-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathBRIA_RMBG.py
105 lines (82 loc) · 3.08 KB
/
BRIA_RMBG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch, os
import torch.nn.functional as F
from PIL import Image
from .briarmbg import BriaRMBG
from torchvision.transforms.functional import normalize
import numpy as np
current_directory = os.path.dirname(os.path.abspath(__file__))
device = "cuda" if torch.cuda.is_available() else "cpu"
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def resize_image(image):
image = image.convert('RGB')
model_input_size = (1024, 1024)
image = image.resize(model_input_size, Image.BILINEAR)
return image
class BRIA_RMBG_ModelLoader:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
}
}
RETURN_TYPES = ("RMBGMODEL",)
RETURN_NAMES = ("rmbgmodel",)
FUNCTION = "load_model"
CATEGORY = "BRIA RMBG"
def load_model(self):
net = BriaRMBG()
model_path = os.path.join(current_directory, "RMBG-1.4/model.pth")
net.load_state_dict(torch.load(model_path, map_location=device))
net.to(device)
net.eval()
return [net]
class BRIA_RMBG:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"rmbgmodel": ("RMBGMODEL",),
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE", "MASK", )
RETURN_NAMES = ("image", "mask", )
FUNCTION = "remove_background"
CATEGORY = "AI API"
def remove_background(self, rmbgmodel, image):
processed_images = []
processed_masks = []
for image in image:
orig_image = tensor2pil(image)
w,h = orig_image.size
image = resize_image(orig_image)
im_np = np.array(image)
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
im_tensor = torch.unsqueeze(im_tensor,0)
im_tensor = torch.divide(im_tensor,255.0)
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
if torch.cuda.is_available():
im_tensor=im_tensor.cuda()
result=rmbgmodel(im_tensor)
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
ma = torch.max(result)
mi = torch.min(result)
result = (result-mi)/(ma-mi)
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
pil_im = Image.fromarray(np.squeeze(im_array))
new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
new_im.paste(orig_image, mask=pil_im)
new_im_tensor = pil2tensor(new_im)
pil_im_tensor = pil2tensor(pil_im)
processed_images.append(new_im_tensor)
processed_masks.append(pil_im_tensor)
new_ims = torch.cat(processed_images, dim=0)
new_masks = torch.cat(processed_masks, dim=0)
return new_ims, new_masks