-
Notifications
You must be signed in to change notification settings - Fork 4
/
eval_pose.py
331 lines (292 loc) · 14.9 KB
/
eval_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
"""
------------------------------------------------------------------------
Modified from HumanSD (https://github.com/IDEA-Research/HumanSD/tree/main)
------------------------------------------------------------------------
"""
import argparse, os
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from einops import rearrange
from ldm.util import instantiate_from_config, load_model_from_config, log_txt_as_img
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
from cldm.utils import load_state_dict
from PIL import Image, ImageDraw, ImageFont
import seaborn as sns
import einops
import cv2
import json
def load_model_from_ckpt(config, ckpt):
print(f"Loading model from {ckpt}")
sd = load_state_dict(ckpt)
model = instantiate_from_config(config)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0:
print("missing keys:")
print(m)
if len(u) > 0:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
def draw_humansd_skeleton(image, present_pose, keypoint_thresh):
humansd_skeleton=[
[0,0,1],
[1,0,2],
[2,1,3],
[3,2,4],
[4,3,5],
[5,4,6],
[6,5,7],
[7,6,8],
[8,7,9],
[9,8,10],
[10,5,11],
[11,6,12],
[12,11,13],
[13,12,14],
[14,13,15],
[15,14,16],
]
humansd_skeleton_width=10
humansd_color=sns.color_palette("hls", len(humansd_skeleton))
def plot_kpts(img_draw, kpts, color, edgs, width):
for idx, kpta, kptb in edgs:
if kpts[kpta,2]>keypoint_thresh and \
kpts[kptb,2]>keypoint_thresh :
line_color = tuple([int(255*color_i) for color_i in color[idx]])
cv2.line(img_draw, (int(kpts[kpta,0]),int(kpts[kpta,1])), (int(kpts[kptb,0]),int(kpts[kptb,1])), line_color,width)
cv2.circle(img_draw, (int(kpts[kpta,0]),int(kpts[kpta,1])), width//2, line_color, -1)
cv2.circle(img_draw, (int(kpts[kptb,0]),int(kpts[kptb,1])), width//2, line_color, -1)
pose_image = np.zeros_like(image)
for person_i in range(present_pose.shape[0]):
if torch.sum(present_pose[person_i,:,:])>0:
plot_kpts(pose_image, present_pose[person_i,:,:],humansd_color,humansd_skeleton,humansd_skeleton_width)
return pose_image
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def load_replacement(x):
try:
hwc = x.shape
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0]))
y = (np.array(y)/255.0).astype(x.dtype)
assert y.shape == x.shape
return y
except Exception:
return x
def gen_pose_mask(gaussian_kernels, batch, batch_size):
'''
Input: a list of Gaussian kernel sizes
Return: pose masks generated from the Gaussian kernels
------------------------------------------------------
Generate pose-mask for our proposed ViT in evaluation. The input specifies a list of Gaussian kernel sizes,
e.g. [23, 13], that are used to generate pose masks.
'''
from torchvision.transforms import GaussianBlur
import torch.nn.functional as F
pose_condition = batch['hint']
pose_condition = einops.rearrange(pose_condition, 'b h w c -> b c h w')
pose_condition = pose_condition.to(memory_format=torch.contiguous_format).float()
pose_image = torch.cat([pose_condition], 1)
pose_masks = []
for k in gaussian_kernels:
masks = torch.zeros((batch_size, 64,64))
masks.requires_grad = False
blur = GaussianBlur(kernel_size=(k, k), sigma=3)
pose_image_blured = blur(pose_image)
for i, pose in enumerate(pose_image_blured):
_, h_idx, w_idx = torch.where(pose>-0.99)
h_idx, w_idx = h_idx//8, w_idx//8
masks[i][h_idx, w_idx] = 1
# no pose mask for unconditional inputs
pose_masks.append(torch.cat((torch.ones_like(masks), masks), dim=0))
return torch.cat(tuple(pose_masks), dim=0)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--metrics",
default=["pose","quality","text"])
parser.add_argument("--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps")
parser.add_argument( "--plms",
action='store_true',
help="use plms sampling")
parser.add_argument("--dpm_solver",
action='store_true',
help="use dpm_solver sampling")
parser.add_argument("--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling")
parser.add_argument("--H",
type=int,
default=512,
help="image height, in pixel space")
parser.add_argument("--W",
type=int,
default=512,
help="image width, in pixel space")
parser.add_argument("--C",
type=int,
default=4,
help="latent channels")
parser.add_argument( "--f",
type=int,
default=8,
help="downsampling factor")
parser.add_argument("--batch_size",
type=int,
default=4,
help="how many samples to produce for each given prompt. A.k.a. batch size")
parser.add_argument("--scale",
type=float,
default=9,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))")
parser.add_argument("--config_model",
type=str,
help="path to config which constructs model")
parser.add_argument("--config_metrics",
type=str,
default="utils/metrics/metrics.yaml",
help="path to config evaluation metrics")
parser.add_argument("--ckpt",
type=str,
help="path to checkpoint of trained controlnet")
parser.add_argument("--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)")
parser.add_argument("--device",
type=str,
default="cuda")
parser.add_argument("--device_ids",
type=str,
default=[0, 1]) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
opt = parser.parse_args()
seed_everything(opt.seed)
config = OmegaConf.load(f"{opt.config_model}")
metrics_config = OmegaConf.load(f"{opt.config_metrics}")
run_name, model_name = config.name, opt.config_model.split('/')[-2]
model = load_model_from_ckpt(config.model, f"{opt.ckpt}").cpu()
model = model.to(opt.device)
metrics_config.metrics.params.pose.run_name = run_name + '_eval'
metrics_calculator=instantiate_from_config(metrics_config.metrics)
if opt.dpm_solver:
sampler = DPMSolverSampler(model)
elif opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
sampler=torch.nn.DataParallel(sampler,device_ids=opt.device_ids)
os.makedirs('outputs', exist_ok=True)
outpath = os.path.join('outputs', model_name, run_name)
# output dir already exists
if os.path.exists(outpath):
import time
current_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
outpath = outpath + '_' + current_time
metrics_outpath = os.path.join(outpath, 'metrics')
os.makedirs(metrics_outpath, exist_ok=True)
images_outpath = os.path.join(outpath, 'images')
os.makedirs(images_outpath, exist_ok=True)
batch_size = opt.batch_size
start_code = None
# define test dataset
dataset = instantiate_from_config(config.data.params.test)
test_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, drop_last=True)
all_metrics_results={metric:{} for metric in opt.metrics}
with torch.no_grad():
for batch_idx, (data) in enumerate(test_loader):
with model.ema_scope():
input_data=model.get_input(data,0)
all_conds = input_data[1]
# used for t2i-adapter only
features_adapter, append_to_context = None, None
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * ["longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"])
pose_condition = rearrange(data['hint'], 'b h w c -> b c h w')
all_conds = {'c_crossattn': input_data[1]['c_crossattn'], 'pose_condition':[pose_condition]}
uc = {'c_crossattn': [uc], 'pose_condition':[pose_condition]}
# generate pose mask
gaussian_kernels = config.model.params.gaussian_kernels
pose_masks = gen_pose_mask(gaussian_kernels, data, batch_size)
all_conds.update({'pose_mask': pose_masks[len(gaussian_kernels) * batch_size:]})
uc.update({'pose_mask': pose_masks[:len(gaussian_kernels) * batch_size]})
samples_ddim, _ = sampler.module.sample(S=opt.ddim_steps,
conditioning=all_conds,
batch_size=batch_size,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code,
features_adapter=features_adapter,
append_to_context=append_to_context,
cond_tau=1.0,)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1)
metrics = metrics_calculator.calc_metrics(data, x_samples_ddim,metrics=opt.metrics)
for key in all_metrics_results.keys():
if key == 'quality':
# won't calculate here, pls refer to eval_quality.py
continue
if len(all_metrics_results[key].keys()):
for metric_key in all_metrics_results[key].keys():
all_metrics_results[key][metric_key].append(metrics[key][metric_key])
with open(os.path.join(metrics_outpath,key+".csv"),"a") as f:
f.write(",".join(str(v[-1]) for v in all_metrics_results[key].values())+"\n")
else:
for metric_key in metrics[key].keys():
all_metrics_results[key][metric_key]=[metrics[key][metric_key]]
with open(os.path.join(metrics_outpath,key+".csv"),"w") as f:
f.write(",".join(str(v) for v in all_metrics_results[key].keys())+"\n")
with open(os.path.join(metrics_outpath,key+".csv"),"a") as f:
f.write(",".join(str(v[-1]) for v in all_metrics_results[key].values())+"\n")
x_samples_ddim = x_samples_ddim.cpu().detach().numpy()
x_samples=(x_samples_ddim*255).astype(np.uint8)
text_images = log_txt_as_img((x_samples.shape[1], x_samples.shape[2]), \
[prompt_i+"\n"+",".join(str(v[-1]) for v in all_metrics_results["pose"].values()) for prompt_i in data["txt"]], size=x_samples.shape[2] // 25) #<<<<<<< data["prompt"]
text_images = (einops.rearrange(text_images, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
original_images=torch.clamp((data["jpg"]+ 1.0) / 2.0, min=0.0, max=1.0)
original_images = original_images.cpu().numpy()* 255
# save images
for batch_i in range(batch_size):
present_generated_img=x_samples[batch_i,...][:,:,[2,1,0]]
present_text_image=text_images[batch_i,...]
original_image=original_images[batch_i,...]
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
present_pose_image = draw_humansd_skeleton(original_image, data["pose"][batch_i], keypoint_thresh=0.05)
save_image=np.concatenate([present_generated_img,present_pose_image,present_text_image,original_image],1)
save_folder, save_name = data["img_path"][batch_i].split('/')[-2:]
save_path=os.path.join(images_outpath,save_folder)
if not os.path.exists(save_path):
os.mkdir(save_path)
cv2.imwrite(os.path.join(save_path, save_name),save_image)
print(f'saved image {os.path.join(save_path, save_name)}')
# print
print(f"======================== batch:{batch_idx} ==========================")
print("Present Metrics:")
for key in all_metrics_results.keys():
print(f"\t{key}:")
for metric_key in all_metrics_results[key].keys():
print(f"\t{metric_key}: {list(all_metrics_results[key][metric_key])[-1]}")
print("==================================================")
if __name__ == "__main__":
main()