-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
589 lines (452 loc) · 25.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import asyncio, time, os, json, timeit, logging, sys
import websockets, requests, aiohttp, bisect, math
import numpy as np
from decimal import Decimal, getcontext
from collections import deque, defaultdict
from PyQt6 import QtCore, QtWidgets, QtWebSockets
from PyQt6.QtNetwork import QNetworkRequest, QNetworkAccessManager
import pyqtgraph as pg
from PyQt6.QtGui import QBrush, QColor, QStandardItem, QStandardItemModel, QFont
from PyQt6.QtWidgets import QFrame, QTableWidgetItem, QTableWidget, QTableView, QAbstractItemView, QLabel, QVBoxLayout
import pyqtgraph.opengl as gl
logging.basicConfig(filename='/Users/berkes/regress/fa_oct.log', filemode='w', format='%(asctime)s - %(message)s', level=logging.INFO)
url_depth_ss = "https://fapi.binance.com/fapi/v1/depth?symbol=BTCUSDT&limit=500"
async def calculate_liquidity(order_book):
bid_volumes = round(np.sum([x[1] for x in order_book['bids']]))
ask_volumes = round(np.sum([x[1] for x in order_book['asks']]))
skew = round(np.log(bid_volumes) - np.log(ask_volumes), 3)
imbalance = round((bid_volumes - ask_volumes) / (bid_volumes + ask_volumes), 3)
price_range = ((order_book['asks'][-1][0] - order_book['bids'][-1][0]) / order_book['bids'][0][0])*100
print("\nPrice range: ", round(price_range, 3), "%")
print("Sum of bids: ", round(np.sum([x[1] for x in order_book['bids']])), "Sum of asks: ", round(np.sum([x[1] for x in order_book['asks']])))
print("Skew: ", skew, "\nImb: ", imbalance)
#print(len(order_book['bids']), len(order_book['asks']))
#print("\n", order_book['bids'][:5], order_book['asks'][:5])
async def get_mark_price():
async with aiohttp.ClientSession() as session:
async with session.get("https://fapi.binance.com/fapi/v1/premiumIndex?symbol=BTCUSDT") as response:
data = await response.json()
mark_price = float(data['markPrice'])
funding_rate = round(float(data['lastFundingRate'])*100, 4)
return mark_price, funding_rate
async def get_exchange_info():
async with aiohttp.ClientSession() as session:
async with session.get("https://fapi.binance.com/fapi/v1/exchangeInfo") as response:
data = await response.json()
print(f"Getting tick size for BTCUSDT...")
symbol_info = [s for s in data['symbols'] if s['symbol'] == "BTCUSDT"]
if symbol_info:
tick_size = float(symbol_info[0]['filters'][0]['tickSize'])
else:
tick_size = None
return tick_size
async def get_depth_snapshot(session):
async with session.get(url_depth_ss) as response:
data = await response.json()
return data
async def update_order_book(bids, asks, new_bids, new_asks):
best_bid_price = bids[0][0]
new_bids = new_bids[new_bids['price'] >= best_bid_price*0.999]
new_asks = new_asks[new_asks['price'] <= best_bid_price*1.001]
_, idx_order, idx_new = np.intersect1d(bids['price'], new_bids['price'], return_indices=True)
valid_idx_new = idx_new[idx_new < len(new_bids)]
valid_idx_order = idx_order[idx_new < len(new_bids)]
bids['quantity'][valid_idx_order] = new_bids['quantity'][valid_idx_new]
new_price_levels = np.setdiff1d(new_bids['price'], bids['price'])
bids = np.concatenate((bids, new_bids[np.isin(new_bids['price'], new_price_levels)]))
bids = bids[bids['quantity'] != 0]
bids = np.sort(bids, order=['price'])[::-1]
_, idx_order, idx_new = np.intersect1d(asks['price'], new_asks['price'], return_indices=True)
valid_idx_new = idx_new[idx_new < len(new_asks)]
valid_idx_order = idx_order[idx_new < len(new_asks)]
asks['quantity'][valid_idx_order] = new_asks['quantity'][valid_idx_new]
new_price_levels = np.setdiff1d(new_asks['price'], asks['price'])
asks = np.concatenate((asks, new_asks[np.isin(new_asks['price'], new_price_levels)]))
asks = asks[asks['quantity'] != 0]
asks = np.sort(asks, order=['price'])
return bids, asks
class OrderBook:
def __init__(self, bids, asks):
self.order_book = self.initialize_order_book(bids, asks)
def initialize_order_book(self, bids, asks):
bids_array = np.array([tuple(map(float, bid)) for bid in bids], dtype=np.dtype([('price', float), ('quantity', float)]))
asks_array = np.array([tuple(map(float, ask)) for ask in asks], dtype=np.dtype([('price', float), ('quantity', float)]))
return {'bids': bids_array, 'asks': asks_array}
async def refresh_order_book(self, session):
while True:
data = await get_depth_snapshot(session)
data_b_filtered = [item for item in data['bids'] if float(item[0]) >= float(data['bids'][0][0])*0.999]
data_a_filtered = [item for item in data['asks'] if float(item[0]) <= float(data['bids'][0][0])*1.001]
self.order_book = self.initialize_order_book(data_b_filtered, data_a_filtered)
await asyncio.sleep(3)
async def update_order_book(self, new_bids, new_asks):
#start_time = timeit.default_timer()
new_bids = np.array([tuple(map(float, bid)) for bid in new_bids], dtype=np.dtype([('price', float), ('quantity', float)]))
new_asks = np.array([tuple(map(float, ask)) for ask in new_asks], dtype=np.dtype([('price', float), ('quantity', float)]))
self.order_book['bids'], self.order_book['asks'] = await update_order_book(
self.order_book['bids'], self.order_book['asks'], new_bids, new_asks)
#elapsed = timeit.default_timer() - start_time
#logging.info(f"Elapsed time for 'update_order_book': {elapsed}, {len(self.order_book['bids'])} bids, {len(self.order_book['asks'])} asks.")
class Trades:
def __init__(self, buffer_time):
self.buffer_time = buffer_time * 60 * 1000
self.trades_buffer = deque()
async def remove_old_trades(self):
while True:
#start_time = timeit.default_timer()
while self.trades_buffer and self.trades_buffer[0]['T'] < time.time() * 1000 - self.buffer_time:
self.trades_buffer.popleft()
if self.returns:
self.returns.popleft()
#elapsed = timeit.default_timer() - start_time
#logging.info(f"Elapsed time for remove_old_trades': {elapsed}, {len(self.trades_buffer)} trades in buffer.")
await asyncio.sleep(2)
async def ws_handler(symbol, data_signal):
async with aiohttp.ClientSession() as session:
async with session.get(url_depth_ss) as response:
uri = f"wss://fstream.binance.com/stream?streams={symbol}@depth@100ms/{symbol}@aggTrade"
tick_size = await get_exchange_info()
last_mark_price, funding_rate = await get_mark_price()
data = await response.json()
lastUpdateId = data['lastUpdateId']
order_book = OrderBook(data['bids'], data['asks'])
aggr_trades = Trades(0.5)
asyncio.create_task(aggr_trades.remove_old_trades())
asyncio.create_task(order_book.refresh_order_book(session))
#asyncio.create_task(aggr_trades.calculate_returns())
is_first_event = True
async with websockets.connect(uri) as websocket:
while True:
event_data = json.loads(await websocket.recv())
if event_data['stream'] == "btcusdt@depth@100ms":
try:
stream = event_data['data']
final_id = stream['u']
first_id = stream['U']
previous_final_id = stream['pu']
if final_id < lastUpdateId:
continue
if is_first_event:
if first_id <= lastUpdateId and final_id >= lastUpdateId:
print("\nFirst processed event succeed.")
is_first_event = False
else:
print("\nOut of sync at the first event, reinitializing order book...")
data = await get_depth_snapshot(session)
await order_book.update_order_book(data['bids'], data['asks'])
lastUpdateId = data['lastUpdateId']
continue
elif previous_final_id != lastUpdateId:
print("\nOut of sync, reinitializing order book...")
data = await get_depth_snapshot(session)
await order_book.update_order_book(data['bids'], data['asks'])
lastUpdateId = data['lastUpdateId']
continue
asyncio.create_task(order_book.update_order_book(stream['b'], stream['a']))
lastUpdateId = final_id
update_time = stream['E']
#await calculate_liquidity(order_book.order_book)
trades_buffer_emit = aggr_trades.trades_buffer.copy()
data_signal.emit(update_time, order_book.order_book['bids'], order_book.order_book['asks'], trades_buffer_emit)
aggr_trades.trades_buffer.clear()
except Exception as e:
print(f"An error occurred: {e}")
raise e
elif event_data['stream'] == "btcusdt@aggTrade":
try:
trade_record = (event_data['data']['a'] ,event_data['data']['T'], float(event_data['data']['p']), float(event_data['data']['q']), event_data['data']['m'])
aggr_trades.trades_buffer.append(trade_record)
except Exception as e:
print(f"An error occurred: {e}")
break
class AsyncThread(QtCore.QThread):
data_signal = QtCore.pyqtSignal(object, object, object, object)
def __init__(self, loop):
QtCore.QThread.__init__(self)
self.loop = loop
def run(self):
self.loop.run_until_complete(ws_handler("btcusdt", self.data_signal))
class AggregatorThread(QtCore.QThread):
aggregated_data_signal = QtCore.pyqtSignal(object, object, object, object, object)
def __init__(self):
QtCore.QThread.__init__(self)
self.bids = None
self.asks = None
self.trades_buffer = None
self.buys = defaultdict(int)
self.sells = defaultdict(int)
self.processed_trades = set()
@QtCore.pyqtSlot(object, object, object, object)
def update_data(self, update_time, bids, asks, trades_buffer):
self.bids = bids
self.asks = asks
self.trades_buffer = trades_buffer
self.start()
def run(self):
bids, asks, buys, sells, price_bins = self.perform_aggregation(self.bids, self.asks, self.trades_buffer)
self.aggregated_data_signal.emit(bids, asks, buys, sells, price_bins)
def perform_aggregation(self, bids, asks, trades_buffer):
bids_bins = np.arange(round(min(bids['price'])), round(max(bids['price'])) + 2, 1)
asks_bins = np.arange(round(min(asks['price'])) - 1, round(max(asks['price'])) + 1, 1)
bids_bin_indices = np.digitize(bids['price'], bids_bins)
asks_bin_indices = np.digitize(asks['price'], asks_bins)
bids_binned_quantities = np.bincount(bids_bin_indices, weights=bids['quantity'])
asks_binned_quantities = np.bincount(asks_bin_indices, weights=asks['quantity'])
bids_binned = np.array([(price, quantity) for price, quantity in zip(bids_bins, bids_binned_quantities)], dtype=np.dtype([('price', float), ('quantity', float)]))
asks_binned = np.array([(price, quantity) for price, quantity in zip(asks_bins, asks_binned_quantities)], dtype=np.dtype([('price', float), ('quantity', float)]))
price_bins = np.concatenate((bids_bins, asks_bins))
price_bins = np.flip(np.unique(price_bins))
### trade_id, trade_time, trade_price, trade_quantity, is_sell = trade ##
for trade in trades_buffer:
trade_id = trade[0]
if trade_id not in self.processed_trades:
self.processed_trades.add(trade_id)
rounded_price = round(trade[2] + 0.5)
scaled_quantity = int(trade[3] * 1000)
if trade[4] == True:
self.sells[rounded_price] += scaled_quantity
else:
self.buys[rounded_price] += scaled_quantity
return bids_binned, asks_binned, self.buys, self.sells, price_bins
### DOM Table ###
class ColorfulModel(QStandardItemModel):
def data(self, index, role=QtCore.Qt.ItemDataRole.DisplayRole):
value = super().data(index, role)
if role == QtCore.Qt.ItemDataRole.BackgroundRole:
value = super().data(index, QtCore.Qt.ItemDataRole.EditRole)
column = index.column()
if value is not None:
return self.set_color_gradient(float(value), column)
if role == QtCore.Qt.ItemDataRole.ForegroundRole:
value = super().data(index, QtCore.Qt.ItemDataRole.EditRole)
column = index.column()
if value is not None:
if column == 2:
return QColor(135, 135, 135)
if float(value) == 0:
return QColor(23, 22, 22, 0)
if role == QtCore.Qt.ItemDataRole.FontRole:
column = index.column()
if column == 2:
font = QFont("Helvetica", 17, QFont.Weight.Bold)
return font
if role == QtCore.Qt.ItemDataRole.TextAlignmentRole:
column = index.column()
if column == 2:
return QtCore.Qt.AlignmentFlag.AlignCenter
return super().data(index, role)
def set_color_gradient(self, value, column):
threshold = 30
color = QColor(255, 255, 255, 0)
if value > 0:
if column == 0:
if value > threshold*2:
color = QColor(0, 255, 0, 120)
elif value > threshold:
color = QColor(0, 255, 0, 60)
elif value > threshold/2:
color = QColor(0, 255, 0, 20)
elif value > threshold/5:
color = QColor(0, 255, 0, 5)
elif column == 1:
if value > threshold*2:
color = QColor(255, 0, 100, 120)
elif value > threshold:
color = QColor(255, 0, 100, 60)
elif value > threshold/2:
color = QColor(255, 0, 100, 20)
elif value > threshold/5:
color = QColor(255, 0, 100, 5)
elif column == 3:
if value > threshold*2:
color = QColor(0, 255, 200, 120)
elif value > threshold:
color = QColor(0, 255, 200, 60)
elif value > threshold/2:
color = QColor(0, 255, 200, 20)
elif value > threshold/5:
color = QColor(0, 255, 200, 5)
elif column == 4:
if value > threshold*2:
color = QColor(255, 0, 0, 120)
elif value > threshold:
color = QColor(255, 0, 0, 60)
elif value > threshold/2:
color = QColor(255, 0, 0, 20)
elif value > threshold/5:
color = QColor(255, 0, 0, 5)
return color
class Table(QTableView):
def __init__(self, row, column):
super().__init__()
self.model = ColorfulModel(row, column)
self.setModel(self.model)
self.model.setHorizontalHeaderLabels(['Bid Quantity', 'Sells', 'Price', 'Buys', 'Ask Quantity'])
self.resize(550, 1300)
self.setEditTriggers(QAbstractItemView.EditTrigger.NoEditTriggers)
self.setSelectionMode(QAbstractItemView.SelectionMode.NoSelection)
self.show()
def update_table(self, bids, asks, buys, sells, price_bins):
# Add new rows if necessary
for _ in range(self.model.rowCount(), len(price_bins)):
for j in range(5):
self.model.setItem(self.model.rowCount(), j, QStandardItem())
# Update the data in the table
for i, price in enumerate(price_bins):
bid_quantity = next((bid['quantity'] for bid in bids if bid['price'] == price), 0)
ask_quantity = next((ask['quantity'] for ask in asks if ask['price'] == price), 0)
buy_quantity = buys.get(price, 0) / 1000
sell_quantity = sells.get(price, 0) / 1000
# Update the table items
for j, quantity in enumerate([bid_quantity, sell_quantity, price, buy_quantity, ask_quantity]):
item = self.model.item(i, j)
if item is None:
item = QStandardItem()
self.model.setItem(i, j, item)
item.setText(str(round(quantity, 4)))
### Heatmap ###
class MainWindow(QtWidgets.QMainWindow):
def __init__(self, symbol, *args, **kwargs):
super(MainWindow, self).__init__(*args, **kwargs)
self.label = QLabel(self)
self.label.setText("Loading...")
self.header_layout = QVBoxLayout()
#plot init#
self.graphWidget = pg.PlotWidget()
self.lineGraphWidget = pg.PlotWidget()
self.volumeGraphWidget = pg.PlotWidget()
self.scatterGraphWidget = pg.PlotWidget()
layout = QtWidgets.QGridLayout()
layout.addLayout(self.header_layout, 0, 0, 1, 2) # Add the header layout at the top
layout.addWidget(self.lineGraphWidget, 1, 0)
layout.addWidget(self.graphWidget, 1, 1)
layout.addWidget(self.volumeGraphWidget, 2, 0)
layout.addWidget(self.scatterGraphWidget, 2, 1)
central_widget = QtWidgets.QWidget()
central_widget.setLayout(layout)
self.setCentralWidget(central_widget)
self.lineGraphWidget.setYLink(self.graphWidget)
self.volumeGraphWidget.setXLink(self.lineGraphWidget)
self.plot_item = pg.PlotDataItem(x=[], y=[])
self.unknown_factor = 80
self.tick_size = 1
self.b_price = np.array([])
self.b_quantity = np.array([])
self.a_price = np.array([])
self.a_quantity = np.array([])
self.spread_history = np.array([])
self.trade_dtype = np.dtype([('id', 'int64'), ('time', 'int64'), ('price', 'float64'), ('quantity', 'float64'), ('is_buyer_maker', 'bool')])
self.trade_array = np.empty(50000, dtype=self.trade_dtype)
self.resize(1440, 900)
self.show()
def receive_data(self, update_time, bids, asks, trades_buffer):
spread_data = np.column_stack((update_time, bids[0][0], asks[0][0]))
self.spread_history = np.vstack((self.spread_history, spread_data)) if self.spread_history.size else spread_data
self.b_price = np.array([bid['price'] for bid in bids])
self.b_quantity = np.array([bid['quantity'] for bid in bids])
self.a_price = np.array([ask['price'] for ask in asks])
self.a_quantity = np.array([ask['quantity'] for ask in asks])
self.update_heatmap()
if not trades_buffer:
return
trades_array = np.array(trades_buffer, dtype=self.trade_dtype)
n_trades = len(trades_array)
self.trade_array = np.roll(self.trade_array, -n_trades)
np.copyto(self.trade_array[-n_trades:], trades_array)
self.update_scatter_plot()
def update_heatmap(self):
self.graphWidget.clear()
max_value = max(np.max(self.b_quantity), np.max(self.a_quantity))
### graphWidget
if self.unknown_factor is not None:
self.graphWidget.getPlotItem().setXRange(0, self.unknown_factor if max_value < self.unknown_factor else max_value*1.1)
bid_bars = pg.BarGraphItem(x0=0, y=self.b_price, height=self.tick_size/10, width=self.b_quantity, brush='g')
self.graphWidget.addItem(bid_bars)
ask_bars = pg.BarGraphItem(x0=0, y=self.a_price, height=self.tick_size/10, width=self.a_quantity, brush='r')
self.graphWidget.addItem(ask_bars)
### lineGraphWidget
if hasattr(self, 'spread_history_plot_items'):
for item in self.spread_history_plot_items:
self.lineGraphWidget.removeItem(item)
one_minute_ago_index = max(0, len(self.spread_history) - 550)
spread_history_last_minute = self.spread_history[one_minute_ago_index:]
try:
plot_item1 = pg.PlotDataItem(x=spread_history_last_minute[:, 0], y=spread_history_last_minute[:, 1], pen=pg.mkPen(color=(0, 255, 0, 125), width=2))
plot_item2 = pg.PlotDataItem(x=spread_history_last_minute[:, 0], y=spread_history_last_minute[:, 2], pen=pg.mkPen(color=(255, 0, 0, 125), width=2))
self.lineGraphWidget.addItem(plot_item1)
self.lineGraphWidget.addItem(plot_item2)
self.spread_history_plot_items = [plot_item1, plot_item2]
except IndexError as e:
logging.info(f"spread history shape: {self.spread_history.shape}, {self.spread_history}")
logging.info(f"last minute spread history shape: {spread_history_last_minute.shape}, {spread_history_last_minute}")
def update_scatter_plot(self):
### volumeGraphWidget
if hasattr(self, 'scatter_plot_item'):
self.lineGraphWidget.removeItem(self.scatter_plot_item)
self.volumeGraphWidget.removeItem(self.volume_graph_item)
if hasattr(self, 'scatter_plot_item2'):
self.scatterGraphWidget.removeItem(self.scatter_plot_item2)
current_time = self.trade_array['time'][-1]
index = np.searchsorted(self.trade_array['time'], current_time - 70 * 1000)
trade_slice = self.trade_array[index:]
#logging.info(f"trade slice: {trade_slice}")
trade_time = trade_slice['time']
trade_price = trade_slice['price']
trade_quantity = trade_slice['quantity']
trade_is_buyer_maker = trade_slice['is_buyer_maker']
max_quantity = np.max(trade_quantity)
min_quantity = np.min(trade_quantity)
#line plot#
brush = np.where(trade_is_buyer_maker, 'r', 'g')
size = np.array([self.scale_size_fixed(price, quantity) for price, quantity in zip(trade_price, trade_quantity)])
scatter = pg.ScatterPlotItem(x=trade_time, y=trade_price, brush=brush, size=size)
self.scatter_plot_item = scatter
self.lineGraphWidget.addItem(scatter)
volume_height = np.where(trade_is_buyer_maker, -trade_quantity, trade_quantity)
volume_bars = pg.BarGraphItem(x=trade_time, height=volume_height, width=0.6)
self.volume_graph_item = volume_bars
self.volumeGraphWidget.setYRange(-max_quantity, max_quantity)
self.volumeGraphWidget.addItem(volume_bars)
#scatter plot#
num_buy_trades = np.count_nonzero(trade_is_buyer_maker)
num_sell_trades = np.count_nonzero(~trade_is_buyer_maker) # ~ is the logical NOT operator
if num_buy_trades > 0:
bins = np.arange(0, 500, min_quantity)
buy_trades_per_bin = np.histogram(trade_quantity[~trade_is_buyer_maker], bins=bins)[0]
sell_trades_per_bin = -(np.histogram(trade_quantity[trade_is_buyer_maker], bins=bins)[0])
y_buys_mask = buy_trades_per_bin > 0
y_sells_mask = sell_trades_per_bin < 0
scatter2 = pg.ScatterPlotItem()
scatter2.addPoints(x=bins[:-1][y_buys_mask], y=buy_trades_per_bin[y_buys_mask], symbol='o', brush='g')
scatter2.addPoints(x=bins[:-1][y_sells_mask], y=sell_trades_per_bin[y_sells_mask], symbol='o', brush='r')
self.scatter_plot_item2 = scatter2
self.scatterGraphWidget.addItem(scatter2)
#self.scatter3d_window.setup_plot(trade_slice, self.b_quantity, self.a_quantity, self.tick_size)
def scale_size_fixed(self, price, quantity):
try:
quoteQty = price * quantity
thresholds = [500, 2500, 7500, 20000, 45000, 75000, 105000, 170000, 280000, 420000, 700000, 1150000]
sizes = [0, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60]
for i, threshold in enumerate(thresholds):
if quoteQty <= threshold:
return sizes[i]
return sizes[-1]
except RuntimeWarning as e:
logging.info(e, price, quantity)
raise e
### Main Loop ###
def main(symbol):
app = QtWidgets.QApplication(sys.argv)
book_depth = Table(80, 5)
main_window = MainWindow(symbol)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
async_thread = AsyncThread(loop)
aggregator_thread = AggregatorThread()
async_thread.data_signal.connect(aggregator_thread.update_data)
async_thread.data_signal.connect(main_window.receive_data)
aggregator_thread.aggregated_data_signal.connect(book_depth.update_table)
async_thread.start()
sys.exit(app.exec())
if __name__ == "__main__":
main("btcusdt")