forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
summarize_long.py
410 lines (349 loc) · 15.9 KB
/
summarize_long.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import torch
from datasets import load_dataset, load_metric
from transformers import AutoModelForCausalLM, LlamaTokenizer
import tensorrt_llm
import tensorrt_llm.profiler as profiler
from tensorrt_llm.bindings import KVCacheType
from tensorrt_llm.logger import logger
from tensorrt_llm.quantization import QuantMode
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--hf_model_location',
type=str,
default='/tmp/models/Mistral-7B-v0.1')
parser.add_argument('--test_hf', action='store_true')
parser.add_argument('--test_trt_llm', action='store_true')
parser.add_argument('--data_type',
type=str,
choices=['fp16'],
default='fp16')
parser.add_argument('--dataset_path', type=str, default='/tmp/data')
parser.add_argument(
'--max_attention_window_size',
type=int,
default=4096,
help=
'The attention window size that controls the sliding window attention / cyclic kv cache behavior'
)
parser.add_argument(
'--max_input_len',
type=int,
default=6400,
help='The max input length TensorRT-LLM engine was built with')
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--max_ite', type=int, default=5)
parser.add_argument(
'--engine_dir',
type=str,
default='/code/tensorrt_llm/mistral_trtllm/llama_style_merge_long_v2')
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--num_beams', type=int, default=1)
parser.add_argument('--top_k', type=int, default=1)
parser.add_argument('--output_len', type=int, default=128)
parser.add_argument('--temperature', type=float, default=1)
parser.add_argument('--check_accuracy', action='store_true')
parser.add_argument('--tensorrt_llm_rouge1_threshold',
type=float,
default=15.0)
parser.add_argument(
'--rouge_dir',
default=None,
type=str,
help=
"datasets.load_metrics('rouge') will attempt to pull rouge package from HF. Use cached rouge can avoid network outage of host or HF."
)
parser.add_argument(
'--multi_block_mode',
type=lambda s: s.lower() in
("yes", "true", "t", "1"
), # custom boolean function to convert input string to boolean
default=True,
help=
"Distribute the work across multiple CUDA thread-blocks on the GPU for masked MHA kernel."
)
parser.add_argument('--enable_context_fmha_fp32_acc',
action='store_true',
help="Enable FMHA runner FP32 accumulation.")
args = parser.parse_args()
return args
def TRTLLaMA(args, config):
pretrained_config = config['pretrained_config']
quantization_config = pretrained_config['quantization']
build_config = config['build_config']
kv_cache_type = KVCacheType(build_config['kv_cache_type'])
plugin_config = build_config['plugin_config']
dtype = pretrained_config['dtype']
tp_size = pretrained_config['mapping']['tp_size']
pp_size = pretrained_config['mapping']['pp_size']
world_size = tp_size * pp_size
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
num_heads = pretrained_config['num_attention_heads'] // tp_size
hidden_size = pretrained_config['hidden_size'] // tp_size
max_batch_size = build_config['max_batch_size']
vocab_size = pretrained_config['vocab_size']
num_layers = pretrained_config['num_hidden_layers']
use_gpt_attention_plugin = bool(plugin_config['gpt_attention_plugin'])
remove_input_padding = plugin_config['remove_input_padding']
num_kv_heads = pretrained_config['num_key_value_heads']
tokens_per_block = plugin_config['tokens_per_block']
quant_mode = QuantMode.from_quant_algo(
quant_algo=quantization_config['quant_algo'],
kv_cache_quant_algo=quantization_config['kv_cache_quant_algo'])
if pretrained_config.get('multi_query_mode', False):
tensorrt_llm.logger.warning(
"`multi_query_mode` config is deprecated. Please rebuild the engine."
)
num_kv_heads = 1
num_kv_heads = (num_kv_heads + tp_size - 1) // tp_size
model_config = tensorrt_llm.runtime.ModelConfig(
max_batch_size=max_batch_size,
max_beam_width=args.num_beams,
vocab_size=vocab_size,
num_layers=num_layers,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
hidden_size=hidden_size,
kv_cache_type=kv_cache_type,
tokens_per_block=tokens_per_block,
gpt_attention_plugin=use_gpt_attention_plugin,
remove_input_padding=remove_input_padding,
dtype=dtype,
quant_mode=quant_mode)
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size,
runtime_rank,
tp_size=tp_size,
pp_size=pp_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_name = f'rank{runtime_rank}.engine'
serialize_path = os.path.join(args.engine_dir, engine_name)
tensorrt_llm.logger.set_level(args.log_level)
profiler.start('load tensorrt_llm engine')
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = tensorrt_llm.runtime.GenerationSession(model_config,
engine_buffer,
runtime_mapping)
profiler.stop('load tensorrt_llm engine')
tensorrt_llm.logger.info(
f'Load engine takes: {profiler.elapsed_time_in_sec("load tensorrt_llm engine")} sec'
)
return decoder
def get_long_texts(dataset_openweb):
for datapoint in dataset_openweb["train"]:
text = datapoint["text"]
approximate_tokens = len(text.split())
if (approximate_tokens
> args.max_attention_window_size) and (approximate_tokens
< args.max_input_len):
yield text
def prepare_prompt(text):
text = text.replace("\n", " ")
text = text + '\n TL;DR: '
text = text.strip()
text = text.replace(" n't", "n't")
return text
def summarize_hf(datapoint, tokenizer, hf_model, args):
line_encoded = tokenizer(datapoint,
return_tensors='pt',
padding=True,
truncation=True)["input_ids"].type(torch.int32)
line_encoded = line_encoded.cuda()
with torch.no_grad():
output = hf_model.generate(line_encoded,
max_new_tokens=args.output_len,
temperature=args.temperature,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
num_beams=args.num_beams,
top_k=args.top_k,
do_sample=True,
early_stopping=True)
tokens_list = output[:, len(line_encoded[0]):].tolist()
output = output.reshape([args.batch_size, args.num_beams, -1])
output_lines_list = [
tokenizer.batch_decode(output[:, i, len(line_encoded[0]):],
skip_special_tokens=True)
for i in range(args.num_beams)
]
return output_lines_list, tokens_list
def summarize_tensorrt_llm(datapoint, tokenizer, tensorrt_llm_llama, args):
line_encoded = []
input_id = tokenizer.encode(datapoint,
return_tensors='pt').type(torch.int32)
line_encoded.append(input_id)
input_lengths = []
input_lengths.append(input_id.shape[-1])
max_length = max(input_lengths)
pad_id = tokenizer.encode(tokenizer.pad_token, add_special_tokens=False)[0]
end_id = tokenizer.encode(tokenizer.eos_token, add_special_tokens=False)[0]
if tensorrt_llm_llama.remove_input_padding:
line_encoded = [
torch.tensor(t, dtype=torch.int32).cuda() for t in line_encoded
]
else:
# do padding, should move outside the profiling to prevent the overhead
for i in range(args.batch_size):
pad_size = max_length - input_lengths[i]
pad = torch.ones([1, pad_size]).type(torch.int32) * pad_id
line_encoded[i] = torch.cat(
[torch.tensor(line_encoded[i], dtype=torch.int32), pad],
axis=-1)
line_encoded = torch.cat(line_encoded, axis=0).cuda()
input_lengths = torch.tensor(input_lengths, dtype=torch.int32).cuda()
sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=end_id,
pad_id=pad_id,
top_k=args.top_k,
num_beams=args.num_beams)
with torch.no_grad():
tensorrt_llm_llama.setup(
batch_size=args.batch_size,
max_context_length=max_length,
max_new_tokens=args.output_len,
beam_width=args.num_beams,
max_attention_window_size=args.max_attention_window_size,
multi_block_mode=args.multi_block_mode,
enable_context_fmha_fp32_acc=args.enable_context_fmha_fp32_acc)
logger.info(f"Generation session set up with the parameters: \
batch_size: {tensorrt_llm_llama.batch_size}, \
max_context_length: {tensorrt_llm_llama.max_context_length}, \
max_new_tokens: {tensorrt_llm_llama.max_new_tokens}, \
beam_width: {tensorrt_llm_llama.beam_width}, \
max_attention_window_size: {tensorrt_llm_llama.max_attention_window_size}, \
multi_block_mode: {tensorrt_llm_llama.multi_block_mode}, \
enable_context_fmha_fp32_acc: {tensorrt_llm_llama.enable_context_fmha_fp32_acc}"
)
if tensorrt_llm_llama.remove_input_padding:
output_ids = tensorrt_llm_llama.decode_batch(
line_encoded, sampling_config)
else:
output_ids = tensorrt_llm_llama.decode(
line_encoded,
input_lengths,
sampling_config,
)
torch.cuda.synchronize()
logger.info(f"Decoded output of shape{output_ids.shape}")
# Extract a list of tensors of shape beam_width x output_ids.
if tensorrt_llm_llama.mapping.is_first_pp_rank():
output_beams_list = [
tokenizer.batch_decode(output_ids[batch_idx, :,
input_lengths[batch_idx]:],
skip_special_tokens=True)
for batch_idx in range(args.batch_size)
]
return output_beams_list, output_ids[:, :, max_length:].tolist()
return [], []
def main(args):
runtime_rank = tensorrt_llm.mpi_rank()
logger.set_level(args.log_level)
profiler.start('load tokenizer')
tokenizer = LlamaTokenizer.from_pretrained(args.hf_model_location,
legacy=False,
padding_side='left')
profiler.stop('load tokenizer')
tensorrt_llm.logger.info(
f'Load tokenizer takes: {profiler.elapsed_time_in_sec("load tokenizer")} sec'
)
tokenizer.pad_token = tokenizer.eos_token
dataset_openweb = load_dataset("stas/openwebtext-10k",
cache_dir=args.dataset_path)
long_texts = get_long_texts(dataset_openweb) # generator
# get datapoints
try:
datapoints = [
prepare_prompt(next(long_texts)) for i in range(args.max_ite)
]
except StopIteration:
logger.warning(
f"No test data of sufficient length ({args.max_attention_window_size}). Try decreasing the max_attention_window_size parameter"
)
return
if args.test_trt_llm:
config_path = os.path.join(args.engine_dir, 'config.json')
with open(config_path, 'r') as f:
config = json.load(f)
tensorrt_llm_llama = TRTLLaMA(args, config)
trt_llm_summary = []
for ite in range(args.max_ite):
trt_llm_summary.append(
summarize_tensorrt_llm(datapoints[ite], tokenizer,
tensorrt_llm_llama, args)[0])
if runtime_rank == 0:
logger.info(
"---------------------------------------------------------")
logger.info("TRT LLM Generated : ")
logger.info(f" Article : {datapoints[0]}")
logger.info(f"\n Summary : {trt_llm_summary[0]}")
logger.info(
"---------------------------------------------------------")
del tensorrt_llm_llama
test_hf = args.test_hf and runtime_rank == 0 # only run hf on rank 0
if test_hf:
profiler.start('load HF model')
hf_model = AutoModelForCausalLM.from_pretrained(
args.hf_model_location,
torch_dtype=torch.float16,
use_flash_attention_2=True)
profiler.stop('load HF model')
tensorrt_llm.logger.info(
f'Load HF model takes: {profiler.elapsed_time_in_sec("load HF model")} sec'
)
hf_model.cuda()
hf_summary = []
for ite in range(args.max_ite):
hf_summary.append(
summarize_hf(datapoints[ite], tokenizer, hf_model, args)[0])
logger.info("---------------------------------------------------------")
logger.info("HF Generated : ")
logger.info(f" Article : {datapoints[0]}")
logger.info(f"\n Summary : {hf_summary[0]}")
logger.info("---------------------------------------------------------")
# no ground truth, compare with hf
if runtime_rank == 0 and args.test_hf and args.test_trt_llm:
rouge_dir = args.rouge_dir if args.rouge_dir and os.path.exists(
args.rouge_dir) else "rouge"
metric_tensorrt_llm = [
load_metric(rouge_dir) for _ in range(args.num_beams)
]
for i in range(args.num_beams):
metric_tensorrt_llm[i].seed = 0
for ite in range(args.max_ite):
for batch_idx in range(len(trt_llm_summary[0])):
for beam_idx in range(args.num_beams):
metric_tensorrt_llm[beam_idx].add_batch(
predictions=[trt_llm_summary[ite][batch_idx][beam_idx]],
references=[hf_summary[ite][beam_idx][batch_idx]])
for beam_idx in range(args.num_beams):
logger.info(f"TensorRT-LLM beam {beam_idx} result")
computed_metrics_tensorrt_llm = metric_tensorrt_llm[
beam_idx].compute()
for key in computed_metrics_tensorrt_llm.keys():
logger.info(
f' {key} : {computed_metrics_tensorrt_llm[key].mid[2]*100}'
)
if args.check_accuracy and beam_idx == 0:
assert computed_metrics_tensorrt_llm['rouge1'].mid[
2] * 100 > args.tensorrt_llm_rouge1_threshold
if __name__ == '__main__':
args = parse_args()
main(args)