forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
241 lines (204 loc) · 9.35 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import Optional, Union
from transformers import AutoModelForCausalLM
from tensorrt_llm.models.llama.model import LLaMAForCausalLM
from tensorrt_llm.models.medusa.weight import load_medusa_hf
from tensorrt_llm.models.qwen.model import QWenForCausalLM
from ..._common import default_net
from ..._utils import pad_vocab_size
from ...functional import ACT2FN, stack
from ...layers import ColumnLinear
from ...mapping import Mapping
from ...module import Module, ModuleList
from ..modeling_utils import PretrainedModel, QuantConfig
from .config import MedusaConfig
from .weight import convert_hf_llama
class MedusaLayer(Module):
def __init__(
self,
hidden_size,
hidden_act="silu",
dtype=None,
mapping=Mapping(),
):
super().__init__()
self.linear = ColumnLinear(hidden_size,
hidden_size,
dtype=dtype,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
gather_output=True)
self.hidden_act = hidden_act
def forward(self, x):
return x + ACT2FN[self.hidden_act](self.linear(x))
class MedusaHead(Module):
def __init__(
self,
num_layers,
hidden_size,
vocab_size,
hidden_act="silu",
dtype=None,
mapping=Mapping(),
):
super().__init__()
self.medusa_layers = ModuleList([
MedusaLayer(hidden_size=hidden_size,
hidden_act=hidden_act,
dtype=dtype,
mapping=mapping) for _ in range(num_layers)
])
self.lm_head = ColumnLinear(hidden_size,
vocab_size,
bias=False,
dtype=dtype,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
gather_output=True)
return
def forward(self, x):
hidden_states = x
for layer in self.medusa_layers:
hidden_states = layer(hidden_states)
return self.lm_head(hidden_states)
# MedusaForCausalLm is a thin wrapper that picks parent class for GenericMedusaForCausalLM.
# All medusa functionality is defined in GenericMedusaForCausalLM.
class MedusaForCausalLm(PretrainedModel):
config_class = MedusaConfig
def __init__(self, config: MedusaConfig):
super().__init__(config)
BaseLM = QWenForCausalLM if hasattr(
config,
"model_type") and "qwen" in config.model_type else LLaMAForCausalLM
class GenericMedusaForCausalLM(BaseLM):
def __init__(self, config: MedusaConfig):
super().__init__(config)
self.num_medusa_heads = config.num_medusa_heads
self.num_medusa_layers = config.num_medusa_layers
self.hidden_size = config.hidden_size
self.vocab_size = config.vocab_size
vocab_size_padded = pad_vocab_size(self.vocab_size,
config.mapping.tp_size)
self.medusa_heads = ModuleList([
MedusaHead(num_layers=self.num_medusa_layers,
hidden_size=config.hidden_size,
vocab_size=vocab_size_padded,
hidden_act=config.hidden_act,
dtype=config.dtype,
mapping=config.mapping)
for _ in range(self.num_medusa_heads)
])
self.max_medusa_token_len = config.max_draft_len
def forward(self, *args, **kwargs):
output_original = True
hidden_states = super().forward(*args, **kwargs)
if kwargs['use_cache']:
if default_net().plugin_config.paged_kv_cache:
lm_logits, hidden_states, _ = hidden_states
else:
lm_logits, presents, hidden_states = hidden_states
if self.mapping.is_last_pp_rank():
medusa_logits = []
for i in range(self.num_medusa_heads):
medusa_logits.append(
self.medusa_heads[i](hidden_states))
# [num_medusa_heads, batch_size, num_medusa_tokens + 1, padded_vocab_size].
# Remove padding [num_medusa_heads, batch_size * num_medusa_tokens + 1, padded_vocab_size].
medusa_logits = stack(medusa_logits, dim=0)
medusa_logits.mark_output('medusa_logits',
self.config.logits_dtype)
else:
hidden_states.mark_output('hidden_states_output',
self.config.dtype)
if kwargs['use_cache'] and default_net(
).plugin_config.paged_kv_cache == False:
if self.mapping.is_last_pp_rank():
if output_original:
return (medusa_logits, lm_logits, presents)
return (medusa_logits, presents)
return (hidden_states, presents)
else:
if self.mapping.is_last_pp_rank():
if output_original:
return medusa_logits, lm_logits
return medusa_logits
return hidden_states
def prepare_inputs(self, *args, **kwargs):
kwargs['speculative_decoding_draft_tokens_external'] = False
kwargs['max_draft_len'] = self.max_medusa_token_len
return super().prepare_inputs(*args, **kwargs)
self.model = GenericMedusaForCausalLM(config)
# Specialization to redirect accesses to self.model
def __getattribute__(self, name):
if name == 'model' or '__' in name:
return object.__getattribute__(self, name)
else:
model = object.__getattribute__(self, 'model')
return model.__getattribute__(name)
# Override specialized __setattr__ defined in Module
def __setattr__(self, name, value) -> None:
object.__setattr__(self, name, value)
@classmethod
def from_hugging_face(
cls,
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
import transformers
assert hf_model_or_dir is not None
speculative_model_dir = kwargs.pop('speculative_model', None)
use_preloading = isinstance(hf_model_or_dir,
transformers.PreTrainedModel)
if use_preloading:
hf_model = hf_model_or_dir
hf_config_or_dir = hf_model.config
else:
hf_model_dir = hf_model_or_dir
hf_config_or_dir = hf_model_or_dir
config = MedusaConfig.from_hugging_face(
hf_config_or_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
speculative_model=speculative_model_dir,
**kwargs)
if not use_preloading:
trust_remote_code = kwargs.pop('trust_remote_code', True)
hf_model = AutoModelForCausalLM.from_pretrained(
hf_model_dir,
torch_dtype="auto",
trust_remote_code=trust_remote_code)
assert isinstance(hf_model, transformers.PreTrainedModel)
weights = convert_hf_llama(hf_model, config.mapping, dtype='float16')
model = cls(config)
config_file = speculative_model_dir / "config.json"
with open(config_file) as fp:
model_config = json.load(fp)
num_medusa_heads = kwargs[
'medusa_num_heads'] if 'medusa_num_heads' in kwargs else model_config.get(
'medusa_num_heads', None)
num_medusa_layers = model_config.get('medusa_num_layers', None)
medusa_weights = load_medusa_hf(medusa_path=speculative_model_dir,
num_medusa_heads=num_medusa_heads,
num_medusa_layers=num_medusa_layers,
mapping=mapping,
dtype="float16")
weights.update(medusa_weights)
model.load(weights)
return model