-
Notifications
You must be signed in to change notification settings - Fork 13
/
utils.py
317 lines (258 loc) · 10 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import pickle
import torch
import torch.nn as nn
import numpy as np
import os
from tqdm import tqdm
from torchvision.utils import save_image
from torch import distributed as dist
from loguru import logger
logging = logger
def set_logger(log_level='info', fname=None):
import logging as _logging
handler = logging.get_absl_handler()
formatter = _logging.Formatter('%(asctime)s - %(filename)s - %(message)s')
handler.setFormatter(formatter)
logging.set_verbosity(log_level)
if fname is not None:
handler = _logging.FileHandler(fname)
handler.setFormatter(formatter)
logging.get_absl_logger().addHandler(handler)
def dct2str(dct):
return str({k: f'{v:.6g}' for k, v in dct.items()})
def get_nnet(name, **kwargs):
if name == 'uvit_t2i_vq':
from libs.uvit_t2i_vq import UViT
return UViT(**kwargs)
elif name == 'uvit_vq':
from libs.uvit_vq import UViT
return UViT(**kwargs)
else:
raise NotImplementedError(name)
def set_seed(seed: int):
if seed is not None:
torch.manual_seed(seed)
np.random.seed(seed)
def get_optimizer(params, name, **kwargs):
if name == 'adam':
from torch.optim import Adam
return Adam(params, **kwargs)
elif name == 'adamw':
from torch.optim import AdamW
return AdamW(params, **kwargs)
else:
raise NotImplementedError(name)
def customized_lr_scheduler(optimizer, warmup_steps=-1):
from torch.optim.lr_scheduler import LambdaLR
def fn(step):
if warmup_steps > 0:
return min(step / warmup_steps, 1)
else:
return 1
return LambdaLR(optimizer, fn)
def get_lr_scheduler(optimizer, name, **kwargs):
if name == 'customized':
return customized_lr_scheduler(optimizer, **kwargs)
else:
raise NotImplementedError(name)
def ema(model_dest: nn.Module, model_src: nn.Module, rate):
param_dict_src = dict(model_src.named_parameters())
for p_name, p_dest in model_dest.named_parameters():
p_src = param_dict_src[p_name]
assert p_src is not p_dest
if 'adapter' not in p_name:
p_dest.data.mul_(rate).add_((1 - rate) * p_src.data)
else:
p_dest.data = p_src.detach().clone()
class TrainState(object):
def __init__(self, optimizer, lr_scheduler, step, nnet=None, nnet_ema=None):
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.step = step
self.nnet = nnet
self.nnet_ema = nnet_ema
def ema_update(self, rate=0.9999):
if self.nnet_ema is not None:
ema(self.nnet_ema, self.nnet, rate)
def save(self, path, adapter_only=False,name=""):
os.makedirs(path, exist_ok=True)
torch.save(self.step, os.path.join(path, 'step.pth'))
if adapter_only:
torch.save(self.nnet.adapter.state_dict(), os.path.join(path, name+'adapter.pth'))
else:
for key, val in self.__dict__.items():
if key != 'step' and val is not None:
torch.save(val.state_dict(), os.path.join(path, f'{key}.pth'))
def make_dict(self,model,state_dict):
state = {}
for k in model.state_dict().keys():
if k in state_dict:
state[k] = state_dict[k].clone()
else:
state[k] = model.state_dict()[k].clone()
return state
def load(self, path):
logging.info(f'load from {path}')
self.step = torch.load(os.path.join(path, 'step.pth'), map_location='cpu')
for key, val in self.__dict__.items():
if key != 'step' and val is not None and key != 'optimizer' and key != 'lr_scheduler':
if key == 'nnet' or key == 'nnet_ema':
val.load_state_dict(self.make_dict(val,torch.load(os.path.join(path, f'{key}.pth'), map_location='cpu')))
else:
val.load_state_dict(torch.load(os.path.join(path, f'{key}.pth'), map_location='cpu'))
def load_adapter(self,path):
logging.info('load adapter from {}'.format(path))
adapter = torch.load(path,map_location='cpu')
keys=['nnet','nnet_ema']
for key in keys:
if key in self.__dict__:
self.__dict__[key].adapter.load_state_dict(adapter)
else:
logging.info('adapter not in state_dict')
def resume(self, ckpt_root,adapter_path=None, step=None):
if not os.path.exists(ckpt_root):
return
if ckpt_root.endswith('.ckpt'):
ckpt_path = ckpt_root
else:
if step is None:
ckpts = list(filter(lambda x: '.ckpt' in x, os.listdir(ckpt_root)))
if not ckpts:
return
steps = map(lambda x: int(x.split(".")[0]), ckpts)
step = max(steps)
ckpt_path = os.path.join(ckpt_root, f'{step}.ckpt')
logging.info(f'resume from {ckpt_path}')
self.load(ckpt_path)
if adapter_path is not None:
self.load_adapter(adapter_path)
def to(self, device):
for key, val in self.__dict__.items():
if isinstance(val, nn.Module):
val.to(device)
def freeze(self):
self.nnet.requires_grad_(False)
for name, p in self.nnet.named_parameters():
if 'adapter' in name:
p.requires_grad_(True)
def cnt_params(model):
return sum(param.numel() for param in model.parameters())
def initialize_train_state(config, device):
params = []
nnet = get_nnet(**config.nnet)
params += nnet.adapter.parameters()
nnet_ema = get_nnet(**config.nnet)
nnet_ema.eval()
logging.info(f'nnet has {cnt_params(nnet)} parameters')
optimizer = get_optimizer(params, **config.optimizer)
lr_scheduler = get_lr_scheduler(optimizer, **config.lr_scheduler)
train_state = TrainState(optimizer=optimizer, lr_scheduler=lr_scheduler, step=0,
nnet=nnet, nnet_ema=nnet_ema)
train_state.ema_update(0)
train_state.to(device)
return train_state
def amortize(n_samples, batch_size):
k = n_samples // batch_size
r = n_samples % batch_size
return k * [batch_size] if r == 0 else k * [batch_size] + [r]
def sample2dir(accelerator, path, n_samples, mini_batch_size, sample_fn, unpreprocess_fn=None, dist=True):
if path:
os.makedirs(path, exist_ok=True)
idx = 0
batch_size = mini_batch_size * accelerator.num_processes if dist else mini_batch_size
for _batch_size in tqdm(amortize(n_samples, batch_size), disable=not accelerator.is_main_process, desc='sample2dir'):
samples = unpreprocess_fn(sample_fn(mini_batch_size))
if dist:
samples = accelerator.gather(samples.contiguous())[:_batch_size]
if accelerator.is_main_process:
for sample in samples:
save_image(sample, os.path.join(path, f"{idx}.png"))
idx += 1
def grad_norm(model):
total_norm = 0.
for p in model.parameters():
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
return total_norm
from collections import defaultdict, deque
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter=" "):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def add_meter(self, name, meter):
self.meters[name] = meter
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
from torch import inf
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(
torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm