-
Notifications
You must be signed in to change notification settings - Fork 236
/
(CVPR 2020)CBDE.py
238 lines (188 loc) · 7.7 KB
/
(CVPR 2020)CBDE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
import torch.nn as nn
from torch import nn
# 论文:Momentum Contrast for Unsupervised Visual Representation Learning
# 论文地址:https://arxiv.org/pdf/1911.05722
class MoCo(nn.Module):
"""
Build a MoCo model with: a query encoder, a key encoder, and a queue
https://arxiv.org/abs/1911.05722
"""
def __init__(self, base_encoder, dim=256, K=3*256, m=0.999, T=0.07, mlp=False):
"""
dim: feature dimension (default: 128)
K: queue size; number of negative keys (default: 65536)
m: moco momentum of updating key encoder (default: 0.999)
T: softmax temperature (default: 0.07)
"""
super(MoCo, self).__init__()
self.K = K
self.m = m
self.T = T
# create the encoders
# num_classes is the output fc dimension
self.encoder_q = base_encoder()
self.encoder_k = base_encoder()
for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = False # not update by gradient
# create the queue
self.register_buffer("queue", torch.randn(dim, K))
self.queue = nn.functional.normalize(self.queue, dim=0)
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
@torch.no_grad()
def _momentum_update_key_encoder(self):
"""
Momentum update of the key encoder
"""
for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
@torch.no_grad()
def _dequeue_and_enqueue(self, keys):
# gather keys before updating queue
# keys = concat_all_gather(keys)
batch_size = keys.shape[0]
ptr = int(self.queue_ptr)
assert self.K % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.queue[:, ptr:ptr + batch_size] = keys.transpose(0, 1)
ptr = (ptr + batch_size) % self.K # move pointer
self.queue_ptr[0] = ptr
@torch.no_grad()
def _batch_shuffle_ddp(self, x):
"""
Batch shuffle, for making use of BatchNorm.
*** Only support DistributedDataParallel (DDP) model. ***
"""
# gather from all gpus
batch_size_this = x.shape[0]
x_gather = concat_all_gather(x)
batch_size_all = x_gather.shape[0]
num_gpus = batch_size_all // batch_size_this
# random shuffle index
idx_shuffle = torch.randperm(batch_size_all).cuda()
# broadcast to all gpus
torch.distributed.broadcast(idx_shuffle, src=0)
# index for restoring
idx_unshuffle = torch.argsort(idx_shuffle)
# shuffled index for this gpu
gpu_idx = torch.distributed.get_rank()
idx_this = idx_shuffle.view(num_gpus, -1)[gpu_idx]
return x_gather[idx_this], idx_unshuffle
@torch.no_grad()
def _batch_unshuffle_ddp(self, x, idx_unshuffle):
"""
Undo batch shuffle.
*** Only support DistributedDataParallel (DDP) model. ***
"""
# gather from all gpus
batch_size_this = x.shape[0]
x_gather = concat_all_gather(x)
batch_size_all = x_gather.shape[0]
num_gpus = batch_size_all // batch_size_this
# restored index for this gpu
gpu_idx = torch.distributed.get_rank()
idx_this = idx_unshuffle.view(num_gpus, -1)[gpu_idx]
return x_gather[idx_this]
def forward(self, im_q, im_k):
"""
Input:
im_q: a batch of query images
im_k: a batch of key images
Output:
logits, targets
"""
if self.training:
# compute query features
embedding, q, inter = self.encoder_q(im_q) # queries: NxC
q = nn.functional.normalize(q, dim=1)
# compute key features
with torch.no_grad(): # no gradient to keys
self._momentum_update_key_encoder() # update the key encoder
_, k, _ = self.encoder_k(im_k) # keys: NxC
k = nn.functional.normalize(k, dim=1)
# compute logits
# Einstein sum is more intuitive
# positive logits: Nx1
l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1)
# negative logits: NxK
l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()])
# logits: Nx(1+K)
logits = torch.cat([l_pos, l_neg], dim=1)
# apply temperature
logits /= self.T
# labels: positive key indicators
labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda()
# dequeue and enqueue
self._dequeue_and_enqueue(k)
return embedding, logits, labels, inter
else:
embedding, _, inter = self.encoder_q(im_q)
return embedding, inter
# utils
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
class ResBlock(nn.Module):
def __init__(self, in_feat, out_feat, stride=1):
super(ResBlock, self).__init__()
self.backbone = nn.Sequential(
nn.Conv2d(in_feat, out_feat, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(out_feat),
nn.LeakyReLU(0.1, True),
nn.Conv2d(out_feat, out_feat, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_feat),
)
self.shortcut = nn.Sequential(
nn.Conv2d(in_feat, out_feat, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_feat)
)
def forward(self, x):
return nn.LeakyReLU(0.1, True)(self.backbone(x) + self.shortcut(x))
class ResEncoder(nn.Module):
def __init__(self):
super(ResEncoder, self).__init__()
self.E_pre = ResBlock(in_feat=3, out_feat=64, stride=1)
self.E = nn.Sequential(
ResBlock(in_feat=64, out_feat=128, stride=2),
ResBlock(in_feat=128, out_feat=256, stride=2),
nn.AdaptiveAvgPool2d(1)
)
self.mlp = nn.Sequential(
nn.Linear(256, 256),
nn.LeakyReLU(0.1, True),
nn.Linear(256, 256),
)
def forward(self, x):
inter = self.E_pre(x)
fea = self.E(inter).squeeze(-1).squeeze(-1)
out = self.mlp(fea)
return fea, out, inter
class CBDE(nn.Module):
def __init__(self, opt):
super(CBDE, self).__init__()
dim = 256
# Encoder
self.E = MoCo(base_encoder=ResEncoder, dim=dim, K=opt.batch_size * dim)
def forward(self, x_query, x_key):
if self.training:
# degradation-aware represenetion learning
fea, logits, labels, inter = self.E(x_query, x_key)
return fea, logits, labels, inter
else:
# degradation-aware represenetion learning
fea, inter = self.E(x_query, x_query)
return fea, inter
if __name__ == '__main__':
block = CBDE()
input = torch.rand()
output = block(input)
print(input.size())
print(output.size())