forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
372 lines (316 loc) · 14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
from transformers import AutoModel
from ..._common import default_net
from ..._utils import pad_vocab_size
from ...functional import Tensor, concat, shape
from ...layers import (MLP, Attention, AttentionMaskType, AttentionParams,
ColumnLinear, Embedding, KeyValueCacheParams, LayerNorm,
RmsNorm)
from ...mapping import Mapping
from ...module import Module
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
QuantConfig)
from .config import GLM_ARCH1_VERSIONS, GLM_ARCH2_VERSIONS, ChatGLMConfig
from .convert import load_weights_from_hf_model
class ChatGLMDecoderLayer(Module):
def __init__(self, config: ChatGLMConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.chatglm_version = config.chatglm_version
hidden_size = config.hidden_size
dtype = config.dtype
tp_group = config.mapping.tp_group
tp_size = config.mapping.tp_size
tp_rank = config.mapping.tp_rank
layernorm_epsilon = config.norm_epsilon
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
self.alpha = (2 * config.num_hidden_layers)**0.5
norm_cls = RmsNorm if config.rmsnorm else LayerNorm
if config.chatglm_version == 'glm':
attention_mask_type = AttentionMaskType.bidirectionalglm
elif config.chatglm_version == 'chatglm':
attention_mask_type = AttentionMaskType.bidirectional
elif config.chatglm_version in GLM_ARCH2_VERSIONS:
attention_mask_type = AttentionMaskType.causal
self.input_layernorm = norm_cls(
normalized_shape=hidden_size,
eps=layernorm_epsilon,
elementwise_affine=True,
dtype=dtype,
)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
local_layer_idx = layer_idx - layers_range[0]
self.attention = Attention(
local_layer_idx=local_layer_idx,
hidden_size=hidden_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=config.max_position_embeddings,
num_layers=config.num_hidden_layers,
apply_query_key_layer_scaling=config.apply_query_key_layer_scaling,
attention_mask_type=attention_mask_type,
bias=config.add_qkv_bias,
dense_bias=config.add_bias_linear,
dtype=config.dtype,
position_embedding_type=config.position_embedding_type,
rotary_embedding_base=config.rotary_base,
rotary_embedding_scaling=config.rotary_scaling,
rotary_embedding_percentage=config.rotary_pct,
tp_group=tp_group,
tp_size=tp_size,
tp_rank=tp_rank,
quant_mode=config.quant_mode,
q_scaling=1.0,
cross_attention=False,
relative_attention=False,
max_distance=0,
num_buckets=0,
cp_rank=config.mapping.cp_rank,
cp_size=config.mapping.cp_size,
cp_group=config.mapping.cp_group,
)
mlp_hidden_size = hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
self.mlp = MLP(
hidden_size=hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act=config.hidden_act,
bias=config.add_bias_linear,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=config.quant_mode,
)
self.post_layernorm = norm_cls(
normalized_shape=hidden_size,
eps=layernorm_epsilon,
elementwise_affine=True,
dtype=dtype,
)
def forward(
self,
hidden_states: Tensor,
attention_mask: Tensor = None,
position_ids: Tensor = None, # only used in ChatGLM-6B
use_cache: bool = False,
kv_cache_params: KeyValueCacheParams = None,
attention_params: AttentionParams = None,
):
norm_output = self.input_layernorm(hidden_states)
attention_output = self.attention(
hidden_states=norm_output,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
encoder_output=None,
position_embedding=position_ids,
)
if use_cache:
attention_output, presents = attention_output
if self.chatglm_version == 'chatglm':
residual = norm_output
norm_input = residual * self.alpha + attention_output
norm_output = self.post_layernorm(norm_input)
mlp_output = self.mlp(norm_output)
residual = norm_output
output = residual * self.alpha + mlp_output
else:
residual = norm_output if self.apply_residual_connection_post_layernorm else hidden_states
norm_input = residual + attention_output
norm_output = self.post_layernorm(norm_input)
mlp_output = self.mlp(norm_output)
residual = norm_output if self.apply_residual_connection_post_layernorm else norm_input
output = residual + mlp_output
if use_cache:
return (output, presents)
return output
class ChatGLMModel(Module):
def __init__(self, config: ChatGLMConfig):
super().__init__()
self.chatglm_version = config.chatglm_version
norm_cls = RmsNorm if config.rmsnorm else LayerNorm
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype)
if config.chatglm_version == 'glm':
self.position_embedding = Embedding(
config.max_position_embeddings + 1,
config.hidden_size,
dtype=config.dtype,
)
self.block_embedding = Embedding(
config.max_position_embeddings + 1,
config.hidden_size,
dtype=config.dtype,
)
self.layers = DecoderLayerList(ChatGLMDecoderLayer, config)
self.ln_f = norm_cls(
normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
elementwise_affine=True,
dtype=config.dtype,
)
def forward(
self,
input_ids: Tensor = None,
position_ids: Tensor = None, # only used in ChatGLM-6B
use_cache: bool = False,
attention_mask: Tensor = None,
kv_cache_params: KeyValueCacheParams = None,
attention_params: AttentionParams = None,
):
hidden_states = self.vocab_embedding(input_ids)
if self.chatglm_version == 'glm':
if default_net().plugin_config.remove_input_padding:
position_ids_list = position_ids.split(1, dim=0)
else:
position_ids_list = position_ids.split(1, dim=1)
position_embedding = self.position_embedding(position_ids_list[0])
block_embedding = self.block_embedding(position_ids_list[1])
position_embedding = position_embedding + block_embedding
if default_net().plugin_config.remove_input_padding:
position_embedding = position_embedding.view(
concat([
shape(position_embedding, 1),
shape(position_embedding, 2)
]))
else:
position_embedding = position_embedding.view(
concat([
shape(position_embedding, 0),
shape(position_embedding, 2),
shape(position_embedding, 3),
]))
hidden_states = hidden_states + position_embedding
hidden_states = self.layers(hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
position_ids=position_ids)
if use_cache:
hidden_states, presents = hidden_states
hidden_states = self.ln_f(hidden_states)
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class ChatGLMForCausalLM(DecoderModelForCausalLM):
config_class = ChatGLMConfig
def __init__(self, config: ChatGLMConfig):
transformer = ChatGLMModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
super().__init__(config, transformer, lm_head)
@classmethod
def from_hugging_face(
cls,
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
''' Create a LLaMAForCausalLM object from give parameters
'''
load_model_on_cpu = kwargs.pop('load_model_on_cpu', False)
trust_remote_code = kwargs.pop('trust_remote_code', True)
config = ChatGLMConfig.from_hugging_face(hf_model_or_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
if config.chatglm_version == 'glm':
device_map = 'cuda' if not load_model_on_cpu else 'cpu'
else:
device_map = 'auto' if not load_model_on_cpu else 'cpu'
hf_model = AutoModel.from_pretrained(
hf_model_or_dir,
trust_remote_code=trust_remote_code,
torch_dtype='auto' if config.chatglm_version != 'glm' else getattr(
torch, config.dtype),
device_map=device_map)
weights = load_weights_from_hf_model(hf_model, config)
model = cls(config)
model.load(weights)
return model
@classmethod
def quantize(
cls,
hf_model_dir: str,
output_dir: str,
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
*,
device: str = 'cuda',
calib_dataset: str = 'cnn_dailymail',
calib_batches: int = 512,
calib_batch_size: int = 1,
calib_max_seq_length: int = 512,
random_seed: int = 1234,
tokenizer_max_seq_length: int = 2048,
**kwargs,
):
if quant_config.requires_modelopt_quantization:
# modelopt quantization flow
super().quantize(hf_model_dir,
output_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
device=device,
calib_dataset=calib_dataset,
calib_batches=calib_batches,
calib_batch_size=calib_batch_size,
calib_max_seq_length=calib_max_seq_length,
random_seed=random_seed,
tokenizer_max_seq_length=tokenizer_max_seq_length)
elif quant_config.requires_calibration:
# non-modelopt quantization flow
from . import convert
config = ChatGLMConfig.from_hugging_face(hf_model_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
convert.quantize(hf_model_dir,
output_dir,
config=config,
calib_dataset=calib_dataset,
device=device)
else:
raise ValueError(
f"The quant_config ({quant_config}) does not require calibration, try {cls.__name__}.from_hugging_face instead."
)
def prepare_inputs(self, *args, **kwargs):
"""See `PretrainedModel.prepare_inputs` for the detailed parameter list.
"""
if self.transformer.chatglm_version in GLM_ARCH1_VERSIONS:
position_encoding_2d = True
else:
position_encoding_2d = False
return super().prepare_inputs(*args,
**kwargs,
position_encoding_2d=position_encoding_2d)