroGXz8+HFbW9ulS5dShadPn3Z3d2cymQihgICAoKCg7OxsNpstbZ2vX79GCBkYGNDrizwAPhRQJIqKinp6evACC5PJ7OnpGbQZg8EYGBgYM6ssLS1bWlqoEoIg3rx5Q5VoaWllZmayWCzqM6adnR1CiDo1UVFR0dfXJz6n9axZs7q6uo4dO0ZK2Gz20aNHJTH1/PnzBEFQz/jLz89HCJWXl1O9m6enZ29vr4SRDCPR2dTUxGAwFPrQVvChwFiDgwRbW1txsbOzEyHU29uLi62trXiFgWzf399P+p20tDRnZ2fsQ93c3FpbW+Pj47u6uuLj49va2mpra/FzjZ6eXnNzc21t7ZMnT7q6ukpKSubNm5eXlyelHjk5OT148IAqaWpqev78uYCLNzU1TUpKogY2zZo1a926dQUFBeRE4c2bN01MTHDUpKiR8fX1NTAw2LZt28GDB6urq1NTU4ODg9euXUuqDQ4OXrRokbAHvHHjxg8//NDX1xcTExMTExMdHR0SEoKX+Ly8vM6fP0/GThUVFdnY2JiYmEhVJ0Korq7Ozc1twoQJQw6y/CLD9SwxjKe17PHUF2HQMNfli4qKcGyTlZXVpUuX8vLy8Iv5hg0bmpqakpOTtbS0EEL79u3r6+sjCCIkJERZWfmbb77Zvn37ypUrlyxZQi6vczgcvBpjbm6ekZHh7e29YMGCEydOEASRm5vLZDK1tbVxPBNeGcdVw0LC7669vX3KlCmPHz/GxXPnzn3yyScIIVdX15ycHIHGkZGR1Nim7u7u0NBQS0vLhISEkydPenh41NfXEwQhfmSqqqo+/PBD/BO2tLQsLS2l3gIvhR86dIgqLCkpET5SZcKECW1tbQRBdHV1BQYGWllZRUVFbdiwYenSpbW1tdLWyePxdHR0rl+/PuQIy/O6vJz+tseT3xlPfRFmuD50uISEhKioqBAEUV9f39HRIdygpaUFf+ju7qbK2Ww2NZhp0GuHRPLv7tixY6GhoRKqffnypYCEzWbfunWroaFhWObV1dU9e/ZMWN7T05OSknLhwoVhaSMIoqurq6qqqr29fWx0pqamenp6SqJEnn0ovMsDioGBgQF+EBMAB6IjhATeB1ksFjWYadBrR5GgoKC2traysjJJGk+ZMkVAwmKx5s+fP9xEVoaGhtOnTxeW83i8wsJCvCVhWKirq5ubmw+6ojXqOmtqapKSkpKTk4erUN4YD7FNVVVVV69effTokb29vZaWFpPJ9PT0lLVRwyM7OxtnSxsUV1fX+/fvX7p0ydXVlcYfsULz5s2b/v5+LpdLDQCSQ5SUlBISEjZv3hwUFDR37lzZGlNcXLx//368IC6fOp89e3bgwIFTp06JjwlTCBT+OfTOnTsBAQF///vf582b9+233/r4+JSWlsraqGFja2tbVFTk5+e3bds2Ho83MDAwMDDA4XD+/PPP9evXX7lyJTU1NSoq6sWLF7K2dExJSkrKzs4mCOL777+/d++erM0ZAjU1tePHj7/33nuyNgS5uLiMum8aXZ2qqqoJCQk4tEvRUfjn0MjISCcnJyaTGRgYuHDhQsnfhn755RdqNIZAcYzR1dX19/f/6aefjI2Nv/rqK2qVsrKylZXVRx99dPz4cQm1yVXXRsLixYs9PDzwZ4HdTXLLoC/XgABitnUpHAr/HJqdnU1mEpM8pZhAbrSxT5UmjKidiJs3b54xYwZ+h5IkblwOu0YbFoul/Rfj4KUPGJco8HPo06dPb968yePxampq0tLSEELCEdePHj0qKioqLy93dHRctmwZFuLcaAwGIzY2dtq0aZqamtTikiVLEEIvXry4du1aY2Ojo6PjF198gS9saGjIyMjYvHlzVVXVhQsXpk+fvnr1aoE8ZqNLUlLS6tWrEULNzc3CtcK9o901mfQOAMYBCuxDNTQ0cMpbXV3d999/HyGEM0uSREVFXbhwIScn59mzZ5999llzc/PXX3+NEJo8ebKNjc2jR49MTU3xo6tAMTc3Nzk5+euvv540aZKXl5e/v/+RI0eysrICAwNxAvby8vJXr17t3r27sbFRek95XV1dERER2IcKM2jv6HUNITT2vQOAcYKMY6tEIGFc3vPnzxElLySXy0UIkZnEjI2NyZA9Ly+vRYsWkRcK5EajFsUkFhOfpW2EfXn48CFCSFtb+/PPP//8888//vhjLS0tLS0tXIvzgZ88eZJsL6p39LpGu3dIyvGhsmV8x/YqEPIcH6rAz6FDkpeXhzdRVFVVNTQ04J1zJAJzi2SRTCyGi2RiMXt7e+FcZL/99tvo2mxjY0OmJW9vb8f7qQdFTO9odA0NlmlNwt5RU2aMM3DXUlNTZW3I205jY6PcngI7nn3o+++/n52dfenSJWdnZyMjo5KSEmqtKEcjeWIx8VnaRs4777wj5lVaTO9G3jU0nN5FRUVFRUVJ0lJB8fX1lbUJABI4akV+GM8+dM+ePfn5+b/99tvEiRPT09MFakU5GjKxmOTna0uPgIAAUVViejfGXUtJSfnyyy9HUaH8kJqa6uvrK9X/lIAkrFixQtYmiGTcrro+ffo0IiJizZo1+BWVepgXEsqNRi2OJLHYmCGmd4reNQBQLBT7ORQHM5HL8XhOEKdWw+tLycnJK1euvH//fkFBAY/Hw8spkyZNInOjEQQxdepUanHx4sU4sRjOU/ngwYO0tDR8NoOoXGSjku4XZ1qsq6sbtLajo4PslPje0euatHsHAOMWGa1lDYEk66G1tbX4XFZzc/PLly83NzfjHT6mpqZ4cTkgIIDJZBobGx87diwtLU1VVfXzzz/HWbkEcqMJFAdNLDZklraR9CU9Pd3Z2RnfMTg4+MGDB9TaO3fuLFiwACFka2t75coVLBTVOxpdG0nvEKzLA9JHntflGYRczvWM1jwUh8Mh9//weDzqfsGOjg4lJSWyVqCIEHr27BmDwRj51j3pzamJ6t2YdQ0hxGAwYD4UkDZ4PvTcuXOyNmQQFPtdfkiojkNgwzWOzxdVRAgZGhpKz7BRQVTvxkHXAEBRGLdrSgAAAGPAOH8OBQA5ob+/v7i4eP78+WSuWDMzM+pJwmw2++rVq2Rx4cKF4k/3HF3u3r0rfMi7vb09eVocl8tNTU2tq6uzt7d3dXUdNDyura3t+PHjOKi5tLRUR0fnrXjjke10rCjG01z+eOqLMAjWlCSAzWbv378fn03C5XL37t2LEGKxWA8fPiTb8Pn8kpISa2trCwuL3NxcPp8/8vtKCJ/Px8clCVBSUoIb1NTUGBsbX758mcPhnD17dvr06fn5+cJ6vLy83nvvPfy5r69v48aNgzajgTyvKcG7PCDX/PLLL3KlhwbPnz9fu3btpk2b8Py1hobGP//5T1VV1Y6ODi8vL/JgegaDMXv2bF9f35UrV3766adjGVJ248YNDw+Pp0+f8v4iOzt7xowZs2fPxg22bt3q7Oy8aNEiTU3NVatWffbZZ7t37xZQcuLECZzVAcNkMmNiYv71r38JnHg6/gAfCsgvo5X8VLZJVMPCwpYtWyawsmdsbOzm5lZdXe3v709Q1v11dHQkT4M7Wmhqah4+fHjGjBmqf3HhwoXly5eTDZqamqj+UU1NDUdhkzx69KisrAyfWU2irKwcFhaGz3kex4APBcYCDoeTkpKyb9++uLi4hoYGUp6VlRUVFXXy5Enc5siRI1FRUfgNGudC5XK5sbGxWVlZCKHGxsajR48SBJGXl7dz586YmBhye8Ww9LS2th44cED4qHRpUFxcfPnyZeG93kwm89dffzUyMsrMzIyIiCDlSkpK1JytosatoaEhOjqaz+dXVFRERkaeOXNGYCfeixcvTp06FR4eTqawEYODgwP1pnw+H581TUq8vb2LiooSExMRQlwu9/z581u2bCFr+/r6du/e/cMPPwhrdnFx4XA4GRkZQ9qgwMh6MmFwxtMc4njqizBIgvnQe/fuWVtbp6ent7S0HDp0SFNT8/Tp02StpaWlvr4+/tzZ2amlpeXg4EAQRFlZmaOjo66ubm5ubllZWWJi4uTJkydOnLhx48aAgAB8Nt/cuXN7e3uHpYcgiBMnTiBKykQxjPy7W758uYuLi7DcxsaGIIgHDx5oamoyGIysrCwsj42NJU+fFzVuFy9exKeZHj58eP369fjpb//+/aTynJycoKCg0tLS1NRUTU3NTZs2DcvmgoKCadOmUSdkm5ubTU1NEUJbt251c3PLyMigtt+9e/etW7cIgti6dSs5H0oSHBxsa2s7LAOEkef5UDn9bY8nvzOe+iLMkD6Ux+OZmZmRSV0JgvDz81NVVa2srMRFHx8f0vcRBDF79mzs+wihXKhr1qxhMBgVFRW4uGfPHoTQsWPHhquHy+WePXuWevq8KEb+3ZmYmOC3dQGwDyUIIj09ncFgkOtLpA8VP25ikr2KzxIrCZs3byZT05K0tLTgdScHB4fm5mZSnpeXt2/fPvx5UB8aHR3NZDLxvmHayLMPhXd5QLpcu3atpqYGpyjFLFiwoLe3l9ynLx7q0oqGhgaTybS0tMTFHTt2MJnMgoICGnpWrVol6gCrUaS3t7e2tlb8+Wve3t67du0SWF9CQ42bcLLX+vp6/JnMEhsaGhoaGkpmiZXQZoIg0tPTqZOhmLi4OGdn54CAgMLCQjs7O3w7NpsdExOza9cuMQpZLFZ/f7/kBigcEB8KSJeqqiqEEPV0eCcnJ4RQdXW1JJeLWZ5WV1fX19d/9erVCPVIj/b29oGBgSFP0wsPD79//35WVpa/v//ChQuxcFjjRk32OqwsscLcunWrt7f3k08+oQrj4+NTUlLu3r3LZDIdHR1DQkJCQ0OzsrK2bt06d+7cixcv4mb//ve/e3p6MjIy8HEMWIi70NjYaGFhQc8kOQd8KCBd8BnihYWF2AUghAwNDVVUVCQMIBfj+3g8XnNzM87GMhI90mPq1Kna2trUp8tBYTAYiYmJdnZ2mZmZDx8+DA0NRSMYtxFmiU1LS/P09FRWVqYKT58+7e7ujg+XDQgI+PPPP+Pi4ths9qtXr65fv0426+joePPmzbfffmtpaUn60NevXyOEDAwMaBijEMC7PCBd8HEm1DfuioqKvr4+BwcHXGQymcIHsmIEcqEKUFRUhJP4jVCPVLG0tGxpaREQEgTx5s0bqkRLSyszM5PFYpGPmUOOmyhGkiWWIIi0tDThF/ny8nKcmxHj6enZ29v78uXLS5cuNVL4+uuvdXV1GxsbqafINDU1MRgMcr/T+AN8KCBdZs2atW7duoKCAnLC7ubNmyYmJmTYoJubW2tra3x8fFdXV3x8fFtbW21tLX54IZOfPnnypKurCyHU399Pepm0tDRnZ2fSh0qup6SkZN68eXl5eWPQfScnJ+Eg86ampufPnwt4fFNT06SkJDLGSPy4iUr2ihDy9fXFWWIPHjxYXV2dmpoaHBy8du1a3DI4OHjRokWi4roKCwu5XC71xGyMl5fX+fPnyfCpoqIiGxsbExMTSUagrq7Ozc1twoQJkjRWSGS6oiWS8bSWPZ76IgySILapu7s7NDTU0tIyISHh5MmTHh4e9fX1ZC2Hw8ErJ+bm5jgsccGCBSdOnCCEkp+GhIQoKyt/880327dvX7ly5ZIlS6hr65LrwUvhuEo8I//u2tvbp0yZ8vjxY1Jy7tw5PNvo6uqak5Mj0D4yMpKMbRI1bkMmexWVJZYgCLy2fujQoUGt3bJly5o1a4TlXV1dgYGBVlZWUVFRGzZsWLp0Kc7qLcD27dsF1uV5PJ6Ojs7169clGSsxyPO6vJz+tseT3xlPfRFGEh+KYbPZt27damhoGLS2paUFf+ju7ha4inSUISEhKioqBEHU19d3dHTQ1kMQhKjLBRiV7+7YsWPCoUJiePnyJbUoftzEUFdX9+zZMwFhT09PSkrKhQsXBr2ktra2tbVVlMKurq6qqqr29nbJbUhNTfX09JS8vSjk2YfCuzwwRrBYrPnz54s64RYHjSOEBF76WCyWcBCSgYEBfvKirUfU5dIgKCiora2trKxMwvZTpkyhFsWPmxgMDQ2F02zzeLzCwkK8Q0GYDz74QEdHR5RCdXV1c3NzybNJ1dTUJCUlJScnS9heQQEfCigMb9686e/vJw+VUhSUlJQSEhJ+/vnnu3fvytoWVFxcvH//frzCLlWePXt24MCBU6dODRnapeiADwUUg6SkpOzsbIIgvv/++3v37snanOGhpqZ2/Pjx9957T9aGIBcXl7FxaqqqqgkJCThCa3wD8aGAYrB48WIPDw/8WeBYF0VhVA6wUhTE784aT4APBRQD4VOhAEAegHd5AAAA+oAPBQAAoA/4UAAAAPrI9XzoihUrZG3CKNDY2IjGS18G5fDhw+fOnZO1FVJh3H93ikJRURE1DaBcwSAoZ7nID4WFhT/++KOsrQBkz++//25lZSUPUUGAbHFwcAgLC5O1FYMgpz4UADAMBiMlJeXLL7+UtSEAMDgwHwoAAEAf8KEAAAD0AR8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf8KEAAAD0AR8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf8KEAAAD0AR8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf8KEAAAD0AR8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf8KEAAAD0AR8KAABAH/ChAAAA9AEfCgAAQB/woQAAAPQBHwoAAEAf8KEAAAD0AR8KAABAHwZBELK2AQD+g7+/f1lZGVlsaGjQ0dFRV1fHRRUVlUuXLk2bNk1G1gGAIExZGwAA/4WpqemZM2eoko6ODvKzhYUFOFBAroB3eUC+WLNmDYPBGLRKRUXlq6++GltzAGAI4F0ekDv+9re/lZaWCv9lMhiM2traGTNmyMIoABgceA4F5A5/f39lZWUBoZKSkr29PThQQN4AHwrIHStXruTz+QJCJSUlf39/mdgDAGIAHwrIHVOmTHF2dhZ4FCUIwtvbW1YmAYAowIcC8sjatWup86HKysouLi5TpkyRoUkAMCjgQwF5ZPny5UzmfwLvCIJYs2aNDO0BAFGADwXkES0tLXd3d9KNMpnMpUuXytYkABgU8KGAnLJmzZqBgQGEEJPJ9PT01NLSkrVFADAI4EMBOWXx4sV4i+fAwMDq1atlbQ4ADA74UEBOmTBhwvLlyxFCGhoaCxculLU5ADA4Cr9fvrGx8fbt27K2ApAK+vr6CKG5c+deuHBB1rYAUsHAwMDBwUHWVowMQsFJSUmR9RACAEATHx8fWbuQkaLwz6EYQmF3/aempvr6+iqu/VSk0ZfIyMgdO3YIb/2UCStWrEAInTt3TtaGjBPweCo6MB8KyDXff/+9nDhQABgU8KGAXEONtAcAOQR8KAAAAH3AhwIAANAHfCgAAAB9wIcCAADQBybsARlTW1sbERERHh6OI+rHE/39/cXFxVwut62tDSFkZmZma2tL1rLZ7KtXr5LFhQsXTp48eSzNu3v37uPHjwWE9vb2H3zwAUKIy+WmpqbW1dXZ29u7urqqqKgIa2hrazt+/PjOnTtxsbS0VEdHx9DQUNqWyxcyjk8dMTjGXtZW0EfR7adCry843PLKlSvSMGl08fHxkTwmnM1m79+/v7Ozk8vl7t27FyHEYrEePnxINuDz+SUlJdbW1hYWFrm5uXw+XzpWDw6fzzcyMhJ2CCUlJQRB1NTUGBsbX758mcPhnD17dvr06fn5+cJKvLy83nvvPbLY19e3cePGQVsOyrDGU26Bd3lAxvj4+Lx69crd3V2qd/nll1+kql+A58+fr127dtOmTZMmTdLQ0PjnP/+pqqra0dHh5eXF4XBwGwaDMXv2bF9f35UrV3766aeiTjOVEjdu3PDw8Hj69CnvL7Kzs2fMmDF79myE0NatW52dnRctWqSpqblq1arPPvts9+7dAhpOnDhRWVlJlTCZzJiYmH/9618PHjwYu57IGvChgOx59913pao/JyeHfN8cG8LCwpYtW8ZisUiJsbGxm5tbdXW1v78/QdnKpaOjo62tPZa2YTQ1NQ8fPjxjxgzVv7hw4QJO8oIQampqovpHNTU1Ho9HvfzRo0dlZWWLFy8WUKusrBwWFhYcHCxt++UH8KGAjOHz+bm5uXfv3sXFhoaG6OhoPp9fUVERGRl55swZ8ny6xsbGo0ePEgSRl5e3c+fOmJiY7u5uXJWVlRUVFXXy5EmEEIfDOXLkSFRUFJ5byM3N9fLy4nK5sbGxWVlZCKHW1tYDBw68fPlSSj0qLi6+fPmyj48PVchkMn/99VcjI6PMzMyIiAhSrqSkpKT0n58hh8NJSUnZt29fXFxcQ0MDVYOYkUEIvXjx4tSpU+Hh4b///rskRjo4OFDvy+fzMzIyyBOrvL29i4qKEhMTEUJcLvf8+fNbtmwhG/f19e3evfuHH34YVLOLiwuHw8nIyJDEjPGArCcTRoqizycquv1UaPSlsrIS+5qff/6ZIIiLFy/q6uoihA4fPrx+/Xr8mLN//36CIBITEydPnjxx4sSNGzcGBAQsWrQIITR37tze3l6sytLSUl9fH3/u7OzU0tJycHAgCKKsrMzR0VFXVzc3N7esrIwgiBMnTiCEfvrpp+F2UML5u+XLl7u4uAgIbWxsCIJ48OCBpqYmg8HIysrC8tjY2JiYGPz53r171tbW6enpLS0thw4d0tTUPH36NK4SMzIEQeTk5AQFBZWWlqampmpqam7atGm4XSsoKJg2bRo5J9vc3GxqaooQ2rp1q5ubW0ZGBrXx7t27b926RRDE1q1bqfOhJMHBwba2tkPedHzMhyr8r1fRfZCi20+FXl/Ky8tJH0oQxI4dOxBCN27cwMXZs2fPmTMHf16zZg2DwaioqMDFPXv2IISOHTuGiz4+PqQPxRdiH0oQhJeXl4GBAVnF5XLPnj3b2dk5XFMl/M2bmJjgF3Yq2IcSBJGens5gMMj1JdKH8ng8MzOzvXv3kpf4+fmpqqpWVlbioqiR4XA4M2fO5HK5WB4YGIgQKiwsHFbXNm/eHBoaSpW0tLTgRScHB4fm5mZSnpeXt2/fPvxZlA+Njo5mMpk8Hk/8TceHD4V3eUDGqKmpUYsTJ05ECJmZmeGihYVFfX09/qyhocFkMi0tLXFxx44dTCazoKBAkrtQV2w0NDRWrVo1adKkkRsvTG9vb21trZ6enqgG3t7eu3btElhfQghdu3atpqbG3t6elCxYsKC3tzcuLg4XRY1McnJyd3f3d999FxoaGhoa2tTUZGRkJBy0JAaCINLT08nJUExcXJyzs3NAQEBhYaGdnR2+F5vNjomJ2bVrl3iFLBarv79/WDYoLhAfCsg1ysrKhIhkeurq6vr6+q9evZJEz5itere3tw8MDGB/J4rw8PD79+9nZWX5+/uTKfqrqqoQQpqammQzJycnhFB1dfWgSsiRqays1NPTO3LkCG2bb9261dvb+8knn5CS+Pj4lJSUu3fvMplMR0fHkJCQ0NDQrKysrVu3zp079+LFi7jZv//9756enoyMDG1t7c8//5y8HPeisbHRwsKCtlWKAvhQQFHh8XjNzc0LYx1hZAAAIABJREFUFiyQpPGY+dCpU6dqa2tTHzAHNSYxMdHOzi4zM/Phw4ehoaEIoXfeeQchVFhYiF0nQsjQ0FBFRWXIwHtlZeWHDx/29fUNGgYvCWlpaZ6entQcg6dPnybPVQ0ICPjzzz/j4uLYbParV6+uX79ONuvo6Hjz5s23335raWlJ9aGvX79GCBkYGNCzR7GAd3lAUSkqKurp6SHDa5hMZk9Pz6AtGQwGPiJ0bLC0tGxpaaFKCIJ48+YNVaKlpZWZmcliscjHTDs7O4QQdWqioqKir69vyKMyZs2a1dXVdezYMVLCZrOPHj0qobUEQaSlpQm8yJeXl7PZbLLo6enZ29v78uXLS5cuNVL4+uuvdXV1Gxsbf/vtN+rlTU1NDAYD73ca94APBWQMDjxsbW3Fxc7OToRQb28vLra2tuKlCVzs7+8nnU5aWpqzszPpQ93c3FpbW+Pj47u6uuLj49va2mpra/EDkZ6eXnNzc21t7ZMnT7q6ukpKSubNm5eXlyelHjk5OQkEmTc1NT1//lzAxZuamiYlJZEBRrNmzVq3bl1BQQE5/3vz5k0TExMy1lLUyPj6+hoYGGzbtu3gwYPV1dWpqanBwcFr167FzYKDgxctWiQmkKuwsJDL5X7xxRdUoZeX1/nz58nYqaKiIhsbGxMTEwlHoK6uzs3NbcKECRK2V2xkuJ41Kij6urai20+FRl+KiopwbJOVldWlS5fy8vJmzpyJENqwYUNTU1NycjI+Vn7fvn19fX0hISHKysrffPPN9u3bV65cuWTJEuraOofDwQsy5ubmONRxwYIFJ06cIAgiNzeXyWRqa2vjeCa8Mo6rhoWE68jt7e1Tpkx5/PgxLp47dw5PNbq6uubk5Ag0joyMJGOburu7Q0NDLS0tExISTp486eHhUV9fj6vEj0xVVdWHH36If9GWlpalpaWkfry2fujQIVHWbtmyZc2aNQLCrq6uwMBAKyurqKioDRs2LF26tLa2Vvja7du3C6/L83g8HR2d69evDzlQ42NdXuF/vYrugxTdfirS7ktISIiKigpBEPX19R0dHYO2aWlpwR+6u7upcjabTXW4oi4Xj+S/+WPHjgmEConh5cuX1CKbzb5161ZDQ8Nwzaurq3v27JmAsKenJyUl5cKFC6Kuqq2tbW1tHbSqq6urqqqqvb19WGakpqZ6enpK0nJ8+FB4lwcUDwMDA/wUJgwOREcICbxIslgsajCTqMtHi6CgoLa2trKyMkkaT5kyhVpksVjz58+nkcXK0NBw+vTpAkIej1dYWIi3JAzKBx98oKOjM2iVurq6ubn5sLJJ1dTUJCUlJScnS36JovM2rstzudzc3NybN2+K2qwmbxQUFDx//pwsqqio6OrqTps2TfL5qfHBmzdv+vv7uVwuNQBIPlFSUkpISNi8eXNQUNDcuXNlaElxcfH+/fvH5liqZ8+eHThw4NSpU+JDu8YZb+Nz6LVr17799ttff/1V1oZIio2NzZMnT/z8/L766qvOzs5Xr15lZWX5+vp+8MEHu3fv7uvrk7WBY0FSUlJ2djZBEN9///29e/dkbc7QqKmpHT9+/L333pOtGS4uLmPm0VRVVRMSEnCQ1tvD2/gc6uPjc+7cuT///FPWhkiKtrb2V199tWfPHiMjo5CQECwkCCI9PT0wMLC4uDg9PV1Ku27kh8WLF3t4eODPAlub5Bnhl+txjJjdWeOYt9GHIqFkOfKP8Pwdg8Hw8fEZGBhYuXKlk5NTcXGxqqqqTGwbG6h55ABAfniLfGh7e3taWlpdXd3f/vY3giCoG1devHhx7dq1xsZGR0dHaqBcQ0NDRkbG5s2bq6qqLly4MH369NWrV2PnSxBEfn7+vXv3lJWVzczMXF1dxauSEr6+vr/88suVK1eKi4s//vhjhe4LACgiivQsNhIePny4cOFCa2vr8PDw1tbWzMxM0ofm5ubu27fP1tbW3Nzcy8sLb7xDCGVlZc2ZM2fLli0//fTTjz/+WFRU5O/vTy5D7d69+/Hjx1u2bHFwcCBTfItSJVVwUOQff/wxDvoCAIqHTCOrRgEJYxLt7Oy2b9+OP/P5/JkzZ3744YfEUHnDRGUb4/P57777bm5uLpZHREQMqWqE9nd0dCCEzM3Nhatwslt3d3dF6YviMj7iGeWH8TGeb8W7fE5Ozp07d/7f//t/uMhgMObOnYvXdsm8YbiKzBuGH+6Es43hfcEMBsPU1NTX1/f48eOenp7btm0bUpX04HK5CCENDQ056cuKFStGv5PyQVFRERrXHRxjioqKpP3rGAPeCh96//59hJCVlRUpIV/kh5U3jJqHLSYmZsWKFV5eXl988UVSUtJ777038hRk9CgtLUUI2dnZjYO+AIDC8Vb4UJys4c6dO9RkXNiN0s4b9tFHH5WWlu7YsSM2Nnb27NkPHjwYeQoyGhAE8ccffygrK7u6uv7yyy/y0Bd81vG4BD+BjuMOjjHj44n+rVhTsra2Rgjl5OQIV9HLG8bj8c6cOTNp0qQjR45cvny5qakpIyNjhCnI6LF169aSkpKDBw/OmjVL0fsCAAqJjOdjR4wk6xh9fX1mZmaampr5+fkEQTx//lxPT09TU/P+/ftcLtfAwEBVVfV//ud/qqqqUlJSVqxYQSan+Mc//oEQIjPWeHh4TJo0ic/nd3d3z58/Hx/gxefzdXV1z58/39PTI0bVSOwnCAJPR8yYMYOUPH36dNOmTQwGY/PmzVgi3gD56YviMj7WQOSH8TGeCv8XL+Hv9unTp3jb8syZM/38/JYsWfLxxx///PPP3d3dovKGick2xuFw9PT0Vq5cee7cuUOHDpHniIlJQTYS+y9evPjpp59itQ4ODq6urh4eHp6env/4xz/u3r1LbSn/fVFoxsdvXn4YH+PJIEQcVqMopKam+vr6StiLV69eqaura2hoCOetePbsGYPBkHxnXn9/P5/Pb25uFr5kWKqGZb+EjKe+yBUwHzq6jI/xfCvWlEjIxGjCiX8MDQ2HpQonwhnUuQxX1agznvoCAHLO2+VDAWAs6e/vLy4u5nK5bW1tCCEzMzNbW1uyls1mX716lSwuXLhwWJk6RwU2mx0XF1dfX+/h4fHFF19Qj6Xj8Xh4B/DHH39sZ2cnSVVpaamOjs7b9n/3rViXB4Cxp6Oj4+DBg9bW1o6OjjU1NX5+fp999tmjR4/IBiwWy9TU9MCBAxEREXp6etra2mNsYXt7+9/+9rf79+9XVFS4u7vPnz+frGppaTE3N6+vrw8ICMjMzPT09CQP9RNTZWNj869//Yt6rN5bgWynY0eOoq9jKLr9VMagL6dPn5ahHsnXQBobG5csWcJms0kJzqplbm4uEN4QERERHh5Ow5iR8/PPP7e1teHP4eHhCKGbN28SBDEwMPDxxx8vXboUV/X39xsaGn7//ffiq0iJu7t7eXm5JAaMjzUleA4FFIacnJydO3fKjx4xhIWFLVu2jJqvz9jY2M3Nrbq62t/fn6Asu+no6Iz9EyhCqLe3d8GCBWS+ZH9/f/RXisWCgoKbN28GBQXhKmVl5XXr1sXExHR1dYmpIiVhYWHkWaRvA+BDARnA4XBSUlL27dsXFxfX0NCAhVlZWVFRUSdPnsQNjhw5EhUVhZ9tEUK5ubleXl5cLjc2NjYrKwsh1NjYePToUYIg8vLydu7cGRMT093dTUNPa2vrgQMHxJwePFyKi4svX76MzyslYTKZv/76q5GRUWZmZkREBCkXSGU76MhgGhoaoqOj+Xx+RUVFZGTkmTNnyLOLEUIvXrw4depUeHj477//LomRqqqq1PPfy8vLFy9ejHej4Cw2+DPGysqqq6vrypUrYqpIiYuLC4fDwS3fCmT9IDxSFP1dWNHtpyJhX+7du2dtbZ2ent7S0nLo0CFNTU3yzdrS0lJfXx9/7uzs1NLScnBwwMWysjJHR0ddXd3c3NyysrLExMTJkydPnDhx48aNAQEB+My1uXPn9vb2DksPQRAnTpxACOFjk8Uj4bvn8uXLXVxcBIQ2NjYEQTx48EBTU5PBYGRlZWF5bGwseTaymJG5ePEijio5fPjw+vXrFy9ejBDav38/rs3JyQkKCiotLU1NTdXU1Ny0adOQRpLw+fyUlBQLCwvyJFF3d3eEED68HpOXl4cQioiIEFNF1RkcHGxrazvkrcfHu7zC/3oV3Qcpuv1UJOkLj8czMzMjI/kJgvDz81NVVa2srCQIwsfHh/R9BEHMnj2b9H0EQXh5eRkYGJDFNWvWMBiMiooKXNyzZw9C6NixY8PVw+Vyz549O+QuLELi37yJiQl+YaeCfSjx1+n2LBbr4cOHBMWHih8ZQnT2QnqJCjFcLjcoKEhdXR0hpK2tXVxcjDXjlDQkxcXFCKHQ0FAxVVRhdHQ0k8mkutpBGR8+FN7lgTHl2rVrNTU11IxnCxYs6O3tjYuLk+Ry6ukDGhoaTCbT0tISF3fs2MFkMiVcFBbQs2rVqtE6kKq3t7e2tlbMyULe3t67du3q6Ojw8vLicDikfMiREc5eWF9fjyiJCkNDQ0NDQ8lEhZJYq6Ghcfz4cQ6Hc/jwYQ6H8/XXX6PBoqfxyvvUqVPFVFGFLBarv79fQhsUHYgPBcaUqqoq9N+/UicnJ4RQdXW1JJdTfZ8A6urq+vr6r169GqGeEdLe3j4wMCD+KM3w8PD79+9nZWX5+/svXLgQC4c7MmT2wpEnKlRSUtqyZcvt27fT09N5PJ6BgcHAwACPxyPP/sO+3sLCoqamRlQVVSHuRWNjo4B8XALPocCYgheCCwsLSYmhoaGKioqE4eVifB+Px2tubsZpAUaiZ4RMnTpVW1ub+oA56N0TExPNzMwyMzOjo6OxkPbIkIkKR2i5q6vrO++8o6amZm5ujhCirmi1trYihCwsLMRUUVW9fv0aIURNNTmOAR8KjCl2dnYIIeobd0VFRV9fn4ODA0KIyWT29PSIupbBYJDh3MIUFRX19PTgxZaR6Bk5lpaWLS0tVAlBEG/evKFKtLS0MjMzWSwW+ZgpfmTEMFqJCisqKpYsWYIQCgwMVFNTu3XrFllVUlLy0Ucfffjhh2KqqKqampoYDAZ13X8cAz4UGFNmzZq1bt26goICPJeHELp586aJiQmOKHRzc2ttbY2Pj+/q6oqPj29ra6utrcUPNQghPT295ubm2traJ0+e4IDE/v5+0gelpaU5OztjHzosPSUlJfPmzcPry6OCk5PTgwcPqJKmpqbnz58LuHVTU9OkpCQysEn8yKC/Uon39vbiYmtrK1608fX1NTAw2LZt28GDB6urq1NTU4ODg9euXYubBQcHL1q0SDhyq7u7OzIysqKiAhfb2trKysoOHz6MEJo6deo333xz8OBBPFfQ09OTlZUVFxenpKQkpoqqvK6uzs3NbcKECSMYRcVBpitao4Cir2sruv1UJOxLd3d3aGiopaVlQkLCyZMnPTw86uvrcRWHw8GLKubm5hkZGd7e3gsWLDhx4gSuzc3NZTKZ2traOA4pJCREWVn5m2++2b59+8qVK5csWUKurQ9LD14oJ2vFIOE6cnt7+5QpUx4/foyL586d++STTxBCrq6uOTk5Ao0jIyPJ2CYxIyMme2FfX5+YRIVGRkYIoUOHDgncl8vl2tra4rPF9uzZEx39/7V3r2FNXOsCgNeQAFaQoCiFHlIqSAERVKxVBKs9RbwAhVowioqtFuwG7WMtbmRrq+VB6S6eCm5UFFGqoga8xKZad20BKRYbDygWAfsoclOQm2CCEAiZ82PtzpmGEMJwycXv/ZVZa7L4ZikfM7PWrEkSi8VUrVwuj46O9vPz27dvX0xMzPHjx9WpwqRSqYWFxdWrV/vtKP0Yl9f5315dz0G6Hj/dgI6ltbX1+vXr1JxEuoaGBvyho6Oj97eoRLl+/XpDQ0OSJKurq9va2hi3Q5Kk0q/3pv7vfEpKisJ0HxWePHmiEFtfPaNaZWVlVVWVQmFnZyefz7948aLSrzx9+rS9vb2vBmUyWX19/UCrMjMzAwIC1AlYP3IoXMsDzeBwOHPmzLGxseldRS1R2PtikMPh9J6ExOVy8UkZ43aUfn0wwsLC8NWxOjtbWloqxNZXz6hma2vbewFDqVRaUFCAn0HozdzcHE8OVYrFYr388ssDqiovL8/IyDh9+rTaUes8yKFAVz1//lwmk+FXQ2sbAwOD9PT0gwcP3rx5U7ORiESi3bt34yVih1tVVVV8fPzRo0dVT+3SM5BDgU7KyMj48ccfSZKMjo6+ffu2psNRwtjY+PDhw32dx40Yb2/vEctoRkZG6enp1DomLwiYYw90kp+fn6+vL/5MzffWQuq/kUUPqHg6S49BDgU6ib6sHAAaBNfyAADAHORQAABgDnIoAAAwBzkUAACY05MxpeFbhmdk6Hr8dPp0LErp/QGOJIU3pugigqS9HksX1dbW/vrrr5qOAgwXHo+3adOmftcuAjqKy+Xq+j+uzudQoN8IguDz+cuWLdN0IAAoB/dDAQCAOcihAADAHORQAABgDnIoAAAwBzkUAACYgxwKAADMQQ4FAADmIIcCAABzkEMBAIA5yKEAAMAc5FAAAGAOcigAADAHORQAAJiDHAoAAMxBDgUAAOYghwIAAHOQQwEAgDnIoQAAwBzkUAAAYA5yKAAAMAc5FAAAmIMcCgAAzEEOBQAA5iCHAgAAc5BDAQCAOcihAADAHORQAABgDnIoAAAwBzkUAACYgxwKAADMQQ4FAADmIIcCAABzbE0HAMBfVFVV9fT00EuePHlSUVFBbb7yyiujRo0a8bgAUI4gSVLTMQDw/3x9fS9fvtxXraGh4ZMnT8aOHTuSIQGgAlzLA+2yfPnyvqoMDAx8fHwggQKtAjkUaJelS5f2dalOkuTq1atHOB4AVIMcCrSLiYmJn5+foaFh7ypjY2M/P7+RDwkAFSCHAq2zcuVKmUymUGhoaLh06VITExONhARAXyCHAq2zZMkSU1NThcLu7u6VK1dqJB4AVIAcCrSOkZFRcHCwkZERvdDMzMzb21tTIQHQF8ihQBuFhIR0dXVRm4aGhitWrFDIqgBoA5gfCrSRXC63srJqbGykSq5du/bWW29pMCQAlILzUKCNDAwMVq5cSY3OT5gwwcvLS7MhAaAU5FCgpVasWNHd3Y0QMjIy+uCDDwwM4P8q0EZwLQ+0FEmSr732WnV1NULof//3f2fMmKHpiABQAv62Ay1FEERoaChCyM7ODhIo0Fq6sW7TN998U1BQoOkowEh79uwZQmjUqFHBwcGajgVoQFZWlqZD6J9unIcWFBTcuHFD01FowNmzZ2trazUdxdBgcCxmZmbm5uZcLneYQhpCtbW1Z8+e1XQU+kOH+lM37ofi0xCd+KM0tAiC4PP5y5Yt03QgQ4DZsfz00086MbU+MzOTx+PpxG+TTtCh/tSN81DwwtKJBApeZJBDAQCAOcihAADAHORQAABgDnIoAAAwpxvzQ8GLqaKiIi4uLjY21sbGRtOxDDGZTCYSiSQSSXNzM0LIyclp+vTpVG1ra+sPP/xAbS5atGjk3yLV2tqalpZWXV3t6+v7zjvvsFgsqkoqlV67du327dteXl6zZs2iV/VVW1RUZGFhYWtrO8JHMQLgPBRor6KiomPHjv3++++aDmSItbW1JSQkuLq6enp6lpeXh4SEvP3223/88Qe1A4fDcXR0jI+Pj4uLs7a2Njc3H+EIW1pa3njjjeLi4pKSksWLF8+ZM4eqamhocHZ2rq6uXrt2rUAgCAgIoL/Luq9aNze3r776Ki8vb4QPZCSQuiAoKCgoKEjTUWgAQojP52s6iqHB7FgaGxuHIxi6b7/9dvCN8Pl8NX+bamtr/f39W1tbqRK8Lqqzs/OzZ8/oe+Jz8MHHxsDBgwebm5vx59jYWIRQfn4+SZI9PT1eXl7vvvsurpLJZLa2ttHR0XhTda1MJlu8ePGdO3fUCUD9/tQ4OA8FWm38+PHD2n52dnZMTMyw/ggFmzdvfu+99zgcDlUyadIkHx+fsrKy0NBQkjar3MLCYuTPQBFCXV1dCxcuHDduHN7EqxaYmZkhhPLy8vLz88PCwnAVi8Vas2ZNcnJye3t7v7UsFmvz5s3h4eEjf0TDCnIo0F5yuTwnJ+fmzZt4s6amJikpSS6Xl5SU7Nq168SJE3K5nNq5trb2wIEDJEnm5ubGxMQkJyd3dHQghIRCYWJi4pEjRxBCYrF4//79iYmJ+DQnJycnMDBQIpEcOnRIKBQihJqamuLj4588eTJMRyQSiS5duhQUFEQvZLPZZ86csbe3FwgEcXFxVLmBgYHCin9isZjP5+/cuTMtLa2mpoYqV90zjx8/Pnr0aGxs7M8//6xOkEZGRhMnTqQ279y54+fn5+rqihA6f/48Qgh/xqZMmdLe3n758uV+axFC3t7eYrEY76Y/NH0irBa4ltcDAz2Wu3fv4lxz8OBBkiS/++67CRMmIIT27t374Ycf4pck7969G+988uTJsWPHvvTSSx9//PHatWuXLFmCEJo5c2ZXVxdJki4uLjY2NnjPZ8+emZmZeXh4kCR569YtT0/PCRMm5OTk3Lp1iyTJ1NRUhNC+ffsGenRqXnu+//773t7eCoVubm4kSf7++++mpqYEQQiFQlx+6NCh5ORkarfbt2+7urqeO3euoaFhz549pqam+C6E6p7Jzs4OCwsrKirKzMw0NTWNiIhQ/6Dkcjmfz588eXJNTQ0uWbx4MUJIKpVS++Tm5iKE4uLi+q3FwsPDp0+f3u+P1qFred2IEnKoHmBwLHfu3KFyKEmSW7duRQj99NNPeNPd3X3GjBnUzqtWrSIIoqSkBG9+/vnnCKGUlBSSJIOCgqgcir+IcyhJkoGBgVwul6qSSCSnTp1SuC+pDjV/5x0cHPAFOx3OoSRJnjt3jiAIDodz79498q85VCqVOjk5ffHFF9S3QkJCjIyM7t69S/bdM2Kx2M7OTiKR4PJ169YhhAoKCtQ5IolEEhYWNnr0aISQubm5SCTCLbNYLPpuIpEIIRQZGdlvLZaUlMRms+l5VikdyqFwLQ+0l7GxMX3zpZdeQgg5OTnhzcmTJ+MVmjETExM2m+3i4oI3t27dymaz1RkIJgiC3siKFSvGjBkz+OB76+rqqqiosLa27muHpUuXbtu2ra2tLTAwUCwW06uuXLlSXl4+e/ZsqmThwoVdXV1paWmo7545ffp0R0fH3//+98jIyMjIyLq6Ont7+/v376sTrYmJyeHDh8Vi8d69e8Vi8d/+9jeEUO93VuNhdysrq35rMQ6HI5PJ1IxBJ8D8UKCr8ClPX7WjR4+2sbGhv9WuL/QcOqxaWlp6enpwvutLbGxscXGxUCgMDQ1dtGgRVV5aWor+mqTmzp2LECorK+vdCNUzd+/etba23r9/P+OYDQwMNm3a9Ouvv547d04qlXK53J6eHqlUSv15w7l+8uTJCCHVtRg+hNraWnqhToPzUKCfpFJpfX29nZ1dv3uOWA61srIyNzdXOMHsHczJkyednJwEAkFSUhJVjkfJ6SuR29raGhoaqp57z2Kx7t27h19LNRgLFiwYN26csbGxs7MzQog+nNXU1IT+zJKqa7GnT58ihHRiTVg1QQ4F+unGjRudnZ14gIXNZnd2dirdjSAI+hTx4ebi4tLQ0EAvIUny+fPn9BIzMzOBQMDhcOjnmLNmzUII0W9NlJSUdHd3e3h4qPhxU6dObW9vT0lJoUpaW1sPHDgw0LBLSkr8/f0RQuvWrTM2Nr5+/TpVVVhYOG3atNdff73fWqyuro4gCPq4v66DHAq0l1QqRX+ey6A/Xw3S1dWFN5uamvDQBLW/TCaj8s7Zs2fnzZuHc6iPj09TU9OxY8fa29uPHTvW3NxcUVGBT4isra3r6+srKioePHjQ3t5eWFj45ptv4tHk4TB37lyFx67q6uoePXqkkOIdHR0zMjLoE5umTp26Zs2avLw86hZwfn6+g4MDnm7ZV8/weDwulxsVFZWQkFBWVpaZmRkeHr569Wqq2fDw8CVLlijM5ero6Ni1a1dJSQnebG5uvnXr1t69exFCVlZWGzZsSEhIwN3e2dkpFArT0tJwqKprscrKSh8fn1GjRg2qH7WKBsez1Afj8npgoMdy48YNPLdpypQp33//fW5uLr4w/+ijj+rq6k6fPo1nfe/cubO7u5skyfXr17NYrA0bNmzZsmX58uX+/v7U8LpYLMajMc7OzufPn1+6dOnChQtTU1NJkszJyWGz2ebm5ng+Ex4Zx1UDouY4cktLi6Wl5f379/FmVlbWW2+9hRBasGBBdna2ws67du2iz23q6OiIjIx0cXFJT08/cuSIr69vdXU1SZKqe6a0tJQ6DXRxcSkqKqL/CHt7e4TQnj176IUSiWT69OkEQcycOfPzzz9PSkoSi8VUrVwuj46O9vPz27dvX0xMzPHjx+nfVV0rlUotLCyuXr3ab0fp0Li8bkQJOVQPDPexrF+/3tDQkCTJ6urqtra23js0NDTgDx0dHfTy1tZW+mQmpd/tl/q/8ykpKfS5Pqo9efJEoaS1tfX69evUhE01VVZWVlVV9S7v7Ozk8/kXL17sXfX06dP29va+GpTJZPX19QOtzczMDAgIUCdgHcqhcC0P9A2Xy8UnYgrwRHSEkMKFJIfDoU9mUvrdIRQWFoavjtXZ2dLSUqGEw+HMmTNnoAtZ2dravvrqq73LpVJpQUEBfiRBgbm5OZ4cqhSLxXr55ZcHVFteXp6RkXH69Gm1o9YNkEOBnnj+/LlMJpNIJJoOpB8GBgbp6ekHDx6knmHVIJFItHv3bjZ72Oc4VlVVxcfHHz16VPXULl2kt/NDJRJJTk5Ofn7+P//5T03H8hf19fXl5eXz588fktby8vIePXpEbRoaGk6YMOGVV15xcHAYkvZ1RUZGxo8//kiSZHR0dFhY2LRp0zQdkSrGxsaHDx+mPyANXgROAAAgAElEQVSgKSP2yj8jI6P09PQRm0Y2kvT2PPTKlSuffPLJmTNnNB3I/2tsbIyKirKzs7tw4cJQtenm5vbgwYOQkJAPPvjg2bNnjY2NQqGQx+NNnDhx+/btg58YqCv8/PzKy8ufPn26a9cuR0dHTYejFqUX1/rK2tpaLxMo0uMcGhQU9Oabb47ARYr6KisrQ0ND8WJCQ8Xc3PyDDz5ACNnb269fv/5vf/vbnj17CgsLExIS/vWvf/n6+qqe0a03OByO+Z/072oRaDMtSjFDrvfSYZqFlxEa8mZ7j4EQBBEUFNTT07N8+fK5c+eKRCK8yi8AYMjpWw5taWk5e/ZsZWXlG2+8QZIk/fLh8ePHV65cqa2t9fT0fOedd3BhTU3N+fPnN27cWFpaevHixVdffXXlypVU5iVJEr8ZhsViOTk5LViwQEVT2obH4x0/fvzy5csikcjLywsXDrQT+uqBvpoC4EWjRadpg3fv3r1Fixa5urrGxsY2NTUJBAIqh+bk5OzcuXP69OnOzs6BgYGRkZEIIaFQOGPGjE2bNu3bt++bb765ceNGaGgofQxq+/bt9+/f37Rpk4eHx/bt21U0pZ3wxPJffvkFbzLoBKU90FdTALyINDs9VU1qzrGfNWvWli1b8Ge5XG5nZ/f666+TKldRVLEkpVwuHz9+fE5ODt7E68gOZkFGkiTxw4uffPKJmvsjNealt7W1IYScnZ17V+EFwxcvXqw68r46QWkPqG5qkMeiu3RoTrhO0KH+1J9r+ezs7N9++23Hjh14Ez+pdvv2bURbRRFXUasozp49u/fCi//+97+pFhwdHXk83uHDhwMCAqKiolQ3NYLHqi48WdLExAQx6gSlPaC6KdXx8Hg8Ho839MepNfR16BmooD85tLi4GCE0ZcoUqoT6D63+KooKS1ImJycHBwcHBga+8847GRkZL7/88uAXZBxJRUVF6M8lf5h1Qu8eGFBTCvA9gYF+SycUFBRQr2kCg4f7U9NRqEV/ciheuua3336jL02I0yi1iqKhoeGA2pw2bVpRUdHWrVsPHTrk7u7++++/M25q5JEk+csvv7BYLDwQxCzy3j0wbtw4xp3g4eGxbNmygR2G7khMTNTjoxt5upJD9WdMCb9NMDs7u3cVs1UUpVLpiRMnxowZs3///kuXLtXV1Z0/f36oFmQcAZ9++imeKDp16lTEqBOU9gCzpgDQWxq+H6sedcaUuru7nZycTE1Nr127RpLko0ePrK2tTU1Ni4uLJRIJl8s1MjL6+uuvS0tL+Xx+cHAwXqrns88+QwhVVFTgRnx9fceMGSOXy0mS7OjomDNnDv4sl8snTJhw4cKFzs7OvppSR319PUIoPDxczf2RGuMw+CbGa6+9RpU8fPgwIiKCIIiNGzdShSoi76sTlPaA6qYGeSy6S4fGQHSCDvWnbkSp5rj8w4cPZ86ciRCys7MLCQnx9/f38vI6ePBgR0eH0lUUVS+82NHRYW1tvXz58qysrD179lCvVFS9IKMKly9fxiMqlpaWqampdXV1/X6l37zz3XffUY/ee3h4LFiwwNfXNyAg4LPPPrt586bCzgPtBLFYrLQHmHUC5FCgPh3qT4Ls+61e2iM4OBghlJWVpc7OjY2No0ePNjExkUgkCi8arKqqIghC/eeUZTKZXC6vr6/v/ZWBNsUMQRB8Pn9o77INKHIVPTDQpobjWLRHZmYmj8fTid8mnaBD/ak/Y0oUapnI3m9qtbW1HVBT+HF7pTlCoamIiIi+GgkPD9eqZYQG1AkqemCgTQGgl/Qwh2rE22+/3VcVldMBoMhkMpFIJJFImpubEUJOTk7Tp0+naltbW3/44Qdqc9GiRarf3zl8lC7VKJVK8RPAXl5es2bNYrFY/dYWFRVZWFjo5x9dDd9LUA+8C0QP6NOx9Dag+3etra27d+9+9uyZRCL54osvEEIcDufevXvUDnK5vLCw0NXVdfLkyTk5OXhYb4Q1NDR89tlnL730ksJjdU+ePJk4cWJqampjY+OWLVt8fX1lMlm/td3d3R9//DEe71WHDt0P1Z+5TeAFd/z4ca1qpy+PHj1avXp1RETEmDFjTExMvvzySyMjo7a2tsDAQGqhQoIg3N3deTze8uXL58+fr5HHn5Qu1SiXy99//31XV9ePPvpo/Pjx8fHxJSUl27Zt67eWzWYnJyd/9dVXCq811QOQQ4E+yM7OjomJ0Z52VNi8efN7773H4XCokkmTJvn4+JSVlYWGhpK0URQLCwtzc/NhDUaFmTNnUo//UvLy8vLz88PCwvAmi8Vas2ZNcnJye3t7v7UsFmvz5s34Zc76BHIo0C5isZjP5+/cuTMtLa2mpoYqFwqFiYmJR44cwfvs37+ferYyJycnMDBQIpEcOnRIKBQihGpraw8cOECSZG5ubkxMTHJyMnU+NaB2mpqa4uPjFV6/PhgikejSpUv4nc8UNpt95swZe3t7gUAQFxdHlfdeALevzqmpqUlKSpLL5SUlJbt27Tpx4oRcLqdqHz9+fPTo0djY2J9//nmQ8eOHLPDzLNiUKVPa29svX77cby1CyNvbWywW4930BuRQoEWKi4s9PT0NDQ0jIyNbW1snT55MXVn7+/sfOXLkyy+/RAiNGTMmNDR0x44dSUlJCKGxY8e6ubkZGxs7OjpyudyMjAw3N7eoqKiIiIgTJ07cuXNn48aN8+bNw29GUb8dhJBAIPjHP/6RmZk5VAf49ddfe3h40F8jio0dO1YgEJiamu7YseP7778fUOeoXr1waFcpvH//PkLI2tqaKsFvHv3jjz/6rcU8PT3pfyf0gaZvyKoFxpT0QL/HIpVKnZyc6DP5Q0JCjIyM7t69izeDgoJsbGyoWnd3dw8PD/w5MDCQy+VSVatWrSIIoqSkBG9+/vnnCKGUlJSBtiORSE6dOqXOc2hqjoE4ODjgC3Y6Nzc3/OHcuXMEQVDjS4cOHUpOTsZVqjunr9ULh3ypRnd3d7wkDUUkEiGEIiMj+63FkpKS2Gy2VCpV/aNhTAmAAbty5Up5eTl9Ab2FCxd2dXWlpaWp83X6wIuJiQmbzXZxccGbW7duZbPZeXl5DNpZsWJF79NGZrq6uioqKuinaQqWLl26bds2hfElTHXn9F69EL80lFqlMDIyMjIyklqlkPEh9J5z3dPTgxCysrLqtxbjcDgymWwwMWgbmB8KtEVpaSn66+/h3LlzEUJlZWXqfF3F4PXo0aNtbGwaGxsH2c4gtbS09PT0qH5lXmxsbHFxsVAoDA0NXbRoEVU+oM6hVi8c8qUauVxuT0+PVCo1NjbGJTjXT548ud9aDB9CbW0tvVCnwXko0Bbjxo1DCBUUFFAltra2hoaGak4vV5H7pFJpfX09XhZgMO0MkpWVlbm5ueo3rRIEcfLkSScnJ4FAgO/SYsw6h1qlcNCx/4ezszNCiD6c1dTUhP7MkqprsadPnyKE6AtU6jrIoUBb4LWi6VfcJSUl3d3d1LLNbDa7s7NT6XcJgsCXjUrduHGjs7PTz89vkO0MnouLS0NDA72EJMnnz5/TS8zMzAQCAYfDoZ9j9ts5Sg35KoXr1q0zNja+fv06VVJYWDht2jS8AI3qWqyuro4giIkTJzKOQdtADgXaYurUqWvWrMnLy8P38hBC+fn5Dg4O1IxCHx+fpqamY8eOtbe3Hzt2rLm5uaKiAp/XWFtb19fXV1RUPHjwAM9GlMlkVA46e/bsvHnzqByqfjuFhYVvvvlmbm7uUB3j3LlzFSaZ19XVPXr0SCGnOzo6ZmRk0Cc2qe4cvAA59ebtpqYmPGjD4/G4XG5UVFRCQkJZWVlmZmZ4ePjq1aupZsPDw5csWdLX5C3cJ/TYrKysNmzYkJCQgO8VdHZ2CoXCtLQ0HKrqWqyystLHx2fUqFED7jutpdERLXXBuLweUOdYOjo6IiMjXVxc0tPTjxw54uvrW11dTdWKxWI8qOLs7Hz+/PmlS5cuXLgwNTWVJMmcnBw2m21ubr5v3z6SJNevX89isTZs2LBly5bly5f7+/vTx9bVbwcPlOMq1dQcR25pabG0tLx//z7ezMrKeuuttxBCCxYsyM7OVth5165d1Li8is5RvYSj6lUK7e3tEUJ79uzpHWpfSzXK5fLo6Gg/P799+/bFxMQcP36c/i3VtVKp1MLC4urVq/12lA6Ny+tGlJBD9YD6x9La2nr9+vWamhqltQ0NDfhDR0eHwreoRLl+/XpDQ0OSJKurq9va2hi3Q5JkX19XoP7vfEpKCn2uj2pPnjxRKFHdOX2prKysqqrqXd7Z2cnn8y9evDig1kiSlMlk9fX1A63NzMwMCAhQp30dyqFwLQ+0DofDmTNnjo2NjdJaah0shetBDofTexISl8vFJ2WM2+nr64yFhYU1NzffunVLnZ3xHHU61Z3TF1tbW6ULGEql0oKCgiVLlgyoNYQQi8XCLyhUv7a8vDwjI+P06dMD/VlaDnIo0EPPnz+XyWT41dDaxsDAID09/eDBgzdv3tR0LEgkEu3evRuvEjusqqqq4uPjjx49qnpqly6CHAr0TUZGxo8//kiSZHR09O3btzUdjhLGxsaHDx9WcR43Yry9vUcmqRkZGaWnp+MZWnoG5tgDfePn5+fr64s/U5O9tdBwv0hGq6h4OkvXQQ4F+oa+rBwAww2u5QEAgDnIoQAAwBzkUAAAYE5n7ofW1tYO4VK4OoS+zISu06djUYAP7cX8LzocdOi/CkHS3t+itYKDg8+ePavpKAAAI0onspNu5FDwwiIIgs/nL1u2TNOBAKAc3A8FAADmIIcCAABzkEMBAIA5yKEAAMAc5FAAAGAOcigAADAHORQAAJiDHAoAAMxBDgUAAOYghwIAAHOQQwEAgDnIoQAAwBzkUAAAYA5yKAAAMAc5FAAAmIMcCgAAzEEOBQAA5iCHAgAAc5BDAQCAOcihAADAHORQAABgDnIoAAAwBzkUAACYgxwKAADMQQ4FAADmIIcCAABzkEMBAIA5yKEAAMAc5FAAAGAOcigAADAHORQAAJiDHAoAAMxBDgUAAObYmg4AgL9ITU1taWmhl1y8ePHhw4fU5ocffmhpaTnicQGgHEGSpKZjAOD/ffzxx4cOHTI2Nu5d1d3dPXbs2Pr6ejYb/vYDbQHX8kC7rFixAiEkVYbFYoWEhEACBVoFzkOBdiFJ8r/+67/q6uqU1v76668eHh4jHBIAKsB5KNAuBEGsXLnSyMiod9Urr7wye/bskQ8JABUghwKts2LFiq6uLoVCIyOjNWvWEAShkZAA6AtcywNt5ODgcP/+fYXCO3fuuLq6aiQeAPoC56FAG61atcrQ0JBeMmnSJEigQAtBDgXaaNWqVTKZjNo0NDT88MMPNRgPAH2Ba3mgpaZNm3bnzh38/5MgiAcPHkycOFHTQQGgCM5DgZYKDQ1lsVgIIYIgZsyYAQkUaCfIoUBLrVixQi6XI4RYLFZoaKimwwFAOcihQEtZW1t7enoSBCGXy4ODgzUdDgDKQQ4F2mv16tUkSc6fP9/KykrTsQCgnG6MKQUHB589e1bTUQAARpROZCedWb5h9uzZn376qaajGGk8Hm/Tpk368YQ4s2PZu3dveHi4iYnJMEU1VAoKChITE/l8vqYD0RO4PzUdhVp05jwUIZSVlaXpQEYaQRB8Pn/ZsmWaDmQIMDuWx48fv/LKK8MU0hDKzMzk8Xg68dukE3SoP+F+KNBqOpFAwYsMcigAADAHORQAAJiDHAoAAMxBDgUAAOZ0Zm4TeAFVVFTExcXFxsba2NhoOpYhJpPJRCKRRCJpbm5GCDk5OU2fPp2qbW1t/eGHH6jNRYsWjR07VgNRIlRfX19eXj5//nx6oVQqvXbt2u3bt728vGbNmoWXNVBdW1RUZGFhYWtrO5LBjww4DwXaq6io6NixY7///rumAxlibW1tCQkJrq6unp6e5eXlISEhb7/99h9//EHtwOFwHB0d4+Pj4+LirK2tzc3NRz7IxsbGqKgoOzu7Cxcu0MsbGhqcnZ2rq6vXrl0rEAgCAgJ6enr6rXVzc/vqq6/y8vJG+jBGAKkLgoKCgoKCNB2FBiCE+Hy+pqMYGsyOpbGxcTiCofv2228H3wieXa/OnrW1tf7+/q2trVQJfnmUs7Pzs2fP6Hvic/DBx8aMSCQqLi5GCH3yySdUYU9Pj5eX17vvvos3ZTKZra1tdHS0OrUymWzx4sV4PcN+qd+fGgfnoUCrjR8/fljbz87OjomJGdYfoWDz5s3vvfceh8OhSiZNmuTj41NWVhYaGkrSZpVbWFho5AwUmzlzppOTk0JhXl5efn5+WFgY3mSxWGvWrElOTm5vb++3lsVibd68OTw8fAQPYiRADgXaSy6X5+Tk3Lx5E2/W1NQkJSXJ5fKSkpJdu3adOHECL46H1dbWHjhwgCTJ3NzcmJiY5OTkjo4OhJBQKExMTDxy5AhCSCwW79+/n3ooMycnJzAwUCKRHDp0SCgUIoSampri4+OfPHkyTEckEokuXboUFBREL2Sz2WfOnLG3txcIBHFxcVS5gYGBgcFffkPFYjGfz9+5c2daWlpNTQ1VrrpnHj9+fPTo0djY2J9//nmQ8Z8/fx4hRH8py5QpU9rb2y9fvtxvLULI29tbLBbj3fQG5FCgpUpLS3k83n//938XFhYihIRC4YwZMzZt2rRv375vvvnmxo0boaGh//znP/HOGRkZbm5uUVFRERERJ06cuHPnzsaNG+fNm9fd3e3v73/kyJEvv/wSITRmzJjQ0NAdO3YkJSUhhMaOHevm5mZsbOzo6MjlchFCAoHgH//4R2Zm5jAd1Ndff+3h4TFmzBiF8rFjxwoEAlNT0x07dnz//fdKv1tcXOzp6WloaBgZGdna2jp58uTjx4/32zM5OTk7d+6cPn26s7NzYGBgZGTkYOLHLwq0tramSiwtLRFC+Gau6lrM09OT/ndCH2j6ZoJa4H6oHmBwLHfu3EEIHTx4EG9u3boVIfTTTz/hTXd39xkzZlA7r1q1iiCIkpISvPn5558jhFJSUkiSDAoKsrGxofZ0d3f38PDAnwMDA7lcLlUlkUhOnTqlcF9SHWrev3NwcMAX7HRubm74w7lz5wiC4HA49+7dI0ny0KFDycnJuEoqlTo5OX3xxRfUt0JCQoyMjO7evUv23TNisdjOzk4ikeDydevWIYQKCgrUPCipVIr+ej/U3d2dxWLR9xGJRAihyMjIfmuxpKQkNpstlUpV/2i4HwrAEDA2NqZvvvTSSwgh6ibd5MmTq6urqVoTExM2m+3i4oI3t27dymaz1RkIpr+z3sTEZMWKFb3PE4dEV1dXRUUF/TRNwdKlS7dt29bW1hYYGCgWi+lVV65cKS8vnz17NlWycOHCrq6utLQ01HfPnD59uqOj4+9//3tkZGRkZGRdXZ29vX3vl06rz9TUVKEED7vjBV5V12IcDkcmkw0mBm0D80OBrsKnPH3Vjh492sbGprGxsd926Dl0WLW0tPT09OB815fY2Nji4mKhUBgaGrpo0SKqvLS0FP01Sc2dOxchVFZW1rsRqmfu3r1rbW29f//+oToELpfb09MjlUqpP28410+ePLnfWgwfQm1tLb1Qp8F5KNBPUqm0vr7ezs6u3z1HLIdaWVmZm5srnGD2DubkyZNOTk4CgQDftMXGjRuHECooKKBKbG1tDQ0NVc+9Z7FY9+7d6+7uHnTs/+Hs7IwQog9nNTU1oT+zpOpa7OnTpwghfPdZP0AOBfrpxo0bnZ2dfn5+CCE2m93Z2al0N4Ig6FPEh5uLi0tDQwO9hCTJ58+f00vMzMwEAgGHw6GfY86aNQshRL81UVJS0t3drXpN66lTp7a3t6ekpFAlra2tBw4cYBz/unXrjI2Nr1+/TpUUFhZOmzbt9ddf77cWq6urIwhCn97SCjkUaC88poHPZRBCz549Qwh1dXXhzaamJjw0Qe0vk8movHP27Nl58+bhHOrj49PU1HTs2LH29vZjx441NzdXVFTgEyJra+v6+vqKiooHDx60t7cXFha++eabubm5w3REc+fOVXjsqq6u7tGjRwop3tHRMSMjgz6xaerUqWvWrMnLy6NuAefn5zs4OODpln31DI/H43K5UVFRCQkJZWVlmZmZ4eHhq1evppoNDw9fsmRJX3O5cBfRY7OystqwYUNCQgLu9s7OTqFQmJaWhkNVXYtVVlb6+PiMGjVqwH2ntTQ4nqU+GJfXAwM9lhs3buB5lFOmTPn+++9zc3PxhflHH31UV1d3+vRpMzMzhNDOnTu7u7tJkly/fj2LxdqwYcOWLVuWL1/u7+9PDa+LxWI8GuPs7Hz+/PmlS5cuXLgwNTWVJMmcnBw2m21ubr5v3z7yz5FxXDUgao4jt7S0WFpa3r9/H29mZWW99dZbCKEFCxZkZ2cr7Lxr1y5qXJ4kyY6OjsjISBcXl/T09CNHjvj6+lZXV5MkqbpnSktLqdNAFxeXoqIi+o+wt7dHCO3Zs6d3qJcvX+bxeAghS0vL1NTUuro6XC6Xy6Ojo/38/Pbt2xcTE3P8+HH6t1TXSqVSCwuLq1ev9ttROjQurxtRQg7VA8N9LOvXrzc0NCRJsrq6uq2trfcODQ0N+ENHRwe9vLW1lT6ZSel3+6X+73xKSgp9ro9qT548UShpbW29fv16TU3NgMKrrKysqqrqXd7Z2cnn8y9evDig1kiSlMlk9fX1A63NzMwMCAhQp30dyqFwLQ/0DZfLxSdiCiZMmIA/KFxIcjgc+mQmpd8dQmFhYc3Nzbdu3VJnZzxHnY7D4cyZM2egC1nZ2tq++uqrvculUmlBQcGSJUsG1BpCiMVivfzyywOqLS8vz8jIOH369EB/lpbT27lNEokkJycnPz+femBD48Ri8alTpx4+fDhp0qSQkJDRo0cPvs28vLxHjx5Rm4aGhhMmTHjllVccHBwG37huef78uUwmk0gkvWcpahUDA4P09PSNGzeGhYXNnDlTs8GIRKLdu3ez2cOeB6qqquLj448ePap6apcu0tvz0CtXrnzyySdnzpzRdCD/ce/evddff/1//ud/9u7dGxYW5ubmVl9fP/hm3dzcHjx4EBIS8sEHHzx79qyxsVEoFPJ4vIkTJ27fvn0IJ7VouYyMjB9//JEkyejo6Nu3b2s6nH4YGxsfPnxYxXnciPH29h6ZpGZkZJSeno5naOkbTd9MUAuz+6HLli2zs7MbjngYWLx4cXFxMUmSDQ0NH330EUJo7dq1/X4LqXEPEU/Hc3Z2pkrkcnlWVpaZmdmCBQsYPLY4TNQ5FsZaW1uf/un58+fD9FNU0KH7dzpBh/pTb89DkbJlbzSlsLBw5cqVbm5uCKEJEybExsYaGBj8+uuvQ9J47/t3BEEEBQUdPnz46tWrc+fOpaa86DEOh2P+J/27WgTaTN/uh7a0tJw9e7aysvKNN94gSZL+CMrjx4+vXLlSW1vr6en5zjvv4MKamprz589v3LixtLT04sWLr7766sqVK6nMS5IkfqsBi8VycnJasGCBiqZUeO2119zd3alNa2vrGTNmDPdNKB6Pd/z48cuXL4tEIi8vL1w40E7oqwf6agqAF41WnKYNlXv37i1atMjV1TU2NrapqUkgEFA5VOkKYKoXDUMIbd++/f79+5s2bfLw8Ni+fbuKplSzsLBQeKCwpqZm8eLFQ3bkfcCTIn/55Re8yaATlPZAX00B8CLS8L0E9ah5P3TWrFlbtmzBn+VyuZ2d3euvv06qXAFMxXJqcrl8/PjxOTk5eDMuLk51U+q7du2ajY2NWCzud0+kxj3EtrY29Nf7oRS82O3ixYtVR95XJyjtAdVNDfJYdJcO3b/TCTrUn/pzLZ+dnf3bb7/t2LEDbxIEMXPmTDxES60AhquoFcBmz57de9Gwf//731QLjo6OPB7v8OHDAQEBUVFRqptSM86enp4vvvjiu+++G4EpOBKJBCFkYmKCGHWC0h5Q3ZTqeOhLZugZfGjDt3jzi0aH/qvoTw7F78+aMmUKVUJdPqu/ApjCcmrJycnBwcGBgYHvvPNORkbGyy+/PPjFxKKiojZv3kx/Ee7wKSoqQn8uV8GsE3r3wICaUpCYmJiYmDjQb+kQ/HAkeKHoz/1QvOzCb7/9Ri/EaZTxCmDTpk0rKiqKiIjIzc11d3dvaWkZ5GJihw8fnj59+rvvvsvs6wNCkuQvv/zCYrHwQBCzyHv3AOOmEFzLA7Xh/tQJ+pND8ZuwsrOze1cxWwFMKpWeOHFizJgx+/fvv3TpUl1d3fnz5wezmNiFCxdIkgwNDaVKrl27ps4Xmfn0008LCwsTEhKmTp2KGHWC0h5g1hQAekvTf2/Uos6YUnd3t5OTk6mp6bVr10iSfPTokbW1tampaXFxsUQi4XK5RkZGX3/9dWlpKZ/PDw4OxpPPP/vsM4RQRUUFbsTX13fMmDFyuZwkyY6Ojjlz5uDPcrl8woQJFy5c6Ozs7Ksp1a5evTpr1qx//SkxMTE8PByvFaQCUuPcDd/EeO2116iShw8fRkREEASxceNGqlBF5H11gtIeUN3UII9Fd8F56NDSof7UjSjVHJd/+PAhfgDZzs4uJCTE39/fy8vr4MGDHR0dSlcAU71oWEdHh7W19fLly7Oysvbs2UO9Dkz1YmJKFRYW4oEdulGjRjU3N6v+Yr9557vvvps/fz5u0MPDY8GCBb6+vgEBAZ999tnNmzcVdh5oJ4jFYqU9wKwTIIcC9elQfxJk32+k0R7BwcEIoaysLHV2bmxsHD16tImJSe/lJ6qqqgiCULqAjVIymUwul9fX1/f+ykCbYoYgCD6fv2zZsiFsc0CRq+iBgTY1HMeiPTIzM3k8nk78NukEHepP/RmXp1BLnPWePGRrazugpvCjREpzhEJTERERfTUSHh4+bdq0Af3cYTWgTlDRAwNtCgC9pIc5VCPefvvtvqqonA4A0D+QQ4cGvtsAAIqI3uwAAAj7SURBVDMymUwkEkkkkubmZoSQk5MTfQZxa2vrDz/8QG0uWrRI9es8h099fX15eTl1Cx6TSqV4UQUvL69Zs2axWCyEUFFRkYWFxYtwpaI/c5sA0FFtbW0JCQmurq6enp7l5eUhISFvv/32H3/8Qe3A4XAcHR3j4+Pj4uKsra3Nzc1HPsjGxsaoqCg7O7sLFy7QyxsaGpydnaurq9euXSsQCAICAvB7Ut3c3L766iv6i0j1FeRQoCeOHz+uVe2o6dGjR6tXr46IiBgzZoyJicmXX35pZGTU1tYWGBhIvYmeIAh3d3cej7d8+fL58+crrF8zMiorK0NDQzs6OuiFcrn8/fffd3V1/eijj8aPHx8fH19SUrJt2zaEEJvNTk5O/uqrrxTeY6p/IIcCfZCdnR0TE6M97ahv8+bN7733HofDoUomTZrk4+NTVlYWGhpKH5i2sLDQyBkoNnPmTGpFBUpeXl5+fn5YWBjeZLFYa9asSU5Obm9vx5ubN2/Gb2/WY5BDgXYRi8V8Pn/nzp1paWl4iX5MKBQmJiYeOXIE77N///7ExEQ8izAnJycwMFAikRw6dEgoFCKEamtrDxw4QJJkbm5uTExMcnIydQI1oHaampri4+P7ev364IlEokuXLuFXQFPYbPaZM2fs7e0FAkFcXBxVrrCmeF8dhRCqqalJSkqSy+UlJSW7du06ceKEXC6nah8/fnz06NHY2Niff/55kPHj59bwI4LYlClT2tvbL1++jDe9vb3FYjHeTW9pdHaquuDdyHpAnWO5ffu2q6vruXPnGhoa9uzZY2pq+u2331K1Li4uNjY2+POzZ8/MzMw8PDxIkrx165anp+eECRNycnJu3bp18uTJsWPHvvTSSx9//PHatWvxSytnzpzZ1dU1oHZIkkxNTUUI9fs4Gcl0Tvj777/v7e2tUOjm5kaS5O+//25qakoQhFAoxOWHDh2iXjevoqO+++47PBVk7969H374oZ+fH0Jo9+7duDY7OzssLKyoqCgzM9PU1DQiIkL9aKVSKULok08+oUrwGrhSqZQqyc3NRQhRyySSJBkeHj59+nT1fwqmQ3PsdSNKyKF6oN9jkUqlTk5O9KehQkJCjIyM7t69izeDgoKo3EeSpLu7O859JEkGBgZyuVyqatWqVQRBlJSU4M3PP/8cIZSSkjLQdiQSyalTp9R5lpfZ77yDgwO+YKfDOZQkyXPnzhEEweFw7t27R9JyaL8d1deCsINc/bZ3DnV3d8erfFFEIhFCKDIykipJSkpis9n0PKsOHcqhcC0PtMWVK1fKy8vpi5AuXLiwq6srLS1Nna/TR1pMTEzYbLaLiwve3Lp1K5vNVnOMWKGdFStW0N8+P4S6uroqKiqsra372mHp0qXbtm1TGF9CanRU7wVhq6urEW3h18jIyMjISGrhV8aH0PsxFjwob2VlRZVwOByZTDaYn6LlYH4o0BalpaXor7+Wc+fORQiVlZWp83UVo9WjR4+2sbFpbGwcZDtDq6WlpaenR/Ub9GJjY4uLi4VCYWho6KJFi3DhQDuKWhB28KvfKuByuT09PVKp1NjYGJfgXD958mRqHxxnbW0tvVCfwHko0Bb45eP0BcxtbW0NDQ3VnE+uIvdJpdL6+nq8tMpg2hlaVlZW5ubm9BNMpcGcPHnSyclJIBAkJSXhQsYdNcjVb3tzdnZGCNFHtJqamtBfc+jTp08RQlwud6h+qLaBHAq0BV5vn37FXVJS0t3d7eHhgTfZbHZnZ6fS7xIEga8ilbpx40ZnZyceXRlMO0POxcWloaGBXkKS5PPnz+klZmZmAoGAw+FQp5n9dlRfhnzh13Xr1hkbG1+/fp0qKSwsnDZtGrWmF0Korq6OIIiJEycy/ilaDnIo0BZTp05ds2ZNXl4evnmHEMrPz3dwcKAmGPr4+DQ1NR07dqy9vf3YsWPNzc0VFRX4NMfa2rq+vr6iouLBgwd4cqJMJqOSztmzZ+fNm0flUPXbKSwsfPPNN/FY83CYO3euwhT0urq6R48eKaR4R0fHjIwMamJTvx2F3+nQ1dWFN5uamvCQDo/H43K5UVFRCQkJZWVlmZmZ4eHhq1evxruFh4cvWbJExUQu3EX02KysrDZs2JCQkIDvFXR2dgqFwrS0NPocrMrKSh8fn1GjRjHoH92g2SEtNcG4vB5Q51g6OjoiIyNdXFzS09OPHDni6+tbXV1N1YrFYjyQ4uzsfP78+aVLly5cuDA1NZUkyZycHDabbW5ujuchrV+/nsVibdiwYcuWLcuXL/f396ePravfDh4Zx1WqMRtHbmlpsbS0vH//Pt7Mysp66623EEILFizIzs5W2HnXrl3U3CYVHaV6VVwVC7/a29sjhPbs2aM01MuXL+O3RVlaWqamptbV1eFyuVweHR3t5+e3b9++mJiY48eP078llUotLCyuXr060J7RoXF53YgScqgeUP9YWltbr1+/XlNTo7S2oaEBf+jo6FD4FpUo169fb2hoSJJkdXV1W1sb43ZIkuzr6woY/86npKTQZwKp9uTJE/qm6o5SobKysqqqSqGws7OTz+dfvHhxoK2RJCmTyerr63uXZ2ZmBgQEMGhQh3IoXMsDrcPhcObMmWNjY6O0llpLUOHykMPh9J6ExOVy8VkY43b6+vpQCQsLa25uvnXrljo7W1pa0jdVd5QKtra2vdeElUqlBQUF+JGEgWKxWPidr3Tl5eUZGRmnT59m0KAOgRwK9NDz589lMplEItF0IP0zMDBIT08/ePDgzZs3NRuJSCTavXs3XnV78KqqquLj448ePap68pYegBwK9E1GRsaPP/5IkmR0dPTt27c1HU7/jI2NDx8+3Ps8boR5e3sPYb4zMjJKT0/H07D0G8yxB/rGz8/P19cXf6bmfmu/4X431whT8fyVnoEcCvQNfR05AIYbXMsDAABzkEMBAIA5yKEAAMCcztwPvXHjxov57sy9e/dmZWVpOoqhoU/HoqC2thbB612HDu5PnUCQtBe2aK1vvvmGvkoNAOBFoBN/cXUjhwIAgHaC+6EAAMAc5FAAAGAOcigAADAHORQAAJj7P8zxMLZTU+CFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – another way to display the model's architecture\n", + "tf.keras.utils.plot_model(model, \"my_fashion_mnist_model.png\", show_shapes=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2JK5fHWoIm2m", + "outputId": "5ad47336-f0e9-46d3-bb5a-5f1e8f0fae41" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[,\n", + " ,\n", + " ,\n", + " ]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.layers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AeS5VxveIm2n", + "outputId": "e2f8d9aa-21e4-4c37-d9e3-c206fbd06baf" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'dense'" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hidden1 = model.layers[1]\n", + "hidden1.name" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-r2NL9LkIm2n", + "outputId": "b945197c-5d7d-42aa-c220-eebb9c1e98e5" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.get_layer('dense') is hidden1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "IMFjPtPZIm2n", + "outputId": "c102aeb0-23ce-4d29-f43a-aa0fb29fb077" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.02448617, -0.00877795, -0.02189048, ..., -0.02766046,\n", + " 0.03859074, -0.06889391],\n", + " [ 0.00476504, -0.03105379, -0.0586676 , ..., 0.00602964,\n", + " -0.02763776, -0.04165364],\n", + " [-0.06189284, -0.06901957, 0.07102345, ..., -0.04238207,\n", + " 0.07121518, -0.07331658],\n", + " ...,\n", + " [-0.03048757, 0.02155137, -0.05400612, ..., -0.00113463,\n", + " 0.00228987, 0.05581069],\n", + " [ 0.07061854, -0.06960931, 0.07038955, ..., -0.00384101,\n", + " 0.00034875, 0.02878492],\n", + " [-0.06022581, 0.01577859, -0.02585464, ..., -0.00527829,\n", + " 0.00272203, -0.06793761]], dtype=float32)" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weights, biases = hidden1.get_weights()\n", + "weights" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "j_qSSflvIm2n", + "outputId": "f39fe074-7730-411e-f924-f85f9ec9dee6" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(784, 300)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weights.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4Yhb1M5VIm2o", + "outputId": "2c70534f-df53-4d6d-e67e-cb5949fe97bb" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "biases" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nosu4QyhIm2o", + "outputId": "81cd08d5-7e34-43c8-b618-33e4a70c4cce" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(300,)" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "biases.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dthfpQkZIm2o" + }, + "source": [ + "### Compiling the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "23L-Mwk-Im2o" + }, + "outputs": [], + "source": [ + "model.compile(loss=\"sparse_categorical_crossentropy\",\n", + " optimizer=\"sgd\",\n", + " metrics=[\"accuracy\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tdEkcc8FIm2o" + }, + "source": [ + "This is equivalent to:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hrMlxWM1Im2o" + }, + "outputs": [], + "source": [ + "# extra code – this cell is equivalent to the previous cell\n", + "model.compile(loss=tf.keras.losses.sparse_categorical_crossentropy,\n", + " optimizer=tf.keras.optimizers.SGD(),\n", + " metrics=[tf.keras.metrics.sparse_categorical_accuracy])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uyNMAL4LIm2o", + "outputId": "702a6f7b-61b1-4e6a-a352-83b835475660" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", + " [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],\n", + " [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],\n", + " [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – shows how to convert class ids to one-hot vectors\n", + "tf.keras.utils.to_categorical([0, 5, 1, 0], num_classes=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wHGvfoL_Im2p" + }, + "source": [ + "Note: it's important to set `num_classes` when the number of classes is greater than the maximum class id in the sample." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dlbWWecVIm2p", + "outputId": "5120e084-dd64-472d-f673-9a675bdd3c56" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 5, 1, 0])" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extra code – shows how to convert one-hot vectors to class ids\n", + "np.argmax(\n", + " [[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", + " [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],\n", + " [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],\n", + " [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],\n", + " axis=1\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "S-AAWIKyIm2p" + }, + "source": [ + "### Training and evaluating the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Up7IxspnIm2p", + "outputId": "9b21efad-d1ee-487f-e160-be97027ae2eb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.7220 - sparse_categorical_accuracy: 0.7649 - val_loss: 0.4959 - val_sparse_categorical_accuracy: 0.8332\n", + "Epoch 2/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.4825 - sparse_categorical_accuracy: 0.8332 - val_loss: 0.4567 - val_sparse_categorical_accuracy: 0.8384\n", + "Epoch 3/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.4369 - sparse_categorical_accuracy: 0.8480 - val_loss: 0.4228 - val_sparse_categorical_accuracy: 0.8542\n", + "Epoch 4/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.4122 - sparse_categorical_accuracy: 0.8558 - val_loss: 0.3966 - val_sparse_categorical_accuracy: 0.8624\n", + "Epoch 5/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3910 - sparse_categorical_accuracy: 0.8631 - val_loss: 0.3890 - val_sparse_categorical_accuracy: 0.8632\n", + "Epoch 6/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3751 - sparse_categorical_accuracy: 0.8686 - val_loss: 0.3912 - val_sparse_categorical_accuracy: 0.8600\n", + "Epoch 7/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3628 - sparse_categorical_accuracy: 0.8710 - val_loss: 0.3723 - val_sparse_categorical_accuracy: 0.8698\n", + "Epoch 8/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3514 - sparse_categorical_accuracy: 0.8755 - val_loss: 0.3767 - val_sparse_categorical_accuracy: 0.8612\n", + "Epoch 9/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3406 - sparse_categorical_accuracy: 0.8795 - val_loss: 0.3513 - val_sparse_categorical_accuracy: 0.8726\n", + "Epoch 10/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3306 - sparse_categorical_accuracy: 0.8812 - val_loss: 0.3539 - val_sparse_categorical_accuracy: 0.8738\n", + "Epoch 11/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3223 - sparse_categorical_accuracy: 0.8860 - val_loss: 0.3606 - val_sparse_categorical_accuracy: 0.8712\n", + "Epoch 12/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3146 - sparse_categorical_accuracy: 0.8869 - val_loss: 0.3472 - val_sparse_categorical_accuracy: 0.8742\n", + "Epoch 13/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3071 - sparse_categorical_accuracy: 0.8900 - val_loss: 0.3284 - val_sparse_categorical_accuracy: 0.8800\n", + "Epoch 14/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.3001 - sparse_categorical_accuracy: 0.8922 - val_loss: 0.3413 - val_sparse_categorical_accuracy: 0.8780\n", + "Epoch 15/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2938 - sparse_categorical_accuracy: 0.8945 - val_loss: 0.3376 - val_sparse_categorical_accuracy: 0.8822\n", + "Epoch 16/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2867 - sparse_categorical_accuracy: 0.8971 - val_loss: 0.3272 - val_sparse_categorical_accuracy: 0.8796\n", + "Epoch 17/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2822 - sparse_categorical_accuracy: 0.8978 - val_loss: 0.3317 - val_sparse_categorical_accuracy: 0.8796\n", + "Epoch 18/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2757 - sparse_categorical_accuracy: 0.9001 - val_loss: 0.3240 - val_sparse_categorical_accuracy: 0.8824\n", + "Epoch 19/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2711 - sparse_categorical_accuracy: 0.9030 - val_loss: 0.3484 - val_sparse_categorical_accuracy: 0.8720\n", + "Epoch 20/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2662 - sparse_categorical_accuracy: 0.9045 - val_loss: 0.3209 - val_sparse_categorical_accuracy: 0.8800\n", + "Epoch 21/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2613 - sparse_categorical_accuracy: 0.9046 - val_loss: 0.3178 - val_sparse_categorical_accuracy: 0.8862\n", + "Epoch 22/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2563 - sparse_categorical_accuracy: 0.9069 - val_loss: 0.3122 - val_sparse_categorical_accuracy: 0.8848\n", + "Epoch 23/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2520 - sparse_categorical_accuracy: 0.9098 - val_loss: 0.3480 - val_sparse_categorical_accuracy: 0.8716\n", + "Epoch 24/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2469 - sparse_categorical_accuracy: 0.9113 - val_loss: 0.3202 - val_sparse_categorical_accuracy: 0.8878\n", + "Epoch 25/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2428 - sparse_categorical_accuracy: 0.9123 - val_loss: 0.3152 - val_sparse_categorical_accuracy: 0.8856\n", + "Epoch 26/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2393 - sparse_categorical_accuracy: 0.9143 - val_loss: 0.3102 - val_sparse_categorical_accuracy: 0.8852\n", + "Epoch 27/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2341 - sparse_categorical_accuracy: 0.9147 - val_loss: 0.3200 - val_sparse_categorical_accuracy: 0.8850\n", + "Epoch 28/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2313 - sparse_categorical_accuracy: 0.9169 - val_loss: 0.3100 - val_sparse_categorical_accuracy: 0.8900\n", + "Epoch 29/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2268 - sparse_categorical_accuracy: 0.9185 - val_loss: 0.3215 - val_sparse_categorical_accuracy: 0.8864\n", + "Epoch 30/30\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2235 - sparse_categorical_accuracy: 0.9200 - val_loss: 0.3056 - val_sparse_categorical_accuracy: 0.8894\n" + ] + } + ], + "source": [ + "history = model.fit(X_train, y_train, epochs=30,\n", + " validation_data=(X_valid, y_valid))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FPjnVPQ2Im2p", + "outputId": "872a3eb0-d50d-441e-d1aa-1f24317d7ac4" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'verbose': 1, 'epochs': 30, 'steps': 1719}" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "history.params" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bq7b4GimIm2p", + "outputId": "e47490b0-430b-4429-9152-111ac8bcb41d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]\n" + ] + } + ], + "source": [ + "print(history.epoch)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YnSP_uBlIm2p", + "outputId": "b9c5ca4e-9636-4a7a-a418-68e2ebcd77a0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAFYCAYAAABNvsbFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABwKElEQVR4nO3dd3gUVdsG8Puk9xAISSBAqAm9iUgUBAEFBIwIWAABUREUxVdREQtir2D5AEUELFhRBCyIlFAUpPfQIZTQa3rb8/3xZLK7ySZZ0jYb7t91zbW7M7MzZ8+WefZUpbUGERERkTNxcXQCiIiIiK4WAxgiIiJyOgxgiIiIyOkwgCEiIiKnwwCGiIiInA4DGCIiInI6RQYwSqlZSqkzSqmdBWxXSqmPlVIHlFLblVJtSz+ZRERERGb2lMDMAdCzkO29ADTKWUYCmF7yZBEREREVrMgARmu9CsCFQnaJAfCVFusAVFFK1SitBBIRERHlVRptYMIBHLN4fDxnHREREVGZcCuFYygb62zOT6CUGgmpZoKXl9d1derUKYXTU2FMJhNcXNhWu6wxn8sP87p8MJ/LB/O5cPv27Tunta5ua1tpBDDHAdS2eFwLQIKtHbXWMwDMAICoqCi9d+/eUjg9FSY2NhZdunRxdDIqPeZz+WFelw/mc/lgPhdOKRVf0LbSCPsWAhia0xupA4DLWuuTpXBcIiIiIpuKLIFRSn0HoAuAYKXUcQATAbgDgNb6UwB/ALgdwAEAKQAeKKvEEhEREQF2BDBa6/uK2K4BPFZqKSIiIiIqAlsOERERkdNhAENEREROhwEMEREROR0GMEREROR0GMAQERGR02EAQ0RERE6HAQwRERE5HQYwRERE5HQYwBAREZHTYQBDRERETocBDBERETkdBjBERETkdBjAEBERkdNhAENEREROhwEMEREROR0GMEREROR0GMAQERFRxbN2LcKBsII2u5VnWoiIiKiCWrsWiI0FunQBoqNLfpzOnYGoKCAjw3qpWhWoUUPur1plXp+eLretWwNJSUC3bggDwgs6DQMYIiIiR1i7FnXmzgU8PUsnYOjSBWjfHsjMBLy8ZNuRI8Dly0BqKpCWJreBgcCNN8r22bOBs2eBffuAL78EsrMBNzdg5UpJ04gRwIULElwYAUaPHsBLL8nzGzUCkpPNAUhqKqAUoDXg4SGP85owAXjjDeDKFeDWW/Nvf/NNuc3IKPRlM4AhIqKKrbRLBiyPo7VctLOyrJegIMDVFbh4ETh/3nqfzZuBkyeBW24B/P2BPXusA4SMDGDcODn+3LlSymBsS00F3N2BZ54BunVDvdRU4IsvgHr1JOjQGggJkXQCwEMPAcuXy3qTSZaGDYEVK2R7x47AP/9Yv8727YH//pP7MTHA9u3W27t2BZYtk/uvvw4cOmS9PStLzh8dLYFNYqIEWZ6ekkYjOAKklEUp2ebhIXmzerWkMyMD6NNHFg8P89KkiTy3ShXZ13KbhwcQHAzExQEeHtCpqbqgt5MBDBERlQ17Ao/MTODcOakySEyU26QkoG1bICwM+OknYPBguai6ugJ33SUXuLFjgchIYM0aYPJk6yqIjAwpWWjcGPjuO/nHn5gogYjh+++Be+6R5xrBhqUTJ4CaNYGPPgImTcq/3dVVLrYxMXKsvJ56CnBxATZuBBYskIu+t7fcBgVJvmRkQAESnHh7S3pdXIBq1czHadxYXpeLiyxKSfWLISDAXOKhlAQnQ4aYt7/7rpSQeHubF8vjb9wor2PLFuC22yTvPDzkPQMkfwszc6b147VrgW7dzMeZMKHg997NTQIwW6KjgWXLcPrGGxMKOjUDGCIiRyvLEoZiHie3aqN9eyAhAUhJMZcgpKRIiUH9+lIN8O235vXGPg0bAk8/LRdfAGjWTC7ARoDy0UcSQKxdK//i8/rlF6BfP+CPPyTIASSI+fVXuWjfc48EMImJwIED1v/gAwLMx6lRQ46/e7dUhRgX+u3b5Rg33QS89ppcTC0X4xj9+gENGpjXL1ggQVF2tlykIyLkWEZwYgQJSsnzp0yRxdZ75eEBU3o6XDw9gc8/t/2e2QquLL30Um4wBA8PeS2Wx+nRo/DnBwXJbceOUipT0s9PTuBRKp/D6GicAE4VtFlpXWDpTJmKiorSe/fudci5ryWxsbHoYkTSVGaYz+WnQuW1vQFDQoJcPC1LGHx85OJiXMCNEoaYGGnk2LAh8Oyz8vyHHwaOHrVuCNmpk5QeANLo8ehRqe4w9O0LLFwo90ND5V84IBdwQKomPvpIivp9fc3rc6pKNADl7Q3Mnw/07Jn/Nb36qlw8jx0D6tQxr3d1lQt4t27Ab7/J8QAJdlq0APz8ZBk2TPLs9GkJSoz1xhIZKRfX1asln4wL9LJlxbso5i0ZcPRxco51aNYs1B8xomIErhWQUmqT1rqdrW0sgSEi51FajR7//RdYuhTo3l0aM54+LYtlCUNmpgQTAPDnn8C2bdbbz5+Xf+MZGfJvu1Ej2deoCgkPB3bulHWDBkmjSEtt2siFOTbWuoThzz+lkaVl0fr589IQ08NDgoPAQPM/Z0CqDf75B9iwwVzCYNlO4YEH5BxGqYBSQIcO5vtPPGG+v3YtsHo1lNby2jZskNIBHx9z6YKPj5TAAFLNcvKkeZu7u/k4S5aYL/TffGP7PQsNBR55pOD3qlOnilUyUMolDEfT01G/pEFHdHSlC1zswRKYSq5C/VutxCptPpfWP7vVq+Vi1rat1OmnpEiJQKtWcjHet08CCmO9sbzwglwgf/1V2iFs2watNZRSQN26ctzwcGD6dOCdd+TfvuWyd6/U90+caN6elWVOl7e3XIzmzgWmTrVOs7u7uRfE8OHSQ8N4jre3VCcYjTuVkhKT1q3NJQjh4cBzz8lz/v4buHRJ1vv7y21QkFQ/VLSSgZzj5FZtlLCEobKWDJSWivTbcfIkcO+9wA8/SPMjRzt5EqhZs2mS1rv9bW1nCQxRZVTYhcP4Z52aKhc6Hx/pIbFzp7mEITVVShzeekv+ubu7S8PA6tWt2zqMHi3H37QJGDPGeltKirQV8PeXkg5bXSJXrgRuvhlYvx547DHzeuNf/qhREsBoLSUQWpsbPfr4SHUFANSuLa/V1VUWFxdzI0tA0jh2rKxbt07yxsiH2FjpKnrLLdYNHb29zemZNk2CJC8vcylG3oDhyy8Lvkjb6ipqqGglA9HROPnDKtw50h8LPk9EWLTN0nv701SBApfSukCX5nHGjm2Nv/6qGOl57TVps/vqq/KRrwjpAXz8CtxBa+2QJTIyUlPZW7FihaOTUPn9+68++NBDWv/7b4mPo99803wck0nrjAzz/c2btV65UuvfftP6u++0njFD61WrZHtqqtajRmk9eLDWnTpp7eKiNaC1u7sc7/RprYODtfbxMW8DtH73XXn+vn3mdZaLUnLr6iq3bm5aBwRoHRqqdd26Ws+fL8/fvl3r227TOiZG63vv1fqBB7R+7DFZ/+abOkHV1DcjVp9UNbS+5x6tFy7UetkyrS9elOcnJ2t96pTWiYlaZ2cXnD/e3jrbxUVrb+/i53fOcbSra8mOo7VOWLhB31w3Xp9ctKHYx6iIRo/WWimTHj26ZMdJSND65pu1PnmydNJVUg89JB//hx+Wr1RxjR4txylp/pRWPtuTHpNJ68uXtT54UOt167RetEjr2bPlJ8D4euddXF21fvttradP1/rbb7X+/XetV6+Wr3V8vNaXLtn+uhaWnuxsra9ckc/Gvn1ab9pk/ln7/nutZ86UnxlzOq7TuoA4glVIlVxFKp50emlpUmVw7pz59vBhYNIk6PR0KFdX4PbbpYunMV5E48bAiy/K8x9+GDh+3HqsiRtvlKqNtWulzYPJJPsapSJDhpirLjw985dijB4tf5WysqSkwt8fSEnByVPAvfgeP6j7EPbG49LG4Zln8pcw3Hwz0K6dlJYsXWrdzmHvXuDBB80lDH/9Je0RrtbatXi00w58lv0gHnH9AtNWtyj2v/KTizaaSwb6FL9k4OSijbj3iRD88MmZEh3n0UeBzz6TJhwl+cdaWq72n29WljT9OXlS2hn3729dw2ZwdQXGj5ePgbu7dYefvI8t1330kTQTclT+pKXJV+u222y/LkBqGPN+LfIuxtdi6lRzm2RLbm7Ahx9K4Zxlb2fLW8v7RpOkvNzdpUe2UtbNlfIuxvo777R9HFdXYOBA+Yk6e1aWc+cKHhfOw0Oek5ZmbkLl7m6uiS2MUvKzExgoP2+2QgqlpKlTYqK5Lbn92kHrjcrmuRnAVG6VMoApbr16Wpp8e4wRJdetk8Ge7rlHjrNwoYyFYBmk+PsD8+bJ8zt3lgGpLIWFya+D8S3385Nvspub/CJER0vjRUC6YyYkWHfV7NhR2na89Za09zB+PaKjpWHmddfJrxQgPTq8vCRNxhIUJOfMkz+lGTDYe6HXWtqvXrggnWEuXJDOKwX9UP/1l1wYfH3Ni4+PLC4FzNL26KPAp59qjBqlSnRBLCzwyMyUj0lSUsG3I0faviB6edkeeLS8GK/r4Yelg5ARmCQkmO9brjtzxvYFx5LxUc3MLPpiVhQ3N/kKtW5tXUNXWrKzZRy1ZctkWbNGvvZKSceuy5flfXN3lxHuO3aUz5plzanlYtkr3LJtd0Xn7y8BQ/Xq8n+qevXC7/v6ymdnxgwJZjIy5Lsxdaq87suXC1+uXJHb06cl/43PlYuL9GK//noZm89oHmY0A8t7a3l//HgZYsZkuk5rvcnmLwIDmEquQgUwRQUeWsu35eJF83Lpkvx98vSUhpAzZ+LkvH9wr2mulC60qSG9L7y8pCTjiy/kF8sIUjIz5YqjlHQb/eKL3NOdRJiUUngNR9jyb4GPP5a/P1WqyN+y4GBpmGkEID//LEGNsS04GDhyBCcHPI570mbjR+M4xWw4ebLrYNybNgc/eA0r9DhaS3Bw6lT+ZcoU2xcZFxf5d20MVWE5ppatx8b9qVOBRYvkLevb1xycGAGK5f1Llwr+l3u1jH+9RmCzZ4/tC62LC9Crl/3H/fNPcyFXXlWrykeliNHLC1WjBtCypQx5YixNm8qPcmGutuQkLU1GiD98WJYnnrDvn3JoqKSxZk1ZjPuW6yZNkguHm1s2srJcrYK87Gz5SmVkmG8tF2NdQgLwySfy1UxPNzdHMoI7Nzdpv92+PXDDDXIbFVVw4FpQ/mgtA7YaAUtsrFxIAaB5c2mi1K2bFDSOH5//Al2cIHjUKOmU5e4ur3fYMBkrzhgo13LA3MLWTZwI/Pgj4OZmQlaWCwYONP+HMT7rtip28q5/5x0p5TLS8/DDEsRerbvuks/ByJGSTydPylA8V2v06NLJZyM906b57dY6qZmtfdiIl4p01Q2ysrLMw2+fPy+/JLt3SyPJjAz5NTMaXF66JINg1a8v5c3/+1/+4x05Ir01cka0fM00GWvQEa/qFzHt/Lvmq2bNmlJiYQx5bSxGqca998rVJScYevXnbnKctGcxLTZWfpW++kp+CWzp3z//umbN8Fqv67Bmfghe7bUW06KvvsWa1kBqq2hMuGUtVv8ZgtHtN2JIQjWcmmo7SDl92va/QE9P+cIbMaDJJBeEoCB533bsMI92bizGGGNFWbHCPHJ5UJBc7IOCZKlb13zfcr1x/733pC2v0ann7rtlfLPk5PydjiwfW94PCwN27ZKCMZNJ3s4qVaTt7qkCh7nKr3lzGbbk0iXzP8TwcIkVQ0IkWPLzM99a3s97+/zzwKxZ5tfVvr3Eu7t3S9vktDTzeevUsQ5qjMDG11e25208mZUlxfFGgJJ3OXky/3vv4yN5ZTJJgNC2rfyrbtZMvhohIbK+KGfPykW6TZvN2LLleqtzGW2kLXtoF+SvvySg8PKS/Bk+XGpT16+Xgs/16+W/wfTpsn9AgPxTNwKaG24w/95Y5s/48eaAZflyc17UqyfVJt26yU9NaKh1ek6fltdleYEujjNn8h8nOPjqj5ORIRf7Nm025eZzy5ZXfxyl5DglfV2WwUreDnlXo7Ty2UjPtGnJBZZpsgSmMivuIEnZ2VY9SR593BWf/R6OR3odw7TB/5gDk/Pn5a/3//4n7Sj++kuqY4y/QIYVK6T05cUXzX9/q1aVoCUoSL4tjRpJgLJsmayrUsV8JWzRAtlunvD11UhPz18V6uIiTTMyM+1bEhMLfumRkdb//G1VcRj3x42zHUi4uck8ZcZ4ZZZjl9m6f+VKwelxcZELT1hY0YsxovjV/AMymSSIMQIaI8A5dgz44AMp7k9Pl4tQ375Sz1+zZsHptaW0/9nZKhkoznFK6x+irdeVnS2Bxq5d1suePdZBozECfFFcXCRYq1fPvNSvb74fGiqduErjdRlKWnprz/tu9HQ3Apr//pNBbe2pqgoJkVpWo5TFGJbG2VSoUvIKqLCB7BjAlCKHd9HLzpby1NOn5e/KG29AZ2ZCeXpKENGokYTGRmWusYwbJ+WgcXHQrVrjVGZVxKEJeuAvZCF/aYQbMrEAMWjgfxb1qifBY+oUaewQFyd/p6pVkwClWjVZrr8e2LvX7iqSxET5Edu2zbzs2CFJFRqAglIaQUEK9epJQOHubt+Sni7/kPftNSEr2wVuribUb+CCtm3lYlJQKYCxXM1Xpqh6XqP5ysqVcoHLzJR/0926AW+/Lf/SjZ7C9qpoRcGlxXhdbdpsyP3HWpzXVVr5UxxZWTJvnhHQbNxoXe1hBCoxMTJorRGg1K5dcMGgobRfl6MurKmp0hTtv//ke7F0qbnhp6urtJ957z0pxFX5/884HQYwhSssgGE36lJUal3r+p3ULipbj445ofXx47JoLf3g3n1X66eeku6y3btr3aKF1pMmyfakJKvq0gSESddVhEn33LNntW7aVOt27XRmxy56b8cR+tcb3tRvD92lhw3T+obrMnSgZ4pVjaubytQKWdKjFtnaVWVZbXdx0ToiQutu3bQeOVKS9/PPWm/bJsmx+br6ncx9OYcOSU/cV17Rul8/revXt67xrVJF686dtX7iCa1nzdK6f385p5dXyfJ61KjiHcdkkh7L585pffSo9AhWSms3t2ytlNaDBkmX0aSkgnsDl2Z6ylK/flo/+qjWW7fKbb9+jk6RqGxDA1TE917ripPPFTV/SktFyeeKCsBGXUAcwTYwKF6Jh9ZSg3LokLRkt6xKmD5dFhcX6SVrOTBoVpZxXyMrLQvZ6dnINgHZbl44ftw4giRi+oKamL4AUDDh1tsAf3+FgIU14G/ygb9fPfgHKPhXcUXA0cbwXwD4+/vC/62l8K/pD//EBEwcexFrsjtijMtU3JnWAns+DEZc413YswfYv80izf/JP7cmTdwx+EF3NG4ss503bgy8/vg5fP5rdXgiFRnwwMN3nsUr08Nw4ABw8CCsbo02rpbCwqRASEotcl7X/DBMz/PPyRjItG1b6WLYqpUstWtb/8tatKh06leLW09rjNDu5SWFS7bqsYtT+lZa9calqbTqxKlwFfG9r0iYP1QQViGh4C6VaWlAfLwEKXmXw4dttaWQqg0XpVG1qkbDWmnw1qlwVdlwDQuRnrXbt8D13Gm4pSXCVWfBFdlwrV4Nbn17IT0d+O+neBzJqIksuMMVWajhdRH1otyR7lkFiYlA4hUTEpNckJhYcG+KwkRGmoMT47ZxY+n5a8tddwE11CmMDP8dM070xkkdVmix9KVL+QOb3bulSsiye2lwMNC7t9QitWoljSvz9gZ2JiwGLj/M6/LBfC4fzOfCcTLHAnh7W/cUMEpOlJKGiidOWO/v5SUN5+rXB7pEp6N+wFnUdz+Oeh4n8OGmjpi9KBgeyECG9sDA859h2vmcodFr1wa2HpX743+QA9epY17q1weiZPPoZE/M+NUFXjklHn17ZWPaL9UtUiH9DI22GomJ5uXKFbk9elTGPtu6VUpZPDxkJPNp06wnjbWHBCthAB6EPX/Cq1SRjkDXXWe93mhPYXT1GziwYgz8RUREzumaC2C0ltKTFStk/Ig//7QOYry9pStb4wYZqB94AfU8TqC+Poj6z/RHWLgr1OuvyRT2ly6Zn+TqigtROzEKP2MkPsMMjMTJkNbAx9+bgxTD228Xmr7TKgyj7rIu8bBFKXNvGFtVFjt3yvQ0Hh7SYyNvMsobi4GJiKg0XRMBzLFjErAsXy63R3MKQ0JDgfAqiTh0yhceyEAm3DE8aj2m7esN/HfR+iDjjgKqttS3DB4sg1/Uqye3devil717ge7jgIwMTPV4Bvh1GRB9z1Wn9WpLPApiBAy2xnJwBLanICKi0uTUAUxBjW9PnbIOWA4elPVVqwK33JiGZ2/ciFuSFqLJth/Q/9hk9MApjMQMzMAjOHmxgxzUIjhBvXrSYhOQuo+BA/Mn5sYbS2cm2FJiBAyxscl46CGHJoWIiKjUOXUAY4zO+Pzz0iDUCFj27JHtgYEanVtewphmW3HLgGpoMbglXNZvBaI7SfFLp074pf8aafiSlYWpHuOA75YB0cVsnFHBpo4nIiKqrBwWwBw75oNTpwrvcmoyyUCvZ87I8NbG7dix1nOuzJkjCwD06pGNEbWX45ZL89Fm59dwXZ0kG9q9Cri0lNal+/cDDRqY++fefXeFKTkhIiKiojksgElNdcWwYTJBb94Axbg15j2xxcMDyMzU0FrBXWWha4N4fL68AWrXcgFqDpXI6KEHZIz5jh1loBNAusE0bGh9MJacEBERORWHViEtWSILIFPeVK8u81tERkrMYTzOe1utGvB4/xOYsTAMnjndluun7ULt2g0AKOlmZM9sY0REROSUHBrAeHkBt98uE8TVrn0VTzSZcDo2DqPwq7nxbUA36wMTERFRpeWwAEYpGYY9NPQqgxcAOHkSv3gOAtwvASaTNL6duawskklEREQVkMMCmDp1ktG7dzEHNAsPB/btkzHqV65k41siIqJrjMMCGE9P09UPaDZzpsyz/vHHMmb9jTfKQkRERNcUF0cnwG4LFshsiwcPFm8WQyIiIqo07ApglFI9lVJ7lVIHlFLjbWwPVEotUkptU0rtUko9UKqpXL1aRsdt1w6YN0+6QhMREdE1q8gARinlCmAqgF4AmgK4TynVNM9ujwHYrbVuBaALgA+UUh6lksIdO4A77gAiIoDffwf8/ErlsEREROS87CmBaQ/ggNb6kNY6A8D3AGLy7KMB+CulFAA/ABcAZKE0HD8OBAcDf/0lt0RERHTNs6cRbziAYxaPjwO4Ic8+/wdgIYAEAP4A7tFal6yhSnY24OoK9OolvY1YbUREREQ57AlglI11Os/jHgC2AugKoAGAv5VSq7XWV6wOpNRIACMBoHr16oiNjbV5QtfUVLR85hmcvP12nLr9djuSSAVJSkoqMJ+p9DCfyw/zunwwn8sH87n47AlgjgOwHGquFqSkxdIDAN7WWmsAB5RShwE0BrDeciet9QwAMwAgKipKd+nSJf/ZMjKAvn2BPXsQ+OabaGxrH7JbbGwsbOYzlSrmc/lhXpcP5nP5YD4Xnz1tYDYAaKSUqpfTMPdeSHWRpaMAugGAUioUQBSAQ1edGpMJGDFCJkiaMUMa7xIRERHlUWQJjNY6Syk1BsBfAFwBzNJa71JKjcrZ/imA1wDMUUrtgFQ5Pae1PndVKdEaGDcOmDsXePNNCWSIiIiIbLBrJF6t9R8A/siz7lOL+wkAbitxaoKDgSeeAMbnG2qGiIiIKJdDZ6POlZQk47tMmCAlMcpWu2EiIiIi4fipBH7/HahfH9i6VR4zeCEiIqIiODaAWbsWGDgQqFMHaNDAoUkhIiIi5+GwAMbzzBmgRw8gPBz44w/A399RSSEiIiIn47A2MB6XLsmd2bOBkBBHJYOIiIickGOrkFxdgX37HJoEIiIicj6ODWA8PACOQEhERERXyWEBTHpwMLBsGRAd7agkEBERkZNyWACTUbUqgxciIiIqFsePA0NERER0lRjAEBERkdNhAENEREROhwEMEREROR0GMEREROR0GMAQERGR02EAQ0RERE6HAQwRERE5HYcFMK5paYDWjjo9EREROTGHBTA+R48CBw866vRERETkxBxbhbR8uUNPT0RERM7JYQGMdnNjAENERETF4rAAJsvbWwIYtoMhIiKiq+SwACbb1xc4exbYudNRSSAiIiIn5bgSGF9fYMUKIDLSUUkgIiIiJ+XmqBNrV1egSxdHnZ6IiIicmGN7Ie3aBbz4IpCV5dBkEBERkXNxbACzcyfwxhvA5s0OTQYRERE5F8cGMEYVErtTExER0VVwbAATGgo0b84AhoiIiK6K4ydz7NoVWLMGSE93dEqIiIjISTg+gOnWDfDwAPbvd3RKiIiIyEk4rBt1rl69gHPnADfHJ4WIiIicg+OjBnd3R6eAiIiInIzjq5AAYOFCoFUrICnJ0SkhIiIiJ1AxAhhvb2D7dmnMS0RERFSEihHA3HSTVCWxOzURERHZoWIEMD4+QHQ0AxgiIiKyS8UIYAAZD2bzZuDCBUenhIiIiCo4x/dCMtx+u4wFk5gIVK3q6NQQERFRBVZxApjrrwe++cbRqSAiIiInUHGqkABAayA+3tGpICIiogquYgUwU6cCdesCJ086OiVERERUgVWsACY6Wm5XrHBsOoiIiKhCq1gBTOvWQJUq7E5NREREhapYAYyrK9ClCwMYIiIiKlTFCmAAoFs34PBhWYiIiIhsqDjdqA0xMUBICBAc7OiUEBERUQVV8QKY2rVlISIiIipAxatCAoBDh6RLtdaOTgkRERFVQBUzgFmxAhgzBoiLc3RKiIiIqAKyK4BRSvVUSu1VSh1QSo0vYJ8uSqmtSqldSqmVJUpV165yy95IREREZEORAYxSyhXAVAC9ADQFcJ9SqmmefaoAmAbgDq11MwADS5SqevVkRF4GMERERGSDPSUw7QEc0Fof0lpnAPgeQEyefQYB+EVrfRQAtNZnSpyyrl2lKik7u8SHIiIiosrFnl5I4QCOWTw+DuCGPPtEAnBXSsUC8Afwkdb6q7wHUkqNBDASAKpXr47Y2NgCTxpSowaaXLmCDd98g5SICDuSSbYkJSUVms9UOpjP5Yd5XT6Yz+WD+Vx89gQwysa6vN2D3ABcB6AbAG8Aa5VS67TW+6yepPUMADMAICoqSnfp0qXgs7ZvDzz3HNr7+9uRRCpIbGwsCs1nKhXM5/LDvC4fzOfywXwuPnsCmOMALAdmqQUgwcY+57TWyQCSlVKrALQCsA/F5eNT7KcSERFR5WZPG5gNABoppeoppTwA3AtgYZ59FgDopJRyU0r5QKqYSt4HevFioEcPICOjxIciIiKiyqPIAEZrnQVgDIC/IEHJj1rrXUqpUUqpUTn7xAFYDGA7gPUAZmqtd5Y4dampwJIlwIYNJT4UERERVR52TSWgtf4DwB951n2a5/F7AN4rvaQB6NwZUEq6U990U6kemoiIiJxXxRyJ11C1KtCmDceDISIiIisVO4ABgG7dgH//BVJSHJ0SIiIiqiAqfgDTo4dUJZ096+iUEBERUQVhVxsYh+rWTRYiIiKiHBW/BMaQmOjoFBAREVEF4RwBzLRpQLVqwOXLjk4JERERVQDOEcA0awZkZgKrVjk6JURERFQBOEcA06ED4OXF7tREREQEwFkCGE9PoGNHYNkyR6eEiIiIKgDnCGAA6Ym0Ywdw5oyjU0JEREQOVvG7URv69QP8/QEPD0enhIiIiBzMeQKYqChZiIiI6JrnPFVIAHD6NPDzz45OBRERETmYcwUw338PDBgAHD3q6JQQERGRAzlXANO1q9yuWOHYdBAREZFDOVcA06wZUL06x4MhIiK6xjlXAOPiAtxyi4wHo7WjU0NEREQO4lwBDCDVSCdOAIcOOTolRERE5CDOF8DcfTcQHw80aODolBAREZGDOM84MIagIFmIiIjomuV8JTCANOIdNgwwmRydEiIiInIA5wxgjh8HvvpK5kYiIiKia45zBjC33CK37E5NRER0TXJYAJOZWYJT164NNGrEAIaIiOga5bAA5sgRX0yZAmRlFfMA3boBK1eW4ABERETkrBwWwPj4ZOGpp4AbbgA2by7GAbp3l67UJ0+WetqIiIioYnNYABMenooffpAx6a6/Hnj6aSAp6SoO0L8/sGWLVCcRERHRNcWhjXjvvhvYswd4+GFg8mSgeXPgjz+u8iDZ2WWSNiIiIqq4HN4LqUoV4NNPgdWrAR8foHdv4J57gFOn7HjyrFmAvz/w+usMZIiIiK4hDg9gDB07So3Qq68Cv/4KNGkCzJhRxFh1AwcCMTHASy8Bt93G9jBERETXiAoTwACAp6fEIjt2AK1bA488AnTuDMTFFfAEf3/g22+BL74A1q4FWrUCFi8uzyQTERGRA1SoAMYQGSlDvMyaBezeLXHJxIlAWpqNnZUCRowANm4EwsKAAwfKPb1ERERUvipkAANIXPLAA1L6cvfdUrXUqhUQG1vAE5o2BdavBx57TB4vWQIcOlReySUiIqJyVGEDGENICPDNN8BffwGZmTKLwIMPAhcu2NjZy0sin8xMYORIoE0b4Mcfyz3NREREVLYqfABjuO02YOdO4LnngC+/lEa+334LaG1jZ3d3Kapp2lS6NI0cCaSklHeSiYiIqIw4TQADSDfrt98GNm0C6tYFBg8GevQoYFLqunWBVauA8eOBmTNltLwrV8o5xURERFQWnCqAMbRqBfz7L/Dxx8CGDfJ4xAjg+PE8O7q7A2+9JfVPffoAAQEOSS8RERGVLqcMYADA1RV4/HHg4EHgqaeAuXOl99ILLwCXL+fZ+dZbgXfekfvbtwP3329jJyIiInIWThvAGKpWBd5/H9i7F+jXD3jzTaBhQ+CTT4CMDBtP2LgR+O47GWjmv//KO7lERERUCpw+gDHUrSulMBs3Ai1aAE88IW14f/opT0PfESNk3gKtZfjf994rYrhfIiIiqmgqTQBjuO46YNkymRTS21vGkImOBtassdgpOlrmLYiJAZ59VkbyJSIiIqdR6QIYQIaC6dUL2LpVRvM9dgzo1Am4806Z/RoAEBQkxTPffw8MGybrli612IGIiIgqqkoZwBhcXWU03/37gTfekOkJmjcHRo/Ome1aKRknxsNDqpRGj5YBZrp0kfoom3MXEBERkaNV6gDG4OMDTJggPZYefVSGhWnYEJg0CUhKytlJKalnevttKbIZMgQID5ciHCIiIqpQrokAxlC9uowdExcnVUyvvCKBzGefAVlZAEJDZajf/fulOql7d6BGDXlyfLzMaZCa6siXQERERLjGAhhDw4bS/GXtWqBRI2DUKOmx9H//lzNYr4sL0K0b8MMPEukA0lbm/vulVObJJ2WabCIiInKIazKAMXToILMNzJ8vbXoff1zikzFjbLTlfeYZaUTTowcwbRrQrBnQtSu7YBMRETnANR3AANL05c47ZUy7//4D7roL+Pxzact7663AggVAdjakVOaWW2QQvBMnZPS866+X9QAwZYrMNklERERl7poPYCy1by8zXR8/LiP67t0rwU39+jITwblzOTtWrw48/bR5eoKTJ4Hnn5cR9KKjpaHNyZOOehlERESVnl0BjFKqp1Jqr1LqgFJqfCH7Xa+UylZKDSi9JJa/6tUlHjl0CPjlF2kzM348UKuWdMvetCnPE2rUkKjngw+AlBRg7Fipi1q40CHpJyIiquyKDGCUUq4ApgLoBaApgPuUUk0L2O8dAH+VdiIdxc1N5ldatkxqh0aMkMa/7dpJQcvcuUB6es7OwcEyq+S2bdLA9+WXgZtukm2ffSZtZ2bPBi5edNjrISIiqizsKYFpD+CA1vqQ1joDwPcAYmzs9ziAnwGcKcX0VRjNmknb3RMngI8+Ai5ckKFi6tQBXnpJCmByNWkifbSrVZPHbm7AgQMSAYWGAn37At9+64iXQUREVCkobTXToY0dpDqop9b6oZzH9wO4QWs9xmKfcADfAugK4AsAv2mt59k41kgAIwGgevXq1/3444+l9TrKnckEbNoUhF9/DcfatdWgFNCp01n07HkKEREpqF49HW5uFnmrNfz37UPI8uWoHhuL9JAQbPnkEwBA4LZtSIyKgsnLq9TTmZSUBD8/v1I/LlljPpcf5nX5YD6XD+Zz4W655ZZNWut2trbZE8AMBNAjTwDTXmv9uMU+PwH4QGu9Tik1BwUEMJaioqL03r17r+6VVFCHDwPTp8sIv0YNkYuLNIOJiJCZsiMiLO7XNqGOzzl41QmRJ4SGynQGffsC994L9OwJeHqWStpiY2PRpUuXUjkWFYz5XH6Y1+WD+Vw+mM+FU0oVGMC42fH84wBqWzyuBSAhzz7tAHyvlAKAYAC3K6WytNa/Xn1ynU+9esC770qt0bp1wJEjssTHy7J6tfS+zs42nuECIARhYUDdiCqI6HgMdS9sQcSiZYj4/jPU9X0DIdMnIb1rL6SmaKSmKaSmIt+SkpJ/Xd7tly41weHDQO/eQEiIo3KIiIiodNkTwGwA0EgpVQ/ACQD3AhhkuYPWup5x36IE5tfSS6Zz8PGRse1sycqS9jPx8ebgRm4VNh4JxS9HeyIzs6fsnAxgqPFMZff5PTwAb2/r5cyZKhgxQsa7iY4GYmKAO+4AoqJkHRERkTMqMoDRWmcppcZAehe5Apiltd6llBqVs/3TMk5jpeDmZq5Guvnm/NtNJpkh2whuzp4FvLwA74M74b10EbzjNsM79Ty8kQrvBuHw/n42fEL94e1pgrevC7y8ZPbtvFasWIsqVbpg4UIZlO+552Rp1EgCmZgYCWzc7AlliYiIKgi7Llta6z8A/JFnnc3ARWs9vOTJuva4uAA1a8py442WW5rLkpUlA9CsWCF9utv5y+YhQ2XEva5dZenYEfD1zX22UkCbNrJMnCgTbS9aJEPUfPyxDF1TrZpUMd1xh/T2ZnsyIiKq6Pi/21m4uQE33CCLpXbtgKNHZSqDd98F3N1l0skvvpDt5oY3AIDatYFHH5XlyhXgr78kmFm0CPjqK6mG6tZNgpm+faUh8tUymYBLl6Sr+YULwPnz5vsmE9C/vwwKSEREVFwMYJzdk0/KkpwM/POPTDgZFibbsrJw44ABMpTwddeZl+bNAQ8PBAQAAwfKkpUlT1+wQJbRo2Vp106Cmc6dpWGwZTBi3M+77uJFoLDObU8/LcHR6NFA9+7m6aSIiIjsxQCmsvD1BW67TRZDcjJO9eiBOmfOAN9/LyMCA8CkSTJS8OXL0j3quuvg1rIlOnf2ROfOUq0UF4fcdjMTJ9oOSAIDgapVpQqqalXpjWXct1xvue7yZZks84svgF9/ldjqkUdkigZj3D8iIqKiMICpzAIDcWjUKNTp0kUikEOHgM2bpQQGkDY1o0fLfTc3WX/ddVBPPYWmTZuiaVOZA+rUKWDLFglYjGAkKKh4DX+Dg4G335YY6uefgU8/BZ55BnjxReDuuyU5HTqwhxQRERWOhffXCqWABg2kvqhJE1l3yy0S1Pz0k0QRISFSLJKaKtt/+AFo1Qphzz+AXgf/Dzea1iCqxhVUr17yXkuensCgQcCqVcCOHcBDD8mpb7xRGhx/+imQmFiycxARUeXFEphrmVJS71OvHjAgZwJxy7qigADpFvX778CcOeb1p07J6MH//AOcOQO0bi1DDBez2KR5c+D//k9KZr79VkY1Hj1aYqr77wdGjQJatizuiyw9SUkyls/x49a3J04Ahw+3xk03SRvrDh2kmzrb9hARlR0GMGTNMgjp1UsWrYGEBPNM28aQvtOmmSelDAiQKOP664HJk2WdyXRVV3E/P2DkSODhh4H//pNSmNmzJaC58UYJagYMkPFxSpPW0vg4b2CS9/by5fzPDQqSHlUmk8I330haAaBKFaB9ewlojNvq1Us33URE1zIGMFQ0paQ/dXg4cPvt5vUzZgBPPCGBjbGsX2/eftttcuVv1cq8tGkD1KhR5Ok6dJBl8mQp/Pn0UymNefJJmdT7/vuly3dyskyZYHlr77qUFOlKnpAApKdbp8HFRTpz1aoloxZ36yYvv1Yt823NmjL6MgDExm5Bp05dsGePBF/G8sYbEscBUtBl9IS/4QbJijKYv5OI6JrAAIaKz9fX9tg0hp49gTVr5Er+ww/mdX/+KfcnTpQooUULoFkzKc7Io2pV4KmnJHBZvlxKOCZPBt57z74kurtLkOHra741lpAQKfWpWTN/cBIWdvXtfFxd5WU0ayZBFiCB0qZN5oBmzRrpEGakrVUr66CmUSM2YL7WaA3s2SO1sN7ejk5NxZSaKn9YbI02TtcuBjBUdsaNkwWQ+pft281VShkZwCefmKfvBiR6ePpp4H//k2KLrVulwbG3N1xcZMyY7t2lxOTvvyUAMIKRvEGKcevuXu6v2oqvr0wdYTl9REKCdSnNnDnA1KmyrVo1ifH69pXbwECHJJvKwdmzMnjkzJkSwAQHSzXpo4+ah3K61iUlSdu499+XgtuxY4EHHwT8/R2dMqoIGMBQ+QgMBDp1Mj/28JCGJ8eOydQIO3bIrfHLHR8vg+65uMhgMc2bS0nNwIGo2awZhg1zzMsoDTVrAv36yQLIYMm7d0sws3o18McfwNy5UgLUpYt5VOS6dcs3nZmZwOHD0mMsMFCaObFhcsmYTMCyZRK0zJ8veRwdDXz0kax//XXgnXekh97//lcxGq87gskk34Hx4yXgv/tuuf3f/6TgduRIqb2uXdvRKSVHYgBDjqMUUKeOLJZtawApivjxR3Ngs2OH/OIbdTRr10r3pCZNgKZNzbeRkY4vdrlKrq4Sm7VoId3Js7OBdetkIMGFC+WH+oknZPsdd8jSrl3pBhMmE3DggDRh2rBBli1bgLQ06/38/SWYsVyqVMm/Lu9StaoEbtdqAJSQIA3Sv/hCgsKqVaWk5aGHzMMyPfEEsH+/BDOzZ0vJXNeuUoXaq9e1k3f//SclLf/9J30C5s2TIA+Qz+fkyTJzyocfSmDz1FPyX4euPQxgqGKynOfAkJJi/hV3cZG/X+vXS6BjdP/+5x/psrR6tbS1MYKbxo2tJrmsyFxdgZtukuWdd+SiZkzA+fbb0jA4LAzo00eCmW7dzI2J7aG19KwyApUNG4CNG829rHx8gLZtpTqjVSsJqC5fzr9cuiS96PfvN6/LyCj4vD4+8lYYMaix1KlTOS/OWVnyEfz8cxmJwGSSoZfeeENK32w14G7USIYUePVVed4nn8j7HBUl7cCGDr2699qZJCRIicvXX8vne84caaxv+dlo317akMXHS6A3c6Z0hOzcWQKZPn0q52eJbFO6sElrylBUVJTeu3evQ859LYmNjUWXLl0cnYyylZIiM3LHxUldi7+//LqNGydXEUNEhFypg4OlRCcxUa6oNhoPX63yyucLF+SiuHCh3CYmSsPPW2+Vl96nT/72E+fOWQcrGzYAp0/LNjc3CVKuv968NGlS/IEK09LMwY1lsHP+vLTz2LVLloQE83N8fSXOzBvY1K5tu0Hz1eZ1aqp5ni5juXxZGnHXrStLabapOHwYmDVLloQEGTJp+HBpu9Go0dUdKzNTxpmcMkU+ulWrytQbY8ZIiVZZKq/PdFqalKq8+aa83qeeAiZMsO89uXxZgpiPPpLa6MhIqWZypkDvmviNLgGl1CatdTub2xjAVG7X9JcjM1PqRXbvluBm/375W6eUdBOaPVv2CwoC6teXUppvvpF1e/dKO53ate26mjsinzMygJUrzbOJx8fL+htukLYzhw9LsHL4sKxXSl6iZbDSqpVjunJfvChvixHQGMupU+Z9/P3zBzZRUcDq1f+hYcMbrAISy4lF8y7GwNKFqVrVHMzYWoq6mGZkyLxhn38OLF0q63r2lDGN+vQpea2m1lK4OGWK1KS6uQH33CMX67ZtS3bsgpT1Z1preS1PPw0cOSKlUu+/L1/Fq5WZKVOTfPCBBHrVqkkJ4mOPVfwG0df0b7QdnDKAuXLlCs6cOYPMzMxyTFXlk5aWBi8ONpJfVpb86mVmyv2sLPlFDQ2V7adPmxuAuLnJ4ukpDT4AeZ6ra255dUXI54wMuVinpMh9V1dJsoeH+baiF6+bTJJ2463JzJTHxlg6hXFxMb8lxmL5WGt3ZGSEIDAwAIGBUv11+LBcPPMueYOeggKcqlXlIvzll1LSVbu2xMYjRkjVWFk4dAj4+GNpT5OUJNUn//ufBEql2c24LC+s27dLldiKFdIG6MMPpSq0pLSWoQo++EACe3d3YPBgKdUx2hpVNAxgCud0AcyVK1dw+vRphIeHw9vbG4oDYxRbYmIi/Nnn8OolJ8tVLD3dvHh4yHxSgDQsTkvLjRIyXV3hHhRkHqU4LU1+PR00cMVVDoJc4WVmSpampQEZGanw8/POjStdXWUp7GdCa43U1FScOHECoaGhCAgIKGRf6eJsK7AxAh7Lxs1ublJ99/DDMnZjeb3lRvXJxx8DR4/KR3PsWGnQ6u9vvXh4XP3xy+LCeu4c8NJLMgZmlSrS6+rhh0s+t5ot+/dLYDR7tnyVb7tNSnu6di2b8xVXZQpgMjKkqnjbNvncde5c8hp6pwtgDhw4gJo1a8LHWSoxKzAGMGXk0iXjagqkpyM7NRWugYHSzkZr6cJjMskvpVEEUqWKlG1rLc/lyFzFUpLPdEpKChISEtCwYcNin19rKb05ckTauERHO7aaIitLSoEmT5bea7Z4eMgFxc8vf3BT0JKQsB233toSoaESlxcnCDJkZsrMI6+8Iu22HntMukNXrVr8Y9rr/Hngs8+kQbRRRRkUJFN7GEtwsPXjvEtZFq5eTQBj1Irv2WNe4uKkxtvb27pTpnE/LKxsBse8eFECla1bZdm2TaqBLStNlJIqzltukcCxY8erb2/mdAFMXFwcGjduzJKXUsAApnxY5bPW8u1OT88NcJCRYe5LnJUl33jAHOB4eMivaJUqEvhYBjj8HlgpyWdaa409e/agiTEjeyWzc6fM3pGYmH9JSrK93nLJzi742EFBUsOadwkLy7/O09P8vMWLpYprzx4pBZkyRS6s5S09XQK9vXulhM1Yzp0z31q2+bfk52c7sAkONgc/xn3ja2zv19ZWAHP5snWAYtw/eNA6jbVqSbu2qCipOo6Lk8Vy3rbAQNuBTUSEfaW0JpOUPBpBinF79Kh5n7AwaU/XurV51pjz56WKcPlyGfUiI0N+7q6/XoKZrl0l+C9q9GmnDGAq6w9MeWMAUz6uKp+NfsmWwU16uvwKBAfLL9Hu3bKvi4u5AUtYmPx9ycoyBzju7tdcgFPSzzR/X2wzCgYTE2WOsCVLNiM8vC1On0bucuoUrB5fuWL7WIGBEsh4eUl7l4YNJXDp3bvifly1loJVy+Am72IEO8aSd5wkg5ubFLbmDW7yBjrBwcCyZdvg6dnKKmCxbMzu7i691xo3No8IYQQttr4GWgMnT5qDmbg4cz8Go/chIIFDVJR1YNOkidSe5w1WkpLkOa6u8hwjUDFujaaDBUlJAf791xzQbNggP4OenhLEdO0qpTTt2+cv6WMAcw1jAFM+SjWfs7LkypCRYV7S06WFaECA/MoeOCD7KmUuwaldW/qOGvu7uztHy92rxACmfNhTtZGaKtVplkGNZaBz/rwMwvfEEyWrgqqItJYLs2UJTkH3jdvz581DVuVllJRYBimNG0uvrNJqs3Phgu3AxujBaCkgwFyaYgQqzZqVznxdV67IUF1GQLN1q+SLj48M2G5UObVtC7i5FRzAVKCmTM5v+PDhOHfuHH777TdHJ4WcmZtb4Y0DfH3lL61lcJORYf5re+mSdfmuUU3VoIH85UlJMc+OZ5TiVLIgh8qHt7dURUREODol5U8p81xs9r7+7GypXTYCnHPngCNHtuC++9ogJKTsS6eqVjUPkmkpOdlcTeXjIwFL3bpll56AACmN691bHl+4IENCLF8uy/jxsr6oueAYwBA5G3d3c3duW4KCpOzesgTH6FcNyC/oyZP5j9m8uexz+bK5F5UR5Li5McghKiFXV3PVkSE29nKRVTBlzddXeq85akqGqlWt54c7dQqIjZVg5vPPC34eAxiiysbdvfCR08LC5BfDMrjJzDQHKMZfREsuLkCbNvKX7NQp6wDHuGWvQSIqBWFhwL33ylJYAMO/VGUkPT0dTz75JEJDQ+Hl5YUOHTpgzZo1udszMzPxxBNPoGbNmvD09ETt2rUx3ig3A/DLL7+gZcuW8Pb2RtWqVdG5c2ectmyBRVRcrq5S9h8YKK0Kw8Oty4sjIqQMuWlTqaqKiJB9jO3p6VJKc/KkVJ4fOCCjqxkOHpTK9QMHZHtCggRFBntGpSMiKgJLYMrIs88+ix9//BGzZs1C/fr1MXnyZPTs2RP79+9HjRo18PHHH2P+/Pn4/vvvUbduXRw/fhxGo+ZTp07h3nvvxVtvvYX+/fsjKSkJ6woa4IGotCllHn3YVqmK0ehBa/NwuZZBiZeXVPanp0v3hawsqfQ2RrTatUvWGdVTHh7ST7VaNdluNEBmlRURFcK5AhhbLeLvvlvmpU9JAW6/Pf/24cNlOXcOGDAg//bRo2VSkWPHZOpTS7GxxUpmcnIypk+fjpkzZ6J3TiulTz/9FMuXL8fUqVPx+uuvIz4+HpGRkejUqROUUqhTpw5uvPFGAEBCQgIyMzMxYMAAROS0DmteUcfBpmuXZQ8oS+Hh1o9NJusAJyTE3PA4I0NaEGptHuRv5065tRwjJygod7trcrJ5+F2jbU5F7ZtLRGXGuQIYJ3Hw4EFkZmbiJoum3q6uroiOjsbunPE9hg8fjltvvRWRkZG47bbbcPvtt6NXr15wcXFBq1at0L17dzRv3hy33XYbunfvjgEDBqB69eqOeklExWdMRmSw1WLRsm9pRET+LuQZGbItKws+x49bP1cpCZrCwqQ0KD7eXIJkLH5+UjJkMknpUFZWxRpPnoiumnN9gwsrEfHxKXx7cHDh22vXLnaJS17G2Dq2RhI21rVt2xZHjhzB4sWLsXz5cgwbNgytWrXC33//DVdXVyxZsgTr1q3DkiVL8MUXX+D555/HypUr0apVq1JJI1GFYnxXlLLuopGXqytSateGj4eHeRLO7GxzVVd2tjQwNoIUIzCKiJAAJjUVOH4caNFCSoJq1pTgZ8IE4MYbZVCTDRtkXXi4lPqwKouoQnKuAMZJNGzYEB4eHlizZg3q58wNn52djbVr12LQoEG5+/n7+2PgwIEYOHAghg8fjg4dOuDAgQOIjIyEUgrR0dGIjo7Gyy+/jGbNmuGHH35gAEPXNhcXZPv4FDyhipeXedphraXEJSvL3IXc3V16YE2cKI2QT5yQRsbGBC7//APcdZf5eO7uEuT89JOMgb5tG7BkiTnwqVlTGkJfzdjxRFQqGMCUAV9fX4wePRrjx49HcHAw6tWrhylTpuD06dN49NFHAQCTJ09GjRo10Lp1a7i7u+Pbb79FQEAAatWqhXXr1mHp0qXo0aMHQkNDsWXLFhw7dgxNHTGBCJGzUsrcVsZgzGr4yiu2n9O1q0zcYgQ2J07IYlTf/vMP8Oyz+Z+3dy8QGQl8+aX0+6xWzXp5/HEZbOPYMRmG1FhfWHd3IioUA5gy8s477wAAHnjgAVy6dAlt2rTB4sWLUaNGDQBS+vLee+9h//79UEqhTZs2+PPPP+Hj44PAwED8888/+OSTT3Dp0iXUrl0bL730EoYMGeLIl0RU+QUGAh06FLz90Uelsb9lcHPunJTEAOZGx0eOAJs2ydjxaWkSwADAhx/KtNGGgACpMtu7V9rkfP21zGRuOVlOSIhM4wtIqRJLeogAcC6kSo9zIZUP5nP5cbq5kFJSZNwdpaQL+c6dEticPy/BT3IyMHOm7Pv448CcOebZ8wAJYIwxoPr3lwlkLAOcxo2Bd9+V7X//LQGT5XTJAQHFCnrsmQuJSo75XLjCJnNkCQwRUVmyHEunWTNZCvLJJ7KkpZkDnJQU8/Y+fYAaNcwT6Rw9au6hBQAvvQT895/1MW+8Uaq+AOCRR2QQQsvpkZs0kaozQGYdDAysfDMvUqXEAIaIqKLx8jL3hLL0wAOyFOSnn2SqB8spkS0nBj17VkqBzp2TGfQAmYDGCGCaNZN9AgJwg5+f9M686y5zu58PP5QAxzIACguTbupE5YwBDBFRZVG7tiwF+eUX8/2sLCnlsRxk8PXXpbrq7Flc2bUL3pYNoDMzgf/9L/8xn3oK+OADqQqLjrYOboKDgZ49ZX16OrB5swRUQUGysBEzlQADGCKia5GbW/5BBUeOzL0bFxuLUMu2GW5uQGKilN4YJTxnz0obHEAClPr1Zf327eZSnoAACWDi46U6y5K/v1SZDRsm82k995w5wKlaVZbu3WWurtRU4NIlCYoY+BAYwBARkT2UkqoiPz8JKPKqWhX49VfrddnZsgDSU+vPPyWouXhRbi9cAKKiZPvly1K9Zaw3xub55Rc536pVUpoDSIBjNFT+6CPguuuAPXuAxYvN640lLIyjLldSfFeJiKhsWI7D4+dnDkBsadNGZjEHpLt4SooEMsYkoI0bA1OnSqmP5WI0OP73X9tVXFu2yOzq330nbXiqVTOX8AQFSRVYlSoyi/qJE9ZVXEbvMaqQGMAQEVHFopQM/Ofra14XESHj8BRk+HDgzjvzBzj16sl2Ly9pgHzmjIy7c/GiVEmNGSPb58yRNkCWPDyknZCfHzBtmpQgGcFNYKBUjz39tLmL/KVLss7Y5u9vPZAilSoGMERE5PxcXMztZoxqKUv9+sliyWQyl7A8/DDQubO5euviRVmMIColRUpodu6U9VeuSAnNuHGy/c03gW+/tT5+cLAEUQDwxBPSxT0gwBzk1K0L3HyzbF+7VhpWh4TIwukpisQAhoiIrk2WE3XWqSNLQcaNMwcrgAQ/ycnmxy+9JI2Rr1wxL5YBSEiIBFeXL8s8XFeuALVqmQOYp54C1q0z7+/mJg2Y//xTHr/4opyvenU5VvXqQIMG1nN/XWMBDwMYuia98sormDdvHnbu3Fkqx1u9ejV69+6Ns2fPIriw2ZSJqHJwcbGeVLRxY3OPLFtefNH2+thYuZ01S2ZKP3tWqrnOnLHuJbZypUwmmphoXhcTY244XbOmBDi+vlLl5esrJU4TJ8r2Bx+UKjGjas7PTyYo7dJFgp+//pL1gYHmubq8vK4yU8oXAxgqc3Xr1sWYMWMwzvLfi4ONGzcOjxvz0xAROVqTJrIUZPVquU1NNbfv8fQ0b3/0UanaSkqSQCY5WaqqAAlQYmOttwHAk09KAJOSAvTqlf+cL70EvPqqtO0ZMCD/JKVduwItW0oX+mPHZF1goHXJVhliAOPkMjIy4MFhv+1mMpmgtYafnx/8OHporqysLLi6ukJdY0XQRE7H29t2dddLLxX8HKWkl5XBZJJAyODpKW1wkpIkWDHm6jLG7UlJkaDn6FFZf/GiBEX/938SwOzdC7RqJfsabZGqVAHef19KifbsAV57TUqsjMbNAQHAHXdII+sLF+QYltv9/Yvs/l4+YdI1ZNWqVejQoQP8/PwQGBiIG264ATt37sScOXPg5+eHRYsWITIyEl5eXrjllltw6NCh3OcePHgQMTExCAsLg6+vL9q2bYvffvvN6vh169bFK6+8ghEjRqBKlSoYPHgwAODVV19FREQEPD09ERYWhqFDh+Y+R2uNd999Fw0aNIC3tzdatGiBb775xu7XlJCQgMGDB6NatWrw8fFB69atsWLFCrvS3KVLF8THx+OZZ56BUsrqAvnvv/+ic+fO8PHxQXh4OEaPHo0rV67kbk9OTsbQoUPh5+eH0NBQvPXWW+jTpw+GDx+eu8/FixcxbNgwBAUFwdvbG927d8euXbtytxv5/scff6B58+bw8PBAXFwcXnnlFTQ36o5zfPnll2jRogU8PT0RGhpqdZ7JkyejZcuW8PX1RXh4OB566CFcunTJ7jy0dP78edx3332oVasWvL290axZM8yePdtqH601PvjgAzRq1Aienp6oVasWnn/+ebveE1uvzcgHg7HPnDlz0KBBA3h6eiI5ORmLFy9Gp06dEBQUhKpVq6JHjx6Ii4uzOlZB5z5y5AhcXV2xceNGq/0///xzBAcHI8Nyzh4ichwXF+teXm5uMgt79+5S0vLII8CECVI6A0j11Nq1wL59EsBkZsrtsGGyPTwc+PJLmWn9+eflGNdfL42YAQl4/vtPxvT55BPg5Zel9Mf4bVm9WoKlFi2kt1nVqjJY4cqVhb6Myl8Cs3atFJ116SKjQZahrKwsxMTE4MEHH8TcuXORmZmJzZs3wzWnG116ejomTZqE2bNnw8fHB2PHjkW/fv2wdetWKKWQlJSEXr164fXXX4e3tzd++OEH3HXXXdi+fTsaW9StTp48GS+++CI2btwIrTV+/vlnvP/++/juu+/QokULnDlzBussGoO9+OKLmDdvHqZOnYqoqCisXbsWDz/8MIKCgtC7d+9CX1NycjI6d+6MkJAQzJ8/H+Hh4di2bVvu9qLS/Msvv6BVq1YYMWIERo8enfu8HTt24LbbbsOkSZMwc+ZMXLhwAU8++SRGjBiBefPmAQCefvpprFy5EvPnz0fNmjXx2muvYfXq1ehn0ZNg+PDh2Lt3LxYsWICgoCC88MIL6NmzJ/bt2wdvb28AQFpaGl5//XV89tlnqF69OmrUqJHvdX722WcYO3Ys3nzzTfTu3RtJSUlYvnx57nYXFxd8+OGHqF+/PuLj4/H444/j8ccfx9dff23XZ8NSWloa2rZti+eeew4BAQFYunQpHnnkEdSpUwfdunUDAEyYMAHTp0/H5MmTcfPNN+Ps2bPYsmWLXe+JvQ4fPoxvv/0WP/30Ezw8PODl5YXk5GQ8+eSTaNmyJVJTU/H666+jb9++2L17Nzw8PAo9d926ddG9e3fMmjUL7dqZJ4+dNWsW7r//fpYUElUWrq7Wc2xVqwZY/GnOJzoaOHDA/DgzU9ryGAFUdLQ0Vk5MlMbNxm2DBoWnQ2vtkCUyMlIXZPfu3bY3dO6cf5k6VbYlJ+ff1rq11h4eWru6au3lJY/z7vP99/L8o0fzb7tK58+f1wB0bGxsvm2zZ8/WAPSaNWty1x05ckS7uLjov//+u8Bj3nDDDfq1117LfRwREaH79Oljtc8HH3ygIyMjdUZGRr7nnzx5Unt5eelVq1ZZrR87dqzu1atXka9pxowZ2s/PT589e7bIfQtL83vvvWe1z/33369HjBhhtW7Lli0agD59+rROTEzU7u7u+rvvvsvdnpSUpKtUqaKHDRumtdZ63759GoBeuXJl7j6XLl3SAQEB+vPPP9dam/N948aNVueaOHGibtasWe7j8PBw/dxzz9n9Gv/880/t4eGhs7OztdZa//777xrAVeWTpXvuuUc/+OCDWmutExMTtaenp54+fbrNfYt6T/K+Nq0lH3x9fa32cXNz06dOnSo0XUlJSdrFxUWvXr3arnP/9NNPukqVKjo1NVVrLd9lAHrHjh2FnudqXLlypUTPL/D3haysWLHC0Um4JjCfCwdgoy4gjqjcVUiXL0ukl50tt5cvl+npqlatiuHDh6NHjx7o3bs3Jk+ejGPHjuVud3FxQfv27XMfR0REoGbNmtidM/pkcnIynn32WTRt2hRBQUHw8/PDxo0bcfToUavzWP67BYCBAwciLS0N9erVw4MPPoiffvoJ6enpAIA9e/YgLS0NPXv2zG334efnh+nTp+OgZZ1oAbZs2YKWLVsW2LPG3jTntWnTJnzzzTdWabrpppsASLXUwYMHkZmZaZVfvr6+VlUjcXFxcHFxQbRFyVpgYCBatGiRm6cA4ObmhtatWxeYljNnzuDEiRO5pR+2LF++HLfeeitq1aoFf39/3HXXXcjIyMCpU6cKfZ22ZGdn44033kDLli1RrVo1+Pn54ZdffsnNs927dyM9Pb3A9BT1ntirVq1aCM0zF87BgwcxaNAgNGjQAAEBAQgNDYXJZMpNW1HnjomJgYeHB37JmTRw1qxZaN++fb4qLSKikrKrCkkp1RPARwBcAczUWr+dZ/tgAM/lPEwCMFprffVl2kUxupvZ4uOTf/vatUC3bkBGhnQfmzu34Gqk2rULP76dZs+ejSeffBKLFy/GwoUL8cILL+DXvPODFGDcuHFYvHgx3n//fTRq1Ag+Pj4YOnRovrYDvpajUwKoXbs29u7di2XLlmHp0qV4+umnMWnSJPz3338w5cw0u2jRItTJ0+jL3Y4J0SQALnma8zKZTHjooYfwPxtDf4eHh2Pv3r0AUGij0sLSZvk8T0/P3Gq8qz0OAMTHx6N37954+OGH8eqrr6JatWrYvHkz7rvvvmK163j//ffxwQcf4KOPPkKLFi3g5+eHCRMm4MyZM3alp6jtLi4u+fbJNOaVsZD3cwQAffv2RXh4OD777DOEh4fDzc0NTZs2zX2dRZ3b3d0dQ4cOxaxZs3D33Xfj66+/xquvvlroc4iIiqPIEhillCuAqQB6AWgK4D6lVNM8ux0G0Flr3RLAawBmlHZCiyU6Gli2TFo/L1tW5m1gDK1atcJzzz2H2NhYdOnSBV9++SUAuWhv2LAhd7+jR48iISEBTXK6zq1ZswZDhw5F//790bJlS9SqVcuuUhIA8PLyQu/evTFlyhRs2LABu3btwj///IPGjRvD09MT8fHxaNiwodUSERFR5HHbtm2L7du349y5cza325NmDw8PZBsTulkcd9euXfnS1LBhQ3h7e6Nhw4Zwd3fH+vXrc5+TkpJiNW5L06ZNYTKZsHbt2tx1V65cwY4dO9C0ad6PaMFCQ0MRHh6OZcuW2dy+ceNGZGRkYMqUKYiOjkZkZCQSEhLsPn5ea9asQd++fXH//fejdevWaNCgAfbt22f1ujw9PQtMT1HvSfXq1XH69GmrYGPr1q1Fpuv8+fOIi4vDhAkT0L17dzRp0gSJiYnIysqy+9wA8PDDD2PFihWYNm0aEhMTce+99xZ5biKiq2VPFVJ7AAe01oe01hkAvgcQY7mD1vpfrfXFnIfrANQq3WSWQHS0tIouh+Dl8OHDGD9+PP7991/Ex8djxYoV2L59e+7F1M3NDU8++STWrl2LrVu3YtiwYWjWrBm6d+8OAIiMjMT8+fOxefNm7NixA0OGDEFaWlqR550zZw5mzpyJHTt24PDhw5g9ezbc3d3RqFEj+Pv7Y9y4cRg3bhxmzZqFAwcOYOvWrfj0008xY0bRceagQYMQEhKCO++8E6tXr8bhw4excOHC3B4v9qS5bt26WL16NU6cOJF74Xvuueewfv16jBo1Clu2bMGBAwfw22+/4ZFHHgEA+Pn5YcSIEXjuueewbNky7N69Gw899BBMJlNu6UqjRo0QExODRx55BKtXr849f0BAAAYNGmTnuyZeeOEFfPjhh5gyZQr27duHrVu34oMPPsg9j8lkwocffojDhw/ju+++w4cffnhVx7cUGRmJZcuWYc2aNdizZw/GjBmDw4cP52739/fH2LFj8fzzz2P27Nk4ePAg1q9fj+nTpwMo+j3p0qULLly4gDfffBMHDx7EF198kdswujBBQUEIDg7G559/jgMHDmDlypUYNWoU3Cy6MhZ1buP1dezYEc888wwGDBiAAGMsCiKi0lRQ4xhjATAAUm1kPL4fwP8Vsv84y/0LWorViLeCO3XqlO7Xr5+uWbOm9vDw0LVr19bPPPOMzsjIyG1E+euvv+qGDRtqDw8PffPNN+v9+/fnPv/IkSO6W7du2sfHR4eHh+v33ntP9+7dO7fRqta2G8TOnz9fd+jQQQcGBmofHx/drl07vWjRIq21NHg0mUz6448/1k2aNNEeHh46ODhYd+/eXS9ZssSu13Xs2DF9991368DAQO3t7a1bt26d2/DMnjSvXbtWt2zZUnt6emr5yIkNGzboHj16aH9/f+3j46ObN2+uX3rppdztiYmJesiQIdrHx0eHhITot956S3ft2lWPGjUqd58LFy7ooUOH6ipVqmgvLy/drVs3vXPnztzteRuvGmw1dJ05c6Zu0qSJdnd316GhofqBBx7I3fbRRx/pmjVrai8vL921a1f9ww8/aAD68OHDWuura8R74cIF3a9fP+3n56erV6+un3nmGT169Gjd2aLheHZ2tn7rrbd0vXr1tLu7u65Vq5aeMGGCXe+J1lp/+umnuk6dOtrHx0ffc889+sMPP8zXiDfv69da62XLlulmzZppT09P3axZM7148WLt6+urZ8+ebfe5tdb6yy+/zNfAurSwEW/5YOPS8sF8LhwKacSrdBF12kqpgQB6aK0fynl8P4D2Wut8w5gqpW4BMA1AR631eRvbRwIYCQDVq1e/7scff7R5zsDAQDRs2LDI4MuZzJ07F+PGjcPJkyfL9bzZ2dmFtv9wJunp6WjWrBnGjh1b4UbRrUz5XBqmTJmCr776Krfrd2kqaV4fOHAAl8u4QX9lkJSUxMEeywHzuXC33HLLJq11O1vb7GnEexxAbYvHtQDkawCglGoJYCaAXraCFwDQWs9ATvuYqKgo3cUYJCePuLg4+FvOMVEJeOXMKVHerysxMdFp83LLli2Ii4tD+/btkZiYiHfeeQdJSUkYOnRohXtNzpzPpSkpKQl79uzBp59+ihdeeKFM8qSkee3l5YU2bdqUYooqJ6MNH5Ut5nPx2dMGZgOARkqpekopDwD3AlhouYNSqg6AXwDcr7XeZ+MYVEG9+eabVl2ZLZdetubGKGeTJ09GmzZt0LVrV5w+fRqrVq1CrVoVp4mVLb169SowT998801HJ69MjRkzBjfddBNuuumm3PZMRERlocgqJABQSt0O4ENIN+pZWus3lFKjAEBr/alSaiaA/gDic56SVVCRjyEqKkobXWXziouLy+2ZQyVT1L/VCxcu4MKFCza3eXt7Izw8vKySVqlY5vOJEyeQajnPiIWqVauiquUIlnTVSloCw98X+7BkoHwwnwunlCpRFRK01n8A+CPPuk8t7j8E4KGSJJIcgxfU0segj4io7FXukXiJiIioUmIAQ0RERE6HAQwRERE5HQYwRERE5HQYwBAREZHTYQBTgXTp0gVjxowp9X2JiIgqGwYwRERE5HQYwBAREZHTYQBTSj777DOEhoYiKyvLav2gQYMQExODgwcPIiYmBmFhYfD19UXbtm3x22+/ldr5L168iGHDhiEoKAje3t7o3r07du3albv98uXLuP/++xESEgIvLy/Ur18fH374oVX6IyMj4eXlherVq6NHjx75XgsREVFFwQCmlNx99924dOkSli5dmrsuOTkZCxYswJAhQ5CUlIRevXrh77//xrZt29C/f3/cdddd2LNnT6mcf/jw4fjvv/+wYMECrF+/Hj4+PujZs2fukPYvvvgiduzYgd9++w179uzBrFmzckeM3bhxIx577DFMnDgRe/fuxdKlS9GzZ89SSRcREVFZsGsqgYrgySeBrVvL95ytWwMWhRSFCgoKwu233465c+fmXvznz58PNzc39O3bF15eXmjVqlXu/i+88AIWLVqEefPm4cUXXyxROvfv34+FCxdi5cqVuPnmmwEAX3/9NerUqYMff/wRY8aMQXx8PNq0aYP27dsDAOrWrZv7/KNHj8LX1xd33HEH/P39ERERYZVWIiKiioYlMKVoyJAh+PXXX5GSkgIAmDt3LgYMGAAvLy8kJyfj2WefRdOmTREUFAQ/Pz9s3LgRR48eLfF54+Li4OLigujo6Nx1gYGBaNGiRW4Jz+jRo/Hjjz+iVatWGDduHFauXJm776233oqIiAjUq1cPgwcPxpdffonExMQSp4uIiKisOE0JjL0lIY7Up08fuLm5YcGCBejWrRuWLl2KJUuWAADGjRuHxYsX4/3330ejRo3g4+ODoUOHIiMjo8TnLWxGcaUUAKBXr16Ij4/Hn3/+iWXLlqF3794YOHAgZs+eDX9/f2zevBmrVq3C33//jbfeegsTJkzAhg0bULNmzRKnj4iIqLSxBKYUeXp6YsCAAZg7dy5++OEHhIWFoXPnzgCANWvWYOjQoejfvz9atmyJWrVq4eDBg6Vy3qZNm8JkMmHt2rW5665cuYIdO3agcePGueuCg4Nx//33Y86cOfjiiy/w5ZdfIj09HQDg5uaGrl274q233sL27duRnJxcqo2MiYiISpPTlMA4iyFDhqB79+44fPgwBg0aBBcXiREjIyMxf/58xMTEwN3dHZMmTUJaWlqpnLNRo0aIiYnBI488ghkzZqBKlSp44YUXEBAQgIEDBwIAXn75ZbRt2xbNmjVDVlYWfvnlF9SvXx+enp747bffcPDgQdx8882oWrUqVqxYgcTERDRp0qRU0kdERFTaWAJTym6++WaEh4dj9+7dGDJkSO76yZMnIyQkBJ06dUKvXr3QoUMHdOrUqdTOO3v2bLRv3x533HEH2rdvj5SUFCxevBje3t4ApHTohRdeQKtWrXDTTTchMTERixYtAgBUqVIFv/76K7p3747GjRvj/fffx8yZM0s1fURERKVJFdZ+oixFRUXpvXv32twWFxfHf/+lJDExEf7+/o5ORqXHfC4/Jc1r/r7YJzY2Fl26dHF0Mio95nPhlFKbtNbtbG1jCQwRERE5HQYwFdDq1avh5+dX4EJERHStYyPeCqhdu3bYWt6j9hERETkRBjAVkLe3Nxo2bOjoZBAREVVYrEIiIiIip8MAhoiIiJwOAxgiIiJyOgxgiIiIyOkwgCEiIiKnwwCmAunSpQvGjBnj6GRQKRs+fDj69OlTasebM2cOxwMiomseu1FTpaKUwk8//YQBAwY4Oim5PvroIzhqyg4iosqKAQzZLSMjAx4eHo5OhtPIysqCq6srAgMDHZ2UCoWfIyIqDZW+CunkSaBzZ+DUqbI9z2effYbQ0FBkZWVZrR80aBBiYmJw8OBBxMTEICwsDL6+vmjbti1+++23Yp/vl19+QcuWLeHt7Y2qVauic+fOOH36NADglVdeQfPmzTFz5kw0bdoU3t7euPPOO3Hu3Lnc52/YsAG33XYbgoODERAQgI4dO2Lt2rVW51BKYerUqbjrrrvg6+uLCRMmIDMzE0888QRq1qwJT09P1K5dG+PHj899TkZGBp577jnUqlULvr6+uP766/HXX3/Z/br27NmDO+64A4GBgfDz80N0dDR27NhhV5rr1q0LABg4cCCUUrmPAWDRokW47rrr4OXlhXr16uGFF15ARkZG7vbTp0/jjjvugLe3NyIiIjB79mw0b94cr7zySu4+R48eRb9+/eDv7w9/f3/cddddOH78eO52I9/nzJmDBg0awNPTE8nJyfmqkLTW+OCDD9CoUSN4enqiVq1aeP7553O3jx8/HlFRUfD29kbdunXx7LPPIi0tze48tGTP5y4jIwMTJkxAREQEPD09Ub9+fXz88cd2vSe2qseMfDAY+7zzzjuoVasWatWqBQD45ptvcP3118Pf3x8hISEYOHAgTpw4YXUsW+fetWsXVq1aBXd3d5zK88V+4YUX0LJly2LlFRE5l0ofwLz2GrBmDfDqq2V7nrvvvhuXLl3C0qVLc9clJydjwYIFGDJkCJKSktCrVy/8/fff2LZtG/r374+77roLe/bsuepznTp1Cvfeey+GDRuGuLg4rFq1Cvfff7/VPkeOHME333yD7777DkuXLsX+/fsxYsSI3O2JiYm4//77sXr1aqxfvx6tW7fG7bffbhXkAMCkSZNw++23Y8eOHXjsscfw8ccfY/78+fj++++xf/9+/PDDD4iKisrd/4EHHsDKlSvx7bffYseOHRg2bBj69u2Lbdu2Ffm6EhIS0LFjRyil8Pfff2Pz5s147LHHkJ2dbVeaN2zYAAD4/PPPcfLkydzHf/31FwYPHowxY8Zg165dmDVrFubNm4cJEybknnvYsGGIj4/H8uXLsWDBAnzzzTeIj4/P3a61xp133onTp09j+fLlWLFiBRISEnDnnXdaVQ8dPnwY3377LX766Sds27YNXl5e+V7nhAkT8Nprr+H555/Hrl278NNPP6F27dq52319fTFr1izExcVh2rRp+P777/HGG28UmX+22PO5GzZsGL766itMnjwZcXFx+OKLL1ClShW73hN7rVy5Etu3b8fixYuxbNkyABI4TZo0Cdu2bcNvv/2Gc+fO4b777st9TmHnvvnmm9GgQQN89dVXufubTCZ89dVXePDBB4uVV0TkZLTWDlkiIyN1QXbv3p1v3dixWnfubP/i4qI1kH9xcbH/GGPHFphEm+688049ZMiQ3Mdff/21DggI0KmpqTb3v+GGG/Rrr72W+7hz5876scceK/I8mzZt0gD0kSNHbG6fOHGidnFx0fHx8frKlStaa61Xr16tAeh9+/bZfI7JZNJhYWH666+/zl0HQI8ZM8Zqv8cff1x37dpVm0ymfMc4cOCAVkrp+Ph4q/UxMTF69OjRRb6uCRMm6Dp16uj09PQi9y0szT/99JPVfp06ddKvvvqq1br58+drX19fbTKZ9J49ezQAvXbt2tztR48e1S4uLnrixIlaa62XLFmiXVxc9OHDh3P3OXjwoFZK6b///ltfuXJFT5w4Ubu5uelTp05ZnWvYsGG6d+/eWmutExMTtaenp54+fbpdr1FrradPn64bNGiQ+3j27Nna19fX7ufnZfm527dvnwag//zzT5v7FvWeWL42w8SJE3WzZs2s9gkODtZpaWmFpisuLk4D0MeOHSv03MZn+r333tONGzfOXf/HH39oDw8Pfe7cuULPY+v3hfJbsWKFo5NwTWA+Fw7ARl1AHFFpS2DatwdCQgCXnFfo4iKPb7ih7M45ZMgQ/Prrr0hJSQEAzJ07FwMGDICXlxeSk5Px7LPPomnTpggKCoKfnx82btyIo0ePXvV5WrVqhe7du6N58+bo378/pk+fjrNnz1rtEx4ejjp16uQ+vuGGG+Di4oK4uDgAwJkzZ/DII48gMjISgYGB8Pf3x5kzZ/Klp127dlaPhw8fjq1btyIyMhKPPfYYfv/9d5hMJgDA5s2bobVG06ZNrWbP/v3333Hw4MEiX9eWLVvQsWPHAttH2JvmvDZt2oQ33njDKk2DBg1CcnIyTp06hT179sDFxcXqtdauXRs1a9bMfRwXF4eaNWtaVUvVr18fNWvWxO7du3PX1apVC6GhoQWmZffu3UhPT0e3bt0K3GfevHno2LEjwsLC4Ofnh//973/F+pwAKPJzt2XLFri4uOCWW26x+fyi3hN7NW/eHJ6enlbrNm/ejJiYGERERMDf3z83/y3TVti5hw0bhkOHDuHff/8FAMyaNQt33nknqlWrVqK0EpFzcJpGvB9+ePXPGT0amDED8PICMjKA/v2BadNKPWm5+vTpAzc3NyxYsADdunXD0qVLsWTJEgDAuHHjsHjxYrz//vto1KgRfHx8MHToUKt2GPZydXXFkiVLsG7dOixZsgRffPEFnn/+eaxcuRKtWrWy6xjDhg3D6dOnMWXKFNStWxeenp7o1q1bvvT4+vpaPW7bti2OHDmCxYsXY/ny5Rg2bBhatWqFv//+GyaTCUopbNiwAe7u7lbP8/b2LjJNuoieOvamOS+TyYSJEydi4MCB+bZVr17drh5CWmsopWxus1yfN79sHacw69atw7333ouJEydiypQpqFKlChYuXIhx48YVmUZbivrcFZWeora7uLjk2yczMzPffnnzJTk5GT169ED37t3x9ddfIyQkBOfOnUOnTp3sTlv16tVxxx13YNasWYiKisLChQuxaNGiQp9DRJWH0wQwxXH6NDBqFDBypAQyJ0+W7fk8PT0xYMAAzJ07F+fOnUNYWBg6d+4MAFizZg2GDh2K/v37AwDS0tJw8OBBREZGFutcSilER0cjOjoaL7/8Mpo1a4YffvghN4A5ceIEjh07ltuWYf369TCZTGjSpEluej7++GP07t0bgDRiPWlnBvn7+2PgwIEYOHAghg8fjg4dOuDAgQNo06YNtNY4depUgf/oC9O2bVt88803BfZSsSfN7u7u+dpntG3bFnv27Clwhu8mTZrAZDJh06ZNuCGniO748eNISEjI3adp06Y4ceIEjhw5klsKc+jQISQkJKBp06Z2v8amTZvC09MTy5YtQ6NGjfJt/+effxAeHo6XXnopd51lW5yrVdTnrm3btjCZTFixYgV69uyZ7/lFvSfVq1fH1q1brdblfWzLnj17cO7cObz55puoV68eAGmYfjXnBoCHH34YAwYMQP369REaGoru3bsXeW4iqhwqbRUSAPzyCzB1KtCqldzm+X0sE0OGDMFff/2FTz/9FIMGDYJLTh1WZGQk5s+fj82bN2PHjh0YMmRIsXuWrFu3Dq+//jo2bNiAo0ePYuHChTh27JjVhdTb2xvDhg3D9u3bsXbtWowaNQq9e/fOvWhGRkbim2++we7du7Fhwwbce++9dlUTTJ48Gd999x3i4uJw4MABfPvttwgICECtWrUQGRmJwYMHY/jw4Zg3bx4OHTqEjRs34v333893cbLl0UcfRVJSEu6++25s2LABBw4cwHfffZd7QbQnzXXr1sWyZctw6tQpXLx4EQDw8ssv49tvv8XLL7+MnTt3Ys+ePZg3bx6effZZAEBUVBR69OiBUaNGYd26ddi6dSseeOAB+Pj45JaudO/eHa1atcLgwYOxadMmbNy4EYMHD0bbtm3RtWvXot+0HP7+/hg7diyef/55zJ49GwcPHsT69esxffr03Nd44sQJzJ07F4cOHcL06dPx3Xff2X38vIr63DVq1Ah33303HnroIfz88884fPgwVq9eja+//hpA0e9J165dsWXLFsyaNQsHDhzAu+++i3/++afIdNWpUweenp74v//7Pxw6dAi///67VdBW2Lm3b9+eu8+tt96KatWqYdKkSXjggQdyv29EdA0oqHFMWS9X24jXWZhMJh0REaEB6O3bt+euP3LkiO7WrZv28fHR4eHh+r333tO9e/fWw4YNy93H3ka8u3fv1j179tQhISHaw8NDN2jQQL/zzju5241GlJ999pkODw/XXl5e+o477tBnzpzJ3Wfr1q26ffv22svLS9evX19/9dVXulmzZrmNVrW23SB2xowZuk2bNtrPz0/7+/vrm2++Wf/zzz+52zMyMvTEiRN1vXr1tLu7uw4NDdV9+/bVGzdutCv/du7cqXv16qV9fX21n5+fjo6O1jt27LA7zQsXLtQNGzbUbm5uOiIiInf9X3/9pTt27Ki9vb21v7+/vu666/Qnn3ySu/3kyZO6T58+2tPTU9euXVvPnj1b169fX7/99tu5+8THx+uYmBjt5+en/fz89J133pnb4NRoxGvZeNWQt6Frdna2fuutt3LzqFatWnrChAm528ePH6+Dg4O1r6+v7tevn542bZqWr6q4mka89nzu0tLS9DPPPKNr1qypPTw8dP369a3yprD3RGv5vIWFhemAgAA9evRo/fzzz+drxJu3oa/WWn///fe6fv362tPTU19//fV68eLFGoBVo0Zb5163bp3VcSZNmqSVUlYNrAvjzL8v5YmNS8sH87lwKKQRr9IOGiE0KipK79271+a2uLi43KoOunqvvPIK5s2bh507dyIxMRH+/v6OTpLTOXfuHGrWrInvvvsut/qlMMzn8pM3r0ePHo0DBw7g77//tuv5/H2xT2xsLLp06eLoZFR6zOfCKaU2aa3b2dpWqdvAENlr+fLlSExMRIsWLXDmzBm88MILCA4OttkuhCqGy5cvY9OmTfjqq6/w448/Ojo5RFTOWGFcAa1evdqqy2/exVmNGjWqwNc0atQoh6YtMzMTL774Ilq0aIG+ffvC29sbq1atKrJXkaM1a9aswDydO3euo5NXpmJiYtCnTx+MGDEit2E3EV07WIVUAaWmpuYbUt1SQb1pbKlIVRtnzpzBlStXbG4LCAhASEhIOaeo9Dgqn+Pj4212WwaA0NDQCvPel6aS5vW1/vtiL1ZtlA/mc+FYheRkvL29rypIcRYhISFOHaRURBEREY5OAhGRQ7AKiYiIiJxOhQ1gHFW1RUSVF39XiCqPChnAuLu7IzU11dHJIKJKJjU1Nd80F0TknCpkABMSEoITJ04gJSWF/5iIqMS01khJScGJEyfYDouokqiQjXgDAgIAAAkJCQX2sCD7pKWlwcvLy9HJqPSYz+WnuHnt7u6O0NDQ3N8XInJuFTKAASSI4Q9NycXGxqJNmzaOTkalx3wuP8xrIgIqaBUSERERUWHsCmCUUj2VUnuVUgeUUuNtbFdKqY9ztm9XSrUt/aQSERERiSIDGKWUK4CpAHoBaArgPqVU0zy79QLQKGcZCWB6KaeTiIiIKJc9JTDtARzQWh/SWmcA+B5ATJ59YgB8lTP79ToAVZRSNUo5rUREREQA7AtgwgEcs3h8PGfd1e5DREREVCrs6YWkbKzLOziLPftAKTUSUsUEAOlKqZ12nJ9KJhjAOUcn4hrAfC4/zOvywXwuH8znwhU44Zs9AcxxALUtHtcCkFCMfaC1ngFgBgAopTYWNMMklR7mc/lgPpcf5nX5YD6XD+Zz8dlThbQBQCOlVD2llAeAewEszLPPQgBDc3ojdQBwWWt9spTTSkRERATAjhIYrXWWUmoMgL8AuAKYpbXepZQalbP9UwB/ALgdwAEAKQAeKLskExER0bXOrpF4tdZ/QIIUy3WfWtzXAB67ynPPuMr9qXiYz+WD+Vx+mNflg/lcPpjPxaQ4WSIRERE5G04lQERERE7HIQFMUVMTUOlQSh1RSu1QSm1VSm10dHoqC6XULKXUGcthAJRSVZVSfyul9ufcBjkyjZVBAfn8ilLqRM5neqtS6nZHprEyUErVVkqtUErFKaV2KaXG5qznZ7oUFZLP/EwXU7lXIeVMTbAPwK2Q7tcbANyntd5drgm5BiiljgBop7XmGAOlSCl1M4AkyOjTzXPWvQvggtb67ZygPEhr/Zwj0+nsCsjnVwAkaa3fd2TaKpOcUdNraK03K6X8AWwCcCeA4eBnutQUks93g5/pYnFECYw9UxMQVVha61UALuRZHQPgy5z7X0J+mKgECshnKmVa65Na68059xMBxEFGUudnuhQVks9UTI4IYDjtQPnRAJYopTbljIJMZSfUGPso5zbEwempzMbkzHo/i9UapUspVRdAGwD/gZ/pMpMnnwF+povFEQGMXdMOUKm4SWvdFjJb+GM5RfJEzmw6gAYAWgM4CeADh6amElFK+QH4GcCTWusrjk5PZWUjn/mZLiZHBDB2TTtAJae1Tsi5PQNgPqT6jsrGaWMG9pzbMw5OT6WktT6ttc7WWpsAfA5+pkuFUsodclGdq7X+JWc1P9OlzFY+8zNdfI4IYOyZmoBKSCnlm9NQDEopXwC3AeDkmWVnIYBhOfeHAVjgwLRUWsYFNUc/8DNdYkopBeALAHFa68kWm/iZLkUF5TM/08XnkIHscrqJfQjz1ARvlHsiKjmlVH1IqQsgIy5/y3wuHUqp7wB0gcwiexrARAC/AvgRQB0ARwEM1FqzAWoJFJDPXSBF7RrAEQCPcN61klFKdQSwGsAOAKac1RMg7TP4mS4lheTzfeBnulg4Ei8RERE5HY7ES0RERE6HAQwRERE5HQYwRERE5HQYwBAREZHTYQBDRERETocBDBE5NaWUVkoNcHQ6iKh8MYAhomJTSs3JCSDyLuscnTYiqtzcHJ0AInJ6SwHcn2ddhiMSQkTXDpbAEFFJpWutT+VZLgC51TtjlFK/K6VSlFLxSqkhlk9WSrVQSi1VSqUqpS7klOoE5tlnmFJqh1IqXSl1Wik1J08aqiqlflJKJSulDuU9BxFVPgxgiKisTYLMq9MawAwAXyml2gGAUsoHwGIASZBJ7PoBuBHALOPJSqlHAHwGYDaAlgBuB7ArzzlehszV0wrADwBmKaUiyuwVEZHDcSoBIiq2nJKQIQDS8myaqrV+TimlAczUWj9s8ZylAE5prYcopR4G8D6AWlrrxJztXQCsANBIa31AKXUcwDda6/EFpEEDeFtr/XzOYzcAVwCM1Fp/U3qvlogqEraBIaKSWgVgZJ51lyzur82zbS2A3jn3mwDYbgQvOf6FTHbXVCl1BUA4gGVFpGG7cUdrnaWUOgsgxK7UE5FTYgBDRCWVorU+UMznKsgsvLbonO32yLTxXFaRE1Vi/IITUVnrYONxXM793QBaKaX8LbbfCPltitNanwZwAkC3Mk8lETkVlsAQUUl5KqXC8qzL1lqfzbl/l1JqA4BYAAMgwcgNOdvmQhr5fqWUehlAEKTB7i8WpTpvAJiilDoN4HcAPgC6aa0/KKsXREQVHwMYIiqp7gBO5ll3AkCtnPuvAOgP4GMAZwE8oLXeAABa6xSlVA8AHwJYD2kMvADAWONAWuvpSqkMAE8DeAfABQB/lNFrISInwV5IRFRmcnoIDdRaz3N0WoiocmEbGCIiInI6DGCIiIjI6bAKiYiIiJwOS2CIiIjI6TCAISIiIqfDAIaIiIicDgMYIiIicjoMYIiIiMjpMIAhIiIip/P/m+h8Nx8eh30AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "\n", + "pd.DataFrame(history.history).plot(\n", + " figsize=(8, 5), xlim=[0, 29], ylim=[0, 1], grid=True, xlabel=\"Epoch\",\n", + " style=[\"r--\", \"r--.\", \"b-\", \"b-*\"])\n", + "plt.legend(loc=\"lower left\") # extra code\n", + "save_fig(\"keras_learning_curves_plot\") # extra code\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zFq1FO3PIm2q", + "outputId": "021370ce-cb2f-47a6-ae7b-9d7b76c4e6b7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAFFCAYAAADfMoXLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABnV0lEQVR4nO3dd3gU1frA8e/ZlE0PJRAgoQtIL1IVAQUFRAERFek2BNGr/sQGKmBDr4qKVyl6wQaKckHEgvSmoFQNEES69E4akHZ+f5xMdjd1Awm7Sd7P88yzu1N2zpwt75wyZ5TWGiGEEEJ4js3TCRBCCCFKOwnGQgghhIdJMBZCCCE8TIKxEEII4WESjIUQQggPk2AshBBCeFi+wVgpNV0pdVwptTWX5UopNUkptUsp9adSqkXhJ1MIIYQoudwpGX8CdMtjeXegTsY0DJh8+ckSQgghSo98g7HWehVwOo9VegGfaWMdUEYpVbmwEiiEEEKUdIXRZhwF/OP0+mDGPCGEEEK4wbcQ3kPlMC/HMTaVUsMwVdkEBgZeU7Vq1VzfND09HZtN+pe5Q/KqYCS/Ckbyy32SVwVTGvNr586dJ7XWFbLOL4xgfBBwjqrRwOGcVtRaTwOmAbRs2VJv2LAh1zddsWIFnTp1KoTklXySVwUj+VUwkl/uk7wqmNKYX0qp/TnNL4xTku+AwRm9qtsC57TWRwrhfYUQQohSId+SsVLqS6ATEKGUOgiMBfwAtNZTgB+BW4BdQBJwb1ElVgghhCiJ8g3GWut78lmugZGFliIhhBCilCldLedCCCGEF5JgLIQQQniYBGMhhBDCwyQYCyGEEB4mwVgIIYTwMAnGQgghhIdJMBZCCCE8TIKxEEII4WESjIUQQggPk2AshBBCeJgEYyGEEMLDJBgLIYQQHibBWAghhPAwCcZCCCGEh0kwFkIIITxMgrEQQghhWbsWJkwwj1dwW9+C700IIYRww9q1sGIFdOoE7doV3bZaw8WLkJRkpl9+gV274MYboXJl8/zCBTNdvGgeBw8GPz9YsgTWrDHz9+yBuXMhLQ0CAmDpUtiwAb7/3iy3Jj8/+O03s+9hw+Drr+H8eUhOBh8f8Pc32xbgmCUYCyFESVZYAbFtWxNszp83AS8sDEJC4Nw52LzZMT8pyTwvXx4GDTLBy2aDoUMhKsoEzvR0GDLE7OPPP+GLL8w8azp8GBYsgJQU8PWF1q0hMNDx/klJJkDWrg2TJsHjj5v3debjA6++CgMGwMcfZz+2O+6AMmVg0SJ4800TQJWC1FSzPDnZHDuYY7TbITQUIiLMo+Xaa03aNm82QT0tzbGtBGMhhPAyBQmK6ekmENnt5vV//wvr1kGDBlCrlglwtWpBy5bmz/+990wAcC69depkAkfnziY4+viY/YaFmYAzZAj07w9HjkCvXmZ/qalmSkmBfv1g4kTzXunpJlA5B7wZM0yA3bYNbrgh+zH072/SZAVY54Bos0GHDqaEuXs3/Oc/Zp5S5jE52bGt1vD331CjBgQFmQAaFGSCNJg8eP55My8oyOTx/PmOoFi2LKxebfIyIMDxaAXU116D1183+1271uRXcrIJztZn9dxzuX9WQ4eaKadtC0CCsRCi+LlS1Z/ubpuQAAkJBBw6BDExkJho/vCbNTPLX30Vxo83gc7HxwS/jh3h0UfN8q5d4cABiIuD+HgzDRoEn31m9vnAA9nT8tBDJhApBU8+6Zjv62sCTnCwKbElJ5v5aWmmujY62qxz8aJj/YgI8+jnZx59feHQIUdAVMqkt0sXR9Czjr9hQ1i2zOzLWhYYaALovHmO4LR4sSlFKuVI64oVcPvtpqSbNZ+dA9vcubl/VtdeayZLq1awcKFj29tvz/tz9nUKg+3amerlS/l+XM62SDAWQniCOwHRqqJUygSGfftMsNq4EV56yQQ2q13v9GnTTnjxoqOEqDV89JF5r7ffNn/QJ06YYJmebkpCa9aY/T/1lAkoVslPa9PW+OOP5vXw4SaY7N1rlikFTZuaqkkwbZPr19PWOf3XXWfeH0zJNSXFPE9NhR9+MGm3gnGlShAebkprYWHmsUULs2zFCpNWK80jRpj0RESY5TYbnDljArDdbl4757O/f95BrUIFx3Fm/Yxmz3Zs+9prOX9W4eE5l4yjojwT2C4zKNKuXcG3KYRtJRgLUZoVVimxeXM4edK1TS8xEdq0McFl2zbzB5mYCDt3mjbCtDQTPJYtMyW2d95xlAzj4kwnmxMnTND58EMTDLKy2uaOHjXrWAHJ39+U0CxWeuLiTFADE1Stdr1y5aBKFTPfKrlVrOjYvlIlEzydq2mtYAimZHr6NLEHDlD/mmtMqdR5+//+F+66ywTknDr3fPpp7vncqZM5JisoDhgAjRq5rlOmTM7bejKoWe/hgcB2Wdt6iARjIbzBpQZFrU1b4tKlUK8eXHVVZpUpCQmm9Fa3rukQ88EHrsv++Qc2bTIlNV9fU31pt5sgaU1TpjiCR79+Zl2rLc7qmGO3wzPPwLhx2dP3+++m2nDtWnjssezLU1LMcderZ0pS9es7SodhYWbfYHq+duxolu3ZY6ptrcBmdS56773c8+mFF8yUW7teXm2CYI6ta1fXbV96ybH87rsBOLZiBfVzaiu87TZz0uGFJb0jR8xHO3u2OecoyLbFUZ7HewX2DfXr5bRMgrEQhSVrQE1LM8HL6oSzfbspnSUmOkqP1aubdTp3NiVBHx/TxhUWZpb36GFKQmfPmvd1LnUmJcF995lSldXJJqv33jPB+MwZeOMN0/vVmhISTECztvP3N8HQx8cxlStn1qtUyZTsrPkbNphq4fR0E5zi42HaNEebYVCQKR1efbV57/79zXEFB5sTgC5dsneS6dMn97ytV89MYNatVcvrqj+PHIHHHmvGzz/n8ifvpUHx5ZdNbfpLL5nKhYK4nMCWb34V0X49dbzWviEoJKdlEoxFyXM5pczVq03bYLNmppTp4+OoEpw507RdxsWZSx3i4kzwevZZs8/27R2BzdfXBNn+/c12YC7PSEx03eewYaaXaHKy2X9qqrmko1w5E9CaNzfr2e0mcFtBzno8edLRycZmM/sbOtQRcKOizB/Iww2Y/U8KlSo7dZ7JWkr8739zzq8VK0wnnQ8+yH3bO+7IO6+tAA2ms00+ATHfPz0vrP58+WWIiQm/pD95a/tLDRKXIjDQnP9ZJk82k91uKlKCgsxz5/5WhZnmy8mv3PartTlvPX4cjh1znSZMMOfHFut4bTbzMyxb1kxlyuT8GB7uut8PPjCd1OPiHJPVwpJ13r//7brvnCid9dqsK6Rly5Z6w4YNuS5fsWIFnQrYNby0KnF5lVcwTUsznXVOnDC/uPh4UwUI5vKIOXNMQLV6gLZp4xgNZ8gQWL6ci4mJ2G02UyqsV89x8X6jRqZt01m7dvDrr+Z548awdav59YaFmV/nTTeZTkITJsCYMY7OPddfb0p/TZpAr14muHQ5yezntlApyscRnCpWNNWuzoEtS3tinoEpa1DMYaCBhx+GqVNN59tsf3r5nLgcOQLdup3l55/L5LzvywmoecgzzUXInTSfO2dq+A8eNI8PP+y4NNWZzWa+Hv7+jmZs69H5+b//nfP2AQHmz76wxcWZ881vvjFXADkH5KyUcq3ssKbNm3OuiPHxgYEDzbE7X6nkPE2enHNg8vExTe9K5T5NmJBzXillWjmOH3d0Hndms5nLnlNSHN0GbDYTaMPDzd/I2bM5v/fl8vU1rSvJyaYyS+uWaL0h2ymOlIxF0Vi71rSRtW1relrabCaIHjniGAnHmqx/rPXrzb/gpEmOS0BuuAF+/tn82h5/HN5/nyPpFenHV8ymH5WC4h2lzb/+gthY1w46Vg9WMMHUx4dTx49TpXp18yuJinIsv/pqU5WstUnvPffAyJGZi498uYJ+w8sw+xubawkTTEAKCHAExddfdwlQL7wAq2MjeGZxFyZNMqUSP7+MUkdkZJ4lxbxKAQmN2nHqizWcWvYHJ2u34dTeBpzaYArMr76ac0nAx8ecN4SEQHBwO0Ki2hFyBEIWudZih4TAiy+a0svYsfD++1k+42vamQkghz/AceNMup9+2jTJWlfsWFNCQvZ5n3zi+ifvXFpLTDRpL0ovvmjO5R54AHr3dgRc58f4+OzbWR+99SdfoYKp8DhzxnHJrHNHb+d5OQWmChXMScFPP5mKhPDwSz8mrWHHDtOB+8cfzfGlpppAFBVlzgX9/MxP5cYbzX6d++E5t4pYU5s25ud25ozj/DM42JQgV6xwHb/DGuPDmoKDzXs4Bz4fH/NzfO89s35uU07KljUVWdWqmZ9S1qlSJROIrY7o06Y5Pq+773b8prQ2x3n2rDmuM2ccz/fvNycvO3Y4uljUq2daXqKiXLs5WJM1z6pdsPatcysBa609Ml1zzTU6L8uXL89zuXC4nLw6fFjrDh20PnIkh4W//qr1a6+ZR621PnVK6zVrtJ4/X+sZM7R+6y2tn3tO60OHzPI5c7Ru1kzrihVdf0Nff22Wv/FG5rzDVNIdWKGPEKn10aNm+QsvZP/9RURoHR9vls+bp/Xzz+sR1/2hbSpdj+h5UOuYGK3T013THBiotY+PebTS7nS8TZqcyf1489h2xAitbTbzaElO1vrAAa3XrtV6zqs79KRbf9bPDDyoBw7U+sYbtVYq978Wm03r4GCtK1TQulo1revVM9nXrp3WnTub5Tltp5TWlStr7e+f19+W1uHhWoeEON5HKa0DArQOCsp7uys9KaV1WJjWUVFa166tdblyOR97cLDWbdtqPXy41lOmaL1undaJiQX8Tmutk5LM12buXPOVfPDB3PMaTF63aqV1nz5a/+tfWr/5ptZffml+Cvv2me/A8OHmPfz9U7N9R/KTmqr1Aw+YfPDzM/usWFFrX19H/jRtqvUjj2g9e7bj55bXMSclaf3DD1qPHKl1jRqOY2ncWOtnn9V61SqtU1K0vv12rR9+WOstW8zj7be7n27rmAMCsv8u3N32UvLrcvbrqeN13jcEb9M5xESppi4B8syrrFWJWpsiyYkTcOIED4+PZOrC6jw0XPHhyG3w1ltm2d69ppSptTm1W77cFAvuusv1/X18TPGnbVtTgv3gA9Ouunmz45R5zBhTvIuNNdW8AQHc958WfLK4Cnd3Oc2zr4WRgh/JZxJJ2fgnyWNfJSVVkewbRMqLL5Fcox7JyabK0rmga/HzMwXLzBLdjg2EbFxJ8E3XYrsue5XtlCma4cOVyxnxhQsZbTwrNxO3agtxV7cmvlpD4uLg3ntzr77KOiiRlZ4qVcwZc9my5qqdPXtM2v38TAH9ppvM2fX5845RBK3n1nTunDkjT0hwZGVEBFxzjen4XL68Y4qIcH1etqz5aKyzcetSU6vaNz3d7MO5c7XzdPCgufrojz8c6W7QALp3dx0JMCdxcaZEFxvr6PDcqpXZd7VqZnvnKSjItV0ya5rvuMPsd8sWk54tW0zegCnt1K1rOo03a2amr76Czz+HO+80lRt//22mXbvM4z//uKa3QgXTHH/qlDlua+Crbt1MJU21ankfL5i+Z5UrQ/Pm69m8uRVHjphLet1lbT9smDn2I0fMMfz2mynJrlljfspWJVCtWqYlpH178/juu6Zav317k6fLlpnvdFCQaS255RaTh+4cy+Wk2d1jvpz8upz9Xo7C2q9SaqPWumW2BTlF6CsxlbSScX5n45e17S+/mBLq6tVax8ZqvWGDObX96Set58zRv02fbtY7fVrr8eO1fvppcxrdo4cp5dlspqT36ada2+1agw4gKcdSQADnTfHsqqscM318zP6PHNH655+1Xr9e6z17tD571rVUaslSwjy76De9dKkpheRVAimKKSjIlDLyKqH6+BS8JFe5stb9+2s9dqzWU6dq/f33Wm/erPXx41qnpblmR2GUIC73bPxySgLeVnpJT9d6715TUTJ2rNa9e7uW/nKaypc3pepBg7R+6SWtZ80yX+MzZwonzZai/N9KTtb699+1njjR5EmFCnl/pxcu1Pr8+SJLTqEobv/zhQHYoHOIidJmXEjy7VWYU2eX5GQ4epSXx5RlzZpQXhqXzocRL5pTriNHTJfGAwdMI5XWpqiQpUfHESrxaORy5neHSmlJMHasYyi8tDTS09LZS01iLjYl5r9ViKnxGzFnokk+YYcsJTp/f2jSLIAHGm/m6sB91Js2iqtTt1LT7xC+nTqZxhenXi1HjkC/nq6dXRITYXNaOzYM28b6FUlsOFOLnTcHZm5TtaopBR054ig1tW1r2ugiI00JzN8/98fRo02Jwc/PZN9dd8ETT+RewrOm48dNKePIEVMq9PExpYROnczZbl5tPmFhZujb6dMdpbXevd3vWHTsmBkwyfmM2l2Xsy24nrk7d4YuyL6bN9+UWXop6LaXku780qyUaY+tUcN8DpYdO+CRR2DVKsd368YbzVgi1hVWRZXmK8HPz9QwtGplvvNam/+cUaPMoGTWjYb69DEDjl3pa2jF5ZFq6suU9fIAi6+v5r0XT5N67BSpR06Q9t0PpKYpUvElLbwcqRfTeP38v0jL4XzIjxRm1XqesAp2wuP+IXzHb4Tps4TbEgjqewtqQP/MS1sefqcOU+aUZ/hwxfhxmpg/0onZ7kNMDMSsjWfbdkUijsvaatUy1aSNGzvGirCuwrn6alNlt2OHCV6Z6fFN56o6NurVM+tYj1Onmktc27c3VwGtX2/6P1kdcKKizNC5rVqZx5YtTTVqblWn7ricqiJrv76+aaSm+lyx/RZ3xeW3CJf33SoMnsgrTx/z5ShO363Ckls1tQRjJ7ld1qC1aUbdOXcrfy/Zx86g5uxMrMLO2DT+3m3jYrIt9zfNhY9Kw6Y06dpGmlZAHhfzOW/nowkLU5w9m72t0llEREbQjThC49TNNL6lKg37NSbE6XLzvALMmTOmt+SOHa6Pf/+de/upzWZKkFbgrVw55/U83eZzqe16pVVx+sP09EmTJ/LK08d8OYrTd6uwSDB2w7Bh5i5fnTub0t7OHen8vT2FnXt8OJfgKMH6kUwttZe6+i/qspPf7dezJrmNOTO9mM6A6mt447Zf8K1ZFd9a1fBJOIfvg/fim5yEj78PPksXoa41VdVZz2qHDjU1zefOOcaVOLd+J+c27yEuqj7nylTn3DkzFO+6da7Vrk2bmstIOnY0Vb55Xax/qVJSTHXvmDGm5j0lpfhVjZXGP4DLIfnlPsmrgimN+ZVbMC5dbcZZ2m21hp1bk2nU3I/UNEfkWrLETArowkoG2nZT55ba1F04ibrpsVRnP75tW5sGy1p16TOpPiPqWWemNo4c6UCV9zu47rv2ghyvI82pnSpbj8db6gJ1sx2OI5Cbatc2bTKHyC0yfn7mRKVBA9NeZV2vFx5ePAKxEEJ4o9ITjDNGKkq44Mty9Rs/lR/IT2fasC+1KgChIemcv2Azd2VTF+kdvZ53eq+iUrNKcFVDUwe7fJljUIe3384MqnN7OnaTayeZXIbR81QHm8vl7Z1dhBCiOClxwTiz3fcrTaXE3ejFS4idt4OfLtzAT+cXsJr2JGs7wScT6VwllqebbKFb5xT+vb0H0z6xZ5T07JS9tT2VJrV3ffPLvZ1YIbMC+YoViTnee/xK7BsKfhIhhBDClVcG48u5m8fLzySwZlUQ99ZaRbULf7GQ7hxgOAAN1Tb+xX/o5reU9otexN7RcSvwY33cKOmVwNuJCSGE8DyvDMZ53c0jYelvHP1pM0evas/RkNoc/WUPRzcd5vX1nUnTNsi4jGfhhU5AJ2w2zbTJmm7dFVUPxsGKZOj0ArRr6/K+UtITQgjhKV4VjF2v2VWZg8QrZa6PPXo4jcTzbYA2Tls1xId6lA9MJCUglHPnTO9iu9308J04UTlK11WlZCuEEML7FPwC2SK0Z48ZS9ZZWJi5a0mbNvDQNRv4t3qGzxjEIm7iz2vu5ficVSQnpHAsKTSzJ3FAgLnkpkwZ6eErhBDC+3lVybhyZXOJjFLg52cu1xkwwKmqenkS9Hjf0aP5/aX5XiYkhBBCeDuvCsZgAuqIETlcrjNlirmj0FdfmRvA59CjWdp9hRBCFEdeF4xzvFxn1Sp49FG4+Wbo0QN69sx1eyGEEKK48ao24xzt329uaFq7NsyaZcZ9FEIIIUoQ7w7GiYnQq5fpjTV/vmlQFkIIIUoYt4KxUqqbUuovpdQupdSzOSwPV0otUEr9oZTappS6t1BSl5RkulN/+aW5b58QQghRAuXbZqyU8gE+AG4CDgLrlVLfaa23O602Etiutb5NKVUB+EspNVNrnXzJKdPa3Fx35cqiuf2QEEII4SXcKRm3BnZprfdkBNevgF5Z1tFAqFJKYYbAOg3kctdbNyxYQJOnn4azZyUQCyGEKPHc6U0dBfzj9PogrkNgAfwH+A44DIQCd2ut07O+kVJqGDAMIDIykhUrVmTbWdC+fbQYORJblSqs+u030u12d46jVEtISMgxL0XOJL8KRvLLfZJXBSP55eBOMM6paKqzvO4KbAFuBGoDi5VSq7XWcS4baT0NmAbQsmVLne2m0mfOwIMPQmgosa+9RoeuXd05hlKvNN6g+3JIfhWM5Jf7JK8KRvLLwZ1q6oNAVafX0ZgSsLN7gbna2AXsBa4uUEpSU+Huu82lTHPncrFChQJtLoQQQhRX7gTj9UAdpVRNpZQ/0A9TJe3sANAZQCkVCdQD9hQoJYcOQWysuTPEtdcWaFMhhBCiOMu3mlprnaqUegT4GfABpmuttymlhmcsnwK8DHyilIrBVGs/o7U+WaCUVK8O27dDaGhBj0EIIYQo1twaDlNr/SPwY5Z5U5yeHwZuvqQU/P47fP01vP66BGIhhBClkmdH4Dp8GHr3NgNSx8Xlu7oQQghREnnuRhFaQ58+Jgj//DOUK+expAghhBCe5LlgvGOHGe7yf/+Dxo09lgwhhBDC0zxXTZ2UBL6+ULmyx5IghBBCeAPPthlrDTL6ihBCiFLOs8HY3x9k9BUhhBClnOeCcVQULF0K7dp5LAlCCCGEN/BcMK5USQKxEEIIgaerqYUQQgghwVgIIYTwNAnGQgghhIdJMBZCCCE8TIKxEEII4WESjIUQQggPk2AshBBCeJjngvHhw5CW5rHdCyGEEN7Cc8H4yBGIifHY7oUQQghv4dlq6jVrPLp7IYQQwht4Lhj7+UkwFkIIIfBkMA4JMcFYa48lQQghhPAGng3GCQlw8qTHkiCEEEJ4A1+P7blCBdi3D2xydZUQQojSzXORUCkJxEIIIQSe7k39/vvQt69HkyCEEEJ4mmeD8ZkzMHcunD3r0WQIIYQQnuTZYHzddaY39bp1Hk2GEEII4UmeDcZt2oCPj1xvLIQQolTzbDAOCYFmzSQYCyGEKNU8d2mTpU8fc4mTEEIIUUp5PhiPHu3pFAghhBAe5R0X+moNiYmeToUQQgjhEd4RjK+/HgYP9nQqhBBCCI/wjmBcq5bcNEIIIUSp5R3B+Lrr4Phx2L3b0ykRQgghrjjvCMbt25tHucRJCCFEKeQdwbh+fShTBn75xdMpEUIIIa44z1/aBObuTRMmQM2ank6JEEIIccV5RzAGGD7c0ykQQgghPMI7qqkB0tJg40bpxCWEEKLU8Z5gnJwM7drBtGmeTokQQghxRXlPMA4MhJYtpROXEEKIUsd7gjGY643Xr4cLFzydEiGEEOKK8a5g3L69qa7euNHTKRFCCCGuGO8Kxtdeax5l8A8hhBCliPdc2gRQoQKsWgXNmknpWAghRKnhVslYKdVNKfWXUmqXUurZXNbppJTaopTappRaeckpuv56CA295M2FEEKI4ibfkrFSygf4ALgJOAisV0p9p7Xe7rROGeBDoJvW+oBSquIlp+jQIZg2jYB69S75LYQQQojixJ2ScWtgl9Z6j9Y6GfgK6JVlnf7AXK31AQCt9fFLTlFiIrz0EmU3bbrktxBCCCGKE3eCcRTwj9PrgxnznNUFyiqlViilNiqlBl9yiurUgQoVCI+JueS3EEIIIYoTdzpwqRzm6Rze5xqgMxAIrFVKrdNa73R5I6WGAcMAIiMjWbFiRY47bHj11YTGxOS6XLhKSEiQvCoAya+Ckfxyn+RVwUh+ObgTjA8CVZ1eRwOHc1jnpNY6EUhUSq0CmgIuwVhrPQ2YBtCyZUvdqVOnnPfYqxeMGkWnq6+GSpXcSGLptmLFCnLNS5GN5FfBSH65T/KqYCS/HNyppl4P1FFK1VRK+QP9gO+yrDMfuF4p5auUCgLaALGXnKr27UkNDISdO/NfVwghhCjm8i0Za61TlVKPAD8DPsB0rfU2pdTwjOVTtNaxSqmFwJ9AOvCx1nrrJaeqVSt+WbCAjh06XPJbCCGEEMWFW4N+aK1/BH7MMm9KltdvAm8WSqpsNrSPT6G8lRBCCOHtvGs4TCfl166FVq3MpU5CCCFECea1wVgrBRs2wO+/ezopQgghRJHy2mAc17AhKCX3NxZCCFHieW0wTg0NhYYN5Q5OQgghSjyvDcYAXHcdrF0LaWmeTokQQghRZLzrFopZdesGZ87AuXNQrpynUyOEEEIUCe8Oxr17m0kIIYQowby7mtpy7pynUyCEEEIUGe8PxiNGQJMmnk6FEEIIUWS8PxjXrw8HDsA//+S/rhBCCFEMeX8wvu468yjXGwshhCihvD8YN20KwcFyvbEQQogSy/uDsa8vtGsnJWMhhBAllndf2mR5/HGIi/N0KoQQQogiUTyCcY8enk6BEEIIUWS8v5raEhMD69d7OhVCCCFEoSseJWOAoUOhTBlYutTTKRFCCCEKVfEpGV93HaxbBykpnk6JEEIIUaiKTzBu3x6SkuCPPzydEiGEEKJQFZ9gbA3+IdcbCyGEKGGKTzCOioIaNSQYCyGEKHG8sgOX1rks+PZbqF79SiZFCCGEKHJeVzJOTYXu3WHhwkrZg3LTpqZHtRBCCFGCeF0wjouDCxfgjTeupm9fOHXKaeH58/Dqq3J5kxBCiBLF64JxuXIm1g4btpsFC6BxY1i0KGOh3Q5vvglff+3RNAohhBCFyeuCMYCPD9xzzz/8/juULQtdu8Jjj8H5iza49lrpxCWEEKJE8cpgbGnWDDZsgH/9CyZNgpYtYUvtO2D7dpg1y9PJE0IIIQqFVwdjgMBAeO89+PlnOHMGWk+9jzdrfUjagEHwv/95OnlCCCHEZfP6YGy5+WZzr4jbblM8vWcEnWvt40CTWz2dLCGEEOKyFZtgDFC+PMyZAzNmwMbjVWnSys6sjxLgtttg505PJ08IIYS4JMUqGAMoZW7g9Mcf0LAhDBgWQv/FQznT6manbtdCCCFE8VHsgrGlVi1YuRJeeQW+SetD0/NrWd7tDXjnnTyG8BJCCCG8T7ENxgC+vjBmDPz6qyKweiSd9WKe+r9ULr72tqeTJoQQQritWAdjS6tWsGmLjYceUrzFUzT/9HFWrPB0qoQQQgj3lIhgDBAcDJOnKH76CS6k+nLDDTCo9q8c/Wmzp5MmhBBC5KnEBGNLt26wbRu88Ng5vt5zDVffUpMPhq4nLc3TKRNCCCFyVuKCMZiBQl56N5yYtYm0KrOLRz5tRZvog6xfJxFZCCGE9ymRwdhSt205Fh1twuwuH3H4qI027RQPP2xG8hJCCCG8RYkOxgDK7s9dix9kx8SfeOyeE0ydCvXqpvPZJ+lyBZQQQgivUOKDsSXsift5Z1YkGzfCVT57GXKvjY51DrFtfZKnkyaEEKKUKzXB2NKsGayZvJWPa09g2+4AmrX24+nWK0jYcdDTSRNCCFFKlbpgDGC7vRf373qOv37ay5Caq3lzfSfqtwxi7lwZvEsIIcSVVyqDsSWiW0s+3nMjv/zvKOWqhXDHHdCl1VmWNfoX+n9zkeuhhBBCXAmlOhhbru1TiY1/+vPuu7BtdyCdt02ibd8o5lUZSfo770F8vKeTKIQQogSTYJzB1xceewz2HbEz5cN0TkY2pM/xKTT8v5v5pPbLJF9I93QShRBClFBuBWOlVDel1F9KqV1KqWfzWK+VUipNKdW38JJ4ZQUEwEMjbPx1MIQvvwR7nWrce+LfXFXXxnvvpJM4aDjMmwfJyZ5OqhBCiBIi32CslPIBPgC6Aw2Ae5RSDXJZ7w3g58JOpCf4+kK/frD5r2B++glq1oTH/89GtZkTGN9nC6cqN4InnoA///R0UoUQQhRz7pSMWwO7tNZ7tNbJwFdArxzWexT4H3C8ENPncUqZ8a5XroRffoHreoQzjvFUP/cn/zepOgeb3oLcIkoIIcTlcCcYRwH/OL0+mDEvk1IqCrgdmFJ4SfM+114L3y2wERMDffoHMEk9Ri2f/dz3SQd27ABeeskUpxctkp7YQggh3KZ0PhfWKqXuBLpqrR/IeD0IaK21ftRpnW+At7XW65RSnwDfa63n5PBew4BhAJGRkdd89dVXue43ISGBkJCQgh/RFXT0aABffx3NDz9UJiXFRtvIHTQ9tYY6KbFUDTtJeIco7Lc3RdeqVKTpKA555U0kvwpG8st9klcFUxrz64YbbtiotW6Zdb47wbgdME5r3TXj9XMAWusJTuvsBVTGywggCRimtf42t/dt2bKl3rBhQ677XbFiBZ06dcozbd7i+HF4/3348UfYvVtz7pxyWV6lCtSuraldNYXa9f2pXZvMqVw5UxWen7Q0SErKedqyZTPDhzfHbi+iAyxhitN3yxtIfrlP8qpgSmN+KaVyDMa+bmy7HqijlKoJHAL6Af2dV9Ba13Ta0SeYkvG3l5Pg4qRiRXj5ZTNprTh9Gnbvht3rT7N7l2b32fLsjjnPollnOOxaw094uAnKlSvDxYuQmJhzwL14Ma8UNGfsWLj9drj7bujcGfz8ivSQhRBCFKJ8g7HWOlUp9Qiml7QPMF1rvU0pNTxjeYluJy4opaB8eTO1bl3OseCfUzB1KknfL2PvH+fYTW12h7Vg980Pszu+IocPm/swBweb4B4UlPMUHJx93q+/xvD3342ZOxc++cTsu08fE5g7dQIfH0/lhhBCCHe4UzJGa/0j8GOWeTkGYa310MtPVglUtSq88gpBr0DDI0douHAh/PQTfGSHcGDiRPjuO+jSHW65BRo1cq/+GlDqFGPGwJQp8PPPMHs2zJoFH31kAnvfviYwt28PNhnmRQghvI78NXtC5cpw773w9demnhrM49mz8Oyz0KQJVKsGjzxSoDtXBARAr14mEB8/Dt98Ax06wPTp0LGjecsnnoB16y7thhgpKXDkCMTEwLJlMHeu2Y8QQojL41bJWFwB999vpkOHwCo1Hz7sKB3ff78J2O3aQdu2pqSdh6AgUyLu2xcSEmDBAlNi/vBDePddqF4d7rrLtDPbbHDiBJw8mffjuXPZ92O3w5Ah8OSTULdu4WeLEEKUBhKMvU1UlCMwW9LTYc8eU6R95x3Hev/3f2YC08Mrl+7UISFwzz1mOncOvv3WBOZ33oE338y+vr8/VKgAERHmsUYN19fWo78/fPqpmT76yJTKn3rKXI8thBDCfRKMiwObDZYvN+Nh//GHCcpr15rrogD/U6cgNBSaNzelZqv0XL16tnbn8HBTkh0yBE6dMoOHBQS4BtmQELebq7n2WjPWyX/+Y0rd335rdv/UU9Czp3QeE0IId0ibcXHi7w+tWsGjj5qG4aFDHcv+7/9MVP3oI1MErlkTvvzSLDtyBJYuNW3STsqXhzvugB49oHVrqFXLxHR3A7ElMtJc1nXggLne+uhR05u7fn2YOhXOn7+soxZCiBJPSsYlQHL58vD66+ZFSgps3WpKzh06mHnffw/DhpnndeqYgN6ypQnmZcsWWjqCg02fs+HDTeeuN980z194wZw/PPywOQEoavHxsH+/OTnYv9/1+YEDkJbWhs6d4frrTRbVq1fwExAhhChMEoxLGj8/U13dvLlj3p13mirrDRvMtGqVKVkPGWKWf/yxuQuGFaSbNs21/dkdvr6mc9idd5pdvfkmvPgiTJgA991nCvG1ahXsPbU2tfQJCWY6dix7oLWenzmTPT1Vq5os6NwZ9u5NYNGiQL74wiyvUMFc9mUF56ZNzTZCCHGlyF9OaVCmDNx8s5ksx49ntjlz5Aj88IMZMQRMQG/dGlavNkXGgwdNxCpggFbKXFLVsSNs3w5vv21q0SdPNtXjzZqZwJqY6Aiy1pTTvNzuvREaagJt9epw3XXmEi7rdbVqUKmSa9v1ihXb6NixE3//bU4WVq8207x5ZnlIiGkLt4Jz69amBUAIIYpKvmNTF5X8xqZevXo1lStXJiUl5Qqmqni6cOECAYURLVJTTfHz4kVTFHUO1snJps3a398E64AA87yA0tIgLs5UJVtfPZvNBG7r0fl5bstsNlN69fUt+EAmueVXaqo59AsXzKPzV89uN1NAgJlKU7V2oX2/roD0dHMil5ZmTtKcT8L8/PyoWLEiYWFhRbZ/T4y1HB8PX3wBLVpAmzZXdNeXTcamdvDKknFcXBxhYWFUqVKFwMBAVGn657sE8fHxhIaGFt0OKlc2RVNroOzUVNNAfNVVZvn+/SZSWeNzulHHm55uHq0AeyW5m1+pqY5SeXy8OfT0dHNeUqaMOVe5lA5vxU2Rf78KwcWLprLn5EnHydrFi6ZCp1Il8PPTnD9/nkOHDgEUaUC+kn76yfTLOHDAvO7WDcaONRdTiOLFK4Px8ePHiYqKIigoyNNJEWAiT5ky5rnWpshoRdO0NHPxcnKyY31/fxPAK1RwNPb6+7tEreIwLKevr+uhp6WZoHz6tJlOnjTrlC1rAnNBLglzR1qao7o+KclRG+DjYybredZ5Vi1CSae1yZvjxx39BMqVM0PA+vqaXv3Hj5sBaypUUFSqFERUVBSHDx8u9sH4xAkzmt7MmeaqhSVLYONG0z+jXTvo2tUE5XbtPJ1S4S6vDMYpKSn4X0IVqLgClHKtnvbxMcN3pqa63mbKKh1fuADbtpkIERhoSs6BgeaC52J2z0cfH0dwTk835yCnT5vrtU+cMLX3Zcua6VICs3MHNSsAWwICTPBJTc297dyiVPaAHRjoyP6AgOJxMpSb9HQTfI8dM3nk42NKvxUrun41a9Qw54RHjpjP58QJKF8+kPPni2/Tl9am7+Xjj5vv39ix8Nxz5qfUubO5YmHyZPj3v02/h5tvhnHjJCgXB14ZjAGpmi5ufH0hLMxMWedXr24uNk5KMtErLc1UcdvtJuocPeoaLex2ry/a2WyOwGtVDpw+bf7wjx83gblcObM8ODj74WhtssQ5+FqVCzab2aZyZRPUQ0Jc2z61NvtMS3MEZ+fnOT2eOOHaNOCc3db5UWH2ILdOHGy2whv4JSXF1EYcP26eBwSYDnrly+e+D7vdEZSPHoWTJxUnTsCkSSaIFbRXvyft3w8jRpiq6TZtzEUQjRq5rhMSYgbcGTHCNSjfdJMJyjI6nvfy2mAsSgg/P1NdbbGqua1/z9RUU3p2HpDEZjN1b4GBpp72wgVHzykvHNLLx8cE3nLlTPA7e9aU3I4fN6U3f38TlENDzfmIFXyt4Ojvb4JvZKT5Mw0KyvtcRClH5zV3Kxe0NtlonRMlJZkTiFOnHOv4+7sG56AgR0kzPd18VKmp5uOznuf02posfn6uHeCs53a7eycA58+bfDx1yhxHWJgJsGFh7p+z2e3mnLByZVi/Hj7/HGbMgEGDYPRoc/m9t0pLM6PbPfecef3eezByZN4/BSsoO5eUr7vOBOWxY81z4V0kGBeioUOHcvLkSb7//ntPJ8V7Za3mdq73PX/eMVlR5vRp809ssf7Z69Y1QfvCBfMPbbd7Rd2rj4/jftapqdkDM5hAV768o9R7JWrrnUvDVid5MIHUuXXh/HnX8yIfH9A6JPPEISe+vuZj8fV1lLCt12lpjh7qcXGuwd/a1jk4OwfspCSTZ3Fx5qONiDBV0YGBl54P/v7m+PfsMe2rU6bAZ5/BgAEwZowZAMabbNsGDzxgRsDt2tWkt0YN97cPDoZRo0xJecoUE5Tbt4cuXUxQbt++yJIuCkiCsfAOVt1scLDr/Kgo8y984YLrNUdW4D182ARscPybBwVBdLSZZ5XCPRCofX1N0iMiTGA+f94kzZsK935+pvneupMnmADqfF6UkpJCYKB/ZoC1Jj8/cywFaVGwgrPzdOGCqSmwPsas6YuKMpUrhVmNXqWKuVHKM8+Y698//NBcHtSvH/zrX2afYWGmNsMT53gXL5pBcl57zaTj88/NCcOltt4EB5s7qw0f7gjK119v2pnHjZOg7I70dNi505zItWrlWuFXGCQYC+9mdfzKrThUubKJJFagtv7ZLbt3m9f+/pnFLl8fH/MvC+YXdgX+bX19Hbv0dj4+jlI7QHz8RUJDC6dDpY+Poyo8K+uyMetj9PMzlSZF+fFUqmRKyE8/DRMnmhueWEO6W0JDTUAMD3d0i8jt+cGDEfj7m2BfufKl1XqsXWtKw9u3Q//+5panhfXHbwVlq6T8xhsmKIeHm7yIjHQ85vS8YsUr3+9Sa/jnH3Mf9ZgYM9pvTIxpZmnY0PQftaa6dc33pjD2eeCAadKwpo0bTS0NmJOiVq2ge3cztWx5+SfZEoyLyMWLF3nmmWf48ssvOXfuHM2aNeOtt96ifcYpaEpKCk8++SRz5szh1KlTVKxYkQEDBvB6xhjTc+fOZdy4cfz9998EBgbSuHFjvv76ayIjIz15WN4nr0AN5t8jNNRRDDtzBl/nf5OtWx3V3NYUEpK9I5oocjabo2uAc0n9SqhQwZRER40yN0g7e9b88Z47Zx6dn587Z/6orfnO537QiHHjHK/KlTOB2XmqXNn1daVK5lwxIcG0X//nP6Zi5/vvzU1cikJQkBmWdvhwU02/bZtpEjh2DLZsMY853b8czAmSc5B2nipWdH0s6NWpZ844gq4VeLdudU1L1arQuLEJxNu2weLFjgF6/P2hQQPXAN20qUlPXo4fdw2869ebTo9ggnvTpqZmomVLcw+e1atNR7qXXoLx402zU9eucMst5jEiomDHDRKMi8zTTz/N119/zfTp06lVqxYTJ06kW7du/P3331SuXJlJkyYxb948vvrqK2rUqMHBgwf566+/ADh69Cj9+vVjwoQJ3HHHHSQkJLBu3ToPH1Ex5dxAmuFCXBx+YIJwhQqujZopKWZeWJhZ/scfrj2Q7HYT3C+n4VJ4rfLloW/fgm1jXX8eFweLFm0gOrolhw+bFpQjR8h8vn276dHt3LnNEhHhuGRr5EhTPX0lalKCgkxAzsmFC44AfeyYSXvW5/kF7pAQR2DOKVhv2hTJjz86gm/GmCyACfqNG5sg2Lix6TneqJHjun9LcjL89Rf8+adjWrLEnGRYIiNdA3RkpEm7FXitQVOUMsG8Rw9T8m3VyqyftTbghhvMePunTsGiRSYwL1xoLju71FKzVw6HGRsbS3R0dPZRf3IaNu2uu0yXwaQkc1qS1dChZjp5Mudf2YgRcPfdph5k0CDXZStWuHEkzrsyHbhmz55N2bJl+fjjjxk8eDAAaWlp1K1bl3vuuYdXXnmFf/3rX2zbto0lS5Zku4xr06ZNXHPNNezbt4/q1avnu9/iMEKSN8kzv9LSTBC2eh8dOuTawKm1aVCsXNnxL+Dv7xge1CpZl6Dr5Eva9ys2Npb69esXyXvnN7xjerr5K8opWMfFmUBcHC8/unDBlCStYG11WMzp+YkTjqFwwfxk6tc3AdeaGjUyP7PLucLx5EkT4J2D9NatJq2W2rVNsLQCb4sWjuaZgkpPN1XZP/1kpt9+M8eZtdRcoUIxGg6zuNu9ezcpKSlc53T9gI+PD+3atWP79u2ACdw33XQTdevW5eabb+aWW26he/fu2Gw2mjZtSpcuXWjUqBE333wzXbp0oW/fvlQo7B4DIjvnU1gfH3Mhq8W6LMv6h9DaNMJlVH9nFnlq1jS/wMRE2LvX/NtYgdrf3xR5CqNhSxQ7NpspFVasaG6UUlIEBJjq46pV8183Lc1xvfjmzb/Tv3/rIrlLWkSEKcHecIPrvnftMidBTZrkWHF2yWw2R1DPq9Scm+IVjPMqqQYF5b08IiLv5VWrFrgknBurtiGngUuseS1atGDfvn0sXLiQZcuWMWTIEJo2bcrixYvx8fFh0aJFrFu3jkWLFvHf//6X5557jpUrV9K0adNCSaO4BFkvy7LbXUeNsLoKO68TEOAYWssaOqtePROMz541JW/nQO3vb6rI5R6OooTy8XFUW586lXRFv+o+PubndyUuYStfHu65x0zp6bBpkwnML76Y8/qevzCzBLrqqqvw9/dnzZo1mfPS0tJYu3YtDRo0yJwXGhrKnXfeyeTJk/nhhx9YtmwZu3btAkzQbteuHWPHjmX9+vVUqVKF2bNnX/FjEQVgdRW2/l2sm2k0aGDuL92smXlu9Wqx2UwQTk42p9EHD5rrJqwS9rFjps06Ntb0Cv/nHzPPCupWlboQwqvZbKY6/IUXcl9HTr+LQHBwMCNGjODZZ58lIiKCmjVr8s4773Ds2DEefvhhACZOnEjlypVp1qwZfn5+zJo1i7CwMKKjo1m3bh1Lliyha9euREZGsnnzZv755x+XQC6KIesCXUvW4UPT0kxgtnqLBASY5cnJ5oLfc+fMKbbVXHHokGNQbKt0bbeb9mylTFAv6IXAQgiPkGBcRN544w0A7r33Xs6ePUvz5s1ZuHAhlStXBkyp+M033+Tvv/9GKUXz5s356aefCAoKIjw8nF9++YX333+fs2fPUrVqVV544QUGDhzoyUMSRc26o4Ml62gc1qDU1oW34eHmeXKymawuvVWqmOX79pmqcOdAHRho6gdBgrUQXqR49aYWOSppvV2LWonOL60dwfXsWdOJ7OJFx2gafn6mqhxM9XdSkgnWVqk9JMSUrK3tgcTkZILDw0vM/Rk92ZtauCqN+aWU9KYWouRzDpTON2O2OJ98V6xoqr+Tkx13fLh40bF8/35IScFlgNJy5Ryd1nbvNsHZ6nhmXeJVzG6NKYQ3kGAsRGniHKzLl8973auvhpQUkuLjCfLzMwHbCrRamyCekuK49yOYAF+tmmnbjo11DdTW7akCAgr/uIQo5iQYCyFyltHOnKZ19uGglDIjNYDj+uvkZMd12unpjp7iiYmOHuLR0WYsxYsXYccO11s8+fqaE4TgYMfdKqz50rYtSjgJxkKIy2Ndf+18fbWvr7msy5KW5nofazAd0Jyrx1NTHXfuSkoyo5s578PX1wyoEhZmlp865RrM/fy89p7XQuRHgrEQouj5+LgGSbs95xvzWm3agYFQp44jWKemmskaueziRXNZV9YbLV99temEduqUGWPSCtJWwLbuGHD0qOmgFhlp2tWl1C08TIKxEMJ7WEHR1zfvWzeVLWumtDRHoE5JcbRH+/mZErZV6k5IMOtY12h//LFjBAY/P8edC5YuNcF58WIzsHHW2xJVqCCBWxQJCcZCiOLLKnFn7cGddUAVcO1Jfuedpld41jsZWHcJmDcPJk923d7X1wR2pcx989ascb0lUdWqjmu8z541I62VoBuGiKIlwVgIUTo4l2jzG6D4gw/g1VddA3V8vGPAFV9fU9res8csS0yE6tXhk0/M8n794OefTSnbCtbNmsF775nlc+ea2wdFRJhOaxERZgoOziExojSQYCyEEFkp5agKzylojxljJktiohmudOdO83rYMLjuOteSt3W3eoBx40w1uLNOnWD5cvO8Vy/zns6B+pproGdPs3zvXrMsNFSqzUsICcaiVBo3bhxz5sxh69athfJ+K1as4IYbbuDEiRNEREQUynuKYsTqBW4F4z59zJSb5ctNcD51ytxP8ORJ1+u+w8LMvC1bzDqnT0P//o5g3LixCdYBAabUXamSuT3QY4+Z6vjJk7O3d0vg9moSjEWRq1GjBo888gijRo3ydFIyjRo1ikcffdTTyRClVfnyeQ+68vnnrq/T0ky1NphgO2WKKW0fPeqoRrfExcHIkdnf84UX4KWXTHDv08eRBmu66SZTlX7hgil5R0SYmgG5necVIblczCU7j34k8pWenk5aWhplypQhxOqsI0hNTcXHxyfHe3ALL+Dj42hPVgryumlMaKgJ0lagPnrUVJW3a2eWW0F9504TmE+dMr3OP/zQBOMdO8wtPy3WsKrvvWdK5jt2wBtvmN7u1rLwcBPMo6NN2/rJk2Z+WJhc9+0muZ9xIVu1ahVt27YlJCSE8PBw2rRpw9atW/nkk08ICQlhwYIF1K1bl4CAAG644Qb27NmTue3u3bvp1asXlSpVIjg4mBYtWvD999+7vH+NGjUYN24c9913H2XKlGHAgAEAvPTSS1SvXh273U6lSpUYPHhw5jZaa/79739Tu3ZtAgMDady4MV988YXbx3T48GEGDBhA+fLlCQoKolmzZizPaNvKL82dOnVi//79PPXUUyilXP7sf/31Vzp27EhQUBBRUVGMGDGCuLi4zOWJiYkMHjyYkJAQIiMjmTBhArfeeitDhw7NXOfMmTMMGTKEsmXLEhgYSJcuXdi2bVvmcivff/zxRxo1aoS/vz9//fUX48aNo1GjRi7H+emnn9K4cWPsdjuRkZEu+5k4cSJNmjQhODiYqKgoHnjgAc5m3EihoE6dOsU999xDdHQ0gYGBNGzYkBkzZriso7Xm7bffpk6dOtjtdqKjo3nuuefc+kxyOjYrHyzWOp988gm1a9fGbreTmJjIwoULuf766ylbtizlypWja9eu/OU8+EYe+963bx8+Pj5kvQHMRx99REREhJw4Xik2m6mWbtoUbr4ZBg+GUaNMGzZAVBSsXAlbt8KRI6aHeFwcDBlillerBrNmwaRJMHasCfzXX++4RvvkSVi2DGbMML3Kn3gC7rsPrN/dkiWmp3q5co7Lxpo0MVXuAH/+CRMnwpdfUmbzZjNs6tmzpf7e3CW/ZLx2LaxYYTpHWGeGRSQ1NZVevXpx//33M3PmTFJSUti0aRM+GWeGFy9eZPz48cyYMYOgoCAee+wxbr/9drZs2YJSioSEBLp3784rr7xCYGAgs2fPpk+fPvz5559cffXVmfuZOHEizz//PBs2bEBrzfz583nrrbf48ssvady4McePH2fdunWZ6z///PPMmTOHDz74gHr16rF27VoefPBBypYtS48ePfI8psTERDp27EjFihWZN28eUVFR/PHHH5nL80vz3Llzadq0Kffddx8jRozI3C4mJoabb76Z8ePH8/HHH3P69Gkef/xx7rvvPubMmQPAk08+ycqVK5k3bx5VqlTh5ZdfZvXq1dx+++2Z7zN06FD++usv5s+fT9myZRkzZgzdunVj586dBGbcjvDChQu88sorTJ06lQoVKuRYIp46dSqPPfYYr732Gj169CAhIYFly5ZlLrfZbLz77rvUqlWL/fv38+ijj/Loo4/yedbqRDdcuHCBFi1a8MwzzxAWFsaSJUt46KGHqFatGp07dwZg9OjRTJ48mYkTJ9KhQwdOnDjB5s2b3fpM3LV3715mzZrFN998g7+/PwEBASQmJvL444/TpEkTzp8/zyuvvMJdd93Fjh078Pf3z3PfNWrUoEuXLkyfPp2WLR03pZk+fTqDBg3CXy7z8U5KuQ53Wq6caX/OTfv25iYiYKrP4+NNMLWu4W7RwvQqP3vWtHVbpXPrUrNVq+DJJwFoBvB//2fm//UX1K0LX31lpshIU+IODTXTQw+ZwWB27jTvFxpqLkWzHoODi3ebuNbaI9M111yjc7N9+3YdFxeXfUHHjtmnDz4wyxITsy9r1kxrf3+tfXy0Dggwr7Ou89VXZvsDB7IvK6BTp05pQK9YsSLbshkzZmhAr1mzJnPevn37tM1m04sXL871Pdu0aaNffvnlzNfVq1fXt956q8s6r732mq5bt65OTk7Otn1CQoIOCAjQq1atcpn/2GOP6e7du+d7TNOmTdMhISH6xIkT+a6bV5rffPNNl3UGDRqk77vvPpd5mzdv1oA+duyYjo+P135+fvrLL790OZYyZcroIUOGaK213rlzpwb0ypUrM9c5e/asDgsL0x999JHW2pHvGzZsyFwnLi5Ojx07Vjds2DBzXlRUlH7mmWfcPsaffvpJ+/v767S0NK211suXL9dAgfLJ2d13363vv/9+rbXW8fHx2m6368mTJ+e4bn6fSdZj09rkQ3BwsMs6vr6++ujRo3mmKyEhQdtsNr169Wq39v3NN9/oMmXK6PPnz2utzW8Z0DExMXnu50ravn17kb338uXLi+y9S4z0dK3PnNE6NlZvnjhR61mztJ440fyHa631Rx9p3aSJ1hUrmv9tU2bWOiHBLH/iCcc85yk11Sx/5hmt69bVum1brXv21Pr++7V+4QXH/rdu1XrjRvOfn5R0RQ9da62BDTqHmFiyS8bnzpm2EKv649y5vEf1uUzlypVj6NChdO3alc6dO9O5c2fuvPNOqlatCpjSVevWrTPXr169OlWqVGH79u106dKFxMRExo8fz/fff8+RI0dISUnhwoULNGnSxGU/zqUOgN69ezNlyhRq1qxJ165d6datGz179sRut7N9+3YuXLhAt27dXKqIU1JSqJHTcIRZbN68mSZNmuTaQ9jdNGe1ceNGdu3axezZszPn6YzPaffu3QQFBZGSkuKSX8HBwS7Vr7GxsdhsNto51XiEh4fTuHFjtm/fnjnP19eXZs2a5ZqW48ePc+jQocxSaU6WLVvGhAkTiI2N5dy5c6SlpZGcnMzRo0epYg304Ka0tDRef/11Zs+ezaFDh7h48SLJycmZ93Xdvn07Fy9ezDU9+X0m7oqOjiYyMtJl3u7du3nhhRf47bffOHHiBOnp6aSnp3PgwAG39t2rVy9GjhzJ3Llz6d+/P9OnT6d169bZqs1FKaZUZlvz2aNHTa2lswceMJMlJcX0HA8KMq8feQRuucVc5x0fbx7Pn3e0Tdeubdq+T5+Gfftg/XrTCe2ll8zy0aPhu+8c7x8cbNZfs8a8fucdOHjQxAprqloVrN/joUNmMJfw8EId1KV4BeMVK3JfFhSUffnatSYDk5NNps2cmXtVddWqeb+/m2bMmMHjjz/OwoUL+e677xgzZgzffvutW9uOGjWKhQsX8tZbb1GnTh2CgoIYPHhwtra24CwDA0RHR/PXX3+xdOlSlixZwpNPPsn48eP57bffSM8Yu3fBggVUq1bNZTs/a5zfPFgB8nLTnFV6ejoPPPAATzzxRLZlUVFRme2UeXUoyittztvZ7fbMpoKCvg/A/v376dGjBw8++CAvvfQS5cuXZ9OmTdxzzz2X1A761ltv8fbbb/Pee+/RuHFjQkJCGD16NMePH3crPfktt9ls2dZJSUnJtl7W7xHAbbfdRlRUFFOnTiUqKgpfX18aNGiQeZz57dvPz4/Bgwczffp07rrrLj7//HNesv4EhbgUfn6u9+WuVctxT+2cPPigmZw5f29fecW0cZ84YTq2nTjhOtjK4sWmTT0pyTGvXTtHMO7WzbS3g7m0LDzczLMGfLlExSsYF1S7dmas2SvUZmxp2rQpTZs25ZlnnqF79+58+umn3HzzzaSnp7N+/XquvfZaAA4cOMDhw4epn3ErujVr1jB48GDuuOMOwLQt7t69m7p16+a7z4CAAHr06EGPHj149tlnqVSpEr/88gvt2rXDbrezf/9+brzxxgIfS4sWLfjiiy84efJkjqUhd9Ls7+9PWlpatvfdtm0bVznf2cfJVVddhZ+fH7///js1a9YEICkpia1bt1K7dm0AGjRoQHp6OmvXrqVDhw4AxMXFERMTw7333uv2MUZGRhIVFcXSpUu56aabsi3fsGEDycnJvPPOO5lBPWvHuoJYs2YNt912G4MGDQJMgNu5cydlMv5wGjRogN1uZ+nSpdSpUyfb9vl9JhUqVODYsWNorTNPSrZYnWfycOrUKWJjY/nggw+44YYbANi0aROp1u0P3dg3wIMPPkj9+vX58MMPiY+Pp1+/fvnuW4gi5XxS37ixmXLz44/mMSXFdGw7d841mI8fb0rH1rJz50xb92Uq2cEYTAC+QkF47969TJ06lZ49exIVFcWePXv4888/Mzsu+fr68vjjj/Pee+8RGBjIE088QcOGDenSpQsAdevWZd68efTq1Qs/Pz/Gjx/PBesyhDzMnDkTX19f2rRpQ0hICLNnz8bPz486deoQGhrKqFGjGDVqFFprOnToQEJCAuvWrcNmszFs2LA837t///68/vrr9O7dmwkTJhAdHU1MTAyhoaHccMMNbqW5Ro0arF69moEDB2K324mIiOCZZ56hbdu2DB8+nIceeojQ0FB27NjBggULmDp1KiEhIdx3330888wzREREULlyZV555RXS09MzA0ydOnXo1asXDz30ENOmTaNMmTKMGTOGsLAw+vfvX6DPbsyYMTzxxBNERkbSo0cPkpKSWLp0KU8++SR16tQhPT2dd999lz59+rBu3TrefffdAr2/s7p16zJ79mzWrFlDREQE77//Pnv37qV5xuUkoaGhPPbYYzz33HPY7XY6dOjAqVOn2LhxIyNGjMj3M+nUqROnT5/mtddeo1+/fqxYsSKzU1xeypYtS0REBB999BFVq1bl0KFDPPXUU/g6XWea376t42vfvj1PPfUU/fr1IyzrGNFCFAd+fjlfD57XYC6XI6eG5CsxXVIHLi939OhRffvtt+sqVapof39/XbVqVf3UU0/p5OTkzA403377rb7qqqu0v7+/7tChg/77778zt9+3b5/u3LmzDgoK0lFRUfrNN9/UPXr0yOywpHXOnaFmzZql27Ztq8PDw3VQUJBu2bKlXrBgQeby9PR0PWnSJF2/fn3t7++vIyIidJcuXfSiRYvcOq5//vlH33XXXTo8PFwHBgbqZs2aZXZUcSfNa9eu1U2aNNF2u12br5yxfv163bVrVx0aGqqDgoJ0o0aN9AtOHS3i4+P1wIEDdVBQkK5YsaKeMGGCvvHGG/Xw4cMz1zl9+rQePHiwLlOmjA4ICNCdO3fWW7duzVyeteOS1jl34NJa648//ljXr19f+/n56cjISH3vvfdmLnvvvfd0lSpVdEBAgL7xxhv17NmzNaD37t2rtS5YB67Tp0/r22+/XYeEhOgKFSrop556So8YMUJ3dOo0mJaWpidMmKBr1qyp/fz8dHR0tB49erRbn4nWWk+ZMkVXq1ZNBwUF6bvvvlu/++672TpwZT1+rbVeunSpbtiwobbb7bphw4Z64cKFOjg4WM+YMcPtfWut9aeffpqtc523kA5c3qM05he5dOByK3AC3YC/gF3AszksHwD8mTH9CjTN7z1LYjDOS05BobCUtLzKzYULF3RkZKR+6623Lut9Skt+FZZLya/XX39d16lTpwhSc/kkGHuP0phfuQXjfKuplVI+wAfATcBBYL1S6jut9Xan1fYCHbXWZ5RS3YFpQJtCKLiLUmzz5s3ExsbSunVr4uPjeeONN4iPj+fuu+/2dNJELhISEtixYwfvvfceY5xvpCCEyJM7I3C1BnZprfdorZOBr4BezitorX/VWp/JeLkOiC7cZIqi8tprrxESEpLj1L17d08nj4kTJ9K8eXNuvPFGjh07xqpVq4iO9u6vV/fu3XPN09dee83TyStSjzzyCNdddx3XXXcdDz30kKeTI0SxoXQ+lyoopfoC3bTWD2S8HgS00Vo/ksv6o4CrrfWzLBsGDAOIjIy85quvvspxn+Hh4dSsWTPPy1GEQ1pa2iXn1enTpzlz5kyOywIDAwt8DW1xcDn55Y7Dhw9z/vz5HJdZw0wWJ0WdX1farl27OHfuXJG8d0JCgox5XgClMb9uuOGGjVrrllnnu9ObOqcLPXOM4EqpG4D7gfY5LddaT8NUYdOyZUvdKevF3hliY2Px8fEh1HmINpGr+Pj4S86r0NBQqlevXsgp8m6Xk1/uqJfXTeuLoaLOrystICAgs+d6YVuxYgW5/a+J7CS/HNwJxgeBqk6vo4HDWVdSSjUBPga6a61PFU7yhBBCiJLPnTbj9UAdpVRNpZQ/0A/4znkFpVQ1YC4wSGu9s/CTKYQQQpRc+ZaMtdapSqlHgJ8BH2C61nqbUmp4xvIpwItAeeDDjAEZUnOqExdCCCFEdm6NwKW1/hH4Mcu8KU7PHwCyddgSQgghRP7cqaYWQgghRBGSYOxFOnXqxCOP5HjF2GWtK4QQwrtJMBZCCCE8TIKxEEII4WESjAvJ1KlTiYyMdLn3K5hbzvXq1Yvdu3fTq1cvKlWqRHBwMC1atLise+JmdebMGYYMGULZsmUJDAykS5cubNu2LXP5uXPnGDRoEBUrViQgIIBatWq53AZw6tSp1K1bl4CAACpUqEDXrl2zHYsQQoiiIcG4kNx1112cPXuWJUuWZM5LTExk/vz5DBw4kISEBLp3787ixYv5448/uOOOO+jTpw87duwolP0PHTqU3377jfnz5/P7778TFBREt27dModlfP7554mJieH7779nx44dTJ8+naioKAA2bNjAyJEjGTt2LH/99RdLliyhW7duhZIuIYQQ+XPr0iZv8PjjsGXLld1ns2bg7j3ky5Ytyy233MLMmTMzA9m8efPw9fXltttuIyAggKZNm2auP2bMGBYsWMCcOXN4/vnnLyudu3bt4rvvvmPlypV06NABgM8//5xq1aoxc+ZMHnjgAfbv30/z5s1p3bo1ADVq1Mjc/sCBAwQHB9OzZ8/M4TGd0yqEEKJoScm4EA0cOJBvv/2WpKQkAGbOnEnfvn0JCAggMTGRp59+mgYNGlC2bFlCQkLYsGEDBw4cuOz97ty5E5vNRrt27TLnhYeH07hxY7ZvN3e6HDFiBF9//TVNmzZl1KhRrFy5MnPdm266ierVq1OzZk0GDBjAp59+Snx8/GWnSwghhHuKTcnY3RKqJ9166634+voyf/58OnfuzJIlS1i0aBEAo0aNYuHChbz11lvUqVOHoKAgBg8eTHJy8mXvN687b2WMiEb37t3Zv38/P/30E0uXLqVHjx7ceeedzJgxg9DQUDZt2sSqVatYvHgxEyZMYPTo0axfv75E3rVJCCG8jZSMC5Hdbqdv377MnDmT2bNnU6lSJTp27AjAmjVrGDx4MHfccQdNmjQhOjqa3bt3F8p+69WrR3p6OmvXrs2cFxcXR0xMDA0aNMicFxERwaBBg/jkk0/473//y6effsrFixcB8PX15cYbb2TChAn8+eefJCYmFmoHMyGEELkrNiXj4mLgwIF06dKFvXv30r9/f2w2c75Tt25d5s2bR69evfDz82P8+PFcuHChUPZ51VVX0atXLx566CGmTZtGmTJlGDNmDGFhYfTv3x+AF198kRYtWtCwYUNSU1OZO3cutWrVwm638/3337N79246dOhAuXLlWL58OfHx8dSvX79Q0ieEECJvUjIuZB06dCAqKort27czcODAzPkTJ06kYsWKXH/99XTv3p22bdty/fXXF9p+Z8yYQevWrenZsyetW7cmKSmJhQsXEhgYCJhS+5gxY2jatCnXXXcd8fHxLFiwAIAyZcrw7bff0qVLF66++mreeustPv7440JNnxBCiNypvNobi1LLli31hg0bclwWGxtLdHR0ibqheVEqaTd/L2qSXwVT0vIrNja2yGp9VqxYQadOnYrkvUui0phfSqmNOd3VUErGQgghhIdJMPZCq1evJiQkJNdJCCFEySIduLxQy5Yt2XKlRzgRQgjhMRKMvVBgYCBXXXWVp5MhhBDiCpFqaiGEEMLDJBgLIYQQHibBWAghhPAwCcZCCCGEh0kwFkIIITxMgrEX6dSpE4888oinkyEK2dChQ7n11lsL7f0++eQTud5ciBJGLm0SJYpSim+++Ya+fft6OimZ3nvvvTxvcymEEBKMhduSk5Px9/f3dDKKjdTUVHx8fAgPD/d0UryKfI+EyK7EV1MfOQIdO8LRo0W7n6lTpxIZGUlqaqrL/P79+9OrVy92795Nr169qFSpEsHBwbRo0eKy7hc8d+5cmjRpQmBgINWqVaNjx44cO3YMgHHjxtGoUSM+/vhjqlWrRmBgIL179+bkyZOZ269fv56bb76ZiIgIwsLCaN++vcv9kMGUMj/44AP69OlDcHAwo0ePJiUlhX/9619UqVIFu91O1apVefbZZzO3SU5O5plnniE6Oprg4GBatWrFzz//7PZx7dixg549exIeHk5ISAjt2rUjJibGrTTXqFEDgDvvvBOlVOZrgAULFnDNNdcQEBBA48aNGTNmDMnJyZnLjx07Rs+ePQkMDKR69erMmDGDRo0aMW7cuMx1Dhw4wO23305oaCihoaH06dOHgwcPZi638v2TTz6hdu3a2O12EhMTs1VTa615++23qVOnDna7nejoaJ577rnM5c8++yz16tUjMDCQGjVq8PTTT1/y7Tbd+d4lJyczevRoqlevjt1up1atWkyaNClz+c6dO3P9THKqgrfywWKt88YbbxAdHU10dDQAX3zxBa1atSI0NJSKFSty5513cujQIZf3yu37sGrVKvz8/Dia5Yc9ZswYmjRpckl5JYQnlfhg/PLLsGYNvPRS0e7nrrvu4uzZsyxZsiRzXmJiIvPnz2fgwIEkJCTQvXt3Fi9ezB9//MEdd9xBnz592LFjR4H3dfToUfr168eQIUOIjY1l4cKFDBo0yGWdffv28cUXXzB//nyWLFnC33//zX333Ze5PD4+nkGDBrF69Wp+//13mjVrxi233OISsAHGjx/PLbfcQkxMDCNHjmTSpEnMmzePr776ir///pvZs2dTr169zPXvvfdeVq5cyaxZs4iJiWHIkCHcdttt/PHHH/ke1+HDh2nfvj1KKRYvXsymTZsYOXIkaWlpbqV5/fr1AHz00UccOXIk8/XPP//MgAEDeOSRR9i2bRsffPABc+bMYfTo0Zn7HjJkCPv372fZsmXMnz+fL774gv3792cu11rTu3dvjh07xrJly1i+fDmHDx+md+/eLlXQe/fuZdasWXzzzTf88ccfBAQEZDvO0aNH8/LLL/Pcc8+xbds2vvnmG6pWrZq5PDg4mOnTpxMbG8uHH37IV199xauvvppv/uXEne/dkCFD+Oyzz5g4cSKxsbH897//pUyZMpmfyc0335zrZ+KulStX8ueff7Jw4UKWLl0KmJOA8ePH88cff/D9999z8uRJ7rnnnsxt8vo+dOjQgdq1a/PZZ59lrp+ens5nn33G/ffff0l5JYRHaa09Ml1zzTU6N9u3b9dxcXEu8x57TOuOHd2fbDatIftks7n/Ho89lmsSc9S7d289cODAzNeff/65DgsL0+fPn89x/TZt2uiXX34583XHjh31yJEj893Pxo0bNaD37duntdbZ8mrs2LHaZrPp/fv3Z85bvXq1BvTOnTtzfM/09HRdqVIl/fnnn2fOA/Qjjzzist6jjz6qb7zxRp2enp7tPXbt2qWVUi771VrrXr166REjRuR7XKNHj9bVqlXTFy9ezHfdvNL8zTffuKx3/fXX65deeinzdVxcnJ43b54ODg7W6enpeseOHRrQa9euzVznwIED2maz6bFjx2qttV60aJG22Wx67969mevs3r1bK6X04sWLtdYm3319ffXRo0dd9j9kyBDdo0cPrbXW8fHx2m6368mTJ7t1jFprPXnyZF27du3M1zNmzNDBwcFub5+V8/du586dGtA//fRTjuuOHj1aV61aNdfPxPnYLGPHjtUNGzZ0WSciIkJfuHAhz3TFxsZqQP/zzz+Z+87r+/Dmm2/qq6++OvP1jz/+qP39/fXJkyfz3M/27dvzXH45li9fXmTvXRKVxvwCNugcYmKJLRm3bg0VK4It4whtNvO6TZui2+fAgQP59ttvSUpKAmDmzJn07duXgIAAEhMTefrpp2nQoAFly5YlJCSEDRs2cODAgQLvp2nTpnTp0oVGjRpxxx138PHHH3PixAmXdaKioqhWrVrm6zZt2mCz2YiNjQXg+PHjPPTQQ9StW5fw8HBCQ0M5fvx4tvS0bOl6282hQ4eyZcsW6taty8iRI/nhhx9IT08HYNOmTWitadCggctdpn744Qd2796d73Ft3ryZ9u3b59qe6G6as9q4cSOvvvpqZnoqV65M//79SUxM5OjRo+zYsQObzeZyrFWrVqVKlSqZr2NjY6lSpYpL1XetWrWoUqUK27dvz5wXHR1NZGRkrmnZvn07Fy9epHPnzrmuM2fOHNq3b0+lSpUICQnhiSeeuKTvCZDv927z5s3YbDZuuOGGHLffvHkzbdu2vew23kaNGmG3213mbdq0iV69elG9enVCQ0Mz8985bXl9H4YMGcKePXv49ddfAZg+fTq9e/emfPnyl5VWITyh2HTgevfdgm8zYgRMmwYBAZCcDHfcAR9+WOhJy3Trrbfi6+vL/Pnz6dy5M0uWLGHRokUAjBo1ioULF/LWW29Rp04dgoKCGDx4sEu7pbt8fHxYtGgR69atY9GiRXz++eeMHz+elStX0rRpU7feY8iQIRw7dox33nmHGjVqYLfb6dy5c7b0BAcHu7xu0aIF+/btY+HChSxbtowhQ4bQtGlTFi9eTHp6Okop1q9fj5+fn8t2gYGB+aZJ59Pj2N00Z5Wens7YsWO58847AVN1a10aVKFCBbd6OmutUUrluMx5ftb8yul98rJu3Tr69evH2LFjeeeddyhTpgzfffcdo0aNyjeNOcnve5dfevJbbrPZsq2TkpKSbb2s+ZKYmEjXrl3p0qULn3/+ORUrVuTkyZNcf/31bqetQoUK9OzZk+nTp1OvXj2+++47FixYkOc2QnirYhOML8WxYzB8OAwbZoLykSNFuz+73U7fvn2ZOXMmJ0+epFKlSnTs2BGANWvWMHjwYO644w4ALly4wO7du6lbt+4l7UspRbt27WjXrh1PPPEEbdu2Zfbs2ZnB+NChQ/zzzz+ZbZG///476enp1K9fPzM9kyZNokePHoDpwHTEzQwKDQ3lzjvv5M4772To0KG0bduWXbt20bx5c7TWHD16NNeSVl5atGjBF198kWtvW3fS7Ofnl609s0WLFuzYsSPzTljx8fGEhoZmLq9fvz7p6els3LiRNhlVJwcPHuTw4cOZ6zRo0IBDhw6xb9++zNLxnj17OHz4MA0aNHD7GBs0aIDdbmfp0qXUqVMn2/JffvmFqKgoXnjhhcx5zm3XBZXf965Fixakp6ezfPlyunXrlm37Fi1a8Pnnn+f6mVSoUCHb7T7duf3njh07OHnyJK+99ho1a9YETKfErPvO6/sA8OCDD9K3b19q1apFZGQkXbp0yXffQnijEltNDTB3LnzwATRtah6z/NaLxMCBA/n555+ZMmUK/fv3x5ZRT163bl3mzZvHpk2biImJYeDAgZfcQ3bdunW88sorrF+/ngMHDvDjjz/yzz//uASFwMBAhgwZwpYtW1i7di3Dhw+nR48emQGgbt26fPHFF2zfvp3169fTr18/t6oiJ06cyJdffklsbCy7du1i1qxZhIWFER0dTd26dRkwYABDhw5lzpw57Nmzhw0bNvDWW29l+6PNycMPP0xCQgJ33XUX69evZ9euXXz55ZeZf+7upLlGjRosXbqUo0ePcubMGQBefPFFZs2axYsvvsjWrVvZuXMnc+bM4emnnwagXr16dO3aleHDh7Nu3Tq2bNnCvffeS1BQUGapt0uXLjRt2pQBAwawceNGNmzYwIABA2jRogU33nhj/h9ahtDQUB577DGee+45ZsyYwe7du/n999+ZPHly5jEeOnSImTNnsmfPHiZPnsyXX37p9vtnld/3rk6dOtx111088MAD/O9//2Pv3r2sXr2azz//HMj/M7nxxhvZvHkz06dPZ9euXfz73//ml19+yTdd1apVw26385///Ic9e/bwww8/uJyAuLNvgJtuuony5cszfvx47r333szfmxDFTk4NyVdiKmgHruIiPT1dV69eXQP6zz//zJy/b98+3blzZx0UFKSjoqL0m2++qXv06KGHDBmSuY67Hbi2b9+uu3XrpitWrKj9/f11zZo19RtvvJG53OpAM3XqVB0dHa0DAgJ0z5499fHjxzPX2bJli27durUOCAjQtWrV0p999plu2LBhZoclrXPuDDVt2jTdvHlzHRISokNDQ3WHDh30L7/8krk8OTlZjx07VtesWVP7+fnpyMhIfdttt+kNGza4lX9bt27V3bt318HBwTokJES3a9dOx8TEuJ3m7777Tl911VXa19dXV69ePXP+zz//rNu3b68DAwN1aGiovuaaa/T777+fufzIkSP61ltv1Xa7XVetWlXPmDFD16pVS7/++uuZ6+zfv1/36tVLh4SE6JCQEN27d+/MzkbO+Z5V1k5OaWlpesKECZl5FB0drUePHp25/Nlnn9URERE6ODhY33777frDDz/U5qdqFKQDlzvfuwsXLuinnnpKV6lSRfv7++tatWq55M1vv/2W62diHXelSpV0WFiYHjFihH7uueeydeDK2slLa62/+uorXatWLW2323WrVq30woULNeDSqSev74Nl/PjxWinl0rkuL9KBy3uUxvwilw5cSntoZKCWLVvqDRs25LgsNjaW6Ohol6pEkbus1a7jxo1jzpw5bN261YOp8l5Z8ysnJ0+epEqVKnz55ZeZVbyllTv55UkjRoxg165dLF682K31Y2NjM5trCtuKFSvo1KlTkbx3SVQa80sptVFr3TLr/BLdZiyEu5YtW0Z8fDyNGzfm+PHjjBkzhoiIiBzbUYV3OHfuHBs3buSzzz7j66+/9nRyhLgs0sDihVavXu1yaVDWqbgaPnx4rsc0fPhwj6YtJSWF559/nsaNG3PbbbcRGBjIqlWr8u0d7WkNGzbMNU9nzpzp6eQVqV69enHrrbdy3333ZXbqE6K4kmpqL3T+/PlswwI6s3oFW7y9GtFy/Phx4uLiclwWFhZGxYoVr0g6ikt+uWP//v05XkoEEBkZWSjHWZLyC6Sa2puUxvySaupiJDAwMFvALQkqVqx4xQJuaVG9enVPJ0EIUQikmloIIYTwMK8Nxp6qPhdClFzyvyK8lVcGYz8/v0saJlIIIfJy/vz5bEO1CuENvDIYV6xYkUOHDpGUlCRnskKIy6a1JikpiUOHDkm/BeGVvLIDV1hYGHFxcRw+fDjXnqLC4cKFCzneN1fkTPKrYEpKfvn5+REZGUlYWJinkyJENl4ZjAHS0tJKZI/iorBixQqaN2/u6WQUG5JfBSP5JUTR88pqaiGEEKI0cSsYK6W6KaX+UkrtUko9m8NypZSalLH8T6VUi8JPqhBCCFEy5RuMlVI+wAdAd6ABcI9SKusNXLsDdTKmYcDkQk6nEEIIUWK5UzJuDezSWu/RWicDXwG9sqzTC/gs4w5R64AySqnKhZxWIYQQokRyJxhHAf84vT6YMa+g6wghhBAiB+70plY5zMt68a8766CUGoapxgZIUEr9lcd+I4CTbqRPSF4VlORXwUh+uU/yqmBKY37lOKC8O8H4IFDV6XU0cPgS1kFrPQ2Y5sY+UUptyOnOFiI7yauCkfwqGMkv90leFYzkl4M71dTrgTpKqZpKKX+gH/BdlnW+AwZn9KpuC5zTWh8p5LQKIYQQJVK+JWOtdapS6hHgZ8AHmK613qaUGp6xfArwI3ALsAtIAu4tuiQLIYQQJYtbI3BprX/EBFzneVOcnmtgZOEmzb3qbAFIXhWU5FfBSH65T/KqYCS/Mii5EYMQQgjhWTIcphBCCOFhXheM8xt6U7hSSu1TSsUopbYopTZ4Oj3eRik1XSl1XCm11WleOaXUYqXU3xmPZT2ZRm+RS16NU0odyvh+bVFK3eLJNHoTpVRVpdRypVSsUmqbUuqxjPny/coij7yS71cGr6qmzhh6cydwE+ZyqfXAPVrr7R5NmBdTSu0DWmqtS9u1em5RSnUAEjAjxDXKmPdv4LTW+vWME76yWutnPJlOb5BLXo0DErTWb3kybd4oY5TBylrrTUqpUGAj0BsYiny/XOSRV3ch3y/A+0rG7gy9KYTbtNargNNZZvcCPs14/inmT6HUyyWvRC601ke01psynscDsZiRB+X7lUUeeSUyeFswlmE1C04Di5RSGzNGOBP5i7Sug894rOjh9Hi7RzLuxjZdqlxzppSqATQHfkO+X3nKklcg3y/A+4KxW8NqChfXaa1bYO6cNTKjqlGIwjIZqA00A44Ab3s0NV5IKRUC/A94XGsd5+n0eLMc8kq+Xxm8LRi7NaymcNBaH854PA7Mw1T1i7wds+4qlvF43MPp8Vpa62Na6zStdTrwEfL9cqGU8sMEl5la67kZs+X7lYOc8kq+Xw7eFozdGXpTZFBKBWd0hkApFQzcDGzNeyuB+U4NyXg+BJjvwbR4tSy3Qr0d+X5lUkop4L9ArNZ6otMi+X5lkVteyffLwat6UwNkdG1/F8fQm696NkXeSylVC1MaBjOa2izJL1dKqS+BTpi7wxwDxgLfAl8D1YADwJ1a61LfcSmXvOqEqULUwD7gIRl33lBKtQdWAzFAesbs0Zi2UPl+Ockjr+5Bvl+AFwZjIYQQorTxtmpqIYQQotSRYCyEEEJ4mARjIYQQwsMkGAshhBAeJsFYCCGE8DAJxkKIfCmltFKqr6fTIURJJcFYCC+nlPokIxhmndZ5Om1CiMLh6+kECCHcsgQYlGVesicSIoQofFIyFqJ4uKi1PpplOg2ZVciPKKV+UEolKaX2K6UGOm+slGqslFqilDqvlDqdUdoOz7LOEKVUjFLqolLqmFLqkyxpKKeU+kYplaiU2pN1H0KISyfBWIiSYTxmTORmwDTgM6VUSwClVBCwEEjADMR/O3AtMN3aWCn1EDAVmAE0AW4BtmXZx4uYcZabArOB6Uqp6kV2REKUIjIcphBeLqOEOhC4kGXRB1rrZ5RSGvhYa/2g0zZLgKNa64FKqQeBt4DojBu7o5TqBCwH6mitdymlDgJfaK2fzSUNGnhda/1cxmtfIA4YprX+ovCOVojSSdqMhSgeVgHDssw76/R8bZZla4EeGc/rA39agTjDr5gB+xsopeKAKGBpPmn403qitU5VSp0AKrqVeiFEniQYC1E8JGmtd13itgpzV5yc6Izl7kjJYVtp6hKiEMgPSYiSoW0Or2Mznm8Hmlr3vs5wLeb3H6u1PgYcAjoXeSqFEDmSkrEQxYNdKVUpy7w0rfWJjOd9lFLrgRVAX0xgbZOxbCamg9dnSqkXgbKYzlpznUrbrwLvKKWOAT8AQUBnrfXbRXVAQggHCcZCFA9dgKw3XT8ERGc8HwfcAUwCTgD3aq3XA2itk5RSXYF3gd8xHcHmA49Zb6S1nqyUSgaeBN4ATgM/FtGxCCGykN7UQhRzGT2d79Raz/F0WoQQl0bajIUQQggPk2AshBBCeJhUUwshhBAeJiVjIYQQwsMkGAshhBAeJsFYCCGE8DAJxkIIIYSHSTAWQgghPEyCsRBCCOFh/w9ffkAgvMpVqAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# extra code – shows how to shift the training curve by -1/2 epoch\n", + "plt.figure(figsize=(8, 5))\n", + "for key, style in zip(history.history, [\"r--\", \"r--.\", \"b-\", \"b-*\"]):\n", + " epochs = np.array(history.epoch) + (0 if key.startswith(\"val_\") else -0.5)\n", + " plt.plot(epochs, history.history[key], style, label=key)\n", + "plt.xlabel(\"Epoch\")\n", + "plt.axis([-0.5, 29, 0., 1])\n", + "plt.legend(loc=\"lower left\")\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3xbno6P9Im2q", + "outputId": "fa09d55c-069a-46cf-c74e-16e633ec7849" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 0s 867us/step - loss: 0.3243 - sparse_categorical_accuracy: 0.8864\n" + ] + }, + { + "data": { + "text/plain": [ + "[0.32431697845458984, 0.8863999843597412]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LIC5QhHMIm2q" + }, + "source": [ + "### Using the model to make predictions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "I1GrB9CCIm2q", + "outputId": "e7abe8b6-e08f-479c-d7ed-99e3b1ee9d57" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0. , 0. , 0. , 0. , 0. , 0.01, 0. , 0.02, 0. , 0.97],\n", + " [0. , 0. , 0.99, 0. , 0.01, 0. , 0. , 0. , 0. , 0. ],\n", + " [0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]],\n", + " dtype=float32)" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_new = X_test[:3]\n", + "y_proba = model.predict(X_new)\n", + "y_proba.round(2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Y4sexvxQIm2q", + "outputId": "8a3bb4b0-4488-4d08-8dd8-0e99f107070c" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9, 2, 1])" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_pred = y_proba.argmax(axis=-1)\n", + "y_pred" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "C_ikj6MzIm2q", + "outputId": "0813370b-3941-46de-cf96-e5a880a26545" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Ankle boot', 'Pullover', 'Trouser'], dtype='" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# extra code – this cell generates and saves Figure 10–12\n", + "plt.figure(figsize=(7.2, 2.4))\n", + "for index, image in enumerate(X_new):\n", + " plt.subplot(1, 3, index + 1)\n", + " plt.imshow(image, cmap=\"binary\", interpolation=\"nearest\")\n", + " plt.axis('off')\n", + " plt.title(class_names[y_test[index]])\n", + "plt.subplots_adjust(wspace=0.2, hspace=0.5)\n", + "save_fig('fashion_mnist_images_plot', tight_layout=False)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nC_6BNaCIm2r" + }, + "source": [ + "## Building a Regression MLP Using the Sequential API" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RKvLT-NiIm2r" + }, + "source": [ + "Let's load, split and scale the California housing dataset (the original one, not the modified one as in chapter 2):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yf94GgnRIm2r" + }, + "outputs": [], + "source": [ + "# extra code – load and split the California housing dataset, like earlier\n", + "housing = fetch_california_housing()\n", + "X_train_full, X_test, y_train_full, y_test = train_test_split(\n", + " housing.data, housing.target, random_state=42)\n", + "X_train, X_valid, y_train, y_valid = train_test_split(\n", + " X_train_full, y_train_full, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PdQEnQbQIm2r", + "outputId": "0859dfea-8da0-4a24-d5a5-6cf6b91ec378" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.9051 - root_mean_squared_error: 0.9514 - val_loss: 0.4030 - val_root_mean_squared_error: 0.6348\n", + "Epoch 2/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3843 - root_mean_squared_error: 0.6199 - val_loss: 0.8436 - val_root_mean_squared_error: 0.9185\n", + "Epoch 3/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3609 - root_mean_squared_error: 0.6007 - val_loss: 0.3744 - val_root_mean_squared_error: 0.6119\n", + "Epoch 4/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3416 - root_mean_squared_error: 0.5844 - val_loss: 0.4343 - val_root_mean_squared_error: 0.6590\n", + "Epoch 5/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3301 - root_mean_squared_error: 0.5746 - val_loss: 0.3085 - val_root_mean_squared_error: 0.5554\n", + "Epoch 6/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3168 - root_mean_squared_error: 0.5629 - val_loss: 0.4544 - val_root_mean_squared_error: 0.6741\n", + "Epoch 7/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3162 - root_mean_squared_error: 0.5623 - val_loss: 0.2941 - val_root_mean_squared_error: 0.5423\n", + "Epoch 8/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3045 - root_mean_squared_error: 0.5518 - val_loss: 0.3333 - val_root_mean_squared_error: 0.5773\n", + "Epoch 9/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2974 - root_mean_squared_error: 0.5453 - val_loss: 0.3446 - val_root_mean_squared_error: 0.5870\n", + "Epoch 10/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2921 - root_mean_squared_error: 0.5404 - val_loss: 0.2874 - val_root_mean_squared_error: 0.5361\n", + "Epoch 11/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2863 - root_mean_squared_error: 0.5351 - val_loss: 0.4141 - val_root_mean_squared_error: 0.6435\n", + "Epoch 12/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2942 - root_mean_squared_error: 0.5424 - val_loss: 1.0956 - val_root_mean_squared_error: 1.0467\n", + "Epoch 13/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2864 - root_mean_squared_error: 0.5352 - val_loss: 0.3063 - val_root_mean_squared_error: 0.5534\n", + "Epoch 14/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2804 - root_mean_squared_error: 0.5295 - val_loss: 0.2709 - val_root_mean_squared_error: 0.5205\n", + "Epoch 15/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2784 - root_mean_squared_error: 0.5276 - val_loss: 0.3680 - val_root_mean_squared_error: 0.6066\n", + "Epoch 16/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2757 - root_mean_squared_error: 0.5250 - val_loss: 0.2730 - val_root_mean_squared_error: 0.5225\n", + "Epoch 17/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2739 - root_mean_squared_error: 0.5234 - val_loss: 0.3668 - val_root_mean_squared_error: 0.6056\n", + "Epoch 18/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2694 - root_mean_squared_error: 0.5191 - val_loss: 0.4188 - val_root_mean_squared_error: 0.6472\n", + "Epoch 19/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2677 - root_mean_squared_error: 0.5174 - val_loss: 0.9663 - val_root_mean_squared_error: 0.9830\n", + "Epoch 20/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.2755 - root_mean_squared_error: 0.5249 - val_loss: 0.2978 - val_root_mean_squared_error: 0.5457\n", + "162/162 [==============================] - 0s 508us/step - loss: 0.2806 - root_mean_squared_error: 0.5297\n" + ] + } + ], + "source": [ + "tf.random.set_seed(42)\n", + "norm_layer = tf.keras.layers.Normalization(input_shape=X_train.shape[1:])\n", + "model = tf.keras.Sequential([\n", + " norm_layer,\n", + " tf.keras.layers.Dense(50, activation=\"relu\"),\n", + " tf.keras.layers.Dense(50, activation=\"relu\"),\n", + " tf.keras.layers.Dense(50, activation=\"relu\"),\n", + " tf.keras.layers.Dense(1)\n", + "])\n", + "optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)\n", + "model.compile(loss=\"mse\", optimizer=optimizer, metrics=[\"RootMeanSquaredError\"])\n", + "norm_layer.adapt(X_train)\n", + "history = model.fit(X_train, y_train, epochs=20,\n", + " validation_data=(X_valid, y_valid))\n", + "mse_test, rmse_test = model.evaluate(X_test, y_test)\n", + "X_new = X_test[:3]\n", + "y_pred = model.predict(X_new)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Wcvu0VPxIm2r", + "outputId": "0cbcc337-7d5a-4134-ad2d-6c1090d2e49d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.5297096967697144" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rmse_test" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GP7E8EhYIm2s", + "outputId": "71e233a2-be31-4448-cc89-4b1ca2366c9d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.4969182],\n", + " [1.195265 ],\n", + " [4.9428763]], dtype=float32)" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_pred" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MaCnCwJ1Im2s" + }, + "source": [ + "## Building Complex Models Using the Functional API" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iBd7x9gxIm2s" + }, + "source": [ + "Not all neural network models are simply sequential. Some may have complex topologies. Some may have multiple inputs and/or multiple outputs. For example, a Wide & Deep neural network (see [paper](https://ai.google/research/pubs/pub45413)) connects all or part of the inputs directly to the output layer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "V7btXeDQIm2s" + }, + "outputs": [], + "source": [ + "# extra code – reset the name counters and make the code reproducible\n", + "tf.keras.backend.clear_session()\n", + "tf.random.set_seed(42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4Pp3KWT5Im2s" + }, + "outputs": [], + "source": [ + "normalization_layer = tf.keras.layers.Normalization()\n", + "hidden_layer1 = tf.keras.layers.Dense(30, activation=\"relu\")\n", + "hidden_layer2 = tf.keras.layers.Dense(30, activation=\"relu\")\n", + "concat_layer = tf.keras.layers.Concatenate()\n", + "output_layer = tf.keras.layers.Dense(1)\n", + "\n", + "input_ = tf.keras.layers.Input(shape=X_train.shape[1:])\n", + "normalized = normalization_layer(input_)\n", + "hidden1 = hidden_layer1(normalized)\n", + "hidden2 = hidden_layer2(hidden1)\n", + "concat = concat_layer([normalized, hidden2])\n", + "output = output_layer(concat)\n", + "\n", + "model = tf.keras.Model(inputs=[input_], outputs=[output])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "URXPqPuSIm2s", + "outputId": "b7128f7f-f48e-4d8a-83b4-84747db2542f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"model\"\n", + "__________________________________________________________________________________________________\n", + " Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + " input_1 (InputLayer) [(None, 8)] 0 [] \n", + " \n", + " normalization (Normalization) (None, 8) 17 ['input_1[0][0]'] \n", + " \n", + " dense (Dense) (None, 30) 270 ['normalization[0][0]'] \n", + " \n", + " dense_1 (Dense) (None, 30) 930 ['dense[0][0]'] \n", + " \n", + " concatenate (Concatenate) (None, 38) 0 ['input_1[0][0]', \n", + " 'dense_1[0][0]'] \n", + " \n", + " dense_2 (Dense) (None, 1) 39 ['concatenate[0][0]'] \n", + " \n", + "==================================================================================================\n", + "Total params: 1,256\n", + "Trainable params: 1,239\n", + "Non-trainable params: 17\n", + "__________________________________________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7hP0mwgRIm2s", + "outputId": "94f80438-1436-4c1b-b3f8-72a7e656ef95" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "363/363 [==============================] - 1s 1ms/step - loss: 122.3226 - root_mean_squared_error: 11.0600 - val_loss: 305.9134 - val_root_mean_squared_error: 17.4904\n", + "Epoch 2/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 5.5425 - root_mean_squared_error: 2.3543 - val_loss: 183.4622 - val_root_mean_squared_error: 13.5448\n", + "Epoch 3/20\n", + "363/363 [==============================] - 0s 979us/step - loss: 3.0631 - root_mean_squared_error: 1.7502 - val_loss: 87.2228 - val_root_mean_squared_error: 9.3393\n", + "Epoch 4/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 1.5796 - root_mean_squared_error: 1.2568 - val_loss: 35.3699 - val_root_mean_squared_error: 5.9473\n", + "Epoch 5/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.9536 - root_mean_squared_error: 0.9765 - val_loss: 12.3882 - val_root_mean_squared_error: 3.5197\n", + "Epoch 6/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.6322 - root_mean_squared_error: 0.7951 - val_loss: 4.1676 - val_root_mean_squared_error: 2.0415\n", + "Epoch 7/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.5069 - root_mean_squared_error: 0.7120 - val_loss: 1.2937 - val_root_mean_squared_error: 1.1374\n", + "Epoch 8/20\n", + "363/363 [==============================] - 0s 980us/step - loss: 0.4525 - root_mean_squared_error: 0.6727 - val_loss: 0.4837 - val_root_mean_squared_error: 0.6955\n", + "Epoch 9/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4293 - root_mean_squared_error: 0.6552 - val_loss: 0.4343 - val_root_mean_squared_error: 0.6590\n", + "Epoch 10/20\n", + "363/363 [==============================] - 0s 962us/step - loss: 0.4120 - root_mean_squared_error: 0.6419 - val_loss: 0.3996 - val_root_mean_squared_error: 0.6321\n", + "Epoch 11/20\n", + "363/363 [==============================] - 0s 988us/step - loss: 0.4203 - root_mean_squared_error: 0.6483 - val_loss: 0.4149 - val_root_mean_squared_error: 0.6441\n", + "Epoch 12/20\n", + "363/363 [==============================] - 0s 952us/step - loss: 0.3916 - root_mean_squared_error: 0.6257 - val_loss: 0.4569 - val_root_mean_squared_error: 0.6759\n", + "Epoch 13/20\n", + "363/363 [==============================] - 0s 957us/step - loss: 0.4147 - root_mean_squared_error: 0.6440 - val_loss: 0.3736 - val_root_mean_squared_error: 0.6113\n", + "Epoch 14/20\n", + "363/363 [==============================] - 0s 949us/step - loss: 0.3824 - root_mean_squared_error: 0.6184 - val_loss: 0.4550 - val_root_mean_squared_error: 0.6745\n", + "Epoch 15/20\n", + "363/363 [==============================] - 0s 982us/step - loss: 0.4003 - root_mean_squared_error: 0.6327 - val_loss: 0.8553 - val_root_mean_squared_error: 0.9248\n", + "Epoch 16/20\n", + "363/363 [==============================] - 0s 960us/step - loss: 0.4245 - root_mean_squared_error: 0.6516 - val_loss: 1.9204 - val_root_mean_squared_error: 1.3858\n", + "Epoch 17/20\n", + "363/363 [==============================] - 0s 987us/step - loss: 0.4580 - root_mean_squared_error: 0.6767 - val_loss: 2.0632 - val_root_mean_squared_error: 1.4364\n", + "Epoch 18/20\n", + "363/363 [==============================] - 0s 961us/step - loss: 0.4692 - root_mean_squared_error: 0.6850 - val_loss: 3.5730 - val_root_mean_squared_error: 1.8902\n", + "Epoch 19/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4367 - root_mean_squared_error: 0.6608 - val_loss: 3.9989 - val_root_mean_squared_error: 1.9997\n", + "Epoch 20/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4683 - root_mean_squared_error: 0.6843 - val_loss: 2.2966 - val_root_mean_squared_error: 1.5155\n", + "162/162 [==============================] - 0s 612us/step - loss: 0.5723 - root_mean_squared_error: 0.7565\n" + ] + } + ], + "source": [ + "optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)\n", + "model.compile(loss=\"mse\", optimizer=optimizer, metrics=[\"RootMeanSquaredError\"])\n", + "normalization_layer.adapt(X_train)\n", + "history = model.fit(X_train, y_train, epochs=20,\n", + " validation_data=(X_valid, y_valid))\n", + "mse_test = model.evaluate(X_test, y_test)\n", + "y_pred = model.predict(X_new)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gnkWbLExIm2t" + }, + "source": [ + "What if you want to send different subsets of input features through the wide or deep paths? We will send 5 features (features 0 to 4), and 6 through the deep path (features 2 to 7). Note that 3 features will go through both (features 2, 3 and 4)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Iz0MbNaYIm2t" + }, + "outputs": [], + "source": [ + "tf.random.set_seed(42) # extra code" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Kj4-limEIm2t" + }, + "outputs": [], + "source": [ + "input_wide = tf.keras.layers.Input(shape=[5]) # features 0 to 4\n", + "input_deep = tf.keras.layers.Input(shape=[6]) # features 2 to 7\n", + "norm_layer_wide = tf.keras.layers.Normalization()\n", + "norm_layer_deep = tf.keras.layers.Normalization()\n", + "norm_wide = norm_layer_wide(input_wide)\n", + "norm_deep = norm_layer_deep(input_deep)\n", + "hidden1 = tf.keras.layers.Dense(30, activation=\"relu\")(norm_deep)\n", + "hidden2 = tf.keras.layers.Dense(30, activation=\"relu\")(hidden1)\n", + "concat = tf.keras.layers.concatenate([norm_wide, hidden2])\n", + "output = tf.keras.layers.Dense(1)(concat)\n", + "model = tf.keras.Model(inputs=[input_wide, input_deep], outputs=[output])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oHNK3LyJIm2t", + "outputId": "74eb7bb2-5ede-4a40-b5a1-59ab8c1d01a7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "363/363 [==============================] - 1s 2ms/step - loss: 1.2768 - root_mean_squared_error: 1.1300 - val_loss: 0.9497 - val_root_mean_squared_error: 0.9745\n", + "Epoch 2/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4767 - root_mean_squared_error: 0.6904 - val_loss: 1.4311 - val_root_mean_squared_error: 1.1963\n", + "Epoch 3/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4433 - root_mean_squared_error: 0.6658 - val_loss: 0.4258 - val_root_mean_squared_error: 0.6525\n", + "Epoch 4/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4057 - root_mean_squared_error: 0.6370 - val_loss: 0.4016 - val_root_mean_squared_error: 0.6338\n", + "Epoch 5/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3940 - root_mean_squared_error: 0.6277 - val_loss: 1.4914 - val_root_mean_squared_error: 1.2212\n", + "Epoch 6/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3873 - root_mean_squared_error: 0.6224 - val_loss: 2.6759 - val_root_mean_squared_error: 1.6358\n", + "Epoch 7/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3914 - root_mean_squared_error: 0.6257 - val_loss: 3.0592 - val_root_mean_squared_error: 1.7490\n", + "Epoch 8/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3735 - root_mean_squared_error: 0.6112 - val_loss: 3.3043 - val_root_mean_squared_error: 1.8178\n", + "Epoch 9/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3712 - root_mean_squared_error: 0.6093 - val_loss: 2.1298 - val_root_mean_squared_error: 1.4594\n", + "Epoch 10/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3693 - root_mean_squared_error: 0.6077 - val_loss: 1.7402 - val_root_mean_squared_error: 1.3192\n", + "Epoch 11/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3578 - root_mean_squared_error: 0.5982 - val_loss: 0.6127 - val_root_mean_squared_error: 0.7827\n", + "Epoch 12/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3605 - root_mean_squared_error: 0.6005 - val_loss: 1.3970 - val_root_mean_squared_error: 1.1819\n", + "Epoch 13/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3527 - root_mean_squared_error: 0.5939 - val_loss: 0.9449 - val_root_mean_squared_error: 0.9721\n", + "Epoch 14/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3436 - root_mean_squared_error: 0.5861 - val_loss: 0.7757 - val_root_mean_squared_error: 0.8807\n", + "Epoch 15/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3421 - root_mean_squared_error: 0.5849 - val_loss: 0.8920 - val_root_mean_squared_error: 0.9445\n", + "Epoch 16/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3405 - root_mean_squared_error: 0.5835 - val_loss: 0.9334 - val_root_mean_squared_error: 0.9661\n", + "Epoch 17/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3394 - root_mean_squared_error: 0.5826 - val_loss: 1.3433 - val_root_mean_squared_error: 1.1590\n", + "Epoch 18/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3384 - root_mean_squared_error: 0.5817 - val_loss: 2.6406 - val_root_mean_squared_error: 1.6250\n", + "Epoch 19/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3459 - root_mean_squared_error: 0.5881 - val_loss: 2.2482 - val_root_mean_squared_error: 1.4994\n", + "Epoch 20/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3503 - root_mean_squared_error: 0.5919 - val_loss: 1.4407 - val_root_mean_squared_error: 1.2003\n", + "162/162 [==============================] - 0s 672us/step - loss: 0.3388 - root_mean_squared_error: 0.5821\n" + ] + } + ], + "source": [ + "optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)\n", + "model.compile(loss=\"mse\", optimizer=optimizer, metrics=[\"RootMeanSquaredError\"])\n", + "\n", + "X_train_wide, X_train_deep = X_train[:, :5], X_train[:, 2:]\n", + "X_valid_wide, X_valid_deep = X_valid[:, :5], X_valid[:, 2:]\n", + "X_test_wide, X_test_deep = X_test[:, :5], X_test[:, 2:]\n", + "X_new_wide, X_new_deep = X_test_wide[:3], X_test_deep[:3]\n", + "\n", + "norm_layer_wide.adapt(X_train_wide)\n", + "norm_layer_deep.adapt(X_train_deep)\n", + "history = model.fit((X_train_wide, X_train_deep), y_train, epochs=20,\n", + " validation_data=((X_valid_wide, X_valid_deep), y_valid))\n", + "mse_test = model.evaluate((X_test_wide, X_test_deep), y_test)\n", + "y_pred = model.predict((X_new_wide, X_new_deep))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DBcb_ZELIm2t" + }, + "source": [ + "Adding an auxiliary output for regularization:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MtveJdtyIm2t" + }, + "outputs": [], + "source": [ + "tf.keras.backend.clear_session()\n", + "tf.random.set_seed(42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yHl5zWzEIm2t" + }, + "outputs": [], + "source": [ + "input_wide = tf.keras.layers.Input(shape=[5]) # features 0 to 4\n", + "input_deep = tf.keras.layers.Input(shape=[6]) # features 2 to 7\n", + "norm_layer_wide = tf.keras.layers.Normalization()\n", + "norm_layer_deep = tf.keras.layers.Normalization()\n", + "norm_wide = norm_layer_wide(input_wide)\n", + "norm_deep = norm_layer_deep(input_deep)\n", + "hidden1 = tf.keras.layers.Dense(30, activation=\"relu\")(norm_deep)\n", + "hidden2 = tf.keras.layers.Dense(30, activation=\"relu\")(hidden1)\n", + "concat = tf.keras.layers.concatenate([norm_wide, hidden2])\n", + "output = tf.keras.layers.Dense(1)(concat)\n", + "aux_output = tf.keras.layers.Dense(1)(hidden2)\n", + "model = tf.keras.Model(inputs=[input_wide, input_deep],\n", + " outputs=[output, aux_output])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KlJ0bwQoIm2t" + }, + "outputs": [], + "source": [ + "optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)\n", + "model.compile(loss=(\"mse\", \"mse\"), loss_weights=(0.9, 0.1), optimizer=optimizer,\n", + " metrics=[\"RootMeanSquaredError\"])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oSveE7AAIm2u", + "outputId": "4a79a912-2d68-4df8-9b26-cedd8884209f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "363/363 [==============================] - 1s 2ms/step - loss: 1.3490 - dense_2_loss: 1.2742 - dense_3_loss: 2.0215 - dense_2_root_mean_squared_error: 1.1288 - dense_3_root_mean_squared_error: 1.4218 - val_loss: 1.5415 - val_dense_2_loss: 0.9593 - val_dense_3_loss: 6.7806 - val_dense_2_root_mean_squared_error: 0.9795 - val_dense_3_root_mean_squared_error: 2.6040\n", + "Epoch 2/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.5101 - dense_2_loss: 0.4785 - dense_3_loss: 0.7952 - dense_2_root_mean_squared_error: 0.6917 - dense_3_root_mean_squared_error: 0.8917 - val_loss: 1.3624 - val_dense_2_loss: 1.0094 - val_dense_3_loss: 4.5401 - val_dense_2_root_mean_squared_error: 1.0047 - val_dense_3_root_mean_squared_error: 2.1307\n", + "Epoch 3/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4618 - dense_2_loss: 0.4404 - dense_3_loss: 0.6546 - dense_2_root_mean_squared_error: 0.6636 - dense_3_root_mean_squared_error: 0.8091 - val_loss: 0.5361 - val_dense_2_loss: 0.3975 - val_dense_3_loss: 1.7837 - val_dense_2_root_mean_squared_error: 0.6305 - val_dense_3_root_mean_squared_error: 1.3356\n", + "Epoch 4/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4252 - dense_2_loss: 0.4059 - dense_3_loss: 0.5985 - dense_2_root_mean_squared_error: 0.6371 - dense_3_root_mean_squared_error: 0.7736 - val_loss: 0.5182 - val_dense_2_loss: 0.4590 - val_dense_3_loss: 1.0517 - val_dense_2_root_mean_squared_error: 0.6775 - val_dense_3_root_mean_squared_error: 1.0255\n", + "Epoch 5/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4106 - dense_2_loss: 0.3931 - dense_3_loss: 0.5690 - dense_2_root_mean_squared_error: 0.6269 - dense_3_root_mean_squared_error: 0.7543 - val_loss: 0.4049 - val_dense_2_loss: 0.3588 - val_dense_3_loss: 0.8196 - val_dense_2_root_mean_squared_error: 0.5990 - val_dense_3_root_mean_squared_error: 0.9053\n", + "Epoch 6/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3944 - dense_2_loss: 0.3780 - dense_3_loss: 0.5424 - dense_2_root_mean_squared_error: 0.6148 - dense_3_root_mean_squared_error: 0.7365 - val_loss: 0.4168 - val_dense_2_loss: 0.3934 - val_dense_3_loss: 0.6275 - val_dense_2_root_mean_squared_error: 0.6272 - val_dense_3_root_mean_squared_error: 0.7921\n", + "Epoch 7/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3837 - dense_2_loss: 0.3694 - dense_3_loss: 0.5126 - dense_2_root_mean_squared_error: 0.6078 - dense_3_root_mean_squared_error: 0.7160 - val_loss: 0.3661 - val_dense_2_loss: 0.3430 - val_dense_3_loss: 0.5747 - val_dense_2_root_mean_squared_error: 0.5856 - val_dense_3_root_mean_squared_error: 0.7581\n", + "Epoch 8/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3731 - dense_2_loss: 0.3608 - dense_3_loss: 0.4840 - dense_2_root_mean_squared_error: 0.6007 - dense_3_root_mean_squared_error: 0.6957 - val_loss: 0.8555 - val_dense_2_loss: 0.8704 - val_dense_3_loss: 0.7218 - val_dense_2_root_mean_squared_error: 0.9330 - val_dense_3_root_mean_squared_error: 0.8496\n", + "Epoch 9/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3672 - dense_2_loss: 0.3567 - dense_3_loss: 0.4624 - dense_2_root_mean_squared_error: 0.5972 - dense_3_root_mean_squared_error: 0.6800 - val_loss: 2.6877 - val_dense_2_loss: 2.9011 - val_dense_3_loss: 0.7675 - val_dense_2_root_mean_squared_error: 1.7033 - val_dense_3_root_mean_squared_error: 0.8761\n", + "Epoch 10/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3837 - dense_2_loss: 0.3765 - dense_3_loss: 0.4481 - dense_2_root_mean_squared_error: 0.6136 - dense_3_root_mean_squared_error: 0.6694 - val_loss: 3.6017 - val_dense_2_loss: 3.8004 - val_dense_3_loss: 1.8132 - val_dense_2_root_mean_squared_error: 1.9495 - val_dense_3_root_mean_squared_error: 1.3466\n", + "Epoch 11/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3728 - dense_2_loss: 0.3656 - dense_3_loss: 0.4377 - dense_2_root_mean_squared_error: 0.6046 - dense_3_root_mean_squared_error: 0.6616 - val_loss: 0.6115 - val_dense_2_loss: 0.6325 - val_dense_3_loss: 0.4226 - val_dense_2_root_mean_squared_error: 0.7953 - val_dense_3_root_mean_squared_error: 0.6501\n", + "Epoch 12/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3750 - dense_2_loss: 0.3688 - dense_3_loss: 0.4303 - dense_2_root_mean_squared_error: 0.6073 - dense_3_root_mean_squared_error: 0.6560 - val_loss: 0.9371 - val_dense_2_loss: 0.9545 - val_dense_3_loss: 0.7799 - val_dense_2_root_mean_squared_error: 0.9770 - val_dense_3_root_mean_squared_error: 0.8831\n", + "Epoch 13/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3570 - dense_2_loss: 0.3499 - dense_3_loss: 0.4203 - dense_2_root_mean_squared_error: 0.5915 - dense_3_root_mean_squared_error: 0.6483 - val_loss: 0.4224 - val_dense_2_loss: 0.4245 - val_dense_3_loss: 0.4039 - val_dense_2_root_mean_squared_error: 0.6515 - val_dense_3_root_mean_squared_error: 0.6355\n", + "Epoch 14/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3493 - dense_2_loss: 0.3421 - dense_3_loss: 0.4148 - dense_2_root_mean_squared_error: 0.5849 - dense_3_root_mean_squared_error: 0.6440 - val_loss: 0.3410 - val_dense_2_loss: 0.3221 - val_dense_3_loss: 0.5105 - val_dense_2_root_mean_squared_error: 0.5676 - val_dense_3_root_mean_squared_error: 0.7145\n", + "Epoch 15/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3496 - dense_2_loss: 0.3432 - dense_3_loss: 0.4076 - dense_2_root_mean_squared_error: 0.5858 - dense_3_root_mean_squared_error: 0.6384 - val_loss: 0.6461 - val_dense_2_loss: 0.6671 - val_dense_3_loss: 0.4570 - val_dense_2_root_mean_squared_error: 0.8168 - val_dense_3_root_mean_squared_error: 0.6760\n", + "Epoch 16/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3435 - dense_2_loss: 0.3370 - dense_3_loss: 0.4022 - dense_2_root_mean_squared_error: 0.5805 - dense_3_root_mean_squared_error: 0.6342 - val_loss: 0.6875 - val_dense_2_loss: 0.6841 - val_dense_3_loss: 0.7182 - val_dense_2_root_mean_squared_error: 0.8271 - val_dense_3_root_mean_squared_error: 0.8475\n", + "Epoch 17/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3458 - dense_2_loss: 0.3393 - dense_3_loss: 0.4037 - dense_2_root_mean_squared_error: 0.5825 - dense_3_root_mean_squared_error: 0.6354 - val_loss: 1.1564 - val_dense_2_loss: 1.2129 - val_dense_3_loss: 0.6483 - val_dense_2_root_mean_squared_error: 1.1013 - val_dense_3_root_mean_squared_error: 0.8052\n", + "Epoch 18/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3446 - dense_2_loss: 0.3385 - dense_3_loss: 0.3994 - dense_2_root_mean_squared_error: 0.5818 - dense_3_root_mean_squared_error: 0.6320 - val_loss: 3.9325 - val_dense_2_loss: 4.0947 - val_dense_3_loss: 2.4722 - val_dense_2_root_mean_squared_error: 2.0235 - val_dense_3_root_mean_squared_error: 1.5723\n", + "Epoch 19/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3563 - dense_2_loss: 0.3511 - dense_3_loss: 0.4029 - dense_2_root_mean_squared_error: 0.5925 - dense_3_root_mean_squared_error: 0.6347 - val_loss: 1.4560 - val_dense_2_loss: 1.5433 - val_dense_3_loss: 0.6697 - val_dense_2_root_mean_squared_error: 1.2423 - val_dense_3_root_mean_squared_error: 0.8183\n", + "Epoch 20/20\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3546 - dense_2_loss: 0.3498 - dense_3_loss: 0.3981 - dense_2_root_mean_squared_error: 0.5914 - dense_3_root_mean_squared_error: 0.6310 - val_loss: 1.1709 - val_dense_2_loss: 1.1945 - val_dense_3_loss: 0.9589 - val_dense_2_root_mean_squared_error: 1.0929 - val_dense_3_root_mean_squared_error: 0.9792\n" + ] + } + ], + "source": [ + "norm_layer_wide.adapt(X_train_wide)\n", + "norm_layer_deep.adapt(X_train_deep)\n", + "history = model.fit(\n", + " (X_train_wide, X_train_deep), (y_train, y_train), epochs=20,\n", + " validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid))\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0jeMm1DbIm2u", + "outputId": "a36f36a2-e687-4d09-d252-a7ed403f4c12" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "162/162 [==============================] - 0s 778us/step - loss: 0.3446 - dense_2_loss: 0.3381 - dense_3_loss: 0.4031 - dense_2_root_mean_squared_error: 0.5815 - dense_3_root_mean_squared_error: 0.6349\n" + ] + } + ], + "source": [ + "eval_results = model.evaluate((X_test_wide, X_test_deep), (y_test, y_test))\n", + "weighted_sum_of_losses, main_loss, aux_loss, main_rmse, aux_rmse = eval_results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "A9HmtA2QIm2u", + "outputId": "3dce97a7-f2ed-4a14-9690-f873d8a402e1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:5 out of the last 5 calls to .predict_function at 0x7fb250e69310> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" + ] + } + ], + "source": [ + "y_pred_main, y_pred_aux = model.predict((X_new_wide, X_new_deep))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "_z4NPLfCIm2u" + }, + "outputs": [], + "source": [ + "y_pred_tuple = model.predict((X_new_wide, X_new_deep))\n", + "y_pred = dict(zip(model.output_names, y_pred_tuple))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BDJMguunIm2u" + }, + "source": [ + "## Using the Subclassing API to Build Dynamic Models" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "tHAbhFdtIm2u" + }, + "outputs": [], + "source": [ + "class WideAndDeepModel(tf.keras.Model):\n", + " def __init__(self, units=30, activation=\"relu\", **kwargs):\n", + " super().__init__(**kwargs) # needed to support naming the model\n", + " self.norm_layer_wide = tf.keras.layers.Normalization()\n", + " self.norm_layer_deep = tf.keras.layers.Normalization()\n", + " self.hidden1 = tf.keras.layers.Dense(units, activation=activation)\n", + " self.hidden2 = tf.keras.layers.Dense(units, activation=activation)\n", + " self.main_output = tf.keras.layers.Dense(1)\n", + " self.aux_output = tf.keras.layers.Dense(1)\n", + "\n", + " def call(self, inputs):\n", + " input_wide, input_deep = inputs\n", + " norm_wide = self.norm_layer_wide(input_wide)\n", + " norm_deep = self.norm_layer_deep(input_deep)\n", + " hidden1 = self.hidden1(norm_deep)\n", + " hidden2 = self.hidden2(hidden1)\n", + " concat = tf.keras.layers.concatenate([norm_wide, hidden2])\n", + " output = self.main_output(concat)\n", + " aux_output = self.aux_output(hidden2)\n", + " return output, aux_output\n", + "\n", + "tf.random.set_seed(42) # extra code – just for reproducibility\n", + "model = WideAndDeepModel(30, activation=\"relu\", name=\"my_cool_model\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ew1r_TPKIm2v", + "outputId": "01fd8245-61b3-45ff-85ae-a4183d8ecfe2" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "363/363 [==============================] - 1s 2ms/step - loss: 1.3490 - output_1_loss: 1.2742 - output_2_loss: 2.0215 - output_1_root_mean_squared_error: 1.1288 - output_2_root_mean_squared_error: 1.4218 - val_loss: 1.5415 - val_output_1_loss: 0.9593 - val_output_2_loss: 6.7806 - val_output_1_root_mean_squared_error: 0.9795 - val_output_2_root_mean_squared_error: 2.6040\n", + "Epoch 2/10\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.5101 - output_1_loss: 0.4785 - output_2_loss: 0.7952 - output_1_root_mean_squared_error: 0.6917 - output_2_root_mean_squared_error: 0.8917 - val_loss: 1.3624 - val_output_1_loss: 1.0094 - val_output_2_loss: 4.5401 - val_output_1_root_mean_squared_error: 1.0047 - val_output_2_root_mean_squared_error: 2.1307\n", + "Epoch 3/10\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4618 - output_1_loss: 0.4404 - output_2_loss: 0.6546 - output_1_root_mean_squared_error: 0.6636 - output_2_root_mean_squared_error: 0.8091 - val_loss: 0.5361 - val_output_1_loss: 0.3975 - val_output_2_loss: 1.7837 - val_output_1_root_mean_squared_error: 0.6305 - val_output_2_root_mean_squared_error: 1.3356\n", + "Epoch 4/10\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4252 - output_1_loss: 0.4059 - output_2_loss: 0.5985 - output_1_root_mean_squared_error: 0.6371 - output_2_root_mean_squared_error: 0.7736 - val_loss: 0.5182 - val_output_1_loss: 0.4590 - val_output_2_loss: 1.0517 - val_output_1_root_mean_squared_error: 0.6775 - val_output_2_root_mean_squared_error: 1.0255\n", + "Epoch 5/10\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.4106 - output_1_loss: 0.3931 - output_2_loss: 0.5690 - output_1_root_mean_squared_error: 0.6269 - output_2_root_mean_squared_error: 0.7543 - val_loss: 0.4049 - val_output_1_loss: 0.3588 - val_output_2_loss: 0.8196 - val_output_1_root_mean_squared_error: 0.5990 - val_output_2_root_mean_squared_error: 0.9053\n", + "Epoch 6/10\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3944 - output_1_loss: 0.3780 - output_2_loss: 0.5424 - output_1_root_mean_squared_error: 0.6148 - output_2_root_mean_squared_error: 0.7365 - val_loss: 0.4168 - val_output_1_loss: 0.3934 - val_output_2_loss: 0.6275 - val_output_1_root_mean_squared_error: 0.6272 - val_output_2_root_mean_squared_error: 0.7921\n", + "Epoch 7/10\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3837 - output_1_loss: 0.3694 - output_2_loss: 0.5126 - output_1_root_mean_squared_error: 0.6078 - output_2_root_mean_squared_error: 0.7160 - val_loss: 0.3661 - val_output_1_loss: 0.3430 - val_output_2_loss: 0.5747 - val_output_1_root_mean_squared_error: 0.5856 - val_output_2_root_mean_squared_error: 0.7581\n", + "Epoch 8/10\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3731 - output_1_loss: 0.3608 - output_2_loss: 0.4840 - output_1_root_mean_squared_error: 0.6007 - output_2_root_mean_squared_error: 0.6957 - val_loss: 0.8555 - val_output_1_loss: 0.8704 - val_output_2_loss: 0.7218 - val_output_1_root_mean_squared_error: 0.9330 - val_output_2_root_mean_squared_error: 0.8496\n", + "Epoch 9/10\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3672 - output_1_loss: 0.3567 - output_2_loss: 0.4624 - output_1_root_mean_squared_error: 0.5972 - output_2_root_mean_squared_error: 0.6800 - val_loss: 2.6877 - val_output_1_loss: 2.9011 - val_output_2_loss: 0.7675 - val_output_1_root_mean_squared_error: 1.7033 - val_output_2_root_mean_squared_error: 0.8761\n", + "Epoch 10/10\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3837 - output_1_loss: 0.3765 - output_2_loss: 0.4481 - output_1_root_mean_squared_error: 0.6136 - output_2_root_mean_squared_error: 0.6694 - val_loss: 3.6017 - val_output_1_loss: 3.8004 - val_output_2_loss: 1.8132 - val_output_1_root_mean_squared_error: 1.9495 - val_output_2_root_mean_squared_error: 1.3466\n", + "162/162 [==============================] - 0s 781us/step - loss: 0.3652 - output_1_loss: 0.3570 - output_2_loss: 0.4387 - output_1_root_mean_squared_error: 0.5975 - output_2_root_mean_squared_error: 0.6624\n", + "WARNING:tensorflow:6 out of the last 7 calls to .predict_function at 0x7fb250b9d820> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" + ] + } + ], + "source": [ + "optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)\n", + "model.compile(loss=\"mse\", loss_weights=[0.9, 0.1], optimizer=optimizer,\n", + " metrics=[\"RootMeanSquaredError\"])\n", + "model.norm_layer_wide.adapt(X_train_wide)\n", + "model.norm_layer_deep.adapt(X_train_deep)\n", + "history = model.fit(\n", + " (X_train_wide, X_train_deep), (y_train, y_train), epochs=10,\n", + " validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid)))\n", + "eval_results = model.evaluate((X_test_wide, X_test_deep), (y_test, y_test))\n", + "weighted_sum_of_losses, main_loss, aux_loss, main_rmse, aux_rmse = eval_results\n", + "y_pred_main, y_pred_aux = model.predict((X_new_wide, X_new_deep))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8YRL85pmIm2v" + }, + "source": [ + "## Saving and Restoring a Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "RWze_4xBIm2v" + }, + "outputs": [], + "source": [ + "# extra code – delete the directory, in case it already exists\n", + "\n", + "import shutil\n", + "\n", + "shutil.rmtree(\"my_keras_model\", ignore_errors=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "8DcgRIWIIm2v", + "outputId": "b6cae475-3808-455a-d644-8ae0a9124718" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Assets written to: my_keras_model/assets\n" + ] + } + ], + "source": [ + "model.save(\"my_keras_model\", save_format=\"tf\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "i3Q1CzY2Im2v", + "outputId": "94d3031a-6551-43f7-f22f-43230f1ab32e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "my_keras_model/assets\n", + "my_keras_model/keras_metadata.pb\n", + "my_keras_model/saved_model.pb\n", + "my_keras_model/variables\n", + "my_keras_model/variables/variables.data-00000-of-00001\n", + "my_keras_model/variables/variables.index\n" + ] + } + ], + "source": [ + "# extra code – show the contents of the my_keras_model/ directory\n", + "for path in sorted(Path(\"my_keras_model\").glob(\"**/*\")):\n", + " print(path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NvaKllG3Im2v" + }, + "outputs": [], + "source": [ + "model = tf.keras.models.load_model(\"my_keras_model\")\n", + "y_pred_main, y_pred_aux = model.predict((X_new_wide, X_new_deep))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LzMaSDjpIm2v" + }, + "outputs": [], + "source": [ + "model.save_weights(\"my_weights\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "CfGQ3QQhIm2w", + "outputId": "63b629ac-1547-4ec8-d56e-5757955f9dc9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.load_weights(\"my_weights\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vXuS0_-PIm2w", + "outputId": "dfb77128-0e81-4f62-be3f-75b8d04bbbbb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "my_weights.data-00000-of-00001\n", + "my_weights.index\n" + ] + } + ], + "source": [ + "# extra code – show the list of my_weights.* files\n", + "for path in sorted(Path().glob(\"my_weights.*\")):\n", + " print(path)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sztne4huIm2w" + }, + "source": [ + "## Using Callbacks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "x5_F8g7GIm2w" + }, + "outputs": [], + "source": [ + "shutil.rmtree(\"my_checkpoints\", ignore_errors=True) # extra code" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "r9_ShrahIm2w", + "outputId": "ff3467fc-88f3-4525-8c85-61308d6ae59b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "363/363 [==============================] - 1s 2ms/step - loss: 0.3775 - output_1_loss: 0.3706 - output_2_loss: 0.4402 - output_1_root_mean_squared_error: 0.6088 - output_2_root_mean_squared_error: 0.6635 - val_loss: 0.3369 - val_output_1_loss: 0.3234 - val_output_2_loss: 0.4587 - val_output_1_root_mean_squared_error: 0.5687 - val_output_2_root_mean_squared_error: 0.6773\n", + "Epoch 2/10\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3556 - output_1_loss: 0.3480 - output_2_loss: 0.4242 - output_1_root_mean_squared_error: 0.5899 - output_2_root_mean_squared_error: 0.6513 - val_loss: 0.4940 - val_output_1_loss: 0.4650 - val_output_2_loss: 0.7551 - val_output_1_root_mean_squared_error: 0.6819 - val_output_2_root_mean_squared_error: 0.8689\n", + "Epoch 3/10\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3612 - output_1_loss: 0.3547 - output_2_loss: 0.4198 - output_1_root_mean_squared_error: 0.5956 - output_2_root_mean_squared_error: 0.6480 - val_loss: 0.3443 - val_output_1_loss: 0.3355 - val_output_2_loss: 0.4241 - val_output_1_root_mean_squared_error: 0.5792 - val_output_2_root_mean_squared_error: 0.6512\n", + "Epoch 4/10\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3493 - output_1_loss: 0.3425 - output_2_loss: 0.4110 - output_1_root_mean_squared_error: 0.5852 - output_2_root_mean_squared_error: 0.6411 - val_loss: 0.4676 - val_output_1_loss: 0.4635 - val_output_2_loss: 0.5046 - val_output_1_root_mean_squared_error: 0.6808 - val_output_2_root_mean_squared_error: 0.7104\n", + "Epoch 5/10\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3525 - output_1_loss: 0.3465 - output_2_loss: 0.4069 - output_1_root_mean_squared_error: 0.5886 - output_2_root_mean_squared_error: 0.6379 - val_loss: 1.3020 - val_output_1_loss: 1.3842 - val_output_2_loss: 0.5623 - val_output_1_root_mean_squared_error: 1.1765 - val_output_2_root_mean_squared_error: 0.7499\n", + "Epoch 6/10\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3512 - output_1_loss: 0.3453 - output_2_loss: 0.4039 - output_1_root_mean_squared_error: 0.5876 - output_2_root_mean_squared_error: 0.6356 - val_loss: 1.6719 - val_output_1_loss: 1.7502 - val_output_2_loss: 0.9670 - val_output_1_root_mean_squared_error: 1.3230 - val_output_2_root_mean_squared_error: 0.9833\n", + "Epoch 7/10\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3533 - output_1_loss: 0.3477 - output_2_loss: 0.4038 - output_1_root_mean_squared_error: 0.5897 - output_2_root_mean_squared_error: 0.6355 - val_loss: 0.6855 - val_output_1_loss: 0.7149 - val_output_2_loss: 0.4210 - val_output_1_root_mean_squared_error: 0.8455 - val_output_2_root_mean_squared_error: 0.6488\n", + "Epoch 8/10\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3409 - output_1_loss: 0.3348 - output_2_loss: 0.3965 - output_1_root_mean_squared_error: 0.5786 - output_2_root_mean_squared_error: 0.6297 - val_loss: 2.0126 - val_output_1_loss: 1.9280 - val_output_2_loss: 2.7742 - val_output_1_root_mean_squared_error: 1.3885 - val_output_2_root_mean_squared_error: 1.6656\n", + "Epoch 9/10\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3441 - output_1_loss: 0.3375 - output_2_loss: 0.4028 - output_1_root_mean_squared_error: 0.5810 - output_2_root_mean_squared_error: 0.6347 - val_loss: 1.6894 - val_output_1_loss: 1.8009 - val_output_2_loss: 0.6859 - val_output_1_root_mean_squared_error: 1.3420 - val_output_2_root_mean_squared_error: 0.8282\n", + "Epoch 10/10\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3517 - output_1_loss: 0.3468 - output_2_loss: 0.3962 - output_1_root_mean_squared_error: 0.5889 - output_2_root_mean_squared_error: 0.6294 - val_loss: 1.2969 - val_output_1_loss: 1.3365 - val_output_2_loss: 0.9407 - val_output_1_root_mean_squared_error: 1.1561 - val_output_2_root_mean_squared_error: 0.9699\n" + ] + } + ], + "source": [ + "checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(\"my_checkpoints\",\n", + " save_weights_only=True)\n", + "history = model.fit(\n", + " (X_train_wide, X_train_deep), (y_train, y_train), epochs=10,\n", + " validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid)),\n", + " callbacks=[checkpoint_cb])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "JqO-umYZIm2w", + "outputId": "4a206166-8ff2-419c-e603-c8f1f011ad6c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3405 - output_1_loss: 0.3349 - output_2_loss: 0.3910 - output_1_root_mean_squared_error: 0.5787 - output_2_root_mean_squared_error: 0.6253 - val_loss: 0.6245 - val_output_1_loss: 0.6502 - val_output_2_loss: 0.3937 - val_output_1_root_mean_squared_error: 0.8063 - val_output_2_root_mean_squared_error: 0.6275\n", + "Epoch 2/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3400 - output_1_loss: 0.3344 - output_2_loss: 0.3900 - output_1_root_mean_squared_error: 0.5783 - output_2_root_mean_squared_error: 0.6245 - val_loss: 0.9552 - val_output_1_loss: 0.9508 - val_output_2_loss: 0.9947 - val_output_1_root_mean_squared_error: 0.9751 - val_output_2_root_mean_squared_error: 0.9974\n", + "Epoch 3/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3442 - output_1_loss: 0.3389 - output_2_loss: 0.3921 - output_1_root_mean_squared_error: 0.5821 - output_2_root_mean_squared_error: 0.6262 - val_loss: 0.3574 - val_output_1_loss: 0.3552 - val_output_2_loss: 0.3766 - val_output_1_root_mean_squared_error: 0.5960 - val_output_2_root_mean_squared_error: 0.6137\n", + "Epoch 4/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3347 - output_1_loss: 0.3289 - output_2_loss: 0.3865 - output_1_root_mean_squared_error: 0.5735 - output_2_root_mean_squared_error: 0.6217 - val_loss: 0.4521 - val_output_1_loss: 0.4401 - val_output_2_loss: 0.5609 - val_output_1_root_mean_squared_error: 0.6634 - val_output_2_root_mean_squared_error: 0.7489\n", + "Epoch 5/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3363 - output_1_loss: 0.3311 - output_2_loss: 0.3832 - output_1_root_mean_squared_error: 0.5754 - output_2_root_mean_squared_error: 0.6190 - val_loss: 0.4903 - val_output_1_loss: 0.5018 - val_output_2_loss: 0.3869 - val_output_1_root_mean_squared_error: 0.7084 - val_output_2_root_mean_squared_error: 0.6220\n", + "Epoch 6/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3300 - output_1_loss: 0.3245 - output_2_loss: 0.3801 - output_1_root_mean_squared_error: 0.5696 - output_2_root_mean_squared_error: 0.6165 - val_loss: 0.8351 - val_output_1_loss: 0.8434 - val_output_2_loss: 0.7602 - val_output_1_root_mean_squared_error: 0.9184 - val_output_2_root_mean_squared_error: 0.8719\n", + "Epoch 7/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3324 - output_1_loss: 0.3270 - output_2_loss: 0.3814 - output_1_root_mean_squared_error: 0.5718 - output_2_root_mean_squared_error: 0.6176 - val_loss: 0.6880 - val_output_1_loss: 0.7171 - val_output_2_loss: 0.4259 - val_output_1_root_mean_squared_error: 0.8468 - val_output_2_root_mean_squared_error: 0.6526\n", + "Epoch 8/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3286 - output_1_loss: 0.3231 - output_2_loss: 0.3774 - output_1_root_mean_squared_error: 0.5684 - output_2_root_mean_squared_error: 0.6143 - val_loss: 4.4284 - val_output_1_loss: 4.2604 - val_output_2_loss: 5.9404 - val_output_1_root_mean_squared_error: 2.0641 - val_output_2_root_mean_squared_error: 2.4373\n", + "Epoch 9/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3378 - output_1_loss: 0.3322 - output_2_loss: 0.3886 - output_1_root_mean_squared_error: 0.5764 - output_2_root_mean_squared_error: 0.6234 - val_loss: 1.7043 - val_output_1_loss: 1.7984 - val_output_2_loss: 0.8578 - val_output_1_root_mean_squared_error: 1.3410 - val_output_2_root_mean_squared_error: 0.9262\n", + "Epoch 10/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3401 - output_1_loss: 0.3354 - output_2_loss: 0.3824 - output_1_root_mean_squared_error: 0.5792 - output_2_root_mean_squared_error: 0.6184 - val_loss: 0.6170 - val_output_1_loss: 0.6282 - val_output_2_loss: 0.5169 - val_output_1_root_mean_squared_error: 0.7926 - val_output_2_root_mean_squared_error: 0.7190\n", + "Epoch 11/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3230 - output_1_loss: 0.3177 - output_2_loss: 0.3706 - output_1_root_mean_squared_error: 0.5637 - output_2_root_mean_squared_error: 0.6088 - val_loss: 0.3558 - val_output_1_loss: 0.3490 - val_output_2_loss: 0.4170 - val_output_1_root_mean_squared_error: 0.5907 - val_output_2_root_mean_squared_error: 0.6457\n", + "Epoch 12/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3253 - output_1_loss: 0.3201 - output_2_loss: 0.3727 - output_1_root_mean_squared_error: 0.5658 - output_2_root_mean_squared_error: 0.6105 - val_loss: 0.4612 - val_output_1_loss: 0.4597 - val_output_2_loss: 0.4745 - val_output_1_root_mean_squared_error: 0.6780 - val_output_2_root_mean_squared_error: 0.6888\n", + "Epoch 13/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3221 - output_1_loss: 0.3167 - output_2_loss: 0.3699 - output_1_root_mean_squared_error: 0.5628 - output_2_root_mean_squared_error: 0.6082 - val_loss: 0.3120 - val_output_1_loss: 0.3056 - val_output_2_loss: 0.3694 - val_output_1_root_mean_squared_error: 0.5528 - val_output_2_root_mean_squared_error: 0.6078\n", + "Epoch 14/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3204 - output_1_loss: 0.3149 - output_2_loss: 0.3695 - output_1_root_mean_squared_error: 0.5612 - output_2_root_mean_squared_error: 0.6078 - val_loss: 0.4120 - val_output_1_loss: 0.4013 - val_output_2_loss: 0.5076 - val_output_1_root_mean_squared_error: 0.6335 - val_output_2_root_mean_squared_error: 0.7124\n", + "Epoch 15/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3196 - output_1_loss: 0.3144 - output_2_loss: 0.3662 - output_1_root_mean_squared_error: 0.5607 - output_2_root_mean_squared_error: 0.6052 - val_loss: 0.3304 - val_output_1_loss: 0.3269 - val_output_2_loss: 0.3619 - val_output_1_root_mean_squared_error: 0.5718 - val_output_2_root_mean_squared_error: 0.6016\n", + "Epoch 16/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3166 - output_1_loss: 0.3113 - output_2_loss: 0.3639 - output_1_root_mean_squared_error: 0.5579 - output_2_root_mean_squared_error: 0.6032 - val_loss: 0.4455 - val_output_1_loss: 0.4414 - val_output_2_loss: 0.4819 - val_output_1_root_mean_squared_error: 0.6644 - val_output_2_root_mean_squared_error: 0.6942\n", + "Epoch 17/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3186 - output_1_loss: 0.3134 - output_2_loss: 0.3650 - output_1_root_mean_squared_error: 0.5599 - output_2_root_mean_squared_error: 0.6041 - val_loss: 0.3255 - val_output_1_loss: 0.3212 - val_output_2_loss: 0.3643 - val_output_1_root_mean_squared_error: 0.5667 - val_output_2_root_mean_squared_error: 0.6035\n", + "Epoch 18/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3143 - output_1_loss: 0.3091 - output_2_loss: 0.3611 - output_1_root_mean_squared_error: 0.5560 - output_2_root_mean_squared_error: 0.6009 - val_loss: 1.6360 - val_output_1_loss: 1.6925 - val_output_2_loss: 1.1276 - val_output_1_root_mean_squared_error: 1.3010 - val_output_2_root_mean_squared_error: 1.0619\n", + "Epoch 19/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3169 - output_1_loss: 0.3122 - output_2_loss: 0.3601 - output_1_root_mean_squared_error: 0.5587 - output_2_root_mean_squared_error: 0.6001 - val_loss: 1.2441 - val_output_1_loss: 1.3093 - val_output_2_loss: 0.6572 - val_output_1_root_mean_squared_error: 1.1442 - val_output_2_root_mean_squared_error: 0.8107\n", + "Epoch 20/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3245 - output_1_loss: 0.3201 - output_2_loss: 0.3641 - output_1_root_mean_squared_error: 0.5658 - output_2_root_mean_squared_error: 0.6034 - val_loss: 1.5466 - val_output_1_loss: 1.5582 - val_output_2_loss: 1.4424 - val_output_1_root_mean_squared_error: 1.2483 - val_output_2_root_mean_squared_error: 1.2010\n", + "Epoch 21/100\n", + "363/363 [==============================] - 0s 1ms/step - loss: 0.3202 - output_1_loss: 0.3153 - output_2_loss: 0.3640 - output_1_root_mean_squared_error: 0.5615 - output_2_root_mean_squared_error: 0.6033 - val_loss: 0.6704 - val_output_1_loss: 0.6907 - val_output_2_loss: 0.4873 - val_output_1_root_mean_squared_error: 0.8311 - val_output_2_root_mean_squared_error: 0.6980\n", + "Epoch 22/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3150 - output_1_loss: 0.3103 - output_2_loss: 0.3573 - output_1_root_mean_squared_error: 0.5570 - output_2_root_mean_squared_error: 0.5978 - val_loss: 0.4909 - val_output_1_loss: 0.4955 - val_output_2_loss: 0.4493 - val_output_1_root_mean_squared_error: 0.7039 - val_output_2_root_mean_squared_error: 0.6703\n", + "Epoch 23/100\n", + "363/363 [==============================] - 1s 1ms/step - loss: 0.3104 - output_1_loss: 0.3054 - output_2_loss: 0.3552 - output_1_root_mean_squared_error: 0.5526 - output_2_root_mean_squared_error: 0.5960 - val_loss: 0.3845 - val_output_1_loss: 0.3803 - val_output_2_loss: 0.4228 - val_output_1_root_mean_squared_error: 0.6167 - val_output_2_root_mean_squared_error: 0.6502\n" + ] + } + ], + "source": [ + "early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=10,\n", + " restore_best_weights=True)\n", + "history = model.fit(\n", + " (X_train_wide, X_train_deep), (y_train, y_train), epochs=100,\n", + " validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid)),\n", + " callbacks=[checkpoint_cb, early_stopping_cb])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "d8pQSIM6Im2w" + }, + "outputs": [], + "source": [ + "class PrintValTrainRatioCallback(tf.keras.callbacks.Callback):\n", + " def on_epoch_end(self, epoch, logs):\n", + " ratio = logs[\"val_loss\"] / logs[\"loss\"]\n", + " print(f\"Epoch={epoch}, val/train={ratio:.2f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "I7Tw5QunIm2x", + "outputId": "4e606c2f-9991-4026-caff-188e45255962" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch=0, val/train=2.29\n", + "Epoch=1, val/train=1.03\n", + "Epoch=2, val/train=2.07\n", + "Epoch=3, val/train=1.76\n", + "Epoch=4, val/train=3.56\n", + "Epoch=5, val/train=1.86\n", + "Epoch=6, val/train=2.45\n", + "Epoch=7, val/train=7.86\n", + "Epoch=8, val/train=11.20\n", + "Epoch=9, val/train=1.14\n" + ] + } + ], + "source": [ + "val_train_ratio_cb = PrintValTrainRatioCallback()\n", + "history = model.fit(\n", + " (X_train_wide, X_train_deep), (y_train, y_train), epochs=10,\n", + " validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid)),\n", + " callbacks=[val_train_ratio_cb], verbose=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Iv0twRMiIm2x" + }, + "source": [ + "## Using TensorBoard for Visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DsDn3bNEIm2x" + }, + "source": [ + "TensorBoard is preinstalled on Colab, but not the `tensorboard-plugin-profile`, so let's install it:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zVPqmcaKIm2x" + }, + "outputs": [], + "source": [ + "if \"google.colab\" in sys.modules: # extra code\n", + " %pip install -q -U tensorboard-plugin-profile" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [], + "id": "VSNCaeDSIm2x" + }, + "outputs": [], + "source": [ + "shutil.rmtree(\"my_logs\", ignore_errors=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "V0I6W0r5Im2x" + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "from time import strftime\n", + "\n", + "def get_run_logdir(root_logdir=\"my_logs\"):\n", + " return Path(root_logdir) / strftime(\"run_%Y_%m_%d_%H_%M_%S\")\n", + "\n", + "run_logdir = get_run_logdir()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FdJPKQZIIm2x" + }, + "outputs": [], + "source": [ + "# extra code – builds the first regression model we used earlier\n", + "tf.keras.backend.clear_session()\n", + "tf.random.set_seed(42)\n", + "norm_layer = tf.keras.layers.Normalization(input_shape=X_train.shape[1:])\n", + "model = tf.keras.Sequential([\n", + " norm_layer,\n", + " tf.keras.layers.Dense(30, activation=\"relu\"),\n", + " tf.keras.layers.Dense(30, activation=\"relu\"),\n", + " tf.keras.layers.Dense(1)\n", + "])\n", + "optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3)\n", + "model.compile(loss=\"mse\", optimizer=optimizer, metrics=[\"RootMeanSquaredError\"])\n", + "norm_layer.adapt(X_train)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Y94e40J8Im2y", + "outputId": "3985a47b-6f50-4ef6-c82e-ba50ac30b33e" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2022-08-01 17:25:59.099970: I tensorflow/core/profiler/lib/profiler_session.cc:110] Profiler session initializing.\n", + "2022-08-01 17:25:59.099982: I tensorflow/core/profiler/lib/profiler_session.cc:125] Profiler session started.\n", + "2022-08-01 17:25:59.100137: I tensorflow/core/profiler/lib/profiler_session.cc:143] Profiler session tear down.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "261/363 [====================>.........] - ETA: 0s - loss: 2.3165 - root_mean_squared_error: 1.5220" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2022-08-01 17:25:59.430946: I tensorflow/core/profiler/lib/profiler_session.cc:110] Profiler session initializing.\n", + "2022-08-01 17:25:59.430962: I tensorflow/core/profiler/lib/profiler_session.cc:125] Profiler session started.\n", + "2022-08-01 17:25:59.510100: I tensorflow/core/profiler/lib/profiler_session.cc:67] Profiler session collecting data.\n", + "2022-08-01 17:25:59.524969: I tensorflow/core/profiler/lib/profiler_session.cc:143] Profiler session tear down.\n", + "2022-08-01 17:25:59.539451: I tensorflow/core/profiler/rpc/client/save_profile.cc:136] Creating directory: my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00\n", + "\n", + "2022-08-01 17:25:59.549606: I tensorflow/core/profiler/rpc/client/save_profile.cc:142] Dumped gzipped tool data for trace.json.gz to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.trace.json.gz\n", + "2022-08-01 17:25:59.558338: I tensorflow/core/profiler/rpc/client/save_profile.cc:136] Creating directory: my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00\n", + "\n", + "2022-08-01 17:25:59.558474: I tensorflow/core/profiler/rpc/client/save_profile.cc:142] Dumped gzipped tool data for memory_profile.json.gz to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.memory_profile.json.gz\n", + "2022-08-01 17:25:59.559618: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00\n", + "Dumped tool data for xplane.pb to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.xplane.pb\n", + "Dumped tool data for overview_page.pb to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.overview_page.pb\n", + "Dumped tool data for input_pipeline.pb to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.input_pipeline.pb\n", + "Dumped tool data for tensorflow_stats.pb to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.tensorflow_stats.pb\n", + "Dumped tool data for kernel_stats.pb to my_logs/run_2022_08_01_17_25_59/plugins/profile/2022_08_01_17_26_00/my_computer.kernel_stats.pb\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "363/363 [==============================] - 1s 1ms/step - loss: 1.8866 - root_mean_squared_error: 1.3736 - val_loss: 0.7126 - val_root_mean_squared_error: 0.8442\n", + "Epoch 2/20\n", + "363/363 [==============================] - 0s 907us/step - loss: 0.6577 - root_mean_squared_error: 0.8110 - val_loss: 0.6880 - val_root_mean_squared_error: 0.8295\n", + "Epoch 3/20\n", + "363/363 [==============================] - 0s 836us/step - loss: 0.5934 - root_mean_squared_error: 0.7703 - val_loss: 0.5803 - val_root_mean_squared_error: 0.7618\n", + "Epoch 4/20\n", + "363/363 [==============================] - 0s 832us/step - loss: 0.5557 - root_mean_squared_error: 0.7455 - val_loss: 0.5166 - val_root_mean_squared_error: 0.7188\n", + "Epoch 5/20\n", + "363/363 [==============================] - 0s 985us/step - loss: 0.5272 - root_mean_squared_error: 0.7261 - val_loss: 0.4895 - val_root_mean_squared_error: 0.6997\n", + "Epoch 6/20\n", + "363/363 [==============================] - 0s 887us/step - loss: 0.5033 - root_mean_squared_error: 0.7094 - val_loss: 0.4951 - val_root_mean_squared_error: 0.7036\n", + "Epoch 7/20\n", + "363/363 [==============================] - 0s 894us/step - loss: 0.4854 - root_mean_squared_error: 0.6967 - val_loss: 0.4862 - val_root_mean_squared_error: 0.6973\n", + "Epoch 8/20\n", + "363/363 [==============================] - 0s 868us/step - loss: 0.4709 - root_mean_squared_error: 0.6862 - val_loss: 0.4554 - val_root_mean_squared_error: 0.6748\n", + "Epoch 9/20\n", + "363/363 [==============================] - 0s 780us/step - loss: 0.4578 - root_mean_squared_error: 0.6766 - val_loss: 0.4413 - val_root_mean_squared_error: 0.6643\n", + "Epoch 10/20\n", + "363/363 [==============================] - 0s 819us/step - loss: 0.4474 - root_mean_squared_error: 0.6689 - val_loss: 0.4379 - val_root_mean_squared_error: 0.6617\n", + "Epoch 11/20\n", + "363/363 [==============================] - 0s 795us/step - loss: 0.4393 - root_mean_squared_error: 0.6628 - val_loss: 0.4396 - val_root_mean_squared_error: 0.6630\n", + "Epoch 12/20\n", + "363/363 [==============================] - 0s 852us/step - loss: 0.4318 - root_mean_squared_error: 0.6571 - val_loss: 0.4505 - val_root_mean_squared_error: 0.6712\n", + "Epoch 13/20\n", + "363/363 [==============================] - 0s 910us/step - loss: 0.4260 - root_mean_squared_error: 0.6527 - val_loss: 0.3997 - val_root_mean_squared_error: 0.6322\n", + "Epoch 14/20\n", + "363/363 [==============================] - 0s 796us/step - loss: 0.4202 - root_mean_squared_error: 0.6482 - val_loss: 0.3956 - val_root_mean_squared_error: 0.6290\n", + "Epoch 15/20\n", + "363/363 [==============================] - 0s 816us/step - loss: 0.4155 - root_mean_squared_error: 0.6446 - val_loss: 0.3916 - val_root_mean_squared_error: 0.6257\n", + "Epoch 16/20\n", + "363/363 [==============================] - 0s 759us/step - loss: 0.4112 - root_mean_squared_error: 0.6412 - val_loss: 0.3937 - val_root_mean_squared_error: 0.6275\n", + "Epoch 17/20\n", + "363/363 [==============================] - 0s 826us/step - loss: 0.4077 - root_mean_squared_error: 0.6385 - val_loss: 0.3809 - val_root_mean_squared_error: 0.6172\n", + "Epoch 18/20\n", + "363/363 [==============================] - 0s 832us/step - loss: 0.4039 - root_mean_squared_error: 0.6356 - val_loss: 0.3793 - val_root_mean_squared_error: 0.6159\n", + "Epoch 19/20\n", + "363/363 [==============================] - 0s 747us/step - loss: 0.4004 - root_mean_squared_error: 0.6328 - val_loss: 0.3850 - val_root_mean_squared_error: 0.6205\n", + "Epoch 20/20\n", + "363/363 [==============================] - 0s 755us/step - loss: 0.3980 - root_mean_squared_error: 0.6308 - val_loss: 0.3809 - val_root_mean_squared_error: 0.6172\n" + ] + } + ], + "source": [ + "tensorboard_cb = tf.keras.callbacks.TensorBoard(run_logdir,\n", + " profile_batch=(100, 200))\n", + "history = model.fit(X_train, y_train, epochs=20,\n", + " validation_data=(X_valid, y_valid),\n", + " callbacks=[tensorboard_cb])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "CJdtbrCGIm2y", + "outputId": "33fa8c3b-d04f-4f17-b093-5dbdc3b2eb34" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "my_logs\n", + " run_2022_08_01_17_25_59\n", + " events.out.tfevents.1638910166.my_computer.profile-empty\n", + " plugins\n", + " profile\n", + " 2022_08_01_17_26_00\n", + " my_computer.input_pipeline.pb\n", + " my_computer.kernel_stats.pb\n", + " my_computer.memory_profile.json.gz\n", + " my_computer.overview_page.pb\n", + " my_computer.tensorflow_stats.pb\n", + " my_computer.trace.json.gz\n", + " my_computer.xplane.pb\n", + " train\n", + " events.out.tfevents.1638910166.my_computer.22294.0.v2\n", + " validation\n", + " events.out.tfevents.1638910166.my_computer.22294.1.v2\n" + ] + } + ], + "source": [ + "print(\"my_logs\")\n", + "for path in sorted(Path(\"my_logs\").glob(\"**/*\")):\n", + " print(\" \" * (len(path.parts) - 1) + path.parts[-1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zDDwQIR9Im2z" + }, + "source": [ + "Let's load the `tensorboard` Jupyter extension and start the TensorBoard server:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iQ1o1wjjIm2z", + "outputId": "9cfa08d7-b6dd-47c7-83fa-6753567afe32" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%load_ext tensorboard\n", + "%tensorboard --logdir=./my_logs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "075RQgxoIm2z" + }, + "source": [ + "**Note**: if you prefer to access TensorBoard in a separate tab, click the \"localhost:6006\" link below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZLJ7fjMzIm2z", + "outputId": "99aa17e9-dc71-464a-bc8f-042b8bf2fe34" + }, + "outputs": [ + { + "data": { + "text/html": [ + "http://localhost:6006/" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# extra code\n", + "\n", + "if \"google.colab\" in sys.modules:\n", + " from google.colab import output\n", + "\n", + " output.serve_kernel_port_as_window(6006)\n", + "else:\n", + " from IPython.display import display, HTML\n", + "\n", + " display(HTML('http://localhost:6006/'))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wOJBAdyAIm2z" + }, + "source": [ + "You can use also visualize histograms, images, text, and even listen to audio using TensorBoard:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3aKDkeuVIm2z" + }, + "outputs": [], + "source": [ + "test_logdir = get_run_logdir()\n", + "writer = tf.summary.create_file_writer(str(test_logdir))\n", + "with writer.as_default():\n", + " for step in range(1, 1000 + 1):\n", + " tf.summary.scalar(\"my_scalar\", np.sin(step / 10), step=step)\n", + "\n", + " data = (np.random.randn(100) + 2) * step / 100 # gets larger\n", + " tf.summary.histogram(\"my_hist\", data, buckets=50, step=step)\n", + "\n", + " images = np.random.rand(2, 32, 32, 3) * step / 1000 # gets brighter\n", + " tf.summary.image(\"my_images\", images, step=step)\n", + "\n", + " texts = [\"The step is \" + str(step), \"Its square is \" + str(step ** 2)]\n", + " tf.summary.text(\"my_text\", texts, step=step)\n", + "\n", + " sine_wave = tf.math.sin(tf.range(12000) / 48000 * 2 * np.pi * step)\n", + " audio = tf.reshape(tf.cast(sine_wave, tf.float32), [1, -1, 1])\n", + " tf.summary.audio(\"my_audio\", audio, sample_rate=48000, step=step)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "q_i-14w9Im20" + }, + "source": [ + "**Note**: it used to be possible to easily share your TensorBoard logs with the world by uploading them to https://tensorboard.dev/. Sadly, this service will shut down in December 2023, so I have removed the corresponding code examples from this notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LoUbC-vjIm20" + }, + "source": [ + "When you stop this Jupyter kernel (a.k.a. Runtime), it will automatically stop the TensorBoard server as well. Another way to stop the TensorBoard server is to kill it, if you are running on Linux or MacOSX. First, you need to find its process ID:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OruxwLxBIm20", + "outputId": "0bdcb1c0-c2a9-47ac-d1ca-9fe87d9869fd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Known TensorBoard instances:\n", + " - port 6006: logdir ./my_logs (started 0:00:31 ago; pid 22701)\n" + ] + } + ], + "source": [ + "# extra code – lists all running TensorBoard server instances\n", + "\n", + "from tensorboard import notebook\n", + "\n", + "notebook.list()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "We7HJai9Im20" + }, + "source": [ + "Next you can use the following command on Linux or MacOSX, replacing `` with the pid listed above:\n", + "\n", + " !kill \n", + "\n", + "On Windows:\n", + "\n", + " !taskkill /F /PID " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YYgmZgS6Im20" + }, + "source": [ + "# Fine-Tuning Neural Network Hyperparameters" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IrsqzNRBIm21" + }, + "source": [ + "In this section we'll use the Fashion MNIST dataset again:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0TKCXOwxIm21" + }, + "outputs": [], + "source": [ + "(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist\n", + "X_train, y_train = X_train_full[:-5000], y_train_full[:-5000]\n", + "X_valid, y_valid = X_train_full[-5000:], y_train_full[-5000:]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cZ1BF3gDIm21" + }, + "outputs": [], + "source": [ + "tf.keras.backend.clear_session()\n", + "tf.random.set_seed(42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Fy6jTF-rIm21" + }, + "outputs": [], + "source": [ + "if \"google.colab\" in sys.modules:\n", + " %pip install -q -U keras_tuner" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "JsuCqqrQIm21" + }, + "outputs": [], + "source": [ + "import keras_tuner as kt\n", + "\n", + "def build_model(hp):\n", + " n_hidden = hp.Int(\"n_hidden\", min_value=0, max_value=8, default=2)\n", + " n_neurons = hp.Int(\"n_neurons\", min_value=16, max_value=256)\n", + " learning_rate = hp.Float(\"learning_rate\", min_value=1e-4, max_value=1e-2,\n", + " sampling=\"log\")\n", + " optimizer = hp.Choice(\"optimizer\", values=[\"sgd\", \"adam\"])\n", + " if optimizer == \"sgd\":\n", + " optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)\n", + " else:\n", + " optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)\n", + "\n", + " model = tf.keras.Sequential()\n", + " model.add(tf.keras.layers.Flatten())\n", + " for _ in range(n_hidden):\n", + " model.add(tf.keras.layers.Dense(n_neurons, activation=\"relu\"))\n", + " model.add(tf.keras.layers.Dense(10, activation=\"softmax\"))\n", + " model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=optimizer,\n", + " metrics=[\"accuracy\"])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "CeAKXkwdIm22", + "outputId": "adbe7a61-bab9-4558-b4f7-23efab5abcaa" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trial 5 Complete [00h 00m 24s]\n", + "val_accuracy: 0.8736000061035156\n", + "\n", + "Best val_accuracy So Far: 0.8736000061035156\n", + "Total elapsed time: 00h 01m 43s\n", + "INFO:tensorflow:Oracle triggered exit\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "I1208 09:51:50.359315 4451454400 1158129808.py:4] Oracle triggered exit\n" + ] + } + ], + "source": [ + "random_search_tuner = kt.RandomSearch(\n", + " build_model, objective=\"val_accuracy\", max_trials=5, overwrite=True,\n", + " directory=\"my_fashion_mnist\", project_name=\"my_rnd_search\", seed=42)\n", + "random_search_tuner.search(X_train, y_train, epochs=10,\n", + " validation_data=(X_valid, y_valid))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zr-v3zdjIm22" + }, + "outputs": [], + "source": [ + "top3_models = random_search_tuner.get_best_models(num_models=3)\n", + "best_model = top3_models[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "RI0WzzJaIm22", + "outputId": "99c06560-a61b-4f43-d429-d02d4468a09f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'n_hidden': 5,\n", + " 'n_neurons': 70,\n", + " 'learning_rate': 0.00041268008323824807,\n", + " 'optimizer': 'adam'}" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "top3_params = random_search_tuner.get_best_hyperparameters(num_trials=3)\n", + "top3_params[0].values # best hyperparameter values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Lw_6bpjvIm22", + "outputId": "6c2da583-e4b2-481d-d72e-76e775447785" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trial summary\n", + "Hyperparameters:\n", + "n_hidden: 5\n", + "n_neurons: 70\n", + "learning_rate: 0.00041268008323824807\n", + "optimizer: adam\n", + "Score: 0.8736000061035156\n" + ] + } + ], + "source": [ + "best_trial = random_search_tuner.oracle.get_best_trials(num_trials=1)[0]\n", + "best_trial.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xTmkvSSVIm23", + "outputId": "91e51e66-dfd1-4ff4-ea0a-deb7c96983d7" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.8736000061035156" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "best_trial.metrics.get_last_value(\"val_accuracy\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "E7lstn7aIm23", + "outputId": "d33413eb-f030-4746-fe4b-3a592f8db979" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "1875/1875 [==============================] - 3s 1ms/step - loss: 0.3274 - accuracy: 0.8799\n", + "Epoch 2/10\n", + "1875/1875 [==============================] - 2s 1ms/step - loss: 0.3155 - accuracy: 0.8827\n", + "Epoch 3/10\n", + "1875/1875 [==============================] - 2s 1ms/step - loss: 0.3049 - accuracy: 0.8867\n", + "Epoch 4/10\n", + "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2962 - accuracy: 0.8914\n", + "Epoch 5/10\n", + "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2886 - accuracy: 0.8931\n", + "Epoch 6/10\n", + "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2831 - accuracy: 0.8935\n", + "Epoch 7/10\n", + "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2795 - accuracy: 0.8962\n", + "Epoch 8/10\n", + "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2701 - accuracy: 0.8999: 0s - loss: 0\n", + "Epoch 9/10\n", + "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2661 - accuracy: 0.9009\n", + "Epoch 10/10\n", + "1875/1875 [==============================] - 2s 1ms/step - loss: 0.2628 - accuracy: 0.9012\n", + "313/313 [==============================] - 0s 744us/step - loss: 0.3625 - accuracy: 0.8753\n" + ] + } + ], + "source": [ + "best_model.fit(X_train_full, y_train_full, epochs=10)\n", + "test_loss, test_accuracy = best_model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "8l7rROy4Im23" + }, + "outputs": [], + "source": [ + "class MyClassificationHyperModel(kt.HyperModel):\n", + " def build(self, hp):\n", + " return build_model(hp)\n", + "\n", + " def fit(self, hp, model, X, y, **kwargs):\n", + " if hp.Boolean(\"normalize\"):\n", + " norm_layer = tf.keras.layers.Normalization()\n", + " X = norm_layer(X)\n", + " return model.fit(X, y, **kwargs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "CPz3RpO1Im23" + }, + "outputs": [], + "source": [ + "hyperband_tuner = kt.Hyperband(\n", + " MyClassificationHyperModel(), objective=\"val_accuracy\", seed=42,\n", + " max_epochs=10, factor=3, hyperband_iterations=2,\n", + " overwrite=True, directory=\"my_fashion_mnist\", project_name=\"hyperband\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0Gf2lvIlIm23", + "outputId": "0fd73320-dc79-4847-932b-bfaafd75f53d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trial 60 Complete [00h 00m 18s]\n", + "val_accuracy: 0.819599986076355\n", + "\n", + "Best val_accuracy So Far: 0.8704000115394592\n", + "Total elapsed time: 00h 08m 44s\n", + "INFO:tensorflow:Oracle triggered exit\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "I1208 10:00:59.856360 4451454400 3169670597.py:4] Oracle triggered exit\n" + ] + } + ], + "source": [ + "root_logdir = Path(hyperband_tuner.project_dir) / \"tensorboard\"\n", + "tensorboard_cb = tf.keras.callbacks.TensorBoard(root_logdir)\n", + "early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=2)\n", + "hyperband_tuner.search(X_train, y_train, epochs=10,\n", + " validation_data=(X_valid, y_valid),\n", + " callbacks=[early_stopping_cb, tensorboard_cb])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "y5sojduzIm24", + "outputId": "edff3a6d-7d06-4f58-cead-ec7d16655bc4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trial 10 Complete [00h 00m 13s]\n", + "val_accuracy: 0.7228000164031982\n", + "\n", + "Best val_accuracy So Far: 0.8636000156402588\n", + "Total elapsed time: 00h 02m 10s\n", + "INFO:tensorflow:Oracle triggered exit\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "I1208 10:03:10.004801 4451454400 1918178380.py:5] Oracle triggered exit\n" + ] + } + ], + "source": [ + "bayesian_opt_tuner = kt.BayesianOptimization(\n", + " MyClassificationHyperModel(), objective=\"val_accuracy\", seed=42,\n", + " max_trials=10, alpha=1e-4, beta=2.6,\n", + " overwrite=True, directory=\"my_fashion_mnist\", project_name=\"bayesian_opt\")\n", + "bayesian_opt_tuner.search(X_train, y_train, epochs=10,\n", + " validation_data=(X_valid, y_valid),\n", + " callbacks=[early_stopping_cb])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bsh0nlUOIm24", + "outputId": "6948a705-a442-4820-fd97-d359f62eba90" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%tensorboard --logdir {root_logdir}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0n6o4bu7Im24" + }, + "source": [ + "# Exercise solutions" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JVeqgrbxIm24" + }, + "source": [ + "## 1. to 9." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "07z660Z8Im24" + }, + "source": [ + "1. Visit the [TensorFlow Playground](https://playground.tensorflow.org/) and play around with it, as described in this exercise.\n", + "2. Here is a neural network based on the original artificial neurons that computes _A_ ⊕ _B_ (where ⊕ represents the exclusive OR), using the fact that _A_ ⊕ _B_ = (_A_ ∧ ¬ _B_) ∨ (¬ _A_ ∧ _B_). There are other solutions—for example, using the fact that _A_ ⊕ _B_ = (_A_ ∨ _B_) ∧ ¬(_A_ ∧ _B_), or the fact that _A_ ⊕ _B_ = (_A_ ∨ _B_) ∧ (¬ _A_ ∨ ¬ _B_), and so on.
\n", + "3. A classical Perceptron will converge only if the dataset is linearly separable, and it won't be able to estimate class probabilities. In contrast, a Logistic Regression classifier will generally converge to a reasonably good solution even if the dataset is not linearly separable, and it will output class probabilities. If you change the Perceptron's activation function to the sigmoid activation function (or the softmax activation function if there are multiple neurons), and if you train it using Gradient Descent (or some other optimization algorithm minimizing the cost function, typically cross entropy), then it becomes equivalent to a Logistic Regression classifier.\n", + "4. The sigmoid activation function was a key ingredient in training the first MLPs because its derivative is always nonzero, so Gradient Descent can always roll down the slope. When the activation function is a step function, Gradient Descent cannot move, as there is no slope at all.\n", + "5. Popular activation functions include the step function, the sigmoid function, the hyperbolic tangent (tanh) function, and the Rectified Linear Unit (ReLU) function (see Figure 10-8). See Chapter 11 for other examples, such as ELU and variants of the ReLU function.\n", + "6. Considering the MLP described in the question, composed of one input layer with 10 passthrough neurons, followed by one hidden layer with 50 artificial neurons, and finally one output layer with 3 artificial neurons, where all artificial neurons use the ReLU activation function:\n", + " * The shape of the input matrix **X** is _m_ × 10, where _m_ represents the training batch size.\n", + " * The shape of the hidden layer's weight matrix **W**_h_ is 10 × 50, and the length of its bias vector **b**_h_ is 50.\n", + " * The shape of the output layer's weight matrix **W**_o_ is 50 × 3, and the length of its bias vector **b**_o_ is 3.\n", + " * The shape of the network's output matrix **Y** is _m_ × 3.\n", + " * **Y** = ReLU(ReLU(**X** **W**_h_ + **b**_h_) **W**_o_ + **b**_o_). Recall that the ReLU function just sets every negative number in the matrix to zero. Also note that when you are adding a bias vector to a matrix, it is added to every single row in the matrix, which is called _broadcasting_.\n", + "7. To classify email into spam or ham, you just need one neuron in the output layer of a neural network—for example, indicating the probability that the email is spam. You would typically use the sigmoid activation function in the output layer when estimating a probability. If instead you want to tackle MNIST, you need 10 neurons in the output layer, and you must replace the sigmoid function with the softmax activation function, which can handle multiple classes, outputting one probability per class. If you want your neural network to predict housing prices like in Chapter 2, then you need one output neuron, using no activation function at all in the output layer. Note: when the values to predict can vary by many orders of magnitude, you may want to predict the logarithm of the target value rather than the target value directly. Simply computing the exponential of the neural network's output will give you the estimated value (since exp(log _v_) = _v_).\n", + "8. Backpropagation is a technique used to train artificial neural networks. It first computes the gradients of the cost function with regard to every model parameter (all the weights and biases), then it performs a Gradient Descent step using these gradients. This backpropagation step is typically performed thousands or millions of times, using many training batches, until the model parameters converge to values that (hopefully) minimize the cost function. To compute the gradients, backpropagation uses reverse-mode autodiff (although it wasn't called that when backpropagation was invented, and it has been reinvented several times). Reverse-mode autodiff performs a forward pass through a computation graph, computing every node's value for the current training batch, and then it performs a reverse pass, computing all the gradients at once (see Appendix B for more details). So what's the difference? Well, backpropagation refers to the whole process of training an artificial neural network using multiple backpropagation steps, each of which computes gradients and uses them to perform a Gradient Descent step. In contrast, reverse-mode autodiff is just a technique to compute gradients efficiently, and it happens to be used by backpropagation.\n", + "9. Here is a list of all the hyperparameters you can tweak in a basic MLP: the number of hidden layers, the number of neurons in each hidden layer, and the activation function used in each hidden layer and in the output layer. In general, the ReLU activation function (or one of its variants; see Chapter 11) is a good default for the hidden layers. For the output layer, in general you will want the sigmoid activation function for binary classification, the softmax activation function for multiclass classification, or no activation function for regression. If the MLP overfits the training data, you can try reducing the number of hidden layers and reducing the number of neurons per hidden layer." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MfNigv0vIm25" + }, + "source": [ + "## 10." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u2U8jo9aIm25" + }, + "source": [ + "*Exercise: Train a deep MLP on the MNIST dataset (you can load it using `tf.keras.datasets.mnist.load_data()`. See if you can get over 98% accuracy by manually tuning the hyperparameters. Try searching for the optimal learning rate by using the approach presented in this chapter (i.e., by growing the learning rate exponentially, plotting the loss, and finding the point where the loss shoots up). Next, try tuning the hyperparameters using Keras Tuner with all the bells and whistles—save checkpoints, use early stopping, and plot learning curves using TensorBoard.*" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "S3j8OGCdIm25" + }, + "source": [ + "**TODO**: update this solution to use Keras Tuner." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jYLY4lkfIm25" + }, + "source": [ + "Let's load the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "QLrOVcemIm25" + }, + "outputs": [], + "source": [ + "(X_train_full, y_train_full), (X_test, y_test) = tf.keras.datasets.mnist.load_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "t6h1HiqkIm25" + }, + "source": [ + "Just like for the Fashion MNIST dataset, the MNIST training set contains 60,000 grayscale images, each 28x28 pixels:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "sOOxB6RLIm25", + "outputId": "5652a139-a8ab-435b-bb34-c742afbc4375" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(60000, 28, 28)" + ] + }, + "execution_count": 107, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train_full.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fsJ_T9g-Im26" + }, + "source": [ + "Each pixel intensity is also represented as a byte (0 to 255):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "5l_zfmDtIm26", + "outputId": "0b894cfc-88e5-4635-937b-06b31d076775" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('uint8')" + ] + }, + "execution_count": 108, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train_full.dtype" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UVvTH9FyIm26" + }, + "source": [ + "Let's split the full training set into a validation set and a (smaller) training set. We also scale the pixel intensities down to the 0-1 range and convert them to floats, by dividing by 255, just like we did for Fashion MNIST:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "c1uf8Zj2Im26" + }, + "outputs": [], + "source": [ + "X_valid, X_train = X_train_full[:5000] / 255., X_train_full[5000:] / 255.\n", + "y_valid, y_train = y_train_full[:5000], y_train_full[5000:]\n", + "X_test = X_test / 255." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mZ3Xl9NLIm26" + }, + "source": [ + "Let's plot an image using Matplotlib's `imshow()` function, with a `'binary'`\n", + " color map:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3MnRZ0NLIm27", + "outputId": "6c87c79e-6bbe-4dab-9d0a-0b63efc07091" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAGHElEQVR4nO3cz4tNfQDH8blPU4Zc42dKydrCpJQaopSxIdlYsLSykDBbO1slJWExSjKRP2GytSEWyvjRGKUkGzYUcp/dU2rO9z7umTv3c++8XkufzpkjvTvl25lGq9UaAvL80+sHABYmTgglTgglTgglTgg13Gb3X7nQfY2F/tCbE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0KJE0IN9/oBlqPbt29Xbo1Go3jthg0bivvLly+L+/j4eHHft29fcWfpeHNCKHFCKHFCKHFCKHFCKHFCKHFCqJ6dc967d6+4P3v2rLhPTU0t5uMsqS9fvnR87fBw+Z/sx48fxX1kZKS4r1q1qnIbGxsrXvvgwYPivmnTpuLOn7w5IZQ4IZQ4IZQ4IZQ4IZQ4IZQ4IVSj1WqV9uLYzoULFyq3q1evFq/9/ft3nR9NDxw4cKC4T09PF/fNmzcv5uP0kwU/4vXmhFDihFDihFDihFDihFDihFDihFBdPefcunVr5fbhw4fite2+HVy5cmVHz7QY9u7dW9yPHTu2NA/SgZmZmeJ+586dym1+fr7Wz253Dnr//v3KbcC/BXXOCf1EnBBKnBBKnBBKnBBKnBBKnBCqq+ecr1+/rtxevHhRvHZiYqK4N5vNjp6Jsrm5ucrt8OHDxWtnZ2dr/ezLly9XbpOTk7XuHc45J/QTcUIocUIocUIocUIocUKorh6lMFgePnxY3I8fP17r/hs3bqzcPn/+XOve4RylQD8RJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4Qa7vUDkOX69euV25MnT7r6s79//165PX36tHjtrl27Fvtxes6bE0KJE0KJE0KJE0KJE0KJE0KJE0L5vbU98PHjx8rt7t27xWuvXLmy2I/zh9Kz9dKaNWuK+9evX5foSbrC762FfiJOCCVOCCVOCCVOCCVOCCVOCOV7zg7MzMwU93bfHt68ebNye/fuXUfPNOhOnTrV60dYct6cEEqcEEqcEEqcEEqcEEqcEGpZHqW8efOmuJ8+fbq4P3r0aDEf569s27atuK9bt67W/S9dulS5jYyMFK89c+ZMcX/16lVHzzQ0NDS0ZcuWjq/tV96cEEqcEEqcEEqcEEqcEEqcEEqcEGpgzzlLv0Ly2rVrxWvn5uaK++rVq4v76OhocT9//nzl1u48b8+ePcW93TloN7X7e7fTbDYrtyNHjtS6dz/y5oRQ4oRQ4oRQ4oRQ4oRQ4oRQ4oRQA3vO+fjx48qt3Tnm0aNHi/vk5GRx379/f3HvV8+fPy/u79+/r3X/FStWVG7bt2+vde9+5M0JocQJocQJocQJocQJocQJocQJoQb2nPPGjRuV29jYWPHaixcvLvbjDIS3b98W90+fPtW6/8GDB2tdP2i8OSGUOCGUOCGUOCGUOCGUOCHUwB6lrF+/vnJzVNKZ0md4/8fatWuL+9mzZ2vdf9B4c0IocUIocUIocUIocUIocUIocUKogT3npDM7duyo3GZnZ2vd+9ChQ8V9fHy81v0HjTcnhBInhBInhBInhBInhBInhBInhHLOyR/m5+crt1+/fhWvHR0dLe7nzp3r4ImWL29OCCVOCCVOCCVOCCVOCCVOCCVOCOWcc5mZnp4u7t++favcms1m8dpbt24Vd99r/h1vTgglTgglTgglTgglTgglTgglTgjVaLVapb04kufnz5/Ffffu3cW99LtpT5w4Ubx2amqquFOpsdAfenNCKHFCKHFCKHFCKHFCKHFCKJ+MDZhGY8H/lf/PyZMni/vOnTsrt4mJiU4eiQ55c0IocUIocUIocUIocUIocUIocUIon4xB7/lkDPqJOCGUOCGUOCGUOCGUOCGUOCFUu+85yx8HAl3jzQmhxAmhxAmhxAmhxAmhxAmh/gWlotX4VjU5XgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(X_train[0], cmap=\"binary\")\n", + "plt.axis('off')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pUsiCeskIm27" + }, + "source": [ + "The labels are the class IDs (represented as uint8), from 0 to 9. Conveniently, the class IDs correspond to the digits represented in the images, so we don't need a `class_names` array:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jDh7QGfqIm27", + "outputId": "1d4a9e3e-8e28-4e75-a101-287dec92d21d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([7, 3, 4, ..., 5, 6, 8], dtype=uint8)" + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6JhzK4dSIm28" + }, + "source": [ + "The validation set contains 5,000 images, and the test set contains 10,000 images:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wsRMylRuIm28", + "outputId": "7d101aaa-f2fd-4af0-fa23-105543f07531" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(5000, 28, 28)" + ] + }, + "execution_count": 112, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_valid.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UxdAmpxMIm28", + "outputId": "4a937cd3-3ca3-44ad-f424-05df6a40df76" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(10000, 28, 28)" + ] + }, + "execution_count": 113, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bzSeBoSoIm28" + }, + "source": [ + "Let's take a look at a sample of the images in the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "RGHZv0KrIm29", + "outputId": "7304605e-e78b-4ba8-c49c-272676bc115d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqIAAAEkCAYAAAD0AFOrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABl3klEQVR4nO3debxN1fvA8c+iIkNJplSiEoki9S19FQ1Ko6SkwdAgRfMslG+ERmmSSEShUUWpNBkqoZCvMvySkG+mZAhF+/fHvs/a59xz7nzOWfuc87xfLy/3nnvuueuuu/c+az/rWc8ynuehlFJKKaVUqpVy3QCllFJKKZWddCCqlFJKKaWc0IGoUkoppZRyQgeiSimllFLKCR2IKqWUUkopJ3QgqpRSSimlnNCBqFJKKaWUciLlA1FjzM/GGC/Ov8mpbksYGGN6GGMWGGM25/z7yhhzrut2hYEx5r6cY+MZ121xyRhzgDFmtDFmnTFmhzFmkTGmhet2uWCMOcUY864xZnXOsdHFdZtcMsaUNsb0M8Yszzk2lhtj+htj9nDdNlf0GIlljOkecYzMNcac7LpNrhhjKhpjnjTGrDDGbDfGfGmMOd51u1wIy/XDRUT0eOCAiH/HAh7wmoO2hMEq4B78fjgO+BSYaIw52mmrHDPGnAh0BRa4botLxphKwEzAAOcCRwI3AWsdNsulCsBC4BZgu+O2hME9QA/gZqA+fr/0AHq6bJRjeoxEMMZcCgwBBgBNgC+BD4wxtZw2zJ0RwFlAZ6AR8BEw1RhzoNNWuRGK64dxvbOSMaYXcBdQ0/O8P502JiSMMRuBnp7nDXPdFheMMfsC3+IPRO8HFnqed6PbVrlhjBkAtPA879+u2xI2xpitwI2e541y3RZXjDGTgA2e53WOeGw0sL/neee5a1k46DECxphZwALP87pGPLYUeMPzvKy6YTHG7A1sAdp5nvdOxONzgQ88z+vtrHEOhOX64TRH1BhjgGuAsToItWHyDvh39F+6bo9DL+BfJD913ZAQuBCYZYyZYIxZa4yZZ4y5MefcUWoGcKoxpj6AMaYBcBrwvtNWqVAwxuwFNMWP+kX6CDgp9S1ybg+gNLAj1+Pbgeapb45zobh+uM4jagXUwQ+VZy1jTCPgK6AssBVo63ne925b5YYxpitwONDRdVtC4lCgOzAYGAQ0Bp7O+VpW584qAB4GKgKLjDG78a/pD3me95zbZqmQqII/8Pot1+O/AWekvjlueZ63xRjzFdDbGLMQ+B9wGdAMWOa0cW6E4vrheiDaFZjted48x+1wbTH+AKMS0A4YbYxp6XneQpeNSjVjTD38PKaTPc/7y3V7QqIUMCdiCu07Y0xd/DweHYiqS4FOwOXAf/GvI0OMMcs9z3vRZcNUqOTOwTNxHssWHYGR+OszduOngY3DX6eRbUJx/XA2EDXGVAPa4L+hZrWcQZfcjc3JWcF3G37aQjZphn8HvzBi5rk0cIox5nqgvOd5O101zpE1wKJcj/2An1Su1KPAY57njc/5/HtjzCH4iw10IKrW4w+2auR6vBqxUdKs4Hne/wEtjDHlgX08z1tjjJkALHfcNBdCcf1wmSPaBdgJjC/gedmoFFDGdSMcmIi/irFxxL85+MdIYyAbo6QzgXq5HjsCWOGgLSp8yuEPNCLtRmtEK2yQYy5+GlykVmT3OgQ8z9uWMwjdD38V/TsFfU8GCsX1w0lENGehxbXAeM/ztrhoQ1gYYwYBk4GV+LkalwMt8Uv1ZBXP8zYBmyIfM8ZsAzZmW5pChMHAlznVJSbgl1+5GbjPaascMcZUwM8hBv9iWcsY0xj/GPnFWcPceQ+41xizHH9qrQlwO/Cy01Y5pMdIjCeAMcaYb/BvbK8HagLPO22VI8aYs/CPix/xj5NH8dPjXnLZLkdCcf1wUr7JGHMqfr3MEzzP+yblDQgRY8wo4FT8qZM/8OtmPup53ocu2xUWxpjPyeLyTQA5GxwMwI+M/oKfG/q057r2mgPGmJbAZ3G+NNrzvC4pbUwIGGMqAv2AtvjTrWvwZxAe9Dwv98rgrKDHSCxjTHfgbvza3QuB2zzPm+a2VW4YY9oDA4GDgI3Am0Avz/P+cNowB8Jy/XBeR1QppZRSSmUnzSNSSimllFJO6EBUKaWUUko5oQNRpZRSSinlhA5ElVJKKaWUEzoQVUoppZRSThRURzTdl9Sbgp9SJNof0bQ/oml/xNI+iab9EU37I5r2RzTtj2gZ2R8aEVVKKaWUUk7oQFQppZRSSjmhA1GllFJKKeWEk73mlVLF988//3DHHXcA8MwzzwDw1VdfAXDcccc5a5dSSilVVBoRVUoppZRSTmhEVKk0sXbtWgD69OnDCy+8EPW15cuXA9kXEe3atSsAY8eOZebMmQAce+yxLpukQujBBx9k/PjxAEyaNAmAQw891GWTUmrRokUAPPnkkwAMHz6cbt26AfD888+7apYKgbVr1zJ//nwA3nnnHQCmTZvGwoULAbjqqqsAOOywwwC44447KFOmTNRrbNy4kcqVKxe7DRoRVUoppZRSTmhENARWrFgB+HepAA899BDG+OW2PM8vG3bkkUcC0L9/fy666CIHrVSurFmzBoBHHnkEICoaevLJJwNwwgknpL5hIXDIIYcAsGPHDpYuXQpoRBRgxowZDBs2DPCjxbnJcSPXkk6dOpUoohFWGzZsAPxr66pVqwD49ttvgeyJiI4ePZo+ffoA2D4wxvD+++/Hff7YsWNp06YNABUrVkxNI1XKjRgxAoABAwbYMYjwPM+OQUaNGhX1tb333pvbbrst6rHLLruMDz/8sNht0YGoI+vWrQNg4MCBvPLKKwCsX78e8C8SchCIxYsXA35Y/JRTTgGgSpUqqWpu0vz1118AnH766YD/BioqVaoEwIIFCzj44INT3rYw2LVrFw899BAAzz77rH28R48eADzxxBMA7LXXXqlvXAjIQBT8N1yASy+91FVznNm1axcAffv2Bfxj5Y8//gCIuZYATJ8+HQjOt3nz5sW84WQCOSZkAJYN/v77bwA7MLjuuuvsY/kZOnQoADfffDN16tQBoF+/fkBmnVP/93//Z1MUJJ3nhx9+sCkKnTt3dtW0lJBB54ABA6I+B3+QCVChQgV73ZBxyT///APAnXfeyb777gvA1VdfDcCvv/5aojbp1LxSSimllHIiZRHRl156CfDvzvfff3/AvwsBaNasmZ0qynT9+/cHsFMlxhg7/S53ILVq1aJq1apR3yd3JT///LONiEoCejqSSOg111wDREdCL7zwQgDuvfdeAGrWrJnva/32228AVK9ePdHNdK5nz55RkVCAbt262bJNKpCtUWGAXr16AfDoo48C0VNruZ1yyil88cUXUY999NFHbNmyBcis6djPP//cdRNSTmZJevbsmedz6tevzy233BL1mLzH7N69m2XLlgFw/fXX26+na1RUosETJkwA/IinXCvkvJkzZ07WRETlGiGR0L322otLLrkEwE65N2nSxD7/tddeA2DQoEEAzJ8/nx07dkS9ZkHv0QXRiKhSSimllHKiyBHRV199FYDvvvsOgJEjRxbq+zZt2hT80D38HytRsbJly1KuXDkAjj76aCAYheeODKY7KY8g0YrIqEWDBg0A/y4+d/6n5HS1aNHC5oums8cffxyIXUjRo0cPHnvsMcA/Lgpyxx132Gj7/fffD8Ctt96awJa68cADDwDYvgC48cYbgSDioeDtt9+2H1922WUOW5J6khfaq1evmGOifPny3H777QC0bdsW8GdaAPbZZx+b2yX56VWqVLHX5UwgMyySA5gNJPInpXjikVz7F154gebNmxf4mpJn3K1bN+bMmQMEEbWwk/GFzD7KYs+jjjqKwYMHA9CqVSvAzyFeuXIlELzXSr5kppXEGzduXNTnzZs35+WXX87z+e3btwegWrVqQLCeI5IsbiuuQl955KI2ZMgQIEhcLQ45QMSOHTtsqFemUmQaYNy4cRkx5SppCD/++CMQvClUrVrVDjrlzaR3797cd999Uc+T1AWZxodg9fR1112X7OYn1MKFC20SvJDpwCeffLJQb4izZ88G/BV9v//+e+Ib6cjXX38NwNNPP20fk3p/cu6VKqUTGXIjPHnyZMAfSF1wwQUum5RyMoiMHBjUq1cP8G/kGzVqlOf35k5jOPzww+0bbybYuHFj1P+Zbvfu3fY4kHqpkSSd68033wSw6XGRzj33XMCvSTxmzBj7ugCbN2/mqKOOSnzDk2Tnzp1ce+21QBDskPNh1KhRMZU1DjroIPseJL+nVKr5+OOPU9LmVJFzQoJghf271q1bF/BT4Bo2bBj1tZKMB0Gn5pVSSimllCOFjoi+/vrrQDDylSn0vO6i//3vfwPBwpP8TJ061YaGf/75ZwA+++wzwJ9ukyTjdJ6ml7srieRJFDRyCl4inC+88IKNckpE9K233gKiSzulaz3RQYMGsX37dgD23HNPAN59912AQk8PypT1xo0bbXSnMMda2El6gUR5zz//fDu1pJHQgMyqyP+lSpXKqIheYcjiAc/zaNy4MQBTpkwB4i/c+/PPPwF/0YZMXcv1R64vmaxGjRqAH/3KNLNnz6Z3795xv3bSSSfx3nvvAfkvRJMo4ciRI+1iNtmxLV3s3LkT8FObJBIqYxUpZyXHQW4yxlm9ejUQzBps27aN8uXLJ6/RKSapOpImOGHCBFvOKh5Jybj77rsB2Lp1qy0pKJH2kr436TubUkoppZRyotAR0U8++QTA7j8qSb6JKPVx8skn25IJkqciuZSfffaZjZbecccdJf5ZrtWvXz/Pr0l0ol69ejaHR5KqI6MfEhlO14L2c+fOtR+3bt0agJYtW9rHJC8pdy4x+MWIgajyM+3atQOgdu3aiW5qyn3//fdRn3ft2pUDDzzQUWvCS3LdlD9LIteHyEiozF7NmzcPgCuvvBLwr62Say7X20wj181IEhk78cQTU92cpJFcTolQRTrppJMA/707997gmUoivw8//LCdTZRZgrwioSJyQTUEG6pkUjQUsNHPJUuWAP5mOVLqS8o3TZs2zR5T8p67bds2+xoyY/3ll18C2BnO4tKIqFJKKaWUcqLQEdEjjjgi6v9Ek31/ZTW1FFiFIBqYCRFRMW3aNMCPTkhkU/JIFy9ebPcOX7t2LRCscKtWrRoffPBBqpubNJLTI7755hub61SY1Yo1atSwFQbS2aRJkwD43//+BwT5v+edd56zNoXZmjVrXDchVKS0SiSJhMYrPyMzEfFWWGeCeJt9ZEIOuZAolVz7JK8Rgrw9iQ4WNRq6dOnSqOgXwL777mvfo8Now4YNANx1112Av0WlFKg/4IADCvz+NWvW8MYbbySvgSEikWIpEdihQwdb2kr+z29DjH/961+cddZZQLCSvlu3biUan2VO4bg0I/VYX3jhhZidlTzPswNQ+ZpMx990000xpSfSzT333MNVV10FBCH+0047DfCn3ItSCqJr164xpSTSUe7FIhdffDEQf5/w/Pzzzz+6qClLyNQhBIOPY445BvDfIHK/scqA5KabbuLBBx8EClerN1NkUhqCpCNFDkCF1NMtbtrc888/b99/xIEHHmiPsTCSeqey2LlJkyacffbZeT5f0r9GjRoF+Puu//TTT0ltY1hIEKyw9ahbtGgBYHfzO+ywwxKe6qHvWEoppZRSyonQRESfe+45ICgVEEkSYWWRS9OmTVPXsCSLjHjF+1juQuXuJd2joQC//PKL/Vh2A5HIKASLCaTMxOrVq3nqqafivlam7HqRu/B2vILT8Xz11VcAdhpq1apVtgxJ5cqVE9jC8Pjrr79iysrktwgwU7344osANGzY0E6lyuKBmTNnxkTT5Rzq2rVrCluZemPGjLERMlGhQgVKly7tqEWJ9dprr9nFvKJ8+fI0a9YMKH7kV9KCpIxgpJLuJZ5qK1eutNfB3GXd3n33XbtzoxwntWvX5p577gH8hU5Q8OKmdDNx4kQgKBEoC8/j8TzPXi9kR7/8RG60UxwaEVVKKaWUUk6kLCIqiwvGjh0bt7RGfosP5G5f8ghz3+2mo8svvxyAFStWsH79eiAoWbV161b7PMnlyoRIqLj66qtjthgUHTp0sPshSwRj4MCBMc+TfZLPOeecJLUydX7//XdbHq0wtm3bZmcFJDIYWepKtuOV/KdMs23btpg9xM844wxHrUk9KUYveeZ5RSPkcVmkk+mRUCm/8+KLL8Ysgrztttsypgzazz//HFParmHDhnz00Uclet3hw4cD0WV6JBdQooVhVadOHSBYgPOf//zH7pEej7zHyOLo66+/3u41LxFRKX+VCdauXcstt9wCYH9PmTEpU6aM3R5Ziv7/8ccflCtXrtCvX9S1DLklbSA6depUIJhOHzZsGFCynRquvvrqkjcsJGTKPTIBXAaivXr1smF0WYkmK+XTtXZopIMOOoh777230M+PV8ft5ptvBgq/E1OY7dq1K+rmIy/jxo0D/JWNixcvzvN5mXCjlp94N62yCjxT/fTTT/b6JzV05eIf+Sbwr3/9C/Dr8spe9J9++ikQVKGQGtCZRgaikTWGZSB12GGHuWhSyrRp06bY3ys3LLKAJ5KkSZ1++unFfv1UkHOgb9++ADRo0MC+hwqZam/fvn3cWrJSFUB2KZNaxXntWJUOZNB5zDHH2PcFWcQmv9fVV19tU8G6d+8O+KleUnWhS5cuQP67J91www0laqdOzSullFJKKScSGk5aunQp4Ie55S48nkMOOQSA/fbbzz4mIXIpJyIJspGRn3RJmF63bh0QlFwqLFlw8eabb9rSE7IrhOybe+uttyaolekj8k5MPj788MNdNSfhypUrR7169QBiIp2bN29mwoQJAFx33XWFer1M33NdrhUQ1FnNpNSVSLLgolOnTjHTzeKEE06wC1QkolG5cmU7NSkL+mRqLl6NzUwQb3cXeY+Rnfsy1b///e9if+/kyZOBIA0skqTDpZv27dvnOzUfz5YtW4Bg4WhhF4yGWf/+/QF/lkxSU2QRUry6urJofPny5bz77rtAkAIkO7PFI9ed4tKIqFJKKaWUciIhEVFZfCQFT3/66ScqVKgA+DsyQLCHac2aNW0SsERG45HvgyCnIR12mZk2bZrN65QIp+wHXBSyY4YkD+eXE5jpIsuJnHnmmYBfsDhTlC9f3h4r8nfu06cP4CeZS5HmwmjcuLHdSzhTRS7skohXppTmEXLed+rUCfB3IJMC9rJnuuwPfeqpp8Zd/Ce5blKuZcCAAYC/e5nkkmYSifhGkh1gMt39998fVQKvIOvXr7flv2SBTyTJqe3YsWNiGpgGZCZTygtK+cB09s4779iPJbIpC33z06ZNG7v4Tfaczy8iWlIaEVVKKaWUUk4kJCIqRbVli6wLLrjARgWLui2Y7I+8YsUK+5isfJS92MNI7qa6detG9erVgeJFQsEvn9GtWzeg5IVi05ms8tu8ebN9LFNzZOXvLSsVv/nmm0J9n6wWldI8/fr1i7vveCb47bffgGAThEw2f/58AJsXesghh9hV74XNj5YSP7NmzQL86gyR/2cKufb+/vvv9jHJbZRZuky3Zs0au91nvDJVEuWTSgpDhw5l1apVeb6eVOioXbt2glsaXp9//nnU55lQoUbGD57nFWmDk/bt29uZbtnuVd6H99lnnwS3MkEDUdnVRaaMSlLuYNmyZUDwpgPpUSPw7bffBvyp1ZYtWxbrNX744QfA30dYpmhloJGNO8fIYGzFihV26jFTdwuSxWkyiJRdTvIi+0lLPdp0SFspKVmsJWV6IPj9M5W8kVx88cVFWqC3efNmLr74YiAo25SpZEo6clc+qYEo5d127dqVEaXewJ8ulwWM3333HQBLliyxg+9418gNGzYAwftrPJIq16FDBxo2bJjQNqeD3LvbZQJJsVi/fj2PP/44EKT05Hc9KV26tH3PleutTNXLdSXShx9+WKI0GJ2aV0oppZRSTiTkFlHuwBJR+FWm+UWlSpVs8fIwO/nkkwE/giEFlaXk0pFHHml3whGSejB9+nTeeustINgL1vM8GwmVqeh4ifiZ7qabbrIfy+K3448/3lVznLjqqqvsopNrrrkG8EtYZXqJpkgyhSibY0AwS5Kpi1GOOeYYIChnFznF3KtXLwC7eAmCiJfMpFx++eV2OlauJQ0aNAAya6FfXiZNmgQEpcz69OkTtzxROjrggAPse63MCOzcudOWTyysPffcEwhS3iTKKqXkVPqTjQ5mzZpld9qTknAS9Y53DR0yZIhNjZMUhfPPPz/Pn3PnnXdqRFQppZRSSqWf0CTNNGrUCAi2uRRnnnkmzZo1c9GkIpG7yosuushGNqX0ijEmpuC2RCvWr19v88Ait+qTO950iAYnS2QBb4kQZQspOty9e/eMK01UVJIsL4sxIChQXtI9jsNKoguPPvoo4F8HJMdr5MiRQPRCUNn4Qs6ZyFmVE044AQj2Es+0aLrMyEnJv8gtbiXqlyn7zAspLSQzbYsWLYrKnS5IgwYNbNmmSy65JOHtywSy5iWdySLYJ5980l5HZTtpWcQo/0eKvH7IuSOLxuMp6UxlaAaiUitRVnTKRSXdVkk///zzdpAZmTwvH8sfN3LwKYn1Mpjt2bMnF110UcranA6yZTAWbx91Fe3kk0/mggsucN2MlJBrQv369e1AQ46RyBqBudWvX58rrrgCgLvvvhsgbq3RTCBpGpK+0LFjR5vOItVbklkD0aUZM2YA8Ouvv9o6kbJHugwwBg4cGHP9vOSSS/Kt462gbt26rptQYpK+M3v2bHsjKoGyhQsX5vl9LVq0sNP6ch3Jj9wcF5dOzSullFJKKSdMAXUqU1LEcty4cfaOtXz58gCMGDECoMj7xeaS6Hm7QvXH+vXrgWB3HIBhw4YBfmkmiK5RJguRUlCiyUl/FFedOnUAP1ou0RxZqCG7xZRQWvVHCiRjnlv7JFqx+0NK2uVeFDp16lRbu1hmUiQKmgSh6Y+Q0P6Ilrb98dhjjwFw1113AX66A5S4fnna9keSxO0PjYgqpZRSSiknnOaIyg4pjzzyiI14SbHUEkZCnZJo59ChQ+1jkR+rwpHyTf369bP5caVK6b2Tyk4S9ZRcL6VU4snOQRUrVnTckuyh7+pKKaWUUsoJpzmiskJ+8ODBdpVjq1atEvkjND8jmvZHNO2PaJojGkuPkWjaH9G0P6Jpf0TT/ogWtz9CsVgpifQgiKb9EU37I5oORGPpMRJN+yOa9kc07Y9o2h/RdLGSUkoppZQKj4IiokoppZRSSiWFRkSVUkoppZQTOhBVSimllFJO6EBUKaWUUko5oQNRpZRSSinlhA5ElVJKKaWUEzoQVUoppZRSTuhAVCmllFJKOeFkIGqM6W6MWW6M2WGMmWuMOdlFO8LAGNPDGLPAGLM5599XxphzXbfLFWPMKcaYd40xq40xnjGmi+s2uWSM6WmMmZ1zbKwzxrxnjGnoul2uGGN+zjkucv+b7LptLuk11afnSyxjTEVjzJPGmBXGmO3GmC+NMce7bpcrxpgDjDGjc46PHcaYRcaYFq7b5ZLr60fKB6LGmEuBIcAAoAnwJfCBMaZWqtsSEquAe4BjgeOAT4GJxpijnbbKnQrAQuAWYLvjtoRBS+A54CTgNGAXMNUYU9lloxw6Hjgg4t+x+NveveayUS7pNTVKS/R8yW0EcBbQGWgEfITfJwc6bZUDxphKwEz8rSbPBY4EbgLWOmyWU2G4fqR8ZyVjzCxgged5XSMeWwq84Xlez5Q2JqSMMRuBnp7nDXPdFpeMMVuBGz3PG+W6LWFhjKkA/AFc6Hnee67b45oxphdwF1DT87w/XbfHBb2m5i3bzxdjzN7AFqCd53nvRDw+F/jA87zezhrngDFmANDC87x/u25LWITh+pHSiKgxZi+gKf4dWaSP8O9gs5oxprQxpgN+VPBL1+1RoVQR/7z93XVDXDPGGOAaYGwWD0L1mpq/bD9f9gBKAztyPb4daJ765jh3ITDLGDPBGLPWGDPPGHNjzrUk64Tl+pHqqfkq+CfFb7ke/w2okeK2hIYxplFO9G8n8DzQ1vO87x03S4XTEGAe8JXjdoRBK6AO/tRjttJrav6y+nzxPG8L/u/e2xhzYE6w40qgGX5qS7Y5FOgO/ISfrjAEGAT0cNkoh0Jx/dgjVT8ol9z5ACbOY9lkMdAYqAS0A0YbY1p6nrfQZaNUuBhjnsCPYjT3PG+36/aEQFdgtud581w3JAT0mpqLni9WR2Ak/nqE3cC3wDj8/OpsUwqYEzHl/J0xpi7+QPQZd81yzun1I9UR0fX4J0LukXY1YkfkWcPzvL88z1vmeZ6cIPOA2xw3S4WIMWYwcBlwmud5P7luj2vGmGpAG2C467Y4ptfUOPR8CXie93+e57XAT/k62PO8fwF7AsvdtsyJNcCiXI/9AGTjwj4IyfUjpQNRz/P+AubiT6lFaoXmREYqBZRx3QgVDsaYIcDl+G+qP7puT0h0wU9lGe+4HU7pNTWWni/xeZ63zfO8NcaY/fCnpd8p6Hsy0EygXq7HjgBWOGiLc2G5friYmn8CGGOM+Qb/oLgeqImfG5l1jDGDgMnASvzE+svxS5BkZS3RnFWuh+d8WgqoZYxpDGz0PO8XZw1zxBjzLP7U2oXA78YYuXPd6nneVmcNcyhnYcG1wPicHLhsp9fUHHq+xDLGnIV/Lf0R/9r6KH462Esu2+XIYODLnGobE/DLFd0M3Oe0VW45v36kvHwT+MVTgbvxk6UXArd5njct5Q0JAWPMKOBU/ND4H8AC4FHP8z502S5XjDEtgc/ifGm053ldUtqYEDDG5HWC/sfzvL6pbEtYGGNOxa+3e4Lned+4bk8Y6DXVp+dLLGNMe2AgcBCwEXgT6OV53h9OG+ZIzoYxA/Ajo7/g54Y+7bkYDIWE6+uHk4GoUkoppZRSute8UkoppZRyQgeiSimllFLKCR2IKqWUUkopJ3QgqpRSSimlnNCBqFJKKaWUcqKgOqLpvqTeJPj1tD+iaX9E0/6IpX0STfsjmvZHNO2PaNof0TKyPzQiqpRSSimlnNCBqFJKKaWUckIHokoppZRSygkXe80rpZRSSfHPP//w888/Rz02atQoGjduDECzZs0AOOCAA1LcMpUOevfuDcD69esBuOqqqzjhhBNcNinjaURUKaWUUko5oRHRFJszZw4AP/zwAwC//fYbixcvBmDatGkALFmyhIMOOgiA+++/H4CuXbumuqnO3HTTTQA8++yzAHz66ae0bNnSYYuUSg8SCXzvvfd46623APj8888BMCZ2wepnn30GQIsWLVLSvmSaPXs2AI888ghvvvlmzNc9z19wXK1aNQD7nObNm6eohSqs5s+fb99jFyxYAMDOnTvt/xJNL1OmjJP2pcoTTzwBQMuWLe2MQSpmDjQiqpRSSimlnEh6RFTuQsePHw/Af/7zHxsBjKdevXoAfPLJJwBUr16dPfZI/8DtpEmTAGjbti0Au3btAqKjFNJXxhhWr14NwI033hj1/BtuuCE1DXZI+kT+/+ijjzI+Ivq///0PgA8++AAIIuaLFi3i/fffB+COO+4A4JxzzuHII48EYO+99wZg3333BWD37t28/PLLAGzbtg2Abt26seeee6bi11COyHFz3333AUFUB2LPp0gXXngh4EeEatWqleRWJtb27dsBuPLKKwH48MMPAfjzzz/tc84991zAj+ps2bIFgAkTJgDQpk0bAFatWmXPI5VdevbsCfjjk9x5xWLUqFH2eUcccUSqmpZ0MsYaMmQI8+fPB2DlypUAVKpUyUZ/DznkEAC+/vrrpLUlaSO8f/75BwimV2+++Wb7tVKl/EBs+fLlAX+QJRcVGaTK1HTDhg2ZOnUq4A9K05VMA+3evRsI3hQqVqzIcccdF/Xco48+mq1btwIwduxYAMaNGwfAtddem3WDioULF/L3338DZOTvPnr0aK666iog/mBBHnv88ceBYPoE4NBDDwWwg8/p06fbi6Zo0aIFjRo1SnzDlVN//fUX4B8PMgCNd/zk548//gDgmWee4ZFHHklsA5NMBpJffPEFENykn3feeZx00klAMJVaunRp+54k1+A33ngD8H/3u+66K3UNTxG5Zq5cuZL//Oc/QHCdyM/NN9/MAw88AMB+++0HFP24CrOtW7fatJXnnnsOgM2bN+f5/KOOOop99tknJW1LhQ0bNgBw++23A/77a25yXQDYtGkTgD2nXn31VWrXrp3QNunUvFJKKaWUcsLIdHAeir2d1AsvvAD404KR9thjD3u3JWUSfvnlF3s3PmzYMCCYigY/Kgowc+ZMgKLcnYRmey2JcJ5zzjlAEN0dPHiwjf7Gc/fddwPw2GOPAf7de/fu3YvbjND0R34kei7RdM/z7B1axYoVE/mjnPbHr7/+CkCjRo34/fff/QbFiTzI1IhMHeUXnfA8z369SpUqgD+lUqdOncI0yfkWn2PGjAFg1qxZxf6BMrvy0ksv2cckGlYMoTtn5Jr98MMPA9CrV6+otJ68ni8LHwH69esX9bXatWszefJkAJv2kYfQ9IdcCySaGfn75UcWjEq6T69evWJmEYogNP0hx7hcJ84++2wAli5dWuzGSBrDJZdcUthvCU1/5KV79+4MHTq0wOcdeOCBgP9+JO/DxRCa/pDZ1eeffx6Ar776KuY5ck7tt99+7NixA4C1a9dGPefWW2+1s3MSLa1UqVJhm6FbfCqllFJKqfBISo7o7t27bcmQ3O69914bCRW1atXimWeeAYIyIrfccgsAa9assTkMkoSejvkaFSpUAILfSyJU+UVDI79PvP322yWJiKoQkWRxuauEYPFI37597WMS2Vy3bp19fpcuXQBYsWJFzOtWrlwZCKIZhYyGhsKMGTMAGDFihH0sv2hf5HNyf10+P/zwwxPdTCdkQYHMGsn/kSR364ILLrALI0855ZSo5yxdutRGRMWKFSv45ZdfgAIjoqFT1AUkkpMv+dWZ4vvvvwegSZMmMV+T3PrI98769esDQeF2+X/Tpk02j3bQoEEAtGrVqihRr1CS80cWf+ZFxicdO3YEMmOB0jvvvEOnTp2A/K+j77zzDuCPw9asWQMEC/6k/6ZNm2YXzkrJyREjRnDMMccUu31JGYiuXbvWLq4RRx11FOAvtsmPTAEMHjwYwHZGpmjXrl2Jvj+vlX0q/UROD8nCPXkTkRXAAMcffzwQ1El877334g5AhdzcpGOlAVmI1b9/f1tpY+PGjUD+F9B169bZhQdCbvoefPDBZDQ1pTzPy3cAKik/AwcOBMiKxWmS/hVvsUV+5M3zxx9/THibUk0GjEuWLKFDhw5xn3P00UfbxUqywCseSYfp16+fHax99913gJ8GIsdWupAxyPXXXw8Ei7ckdSdS2bJl7XklVRhkUXU6k+n4Tp06kVca5pVXXhl3EZvUD61bty4A8+bNA/zUlrlz50Y994ILLsj3Pakg6d/TSimllFIqLSUlIjpx4kT78V577QVgFyPJwouCvPrqq4C/L7DUWBw9ejQAd955J6VLl05Uc0NJEonffvvtqMczbTopm8mU6ezZs+1itvwWXMSboi5btizgp7yAf57JFMrHH38M+NNq6UIiw+XLl7c7bBXGxx9/bCOiMv0o5Ulyp7ekk8gSTfEioeDvFCR1irPJZZddVqzvk8hY5ILYdCPXi+uuuw4I6nRH6tGjB+AveD344IPzfC2pNyyL3wqauk4H48ePtyls+ZVmkn6566677NR1Jhg5ciQQzApFvmfIGOyVV14B4qdyRJIpdyl3lvv1wK+DLelUBc16x6MRUaWUUkop5URCI6Kyc0VkwW1JnpccpsKS7+vcubO9U5Ooz4UXXmh3YMokshhr0qRJNjImBf4lypN7oZdKX7IQYO3atYwaNQooXOHoQw45xN7F3nnnnUBQbHjr1q22tIbstpNOEdHikiR7CBajFLQQMB1I3lWvXr1iviYF3CUqpgon9yxTOpK1E5GRUJl9lJkAOT7yi4YCdo/1yJlMIQuU9t9//xK1N1Xee+89AK644opClWyTUl7VqlVLartSTaKTkbuM1axZE4DXX38dIGYjnbzIoq0+ffrY15EyT0uWLAH82QWJ0heHRkSVUkoppZQTCY2ISj7TsmXLEvaaDRo0iHls2LBhUVHXdCR9NHPmTLuv+JQpU4DofaKF3N2efPLJKWqhSpX777+/SPluDRs2tCsa8yPHVTZ49tlnbTS5efPmjluTOLLCO3LFq+R4SQ5gccotyetFvm4Bm5ukPSlPJbMPonHjxqlvTAls376d888/P+qxo446ys4cFnb2Ud6DJCoY6ayzzgKCKgxh7yOpnHDppZcC+W9gcd555/Hiiy8CQWm8eKRKSWTlnmOPPRYI92zLn3/+afOgI8nMSWEjoUKi4VIOsG7dujYSGlmpQVbe33rrrUVuc9L2mheyO0E227hxI02bNgWC3XRy73ucF5lePfPMM5PYQuVS7dq1E7Z376JFi+zH6VYPsiSMMXYgmgn7YkvNWClRFPk7SYm74v59+/fvH9NHLVu2jKk3mmmkDJgszmndujUAZ5xxhrM2Fce4cePsQECm4/v161ek9LdJkybZKdfIfcWFpMGFfQAq5H00XmkmIfUwR44caRd5yoJO2cUvkgzQIwei0h+dOnXixhtvBIIarWHRrVs3vv3226jH2rRpU+idx3IrV64cABdffLF9TI6/SLJItjh0al4ppZRSSjmR0IioFE+NdNVVVyXyR6SlLVu2FLvYq0QuMqG4bmHlnjbM9CnDRJBppPfff5/q1asDQTpHJpOp60gbNmwA/MgA+FOQMnUn51Pv3r1tRCOMJBoTOW0qxcgjd90qimuuuQaI3ixB3H777TbykYlmzJgRs7PMo48+CoQvolWQyGiUpGfIjmwFueeeewAYPnx43EgoQPXq1WnYsGHJGpliskgpHlmsKeWH3njjDbuY54svvijSz5Gi7vPmzeP0008H/A0DwkDSFaUsEwQL1d56662k/MzI9+aSpEtmz+hGKaWUUkqFSkIjosuXL0/ky2WM/fff3yb1rl69GgjyVWrUqGGfJ4X7n3/+ebuVp+TqCEkiz2Txcv1km0aJYiif5ESdd955gH+HKseUbM2WjjZt2mSjD5LbJ8nykT766KOYx5555pmYx1q0aAEEkSMpWRNW8SIYskipuJHLGTNmAEH+KQT9ks6LINeuXQvAu+++C/jRvty5gkuWLGHnzp1AcF158803Ab/0TLrkQuZ2+OGHF/iczZs32/Jmw4cPB/zzKy/jx49Pm3JNQspMxSOzRVLyce3atezYsSMVzUqp77//Hoh+3yyoWH1xLFmyhPvuuy/mZ5VE0hcrKX9nF9kpqjCuvfbamNpukkzdqlWrrJqmF1KRQfmkZm/nzp0BWL9+PeBfGOQmJx198803gD91/sknnwDxd5TKjwyuIgek8apvhJlMGUZOfQ0ePLhYryWLm5YuXRrzNZna3XfffYv12q5s376dBx54AICnn34awA408yLXTVngI/uvDxw40K5Clxu6jh072gWlMpBZtWoVEPRnGMjA8oILLrCDsS+//BIIpqK/+eabQi0kkcVbJ5xwQhJamlzx9koXMujOb/BtjLHngKQspFtKmOw8aYyhUaNGALY6QCI999xz/PTTT1GPVatWzVYsKI7sG9EopZRSSqlQSFpEVPaMrlWrVsJfOxN3VYpUuXJlO20kO+bIXtJvvPEG7du3d9Y2FQ6yo0rkjkLglxeRKFc6kn2up06daqcdJYIln0eWMuvfvz/gl1iR8yLevtvppqSlqLZt22br+cm1JPK1ZJeUyJIs6UAWnV177bU2ei4pKHKtbNmyZcwi2Ro1ajBs2DAgiP5Kms+8efNsH8n/v/76K7///jsQRJUk4uM6InrYYYfZjyV95ZRTTrG77xW3jI7sLiSljbKBXCsrVKhg0xEGDBgA5B9BbdKkCVWrVk16+4qre/fuQMl2xPrtt9+AIJWnX79+gL8zU+7rUtmyZQtV2zovGhFVSimllFJOJC0iKpX9N2/eXKzvl10wHnvssZivub4jLYjsubrHHn73luQOU/J2vv76a8DPZ9KIaHaSBRjXXHONjRyKo446CvAjhCW5M3VNfo9bb73V3oHL7Eo8Q4cOBYKFftlO8hnvvvvuuKWtwN9kJN3K6n322WdAEMH68ccf6dKlCxBENuW6K3nTEOyAM3nyZJs3J6SA/8qVK21h82uvvRaAXr162chp7969AbjjjjsS+0sV09VXX21ziGXtQX4Lhffff3/7u0oJq48//pjnnnsu6nmZPtMYj2wY43leoRZbSySwc+fOob7OHnPMMSX6/nnz5tm8admEJz8XXHBBiX6eRkSVUkoppZQTCY2IRhZ2lVXOkm+Re2/cglx55ZVAUJIAsHvphnmF57p16+zKy8svvxyAW265pUiv8ffff9t8ptyr7eWuX6U/WeX4wQcf5FtY+fjjjwdg1qxZQLBCPpKUrknUVqGuyGxHcWY90i3KV1SSv9iuXbuYr8k1RmaS8oqGgh8Vk1JQ6UJ+9x9//BGAhg0bUrNmTSCIoktJns2bN9vfTwqd51eg/eCDD7bbXcq1+4UXXghtaavSpUvb2QJZ2f/f//7Xzj5KbuPZZ58N+OeFFHUXgwYNsh9LX6Xz+SObNciMQGHlXv2dlzJlygBw/fXXA0V/T0+FyFX+kie/YMECwC9XN3fuXCCI6ka+58j7x+effx71nIJ+jpSXlHFecSV0ICo7f8hBAUENwMIaOHAgELzpAtSvXx8IdkopXbp0idqZTN9//71Nopek8XXr1uV7kr/99ttAdL1EmSbIXbpmyJAhyWm4ShmpfRl5TORXokgWqkU+Ry6McsOS7gPQopI3W9k3HDJrkUXz5s2B6JJLUo5Kpsrkb79o0aJ8jx/5mlxbZXeddJK7huzChQvtwiUhi3gGDRpkBwyFJbsryYIdmY4Pqzp16gBBoGLjxo02HU7KWMVbKCy1ZCMXNDVr1gyIrmmdbuQGQoJhMgBLhCZNmjBlyhQgOD7CKHKB41NPPQUE6YH9+/e3NyryvHg7axV2kWSib150al4ppZRSSjmR0IioRCQaNmxo71Yl9C37Ot9+++0ceuihMd87depUAFukWO7u6tevb/dGDvOUvKhRo4bdpUNKawwYMICHHnoICO404kUw4j229957A36/ATFTLJlm9+7dGZ9+IHfX8e46C1OuxxhD06ZNAb9UTTaSc2vFihVuG5IkN9xwAxCUs1q7dq2dbs897R55zER+LFPWV1xxBRBcQ9KRRChvu+02wD/upVyRLOiUVCh5PJtUrly5UM975JFHAKJ2FrrpppuS0qZUOvDAA4HgfJk8eTJ33nknEGz+kZ8999yTY489NuoxmYFt3bp1qCOhQqKUkp4D/q5h4G/GUNSNQYTMvsl7zsknn2wjoYnavU8jokoppZRSyglTwDZWxdrj6rfffuOMM84AiMnjqVu3ri22KkaPHs3//d//AbF3L88++2zM84sgMRuhBgrVH3PmzAGCArBTpkzJd4tKuUORHKeff/7Z3qVedNFFQJAzVkJO+qMoVq9eHZPbtNdee9lFB3JcJUjK+2PLli2cdtppAHz77bfBNxbibjXec2TBhuRE7bfffkVtc6RE9wck4RiBIKle+rJMmTI2UiiLuxLE6Tkjiwjatm2b/4vmHBsVK1YE/Fy5sWPHAiR6YZKT/pAZMtlm88ADD7QbHTgW+msqBHnFMoOybNkym2cqeaMJKkcUmv6Q3Hop7SbvqeXKlbMLn0XZsmXtAukES1l/yHavAwYMsOe8LMJbsGCB3S5couGy6HWPPfaw7yOy+K1UqVK2v2SNzjnnnJOI9sftj6QMRCHY51b28809IM3LEUccAWCn42vVqlWSvdVDcVJMnz7dvinISumzzjoL8Aea8vtdeOGFACxZssSGwRMsFP2Rny1bttj6dnIMPPDAA3YFa4KlvD/mz58fMwUEeQ9Ezz//fDv4luc89dRTMas916xZA5Q4mT7tBqKnn3464O8lH1lhI4GcnjOyKGvs2LH5rtSVY0N2AUriCujQX0NSLC36Q6bkZZUzBANQ2ZEqQdKiP1IodP2xZMkSIEhjqFixYtQC8ySL2x86Na+UUkoppZxIWkRUSLKs7Fs6bNgwpk+fDkTXZ7v66quBYCcMKTtQQqG7G3FM+yNayvvj119/tYtGXn/9dft4uXLlALj//vuBYHeYypUrx5wLf/zxhy3R8t///hcIpqMrVKhQkvanbUS0c+fOjBw5Mhk/Ss+ZaNof0ULfH6tXr7YpLFIOrHXr1jbdKcHlEEPfHymm/RFNI6JKKaWUUio8krbXvP0BOdEcKa/w4IMPJvtHKhVaNWvWtLteyP9FFVnGLB3KiiSDbAogSrrXsVKZauXKlVEbIwC0aNEi1BvDqOyiEVGllFJKKeVE0iOiSimVaLJ5RqNGjYCg4oRSKtqJJ55oy/IoFUZJX6zkmCYKR9P+iKb9ES1tFiulkB4j0bQ/oml/RNP+iKb9EU0XKymllFJKqfAoKCKqlFJKKaVUUmhEVCmllFJKOaEDUaWUUkop5YQORJVSSimllBM6EFVKKaWUUk7oQFQppZRSSjmhA1GllFJKKeWEDkSVUkoppZQTOhBVSimllFJOpHwgaow5xRjzrjFmtTHGM8Z0SXUbwsYYc4AxZrQxZp0xZocxZpExpoXrdrlgjPk557jI/W+y67a5oOdLLGNMRWPMk8aYFcaY7caYL40xx7tulwt6vsTS62nAGNM3zrHxP9ftckX7I5oxprQxpp8xZnnOubLcGNPfGLNHKtuR0h+WowKwEHg5519WM8ZUAmYCM4BzgXXAocBah81y6XigdMTnBwBzgdfcNMc5PV9ijQCOBjoDq4ArganGmAae56122rLU0/Mlgl5P41oMtIz4fLejdoSF9kfgHqAH/rX0e/zr6mhgJ9AvVY1I+UDU87z3gfcBjDGjUv3zQ+huYI3neZ0iHlvuqjGueZ63LvJzY8w1wGbgdTctckvPl2jGmL2BdkA7z/M+z3m4rzHmfOAGoLertrmg50sMvZ7G2uV5XtZG/eLQ/gicBLzned57OZ//bIx5FzghlY3QHFH3LgRmGWMmGGPWGmPmGWNuNMYY1w1zLacPrgHGep73p+v2qFDYAz8CuCPX49uB5qlvTnjo+QLo9TSeQ3NSe5YbY8YbYw513SDHtD8CM4BTjTH1AYwxDYDTyAl+pIoORN07FOgO/AScBQwBBuGHy7NdK6AO/lSsUnietwX4CuhtjDkwJ8fpSqAZ/rR0NtPzRa+nuc0CugBnA12BGsCXxpj9XTbKIe2PaA8DY4BFxpi/gf8Coz3Pey6VjXCRI6qilQLmeJ7XM+fz74wxdfEvnM+4a1YodAVme543z3VDVKh0BEbi54fuBr4FxgHHumxUCOj5otfTKJ7nfRD5uTHma/xBemfgCSeNckj7I8alQCfgcvxBaGNgiDFmued5L6aqERoRdW8NsCjXYz8AtRy0JTSMMdWANsBw121R4eJ53v95ntcCfyHXwZ7n/QvYkyzOBdTzxdLraT48z9uKP+Co67otYaD9waPAY57njfc873vP88bgD8h7FvB9CaUDUfdmAvVyPXYEsMJBW8KkC/7KvfGO26FCyvO8bZ7nrTHG7Ic/DfuO6zY51AU9X0Cvp/kyxpQF6uMP2LOe9gfliK0asJsUjw1TPjVvjKkAHJ7zaSmgljGmMbDR87xfUt2eEBiMn6PSC5gANAFuBu5z2iqHchYWXAuMz8kJzFp6vsQyxpyF3xc/4vfNo/glWV5y2S5X9HyJotfTCMaYx4D3gF+AakAfoDx+iZ6so/0R4z3gXmPMcvzIcBPgdlJcKtB4npfKn4cxpiXwWZwvjfY8r0tKGxMSxphzgQH4d/K/4OcyPe2l+o8TEsaYU4FPgRM8z/vGdXtc0vMlljGmPTAQOAjYCLwJ9PI87w+nDXNEz5doej0NGGPGA6cAVfBrqn4N9PE8L3f6QlbQ/ohmjKmIXy+0Lf7AfA3+rMqDnuflrkySvHZk4bmplFJKKaVCQHNElVJKKaWUEzoQVUoppZRSTuhAVCmllFJKOaEDUaWUUkop5URB5ZvSfSVTovcX1v6Ipv0RTfsjlvZJNO2PaNof0bQ/oml/RMvI/tCIqFJKKaWUckIHokoppZRSygkdiIbQokWLqFy5MpUrV6Z79+50794dz/PQmq9KKaWUyiQ6EFVKKaWUUk4UtLNSuofg0ipRePv27QD06NGDl16K3jb7r7/+AmDPPfcsyY9Iq/5IAe2PaLpYKZYeI9HSqj9mzZoFwJgxY5g2bRoAO3b4OxeeeeaZ9v+zzjoLgDJlyhT1R6RVf6SA9kc07Y9oulhJKaWUUkqFR8ojolu3bmXAgAEAdOzYEYAjjzwy0T9GpNXdyIwZMwA4+eST7WM1atQAYOXKlQDssUdBFbfylVb9kQJp2R+vv/46l156KQCvvfYaABdffHEiXlojorHS8hhJorTojzlz5gBw3nnnAbBu3TqbY29M7K/QpUsXAF588cWi/qi06I8U0v6Ipv0RTSOiSimllFIqPEoUXiuOuXPn8vjjjwPYyGi227p1KwBPPfVUzNcuu+wyoMSRUJVB+vXrFzeqo5Tyc0AvuugiwI+EAvzrX//i8ssvB6BDhw4ANg//jTfeYNSoUUCQI/rcc8+lsslKZTUnoxtZeDN69GgAOnfu7KIZoTFlyhTAn3IVderUAeCGG25w0qZkGj58uP2d5fc744wz8v2eVatWAfDJJ58A2XnMjBs3DoClS5c6bklqPfPMMwDcdNNNANSvX5/9998fCNJZsslXX30FwL///W8AmjZtyjvvvANAzZo1nbXLtW3btgH+NPvq1asBqFSpEgAPPfQQp512WtTz7777bgCuuuoqLrjgAgA++OADADZt2mS/V/l++OGHqM+TmFKXEFu2bAGCgNehhx4KwPfff2+f89FHHwFQtmxZ5s+fn+drdevWDYAhQ4YAxVrUFlpz5861Hz/00EMATJw40aayyN+5atWq9vNbbrkl6mslpVPzSimllFLKCafzvbt27XL540Nh27ZtPPbYYzGPjx8/HoC6deumuklJ8/777wNw++2323SETz/9FIDDDz8cgLZt23LggQcCQSQMYPPmzQD8+uuvALRq1QrIrgjQ4sWLgWBGIdMNHDgQgN69ewPBIr6///6b//73vwBcf/31APTt29cu7MsWkp7x7bffcsQRRwBw7rnn2q8fe+yxAJxyyikA9jkSTc40kr4kCzsBjjnmGICYaGikqlWrMnnyZAD+97//ASUukxdaEtXs1KkTs2fPLvD5b731FuCfiz/++GPU13r27AnAfffdl+BWJsbHH38MwMMPP1yo5+eX7vTdd98B8NtvvwFQq1atErbOHUlXkevrk08+aX/3eAv65H1H/v4zZsywUVT527dt27ZEbdKIqFJKKaWUciLlEVGJZECQI3rNNdekuhnO7d69G/AjGFJ0WRhj2GeffVw0K6kkR6datWo2Irpp0yYgKLci/xdk8ODBADz66KMJbmV4Pfjgg0D+d+6ZRGYFJEI+ZswYAA455BDOOeccAIYNGwbAUUcdZXNIs9Gff/4J+AtvhHwsUY4El/oKnZEjRwLwzTff2MckGlyQypUrR/2faSQKJou4Fi9ebK+1cj2Rgv8TJ060H0dGynJHzWSmIqwR0dyk/U2bNrVRvuuuuw7wz4nly5cD2Pzidu3a2e+tVq0aAOXKlUtZexNNjgH5XXL/PSM/rl+/PuXLl4/7Oj/++KM9dnr16gX4syyFPdfiSflAtGLFivZjSX7NRn/88QcAX3zxhX1sr732AvxBVv369Z20K5nkd2rXrl3MAFIO+jp16lChQgUAvv7669Q2MOQKqPmbUaZMmcKCBQsAePXVVwF/ACqOPvpoIFhckk0iFxcURb9+/QB/kdMBBxyQyCaFgixKMcbYhUY9evRw2KLw6NSpExBMsxpj+Ne//mU/huhpWXks8qZXPpaFO+lG0jQib1QinXDCCalsTsrJVHzuv23btm3tgFLUr18/z0H3gAED7E2IHE8jRoywrxdZB72wdGpeKaWUUko5kfKIqCxYAez0WjaKXIgj5A61e/fuqW5OSvXt29fu9ywlqyT5e8KECZQtWxYIppGkXA0EkdNM76N4Iu9kq1SpAsBBBx3ksklJE1nKTPYBjzRo0CAgWIjw2WefZc3UvEybSgSrZcuWdtGfLOabMGGCff7tt98OBGVrVqxYkVERUYlwyZSqMcZG7bJ51k1cf/31fPjhh0D8adh4n8s5J4tQZAo7nUycODHu41988YU9T9577z0gOl1F3ocz7doqaSfyd5ap9DfffDPmuT/88AMrVqwAgn6UNChjTMyxM2bMGMaOHRv1+vL+He/1c9OIqFJKKaWUcsJp+SYpTp5Ni5XkTiwy4rP33nsDcO211zppU6qVK1fO7iIlOVwSBT3kkENYuHAhEJRSiSQlWqTgfzaQIsqRpBTPiSeemOrmJJWUplqwYAFnn302kP8CkmbNmgHBeZUNcud4rVmzxn5Nypnddttt9rE77rgj6vmZJvcOfdWqVYtaaJKt+vfvD8Dbb79t//YSBYtXiLxr1672Yyn9la7++ecffvnll6jHFi1aBEDr1q3ZuXNn1NdkYST4Cx8hmG3JlJlb+b3kWJByTJEbFci5NHHiRLtBRO7rTby84dwfAzRo0KDQbdOIqFJKKaWUciLlEVEZlQMsW7Ys1T/eOSkQLFE/CMpgZOO2lfXq1Yt57KeffgKw5TQAqlevDgTbXGaLDRs28Pzzz8c83rFjRwetST7Zlm/OnDl228r87LvvvkBQBiwbLVmyJO7juc+VRo0aAdHX4Ezwf//3f1Gf9+jRg6ZNmzpqjTtSnkdmUCS65XkeLVq0AODzzz930rZU++KLL2wutSjsRiBSYlJyq08//fSM2NJT8n0vvPBCIMj9bNCgQdzKCbnzQCPPKckfle/r16+fzQmV9QtFkfKBaHGW9meSyDqqQuokKt8TTzwR85iU6zn11FNT3Rynxo0bFzPQaNy4Meeff76jFiXXu+++az+uXbt2ns+TxPgpU6YA/lR0ly5dADjjjDMAuPLKK5PTSMdk2lTqhOY16IpcGApw6623AtEl9NKZnBeSliFvnNn4HrNu3To7hSzlvSKnSku68026kZq58Zx++uk27UcWJkGwCFACQ3J8Sc3vdCdBMJmSz29a3RjDyy+/DART7JHpGrKjnQw+zzzzzBK1TafmlVJKKaWUE04XK2UTuQuJTIoGP7G+ffv2eX6fLOSSfXPfffddGjdunJxGhsDHH38ct+Bwtt3Ri+nTp9tIj/xft27djCq/E+nf//63/Vj+5hK9kAVaQEy6guy0Bdhi5pkaEb3nnnuAIPIbLyI6b948G12W40Y2isgUEgmVtIz8FmMtW7bMLo6V0lbNmzcHgh3L0tkpp5xii4vHK8ski9fkvJk7d25a7xJUkL333tv+frJAS3ZyrFSpEnvuuWfM98j1RSKiYsSIEdx8883JbG7SjR071i5aXLt2LZD/zkpt27a1JbzilUCLly5WEhoRVUoppZRSTmhENEW+/fZbIHZRRcuWLW35JrFr1y5bkFn2TxZt27aNWsSTKaRo/fDhw9m+fXvM12X7U4mCSJmabJA70nP//fc7aknySV5o+/btbZ7Xs88+m+fzJYJap04dW7BdirtnuvwW5EybNo2tW7cCmVu2qTCmTp0K+NsKy0I46Y/p06cD/sJRyZ9LN1J6Z/HixXHz/HJ/LFHTt956K2NnDMBfZyDvofEWxBZFvPejdCHH9R133MH69euBYK95ye/s2rUrDz30EOCX+gJ/IZNsqRxvzUaiOR2IynT14sWLS3ywpKt4Sb7jx4+PGYCKf/75J9lNSqkZM2YAwTSsnCy5SY1VmU6TOqxVqlSxtUWzhawUz0RywzFhwgQ7hSp/68jafzJgleMB/B27INh1af78+UCwx3Q22LBhAwBDhw61j0kfZdNCPxmgSWrT1q1b7a5sstBPjq9MqLhwxRVX2PdTWax13333Af5CJhl0y+BswIABGT0QhZIPQNOZ1ACVNIO1a9famxEZc0ReI2T3o8iBq6Q7yXnTr1+/pLVXp+aVUkoppZQTTkNJMlUi/2ey/fbbDwgiPrt27QL8CKdMH0kUVD6PZ/PmzXaHiKLsXBBWMtWeVyQ0N4mgymKdxx9/3NZ7yySyYGvWrFn2sfPOOw/If6ehTHTJJZcU6fkSOZXFOtkUEZXaoZElv2S2QaIdkTvoZKKHHnrI1n1ctWqVfVxKfsmilUwgOySNGTMmz+dUqVLFXl8jp+glahxvlyWV3mSKXVIxjDE2OnrQQQcBQWpKZLkzma6fMWMGTz75ZNRraURUKaWUUkplnJRHRPfff39bUDkbIqEidwFdiexdd911RXqdRo0aZUQkVEiUb+bMmUB0+Z7CeOeddzIyIirFx1euXGkfk/IbuRe3qfjy2nEoE8kMy4cffgj4ZVjkOhu573wmadmyJRDkPUrOW7wZpfHjx9tr74033ggEpWqkvE8mk91u5P/169fbnZg0IuqT2blMMHz4cCA4xq+44gpbgqqwOx/J96ZiXYpGRJVSSimllBMpj4g2bNjQbmkpq/yyyaWXXgoEEdHCkiiYbOuXKaTosOStlClTJmp1NPh5K5dddlnc7y/OvrZhJlG8NWvWANHFhmW/aBVfJuwHXVySByrbehpjMrrMV6RevXoBQZHteOWq9t57b/s8iXyVLVsWgNatW6eimQkl+b6S01cQiXpK3xhjMmpmLRGkhFFuHTp0SHFLEkf+3tddd12R3yvle0uVSn680sliJTnxZSC6atUqjjvuOBdNSbmOHTsC8MorrwDw9ddf5/v8Ro0aAXD33XcDQQ2wTFOrVi0Abr/9dgYOHBj1tQYNGnDxxRe7aFbKScmhX375BfAvBpm8k1YiyTEiZWuyxZIlS5g8eTIQvHmcfvrp3HTTTS6blTIS2MjPZZddxp9//gkEfSTpLyeeeGLS2pYsste3/E4FlWLq378/EOyqc/3112fcTXxJTJ8+nUmTJkU91qlTJyB4b0on+++/PxAEMiQNoyBSsumVV16xv3dkmadk0al5pZRSSinlhJOI6IUXXghgywMMGjSI008/HQimakuXLu2iaUknxchl95cNGzbYhUwLFy4E/L3EZVpNpl4yeV9glT+Joqv81a1bFwgWBK5evdplc1ImXlmVM844w5aKyxYSGY236CRydxyZVWrXrl1qGpYEEs0cMWIE4O+yldeio/79+/Pwww8Dwe+e6SW8IIgCSmkrmYmNTEn47LPPAP9YkJQweY++/PLLgfTcmSwyBaMoZJHT+vXr7Zgj3l7ziaYRUaWUUkop5YSTiOhJJ50EQPXq1QG/aLfczc2dOzfqa5lKFh8ddNBBdo9sFd/EiRNtPpfkviiVF4kCSLRj/fr1GZkPJxtgvPLKKzYX7N577wWCnPJsIptAjBo1yi48kUhoo0aNePXVVwHYZ599gGCBZDqS66Esem3QoIF9D5VjQYqZ16tXz275KNu9HnvssalsrhOS2/joo48CRJX5kxJeslbjjz/+sF+TNQrxtt9OF1dccQUAH330EQBDhgyxe8c3bdoUCCLGH374oc2HlWPHGMPjjz8OQP369ZPeXicD0T333BMIVni2bt3aXhwyfQCq8nfSSSfZ1aw7duwA/JQFuZBm20C0c+fOWVHnMJGkNq3sSvX6669zww03uGxSQkn95SFDhgD+m4YMtLt37+6sXa7Jbms9e/akZ8+ejluTXFJ/WgafY8eOtQPPyMEE+ANSSUNIxcKTsPj8888B+Ouvv4BgIPrWW2/ZxaCiQoUKNsWlqLW9w0h2S5LrwvTp0zn33HMBOPjgg4FgN8MVK1bETOG3a9eu0BUZEkGn5pVSSimllBMmsk5hHPl+MQ0kOstY+yNaUvrjhBNOAIKpNvDv2iDhpTTSoj9SKBlZ+SnvE9ldSBYnnHHGGfaxYtTEC90xItOyTz/9tH1s9uzZQEqmXEPXH4457Q/ZL37AgAF51uVu06aN3Wc8BUJzfFx11VUAjB49OuZrMisr9alvvfXWZJXJC0V/GGNs1DN3xNzzPLuITab077vvvmSlM8XtD42IKqWUUkopJ5zkiCqVH9kBpU2bNo5botLRqaeeCkD79u0BeO2113j77beB9C7ZIyQXUgwdOjQrFp+oWJIjKiWKVEBmDmRh8LJlywC/z2TWTUo0ZbopU6bYRVjTpk0Dgohot27dbDkvV9cRjYgqpZRSSiknNEe0aLQ/oml/RNP+iKV9Ek37I5r2RzTtj2jaH9Eysj80IqqUUkoppZzQgahSSimllHKioKl5pZRSSimlkkIjokoppZRSygkdiCqllFJKKSd0IKqUUkoppZzQgahSSimllHJCB6JKKaWUUsoJHYgqpZRSSikndCCqlFJKKaWcSOlA1BhT2hjTzxiz3BizI+f//saYPVLZjjAxxvQwxiwwxmzO+feVMeZc1+0KA2PMfcYYzxjzjOu2hIH2h15DcjPG/JxzTOT+N9l121zQ62ksY8wBxpjRxph1OefMImNMC9ftCgO9pobj+Ej1xfseoAfQGfgeOBoYDewE+qW4LWGxCr9fluLfGHQGJhpjmnqet8BpyxwyxpwIdAWytg8iaX9Yeg2JdjxQOuLzA4C5wGtumuOcXk8jGGMqATOBGcC5wDrgUGCtw2aFgl5Tw3N8pHogehLwnud57+V8/rMx5l3ghBS3IzQ8z3sn10O9jDE3AM3I0hPEGLMv8ApwDXC/4+Y4p/0RRa8hETzPWxf5uTHmGmAz8LqbFrml19MYdwNrPM/rFPHYcleNCQu9plqhOD5SnSM6AzjVGFMfwBjTADgNeD/F7QilnGnHDkAF4EvX7XHoBeANz/M+dd2QkND+COg1JA/GGIP/xjrW87w/XbfHNb2eAnAhMMsYM8EYs9YYM88Yc2POsZLN9Jrqu5AQHB+pjog+DFQEFhljduf8/Ic8z3suxe0IFWNMI+AroCywFWjred73blvlhjGmK3A40NF1W8JA+yOGXkPy1gqoA4xw3RCX9Hoa5VCgOzAYGAQ0Bp7O+VpW5kXqNTVKKI6PVA9ELwU6AZcD/8X/pYcYY5Z7nvdiitsSJovx+6IS0A4YbYxp6XneQpeNSjVjTD1gAHCy53l/uW6Pa9ofcek1JG9dgdme581z3RDH9HoaKAXM8TyvZ87n3xlj6uLnWWfdQFSvqTFCcXwYz/NS9bMwxqwEHvM8b0jEY72BLp7nHZ6yhoScMWYqsMLzvGtctyWVjDFdgJeA3REPlwY84B+gvOd5Ox00zQntj1h6DYnPGFMNf6FOD8/zhrtuT5hk6/UUwBizAvjY87xrIx7rCDzveV55dy1zQ6+p0cJyfKQ6IlqO6AOAnM+1nmm0UkAZ141wYCIwJ9djL+GvgB0AZNsd7ES0P3LTa0h8XfArB4x33I4wytbrKfgrouvleuwIYIWDtoTBRPSaGikUx0eqB6LvAfcaY5bjT6s1AW4HXk5xO0LDGDMImAysxM99uxxoiV9KIat4nrcJ2BT5mDFmG7AxG6fVtD/i0mtILjkLC64Fxnuet8V1e1zS62mMwcCXxphewAT88+Vm4D6nrXJEr6kxQnF8pHogehN+rb/ngGrAGmA48GCK2xEmNYCxOf//gV9i5GzP8z502iqlwkmvIbFaAnWBKx23Iwz0ehrB87zZxpgL8aN9fYBfcv7XxX0qNMdHSnNElVJKKaWUEtmeV6WUUkoppRzRgahSSimllHJCB6JKKaWUUsoJHYgqpZRSSiknClo1n+4rmRK9X6r2RzTtj2jaH7G0T6Jpf0TT/oim/RFN+yNaRvaHRkSVUkoppZQTOhBVSimllFJO6EBUKaWUUko5oQNRpZRSSinlhA5ElVJKKQXAzz//zCWXXMIll1xCjRo1qFGjBvPnz3fdLOXY0qVLWbp0KYMHD6ZmzZrUrFmTOnXqUKdOHS677LISvbYORJVSSimllBMFlW9SSTZ69GjefPNNACZNmgSA53kYE7/qQ58+fbj22msBqFatGgBlypRJQUuLT34X+b9MmTJ8/fXXABxzzDHO2qWUUsq3cOFCAFq3bs2vv/4K+O9FAOPHj9drdZZZtmwZAMOGDQNgzJgxAPz2228xz92xYwfr1q0DoGrVqkX+WRoRVUoppZRSThi548lDUoqnnnrqqQB8/vnn9rEHHngAgL59+ybyR4W2mOzo0aMBuP/++1m1alX0D8knIhr5tTfeeAOAtm3bFvbHOumPUqX8+53SpUvbx84991wAJk6cmOAmFUlojw9H0q6g/WuvvQbAwIEDmTdvXqG/r0uXLrz00kuFeWoojpGqVavSqVMnAB5//PGENqiIQtEfADt37gTgu+++A2DGjBkAzJw50864/O9//4v5Prn2PPbYYwDUr1+/uE2AEPVHcb3//vsAdqYtss9kfPDss8/SvXv3wrxc2vdHgqVVf+zevRuAF198kTvvvBOALVu2AFClShUAmjVrRtOmTf3G5Bwfo0aN4osvvgDgkEMOye9HxO0PJwPRvAZZkT777DMAWrZsWaIfVZJvjiNh/TF79mwATjzxRPvYEUccAcSfrl6yZAkA8+bNs/0nz/viiy+oWLFiYX6sk/6YNWsWEB3ib926NQBvvfUWAHvuuWe+r/HXX38BcOuttwLBm8hee+3FHnsUO8MktMfHH3/8AUCdOnVo3LgxAJ9++mmhvlem2OrUqQNA+fLlC/tjQz0QXbRoEeAfR+PGjQNg8+bNQHB8FJYxxg7sChiQhuIYqVatGuvXrwewA+6jjz46YY0qglD0B8C9994LwMMPP1ys75frxuzZs+05Vgyh6Y+iGjFiBAA9e/YEYMOGDQBUr16dBx98EPCvrwBXXnllVCAhH6Hrjx07dgBw/vnnA37w5+STTy7pyxZW6PojHhmAduzYEYBx48bZv/1pp50GwODBg4H4N25Dhw7lyiuvBChoLKI7KymllFJKqfAIRUS0ZcuWUdP0kT777LOSREVDezeyadMmAB566CEOP/xwADp06ADAvvvuG/N8CY+fdtppfPvttwBccsklgJ9IXkhO+6NPnz4ADBo0yD4mkc1bbrkl3++96qqrABg7dmzU4+PHj6ddu3ZFaUak0B4fcnc5btw4GymfOXMmAJUrV87z+5YtW2afL7MKLVq0KOyPDXVEtFatWgAxqSwl9c8//+T35VAcI5ER0bPOOguA119/HYAKFSokqGmFEor+AJgyZQoAZ599NoCNap544ok22nnNNdfY599xxx1A7MzCuHHj7LW3GELTH0UxadIkGyGU92OZUv3kk0849NBDi/vSoeuP/v37A8H7z8iRI+37SX4kReHRRx+1KYOFnHmMFLr+yG39+vW2P2TBNARpTzLOSBCNiCqllFJKqfAIRfmmFi1a2OiNREZlQdOpp55qI6KyoKmEeaOhUKlSJcC/2yoMuRNr0qQJc+fOBWDx4sWAHy0txp1a2pg9e7b9nTPd8OHDAWxJL4DDDjsMyD8SKjmSktsFfgI5FCkiGiqStyQRjdWrVxfq+w466CAgiGjs2rUrCa1zRyKBEuGR3K1sc8YZZwCwfPlyIDg/9tlnnyK9zgEHHJDYhoXYtGnTgCBfEoL8fCnPU4JoaKhIzuszzzwDQO3atQEKjIbKdUOOr2XLltlZiDPPPDMZTXXqrLPOsrOskhc6c+ZMjjvuuJS1IRQD0UgyyJSUgb59+/Kf//wHCAapBaQTZJTvv/8ewK5IGzFihJ1KOfDAA521KxVkIDJ79mx++OGHqK/JdIFcLDJFt27dgGC67Mgjj+T5558v8PtkGuWVV16xj+23335JaGHqbN++HYCnnnoKiD7vDz74YAC7krdu3br2a1Jfd86cOYCf/iJvSpFkFWi6Gjp0KACNGjXi6quvLvT3LVmyxD7/iiuuAOCGG25IfAOTTKbfZYCRn1mzZtkFokIGXPXq1Ut428Jm6dKlQFCVxhhjB6ByY9O8eXMnbUuWDz/8EAjqXt5///35Pl9udKWqwn//+1/ATwnKxAHoXXfdBfiLH+WaKelfki6YKjo1r5RSSimlnAhdRDS3vn37Jrq2aOj9+eefNtIjdTZlsVKk3r17A8VKoE4LsrtHvIVMMg0Xb2FXOpJyRLm99dZbdqo5HokaRk7PSiQ0HaNckaTslNQ3jExjeffdd4HoUmcSMZXIx0MPPZTnaxtj7PmTDjzPs4vQOnfuDEC/fv0Af0GOXB9k2nGfffbh77//BoLyaRIhfvjhh+30o5SFS/djJTdJVZEZpVtuuSXmGipli2rUqJHaxjnw9NNPA9G1uz/55BMg8yKhQlKTCktmB+bPnw8EKQv5XUfS0YIFC4BgoTAE19ZUR0KFRkSVUkoppZQToYiISv5jQSQymgkRUrk7l6LCECxU2bRpU9z9XIXkhh177LFJbKE7r776KhDk+GS6JUuWcOONNwJBVE/yIiUKlhcp5i27y+y333426hGZN5mO5Bwp7II+iYIVJoJRtWpVbr755uI3LsWMMbaAvUTyZBFb586due222wB48sknAShbtqwtSyX5gfE0atQoWU12qkePHkD09VVI/0mkPdP179/fvreUKVMG8K8vmRoJFWvXri30cx9++GG+/PLLqMdOOukkICill+5kk5Tc5Q579epF+/btXTTJ0oioUkoppZRyIhQR0c8//zwmyilR0niF7lu2bJl2JZxkH2TZ0lJ+P4lkRYrcT75cuXIAtGrVCvDzQmWf10wgxe2bNGkCwC+//GJzQmX7xkiyQragFZDp5Ndff7UbHMjfXVZ5S9FyCFZxNmvWzEY2ZLW8fF+fPn0yJsoluc+ylWPkRggS1ZJ9siE4xwpj69at9hxMl/JWDRs2jPpcohilSpWiV69eQBD9jLyGxHPkkUcCQe5gpvnoo49iHqtatSqAnX3IdFICbtCgQezcuRPA7h/etWtXZ+1yRWZANm7caEs6yfvx999/H7OxRaZVZFm2bFnU/1J1595776Vs2bLO2gUOBqJ57aAkJZpyk9qhEJR2SrdBKMCECRMAeO6554BgCjavNwuphSf7YLdt2zbZTUw62fmkSpUqdpcY+f/0008v1GtIArmUm0hn27ZtA+Duu++O+VpkPdDcSpcubfd9lulouWhm0pusnBtykyK/8+7du23dYbluzJkzp9ApPgADBgxImwEowI8//pjnosSLL77YTiNK+a6RI0fy888/A9hBiKhUqRKjR48GoEGDBklqsVuyeE92Vtq0aRPr1q0DsOXQ8jvHMoEs1tm2bRutW7cGMv93zo/swBVZxkvqZu6zzz42GCBksWQm2LZtG1OnTo167OWXXwZSvjNbXDo1r5RSSimlnEjZXvO5d0zKi0Q6EhT1DM0+rxKxkFIq0u8nnXQSf/75JxAsTHnttdfo0qUL4Ec2EigU/dG8eXPbD0UlC3AWLVpUrO/PxWl/SDJ95M4u+UXKZSrF8zxb2koi51KmJr9ST4UQ6r3mZfpIosBFIekssnjl4IMPznenqgihOGeK6rfffrORZCnVJAYNGhQ3Cl9IadUfW7duBfwUBFnEJmWtvvrqK6DEiz5D1x+S5iazBRUqVGD69OlA9PVBNgSQXf4SJDT9IQs5ZQcy+bvvscce9v1Y0n7+/vtv2rRpAwRlnCRiWKpUieJ1oeiPTZs22XQmuY4WtCObTOEPGzYMCBa63XvvvSWJoupe80oppZRSKjxSliMamRsamfcJ0fmh6Zj/WRiSHC77Xp9zzjkA3HPPPfYxyQHr27evTaI+8cQTAXj77beBzNgXefz48XbLNMkR/f333wH/7l1+R9ni86effnLQyuTbe++9Ab+IsNx9Ciks3KZNGxsdlwhehw4dbERUvlbCSGgorVy5EgiOkaJu7SvF7o855hibOxtZAD8TSdm3U045hTVr1kR9Ta5BJYiGph2J3PTs2dNuZSn7rcvitkwrgyeF6sWuXbvshgWyVfKee+5pF+dIgfNM2zL6nnvuAYLZENn8o0yZMjFbdsp1FODxxx8HShwJDZVNmzbZnGHZ9CIeec/t06ePXdCVeyOI2rVrJ7z0WcoXKz3wwAMZVQ+0sOSPn99BIOrXr29Pgm+++QYIwuOZ0GcHHXSQnVqXlZ2SktGkSRO7wEAGIrIndKaRG4/FixcX6vmyy9YXX3xh3zwHDBiQlLa5ItPuP/zwA5dccglAzCA9LzLFeOGFFwLBOSML3DKZ3Mz2798f8GvTSnqH1A3Ma0FotpBzRgaiUjEgnerJ5kcqJuRedLNz5047AJVatN98841dxCZ7rGfaQFTkt/pdBuFvv/02Bx98MBBMQWeSrVu3smPHDgAuuOCCmK/LDazs2pZfDe+FCxcmvH2ZM+RXSimllFJpJWkRUZmKl7twmY7PtKl3uauUu9Hctf6KSxYu1atXD4Bzzz03Ia8bNhKtyb3bg4olSffGGFsPUKb309nu3bttZEIWGEh91MKqVKmSjapn+vR7bmvWrLHT7pF1VeUactdddwGZkdZTEj/++GPU5xIF2rp1ayhK2JSUTClLvWFRtmxZu6/4qlWrADjvvPPs1LXsHCTlfWrVqpWS9oaBLNjZvHkzF110EZDwxVuhMHfuXPvx8uXLo762fv16W9oqsq65zEjJLNU777yTtPZpRFQppZRSSjmR9Iio/C/FozMtIip7gsud5pAhQxLyurn3CZcI0fHHH5+Q11fpQxZVLFmyxD5Ws2ZNV81JuC5duthC7MVVoUKFrIuEim+++SYqEgr+5hHyWLZHQsHfQSf3Ih4p57Np06aMiIjKgsXci/r69+8fd3GJRERlNm/evHlAdkVEZQc7gB49ejhsSXJJuSqAL7/8EsAuYDvrrLNsJFR2LnzkkUdsQX+JFMvn8n2JpBFRpZRSSinlhNO95iNXcUp+V7qRaIPsff7333/bbTyLa8uWLbz44otAEAWLzPHIZlLmSaIbhd0aNJ3JVo2yMvrggw/OiK0ZL7vsMqDo+aAnnngiX3/9ddRjq1evtls3Xn/99YlpYMjJKlj5vSNNmTKF6tWrp7pJoSHRzltuuQWA4cOH2/NHSF56ppQ+k9k5qZYgf/927drZtQwycyeVSSAobC/bXWYDKV0VeUxk0pae+ZkzZw7gl1EEPxJ+5JFHAjBp0iTAvyZLhR45dqRCi6xbSaSUDUQjyw7F210pXafspQSP/LGef/55u5dt7969AWjWrFnM3uhSmmjNmjX2gJDw+Oeff24vJuXKlQPg9ttvT+avkTakpqQsznj55ZftNPWtt94K+DcFAwcOBII3JPHuu++mqKWJsX379pgdMJ566imqVq3qqEWJI8d9vF2k8iNTiZE8z4v5W2eqzZs3A/4e8wAff/yx/Zo8lo2DUBlUjB8/nieeeAKIXnwh5P3n0UcfTV3jHJAdtc4880xbgzjejnbnn38+gN2PPhvIwrUPPvgA8Mta1ahRw2WTkqpy5crUr18fCH736667DvAH5VKvXIIDUjYSoFOnTgDcdNNNSWufTs0rpZRSSiknUh4RbdmyZdQuS5C+0/IArVq1AoJk4K+++opvv/0WgLZt2wJQpUqVmCjw66+/DsSPBhlj7ONy13LeeeclofXhJoWF4+08JBHlVq1a2b6SiNjUqVNt8ep03x3j4YcftlGd/fbbD8DuiZytIhcYiOrVq9tyI5lO9seWcjvGGA477DAg2B87U8mMyNixY+1jsiGEpGvIoptIZcqUsSXP5L1IpqQzxb777gsEfSTizSBAsIB4xIgRyW1YGqhdu7a9vmai/fff384GNmrUCIjeMemll16K+R4p/9avXz8guRuDpPe7tFJKKaWUSlspuyWUhUmRC5Qyoci95HCOHDkS8IvA5t4Ca8OGDbzxxhuFfs327dvbvMds3pZP8mpfffVVu72lJORv3boV8PPCJB8uMgFfir+na9RDIr6vvfaajfjK75QpZLtb2QO5OMqWLQvAkUcemdE5XhBEQIcOHQpEz6Z069YNyIwNDuKRBXsyyxQv6hlJolvHHXcc4G/nmYxFFmEiC1xzv5+WLVuWK664AoB99tkH8BcwRZb0UZlPSkKOGTMG8McZuUlh++OOO84u+kxFqUCTu+ZYLvl+MT8y/Z7fwqQUTMkXbRVEwQrsj7Vr19pV85MnTwawU/UATZs29V8op99r1qzJOeecAwS7JyVxFWfK+yPRpAaa7FH/1FNP8dFHHwHxj7UChLY/5Jj48MMP7WrW+fPnA8GUSRIkuj8gnz6RG7bzzz/f/u3khmPTpk12IWC8wZWshj7qqKOA+PsnJ0hojhG52ZUbLpkqGzBggF3MmIJUFCf9UZh94WVHnKuvvpqePXsCflpUkoXm+AiJtOiPRYsWAdHXjyTtHJQW/ZFCcftDp+aVUkoppZQTSYuICol0SIT0gQceiCrllGR6NxJN+yNa6Ppj27ZtADRv3hyABQsW2Gm1FCxESWlENJ5ff/0V8NMxZCGg4x2TQnOMyN7okoIgdf0k+pciTvpDUlVkwdGKFSvslKEs3pO6oCneJSk0x0dIpEV/aETUGY2IKqWUUkqp8Eh6RNQxvRuJpv0RLXT9IXmTEgXce++9mT59OgBNmjQp6csXxHlENIRCd4w4pv0RTfsjWlr0h8wudOjQAfA3oknSYra06I8U0oioUkoppZQKD42IFo32RzTtj2jaH7G0T6Jpf0TT/oim/RFN+yNaRvaHRkSVUkoppZQTOhBVSimllFJOFDQ1r5RSSimlVFJoRFQppZRSSjmhA1GllFJKKeWEDkSVUkoppZQTOhBVSimllFJO6EBUKaWUUko5oQNRpZRSSinlxP8DWAmHs2FmCG0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "n_rows = 4\n", + "n_cols = 10\n", + "plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2))\n", + "for row in range(n_rows):\n", + " for col in range(n_cols):\n", + " index = n_cols * row + col\n", + " plt.subplot(n_rows, n_cols, index + 1)\n", + " plt.imshow(X_train[index], cmap=\"binary\", interpolation=\"nearest\")\n", + " plt.axis('off')\n", + " plt.title(y_train[index])\n", + "plt.subplots_adjust(wspace=0.2, hspace=0.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eyJj0SjoIm29" + }, + "source": [ + "Let's build a simple dense network and find the optimal learning rate. We will need a callback to grow the learning rate at each iteration. It will also record the learning rate and the loss at each iteration:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "6IQS2PSyIm29" + }, + "outputs": [], + "source": [ + "K = tf.keras.backend\n", + "\n", + "class ExponentialLearningRate(tf.keras.callbacks.Callback):\n", + " def __init__(self, factor):\n", + " self.factor = factor\n", + " self.rates = []\n", + " self.losses = []\n", + " def on_batch_end(self, batch, logs):\n", + " self.rates.append(K.get_value(self.model.optimizer.learning_rate))\n", + " self.losses.append(logs[\"loss\"])\n", + " K.set_value(self.model.optimizer.learning_rate, self.model.optimizer.learning_rate * self.factor)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hKjtgYmHIm29" + }, + "outputs": [], + "source": [ + "tf.keras.backend.clear_session()\n", + "np.random.seed(42)\n", + "tf.random.set_seed(42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pXEWAGd-Im2-" + }, + "outputs": [], + "source": [ + "model = tf.keras.Sequential([\n", + " tf.keras.layers.Flatten(input_shape=[28, 28]),\n", + " tf.keras.layers.Dense(300, activation=\"relu\"),\n", + " tf.keras.layers.Dense(100, activation=\"relu\"),\n", + " tf.keras.layers.Dense(10, activation=\"softmax\")\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SXswgANCIm2-" + }, + "source": [ + "We will start with a small learning rate of 1e-3, and grow it by 0.5% at each iteration:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Iur5UedGIm2-" + }, + "outputs": [], + "source": [ + "optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3)\n", + "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=optimizer,\n", + " metrics=[\"accuracy\"])\n", + "expon_lr = ExponentialLearningRate(factor=1.005)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p6gP1pv2Im2-" + }, + "source": [ + "Now let's train the model for just 1 epoch:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wuUfMYR3Im2-", + "outputId": "fb9327f4-cd30-43a0-fd18-32ad97abfc2b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1719/1719 [==============================] - 3s 2ms/step - loss: nan - accuracy: 0.5843 - val_loss: nan - val_accuracy: 0.0958\n" + ] + } + ], + "source": [ + "history = model.fit(X_train, y_train, epochs=1,\n", + " validation_data=(X_valid, y_valid),\n", + " callbacks=[expon_lr])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8p39YblbIm2-" + }, + "source": [ + "We can now plot the loss as a functionof the learning rate:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hvsr02rfIm2_", + "outputId": "0ccc88ea-fd9c-4acf-d938-e22dc8ccd205" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Loss')" + ] + }, + "execution_count": 120, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEOCAYAAACNY7BQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAl1ElEQVR4nO3dd3hUZd7/8fd3UkgCKUAgJKH3XkMvxg4oggXL2teVde3rurqu+zzr+lu3Wh67YtdVURQFFcHVNdKkVxFxg7RQRJAWirT798cMJGcMkGByJpl8Xtc1FzPnnDn5zk3gM/e5z7mPOecQERE5LBDpAkREpHJRMIiIiIeCQUREPBQMIiLioWAQEREPBYOIiHjERrqAnyomKdV1bNOCuBhlXEXatWsXNWvWjHQZUU/t7I/wds7fVEhMwGiWXn3aft68eZudc/VKWlflgyE2tT5vfJhH2wYpkS4lquXl5ZGbmxvpMqKe2tkf4e084vHppCTG8fLPe0WuKJ+Z2eqjrfPta7aZNTKzT81smZktNbNbStgm18y2m9nC0ON/S7PvPfsOln/BIlJt6DJfLz97DAeA3zjn5ptZMjDPzP7tnPsybLupzrmzy7LjPfsVDCLy01ikC6hEfOsxOOc2OOfmh57vBJYB2eWx770KBhH5KTQ1kEdExhjMrCnQDZhVwuq+ZrYIWA/c7pxbWsL7RwGjAOIbtOT2MfN4MDepAiuWwsJC8vLyIl1G1FM7+yO8nXfs3IPba2r7EN+DwcxqAW8DtzrndoStng80cc4VmtlQ4F2gVfg+nHOjgdEANTJbue/3Oq6atIv5/3M6dWrGV+wHqKY0KOoPtbM/wtv5oS+mUbtmPLm51Wfw+Vh8PcfTzOIIhsKrzrlx4eudczucc4Wh5xOBODNLP9Y+M1ISjjzv/v/+Xb4Fi0i1oANJXn6elWTAc8Ay59yDR9mmQWg7zKxXqL4tx9pvvVo16N2szpHX0/M3s3XXPqZ8/R2HDumvW0RKR4PPRfw8lNQfuBxYYmYLQ8t+DzQGcM49BVwA/MrMDgB7gIvdcW4YYQZv/LIv67bt4ZT787j02aJhi4Gt0nnsku6kJsWV/6cRkaihsWcv34LBOTeN44Syc+4x4LET2X92WiIf33YSuffncfCQo3PDVKb+dzNd7v2Iv5/fiSGdMkmuEUuoQyIi4qH/G4pU+Sufi2tUJ4n8+4ZwyEFMwJixYjM3vDqfO99ewp1vL6FFvZrcclprzu6USSCgXwIRkZJEVTBAMPVjQv/n92uRzpy7T2P2qu/5+MtNTFi0jptfX8Bz01ZyRZ8m9GpWh0Z1dJqrSHXnNPzsEXXBEC42JkC/Fun0a5HO3We1Y/zCdTzw0df8ZuwiAPo2r8uNp7SkX4u66kqKVGP6118k6oOhuJiAcV73hozoms1XG3fy6fJNvPL5ai59dhYt69diQMt0ft6/GY3rqhchUp1o8NmrWgXDYYGA0T4rhfZZKVwzoBlvzl3LxCUbeG3WGv41czWDWtfj/O4NOa19fWrExkS6XBHxgQ4YFKmWwVBcQlwMV/RtyhV9m/Ltjr08P20lExat54bX5pOWFMfwLlmMzGlEx+zUSJcqIuKLah8MxWWkJHDX0HbcMbgt0/M38+bctbw+Zy0vfb6adpkpDOuSycCW9WiflUKMzmoSiRo6lOSlYChBTMAY1Loeg1rXY/vu/YxftI635xXwj0nL+QfLqZ0Ux1mdMzm3WzbdG9fWoLVIVNC/48MUDMeRmhR35FDTpp17+XzFFj5etom35hXwr5lryEipwfndGzK4YwM6ZqXq+giRKkgdBi8FQxnUT05geNdshnfNZufe/Uz6YiMTl2zg6Snf8ETeCtKS4ujfMp0hHRtwUut6JCdoKg6RqkId/yIKhhOUnBDHyJxGjMxpxPehSfum5W8mb/kmPli8gfiYALlt6jEypxG5beoRF+PrRLYiIidMwVAO6tSMZ0S3bEZ0y+bgIce81VuZ9MVGJixax0dffkt6rRqc2y2LEd2yaZ+ZojEJkUrmOHN1VjsKhnIWEzB6NatDr2Z1uGtoW/KWf8fYuWt5Yfoqnpm6klb1azEypyEjumVTPznh+DsUEV/o61oRBUMFiosJcHr7DE5vn8GWwh+YtHQjb80r4C8Tv+Lvk5bTv2U653fP5oz2DUiM14V0IlI5KBh8UrdWDS7t3YRLezchf9NOxs1fx/iF67llzEJq1YhlSMcGnNe9Ib2b1dGZTSIRoCO8RRQMEdCyfjJ3DG7L7We0Yfaq7xk3v4CJSzYydl4B2WmJjOiWxfndG9K8Xq1Ilyoi1ZCCIYICAaNP87r0aV6XP53TkY++3Mi4+et4Mm8Fj3+6gkGt63F1/6ac1KqeehEiFUhjz14KhkoiMT7myDUSm3bsZcyctbwyczVXvzCH5uk1ubJfU87v0ZBaNfRXJlIRTMPPR+jk+kqofkoCN5/aiul3nsLDF3clOTGOP05YSt+/fMK9733J6i27Il2iSFTRjXq89PWzEouPDRzpRSxYs5UXpq/i5c9X8cKMlZzatj6/PKkFPZvWiXSZIlFBg89FFAxVRLfGtenWuDZ3n9WOV2eu5tVZaxj51Of0b1mXW09rrYAQkXKjQ0lVTEZKAred0YZpd57CH85qx/KNOxn51Odc+uxM5qz6PtLliVRJGnz2UjBUUYnxMfxiYHOm3uENiMuencXCtdsiXZ5IlaNDSUUUDFVceEB8uWEHIx6fzi9fmcvX3+6MdHkiVYI6DF4KhihxOCCm3HEyvz6tNdPztzD4/6Zw17jFfLfzh0iXJ1Lp6XTVIgqGKFOrRiy3nNaKqXeczJX9mjJ2bgEn35/Hk3kr2Lv/YKTLE5EqQMEQpWrXjOePwzow+deD6NO8Dn+f9BWnP/QZE5ds0BTDImH0b8JLwRDlWtSrxbNX9uRf1/QmKS6W61+dz0VPz2RJwfZIlyZSuehI0hEKhmpiQKt0Prh5APed25EV3xVyzuPTuH3sIr7ftS/SpYlEnPoLXgqGaiQ2JsClvZvw6W9zGTWwOeMXruOMh6bwybJvI12aSMSpw1BEwVANpSTEcdfQdoy/YQDpteK55qW5/HbsIrbtVu9BRBQM1Vr7rBTG39if63NbMG7BOk578DMmLFqvgTipfvQr76FgqOZqxMZwx+C2vHfjALLTErn59QVc+/I8NmzfE+nSRHxluvT5CN+CwcwamdmnZrbMzJaa2S0lbGNm9oiZ5ZvZYjPr7ld91V37rBTGXd+fu4e2Y1r+d5zx4BTGL1wX6bJEfKEOg5efPYYDwG+cc+2APsANZtY+bJshQKvQYxTwpI/1VXsxAePaQc2ZfOsg2jRI5pYxC/n1GwvZuXd/pEsTqXDqLxTxLRiccxucc/NDz3cCy4DssM2GAy+7oJlAmpll+lWjBDWpW5Mxo/pw62mtGL9wHUMfmUr+Vl01LVJdROR+DGbWFOgGzApblQ2sLfa6ILRsQ9j7RxHsUZCRkUFeXl5FlVqtdY2Fu3ol8PTivfxl1iG+3voRg5vFEdCx2ApTWFio32cfhLfz7t272bRpr9o+xPdgMLNawNvArc65HeGrS3jLjw7/OedGA6MBcnJyXG5ubnmXKSG5wEVD9vPzJz/hza/3syVQmwcv7EpqUlykS4tKeXl56Pe54oW3c+KcT8nISCM3t1vkiqpEfD0rycziCIbCq865cSVsUgA0Kva6IbDej9rk6FIS4rihaw3uGdaeKf/9jmGPTePL9eGZLlJ1afDZy8+zkgx4DljmnHvwKJtNAK4InZ3UB9junNtwlG3FR2bGVf2bMWZUX344cJDznpzOe4uU2RI9dIC0iJ89hv7A5cApZrYw9BhqZteZ2XWhbSYC3wD5wDPA9T7WJ6XQo0lt3r9pIJ2yU7np9QX87cOvOHhI37dEoolvYwzOuWkcJ5Rd8JLbG/ypSE5UveQavPqLPvzpvaU89dkKvtq4g4cv7kZqosYdpGrSxf5euvJZTkh8bID7zu3Efed2ZHr+ZkY8Pp38TbqVqFRduvK5iIJBfpJLezfhtWv7sHPvfkY8PoOPv9RMrVL1OA0/eygY5Cfr2bQOE24cQNP0JH7x8lzumbCUPft0QZxULeovFFEwSLnISkvkrev6cVW/prw4YxXnPjGdtd/vjnRZInICFAxSbhLiYrjnnA68cHVP1m3bw/DHpzN75feRLkvkuDT47KVgkHJ3cpv6vHtDf9IS4/jZMzN5YfpK3eNBKj8dSzpCwSAVokW9WrxzQ39y29TnT+99yS1jFmrcQSotfW/xUjBIhUlNjGP05T347ZlteG/xes5/cobGHaTSMnUZjlAwSIUKBIwbTm7J81f2ZO3W3Zz1yFQmfbEx0mWJyDEoGMQXJ7etzwc3DaRpek2u+9c8/vz+lxw4eCjSZYlICRQM4pvGdZN467p+XNm3Cc9OW8llz81ic+EPkS5LBABd+FxEwSC+io8N8KfhHXnwwi4sWLONsx+ZxoI1WyNdllRzOmvOS8EgEXFe94aMu74fcbHGRU/P5LVZa/SPUyJKHYYiCgaJmA5Zqbx34wD6tqjL799Zwp1vL2bvfp3SKhJpCgaJqLSkeJ6/qic3n9KSN+cWMPKpzynYqlNaxV/qq3opGCTiYgLGbWe04Zkrcli1eRfDHp3GZ19/F+mypJrR4HMRBYNUGqe3z2D8jf3JSEngqhdm89C/v9bd4cQXGt7yUjBIpdK8Xi3eub4/53bL5uFP/stVL8xmi05pFR/oyuciCgapdBLjY3hgZBf+dl4nZq38nrMfnca81TqlVSqObtTjpWCQSsnMuLhXY8b9qh9xMQEuevpzRk9ZwSEdWpIKojGGIgoGqdQ6Zqfy3k0DOLVdff4y8SuufnGOrpYWqWAKBqn0UhPjeOqyHvy/ER35/JstDHl4KtPzN0e6LIkiGnz2UjBIlWBmXN6nCeNv6E9qYhyXPTeLf07+ShPxSbnRoaQiCgapUtplpjDhxv5c2KMRj3+6gotGz9QFcfKTqcPgpWCQKicpPpa/X9CZRy7pxvKNOxn68FQmfbEh0mVJlacuw2EKBqmyzumSxQc3D6BZek2u+9d8/vDuEs21JFIOFAxSpTWpW5Ox1/Vj1KDm/GvmGoY+PJX5msZbykiDz14KBqny4mMD/H5oO179RW9+OHCIC56cwV8/XKbeg5SJBp+LKBgkavRvmc6kWwdyUc9GPP3ZNwx7dBqLC7ZFuiypEtRlKE7BIFElOSGOv57XmZd+3oudew9w7hMzeOCj5ew7oNNa5djUYSiiYJCodFLrekz+9SDO7ZbNo//J55zHpvHFuu2RLkukSlAwSNRKTYzj/pFdeO7KHLbs2sfwx6fzj0lfaexBfkSDz14KBol6p7bL4ONfn8S53bJ5Im8Fpz/0mW4EJD+iwecivgWDmT1vZpvM7IujrM81s+1mtjD0+F+/apPol5oU7D28dm1vasTGcOXzs/nt2EV8v2tfpEuTSkAdBi8/ewwvAoOPs81U51zX0ONeH2qSaqZfi3Tev2kAv8ptwTsL1nHKA3m8PnuNpvMW3ainGN+CwTk3Bfjer58ncjQJcTHcObgtH94ykDYZydw1bgnnPTlDg9MiIZVtjKGvmS0ysw/NrEOki5Ho1iojmTGj+vDQRV0o2Lqbcx6bxj0TlrJj7/5IlyY+cxp99jA/G8TMmgLvO+c6lrAuBTjknCs0s6HAw865VkfZzyhgFEBGRkaPMWPGVGDVAlBYWEitWrUiXUaF2bXfMe6/+/jPmgOk1DAuaRNP78wYzOcRyWhv58oivJ1v/GQXvTNjubx9jQhW5a+TTz55nnMup6R1lSYYSth2FZDjnDvmHVlycnLc3Llzy6dAOaq8vDxyc3MjXUaFW1ywjf959wsWFWynX4u6/OGs9rTPSvHt51eXdo608Hbueu9HnNMli3uHH/e/pqhhZkcNhkpzKMnMGljo65mZ9SJY25bIViXVTeeGaYy7vj9/HtGRLzfs4KxHp3LbmwtZt21PpEuTCqah5yKxfv0gM3sdyAXSzawA+CMQB+Ccewq4APiVmR0A9gAXOx34kwiICRiX9WnCsM5ZPPFZPi9MX8X7izdwzYBm/Cq3BSkJcZEuUaRC+RYMzrlLjrP+MeAxn8oROa7UpDjuGtKOK/o25YHJy3kybwVvzFnL9bktuKxPExLiYiJdopQTfQX1qjSHkkQqq+y0RB68qCvv3TiADlkp/PmDZZxyfx5vzlmre05HEb9PNKjMfnIwmJn61VItdGqYyivX9ObVX/QmPbkGd7y9mFMf/Iy35hUoIKo4HbX2KlMwmNnNZnZ+sdfPAXvMbLmZtSn36kQqof4t0xl/Q3+euSKHWjViuX3sIk5/aArj5hdwUFdQSxQoa4/hZuA7ADMbBFwI/AxYCDxQrpWJVGJmxuntM3j/pgE8fXkPEuJiuO3NRZz+4GeMX7hOASFVWlmDIRtYFXo+DBjrnHsTuAfoU35liVQNZsaZHRrwwU0DePLS7sTFBLhlzELO/L8pTFi0XgFRRehvyauswbADqBd6fjrwSej5fiChvIoSqWoCAWNIp0w+vGUgj/+sOwGDm19fwOD/m8L7i9drkr4qQGPPRcoaDB8Bz4TGFloCH4aWdwBWlmdhIlVRIGCc1TmTSbcM4tFLuuGAG19bwJCHp/LugnXs1yB15aTc9ihrMNwATAfSgQucc4dnS+0OvF6ehYlUZYGAMaxLFpNvHcTDF3flkHPc+sZCcv+ZxzNTvmH7bk3UV9lo2u0iZbrAzTm3A7iphOV/LLeKRKJITMAY3jWbYZ2z+HT5Jp7+7Bvum7iMB//9NcO7ZnFZnyZ0zE6NdJkiHmUKBjNrDxx0zi0PvT4duBJYCvzDOaeb6YqUIBAwTm2XwantMli6fjuvfL6adxeuY8yctXRplMblfZpwdufMSJdZbelIkldZDyU9B3QDMLOGwHigDsFDTH8u39JEolOHrFT+dn5nZv3+NO4Z1p7Cvfu5fewi+vz1E95Yvo81W3ZHusRqSYPPRcoaDO2A+aHnI4FZzrmhwOXAMedCEhGv1MQ4rurfjI9vO4nXru1NvxZ1mbxqPyfd/ylXvzCbT5Z9q9NdfaIrn73KOoleDHD47umnAhNDz1cAGeVVlEh1Ymb0a5FOvxbpvDPpP6wMZPP6nLVc89JcstMSubhnIy7q2Yj6KTojvCKpw1CkrD2GLwhOjT2QYDBMCi3PBo55Qx0ROb7aCQFuO6MNM353Ck9e2p1m6TV54N9f0+9v/+H6V+cxPX+zromQClfWHsOdwLvA7cBLzrkloeXnALPLsS6Rai0uJsCQTpkM6ZTJys27eG3WasbOK2Diko00S6/Jz3o15oIeDaldMz7SpUYFRa1XWU9XnWJm9YAU59zWYqueBjRiJlIBmqXX5O6z2vObM9rw4RcbeHXmGu6buIx/frScszplcmnvxvRoUlvTRv9Ear4iZb5Rj3PuoJntMbOOBIN2hXNuVblXJiIeCXExnNutIed2a8hXG3fw2qw1jJu/jncWrKNNRjI5TWszsFU6uW3q6yZCZaSxZ6+yXscQC/wVuBGIJzhe84OZPQrc7ZzT5ZwiPmjbIIV7h3fkzsFteW/ResbMWcuERet5ddYakhNiGdYli5E9GtK1UZp6EqWkdipS1h7DPwielnodMC20bCDBsAgQHHsQEZ/UrBHLxb0ac3Gvxhw4eIgZK7bwzoJ1jJtfwGuz1tCkbhLndMlieNcsWtZPjnS5UkWUNRh+BvzcOTex2LIVZvYd8CwKBpGIiY0JMKh1PQa1rsefhndg0pKNTFi0nsc/zefR/+TTLjOFsztnMrhjA1rUqxXpcisVp+Fnj7IGQyrBaxbCrQDSfnI1IlIuUhLiuLBnIy7s2YhNO/fyweINTFi0nn9OXs4/Jy+nRb2anNmhAWd2aEDnhqk6jIKuYyiurMGwiOBd3G4IW35LaJ2IVDL1kxO4un8zru7fjA3b9/DR0m+ZvHQjT0/5hifyVpCdlshZnTMZ1jmLjtkp1TIkNPjsVdZguAOYGJo873OCZyX1BbKAIeVcm4iUs8zURK7s15Qr+zVl6659fPLVJj5YvJ7np61k9JRvaFI3iaGdMhlcHXsS1eijHs+JXMfQmmCPoS3BphxLcGqMWykakBaRSq52zXgu6NGQC3o0ZNvufUxeupH3F29g9JRveDJvBZmpCZzZoQFndMggp0kd4mPLOlGCVFUnch3DeuDu4svMrAtwfnkVJSL+SkuK56KejbmoZ2O27d7Hx8s2MXnpRl6fvYYXZ6wiKT6G3s3q0L9lOgNapdMmIzmqehM6kuRV5mAQkeiWllTUk9i97wBT/7uZ6fmbmZa/mU8/WAZAeq0a9G9Zl/4t0+nfMp3stMQIV/3T6Q5uRRQMInJUSfGxR85eAli/bQ/T8zczY8UWpuVvZvzC9QA0T68ZCom69G2eTmpSXCTLLjt1GTwUDCJSallpiYzMacTInEY45/jvpkKmhXoU4+YX8MrM1QQMOmWnBg87tUynW+PaJMZX3ik6Dhw8xL6Dh0iqxDX6rVTBYGYTjrNJSjnUIiJViJnROiOZ1hnJ/HxAM/YfPMSitduYlh8MitGh02EDFpzCo1+LuvRrWZeeTeuQnFB5ehS7fgjekbhmDX1PPqy0LbGlFOtX/sRaRKQKi4sJkNO0DjlN63Draa0p/OEAs1duYeHa7cxeuYWXZ67m2WkriQkY7TNT6NwwlW6Na9O7WR2y0hKJCUTmGP+ufQcAqKkewxGlCgbn3NUVXYiIRJdaNWI5pW0Gp7QN3txx7/6DzF+9lRkrtjBv9VYmLAxO+gcQF2N0yk4lMT6GVvWT6dGkNh2yUmhcJ4nYmIo9TXb7nuDcn7US1GM4TC0hIr5IiIuhX8t0+rVMB+DQIcfXm3YyZ+X3rPl+NwvXbqNw7wHemLOWF2esAoKB0TojmS6N0ujaKI2OWak0qZtUqsM+mwt/4Mv1OwCIjw0QHxugZnwssTHG6h0HWbV5F+u37WHcgnVA8L4XEqRgEJGICASMtg1SaNvAO0S5/+Ahlm/cybINO8j/rpCl63bw3sL1vBbqXQBkpyXSOqMWDWsnkZWWSNsGybRpkExmagJmxpjZa/jduCXhP9JrRt6Rp72a1qFdAw2VHmauik8SUqdJO3f675+PdBlRb9u2baSlpUW6jKindi6Zc469+w+xe98B9h44xJ59B9m97yD7Dh7iYLF7YMcEjMS4GAp/OEByjVga1k7EDA654D4Ohv7cs3s3NRITiY8JEBcTICk+Jqou2CuNN6/rN885l1PSOt96DGb2PHA2sMk517GE9QY8DAwleJvQq5xz8/2qT0QqLzMjMT6mxNNeDxw8xO79B4+ExZ59B0mMi6FZes2jnia77cAe0pITKrrsKsu3HoOZDQIKgZePEgxDgZsIBkNv4GHnXO/j7TcnJ8fNnTu3vMuVMHl5eeTm5ka6jKindvaH2hnM7Kg9Bt9mxXLOTQG+P8YmwwmGhnPOzQTSzCzTn+pEROSwyjT4nA2sLfa6ILRsQ/iGZjYKGAWQkZFBXl6eH/VVa4WFhWpnH6id/aF2PrbKFAwljfyUeJzLOTcaGA3BQ0nVvUvoB3W9/aF29ofa+dgq0wTrBUCjYq8bAusjVIuISLVVmYJhAnCFBfUBtjvnfnQYSUREKpafp6u+DuQC6WZWAPwRiANwzj1F8C5wQ4F8gqerahoOEZEI8C0YnHOXHGe9I3jLUBERiaDKdChJREQqAQWDiIh4KBhERMRDwSAiIh4KBhER8VAwiIiIh4JBREQ8FAwiIuKhYBAREQ8Fg4iIeCgYRETEQ8EgIiIeCgYREfFQMIiIiIeCQUREPBQMIiLioWAQEREPBYOIiHgoGERExEPBICIiHgoGERHxUDCIiIiHgkFERDwUDCIi4qFgEBERDwWDiIh4KBhERMRDwSAiIh4KBhER8VAwiIiIh4JBREQ8FAwiIuKhYBAREQ9fg8HMBpvZcjPLN7PflbA+18y2m9nC0ON//axPREQg1q8fZGYxwOPA6UABMMfMJjjnvgzbdKpz7my/6hIRES8/ewy9gHzn3DfOuX3AGGC4jz9fRERKwc9gyAbWFntdEFoWrq+ZLTKzD82sgz+liYjIYb4dSgKshGUu7PV8oIlzrtDMhgLvAq1+tCOzUcAogIyMDPLy8sq3UvmRwsJCtbMP1M7+UDsfm5/BUAA0Kva6IbC++AbOuR3Fnk80syfMLN05tzlsu9HAaICcnByXm5tbYUVLUF5eHmrniqd29ofa+dj8PJQ0B2hlZs3MLB64GJhQfAMza2BmFnreK1TfFh9rFBGp9nzrMTjnDpjZjcBkIAZ43jm31MyuC61/CrgA+JWZHQD2ABc758IPN4mISAXy81ASzrmJwMSwZU8Ve/4Y8JifNYmIiJeufBYREQ8Fg4iIeCgYRETEQ8EgIiIeCgYREfFQMIiIiIeCQUREPBQMIiLioWAQEREPBYOIiHgoGERExEPBICIiHgoGERHxUDCIiIiHgkFERDwUDCIi4qFgEBERDwWDiIh4KBhERMRDwSAiIh4KBhER8VAwiIiIh4JBREQ8FAwiIuKhYBAREQ8Fg4iIeCgYRETEQ8EgIiIeCgYREfFQMIiIiIeCQUREPBQMIiLioWAQEREPBYOIiHj4GgxmNtjMlptZvpn9roT1ZmaPhNYvNrPuftYnIiI+BoOZxQCPA0OA9sAlZtY+bLMhQKvQYxTwpF/1iYhIkJ89hl5AvnPuG+fcPmAMMDxsm+HAyy5oJpBmZpk+1igiUu3F+vizsoG1xV4XAL1LsU02sKH4RmY2imCPAqDQzJaXb6lHlQps9+n9pdn2WNscbV1Jy0uzLB3YfJx6yova2R9qZ39U1nZuctQtnHO+PICRwLPFXl8OPBq2zQfAgGKvPwF6+FVjKT7DaL/eX5ptj7XN0daVtLw0y4C5ame1s9o5utv58MPPQ0kFQKNirxsC609gm0h6z8f3l2bbY21ztHUlLS/tMr+onf2hdvZHVWpnACyUIBXOzGKBr4FTgXXAHOBnzrmlxbY5C7gRGErwMNMjzrlevhQox2Rmc51zOZGuI9qpnf2hdj4238YYnHMHzOxGYDIQAzzvnFtqZteF1j8FTCQYCvnAbuBqv+qT4xod6QKqCbWzP9TOx+Bbj0FERKoGXfksIiIeCgYREfFQMIiIiIeCQX4yMxthZs+Y2XgzOyPS9UQrM2tuZs+Z2VuRriXamFlNM3sp9Ht8aaTriTQFQzVnZs+b2SYz+yJs+TEnPCzOOfeuc+5a4Crgogost8oqp3b+xjl3TcVWGj3K2ObnAW+Ffo/P8b3YSkbBIC8Cg4svONqEh2bWyczeD3vUL/bWP4TeJz/2IuXXzlI6L1LKNid4Me3h6XgO+lhjpeTnXElSCTnnpphZ07DFRyY8BDCzMcBw59xfgbPD92FmBvwN+NA5N7+CS66SyqOdpWzK0uYEZ11oCCxEX5jVAFKio01meDQ3AacBFxy+YFFKpUztbGZ1zewpoJuZ3VXRxUWpo7X5OOB8M3uSyE6fUSmoxyAlsRKWHfVKSOfcI8AjFVdO1CprO28BFLw/TYlt7pzbhWZaOEI9BilJZZ/MMFqonf2nNi8FBYOUZA7QysyamVk8cDEwIcI1RSO1s//U5qWgYKjmzOx14HOgjZkVmNk1zrkDBGe5nQwsA94sPguulJ3a2X9q8xOnSfRERMRDPQYREfFQMIiIiIeCQUREPBQMIiLioWAQEREPBYOIiHgoGER+IjO7J3xqZ5GqTNcxSJVgZi8C6c65SjfrqJnVAmqE5jKqlMzMASOdc7rJjxyXegwiRxGaMuG4nHOFkQgFMwuE7i8gUq4UDBIVQje4+cDMdobu2vW6mTUotr6nmX1kZpvNbIeZTTOzvmH7cGZ2g5mNM7NdwF8OHyYys4vNbEVo/++aWXqx93kOJZnZi6Gb69xiZuvMbKuZvWBmScW2qWlmL5tZoZl9a2Z3hd7z4jE+41Wh7YeGft4+oN3xPpuZrQo9HRv6jKuKrRtmZvPMbK+ZrTSz+0obiBK9FAxS5ZlZJjAF+ILgjVhOA2oBE8zs8O94MvAKMDC0zUJgYvH/4EP+CEwEOlF0N7qmBG9Zei5wBtANuO84ZQ0EOoZqOfzeW4qtfwA4KbT8FKBL6D3Hk0DwTnm/JHgHstWl+Gw9Q39eC2Qefm1mZwKvAo8BHYCfAxcAfylFHRLNnHN66FHpHwRv0/j+UdbdC3wStqw2wXsb9DrKewzYAFxWbJkDHg3b7h5gL5BabNndBO8CVnybL8JqXQvEFlv2DPBx6Hktgt/2Ly62viawFXjxGG1wVajGHsdpq6N9tgvCtpsC/E/YshFAIaHxRz2q50M9BokGPYBBocMshWZWSNFduloAmFl9M3vazL42s+3ATqA+0DhsX3NL2P9q59z2Yq/Xh957LF+64EyeJb2nBRAHzD680gVvFFOaM5sOEOwRHFGGzxauB3B3WLu9RjCkGhz7rRLNdAc3iQYB4APg9hLWfRv68yUgA/g1sAr4AfgECD+evquEfewPe+04/mHYY73Hii0rqx+cc+E3qy/tZwsXAP4EjC1h3XcnUJtECQWDRIP5wIUEv9mH/4d82ADgZufcBwBmlkHweHsk5BMMjl7AylA9SQTHJFacwP5K89n2A+FnMM0H2jrn8k/gZ0oUUzBIVZJiZl3Dlm0jOEh8LfCGmf2d4Lfd5gTD4jfOuZ3A18BlZjaL4KGSfxA8zu8751yhmT0P/N3MNhMcD/gDwW/wJ9KLKM1nWwWcamafEex1bCU4NvO+ma0G3iR4mKojwXGZO06gDokSGmOQqmQgsCDscb9zbj3QHzgETAKWEgyLH0IPCJ5xUwuYB4wBnif4n2Wk3A5MJXhbyU+BxQTHN/aewL5K89l+A5xMcOxlAYBzbjJwVmj57NDjd8CaE6hBooiufBapBMysBsFTT//pnHsg0vVI9aZDSSIRYGbdgHYEv6UnA3eG/nwjknWJgIJBJJJuA9pQdArqIOdcQUQrEkGHkkREJIwGn0VExEPBICIiHgoGERHxUDCIiIiHgkFERDwUDCIi4vH/AbWD/DtDgfa6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(expon_lr.rates, expon_lr.losses)\n", + "plt.gca().set_xscale('log')\n", + "plt.hlines(min(expon_lr.losses), min(expon_lr.rates), max(expon_lr.rates))\n", + "plt.axis([min(expon_lr.rates), max(expon_lr.rates), 0, expon_lr.losses[0]])\n", + "plt.grid()\n", + "plt.xlabel(\"Learning rate\")\n", + "plt.ylabel(\"Loss\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ypXpcq1aIm2_" + }, + "source": [ + "The loss starts shooting back up violently when the learning rate goes over 6e-1, so let's try using half of that, at 3e-1:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SOtWguVPIm2_" + }, + "outputs": [], + "source": [ + "tf.keras.backend.clear_session()\n", + "np.random.seed(42)\n", + "tf.random.set_seed(42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "s0kFccrlIm2_" + }, + "outputs": [], + "source": [ + "model = tf.keras.Sequential([\n", + " tf.keras.layers.Flatten(input_shape=[28, 28]),\n", + " tf.keras.layers.Dense(300, activation=\"relu\"),\n", + " tf.keras.layers.Dense(100, activation=\"relu\"),\n", + " tf.keras.layers.Dense(10, activation=\"softmax\")\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bu7rEL8zIm2_" + }, + "outputs": [], + "source": [ + "optimizer = tf.keras.optimizers.SGD(learning_rate=3e-1)\n", + "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=optimizer,\n", + " metrics=[\"accuracy\"])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dfJ4BIN7Im2_", + "outputId": "ffe5ad35-2102-40c8-bcf7-dcfa3abfe243" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "PosixPath('my_mnist_logs/run_001')" + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "run_index = 1 # increment this at every run\n", + "run_logdir = Path() / \"my_mnist_logs\" / \"run_{:03d}\".format(run_index)\n", + "run_logdir" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xKjj9XzdIm2_", + "outputId": "5edb7322-e1f9-4b0c-a3f8-d4712e85977d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.2363 - accuracy: 0.9264 - val_loss: 0.0972 - val_accuracy: 0.9720\n", + "Epoch 2/100\n", + "1719/1719 [==============================] - 2s 997us/step - loss: 0.0948 - accuracy: 0.9702 - val_loss: 0.1035 - val_accuracy: 0.9706\n", + "Epoch 3/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0667 - accuracy: 0.9792 - val_loss: 0.0783 - val_accuracy: 0.9770\n", + "Epoch 4/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0463 - accuracy: 0.9848 - val_loss: 0.0827 - val_accuracy: 0.9766\n", + "Epoch 5/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0359 - accuracy: 0.9881 - val_loss: 0.0698 - val_accuracy: 0.9826\n", + "Epoch 6/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0297 - accuracy: 0.9908 - val_loss: 0.1048 - val_accuracy: 0.9758\n", + "Epoch 7/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0245 - accuracy: 0.9917 - val_loss: 0.0932 - val_accuracy: 0.9794\n", + "Epoch 8/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0239 - accuracy: 0.9922 - val_loss: 0.0816 - val_accuracy: 0.9798\n", + "Epoch 9/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0154 - accuracy: 0.9952 - val_loss: 0.0775 - val_accuracy: 0.9838\n", + "Epoch 10/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0126 - accuracy: 0.9960 - val_loss: 0.0805 - val_accuracy: 0.9812\n", + "Epoch 11/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0111 - accuracy: 0.9964 - val_loss: 0.0962 - val_accuracy: 0.9804\n", + "Epoch 12/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0118 - accuracy: 0.9963 - val_loss: 0.1044 - val_accuracy: 0.9774\n", + "Epoch 13/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0114 - accuracy: 0.9961 - val_loss: 0.1055 - val_accuracy: 0.9802\n", + "Epoch 14/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0150 - accuracy: 0.9948 - val_loss: 0.0993 - val_accuracy: 0.9826\n", + "Epoch 15/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0054 - accuracy: 0.9981 - val_loss: 0.0955 - val_accuracy: 0.9822\n", + "Epoch 16/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0046 - accuracy: 0.9984 - val_loss: 0.0982 - val_accuracy: 0.9822\n", + "Epoch 17/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0055 - accuracy: 0.9983 - val_loss: 0.0908 - val_accuracy: 0.9844\n", + "Epoch 18/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0070 - accuracy: 0.9978 - val_loss: 0.0883 - val_accuracy: 0.9840\n", + "Epoch 19/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0025 - accuracy: 0.9992 - val_loss: 0.0978 - val_accuracy: 0.9838\n", + "Epoch 20/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0058 - accuracy: 0.9983 - val_loss: 0.1011 - val_accuracy: 0.9830\n", + "Epoch 21/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 0.0039 - accuracy: 0.9989 - val_loss: 0.0991 - val_accuracy: 0.9840\n", + "Epoch 22/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 9.2480e-04 - accuracy: 0.9998 - val_loss: 0.0963 - val_accuracy: 0.9840\n", + "Epoch 23/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 1.2642e-04 - accuracy: 1.0000 - val_loss: 0.0970 - val_accuracy: 0.9846\n", + "Epoch 24/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 6.9068e-05 - accuracy: 1.0000 - val_loss: 0.0970 - val_accuracy: 0.9854\n", + "Epoch 25/100\n", + "1719/1719 [==============================] - 2s 1ms/step - loss: 5.1481e-05 - accuracy: 1.0000 - val_loss: 0.0977 - val_accuracy: 0.9850\n" + ] + } + ], + "source": [ + "early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=20)\n", + "checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(\"my_mnist_model\", save_best_only=True)\n", + "tensorboard_cb = tf.keras.callbacks.TensorBoard(run_logdir)\n", + "\n", + "history = model.fit(X_train, y_train, epochs=100,\n", + " validation_data=(X_valid, y_valid),\n", + " callbacks=[checkpoint_cb, early_stopping_cb, tensorboard_cb])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pSPacAogIm3A", + "outputId": "a0fc4def-a259-422b-a0dd-ca771d70a48b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 0s 908us/step - loss: 0.0708 - accuracy: 0.9799\n" + ] + }, + { + "data": { + "text/plain": [ + "[0.07079131156206131, 0.9799000024795532]" + ] + }, + "execution_count": 126, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "top3_models = random_search_tuner.get_best_models(num_models=3)\n", + "best_model = top3_models[0] # rollback to best model\n", + "model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VktDkClyIm3A" + }, + "source": [ + "We got over 98% accuracy. Finally, let's look at the learning curves using TensorBoard:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rgOQVpcdIm3A", + "outputId": "e2befca2-5881-4820-d58a-10c2ca9eaf87" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%tensorboard --logdir=./my_mnist_logs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-4EpMOBBIm3A" + }, + "outputs": [], + "source": [] } - ], - "source": [ - "model = tf.keras.models.load_model(\"my_mnist_model\") # rollback to best model\n", - "model.evaluate(X_test, y_test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We got over 98% accuracy. Finally, let's look at the learning curves using TensorBoard:" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + }, + "nav_menu": { + "height": "264px", + "width": "369px" + }, + "toc": { + "navigate_menu": true, + "number_sections": true, + "sideBar": true, + "threshold": 6, + "toc_cell": false, + "toc_section_display": "block", + "toc_window_display": false + }, + "colab": { + "provenance": [] } - ], - "source": [ - "%tensorboard --logdir=./my_mnist_logs" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.10" - }, - "nav_menu": { - "height": "264px", - "width": "369px" }, - "toc": { - "navigate_menu": true, - "number_sections": true, - "sideBar": true, - "threshold": 6, - "toc_cell": false, - "toc_section_display": "block", - "toc_window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file From 106ebb30f1bdf03b15bc3aa0f1bf02cc558fb8a5 Mon Sep 17 00:00:00 2001 From: AndrewDavidRatnam <130483608+AndrewDavidRatnam@users.noreply.github.com> Date: Wed, 29 May 2024 15:17:10 +0530 Subject: [PATCH 4/5] Added Keras tuner with Random Search From 0b04b0c1a2a9e973c8ca24b3f000a3041db30786 Mon Sep 17 00:00:00 2001 From: AndrewDavidRatnam <130483608+AndrewDavidRatnam@users.noreply.github.com> Date: Wed, 29 May 2024 15:19:32 +0530 Subject: [PATCH 5/5] Keras Tuner implemented in exercise 10 --- 10_neural_nets_with_keras.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/10_neural_nets_with_keras.ipynb b/10_neural_nets_with_keras.ipynb index e8b46681..5a6a15d4 100644 --- a/10_neural_nets_with_keras.ipynb +++ b/10_neural_nets_with_keras.ipynb @@ -3469,7 +3469,7 @@ "id": "S3j8OGCdIm25" }, "source": [ - "**TODO**: update this solution to use Keras Tuner." + "**UPDATED** this solution to use Keras Tuner." ] }, {