-
Notifications
You must be signed in to change notification settings - Fork 1
/
planner.c
421 lines (353 loc) · 17.4 KB
/
planner.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/*
planner.c - buffers movement commands and manages the acceleration profile plan
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
/*
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
#include <inttypes.h>
#include <math.h>
#include <stdlib.h>
#include "planner.h"
#include "nuts_bolts.h"
#include "stepper.h"
#include "settings.h"
#include "config.h"
#include "wiring_serial.h"
// The number of linear motions that can be in the plan at any give time
#ifdef __AVR_ATmega328P__
#define BLOCK_BUFFER_SIZE 20
#else
#define BLOCK_BUFFER_SIZE 5
#endif
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
static volatile int block_buffer_head; // Index of the next block to be pushed
static volatile int block_buffer_tail; // Index of the block to process now
// The current position of the tool in absolute steps
static int32_t position[3];
static uint8_t acceleration_manager_enabled; // Acceleration management active?
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration:
inline double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration) {
return(
(target_rate*target_rate-initial_rate*initial_rate)/
(2L*acceleration)
);
}
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
/* + <- some maximum rate we don't care about
/|\
/ | \
/ | + <- final_rate
/ | |
initial_rate -> +----+--+
^ ^
| |
intersection_distance distance */
inline double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance) {
return(
(2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4*acceleration)
);
}
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
// The factors represent a factor of braking and must be in the range 0.0-1.0.
/*
+--------+ <- nominal_rate
/ \
nominal_rate*entry_factor -> + \
| + <- nominal_rate*exit_factor
+-------------+
time -->
*/
void calculate_trapezoid_for_block(block_t *block, double entry_factor, double exit_factor) {
block->initial_rate = ceil(block->nominal_rate*entry_factor);
block->final_rate = ceil(block->nominal_rate*exit_factor);
int32_t acceleration_per_minute = block->rate_delta*ACCELERATION_TICKS_PER_SECOND*60.0;
int32_t accelerate_steps =
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_minute));
int32_t decelerate_steps =
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration_per_minute));
// Calculate the size of Plateau of Nominal Rate.
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = ceil(
intersection_distance(block->initial_rate, block->final_rate, acceleration_per_minute, block->step_event_count));
plateau_steps = 0;
}
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps+plateau_steps;
}
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance.
inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
return(
sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
);
}
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks.
inline double junction_jerk(block_t *before, block_t *after) {
return(sqrt(
pow(before->speed_x-after->speed_x, 2)+
pow(before->speed_y-after->speed_y, 2)+
pow(before->speed_z-after->speed_z, 2))
);
}
// Calculate a braking factor to reach baseline speed which is max_jerk/2, e.g. the
// speed under which you cannot exceed max_jerk no matter what you do.
double factor_for_safe_speed(block_t *block) {
return(settings.max_jerk/block->nominal_speed);
}
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) { return; }
double entry_factor = 1.0;
double exit_factor;
if (next) {
exit_factor = next->entry_factor;
} else {
exit_factor = factor_for_safe_speed(current);
}
// Calculate the entry_factor for the current block.
if (previous) {
// Reduce speed so that junction_jerk is within the maximum allowed
double jerk = junction_jerk(previous, current);
if (jerk > settings.max_jerk) {
entry_factor = (settings.max_jerk/jerk);
}
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
if (entry_factor > exit_factor) {
double max_entry_speed = max_allowable_speed(-settings.acceleration,current->nominal_speed*exit_factor,
current->millimeters);
double max_entry_factor = max_entry_speed/current->nominal_speed;
if (max_entry_factor < entry_factor) {
entry_factor = max_entry_factor;
}
}
} else {
entry_factor = factor_for_safe_speed(current);
}
// Store result
current->entry_factor = entry_factor;
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the reverse pass.
void planner_reverse_pass() {
auto int8_t block_index = block_buffer_head;
block_t *block[3] = {NULL, NULL, NULL};
while(block_index != block_buffer_tail) {
block_index--;
if(block_index < 0) {
block_index = BLOCK_BUFFER_SIZE-1;
}
block[2]= block[1];
block[1]= block[0];
block[0] = &block_buffer[block_index];
planner_reverse_pass_kernel(block[0], block[1], block[2]);
}
planner_reverse_pass_kernel(NULL, block[0], block[1]);
}
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) { return; }
// If the previous block is an acceleration block, but it is not long enough to
// complete the full speed change within the block, we need to adjust out entry
// speed accordingly. Remember current->entry_factor equals the exit factor of
// the previous block.
if(previous->entry_factor < current->entry_factor) {
double max_entry_speed = max_allowable_speed(-settings.acceleration,
current->nominal_speed*previous->entry_factor, previous->millimeters);
double max_entry_factor = max_entry_speed/current->nominal_speed;
if (max_entry_factor < current->entry_factor) {
current->entry_factor = max_entry_factor;
}
}
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the forward pass.
void planner_forward_pass() {
int8_t block_index = block_buffer_tail;
block_t *block[3] = {NULL, NULL, NULL};
while(block_index != block_buffer_head) {
block[0] = block[1];
block[1] = block[2];
block[2] = &block_buffer[block_index];
planner_forward_pass_kernel(block[0],block[1],block[2]);
block_index = (block_index+1) % BLOCK_BUFFER_SIZE;
}
planner_forward_pass_kernel(block[1], block[2], NULL);
}
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
// entry_factor for each junction. Must be called by planner_recalculate() after
// updating the blocks.
void planner_recalculate_trapezoids() {
int8_t block_index = block_buffer_tail;
block_t *current;
block_t *next = NULL;
while(block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
if (current) {
calculate_trapezoid_for_block(current, current->entry_factor, next->entry_factor);
}
block_index = (block_index+1) % BLOCK_BUFFER_SIZE;
}
calculate_trapezoid_for_block(next, next->entry_factor, factor_for_safe_speed(next));
}
// Recalculates the motion plan according to the following algorithm:
//
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
// so that:
// a. The junction jerk is within the set limit
// b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster accelleration than the one, true
// constant acceleration.
//
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
// the set limit. Finally it will:
//
// 3. Recalculate trapezoids for all blocks.
void planner_recalculate() {
planner_reverse_pass();
planner_forward_pass();
planner_recalculate_trapezoids();
}
void plan_init() {
block_buffer_head = 0;
block_buffer_tail = 0;
plan_set_acceleration_manager_enabled(TRUE);
clear_vector(position);
}
void plan_set_acceleration_manager_enabled(int enabled) {
if ((!!acceleration_manager_enabled) != (!!enabled)) {
st_synchronize();
acceleration_manager_enabled = !!enabled;
}
}
int plan_is_acceleration_manager_enabled() {
return(acceleration_manager_enabled);
}
inline void plan_discard_current_block() {
if (block_buffer_head != block_buffer_tail) {
block_buffer_tail = (block_buffer_tail + 1) % BLOCK_BUFFER_SIZE;
}
}
inline block_t *plan_get_current_block() {
if (block_buffer_head == block_buffer_tail) { return(NULL); }
return(&block_buffer[block_buffer_tail]);
}
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(double x, double y, double z, double feed_rate, int invert_feed_rate) {
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
int32_t target[3];
target[X_AXIS] = lround(x*settings.steps_per_mm[X_AXIS]);
target[Y_AXIS] = lround(y*settings.steps_per_mm[Y_AXIS]);
target[Z_AXIS] = lround(z*settings.steps_per_mm[Z_AXIS]);
// Calculate the buffer head after we push this byte
int next_buffer_head = (block_buffer_head + 1) % BLOCK_BUFFER_SIZE;
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while(block_buffer_tail == next_buffer_head) { sleep_mode(); }
// Prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
// Number of steps for each axis
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->step_event_count = max(block->steps_x, max(block->steps_y, block->steps_z));
// Bail if this is a zero-length block
if (block->step_event_count == 0) { return; };
double delta_x_mm = (target[X_AXIS]-position[X_AXIS])/settings.steps_per_mm[X_AXIS];
double delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/settings.steps_per_mm[Y_AXIS];
double delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/settings.steps_per_mm[Z_AXIS];
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm));
uint32_t microseconds;
if (!invert_feed_rate) {
microseconds = lround((block->millimeters/feed_rate)*1000000);
} else {
microseconds = lround(ONE_MINUTE_OF_MICROSECONDS/feed_rate);
}
// Calculate speed in mm/minute for each axis
double multiplier = 60.0*1000000.0/microseconds;
block->speed_x = delta_x_mm * multiplier;
block->speed_y = delta_y_mm * multiplier;
block->speed_z = delta_z_mm * multiplier;
block->nominal_speed = block->millimeters * multiplier;
block->nominal_rate = ceil(block->step_event_count * multiplier);
block->entry_factor = 0.0;
// Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
// average travel per step event changes. For a line along one axis the travel per step event
// is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
// axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
// To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
// specifically for each line to compensate for this phenomenon:
double travel_per_step = block->millimeters/block->step_event_count;
block->rate_delta = ceil(
((settings.acceleration*60.0)/(ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/sec/sec per acceleration_tick
travel_per_step); // convert to: acceleration steps/min/acceleration_tick
if (acceleration_manager_enabled) {
// compute a preliminary conservative acceleration trapezoid
double safe_speed_factor = factor_for_safe_speed(block);
calculate_trapezoid_for_block(block, safe_speed_factor, safe_speed_factor);
} else {
block->initial_rate = block->nominal_rate;
block->final_rate = block->nominal_rate;
block->accelerate_until = 0;
block->decelerate_after = block->step_event_count;
block->rate_delta = 0;
}
// Compute direction bits for this block
block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
// Move buffer head
block_buffer_head = next_buffer_head;
// Update position
memcpy(position, target, sizeof(target)); // position[] = target[]
if (acceleration_manager_enabled) { planner_recalculate(); }
st_wake_up();
}