forked from yxlllc/ReFlow-VAE-SVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
354 lines (323 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import os
import torch
try:
import torch_musa
use_torch_musa = True
except ImportError:
use_torch_musa = False
import librosa
import argparse
import numpy as np
import soundfile as sf
import pyworld as pw
import parselmouth
import hashlib
import torch.nn.functional as F
from ast import literal_eval
from slicer import Slicer
from reflow.extractors import F0_Extractor, Volume_Extractor, Units_Encoder
from reflow.vocoder import load_model_vocoder
from tqdm import tqdm
def parse_args(args=None, namespace=None):
"""Parse command-line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model_ckpt",
type=str,
required=True,
help="path to the model checkpoint",
)
parser.add_argument(
"-d",
"--device",
type=str,
default=None,
required=False,
help="cpu/cuda/musa, auto if not set")
parser.add_argument(
"-i",
"--input",
type=str,
required=True,
help="path to the input audio file",
)
parser.add_argument(
"-o",
"--output",
type=str,
required=True,
help="path to the output audio file",
)
parser.add_argument(
"-sid",
"--source_spk_id",
type=str,
required=False,
default='none',
help="source speaker id (for multi-speaker model) | default: none",
)
parser.add_argument(
"-tid",
"--target_spk_id",
type=str,
required=False,
default=1,
help="target speaker id (for multi-speaker model) | default: 1",
)
parser.add_argument(
"-mix",
"--spk_mix_dict",
type=str,
required=False,
default="None",
help="mix-speaker dictionary (for multi-speaker model) | default: None",
)
parser.add_argument(
"-k",
"--key",
type=str,
required=False,
default=0,
help="key changed (number of semitones) | default: 0",
)
parser.add_argument(
"-f",
"--formant_shift_key",
type=str,
required=False,
default=0,
help="formant changed (number of semitones) , only for pitch-augmented model| default: 0",
)
parser.add_argument(
"-pe",
"--pitch_extractor",
type=str,
required=False,
default='rmvpe',
help="pitch extrator type: parselmouth, dio, harvest, crepe, fcpe, rmvpe (default)",
)
parser.add_argument(
"-fmin",
"--f0_min",
type=str,
required=False,
default=50,
help="min f0 (Hz) | default: 50",
)
parser.add_argument(
"-fmax",
"--f0_max",
type=str,
required=False,
default=1100,
help="max f0 (Hz) | default: 1100",
)
parser.add_argument(
"-th",
"--threhold",
type=str,
required=False,
default=-60,
help="response threhold (dB) | default: -60",
)
parser.add_argument(
"-step",
"--infer_step",
type=str,
required=False,
default='auto',
help="sample steps | default: auto",
)
parser.add_argument(
"-method",
"--method",
type=str,
required=False,
default='auto',
help="euler or rk4 | default: auto",
)
return parser.parse_args(args=args, namespace=namespace)
def upsample(signal, factor):
signal = signal.permute(0, 2, 1)
signal = F.interpolate(torch.cat((signal,signal[:,:,-1:]),2), size=signal.shape[-1] * factor + 1, mode='linear', align_corners=True)
signal = signal[:,:,:-1]
return signal.permute(0, 2, 1)
def split(audio, sample_rate, hop_size, db_thresh = -40, min_len = 5000):
slicer = Slicer(
sr=sample_rate,
threshold=db_thresh,
min_length=min_len)
chunks = dict(slicer.slice(audio))
result = []
for k, v in chunks.items():
tag = v["split_time"].split(",")
if tag[0] != tag[1]:
start_frame = int(int(tag[0]) // hop_size)
end_frame = int(int(tag[1]) // hop_size)
if end_frame > start_frame:
result.append((
start_frame,
audio[int(start_frame * hop_size) : int(end_frame * hop_size)]))
return result
def cross_fade(a: np.ndarray, b: np.ndarray, idx: int):
result = np.zeros(idx + b.shape[0])
fade_len = a.shape[0] - idx
np.copyto(dst=result[:idx], src=a[:idx])
k = np.linspace(0, 1.0, num=fade_len, endpoint=True)
result[idx: a.shape[0]] = (1 - k) * a[idx:] + k * b[: fade_len]
np.copyto(dst=result[a.shape[0]:], src=b[fade_len:])
return result
if __name__ == '__main__':
# parse commands
cmd = parse_args()
#device = 'cpu'
device = cmd.device
if device is None:
if torch.cuda.is_available():
device = 'cuda'
elif use_torch_musa:
if torch.musa.is_available():
device = 'musa'
else:
device = 'cpu'
else:
device = 'cpu'
# load reflow model
model, vocoder, args = load_model_vocoder(cmd.model_ckpt, device=device)
# load input
audio, sample_rate = librosa.load(cmd.input, sr=None)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio)
hop_size = args.data.block_size * sample_rate / args.data.sampling_rate
# get MD5 hash from wav file
md5_hash = ""
with open(cmd.input, 'rb') as f:
data = f.read()
md5_hash = hashlib.md5(data).hexdigest()
print("MD5: " + md5_hash)
cache_dir_path = os.path.join(os.path.dirname(__file__), "cache")
cache_file_path = os.path.join(cache_dir_path, f"{cmd.pitch_extractor}_{hop_size}_{cmd.f0_min}_{cmd.f0_max}_{md5_hash}.npy")
is_cache_available = os.path.exists(cache_file_path)
if is_cache_available:
# f0 cache load
print('Loading pitch curves for input audio from cache directory...')
f0 = np.load(cache_file_path, allow_pickle=False)
else:
# extract f0
print('Pitch extractor type: ' + cmd.pitch_extractor)
pitch_extractor = F0_Extractor(
cmd.pitch_extractor,
sample_rate,
hop_size,
float(cmd.f0_min),
float(cmd.f0_max))
print('Extracting the pitch curve of the input audio...')
f0 = pitch_extractor.extract(audio, uv_interp = True, device = device)
# f0 cache save
os.makedirs(cache_dir_path, exist_ok=True)
np.save(cache_file_path, f0, allow_pickle=False)
# key change
input_f0 = torch.from_numpy(f0).float().to(device).unsqueeze(-1).unsqueeze(0)
output_f0 = input_f0 * 2 ** (float(cmd.key) / 12)
# formant change
formant_shift_key = torch.from_numpy(np.array([[float(cmd.formant_shift_key)]])).float().to(device)
# source speaker id
if cmd.source_spk_id == 'none':
# load units encoder
if args.data.encoder == 'cnhubertsoftfish':
cnhubertsoft_gate = args.data.cnhubertsoft_gate
else:
cnhubertsoft_gate = 10
units_encoder = Units_Encoder(
args.data.encoder,
args.data.encoder_ckpt,
args.data.encoder_sample_rate,
args.data.encoder_hop_size,
cnhubertsoft_gate=cnhubertsoft_gate,
device = device)
# extract volume
print('Extracting the volume envelope of the input audio...')
volume_extractor = Volume_Extractor(hop_size)
volume = volume_extractor.extract(audio)
mask = (volume > 10 ** (float(cmd.threhold) / 20)).astype('float')
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
mask = np.array([np.max(mask[n : n + 9]) for n in range(len(mask) - 8)])
mask = torch.from_numpy(mask).float().to(device).unsqueeze(-1).unsqueeze(0)
mask = upsample(mask, args.data.block_size).squeeze(-1)
volume = torch.from_numpy(volume).float().to(device).unsqueeze(-1).unsqueeze(0)
else:
source_spk_id = torch.LongTensor(np.array([[int(cmd.source_spk_id)]])).to(device)
print('Using VAE mode...')
print('Source Speaker ID: '+ str(int(cmd.source_spk_id)))
# targer speaker id or mix-speaker dictionary
spk_mix_dict = literal_eval(cmd.spk_mix_dict)
target_spk_id = torch.LongTensor(np.array([[int(cmd.target_spk_id)]])).to(device)
if spk_mix_dict is not None:
print('Mix-speaker mode')
else:
print('Target Speaker ID: '+ str(int(cmd.target_spk_id)))
# sampling method
if cmd.method == 'auto':
method = args.infer.method
else:
method = cmd.method
# infer step
if cmd.infer_step == 'auto':
infer_step = args.infer.infer_step
else:
infer_step = int(cmd.infer_step)
if infer_step < 0:
print('infer step cannot be negative!')
exit(0)
# forward and save the output
result = np.zeros(0)
current_length = 0
segments = split(audio, sample_rate, hop_size)
print('Cut the input audio into ' + str(len(segments)) + ' slices')
with torch.no_grad():
for segment in tqdm(segments):
start_frame = segment[0]
seg_input = torch.from_numpy(segment[1]).float().unsqueeze(0).to(device)
if cmd.source_spk_id == 'none':
seg_units = units_encoder.encode(seg_input, sample_rate, hop_size)
seg_f0 = output_f0[:, start_frame : start_frame + seg_units.size(1), :]
seg_volume = volume[:, start_frame : start_frame + seg_units.size(1), :]
seg_output = model(
seg_units,
seg_f0,
seg_volume,
spk_id = target_spk_id,
spk_mix_dict = spk_mix_dict,
aug_shift = formant_shift_key,
vocoder=vocoder,
infer=True,
return_wav=True,
infer_step=infer_step,
method=method)
seg_output *= mask[:, start_frame * args.data.block_size : (start_frame + seg_units.size(1)) * args.data.block_size]
else:
seg_input_mel = vocoder.extract(seg_input, sample_rate)
seg_input_mel = torch.cat((seg_input_mel, seg_input_mel[:,-1:,:]), 1)
seg_input_f0 = input_f0[:, start_frame : start_frame + seg_input_mel.size(1), :]
seg_output_f0 = output_f0[:, start_frame : start_frame + seg_input_mel.size(1), :]
seg_output_mel = model.vae_infer(
seg_input_mel,
seg_input_f0,
source_spk_id,
seg_output_f0,
target_spk_id,
spk_mix_dict,
formant_shift_key,
infer_step,
method)
seg_output = vocoder.infer(seg_output_mel, seg_output_f0)
seg_output = seg_output.squeeze().cpu().numpy()
silent_length = round(start_frame * args.data.block_size) - current_length
if silent_length >= 0:
result = np.append(result, np.zeros(silent_length))
result = np.append(result, seg_output)
else:
result = cross_fade(result, seg_output, current_length + silent_length)
current_length = current_length + silent_length + len(seg_output)
sf.write(cmd.output, result, args.data.sampling_rate)