성균관대학교 2023 2학기 학부 졸업 논문 프로젝트(2023 bachelor graduation thesis)
소속: 소프트웨어학과 (Computer Science and Engineering)
학번: 2018310737
이름: 안현준(Hyunjun Ahn)
python = 3.7.13
torch = 1.10.1
torchvision = 0.11.2
numpy = 1.21.6
matplotlib = 3.5.2
sklearn = 1.0.2
PIL = 9.1.1
├── metrics
│ ├── distance_celebA.ipynb (Example code to measure ICD(Inter Class Distance) of dataset with custom dataset class)
│ ├── distance.ipynb (Example code to measure ICD(Inter Class Distance) of dataset with ImageFolder)
│ ├── distance_distribution.ipynb (Example code to plot the distribution of ICD(Inter Class Distance) with ImageFolder)
│ ├── distance_distribution.ipynb (Example code to plot the distribution of ICD(Inter Class Distance) with custom dataset class)
│ └── utility.py (To measure utility performance of the trained model (i.e. Accuracy, Precision, Recall, F1-Score))
└── models
├── solver (differential dropout modules)
│ ├── solver.py (Initial version to implement differential dropout)
│ ├── solver_v2.py (Version without epoch-based score term)
│ └── solver_v3.py (Final version of differential dropout module)
├── train_cifar10.ipynb (Example code to train a model with ImageFolder)
├── train_celebA.ipynb (Example code to train a model with custom dataset class)
├── ResNet.py (ResNet backbone implementation)
├── ViT.py (ViT backbone implementation)
└── EfficientNet.py (EfficientNet backbone implementation)