-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
99 lines (80 loc) · 3.67 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from typing import Optional
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import json
import numpy as np
import glob
import os
def collect_first_best(pattern: str, neg: Optional[str] = None):
files = []
for file in sorted(glob.glob(pattern), reverse=True):
if neg and neg in file:
continue
files.append(file)
figures = []
for file in files:
title = os.path.split(file)[1].split('.')[0]
df1 = pd.read_csv(file)
figures.append(px.box(df1, x="map_name", y="counts",
color="algo_type",
notched=True, title=title))
return figures
def collect_line_plots(pattern: str, neg: Optional[str] = None):
files = []
for file in sorted(glob.glob(pattern), reverse=True):
if neg and neg in file:
continue
files.append(file)
lineplots = []
for file in files:
with open(file) as f:
data = json.loads(f.readline().rstrip('\n'))
title = os.path.split(file)[1].split('.')[0]
fig = go.Figure()
fig.update_layout(dict(title=title))
for map_name, counts in data.items():
uniform_mean = np.array(counts['uniform']['mean'])
uniform_std = np.array(counts['uniform']['std'])
y_u1 = (uniform_mean - uniform_std).tolist()
y_u2 = (uniform_mean + uniform_std).tolist()
roi_mean = np.array(counts['roi']['mean'])
roi_std = np.array(counts['roi']['std'])
y_r1 = (roi_mean - 0.5 * roi_std).tolist()
y_r2 = (roi_mean + roi_std).tolist()
x1 = list(range(len(uniform_mean)))
x2 = list(range(len(roi_mean)))
fig.add_trace(go.Scatter(x=x1 + x1[::-1], y=y_u1 + y_u2[::-1], fill='toself', name='RRT*-uniform_' + map_name))
fig.add_trace(go.Scatter(x=x2 + x2[::-1], y=y_r1 + y_r2[::-1], fill='toself', name='RRT*-roi_' + map_name))
#fig.add_trace(go.Scatter(x=x1, y=uniform_mean, name='RRT*-uniform_' + map_name))
#fig.add_trace(go.Scatter(x=x2, y=roi_mean, name='RRT*-roi_' + map_name))
fig.update_traces(mode='lines')
lineplots.append(fig)
return lineplots
figures = collect_first_best('logs/collected_stats_gan*.csv')
figures.extend(collect_first_best('logs/collected_stats_pix2pix*.csv'))
figures.extend(collect_first_best('logs/gan*.csv', neg='moving_ai'))
figures.extend(collect_first_best('logs/pix2pix*.csv', neg='moving_ai'))
figures.extend(collect_first_best('logs/gan_moving_ai*.csv'))
figures.extend(collect_first_best('logs/pix2pix_moving_ai*.csv'))
lineplots = collect_line_plots('logs/collected_stats_gan*.plot')
lineplots.extend(collect_line_plots('logs/collected_stats_pix2pix*.plot'))
lineplots.extend(collect_line_plots('logs/gan*.plot', neg='moving_ai'))
lineplots.extend(collect_line_plots('logs/pix2pix*.plot', neg='moving_ai'))
lineplots.extend(collect_line_plots('logs/gan_moving_ai*.plot'))
lineplots.extend(collect_line_plots('logs/pix2pix_moving_ai*.plot'))
with open('box_plots.html', 'w') as f:
for fig in figures:
f.write(fig.to_html(full_html=False, include_plotlyjs='cdn'))
with open('line_plots.html', 'w') as f:
for line in lineplots:
f.write(line.to_html(full_html=False, include_plotlyjs='cdn'))
app = dash.Dash(__name__)
app.layout = html.Div([
html.Div([dcc.Graph(figure=fig) for fig in figures]),
html.Div([dcc.Graph(figure=lineplot) for lineplot in lineplots])
])
app.run_server(debug=True)"