-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGeminiOllamaNode.py
336 lines (281 loc) · 11.6 KB
/
GeminiOllamaNode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import json
import google.generativeai as genai
from PIL import Image
import requests
import torch
import codecs
import base64
import folder_paths
import io
from .BRIA_RMBG import BRIA_RMBG_ModelLoader, BRIA_RMBG
from .svgnode import ConvertRasterToVector, SaveSVG
from .FLUXResolutions import FLUXResolutions
from .prompt_styler import *
def get_gemini_api_key():
try:
config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'config.json')
with open(config_path, 'r') as f:
config = json.load(f)
api_key = config["GEMINI_API_KEY"]
except:
print("Error: Gemini API key is required")
return ""
return api_key
def get_ollama_url():
try:
config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'config.json')
with open(config_path, 'r') as f:
config = json.load(f)
ollama_url = config.get("OLLAMA_URL", "http://localhost:11434")
except:
print("Error: Ollama URL not found, using default")
ollama_url = "http://localhost:11434"
return ollama_url
class GeminiAPI:
def __init__(self):
self.gemini_api_key = get_gemini_api_key()
if self.gemini_api_key:
genai.configure(api_key=self.gemini_api_key, transport='rest')
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"prompt": ("STRING", {"default": "What is the meaning of life?", "multiline": True}),
"gemini_model": (["gemini-1.5-pro", "gemini-1.5-flash", "gemini-1.5-flash-8b","learnlm-1.5-pro-experimental","gemini-exp-1114","gemini-exp-1121"],),
"stream": ("BOOLEAN", {"default": False}),
},
"optional": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("text",)
FUNCTION = "generate_content"
CATEGORY = "AI API/Gemini"
def tensor_to_image(self, tensor):
tensor = tensor.cpu()
image_np = tensor.squeeze().mul(255).clamp(0, 255).byte().numpy()
image = Image.fromarray(image_np, mode='RGB')
return image
def generate_content(self, prompt, gemini_model, stream, image=None):
if not self.gemini_api_key:
raise ValueError("Gemini API key is required")
model = genai.GenerativeModel(gemini_model)
if gemini_model in ["gemini-1.5-pro", "gemini-1.5-flash", "gemini-1.5-flash-8b","learnlm-1.5-pro-experimental","gemini-exp-1114","gemini-exp-1121"]:
if image is None:
if stream:
response = model.generate_content(prompt, stream=True)
textoutput = "\n".join([chunk.text for chunk in response])
else:
response = model.generate_content(prompt)
textoutput = response.text
else:
pil_image = self.tensor_to_image(image)
if stream:
response = model.generate_content([prompt, pil_image], stream=True)
textoutput = "\n".join([chunk.text for chunk in response])
else:
response = model.generate_content([prompt, pil_image])
textoutput = response.text
return (textoutput,)
class OllamaAPI:
def __init__(self):
self.ollama_url = get_ollama_url()
@classmethod
def get_ollama_models(cls):
ollama_url = get_ollama_url()
try:
response = requests.get(f"{ollama_url}/api/tags")
if response.status_code == 200:
models = response.json().get('models', [])
return [model['name'] for model in models]
else:
print(f"Failed to fetch Ollama models. Status code: {response.status_code}")
return ["llama2"] # Fallback to a default model
except Exception as e:
print(f"Error fetching Ollama models: {str(e)}")
return ["llama2"] # Fallback to a default model
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"prompt": ("STRING", {"default": "What is the meaning of life?", "multiline": True}),
"ollama_model": (cls.get_ollama_models(),),
"keep_alive": ("INT", {"default": 0, "min": 0, "max": 60, "step": 1}),
},
"optional": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("text",)
FUNCTION = "generate_content"
CATEGORY = "AI API/Ollama"
def tensor_to_image(self, tensor):
tensor = tensor.cpu()
image_np = tensor.squeeze().mul(255).clamp(0, 255).byte().numpy()
image = Image.fromarray(image_np, mode='RGB')
return image
def generate_content(self, prompt, ollama_model, keep_alive, image=None):
url = f"{self.ollama_url}/api/generate"
payload = {
"model": ollama_model,
"prompt": prompt,
"stream": False,
"keep_alive": f"{keep_alive}m"
}
if image is not None and isinstance(image, torch.Tensor) and image.numel() > 0:
pil_image = self.tensor_to_image(image)
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
payload["images"] = [img_str]
response = requests.post(url, json=payload)
response.raise_for_status()
textoutput = response.json().get('response', '')
return (textoutput,)
class TextSplitByDelimiter:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"text": ("STRING", {"multiline": True,"dynamicPrompts": False}),
"delimiter":("STRING", {"multiline": False,"default":",","dynamicPrompts": False}),
"start_index": ("INT", {
"default": 0,
"min": 0, #Minimum value
"max": 1000, #Maximum value
"step": 1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"skip_every": ("INT", {
"default": 0,
"min": 0, #Minimum value
"max": 10, #Maximum value
"step": 1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"max_count": ("INT", {
"default": 10,
"min": 1, #Minimum value
"max": 1000, #Maximum value
"step": 1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
}
}
INPUT_IS_LIST = False
RETURN_TYPES = ("STRING",)
FUNCTION = "run"
OUTPUT_IS_LIST = (True,)
CATEGORY = "AI API"
def run(self, text, delimiter, start_index, skip_every, max_count):
if delimiter == "":
arr = [text.strip()]
else:
delimiter = codecs.decode(delimiter, 'unicode_escape')
arr = [item.strip() for item in text.split(delimiter) if item.strip()]
arr = arr[start_index:start_index + max_count * (skip_every + 1):(skip_every + 1)]
return (arr,)
import os
from datetime import datetime
class Save_text_File:
"""
This class is responsible for saving text content to a file.
It provides a standardized way to save text data, ensuring that the necessary directories are created if they don't exist, and handling empty or missing input data gracefully.
"""
def __init__(self):
self.output_dir = folder_paths.output_directory
@classmethod
def INPUT_TYPES(cls):
"""
Defines the input types and default values for the class.
Returns:
dict: A dictionary with the required input parameters and their types/defaults.
"""
return {
"required": {
"filename": ("STRING", {"default": 'info', "multiline": False}),
"path": ("STRING", {"default": '', "multiline": False}),
"text": ("STRING", {"default": '', "multiline": True, "forceInput": True}),
}
}
OUTPUT_NODE = True
RETURN_TYPES = ()
FUNCTION = "save_text_file"
CATEGORY = "AI API"
def save_text_file(self, text="", path="", filename=""):
"""
Saves the provided text content to a file.
If the specified output path doesn't exist, it will create the necessary directories.
If the filename is empty, it will use a timestamp-based filename.
If the positive text is empty, it will save a default message.
Args:
positive (str): The text content to be saved.
path (str): The relative path where the file should be saved.
filename (str): The name of the file to be saved (without the .txt extension).
Returns:
tuple: A tuple containing the saved text content.
"""
output_path = os.path.join(self.output_dir, path)
# Check if the output path exists, and create it if it doesn't
if output_path.strip() != '':
if not os.path.exists(output_path.strip()):
print(f'The path `{output_path.strip()}` specified doesn\'t exist! Creating directory.')
os.makedirs(output_path, exist_ok=True)
# If the filename is empty, use a timestamp-based filename
if filename.strip() == '':
print(f'Warning: There is no filename specified! Saving file with timestamp.')
filename = get_timestamp('%Y%m%d%H%M%S')
# If the positive text is empty, use a default message
if text == "":
text = "No prompt data"
# Save the text content to the file
self.writeTextFile(os.path.join(output_path, filename + '.txt'), text)
return (text,)
def writeTextFile(self, file, content):
"""
Writes the provided content to the specified file.
Args:
file (str): The full path and filename of the file to be written.
content (str): The text content to be written to the file.
"""
try:
with open(file, 'w') as f:
f.write(content)
except OSError:
print(f'Error: Unable to save file `{file}`')
def get_timestamp(fmt):
"""
Generates a timestamp string based on the provided format.
Args:
fmt (str): The format string for the timestamp.
Returns:
str: The timestamp string.
"""
return datetime.now().strftime(fmt)
NODE_CLASS_MAPPINGS = {
"GeminiAPI": GeminiAPI,
"OllamaAPI": OllamaAPI,
"TextSplitByDelimiter": TextSplitByDelimiter,
"Save text": Save_text_File,
"BRIA_RMBG_ModelLoader": BRIA_RMBG_ModelLoader,
"BRIA_RMBG": BRIA_RMBG,
"ConvertRasterToVector": ConvertRasterToVector,
"SaveSVG": SaveSVG,
"FLUXResolutions": FLUXResolutions,
'ComfyUIStyler': type('ComfyUIStyler', (PromptStyler,), {'menus': NODES['ComfyUI Styler']})
}
NODE_DISPLAY_NAME_MAPPINGS = {
"GeminiAPI": "Gemini API",
"OllamaAPI": "Ollama API",
"TextSplitByDelimiter": "TextSplitByDelimiter",
"Save text": "Save_text_File",
"BRIA_RMBG_ModelLoader": "BRIA_RMBG Model Loader",
"BRIA_RMBG": "BRIA RMBG",
"ConvertRasterToVector": "Raster to Vector (SVG)",
"SaveSVG": "Save SVG",
"FLUXResolutions": "FLUX Resolutions",
'ComfyUIStyler': 'ComfyUI Styler'
}