-
Notifications
You must be signed in to change notification settings - Fork 0
/
app-outpaint.py
700 lines (560 loc) · 26.5 KB
/
app-outpaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
import gradio as gr
import torch
import devicetorch
import os
import webbrowser #for open_outputs_folder. webbrowser seemed most likely to work cross platform
import numpy as np
import gc
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from huggingface_hub import hf_hub_download
from gradio_imageslider import ImageSlider
# from gradio import SelectData
from collections import deque
from datetime import datetime
from pathlib import Path
from PIL import Image, ImageDraw
DEVICE = devicetorch.get(torch)
MAX_GALLERY_IMAGES = 20
OUTPUT_DIR = "outputs"
pipe = None
gallery_images = deque(maxlen=MAX_GALLERY_IMAGES)
selected_image_index = None
def init(progress=gr.Progress()):
global pipe
if pipe is None:
progress(0.1, desc="Starting model initialization")
progress(0.2, desc="Loading ControlNet configuration")
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
progress(0.3, desc="Downloading ControlNet model")
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
progress(0.4, desc="Loading ControlNet model")
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device=DEVICE, dtype=torch.float16)
progress(0.6, desc="Loading VAE")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to(DEVICE)
progress(0.8, desc="Loading main pipeline")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to(DEVICE)
progress(0.9, desc="Setting up scheduler")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
progress(1.0, desc="Model loading complete")
return "Model loaded successfully."
else:
# If the model is already loaded, return None instead of a message
return None
def cleanup_tensors():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def fill_image(image, width, height, overlap_percentage, resize_percentage, num_inference_steps, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom, num_images, auto_save, paste_back, guidance_scale):
global gallery_images
if image is None:
return (None, None), gr.update(), "Error: No input image provided. Please upload an image first."
try:
init()
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
except Exception as e:
return (None, None), gr.update(), f"Error preparing image: {str(e)}"
try:
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
final_prompt = f"{prompt_input} , high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, DEVICE, True)
for n in range(num_images):
yield (background, cnet_image), gr.update(), f"Generating image {n+1} of {num_images}..."
try:
for intermediate_image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
guidance_scale=guidance_scale,
image=cnet_image,
num_inference_steps=num_inference_steps
):
yield (background, intermediate_image), gr.update(), f"Generating image {n+1} of {num_images}..."
if paste_back:
final_image = intermediate_image.convert("RGBA")
result_image = background.copy()
result_image.paste(final_image, (0, 0), mask)
else:
result_image = intermediate_image.convert("RGBA")
filename = f"outp_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.png"
gallery_images.appendleft((result_image, filename))
if auto_save:
save_output(result_image, True, filename)
while len(gallery_images) > MAX_GALLERY_IMAGES:
gallery_images.pop()
yield (background, result_image), gr.update(value=list(gallery_images)), f"Completed image {n+1} of {num_images}"
except Exception as e:
yield (background, None), gr.update(), f"Error generating image {n+1}: {str(e)}"
cleanup_tensors()
yield (background, result_image), gr.update(value=list(gallery_images)), "All images generated successfully!"
except Exception as e:
yield (None, None), gr.update(), f"Error during image generation: {str(e)}"
cleanup_tensors()
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
# Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate new dimensions based on percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
# Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
# Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
# Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
# Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
# Adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
# Create a new background image and paste the resized source image
background_color = (37, 44, 61)
background = Image.new('RGB', target_size, background_color)
background.paste(source, (margin_x, margin_y))
# Create the mask
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# Calculate overlap areas
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x
elif alignment == "Right":
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y
elif alignment == "Bottom":
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
# Draw the mask
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0)
return background, mask
def update_preview_mask(image, width, height, overlap_percentage, resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
if image is None:
return gr.update(value=None), f"No image loaded. Please upload an image first."
try:
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
preview = background.copy().convert('RGBA')
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64))
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
red_mask.paste(red_overlay, (0, 0), mask)
preview = Image.alpha_composite(preview, red_mask)
return gr.update(value=preview, visible=True), "Preview mask updated."
except Exception as e:
return gr.update(visible=False), f"Error updating preview: {str(e)}"
def preload_presets(target_ratio, ui_width, ui_height, resize_percentage):
if target_ratio == "Portrait":
changed_width, changed_height = 832, 1216
ratio_info = "Portrait: result = 832x1216"
elif target_ratio == "Landscape":
changed_width, changed_height = 1216, 832
ratio_info = "Landscape: result = 1216x832"
elif target_ratio == "Square":
changed_width, changed_height = 1024, 1024
ratio_info = "Square: result = 1024x1024"
# elif target_ratio == "4:3":
# changed_width, changed_height = 1024, 768
# ratio_info = "4:3 aspect ratio: result image = 1024x768"
elif target_ratio == "Custom":
changed_width, changed_height = ui_width, ui_height
ratio_info = "Custom aspect ratio: Use sliders to set result image dimensions."
open_advanced = (target_ratio == "Custom")
# resize_info = f"Input image will be resized to {resize_percentage}% "
return changed_width, changed_height, gr.update(open=open_advanced), f"{ratio_info}\n"
def select_the_right_preset(user_width, user_height):
if user_width == 832 and user_height == 1216:
return "Portrait"
elif user_width == 1216 and user_height == 832:
return "Landscape"
elif user_width == 1024 and user_height == 1024:
return "Square"
else:
return "Custom"
def save_output(latest_result, auto_save, filename):
try:
os.makedirs(OUTPUT_DIR, exist_ok=True)
full_path = os.path.join(OUTPUT_DIR, filename)
if auto_save:
if isinstance(latest_result, np.ndarray):
latest_result = Image.fromarray(latest_result.astype('uint8'))
latest_result.save(full_path)
print(f"Image auto-saved as: {full_path}")
return full_path, filename, f"Image auto-saved as: {full_path}"
else:
print(f"Auto-save disabled, assigned filename: {filename}")
return None, filename
except Exception as e:
print(f"Error handling image path/save: {e}")
return None, None
def update_selected_image(evt: gr.SelectData, gallery_state):
global selected_image_index
selected_image_index = evt.index
if evt.index < len(gallery_state):
_, filename = gallery_state[evt.index]
return f"Selected image: {filename}"
return "Invalid selection"
def save_selected_image(gallery_state):
global selected_image_index
if selected_image_index is None or gallery_state is None:
return "Please select an image first"
try:
selected_image, filename = gallery_state[selected_image_index]
print(f"Selected image index: {selected_image_index}")
print(f"Filename: {filename}")
full_path = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(full_path):
print(f"File already exists: {full_path}")
return f"Image already saved as: {filename}"
if isinstance(selected_image, Image.Image):
selected_image.save(full_path)
elif isinstance(selected_image, np.ndarray):
Image.fromarray(selected_image.astype('uint8')).save(full_path)
elif isinstance(selected_image, str) and os.path.isfile(selected_image):
import shutil
shutil.copy(selected_image, full_path)
else:
return f"Unsupported image type: {type(selected_image)}"
print(f"Image saved as: {filename}")
return f"Image saved as: {filename}"
except Exception as e:
print(f"Error details: {str(e)}")
return f"Error saving image: {str(e)}"
# sends current output image to input
def use_output_as_input(output_image):
if output_image is None or output_image[1] is None:
return gr.update(), "No output image available", "No image selected"
try:
# We know output_image is a tuple, and we want the second element
image = output_image[1]
return gr.update(value=image), "Output image set as input", "Output image set as input"
except Exception as e:
return gr.update(), f"Error setting input: {str(e)}", f"Error: {str(e)}"
# sends selected gallery image to input
def send_selected_to_input(gallery_state):
global selected_image_index
if selected_image_index is None or gallery_state is None:
return gr.update(), "Please select an image first", "No image selected"
try:
selected_image, filename = gallery_state[selected_image_index]
return gr.update(value=selected_image), f"Image {filename} set as input", f"Selected image: {filename}"
except Exception as e:
return gr.update(), f"Error setting input: {str(e)}", f"Error: {str(e)}"
def open_outputs_folder():
try:
Path(OUTPUT_DIR).mkdir(exist_ok=True)
folder_uri = Path(OUTPUT_DIR).absolute().as_uri()
webbrowser.open(folder_uri)
return "Opened outputs folder (folder can be shy and hide behind active windows)."
except Exception as e:
return f"Error opening outputs folder: {str(e)}"
def clear_gallery():
global gallery_images
gallery_images.clear()
return gr.update(value=None), f"Gallery images cleared."
def clear_input_and_result():
return gr.update(value=None), gr.update(value=None), "Input and result cleared."
def unload_all(progress=gr.Progress()):
global pipe, vae, controlnet_model
progress(0.1, desc="Starting complete unload process")
try:
# Unload pipeline
if pipe is not None:
for component in ['unet', 'vae', 'controlnet', 'text_encoder', 'text_encoder_2']:
if hasattr(pipe, component):
delattr(pipe, component)
del pipe
pipe = None
# Unload standalone components
if 'vae' in globals() and vae is not None:
del vae
vae = None
if 'controlnet_model' in globals() and controlnet_model is not None:
del controlnet_model
controlnet_model = None
# Clear any remaining CUDA cache
cleanup_tensors()
progress(1.0, desc="Unload complete")
return "Unloaded models from VRAM. These will be reloaded as required."
except Exception as e:
progress(1.0, desc="Unload failed")
return f"Error during unload process: {str(e)}"
def handle_image_upload(image):
if image is None:
return (
"No image uploaded.",
gr.update(interactive=False),
gr.update(visible=False),
# gr.update(),
# gr.update(),
gr.update(value=None, placeholder="No image uploaded")
)
width, height = image.size
info_text = f"""
Original image size: {width}x{height}
Select a Preset or click Custom and set your own.
To help visualize settings - check out Preview Mask in Masking Options below.
"""
# Reset preview image and update placeholder
preview_update = gr.update(value=None, placeholder="Click Update Preview Mask")
return (
info_text,
gr.update(interactive=True),
gr.update(visible=False),
preview_update
)
def update_resize_controls(target_ratio, width, height, resize_percentage):
is_custom = (target_ratio == "Custom")
width, height, advanced_visible, info = preload_presets(target_ratio, width, height, resize_percentage)
return (
gr.update(visible=is_custom), # manual_resize_options
gr.update(value=width), # width_slider
gr.update(value=height), # height_slider
info # console_info
)
title = """<style>.banner-outpaint{background:linear-gradient(to bottom,#162828,#101c1c);color:#fff;padding:0.75rem;border-radius:0.5rem;border:1px solid rgba(255,255,255,0.1);box-shadow:0 4px 6px rgba(0,0,0,0.1);margin-bottom:0.75rem;text-align:center}.banner-outpaint h1{font-size:1.75rem;margin:0 0 0.25rem 0;font-weight:300;color:#ff6b35 !important}.banner-outpaint p{color:#b0c4c4;font-size:1rem;margin:0 0 0.75rem 0}.banner-outpaint .footer{display:flex;justify-content:space-between;align-items:center;flex-wrap:wrap;font-size:0.875rem;color:#a0a0a0}.banner-outpaint .powered-by{display:flex;align-items:center;gap:0.25rem}.banner-outpaint .credits{display:flex;flex-direction:column;align-items:flex-end;gap:0.25rem}.banner-outpaint a{color:#4a9eff;text-decoration:none;transition:color 0.2s ease}.banner-outpaint a:hover{color:#6db3ff}@media (max-width:768px){.banner-outpaint .footer{flex-direction:column;gap:0.5rem;align-items:center}.banner-outpaint .credits{align-items:center}}</style><div class="banner-outpaint"><h1>Diffusers Image Outpaint</h1><p>Extend your images using AI</p><div class="footer"><div class="powered-by"><span>⚡ Powered by</span><a href="https://pinokio.computer/" target="_blank">Pinokio</a></div><div class="credits"><div>Code and inspiration borrowed from</div><div><a href="https://huggingface.co/OzzyGT" target="_blank">OzzyGT</a> & <a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpaint" target="_blank">fffiloni</a></div></div></div></div>"""
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
input_image = gr.Image(type="pil", label="Input Image")
result = ImageSlider(interactive=False, label="Generated Image")
with gr.Row():
prompt_input = gr.Textbox(label="Prompt (Optional)", scale=3)
num_images = gr.Slider(value=1, label="Number of Images", minimum=1, maximum=10, step=1, scale=1)
auto_save = gr.Checkbox(label="Auto-save", value=True, scale=1)
paste_back = gr.Checkbox(True, label="Paste back original image", scale=1)
run_button = gr.Button("Generate", variant="primary", scale=2)
with gr.Column(scale=1):
with gr.Row():
use_as_input_btn = gr.Button("Use as Input Image", size="sm")
clear_input_button = gr.Button("Clear", size="sm")
# unload_all_btn = gr.Button("Unload all Models", variant="stop", size = "sm")
with gr.Row():
with gr.Column(scale=1):
target_ratio = gr.Radio(
label="Select a Preset",
choices=["Landscape", "Portrait", "Square", "Custom"],
value="Landscape",
scale=1
)
resize_percentage = gr.Slider(
label="Reduce Input Image (relative to output)",
minimum=20,
maximum=100,
step=10,
value=100,
interactive=True,
scale=1
)
with gr.Column(scale=1, visible=False) as manual_resize_options:
width_slider = gr.Slider(
label="Result Width",
minimum=512,
maximum=2048,
step=8,
value=1280,
)
height_slider = gr.Slider(
label="Result Height",
minimum=512,
maximum=2048,
step=8,
value=720,
)
with gr.Column(scale=1):
with gr.Row():
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
guidance_scale = gr.Slider(value=1.5, label="Guidance Scale", minimum=1.5, maximum=8, step=0.5)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Alignment",
)
with gr.Column(scale=1):
console_info = gr.Textbox(label="Console", lines=4, max_lines=10)
unload_all_btn = gr.Button("Unload all Models", variant="stop", size = "sm", visible = False)
with gr.Accordion("Masking Options - Click to Open or Close", open=False):
with gr.Row():
with gr.Column(scale=1):
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
minimum=1,
maximum=50,
value=5,
step=1
)
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
with gr.Column(scale=1):
update_preview_btn = gr.Button("Update Preview Mask")
preview_image = gr.Image(label="Preview Mask", show_download_button=False)
gallery = gr.Gallery(
label=f"Image Gallery (most recent {MAX_GALLERY_IMAGES} images)",
show_label=True,
elem_id="gallery",
columns=5,
height="auto",
object_fit="contain",
allow_preview=True,
preview=False,
show_download_button=False,
)
with gr.Row():
clear_gallery_btn = gr.Button("Clear Gallery", size="sm", variant="stop", scale=1)
open_folder_button = gr.Button("Open Outputs Folder", scale=2)
gallery_status = gr.Textbox(label="Gallery Status", scale=2, interactive=False)
save_selected_btn = gr.Button("Save Selected", scale=2)
send_selected_to_input_btn = gr.Button("Send Selected to Input", scale=1)
# event handlers
run_button.click(
fn=lambda: "Preparing Image Generation...",
inputs=None,
outputs=console_info,
).then(
fn=init,
inputs=None,
outputs=console_info
).then(
fn=fill_image,
inputs=[
input_image, width_slider, height_slider, overlap_percentage,
resize_percentage, num_inference_steps, prompt_input,
alignment_dropdown, overlap_left, overlap_right, overlap_top,
overlap_bottom, num_images, auto_save, paste_back, guidance_scale,
],
outputs=[result, gallery, console_info]
)
target_ratio.change(
fn=update_resize_controls,
inputs=[target_ratio, width_slider, height_slider, resize_percentage],
outputs=[manual_resize_options, width_slider, height_slider, console_info],
queue=False
)
resize_percentage.change(
fn=lambda ratio, w, h, r: preload_presets(ratio, w, h, r)[3], # Only update the info
inputs=[target_ratio, width_slider, height_slider, resize_percentage],
outputs=[console_info],
queue=False
)
width_slider.change(
#fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=target_ratio,
queue=False
)
height_slider.change(
#fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=target_ratio,
queue=False
)
save_selected_btn.click(
fn=save_selected_image,
inputs=gallery,
outputs=gallery_status
)
clear_input_button.click(
fn=clear_input_and_result,
inputs=None,
outputs=[input_image, result, console_info]
)
gallery.select(
fn=update_selected_image,
inputs=gallery,
outputs=gallery_status
)
clear_gallery_btn.click(
fn=clear_gallery,
outputs=[gallery, gallery_status]
)
open_folder_button.click(
fn=open_outputs_folder,
inputs=None,
outputs=gallery_status
)
unload_all_btn.click(
fn=unload_all,
outputs=console_info
)
input_image.upload(
fn=handle_image_upload,
inputs=[input_image],
outputs=[console_info, target_ratio, manual_resize_options, preview_image]
)
update_preview_btn.click(
fn=update_preview_mask,
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_percentage, alignment_dropdown, overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=[preview_image, console_info]
)
use_as_input_btn.click(
fn=use_output_as_input,
inputs=result,
outputs=[input_image, console_info]
)
send_selected_to_input_btn.click(
fn=send_selected_to_input,
inputs=gallery,
outputs=[input_image, console_info, gallery_status]
)
demo.launch(share=False)