-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathwriteplots.py
196 lines (166 loc) · 5.84 KB
/
writeplots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Daniel Alabi and Cody Wang
# Separate code for writing results to the files since matplotlib runs slow under Python, and we run using pypy on this file
# The first part writes the results obtained from the smaller dataset
# The second part writes the results obtained from the larger dataset
# Run only one main function at a time by commenting and uncommenting
# ===========Code to writing results for smaller datasets============#
import time
from regularizedSVD3 import *
if __name__ == "__main__":
# Store results for varying rankings
timeusedr = []
rmsetrainr = []
rmsetestr = []
# Store results for varying learning rates
timeusedl = []
rmsetrainl = []
rmsetestl = []
# Store results for varying regularizers
timeusedreg = []
rmsetrainreg = []
rmsetestreg = []
# ==============Varying learning rate=============== #
lrate = [i*0.005 for i in range(1, 51)]
for l in lrate:
init = time.time()
svd = SvdMatrix("ua.base", 943, 1682, 25, l)
svd.trainratings()
rmsetrainl.append(svd.calcrmse(svd.trainrats))
svd.readtestsmaller("ua.test")
rmsetestl.append(svd.calcrmse(svd.testrats))
timeusedl.append(time.time()-init)
f = open("lratetest2", 'w')
for item in rmsetrainl:
f.writelines("%s\t" % item)
f.writelines('\n')
for item in rmsetestl:
f.writelines("%s\t" % item)
f.close()
f2 = open("lratetime2", 'w')
for item in timeusedl:
f2.writelines("%s\t" % item)
f2.close()
# ================================================== #
# ==============Varying regularizer================= #
regularizers = [i*0.001 for i in range(1,51)]
for reg in regularizers:
init = time.time()
svd = SvdMatrix("ua.base", 943, 1682, 25, 0.035, reg)
svd.trainratings()
rmsetrainreg.append(svd.calcrmse(svd.trainrats))
svd.readtestsmaller("ua.test")
rmsetestreg.append(svd.calcrmse(svd.testrats))
timeusedreg.append(time.time()-init)
f = open("regularizertest2", 'w')
for item in rmsetrainreg:
f.writelines("%s\t" % item)
f.writelines('\n')
for item in rmsetestreg:
f.writelines("%s\t" % item)
f.close()
f2 = open("regularizertime2", 'w')
for item in timeusedreg:
f2.writelines("%s\t" % item)
f2.close()
# ================================================== #
# ==============Varying rank================= #
kvalues = range(1, 51)
for k in kvalues:
init = time.time()
svd = SvdMatrix("ua.base", 943, 1682, k)
svd.trainratings()
rmsetrainr.append(svd.calcrmse(svd.trainrats))
svd.readtestsmaller("ua.test")
rmsetestr.append(svd.calcrmse(svd.testrats))
timeusedr.append(time.time()-init)
f = open("ranktest2", 'w')
for item in rmsetrainr:
f.writelines("%s\t" % item)
f.writelines('\n')
for item in rmsetestr:
f.writelines("%s\t" % item)
f.close()
f2 = open("ranktime2", 'w')
for item in timeusedr:
f2.writelines("%s\t" % item)
f2.close()
'''
# ===========Code to writing results for larger datasets============#
import time
from regularizedSVD3 import *
if __name__ == "__main__":
# Store results for varying rankings
timeusedr = []
rmsetrainr = []
# Store results for varying learning rates
timeusedl = []
rmsetrainl = []
# Store results for varying regularizers
timeusedreg = []
rmsetrainreg = []
# ==============Varying learning rate=============== #
lrate = [i*0.005 for i in range(1,21)]
for l in lrate:
init = time.time()
svd = SvdMatrix("ratings.dat", 6040, 3952, 25, l)
svd.trainratings()
rmsetrainl.append(svd.calcrmse(svd.trainrats))
# svd.test("ua.test")
# rmsetest.append(svd.calcrmse(svd.testrats))
timeusedl.append(time.time()-init)
f = open("lratetest3", 'w')
for item in rmsetrainl:
f.writelines("%s\t" % item)
f.writelines('\n')
# for item in rmsetest:
# f.writelines("%s\t" % item)
f.close()
f2 = open("lratetime3", 'w')
for item in timeusedl:
f2.writelines("%s\t" % item)
f2.close()
# ================================================== #
# ==============Varying regularizer================= #
regularizers = [i*0.001 for i in range(1, 21)]
for reg in regularizers:
init = time.time()
svd = SvdMatrix("ratings.dat", 6040, 3952, 25, 0.035, reg)
svd.trainratings()
rmsetrainreg.append(svd.calcrmse(svd.trainrats))
# svd.test("ua.test")
# rmsetest.append(svd.calcrmse(svd.testrats))
timeusedreg.append(time.time()-init)
f = open("regularizertest3", 'w')
for item in rmsetrainreg:
f.writelines("%s\t" % item)
f.writelines('\n')
# for item in rmsetest:
# f.writelines("%s\t" % item)
f.close()
f2 = open("regularizertime3", 'w')
for item in timeusedreg:
f2.writelines("%s\t" % item)
f2.close()
# ================================================== #
# ==============Varying rank================= #
kvalues = range(10, 31)
for k in kvalues:
init = time.time()
svd = SvdMatrix("ratings.dat", 6040, 3952, k)
svd.trainratings()
rmsetrainr.append(svd.calcrmse(svd.trainrats))
# svd.test("ua.test")
# rmsetest.append(svd.calcrmse(svd.testrats))
timeusedr.append(time.time()-init)
f = open("ranktest3", 'w')
for item in rmsetrainr:
f.writelines("%s\t" % item)
f.writelines('\n')
# for item in rmsetest:
# f.writelines("%s\t" % item)
f.close()
f2 = open("ranktime3", 'w')
for item in timeusedr:
f2.writelines("%s\t" % item)
f2.close()
'''