-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
152 lines (119 loc) · 4.93 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
actions = os.listdir('keypoint_data')
def lstm_v1(device_name):
with tf.device(device_name):
model = Sequential()
model.add(LSTM(64, return_sequences=True, activation='relu', input_shape=(30, 150)))
model.add(LSTM(128, return_sequences=True, activation='relu'))
model.add(LSTM(128, return_sequences=True, activation='relu'))
model.add(LSTM(256, return_sequences=False, activation='relu'))
model.add(Dense(512, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(len(actions), activation='softmax'))
return model
def lstm_v2(device_name):
with tf.device(device_name):
model = Sequential()
model.add(LSTM(64, return_sequences=True, activation='relu', input_shape=(30, 150)))
model.add(LSTM(128, return_sequences=True, activation='relu'))
model.add(LSTM(128, return_sequences=True, activation='relu'))
model.add(LSTM(256, return_sequences=True, activation='relu'))
model.add(LSTM(256, return_sequences=False, activation='relu'))
model.add(Dense(512, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(len(actions), activation='softmax'))
return model
def lstm_v3(device_name):
with tf.device(device_name):
model = Sequential()
model.add(LSTM(64, return_sequences=True, input_shape=(30, 150)))
model.add(LSTM(256, return_sequences=True))
model.add(LSTM(128, return_sequences=False))
model.add(Dense(1024, activation='relu'))
model.add(Dense(512, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(len(actions), activation='softmax'))
return model
def transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout=0.1):
# Normalization and Attention
x = layers.LayerNormalization(epsilon=1e-6)(inputs)
x = layers.MultiHeadAttention(
key_dim=head_size, num_heads=num_heads, dropout=dropout
)(x, x)
x = layers.Dropout(dropout)(x)
res = x + inputs
# Feed Forward Part
x = layers.LayerNormalization(epsilon=1e-6)(res)
x = layers.Conv1D(filters=ff_dim, kernel_size=1, activation="relu")(x)
x = layers.Dropout(dropout)(x)
x = layers.Conv1D(filters=inputs.shape[-1], kernel_size=1)(x)
return x + res
def transformer(
input_shape=(30, 150),
output_shape=len(actions),
head_size=512,
num_heads=4,
ff_dim=4,
num_transformer_blocks=4,
mlp_units=[128],
dropout=0.1,
mlp_dropout=0.1,
):
inputs = keras.Input(shape=input_shape)
x = inputs
for _ in range(num_transformer_blocks):
x = transformer_encoder(x, head_size, num_heads, ff_dim, dropout)
x = layers.GlobalAveragePooling1D(data_format="channels_first")(x)
for dim in mlp_units:
x = layers.Dense(dim, activation="relu")(x)
x = layers.Dropout(mlp_dropout)(x)
outputs = layers.Dense(output_shape, activation="softmax")(x)
return keras.Model(inputs, outputs)
def compile_model(model):
adam = tf.keras.optimizers.Adam(3e-4)
model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['categorical_accuracy'])
return model
def load_model(name='lstm_v3', pretrained=False, training=True, device=None):
if not pretrained:
if name == 'lstm_v1':
model = lstm_v1(device)
if training:
return compile_model(model)
else:
return model
if name == 'lstm_v2':
model = lstm_v2(device)
if training:
return compile_model(model)
else:
return model
if name == 'lstm_v3':
model = lstm_v3(device)
if training:
return compile_model(model)
else:
return model
if name == 'transformer':
model = transformer()
if training:
return compile_model(model)
else:
return model
model_dir = os.path.join('models', name)
model_path = [os.path.join(model_dir, _) for _ in os.listdir(model_dir) if _.endswith(r".h5")][0]
print(f"Loading Model from : {model_path}")
model = tf.keras.models.load_model(model_path)
if training:
return compile_model(model)
else:
return model