-
Notifications
You must be signed in to change notification settings - Fork 0
/
app-zoom.py
485 lines (417 loc) · 17.5 KB
/
app-zoom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import gradio as gr
import torch
import devicetorch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
import cv2
import tempfile
import os
DEVICE = devicetorch.get(torch)
# Load models and configurations
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device=DEVICE, dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to(DEVICE)
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to(DEVICE)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
def can_expand(source_width, source_height, target_width, target_height, alignment):
"""Checks if the image can be expanded based on the alignment."""
if alignment in ("Left", "Right") and source_width >= target_width:
return False
if alignment in ("Top", "Bottom") and source_height >= target_height:
return False
return True
def infer(image, width=1024, height=1024, overlap_width=18, num_inference_steps=8, resize_option="custom", custom_resize_size=768, prompt_input=None, alignment="Middle"):
source = image
target_size = (width, height)
overlap = overlap_width
# Upscale if source is smaller than target in both dimensions
if source.width < target_size[0] and source.height < target_size[1]:
scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
new_width = int(source.width * scale_factor)
new_height = int(source.height * scale_factor)
source = source.resize((new_width, new_height), Image.LANCZOS)
if source.width > target_size[0] or source.height > target_size[1]:
scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
new_width = int(source.width * scale_factor)
new_height = int(source.height * scale_factor)
source = source.resize((new_width, new_height), Image.LANCZOS)
if resize_option == "Full":
resize_size = max(source.width, source.height)
elif resize_option == "1/2":
resize_size = max(source.width, source.height) // 2
elif resize_option == "1/3":
resize_size = max(source.width, source.height) // 3
elif resize_option == "1/4":
resize_size = max(source.width, source.height) // 4
else: # Custom
resize_size = custom_resize_size
aspect_ratio = source.height / source.width
new_width = resize_size
new_height = int(resize_size * aspect_ratio)
source = source.resize((new_width, new_height), Image.LANCZOS)
if not can_expand(source.width, source.height, target_size[0], target_size[1], alignment):
alignment = "Middle"
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - source.width) // 2
margin_y = (target_size[1] - source.height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - source.height) // 2
elif alignment == "Right":
margin_x = target_size[0] - source.width
margin_y = (target_size[1] - source.height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - source.width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - source.width) // 2
margin_y = target_size[1] - source.height
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# Adjust mask generation based on alignment
if alignment == "Middle":
mask_draw.rectangle([
(margin_x + overlap, margin_y + overlap),
(margin_x + source.width - overlap, margin_y + source.height - overlap)
], fill=0)
elif alignment == "Left":
mask_draw.rectangle([
(margin_x, margin_y),
(margin_x + source.width - overlap, margin_y + source.height)
], fill=0)
elif alignment == "Right":
mask_draw.rectangle([
(margin_x + overlap, margin_y),
(margin_x + source.width, margin_y + source.height)
], fill=0)
elif alignment == "Top":
mask_draw.rectangle([
(margin_x, margin_y),
(margin_x + source.width, margin_y + source.height - overlap)
], fill=0)
elif alignment == "Bottom":
mask_draw.rectangle([
(margin_x, margin_y + overlap),
(margin_x + source.width, margin_y + source.height)
], fill=0)
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
final_prompt = f"{prompt_input} , high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, DEVICE, True)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
num_inference_steps=num_inference_steps
):
yield cnet_image, image
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), mask)
yield background, cnet_image
def create_zoom_animation(previous_frame, next_frame, steps):
# List to store all frames
interpolated_frames = []
for i in range(steps):
t = i / (steps - 1) # Normalized time between 0 and 1
# Compute zoom factor (from 1 to 2)
z = 1 + t # Zoom factor increases from 1 to 2
if i < steps - 1:
# Compute crop size
crop_size = int(1024 / z)
# Compute crop coordinates to center the crop
x0 = (1024 - crop_size) // 2
y0 = (1024 - crop_size) // 2
x1 = x0 + crop_size
y1 = y0 + crop_size
# Crop the previous_frame
cropped_prev = previous_frame.crop((x0, y0, x1, y1))
# Resize to 512x512
resized_frame = cropped_prev.resize((512, 512), Image.LANCZOS)
interpolated_frames.append(resized_frame)
else:
# For the last frame, use the next_frame resized to 512x512
resized_frame = next_frame.resize((512, 512), Image.LANCZOS)
return interpolated_frames
def create_video_from_images(image_list, fps=24):
if not image_list:
return None
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video_file:
video_path = temp_video_file.name
frame = np.array(image_list[0])
height, width, layers = frame.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
for image in image_list:
video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
video.release()
return video_path
def loop_outpainting(image, width=1024, height=1024, overlap_width=6, num_inference_steps=8,
resize_option="custom", custom_resize_size=512, prompt_input=None,
alignment="Middle", num_iterations=6, fps=24, num_interpolation_frames=18,
progress=gr.Progress()):
current_image = image
if(current_image.width != 1024 or current_image.height != 1024):
for first_result in infer(current_image, 1024, 1024, overlap_width, num_inference_steps,
resize_option, 1024, prompt_input, alignment):
pass
current_image = first_result[1]
image_list = [current_image]
for _ in progress.tqdm(range(num_iterations), desc="Generating frames"):
# Generate new image
for step_result in infer(current_image, width, height, overlap_width, num_inference_steps,
resize_option, custom_resize_size, prompt_input, alignment):
pass # Process all steps
new_image = step_result[1] # Get the final image from the last step
image_list.append(new_image)
# Use new image as input for next iteration
current_image = new_image
# Reverse the image list to create a zoom-in effect
reverse_image_list = image_list[::-1]
# Create interpolated frames
final_frame_list = []
for i in range(len(reverse_image_list) - 1):
larger_frame = reverse_image_list[i]
smaller_frame = reverse_image_list[i + 1]
interpolated_frames = create_zoom_animation(larger_frame, smaller_frame, num_interpolation_frames)
if i == 0:
# Include all frames for the first sequence
final_frame_list.extend(interpolated_frames)
else:
# Exclude the first frame to avoid duplication
final_frame_list.extend(interpolated_frames[1:])
# Create video from the final frame list
video_path = create_video_from_images(final_frame_list, fps)
return video_path
#loop_outpainting.zerogpu = True
def clear_result():
"""Clears the result ImageSlider."""
return gr.update(value=None)
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update(open=False)
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update(open=False)
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return changed_width, changed_height, gr.update(open=False)
elif target_ratio == "Custom":
return ui_width, ui_height, gr.update(open=True)
def select_the_right_preset(user_width, user_height):
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
return gr.update(visible=(resize_option == "Custom"))
css = """
.gradio-container {
width: 1200px !important;
}
"""
title = """
<h1 align="center">Outpaint Video Zoom-In</h1>
<p>Ported from: <a href="https://huggingface.co/spaces/multimodalart/outpaint-video-zoom" target="_blank">outpaint-video-zoom</a> <p>
"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="Input Image"
)
prompt_input = gr.Textbox(label="Prompt (Optional)", visible=True)
with gr.Row():
with gr.Column(scale=1):
run_button = gr.Button("Generate", visible=False)
loop_button = gr.Button("Create outpainting video")
with gr.Row():
target_ratio = gr.Radio(
label="Expected Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="1:1",
scale=2,
visible=False
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Alignment",
visible=False
)
with gr.Accordion(label="Advanced settings", open=False, visible=True) as settings_panel:
with gr.Column():
with gr.Row():
width_slider = gr.Slider(
label="Width",
minimum=720,
maximum=1536,
step=8,
value=1024,
)
height_slider = gr.Slider(
label="Height",
minimum=720,
maximum=1536,
step=8,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
overlap_width = gr.Slider(
label="Mask overlap width",
minimum=1,
maximum=50,
value=1,
step=1
)
with gr.Row():
resize_option = gr.Radio(
label="Resize input image",
choices=["Full", "1/2", "1/3", "1/4", "Custom"],
value="Custom"
)
custom_resize_size = gr.Slider(
label="Custom resize size",
minimum=64,
maximum=1024,
step=8,
value=512,
visible=False
)
with gr.Row():
num_iterations = gr.Slider(label="Number of iterations", minimum=2, maximum=24, step=1, value=6)
fps = gr.Slider(label="fps", minimum=1, maximum=24, value=24)
with gr.Row():
num_interpolation_frames = gr.Slider(label="Interpolation frames", minimum=0, maximum=10, step=1, value=18)
with gr.Column():
result = ImageSlider(
interactive=False,
label="Generated Image",
visible=False
)
use_as_input_button = gr.Button("Use as Input Image", visible=False)
video_output = gr.Video(label="Outpainting Video")
gr.Examples(
examples=["hide.png", "disaster.png"],
fn=loop_outpainting,
inputs=input_image,
outputs=video_output,
#cache_examples="lazy",
)
def use_output_as_input(output_image):
"""Sets the generated output as the new input image."""
return gr.update(value=output_image[1])
use_as_input_button.click(
fn=use_output_as_input,
inputs=[result],
outputs=[input_image]
)
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_size],
queue=False
)
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=infer,
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
resize_option, custom_resize_size, prompt_input, alignment_dropdown],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
prompt_input.submit(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=infer,
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
resize_option, custom_resize_size, prompt_input, alignment_dropdown],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
loop_button.click(
fn=loop_outpainting,
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
resize_option, custom_resize_size, prompt_input, alignment_dropdown,
num_iterations, fps, num_interpolation_frames],
outputs=video_output,
)
demo.launch(share=False)