forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.cpp
3246 lines (2682 loc) · 131 KB
/
server.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "utils.hpp"
#include "arg.h"
#include "common.h"
#include "log.h"
#include "sampling.h"
#include "json-schema-to-grammar.h"
#include "llama.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
// mime type for sending response
#define MIMETYPE_JSON "application/json; charset=utf-8"
// auto generated files (update with ./deps.sh)
#include "index.html.hpp"
#include "completion.js.hpp"
#include "loading.html.hpp"
#include "deps_daisyui.min.css.hpp"
#include "deps_markdown-it.js.hpp"
#include "deps_tailwindcss.js.hpp"
#include "deps_vue.esm-browser.js.hpp"
#include <atomic>
#include <condition_variable>
#include <cstddef>
#include <cinttypes>
#include <deque>
#include <memory>
#include <mutex>
#include <signal.h>
#include <thread>
#include <unordered_map>
#include <unordered_set>
using json = nlohmann::ordered_json;
enum stop_type {
STOP_TYPE_FULL,
STOP_TYPE_PARTIAL,
};
// state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
enum slot_state {
SLOT_STATE_IDLE,
SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
SLOT_STATE_PROCESSING_PROMPT,
SLOT_STATE_DONE_PROMPT,
SLOT_STATE_GENERATING,
};
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
};
enum server_task_type {
SERVER_TASK_TYPE_INFERENCE,
SERVER_TASK_TYPE_CANCEL,
SERVER_TASK_TYPE_NEXT_RESPONSE,
SERVER_TASK_TYPE_METRICS,
SERVER_TASK_TYPE_SLOT_SAVE,
SERVER_TASK_TYPE_SLOT_RESTORE,
SERVER_TASK_TYPE_SLOT_ERASE,
SERVER_TASK_TYPE_SET_LORA,
};
enum server_task_inf_type {
SERVER_TASK_INF_TYPE_COMPLETION,
SERVER_TASK_INF_TYPE_EMBEDDING,
SERVER_TASK_INF_TYPE_RERANK,
SERVER_TASK_INF_TYPE_INFILL,
};
struct server_task {
int id = -1; // to be filled by server_queue
int id_target = -1; // used by SERVER_TASK_TYPE_CANCEL
llama_tokens prompt_tokens;
server_task_type type;
json data;
server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
// utility function
static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
std::unordered_set<int> ids(tasks.size());
for (size_t i = 0; i < tasks.size(); i++) {
ids.insert(tasks[i].id);
}
return ids;
}
};
struct server_task_result {
int id = -1;
json data;
bool stop;
bool error;
};
struct slot_params {
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
int32_t n_predict = -1; // new tokens to predict
int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
int64_t t_max_prompt_ms = -1; // TODO: implement
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
std::vector<std::string> antiprompt;
};
struct server_slot {
int id;
int id_task = -1;
// the index relative to completion multi-task request
size_t index = 0;
struct slot_params params;
slot_state state = SLOT_STATE_IDLE;
// used to determine the slot that has been used the longest
int64_t t_last_used = -1;
// generation props
int32_t n_ctx = 0; // context size per slot
int32_t n_past = 0;
int32_t n_decoded = 0;
int32_t n_remaining = -1;
int32_t i_batch = -1;
int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
// n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
int32_t n_prompt_tokens = 0;
int32_t n_prompt_tokens_processed = 0;
// input prompt tokens
llama_tokens prompt_tokens;
size_t last_nl_pos = 0;
std::string generated_text;
llama_tokens cache_tokens;
std::vector<completion_token_output> generated_token_probs;
server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
bool has_next_token = true;
bool has_new_line = false;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
bool stopped_limit = false;
bool oaicompat = false;
std::string oaicompat_model;
std::string stopping_word;
// sampling
json json_schema;
struct common_sampler_params sparams;
struct common_sampler * smpl = nullptr;
llama_token sampled;
// stats
size_t n_sent_text = 0; // number of sent text character
size_t n_sent_token_probs = 0;
int64_t t_start_process_prompt;
int64_t t_start_generation;
double t_prompt_processing; // ms
double t_token_generation; // ms
std::function<void(int)> callback_on_release;
void reset() {
SLT_DBG(*this, "%s", "\n");
n_prompt_tokens = 0;
last_nl_pos = 0;
generated_text = "";
has_new_line = false;
truncated = false;
stopped_eos = false;
stopped_word = false;
stopped_limit = false;
stopping_word = "";
n_past = 0;
n_sent_text = 0;
n_sent_token_probs = 0;
inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
generated_token_probs.clear();
}
bool has_budget(common_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1) {
return true; // limitless
}
n_remaining = -1;
if (params.n_predict != -1) {
n_remaining = params.n_predict - n_decoded;
} else if (global_params.n_predict != -1) {
n_remaining = global_params.n_predict - n_decoded;
}
return n_remaining > 0; // no budget
}
bool is_processing() const {
return state != SLOT_STATE_IDLE;
}
void add_token(const completion_token_output & token) {
if (!is_processing()) {
SLT_WRN(*this, "%s", "slot is not processing\n");
return;
}
generated_token_probs.push_back(token);
}
void release() {
if (is_processing()) {
SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
t_last_used = ggml_time_us();
t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
state = SLOT_STATE_IDLE;
callback_on_release(id);
}
}
json get_formated_timings() const {
return json {
{"prompt_n", n_prompt_tokens_processed},
{"prompt_ms", t_prompt_processing},
{"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
{"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
{"predicted_n", n_decoded},
{"predicted_ms", t_token_generation},
{"predicted_per_token_ms", t_token_generation / n_decoded},
{"predicted_per_second", 1e3 / t_token_generation * n_decoded},
};
}
size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
size_t stop_pos = std::string::npos;
for (const std::string & word : params.antiprompt) {
size_t pos;
if (type == STOP_TYPE_FULL) {
const size_t tmp = word.size() + last_token_size;
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
pos = text.find(word, from_pos);
} else {
pos = find_partial_stop_string(word, text);
}
if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
if (type == STOP_TYPE_FULL) {
stopped_word = true;
stopping_word = word;
has_next_token = false;
}
stop_pos = pos;
}
}
return stop_pos;
}
void print_timings() const {
const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
const double t_gen = t_token_generation / n_decoded;
const double n_gen_second = 1e3 / t_token_generation * n_decoded;
SLT_INF(*this,
"\n"
"\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
"\r eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
"\r total time = %10.2f ms / %5d tokens\n",
t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
t_token_generation, n_decoded, t_gen, n_gen_second,
t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
}
};
struct server_metrics {
int64_t t_start = 0;
uint64_t n_prompt_tokens_processed_total = 0;
uint64_t t_prompt_processing_total = 0;
uint64_t n_tokens_predicted_total = 0;
uint64_t t_tokens_generation_total = 0;
uint64_t n_prompt_tokens_processed = 0;
uint64_t t_prompt_processing = 0;
uint64_t n_tokens_predicted = 0;
uint64_t t_tokens_generation = 0;
uint64_t n_decode_total = 0;
uint64_t n_busy_slots_total = 0;
void init() {
t_start = ggml_time_us();
}
void on_prompt_eval(const server_slot & slot) {
n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
t_prompt_processing += slot.t_prompt_processing;
t_prompt_processing_total += slot.t_prompt_processing;
}
void on_prediction(const server_slot & slot) {
n_tokens_predicted_total += slot.n_decoded;
n_tokens_predicted += slot.n_decoded;
t_tokens_generation += slot.t_token_generation;
t_tokens_generation_total += slot.t_token_generation;
}
void on_decoded(const std::vector<server_slot> & slots) {
n_decode_total++;
for (const auto & slot : slots) {
if (slot.is_processing()) {
n_busy_slots_total++;
}
}
}
void reset_bucket() {
n_prompt_tokens_processed = 0;
t_prompt_processing = 0;
n_tokens_predicted = 0;
t_tokens_generation = 0;
}
};
struct server_queue {
int id = 0;
bool running;
// queues
std::deque<server_task> queue_tasks;
std::deque<server_task> queue_tasks_deferred;
std::mutex mutex_tasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(server_task)> callback_new_task;
std::function<void(void)> callback_update_slots;
// Add a new task to the end of the queue
int post(server_task task, bool front = false) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
}
QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
if (front) {
queue_tasks.push_front(std::move(task));
} else {
queue_tasks.push_back(std::move(task));
}
condition_tasks.notify_one();
return task.id;
}
// multi-task version of post()
int post(std::vector<server_task> & tasks, bool front = false) {
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : tasks) {
if (task.id == -1) {
task.id = id++;
}
QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
if (front) {
queue_tasks.push_front(std::move(task));
} else {
queue_tasks.push_back(std::move(task));
}
}
condition_tasks.notify_one();
return 0;
}
// Add a new task, but defer until one slot is available
void defer(server_task task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
QUE_DBG("defer task, id = %d\n", task.id);
queue_tasks_deferred.push_back(std::move(task));
condition_tasks.notify_one();
}
// Get the next id for creating a new task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
int new_id = id++;
return new_id;
}
// Register function to process a new task
void on_new_task(std::function<void(server_task)> callback) {
callback_new_task = std::move(callback);
}
// Register the function to be called when all slots data is ready to be processed
void on_update_slots(std::function<void(void)> callback) {
callback_update_slots = std::move(callback);
}
// Call when the state of one slot is changed, it will move one task from deferred to main queue
void pop_deferred_task() {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (!queue_tasks_deferred.empty()) {
queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
queue_tasks_deferred.pop_front();
}
condition_tasks.notify_one();
}
// end the start_loop routine
void terminate() {
std::unique_lock<std::mutex> lock(mutex_tasks);
running = false;
condition_tasks.notify_all();
}
/**
* Main loop consists of these steps:
* - Wait until a new task arrives
* - Process the task (i.e. maybe copy data into slot)
* - Check if multitask is finished
* - Update all slots
*/
void start_loop() {
running = true;
while (true) {
QUE_DBG("%s", "processing new tasks\n");
while (true) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
lock.unlock();
break;
}
server_task task = queue_tasks.front();
queue_tasks.pop_front();
lock.unlock();
QUE_DBG("processing task, id = %d\n", task.id);
callback_new_task(std::move(task));
}
// all tasks in the current loop is processed, slots data is now ready
QUE_DBG("%s", "update slots\n");
callback_update_slots();
QUE_DBG("%s", "waiting for new tasks\n");
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
if (!running) {
QUE_DBG("%s", "terminate\n");
return;
}
condition_tasks.wait(lock, [&]{
return (!queue_tasks.empty() || !running);
});
}
}
}
}
};
struct server_response {
// for keeping track of all tasks waiting for the result
std::unordered_set<int> waiting_task_ids;
// the main result queue
std::vector<server_task_result> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
// add the id_task to the list of tasks waiting for response
void add_waiting_task_id(int id_task) {
SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(id_task);
}
void add_waiting_tasks(const std::vector<server_task> & tasks) {
std::unique_lock<std::mutex> lock(mutex_results);
for (const auto & task : tasks) {
SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
waiting_task_ids.insert(task.id);
}
}
// when the request is finished, we can remove task associated with it
void remove_waiting_task_id(int id_task) {
SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(id_task);
}
void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
std::unique_lock<std::mutex> lock(mutex_results);
for (const auto & id_task : id_tasks) {
SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
waiting_task_ids.erase(id_task);
}
}
// This function blocks the thread until there is a response for one of the id_tasks
server_task_result recv(const std::unordered_set<int> & id_tasks) {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++) {
if (id_tasks.find(queue_results[i].id) != id_tasks.end()) {
server_task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// single-task version of recv()
server_task_result recv(int id_task) {
std::unordered_set<int> id_tasks = {id_task};
return recv(id_tasks);
}
// Send a new result to a waiting id_task
void send(server_task_result & result) {
SRV_DBG("sending result for task id = %d\n", result.id);
std::unique_lock<std::mutex> lock(mutex_results);
for (const auto & id_task : waiting_task_ids) {
if (result.id == id_task) {
SRV_DBG("task id = %d moved to result queue\n", result.id);
queue_results.push_back(std::move(result));
condition_results.notify_all();
return;
}
}
}
};
struct server_context {
llama_model * model = nullptr;
llama_context * ctx = nullptr;
std::vector<common_lora_adapter_container> loras;
common_params params;
llama_batch batch = {};
bool clean_kv_cache = true;
bool add_bos_token = true;
bool has_eos_token = false;
int32_t n_ctx; // total context for all clients / slots
// slots / clients
std::vector<server_slot> slots;
json default_generation_settings_for_props;
server_queue queue_tasks;
server_response queue_results;
server_metrics metrics;
// Necessary similarity of prompt for slot selection
float slot_prompt_similarity = 0.0f;
~server_context() {
if (ctx) {
llama_free(ctx);
ctx = nullptr;
}
if (model) {
llama_free_model(model);
model = nullptr;
}
// Clear any sampling context
for (server_slot & slot : slots) {
if (slot.smpl != nullptr) {
common_sampler_free(slot.smpl);
}
}
llama_batch_free(batch);
}
bool load_model(const common_params & params_) {
params = params_;
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model;
ctx = llama_init.context;
loras = llama_init.lora_adapters;
if (model == nullptr) {
SRV_ERR("failed to load model, '%s'\n", params.model.c_str());
return false;
}
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_add_bos_token(model);
has_eos_token = !llama_add_eos_token(model);
return true;
}
bool validate_model_chat_template() const {
std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
std::string template_key = "tokenizer.chat_template";
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
if (res >= 0) {
llama_chat_message chat[] = {{"user", "test"}};
std::string tmpl = std::string(model_template.data(), model_template.size());
int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
return chat_res > 0;
}
return false;
}
void init() {
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
SRV_INF("initializing slots, n_slots = %d\n", params.n_parallel);
for (int i = 0; i < params.n_parallel; i++) {
server_slot slot;
slot.id = i;
slot.n_ctx = n_ctx_slot;
slot.n_predict = params.n_predict;
SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
slot.sparams = params.sparams;
slot.callback_on_release = [this](int) {
queue_tasks.pop_deferred_task();
};
slot.reset();
slots.push_back(slot);
}
default_generation_settings_for_props = get_formated_generation(slots.front());
default_generation_settings_for_props["seed"] = -1;
// the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
{
const int32_t n_batch = llama_n_batch(ctx);
// only a single seq_id per token is needed
batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1);
}
metrics.init();
}
server_slot * get_slot_by_id(int id) {
for (server_slot & slot : slots) {
if (slot.id == id) {
return &slot;
}
}
return nullptr;
}
server_slot * get_available_slot(const server_task & task) {
server_slot * ret = nullptr;
// find the slot that has at least n% prompt similarity
if (ret == nullptr && slot_prompt_similarity != 0.0f) {
int lcs_len = 0;
float similarity = 0;
for (server_slot & slot : slots) {
// skip the slot if it is not available
if (slot.is_processing()) {
continue;
}
// skip the slot if it does not contains cached tokens
if (slot.cache_tokens.empty()) {
continue;
}
// length of the Longest Common Subsequence between the current slot's prompt and the input prompt
int cur_lcs_len = longest_common_subsequence(slot.cache_tokens, task.prompt_tokens);
// fraction of the common subsequence length compared to the current slot's prompt length
float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
// select the current slot if the criteria match
if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
lcs_len = cur_lcs_len;
similarity = cur_similarity;
ret = &slot;
}
}
if (ret != nullptr) {
SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
}
}
// find the slot that has been least recently used
if (ret == nullptr) {
int64_t t_last = ggml_time_us();
for (server_slot & slot : slots) {
// skip the slot if it is not available
if (slot.is_processing()) {
continue;
}
// select the current slot if the criteria match
if (slot.t_last_used < t_last) {
t_last = slot.t_last_used;
ret = &slot;
}
}
if (ret != nullptr) {
SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
}
}
return ret;
}
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
slot_params default_params;
// Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
auto default_sparams = params.sparams;
const auto & data = task.data;
if (data.count("__oaicompat") != 0) {
slot.oaicompat = true;
slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
} else {
slot.oaicompat = false;
slot.oaicompat_model = "";
}
slot.params.stream = json_value(data, "stream", false);
slot.params.cache_prompt = json_value(data, "cache_prompt", false);
slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", default_params.n_predict));
slot.params.n_indent = json_value(data, "n_indent", default_params.n_indent);
slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot.sparams.xtc_probability = json_value(data, "xtc_probability", default_sparams.xtc_probability);
slot.sparams.xtc_threshold = json_value(data, "xtc_threshold", default_sparams.xtc_threshold);
slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot.sparams.dry_multiplier = json_value(data, "dry_multiplier", default_sparams.dry_multiplier);
slot.sparams.dry_base = json_value(data, "dry_base", default_sparams.dry_base);
slot.sparams.dry_allowed_length = json_value(data, "dry_allowed_length", default_sparams.dry_allowed_length);
slot.sparams.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", default_sparams.dry_penalty_last_n);
slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot.params.n_keep = json_value(data, "n_keep", default_params.n_keep);
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
//slot.params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", default_params.t_max_prompt_ms); // TODO: implement
slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms", default_params.t_max_predict_ms);
if (slot.sparams.dry_base < 1.0f)
{
slot.sparams.dry_base = default_sparams.dry_base;
}
// sequence breakers for DRY
{
// Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
// Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
if (data.contains("dry_sequence_breakers")) {
slot.sparams.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
if (slot.sparams.dry_sequence_breakers.empty()) {
send_error(task, "Error: dry_sequence_breakers must be a non-empty array of strings", ERROR_TYPE_INVALID_REQUEST);
return false;
}
}
}
// process "json_schema" and "grammar"
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
return false;
}
if (data.contains("json_schema") && !data.contains("grammar")) {
try {
auto schema = json_value(data, "json_schema", json::object());
slot.sparams.grammar = json_schema_to_grammar(schema);
} catch (const std::exception & e) {
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
return false;
}
} else {
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
}
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
// Might be better to reject the request with a 400 ?
slot.params.n_predict = slot.n_predict;
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
}
{
slot.sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false) && has_eos_token) {
slot.sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
}
const auto & logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array()) {
const int n_vocab = llama_n_vocab(model);
for (const auto & el : *logit_bias) {
// TODO: we may want to throw errors here, in case "el" is incorrect
if (el.is_array() && el.size() == 2) {
float bias;
if (el[1].is_number()) {
bias = el[1].get<float>();
} else if (el[1].is_boolean() && !el[1].get<bool>()) {
bias = -INFINITY;
} else {
continue;
}
if (el[0].is_number_integer()) {
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab) {
slot.sparams.logit_bias.push_back({tok, bias});
}
} else if (el[0].is_string()) {
auto toks = common_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks) {
slot.sparams.logit_bias.push_back({tok, bias});
}
}
}
}
}
}
{
slot.params.antiprompt.clear();
const auto & stop = data.find("stop");
if (stop != data.end() && stop->is_array()) {
for (const auto & word : *stop) {
if (!word.empty()) {
slot.params.antiprompt.push_back(word);
}
}
}
}
{
const auto & samplers = data.find("samplers");
if (samplers != data.end() && samplers->is_array()) {
std::vector<std::string> sampler_names;
for (const auto & name : *samplers) {
if (name.is_string()) {
sampler_names.emplace_back(name);
}
}
slot.sparams.samplers = common_sampler_types_from_names(sampler_names, false);
} else {
slot.sparams.samplers = default_sparams.samplers;
}
}
{
if (slot.smpl != nullptr) {
common_sampler_free(slot.smpl);
}
slot.smpl = common_sampler_init(model, slot.sparams);
if (slot.smpl == nullptr) {
// for now, the only error that may happen here is invalid grammar
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
return false;
}
}
slot.state = SLOT_STATE_STARTED;
SLT_INF(slot, "%s", "processing task\n");
return true;
}
void kv_cache_clear() {
SRV_DBG("%s", "clearing KV cache\n");
// clear the entire KV cache
llama_kv_cache_clear(ctx);
clean_kv_cache = false;
}
bool process_token(completion_token_output & result, server_slot & slot) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = common_token_to_piece(ctx, result.tok, params.special);
slot.sampled = result.tok;
// search stop word and delete it
slot.generated_text += token_str;
slot.has_next_token = true;
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
if ((c & 0xC0) == 0x80) {
// continuation byte: 10xxxxxx
continue;
}
if ((c & 0xE0) == 0xC0) {
// 2-byte character: 110xxxxx ...
incomplete = i < 2;
} else if ((c & 0xF0) == 0xE0) {
// 3-byte character: 1110xxxx ...
incomplete = i < 3;
} else if ((c & 0xF8) == 0xF0) {
// 4-byte character: 11110xxx ...
incomplete = i < 4;
}
// else 1-byte character or invalid byte
break;
}
if (!incomplete) {
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
const std::string str_test = slot.generated_text.substr(pos);
bool send_text = true;