-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcntk_expansion.py
228 lines (183 loc) · 8.52 KB
/
cntk_expansion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import autograd.numpy as np
import autograd.numpy.linalg as LA
import cntk as C
from autograd import elementwise_grad, grad, jacobian, holomorphic_grad
from autograd.scipy.stats import multivariate_normal
from cntk import output_variable
from cntk.ops.functions import UserFunction
def __cntk_dot__(x, y):
return C.reduce_sum(C.element_times(x, y))
C.dot = __cntk_dot__
def __cntk_cov__(m, rowvar: bool = False):
if len(m.shape) > 2:
raise ValueError('m has more than 2 dimensions')
if len(m.shape) < 2:
m = C.reshape(m, (1, -1))
if not rowvar and m.shape[0] != 1:
m = C.transpose(m, [1, 0])
fact = 1.0 / (m.shape[1] - 1)
m -= C.reduce_mean(m, axis=1)
mt = C.transpose(m, [1, 0])
return fact * C.squeeze(m@mt)
C.cov = __cntk_cov__
def __cntk_cov2__(m):
m = C.reshape(m, -1)
m = C.unpack_batch(m)
m = C.transpose(m, [1, 0])
count = C.reduce_sum(C.reduce_mean(C.ones_like(m), axis=0))
fact = 1.0 / (count - 1)
m -= C.reduce_mean(m, axis=1)
mt = C.transpose(m, [1, 0])
return fact * C.squeeze(m@mt)
C.cov2 = __cntk_cov2__
def __cntk_trace__(m):
if len(m.shape) != 2:
raise RuntimeError(f'{m.shape} is not 2 dims')
if m.shape[0] != m.shape[1]:
raise RuntimeError(f'{m.shape} is different size')
_dim = m.shape[0]
_identity_matrix = C.Constant(np.eye(_dim))
return C.reduce_sum(m*_identity_matrix)
C.trace = __cntk_trace__
class __cntk_class_det__(UserFunction):
def __init__(self, arg, name:str='__cntk_class_det__'):
super(__cntk_class_det__, self).__init__([arg], name=name)
func = 'elementwise_grad' # 'grad' # 'jacobian' #
if func == 'grad':
func = grad
elif func == 'elementwise_grad':
func = elementwise_grad
elif func == 'jacobian':
func = jacobian
self.grad = func(LA.det)
def forward(self, argument, device=None, output_to_retain=None):
return argument, LA.det(argument)
def backward(self, state, root_gradients):
arg = state
return root_gradients.reshape(root_gradients.shape+(1, 1)) * np.ascontiguousarray(self.grad(arg))
def infer_outputs(self):
return [output_variable((), self.inputs[0].dtype, self.inputs[0].dynamic_axes)]
@staticmethod
def deserialize(inputs, name, state):
return __cntk_class_det__(inputs[0], name)
def __cntk_det__(m):
return C.user_function(__cntk_class_det__(m))
C.det = __cntk_det__
class __cntk_class_slogdet__(UserFunction):
def __init__(self, arg, name:str='__cntk_class_slogdet__'):
super(__cntk_class_slogdet__, self).__init__([arg], name=name)
func = 'elementwise_grad' # 'grad' # 'jacobian' #
if func == 'grad':
func = grad
elif func == 'elementwise_grad':
func = elementwise_grad
elif func == 'jacobian':
func = jacobian
self.grad = func(LA.slogdet)
def forward(self, argument, device=None, output_to_retain=None):
return argument, np.ascontiguousarray(np.stack(LA.slogdet(argument)).T)
def backward(self, state, root_gradients): # 수정 필요
arg = state
# # from IPython import embed;embed()
# if len(root_gradients.shape) == 1:
# root_gradients = root_gradients.reshape(1,-1)
# root_grad_logdet = root_gradients[:, 1] # logdet of slogdet
# return root_grad_logdet.reshape(root_grad_logdet.shape+(1,1)) * np.ascontiguousarray(self.grad(arg))
return root_gradients.reshape(root_gradients.shape+(1,)) * np.ascontiguousarray(self.grad(arg))
def infer_outputs(self): # 수정 필요
return [output_variable((2), self.inputs[0].dtype, self.inputs[0].dynamic_axes)]
# return [output_variable((1), self.inputs[0].dtype, self.inputs[0].dynamic_axes),
# output_variable((1), self.inputs[0].dtype, self.inputs[0].dynamic_axes)]
@staticmethod
def deserialize(inputs, name, state):
return __cntk_class_slogdet__(inputs[0], name)
def __cntk_slogdet__(m):
return C.user_function(__cntk_class_slogdet__(m))
C.slogdet = __cntk_slogdet__
# class MySigmoid(UserFunction):
# def __init__(self, arg, name='MySigmoid'):
# super(MySigmoid, self).__init__([arg], name=name)
# self.sigmoid = lambda x: 1 / (1 + np.exp(-x))
# self.grad = grad(self.sigmoid)
# def forward(self, argument, device=None, outputs_to_retain=None):
# return argument, self.sigmoid(argument)
# def backward(self, state, root_gradients):
# argument = state
# return root_gradients * self.grad(argument)
# def infer_outputs(self):
# return [output_variable(self.inputs[0].shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes)]
# @staticmethod
# def deserialize(inputs, name, state):
# return MySigmoid(inputs[0], name)
class __cntk_class_mvn_pdf__(UserFunction):
def __init__(self, X, loc, scale, name: str = '__cntk_class_mvn_pdf__'):
super(__cntk_class_mvn_pdf__, self).__init__([X, loc, scale], name=name)
self.mvn_pdf = multivariate_normal.pdf
func = 'elementwise_grad' # 'jacobian' # 'grad' #
if func == 'grad':
self.grad = grad(self.mvn_pdf)
elif func == 'elementwise_grad':
self.grad = elementwise_grad(self.mvn_pdf)
elif func == 'jacobian':
self.grad = jacobian(self.mvn_pdf)
else:
raise ValueError('unknown function name:'+str(func))
def forward(self, arguments, device=None, outputs_to_retain=None):
x, loc, scale = arguments
return arguments, self.mvn_pdf(x, loc, scale).astype(np.float32).reshape(-1, 1)
def backward(self, state, root_gradients, variables):
x, loc, scale = state
_grad = root_gradients * np.ascontiguousarray(self.grad(x, loc, scale).astype(np.float32))
for k in variables:
variables[k] = _grad
def infer_outputs(self):
return [output_variable((1), self.inputs[0].dtype, self.inputs[0].dynamic_axes)]
# return [output_variable((), self.inputs[0].dtype, self.inputs[0].dynamic_axes)]
@staticmethod
def deserialize(inputs, name, state):
return __cntk_class_mvn_pdf__(inputs[0], inputs[1], inputs[2], name)
def __cntk_mvn_pdf__(mu, sig, func: str = 'grad'):
@C.Function
def _(x): return C.user_function(__cntk_class_mvn_pdf__(x, mu, sig))
return _
C.mvn_pdf = __cntk_mvn_pdf__
class __cntk_class_mvn_log_prob__(UserFunction):
def __init__(self, X, loc, scale, name: str = '__cntk_class_mvn_log_prob__'):
super(__cntk_class_mvn_log_prob__, self).__init__([X, loc, scale], name=name)
self.log_prob = multivariate_normal.logpdf
func = 'elementwise_grad' # 'jacobian' # 'holomorphic_grad' # 'grad' #
if func == 'grad':
self.grad = grad(self.log_prob)
elif func == 'elementwise_grad':
self.grad = elementwise_grad(self.log_prob)
elif func == 'jacobian':
self.grad = jacobian(self.log_prob)
elif func == 'holomorphic_grad':
self.grad = holomorphic_grad(self.log_prob)
else:
raise ValueError('unknown function name:'+str(func))
def forward(self, arguments, device=None, outputs_to_retain=None):
x, loc, scale = arguments
return arguments, self.log_prob(x, loc, scale).astype(np.float32).reshape(-1, 1)
def backward(self, state, root_gradients, variables):
x, loc, scale = state
_grad = root_gradients * np.ascontiguousarray(self.grad(x, loc, scale).astype(np.float32))
for k in variables:
variables[k] = _grad
def infer_outputs(self):
return [output_variable((1), self.inputs[0].dtype, self.inputs[0].dynamic_axes)]
@staticmethod
def deserialize(inputs, name, state):
return __cntk_class_mvn_log_prob__(inputs[0], inputs[1], inputs[2], name)
def __cntk_mvn_log_prob__(mu, sig, func: str = 'grad'):
@C.Function
def _(x): return C.user_function(__cntk_class_mvn_log_prob__(x, mu, sig))
return _
C.mvn_log_prob = __cntk_mvn_log_prob__
if __name__ == '__main__':
q = C.mvn_pdf(C.constant([0, 0]), C.constant([[1, 0], [0, 1]]))(C.input_variable(2, needs_gradient=True))
q.eval({q.arguments[0]:np.random.normal(size=(100, 2))})
q.grad({q.arguments[0]:np.random.normal(size=(100, 2))})
q = C.slogdet(C.input_variable((2,2),needs_gradient=True))
q.eval({q.arguments[0]:np.array([[[1,2],[3,4]]]*3,np.float32).reshape(3,2,2)})
q.grad({q.arguments[0]:np.array([[[1,2],[3,4]]]*3,np.float32).reshape(3,2,2)})