-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbenchmark_tensorflow.py
126 lines (98 loc) · 4.95 KB
/
benchmark_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
import time
import argparse
def vgg16(inputs, num_classes, batch_size):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(0.0, 0.01)):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], padding="SAME", scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], padding="SAME", scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], padding="SAME", scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], padding="SAME", scope='conv4')
net = slim.max_pool2d(net, [2, 2], scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], padding="SAME", scope='conv5')
net = slim.max_pool2d(net, [2, 2], scope='pool5')
net = tf.reshape(net, (batch_size, 7 * 7 * 512))
net = slim.fully_connected(net, 4096, scope='fc6')
net = slim.dropout(net, 0.5, scope='dropout6')
net = slim.fully_connected(net, 4096, scope='fc7')
net = slim.dropout(net, 0.5, scope='dropout7')
net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc8')
return net
def train_slim(batch_size, height, width, num_classes, learning_rate):
"""Built-in slim training schedule"""
# number of iterations
n = 100
logdir = None # Don't store checkpoints
with tf.Session():
train_inputs = tf.random_uniform((batch_size, height, width, 3))
labels = tf.one_hot(np.arange(batch_size), on_value=1.0, off_value=0.0, depth=num_classes)
predictions = vgg16(train_inputs, num_classes, batch_size)
loss = slim.losses.softmax_cross_entropy(predictions, labels)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = slim.learning.create_train_op(loss, optimizer)
t0 = time.time()
slim.learning.train(
train_op,
logdir,
number_of_steps=n,
save_summaries_secs=3000,
save_interval_secs=6000)
t1 = time.time()
print("Batch size: %d" % (batch_size))
print("Iterations: %d" % (n))
print("Time per iteration: %7.3f ms" % ((t1 - t0) * 1000 / n))
def train_pure_tf(batch_size, height, width, num_classes, learning_rate):
"""pure tensorflow training schedule, possibly with less overhead than slim"""
# number of iterations
n = 100
with tf.Graph().as_default(), tf.device('/gpu:0'):
train_inputs = tf.random_uniform((batch_size, height, width, 3))
labels = tf.one_hot(np.arange(batch_size), on_value=1.0, off_value=0.0, depth=num_classes)
# Predictions
predictions = vgg16(train_inputs, num_classes, batch_size)
# Loss function
loss = slim.losses.softmax_cross_entropy(predictions, labels)
# Optimizer
opt = tf.train.GradientDescentOptimizer(learning_rate)
# Calculate the gradients for the batch of data
grads = opt.compute_gradients(loss)
# Apply the gradients to adjust the shared variables.
apply_gradient_op = opt.apply_gradients(grads)
# Run a session
with tf.Session() as sess:
# Build an initialization operation to run below.
init = tf.initialize_all_variables()
sess.run(init)
# warmup run (generally the first run is much slower than the others)
sess.run([apply_gradient_op])
t0 = time.time()
for i in range(n):
tstart = time.time()
sess.run([apply_gradient_op])
tend = time.time()
print("Iteration: %d train on batch time: %7.3f ms." % (i, (tend - tstart) * 1000))
t1 = time.time()
print("Batch size: %d" % (batch_size))
print("Iterations: %d" % (n))
print("Time per iteration: %7.3f ms" % ((t1 - t0) * 1000 / n))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--train_schedule", default="pure_tf")
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--height", type=int, default=224)
parser.add_argument("--width", type=int, default=224)
parser.add_argument("--num_classes", type=int, default=1000)
parser.add_argument("--learning_rate", type=float, default=0.1)
args = parser.parse_args()
if args.train_schedule == "slim":
train_slim(args.batch_size, args.height, args.width, args.num_classes, args.learning_rate)
elif args.train_schedule == "pure_tf":
train_pure_tf(args.batch_size, args.height, args.width, args.num_classes, args.learning_rate)
else:
print("Train schedule must be slim or pure_tf")