-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriver.py
254 lines (209 loc) · 9.61 KB
/
driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
###dependency###
import numpy as np
import pandas as pd
from multiprocessing import Pool
import time
###local file###
import ioconfig
from ioconfig import setParams,simParams,LRG,ELG,QSO,LXE,LXQ,EXQ,pathIn,binParams
import hodmodel
import emcee
import paircounts as pc
import counts2clustering as c2c
import analyticalRandom as ar
import loglike
def MCMC_hod(steps):
BEfilename='test.h5'
backend=emcee.backends.HDFBackend(BEfilename)
backend.reset(nparams_all*2,nparams_all)
with Pool() as pool: #parallel mcmc
initial = init_all
ndim = len(initial)
nwalkers = nparams_all*2
p0 = [initial+width_all*np.random.randn(ndim) for i in range(nwalkers)]
sampler = emcee.EnsembleSampler(nwalkers,ndim,loglike.loglike,
args=(pairCounts,triCounts,setParams,tabParams,binParams,simParams,LRG,ELG,QSO,LXE,LXQ,EXQ,label_l,label_e,label_q,min_all,max_all,obs,obscov)
,pool=pool,backend=backend)
state=sampler.run_mcmc(p0,steps,progress=True)
if __name__=='__main__':
nmassbins=binParams['tab']['nmassbins']
tabParams=np.empty((nmassbins,3))
obs=np.empty((0))
if(setParams['useWp']):
wp_obs=np.loadtxt(pathIn['wpdata'],usecols=(1))
rppibins=np.empty((2),dtype=int)
obs=np.append(obs,wp_obs)
if(setParams['useXil']):
xil_obs=np.loadtxt(pathIn['xildata'])
smubins=np.empty((2),dtype=int)
obs=np.append(obs,xil_obs)
if(setParams['useWp3']):
wp3_obs=np.loadtxt(pathIn['wp3data'])
obs=np.append(obs,wp3_obs)
if(setParams['useXi3']):
xi3_obs=np.loadtxt(pathIn['xi3data'])
obs=np.append(obs,xi3_obs)
obscov=np.loadtxt(pathIn['cov'])
tabParams[:,0]=np.loadtxt(pathIn['tab']+'massBinMean.dat')
tabParams[:,1]=np.loadtxt(pathIn['tab']+'numHaloBin.dat')
tabParams[:,2]=np.loadtxt(pathIn['tab']+'numPartBin.dat')
pairCounts={}
triCounts={}
if(setParams['useWp']):
rppibins=np.array([binParams['rppi']['nrpbins'],binParams['rppi']['npibins']])
npoints=rppibins[0]*rppibins[1]
pairCounts['HH_rppi']=c2c.read_XX(pathIn['rppi'],'HH',npoints,nmassbins)
pairCounts['HP_rppi']=c2c.read_XY(pathIn['rppi'],'HP',npoints,nmassbins)
pairCounts['PP_rppi']=c2c.read_XX(pathIn['rppi'],'PP',npoints,nmassbins)
print('read rppi HH HP PP finished')
if(setParams['useXil']):
smubins=np.array([binParams['smu']['nsbins'],binParams['smu']['nmubins']])
npoints=smubins[0]*smubins[1]
pairCounts['HH_smu']=c2c.read_XX(pathIn['smu'],'HH',npoints,nmassbins)
pairCounts['HH_smu']=c2c.read_XY(pathIn['smu'],'HP',npoints,nmassbins)
pairCounts['HH_smu']=c2c.read_XX(pathIn['smu'],'PP',npoints,nmassbins)
print('read smu HH HP PP finished')
if(setParams['useWp3']):
triXYbins=binParams['triXY']['nsbins']
triCounts['HHH_triXY']=c2c.read_XXX(pathIn['triXY'],'HHH',triXYbins,20)
triCounts['HPP_triXY']=c2c.read_XYY(pathIn['triXY'],'HPP',triXYbins,20)
triCounts['PHH_triXY']=c2c.read_XYY(pathIn['triXY'],'PHH',triXYbins,20)
triCounts['PPP_triXY']=c2c.read_XXX(pathIn['triXY'],'PPP',triXYbins,20)
print('read triXY HHH HPP PHH PPP finished')
if(setParams['useXi3']):
tri3Dbins=binParams['triXY']['nsbins']
triCounts['HHH_tri']=c2c.read_XXX(pathIn['tri3D'],'HHH',tri3Dbins,20)
triCounts['HPP_tri']=c2c.read_XYY(pathIn['tri3D'],'HPP',tri3Dbins,20)
triCounts['PHH_tri']=c2c.read_XYY(pathIn['tri3D'],'PHH',tri3Dbins,20)
triCounts['PPP_tri']=c2c.read_XXX(pathIn['tri3D'],'HHH',tri3Dbins,20)
print('read tri3D HHH HPP PHH PPP finished')
npoints_all=0
n2pt_all=0
n2pt_l=0;n2pt_e=0;n2pt_q=0;
n2pt_lxe=0;n2pt_lxq=0;n2pt_exq=0;
n3pt_all=0
n3pt_l=0;n3pt_e=0;n3pt_q=0;
nparams_all=0
init_all=np.empty((0))
min_all=np.empty((0))
max_all=np.empty((0))
width_all=np.empty((0))
label_l=np.empty((0),dtype=str)
label_e=np.empty((0),dtype=str)
label_q=np.empty((0),dtype=str)
if(setParams['useLRG']):
if(setParams['useWp']):
n2pt_l=LRG['wpidx']['max']-LRG['wpidx']['min']
print('using LRG wp')
elif(setParams['useXil']):
n2pt_l=LRG['xi0idx']['max']-LRG['xi0idx']['min']+LRG['xi2idx']['max']-LRG['xi2idx']['min']
print('using LRG xil')
if(setParams['useWp3']):
n3pt_l=LRG['wp3idx']['max']-LRG['wp3idx']['min']
print('using LRG wp3')
elif(setParams['useXi3']):
n3pt_l=LRG['xi3idx']['max']-LRG['xi3idx']['min']
print('using LRG xi3')
n2pt_all+=n2pt_l
n3pt_all+=n3pt_l
if(LRG['model']['cent']==1):
if(setParams['useELG'] or setParams['useQSO']):
label_l=np.append(label_l,['logMcut','sigma','pmax'])
else:
label_l=np.append(label_l,['logMcut','sigma'])
if(LRG['model']['sate']==1):
label_l=np.append(label_l,['logM1','alpha','kappa'])
nparams_l=len(label_l)
df_l=pd.DataFrame.from_dict(LRG['params'])
init_all=np.append(init_all,df_l.loc['init',label_l].to_numpy())
min_all=np.append(min_all,df_l.loc['min',label_l].to_numpy())
max_all=np.append(max_all,df_l.loc['max',label_l].to_numpy())
width_all=np.append(width_all,df_l.loc['width',label_l].to_numpy())
nparams_all+=nparams_l
print('num of 2pcf points = ',n2pt_l,', num of 3pcf points = ',n3pt_l)
print('LRG HOD model, num of params =',nparams_l)
if(setParams['useELG']):
if(setParams['useWp']):
n2pt_e=ELG['wpidx']['max']-ELG['wpidx']['min']
print('using ELG wp')
elif(setParams['useXil']):
n2pt_e=ELG['xi0idx']['max']-ELG['xi0idx']['min']+ELG['xi2idx']['max']-ELG['xi2idx']['min']
print('using ELG xil')
if(setParams['useWp3']):
n3pt_e=ELG['wp3idx']['max']-ELG['wp3idx']['min']
print('using ELG wp3')
elif(setParams['useXi3']):
n3pt_e=ELG['xi3idx']['max']-ELG['xi3idx']['min']
print('using ELG xi3')
n2pt_all+=n2pt_e
n3pt_all+=n3pt_e
if(ELG['model']['cent']==1):
label_e=np.append(label_e,['logMcut','sigma','pmax'])
if(ELG['model']['sate']==1):
label_e=np.append(label_e,['logM1','alpha','kappa'])
elif(ELG['model']['cent']==2):
label_e=np.append(label_e,['logMcut','sigma','pmax','gamma','Q'])
if(ELG['model']['sate']==1):
label_e=np.append(label_e,['logM1','alpha'])
nparams_e=len(label_e)
df_e=pd.DataFrame.from_dict(ELG['params'])
init_all=np.append(init_all,df_e.loc['init',label_e].to_numpy())
min_all=np.append(min_all,df_e.loc['min',label_e].to_numpy())
max_all=np.append(max_all,df_e.loc['max',label_e].to_numpy())
width_all=np.append(width_all,df_e.loc['width',label_e].to_numpy())
nparams_all+=nparams_e
print('num of 2pcf points = ',n2pt_e,', num of 3pcf points = ',n3pt_e)
print('ELG HOD model, num of params =',nparams_e)
if(setParams['useQSO']):
if(setParams['useWp']):
n2pt_q=QSO['wpidx']['max']-QSO['wpidx']['min']
print('using QSO wp')
elif(setParams['useXil']):
n2pt_q=QSO['xi0idx']['max']-QSO['xi0idx']['min']+QSO['xi2idx']['max']-QSO['xi2idx']['min']
print('using QSO xil')
if(setParams['useWp3']):
n3pt_q=QSO['wp3idx']['max']-QSO['wp3idx']['min']
print('using QSO wp3')
elif(setParams['useXi3']):
n3pt_q=QSO['xi3idx']['max']-QSO['xi3idx']['min']
print('using QSO xi3')
n2pt_all+=n2pt_q
n3pt_all+=n3pt_q
if(QSO['model']['cent']==1):
label_q=np.append(label_q,['logMcut','sigma','pmax'])
if(QSO['model']['sate']==1):
label_q=np.append(label_q,['logM1','alpha','kappa'])
elif(QSO['model']['sate']==2):
label_q=np.append(label_q,['logM1','alpha','logMmin'])
nparams_q=len(label_q)
df_q=pd.DataFrame.from_dict(QSO['params'])
init_all=np.append(init_all,df_q.loc['init',label_q].to_numpy())
min_all=np.append(min_all,df_q.loc['min',label_q].to_numpy())
max_all=np.append(max_all,df_q.loc['max',label_q].to_numpy())
width_all=np.append(width_all,df_q.loc['width',label_q].to_numpy())
nparams_all+=nparams_q
print('num of 2pcf points = ',n2pt_q,', num of 3pcf points = ',n3pt_q)
print('QSO HOD model, num of params =',nparams_q)
if(setParams['useLXE']):
n2pt_lxe=LXE['wpidx']['max']-LXE['wpidx']['min']
n2pt_all+=n2pt_lxe
print('using LXE wp, num of points =',n2pt_lxe)
if(setParams['useLXQ']):
n2pt_lxq=LXQ['wpidx']['max']-LXQ['wpidx']['min']
n2pt_all+=n2pt_lxq
print('using LXQ wp, num of points =',n2pt_lxq)
if(setParams['useEXQ']):
n2pt_exq=EXQ['wpidx']['max']-EXQ['wpidx']['min']
n2pt_all+=n2pt_exq
print('using EXQ wp, num of points =',n2pt_exq)
npoints_all=n2pt_all+n3pt_all
if(npoints_all==len(obs)):
print('total points =',npoints_all,', 2pcf points = ',n2pt_all,', 3pcf points = ',n3pt_all)
else:
print('points from theory and data do not match please check')
st=time.time()
# print(log_probability(init_all))
print(loglike.loglike(init_all,pairCounts,triCounts,setParams,tabParams,binParams,simParams,LRG,ELG,QSO,LXE,LXQ,EXQ,label_l,label_e,label_q,min_all,max_all,obs,obscov))
end=time.time()
print(end-st)
MCMC_hod(20000)