- Run Gemma on TensorRT-LLM
- FP32/FP16/BF16/INT8 Weight-Only/INT4 Weight-Only/SmoothQuant/FP8
- For SmoothQuant, TRT-LLM only supports FP16 higher precision now.
- checkpoint type: Jax, Torch, Keras, Huggingface (HF)
- STRONGLY TYPED
- python runtime and triton backend
Please install required packages first:
pip install -r requirements.txt
Users can use convert_checkpoint.py
to convert the different source checkpoint to unified TensorRT-LLM checkpoint format. Users could set --dtype
to determine the inference data type, and set the quantization options like --enable_fp8
, --fp8_kv_cache
--use_smooth_quant
, --calibrate_kv_cache
(for INT8 kv cache) and --use-weight-only-with-precision
(weight only). Users could also control the source checkpoint type by --ckpt-type
. Currently, supported checkpoint types are jax
, torch
and keras
.
CKPT_PATH=/tmp/models/gemma_nv/checkpoints/tmp_2b_it
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_2b_it_tensorrt_llm/bf16/tp1/
python3 ./convert_checkpoint.py \
--ckpt-type jax \
--model-dir ${CKPT_PATH} \
--dtype bfloat16 \
--world-size 1 \
--output-model-dir ${UNIFIED_CKPT_PATH}
After getting checkpoint, we can use trtllm-build
command to build TensorRT-LLM engines from TensorRT-LLM checkpoints.
ENGINE_PATH=/tmp/gemma/2B/bf16/1-gpu/
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 8 \
--max_input_len 3000 \
--max_output_len 100 \
--output_dir ${ENGINE_PATH}
We provide three examples to run inference run.py
, summarize.py
and mmlu.py
. run.py
only run inference with input_text
and show the output.
summarize.py
runs summarization on cnn_dailymail dataset and evaluate the model by ROUGE scores and use the ROUGE-1
score to validate the implementation.
mmlu.py
runs MMLU to evaluate the model by accuracy.
Note that we need to download the dataset of MMLU first and the evaluation of MMLU requires more time.
- run.py
VOCAB_FILE_PATH=/tmp/models/gemma_nv/checkpoints/tmp_vocab.model
python3 ../run.py --engine_dir ${ENGINE_PATH} \
--max_output_len 30 \
--vocab_file ${VOCAB_FILE_PATH}
[TensorRT-LLM] TensorRT-LLM version: 0.9.0.dev2024020600Input [Text 0]: "<bos> Born in north-east France, Soyer trained as a"
Output [Text 0 Beam 0]: "chef in the renowned kitchens of Lyon. After honing his skills in various Michelin-starred establishments, he embarked on a solo venture, establishing his own restaurant"
- summarize.py
python3 ../summarize.py --test_trt_llm \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5 \
--vocab_file ${VOCAB_FILE_PATH}
[02/06/2024-10:08:54] [TRT-LLM] [I] TensorRT-LLM (total latency: 3.2821836471557617 sec)
[02/06/2024-10:08:54] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 1989)
[02/06/2024-10:08:54] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 605.9989975648089)
[02/06/2024-10:08:54] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/06/2024-10:08:55] [TRT-LLM] [I] rouge1 : 26.376388677070615
[02/06/2024-10:08:55] [TRT-LLM] [I] rouge2 : 7.468157586877296
[02/06/2024-10:08:55] [TRT-LLM] [I] rougeL : 17.953060795106556
[02/06/2024-10:08:55] [TRT-LLM] [I] rougeLsum : 22.410938121151652
- mmlu.py
Download the dataset first
mkdir data
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar -O data/mmlu.tar
tar -xf data/mmlu.tar -C data
mv data/data data/mmlu
Evaluate on MMLU dataset.
python3 ../mmlu.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH}
Average accuracy 0.358 - social sciences
Average accuracy 0.359 - other (business, health, misc.)
Average accuracy: 0.329
In this section, we demonstrate the scripts to convert checkpoint, building engine and run inference on different settings. We will not demonstrate all combinations here because there are too many cases. We choose some important cases to demonstrate.
git clone [email protected]:google/gemma-2b
CKPT_PATH=gemma-2b/
UNIFIED_CKPT_PATH=/tmp/ckpt/hf/gemma/2b/1-gpu/
ENGINE_PATH=/tmp/engines/gemma/2B/bf16/1-gpu/
VOCAB_FILE_PATH=gemma-2b/
python3 ./examples/gemma/convert_checkpoint.py \
--ckpt-type hf \
--model-dir ${CKPT_PATH} \
--dtype bfloat16 \
--world-size 1 \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 8 \
--max_input_len 3000 \
--max_output_len 100 \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--tokenizer_dir ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[03/05/2024-02:24:39] [TRT-LLM] [I] TensorRT-LLM (total latency: 3.0897433757781982 sec)
[03/05/2024-02:24:39] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 2141)
[03/05/2024-02:24:39] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 692.9378073221881)
[03/05/2024-02:24:39] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[03/05/2024-02:24:39] [TRT-LLM] [I] rouge1 : 21.042873132085678
[03/05/2024-02:24:39] [TRT-LLM] [I] rouge2 : 6.322669223228836
[03/05/2024-02:24:39] [TRT-LLM] [I] rougeL : 16.450116567540338
[03/05/2024-02:24:39] [TRT-LLM] [I] rougeLsum : 18.836567173262736
WARNING: This way of running FP8 will introduce noticeable accuracy drop. To avoid that, use AMMO quantization mentioned in this readme.
In this example, we demonstrate how to run FP8 inference on Gemma. Note that convert_checkpoint.py
only uses identity activation scales, so the accuracy might be little worse than higher precision in some cases, but it is still very good because we don't do any calibration. This also shows the stability of FP8 compared to INT8.
git clone [email protected]:google/gemma-2b-it-keras
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:google/gemma-2b-it-flax # clone tokenizer model
cd gemma-2b-it-flax
git lfs pull -I tokenizer.model
CKPT_PATH=gemma-2b-it-keras
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_2b_en_tensorrt_llm/fp8/tp1/
ENGINE_PATH=/tmp/gemma/2B/fp8/1-gpu/
VOCAB_FILE_PATH=gemma-2b-it-flax/tokenizer.model
python3 ./convert_checkpoint.py \
--ckpt-type keras \
--model-dir ${CKPT_PATH} \
--dtype bfloat16 \
--world-size 1 \
--enable_fp8 \
--fp8_kv_cache \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 8 \
--max_input_len 3000 \
--max_output_len 100 \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[02/08/2024-10:37:15] [TRT-LLM] [I] TensorRT-LLM (total latency: 3.116227149963379 sec)
[02/08/2024-10:37:15] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 2419)
[02/08/2024-10:37:15] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 776.259201781368)
[02/08/2024-10:37:15] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/08/2024-10:37:15] [TRT-LLM] [I] rouge1 : 20.206082692133098
[02/08/2024-10:37:15] [TRT-LLM] [I] rouge2 : 5.902141189518428
[02/08/2024-10:37:15] [TRT-LLM] [I] rougeL : 15.403458457907643
[02/08/2024-10:37:15] [TRT-LLM] [I] rougeLsum : 17.44535527417846
python3 ../mmlu.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH}
Average accuracy 0.390 - social sciences
Average accuracy 0.405 - other (business, health, misc.)
Average accuracy: 0.356
git clone [email protected]:google/gemma-2b-it-flax
CKPT_PATH=gemma-2b-it-flax/2b-it/
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_2b_it_tensorrt_llm/sq/tp1
ENGINE_PATH=/tmp/gemma/2B/int8_sq/1-gpu/
VOCAB_FILE_PATH=gemma-2b-it-flax/tokenizer.model
python3 ./convert_checkpoint.py \
--ckpt-type jax \
--model-dir ${CKPT_PATH} \
--dtype float16 \
--use_smooth_quant_plugin 0.5 \
--tokenizer_dir ${VOCAB_FILE_PATH} \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin float16 \
--gpt_attention_plugin float16 \
--max_batch_size 8 \
--max_input_len 3000 \
--max_output_len 100 \
--enable_xqa enable \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[02/08/2024-04:42:06] [TRT-LLM] [I] TensorRT-LLM (total latency: 3.460859775543213 sec)
[02/08/2024-04:42:06] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 1786)
[02/08/2024-04:42:06] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 516.0567361385428)
[02/08/2024-04:42:06] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/08/2024-04:42:06] [TRT-LLM] [I] rouge1 : 22.534044843245525
[02/08/2024-04:42:06] [TRT-LLM] [I] rouge2 : 5.940093176022924
[02/08/2024-04:42:06] [TRT-LLM] [I] rougeL : 16.258991712579736
[02/08/2024-04:42:06] [TRT-LLM] [I] rougeLsum : 19.60977626046262
Available precisions: int8
and int4
int8
git clone [email protected]:google/gemma-2b-it-flax
CKPT_PATH=gemma-2b-it-flax/2b-it/
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_2b_it_tensorrt_llm/w8_a16/tp1/
ENGINE_PATH=/tmp/gemma/2B/w8_a16/1-gpu/
VOCAB_FILE_PATH=gemma-2b-it-flax/tokenizer.model
python3 ./convert_checkpoint.py \
--ckpt-type jax \
--model-dir ${CKPT_PATH} \
--use-weight-only-with-precision int8 \
--dtype bfloat16 \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 32 \
--max_input_len 3000 \
--max_output_len 100 \
--enable_xqa enable \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[02/08/2024-04:44:54] [TRT-LLM] [I] TensorRT-LLM (total latency: 3.5987987518310547 sec)
[02/08/2024-04:44:54] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 1797)
[02/08/2024-04:44:54] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 499.3332842203787)
[02/08/2024-04:44:54] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/08/2024-04:44:54] [TRT-LLM] [I] rouge1 : 24.48521318679745
[02/08/2024-04:44:54] [TRT-LLM] [I] rouge2 : 7.240543314565931
[02/08/2024-04:44:54] [TRT-LLM] [I] rougeL : 17.857921729984078
[02/08/2024-04:44:54] [TRT-LLM] [I] rougeLsum : 21.214162155642896
int4
git clone [email protected]:google/gemma-2b-it-flax
CKPT_PATH=gemma-2b-it-flax/2b-it/
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_2b_it_tensorrt_llm/w4_a16/tp1/
ENGINE_PATH=/tmp/gemma/2B/w4_a16/1-gpu/
VOCAB_FILE_PATH=gemma-2b-it-flax/tokenizer.model
python3 ./convert_checkpoint.py \
--ckpt-type jax \
--model-dir ${CKPT_PATH} \
--use-weight-only-with-precision int4 \
--dtype bfloat16 \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 32 \
--max_input_len 3000 \
--max_output_len 100 \
--enable_xqa enable \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[02/08/2024-04:48:06] [TRT-LLM] [I] TensorRT-LLM (total latency: 3.1938045024871826 sec)
[02/08/2024-04:48:06] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 1462)
[02/08/2024-04:48:06] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 457.7612683749003)
[02/08/2024-04:48:06] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/08/2024-04:48:06] [TRT-LLM] [I] rouge1 : 25.19118129834017
[02/08/2024-04:48:06] [TRT-LLM] [I] rouge2 : 6.284558232487986
[02/08/2024-04:48:06] [TRT-LLM] [I] rougeL : 18.133244708843726
[02/08/2024-04:48:06] [TRT-LLM] [I] rougeLsum : 20.562024727650662
git clone [email protected]:google/gemma-2b-it-flax
CKPT_PATH=gemma-2b-it-flax/2b-it/
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_2b_it_tensorrt_llm/int8kv/tp1
ENGINE_PATH=/tmp/gemma/2B/int8kv/1-gpu/
VOCAB_FILE_PATH=gemma-2b-it-flax/tokenizer.model
python3 ./convert_checkpoint.py \
--ckpt-type jax \
--model-dir ${CKPT_PATH} \
--world-size 1 \
--dtype bfloat16 \
--calibrate_kv_cache \
--tokenizer_dir ${VOCAB_FILE_PATH} \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 32 \
--max_input_len 3000 \
--max_output_len 100 \
--enable_xqa enable \
--strongly_type \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[02/08/2024-04:52:22] [TRT-LLM] [I] TensorRT-LLM (total latency: 3.5348474979400635 sec)
[02/08/2024-04:52:22] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 1819)
[02/08/2024-04:52:22] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 514.5907994786265)
[02/08/2024-04:52:22] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/08/2024-04:52:22] [TRT-LLM] [I] rouge1 : 24.0397941580232
[02/08/2024-04:52:22] [TRT-LLM] [I] rouge2 : 7.325311340360227
[02/08/2024-04:52:22] [TRT-LLM] [I] rougeL : 17.54210044633271
[02/08/2024-04:52:22] [TRT-LLM] [I] rougeLsum : 20.627861723682177
Since torch model does not have model config, we need to add it manually in CKPT_PATH
with file name config.json
.
git clone [email protected]:google/gemma-7b-pytorch
CKPT_PATH=gemma-7b-pytorch/
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_7b_it_tensorrt_llm/bf16/tp1/
ENGINE_PATH=/tmp/gemma/7B/bf16/1-gpu/
VOCAB_FILE_PATH=gemma-7b-pytorch/tokenizer.model
python3 ./examples/gemma/convert_checkpoint.py \
--ckpt-type torch \
--model-dir ${CKPT_PATH} \
--dtype bfloat16 \
--world-size 1 \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 8 \
--max_input_len 3000 \
--max_output_len 100 \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
python3 ../mmlu.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH}
Average accuracy 0.739 - social sciences
Average accuracy 0.697 - other (business, health, misc.)
Average accuracy: 0.630
WARNING: This way of running FP8 will introduce noticeable accuracy drop. To avoid that, use AMMO quantization mentioned in this readme.
In this example, we demonstrate how to run FP8 inference on Gemma. Note that convert_checkpoint.py
only uses identity activation scales, so the accuracy might be little worse than higher precision in some cases, but it is still very good because we don't do any calibration. This also shows the stability of FP8 compared to INT8.
CKPT_PATH=/tmp/models/gemma_nv/checkpoints/tmp_7b_it
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_7b_it_tensorrt_llm/fp8/tp1/
ENGINE_PATH=/tmp/gemma/7B/fp8/1-gpu/
VOCAB_FILE_PATH=/tmp/models/gemma_nv/checkpoints/tmp_vocab.model
python3 ./convert_checkpoint.py \
--ckpt-type jax \
--model-dir ${CKPT_PATH} \
--dtype bfloat16 \
--world-size 1 \
--enable_fp8 \
--fp8_kv_cache \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 8 \
--max_input_len 3000 \
--max_output_len 100 \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[02/08/2024-06:42:13] [TRT-LLM] [I] TensorRT-LLM (total latency: 5.884302377700806 sec)
[02/08/2024-06:42:13] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 2694)
[02/08/2024-06:42:13] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 457.8282737830064)
[02/08/2024-06:42:13] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/08/2024-06:42:13] [TRT-LLM] [I] rouge1 : 27.18633861010837
[02/08/2024-06:42:13] [TRT-LLM] [I] rouge2 : 7.734928823230158
[02/08/2024-06:42:13] [TRT-LLM] [I] rougeL : 19.32537431798716
[02/08/2024-06:42:13] [TRT-LLM] [I] rougeLsum : 22.82522575944535
git clone [email protected]:google/gemma-7b-it-flax
CKPT_PATH=gemma-7b-it-flax/7b-it/
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_7b_it_tensorrt_llm/sq/tp1
ENGINE_PATH=/tmp/gemma/7B/int8_sq/1-gpu/
VOCAB_FILE_PATH=gemma-7b-it-flax/tokenizer.model
python3 ./convert_checkpoint.py \
--ckpt-type jax \
--model-dir ${CKPT_PATH} \
--dtype float16 \
--use_smooth_quant_plugin 0.5 \
--tokenizer_dir ${VOCAB_FILE_PATH} \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin float16 \
--gpt_attention_plugin float16 \
--max_batch_size 8 \
--max_input_len 3000 \
--max_output_len 100 \
--enable_xqa enable \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[02/19/2024-10:02:53] [TRT-LLM] [I] ---------------------------------------------------------
[02/19/2024-10:03:09] [TRT-LLM] [I] TensorRT-LLM (total latency: 13.65670919418335 sec)
[02/19/2024-10:03:09] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 8351)
[02/19/2024-10:03:09] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 611.494312521266)
[02/19/2024-10:03:09] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/19/2024-10:03:09] [TRT-LLM] [I] rouge1 : 28.8107815115074
[02/19/2024-10:03:09] [TRT-LLM] [I] rouge2 : 8.623835512061866
[02/19/2024-10:03:09] [TRT-LLM] [I] rougeL : 19.7277195532959
[02/19/2024-10:03:09] [TRT-LLM] [I] rougeLsum : 23.434950511855114
Available precisions: int8
and int4
int8
git clone [email protected]:google/gemma-7b-it-keras
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:google/gemma-7b-it-flax # clone tokenizer model
cd gemma-7b-it-flax
git lfs pull -I tokenizer.model
CKPT_PATH=gemma-7b-it-keras
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_7b_it_tensorrt_llm/w8_a16/tp1/
ENGINE_PATH=/tmp/gemma/7B/w8_a16/1-gpu/
VOCAB_FILE_PATH=gemma-7b-it-flax/tokenizer.model
python3 ./convert_checkpoint.py \
--ckpt-type keras \
--model-dir ${CKPT_PATH} \
--use-weight-only-with-precision int8 \
--dtype bfloat16 \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 32 \
--max_input_len 3000 \
--max_output_len 100 \
--enable_xqa enable \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[02/08/2024-07:38:15] [TRT-LLM] [I] TensorRT-LLM (total latency: 8.49835753440857 sec)
[02/08/2024-07:38:15] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 2654)
[02/08/2024-07:38:15] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 312.2956393931832)
[02/08/2024-07:38:15] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/08/2024-07:38:16] [TRT-LLM] [I] rouge1 : 20.396209981234687
[02/08/2024-07:38:16] [TRT-LLM] [I] rouge2 : 5.73302850102211
[02/08/2024-07:38:16] [TRT-LLM] [I] rougeL : 16.001683776127507
[02/08/2024-07:38:16] [TRT-LLM] [I] rougeLsum : 18.36957526315223
int4
CKPT_PATH=/tmp/models/gemma_nv/checkpoints/tmp_7b_it
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_7b_it_tensorrt_llm/w4_a16/tp1/
ENGINE_PATH=/tmp/gemma/7B/w4_a16/1-gpu/
VOCAB_FILE_PATH=/tmp/models/gemma_nv/checkpoints/tmp_vocab.model
python3 ./convert_checkpoint.py \
--ckpt-type jax \
--model-dir ${CKPT_PATH} \
--use-weight-only-with-precision int4 \
--dtype bfloat16 \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 32 \
--max_input_len 3000 \
--max_output_len 100 \
--enable_xqa enable \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[02/08/2024-07:43:32] [TRT-LLM] [I] TensorRT-LLM (total latency: 7.282559156417847 sec)
[02/08/2024-07:43:32] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 2253)
[02/08/2024-07:43:32] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 309.3692686333369)
[02/08/2024-07:43:32] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/08/2024-07:43:32] [TRT-LLM] [I] rouge1 : 27.22556858171486
[02/08/2024-07:43:32] [TRT-LLM] [I] rouge2 : 6.889046653923549
[02/08/2024-07:43:32] [TRT-LLM] [I] rougeL : 19.07040336076859
[02/08/2024-07:43:32] [TRT-LLM] [I] rougeLsum : 22.840545705675858
CKPT_PATH=/tmp/models/gemma_keras/keras/gemma_7b_en/
UNIFIED_CKPT_PATH=/tmp/checkpoints/tmp_7b_it_tensorrt_llm/int8kv/tp1
ENGINE_PATH=/tmp/gemma/7B/int8kv/1-gpu/
VOCAB_FILE_PATH=/tmp/models/gemma_nv/checkpoints/tmp_vocab.model
python3 ./convert_checkpoint.py \
--ckpt-type keras \
--model-dir ${CKPT_PATH} \
--world-size 1 \
--dtype bfloat16 \
--calibrate_kv_cache \
--tokenizer_dir ${VOCAB_FILE_PATH} \
--output-model-dir ${UNIFIED_CKPT_PATH}
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--max_batch_size 32 \
--max_input_len 3000 \
--max_output_len 100 \
--enable_xqa enable \
--strongly_type \
--output_dir ${ENGINE_PATH}
python3 ../summarize.py --test_trt_llm \
--vocab_file ${VOCAB_FILE_PATH} \
--engine_dir ${ENGINE_PATH} \
--batch_size 8 \
--max_ite 5
[02/08/2024-07:51:11] [TRT-LLM] [I] TensorRT-LLM (total latency: 8.73880124092102 sec)
[02/08/2024-07:51:11] [TRT-LLM] [I] TensorRT-LLM (total output tokens: 2771)
[02/08/2024-07:51:11] [TRT-LLM] [I] TensorRT-LLM (tokens per second: 317.09154649544956)
[02/08/2024-07:51:11] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[02/08/2024-07:51:11] [TRT-LLM] [I] rouge1 : 20.934864626327627
[02/08/2024-07:51:11] [TRT-LLM] [I] rouge2 : 4.954721611692932
[02/08/2024-07:51:11] [TRT-LLM] [I] rougeL : 15.307592049634444
[02/08/2024-07:51:11] [TRT-LLM] [I] rougeLsum : 17.94213019528988
AMMO toolkit also provides quantization solutions. To enable it, have the latest ammo and transformers Python package installed to support Gemma. Then run the following commands.
python ../quantization/quantize.py --model_dir ${HF_GEMMA_PATH} \
--dtype float16 \
--qformat ${QUANT_TYPE} \
--output_dir ${UNIFIED_CKPT_PATH} \
--tp_size 1
HF_GEMMA_PATH can either be HF model card name or the downloaded model path. QUANT_TYPE can be chosen from fp8, int4_awq, and int8_sq.
For fp8, build engines with:
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin float16 \
--gpt_attention_plugin float16 \
--max_batch_size 8 \
--max_input_len 3000 \
--max_output_len 100 \
--output_dir ${ENGINE_PATH}
For int4_awq and int8_sq, build engines with:
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_PATH} \
--gemm_plugin float16 \
--gpt_attention_plugin float16 \
--max_batch_size 8 \
--max_input_len 3000 \
--max_output_len 100 \
--enable_xqa enable \
--output_dir ${ENGINE_PATH}
Model | fp8 | int4_awq | int8_sq (AMMO) | int8_sq (Native per-channel) |
---|---|---|---|---|
2B Pretrained | 0.407 | 0.378 | 0.338 | 0.338 |
7B Pretrained | 0.643 | 0.615 | 0.448 | 0.595 |