-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathrun_tracking.py
176 lines (137 loc) · 7.96 KB
/
run_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import time
from itertools import product
from typing import List, Iterable, Mapping
import os
# for NuScenes eval
from nuscenes.eval.common.config import config_factory
from nuscenes.eval.tracking.evaluate import TrackingEval
import dataset_classes.kitti.mot_kitti as mot_kitti
from dataset_classes.nuscenes.dataset import MOTDatasetNuScenes
from utils import io
from configs.params import TRAIN_SEQ, VAL_SEQ, TRACK_VAL_SEQ, build_params_dict, KITTI_BEST_PARAMS, NUSCENES_BEST_PARAMS, variant_name_from_params
from configs.local_variables import KITTI_WORK_DIR, SPLIT, NUSCENES_WORK_DIR, MOUNT_PATH
import inputs.utils as input_utils
def perform_tracking_full(dataset, params, target_sequences=[], sequences_to_exclude=[], print_debug_info=True):
if len(target_sequences) == 0:
target_sequences = dataset.sequence_names(SPLIT)
total_frame_count = 0
total_time = 0
total_time_tracking = 0
total_time_fusion = 0
total_time_reporting = 0
for sequence_name in target_sequences:
if len(sequences_to_exclude) > 0:
if sequence_name in sequences_to_exclude:
print(f'Skipped sequence {sequence_name}')
continue
print(f'Starting sequence: {sequence_name}')
start_time = time.time()
sequence = dataset.get_sequence(SPLIT, sequence_name)
sequence.mot.set_track_manager_params(params)
variant = variant_name_from_params(params)
run_info = sequence.perform_tracking_for_eval(params)
if "total_time_mot" not in run_info:
continue
total_time = time.time() - start_time
if print_debug_info:
print(f'Sequence {sequence_name} took {total_time:.2f} sec, {total_time / 60.0 :.2f} min')
print(
f'Matching took {run_info["total_time_matching"]:.2f} sec, {100 * run_info["total_time_matching"] / total_time:.2f}%')
print(
f'Creating took {run_info["total_time_creating"]:.2f} sec, {100 * run_info["total_time_creating"] / total_time:.2f}%')
print(
f'Fusion took {run_info["total_time_fusion"]:.2f} sec, {100 * run_info["total_time_fusion"] / total_time:.2f}%')
print(
f'Tracking took {run_info["total_time_mot"]:.2f} sec, {100 * run_info["total_time_mot"] / total_time:.2f}%')
print(
f'{run_info["matched_tracks_first_total"]} 1st stage and {run_info["matched_tracks_second_total"]} 2nd stage matches')
total_time += total_time
total_time_fusion += run_info["total_time_fusion"]
total_time_tracking += run_info["total_time_mot"]
total_time_reporting += run_info["total_time_reporting"]
total_frame_count += len(sequence.frame_names)
if total_frame_count == 0:
return variant, run_info
dataset.save_all_mot_results(run_info["mot_3d_file"])
if not print_debug_info:
return variant, run_info
# Overall variant stats
# Timing
print("\n")
print(
f'Fusion {total_time_fusion: .2f} sec, {(100 * total_time_fusion / total_time):.2f}%')
print(f'Tracking {total_time_tracking: .2f} sec, {(100 * total_time_tracking / total_time):.2f}%')
print(f'Reporting {total_time_reporting: .2f} sec, {(100 * total_time_reporting / total_time):.2f}%')
print(
f'Tracking-fusion framerate: {total_frame_count / (total_time_fusion + total_time_tracking):.2f} fps')
print(f'Tracking-only framerate: {total_frame_count / total_time_tracking:.2f} fps')
print(f'Total framerate: {total_frame_count / total_time:.2f} fps')
print()
# Fused instances stats
total_instances = run_info['instances_both'] + run_info['instances_3d'] + run_info['instances_2d']
if total_instances > 0:
print(f"Total instances 3D and 2D: {run_info['instances_both']} " +
f"-> {100.0 * run_info['instances_both'] / total_instances:.2f}%")
print(f"Total instances 3D only : {run_info['instances_3d']} " +
f"-> {100.0 * run_info['instances_3d'] / total_instances:.2f}%")
print(f"Total instances 2D only : {run_info['instances_2d']} " +
f"-> {100.0 * run_info['instances_2d'] / total_instances:.2f}%")
print()
# Matching stats
print(f"matched_tracks_first_total {run_info['matched_tracks_first_total']}")
print(f"unmatched_tracks_first_total {run_info['unmatched_tracks_first_total']}")
print(f"matched_tracks_second_total {run_info['matched_tracks_second_total']}")
print(f"unmatched_tracks_second_total {run_info['unmatched_tracks_second_total']}")
print(f"unmatched_dets2d_second_total {run_info['unmatched_dets2d_second_total']}")
first_matched_percentage = (run_info['matched_tracks_first_total'] /
(run_info['unmatched_tracks_first_total'] + run_info['unmatched_tracks_first_total']))
print(f"percentage of all tracks matched in 1st stage {100.0 * first_matched_percentage:.2f}%")
second_matched_percentage = (
run_info['matched_tracks_second_total'] / run_info['unmatched_tracks_first_total'])
print(f"percentage of leftover tracks matched in 2nd stage {100.0 * second_matched_percentage:.2f}%")
second_matched_dets2d_second_percentage = (run_info['matched_tracks_second_total'] / (
run_info['unmatched_dets2d_second_total'] + run_info['matched_tracks_second_total']))
print(f"percentage dets 2D matched in 2nd stage {100.0 * second_matched_dets2d_second_percentage:.2f}%")
final_unmatched_percentage = (run_info['unmatched_tracks_second_total'] / (
run_info['matched_tracks_first_total'] + run_info['unmatched_tracks_first_total']))
print(f"percentage tracks unmatched after both stages {100.0 * final_unmatched_percentage:.2f}%")
print(f"\n3D MOT saved in {run_info['mot_3d_file']}", end="\n\n")
return variant, run_info
def perform_tracking_with_params(dataset, params,
target_sequences: Iterable[str] = [],
sequences_to_exclude: Iterable[str] = []):
start_time = time.time()
variant, run_info = perform_tracking_full(dataset, params,
target_sequences=target_sequences,
sequences_to_exclude=sequences_to_exclude)
print(f'Variant {variant} took {(time.time() - start_time) / 60.0:.2f} mins')
return run_info
def run_on_nuscenes():
VERSION = "v1.0-trainval"
mot_dataset = MOTDatasetNuScenes(work_dir=NUSCENES_WORK_DIR,
det_source=input_utils.CENTER_POINT,
seg_source=input_utils.MMDETECTION_CASCADE_NUIMAGES,
version=VERSION)
# if want to run on specific sequences only, add their str names here
target_sequences: List[str] = []
# if want to exclude specific sequences, add their str names here
sequences_to_exclude: List[str] = []
run_info = perform_tracking_with_params(
mot_dataset, NUSCENES_BEST_PARAMS, target_sequences, sequences_to_exclude)
mot_dataset.reset()
def run_on_kitti():
# To reproduce our test set results run this on the TEST set
# To reproduce "Ours" results in Table II in the paper run this on the VAL set
# To reproduce "Ours (dagger)" results in Table II in the paper,
# change det_source to input_utils.AB3DMOT and run on the VAL set
mot_dataset = mot_kitti.MOTDatasetKITTI(work_dir=KITTI_WORK_DIR,
det_source=input_utils.POINTGNN_T3,
seg_source=input_utils.TRACKING_BEST)
# if want to run on specific sequences only, add their str names here
target_sequences: List[str] = []
# if want to exclude specific sequences, add their str names here
sequences_to_exclude: List[str] = []
perform_tracking_with_params(mot_dataset, KITTI_BEST_PARAMS, target_sequences, sequences_to_exclude)
if __name__ == "__main__":
# run_on_nuscenes()
run_on_kitti()