-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauthorshipAttributionEdgeNets.py
1763 lines (1434 loc) · 65 KB
/
authorshipAttributionEdgeNets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# 2019/02/27~2019/03/04.
# Fernando Gama, [email protected]
# Authorship attribution problem, testing the following models
# Spectral GNN
# Polynomial GNN
# Node Variant GNN (Deg, EDS, SP)
# Edge Variant GNN
# Hybrid Edge Variant GNN (Deg, EDS, SP)
# We will not consider any kind of pooling, and just one layer architectures.
# The number of parameters of every architecture will be tried to be kept
# the same (or, at least, the same order).
# The problem is that of authorship attribution. This runs several realizations
# to average out the randomness in the split of the training/test datasets.
# When it runs, it produces the following output:
# - It trains the specified models and saves the best and the last model
# parameters of each realization on a directory named 'savedModels'.
# - It saves a pickle file with the torch random state and the numpy random
# state for reproducibility.
# - It saves a text file 'hyperparameters.txt' containing the specific
# (hyper)parameters that control the run, together with the main (scalar)
# results obtained.
# - If desired, logs in tensorboardX the training loss and evaluation measure
# both of the training set and the validation set. These tensorboardX logs
# are saved in a logsTB directory.
# - If desired, saves the vector variables of each realization (training and
# validation loss and evaluation measure, respectively); this is saved
# both in pickle and in Matlab(R) format. These variables are saved in a
# trainVars directory.
# - If desired, plots the training and validation loss and evaluation
# performance for each of the models, together with the training loss and
# validation evaluation performance for all models. The summarizing
# variables used to construct the plots are also saved in both pickle and
# Matlab(R) format. These plots (and variables) are in a figs directory.
#%%##################################################################
# #
# IMPORTING #
# #
#####################################################################
#\\\ Standard libraries:
import os
import numpy as np
import matplotlib
matplotlib.rcParams['text.usetex'] = True
matplotlib.rcParams['font.family'] = 'serif'
import matplotlib.pyplot as plt
import pickle
import datetime
from scipy.io import savemat
import torch; torch.set_default_dtype(torch.float64)
import torch.nn as nn
import torch.optim as optim
#\\\ Own libraries:
import Utils.graphTools as graphTools
import Utils.dataTools
import Utils.graphML as gml
import Modules.architectures as archit
import Modules.model as model
import Modules.train as train
#\\\ Separate functions:
from Utils.miscTools import writeVarValues
from Utils.miscTools import saveSeed
#%%##################################################################
# #
# SETTING PARAMETERS #
# #
#####################################################################
thisFilename = 'authorEdgeNets' # This is the general name of all related files
saveDirRoot = 'experiments' # In this case, relative location
saveDir = os.path.join(saveDirRoot, thisFilename) # Dir where to save all
# the results from each run
dataDir = 'authorData' # Data directory
dataFilename = 'authorshipData.mat' # Data filename
dataPath = os.path.join(dataDir, dataFilename) # Data path
#\\\ Create .txt to store the values of the setting parameters for easier
# reference when running multiple experiments
today = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
# Append date and time of the run to the directory, to avoid several runs of
# overwritting each other.
saveDir = saveDir + today
# Create directory
if not os.path.exists(saveDir):
os.makedirs(saveDir)
# Create the file where all the (hyper)parameters and results will be saved.
varsFile = os.path.join(saveDir,'hyperparameters.txt')
with open(varsFile, 'w+') as file:
file.write('%s\n\n' % datetime.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))
#\\\ Save seeds for reproducibility
# PyTorch seeds
torchState = torch.get_rng_state()
torchSeed = torch.initial_seed()
# Numpy seeds
numpyState = np.random.RandomState().get_state()
# Collect all random states
randomStates = []
randomStates.append({})
randomStates[0]['module'] = 'numpy'
randomStates[0]['state'] = numpyState
randomStates.append({})
randomStates[1]['module'] = 'torch'
randomStates[1]['state'] = torchState
randomStates[1]['seed'] = torchSeed
# This list and dictionary follows the format to then be loaded, if needed,
# by calling the loadSeed function in Utils.miscTools
saveSeed(randomStates, saveDir)
########
# DATA #
########
authorName = 'poe'
# Possible authors: (just use the names in ' ')
# jacob 'abbott', robert louis 'stevenson', louisa may 'alcott',
# horatio 'alger', james 'allen', jane 'austen', emily 'bronte', james 'cooper',
# charles 'dickens', hamlin 'garland', nathaniel 'hawthorne', henry 'james',
# herman 'melville', 'page', herny 'thoreau', mark 'twain',
# arthur conan 'doyle', washington 'irving', edgar allan 'poe',
# sarah orne 'jewett', edith 'wharton'
nClasses = 2 # Either authorName or not
ratioTrain = 0.8 # Ratio of training samples
ratioValid = 0.1 # Ratio of validation samples (out of the total training
# samples)
# Final split is:
# nValidation = round(ratioValid * ratioTrain * nTotal)
# nTrain = round((1 - ratioValid) * ratioTrain * nTotal)
# nTest = nTotal - nTrain - nValidation
nDataSplits = 10 # Number of data realizations
# Obs.: The built graph depends on the split between training, validation and
# testing. Therefore, we will run several of these splits and average across
# them, to obtain some result that is more robust to this split.
# Every training excerpt has a WAN associated to it. We combine all these WANs
# into a single graph to use as the supporting graph for all samples. This
# combination happens under some extra options:
graphNormalizationType = 'rows' # or 'cols' - Makes all rows add up to 1.
keepIsolatedNodes = False # If True keeps isolated nodes
forceUndirected = True # If True forces the graph to be undirected (symmetrizes)
forceConnected = True # If True removes nodes (from lowest to highest degree)
# until the resulting graph is connected.
#\\\ Save values:
writeVarValues(varsFile,
{'authorName': authorName,
'nClasses': nClasses,
'ratioTrain': ratioTrain,
'ratioValid': ratioValid,
'nDataSplits': nDataSplits,
'graphNormalizationType': graphNormalizationType,
'keepIsolatedNodes': keepIsolatedNodes,
'forceUndirected': forceUndirected,
'forceConnected': forceConnected})
############
# TRAINING #
############
#\\\ Individual model training options
trainer = 'ADAM' # Options: 'SGD', 'ADAM', 'RMSprop'
learningRate = 0.001 # In all options
beta1 = 0.9 # beta1 if 'ADAM', alpha if 'RMSprop'
beta2 = 0.999 # ADAM option only
#\\\ Loss function choice
lossFunction = nn.CrossEntropyLoss() # This applies a softmax before feeding
# it into the NLL, so we don't have to apply the softmax ourselves.
#\\\ Overall training options
nEpochs = 80 # Number of epochs
batchSize = 100 # Batch size
doLearningRateDecay = False # Learning rate decay
learningRateDecayRate = 0.9 # Rate
learningRateDecayPeriod = 1 # How many epochs after which update the lr
validationInterval = 5 # How many training steps to do the validation
#\\\ Save values
writeVarValues(varsFile,
{'trainer': trainer,
'learningRate': learningRate,
'beta1': beta1,
'lossFunction': lossFunction,
'nEpochs': nEpochs,
'batchSize': batchSize,
'doLearningRateDecay': doLearningRateDecay,
'learningRateDecayRate': learningRateDecayRate,
'learningRateDecayPeriod': learningRateDecayPeriod,
'validationInterval': validationInterval})
#################
# ARCHITECTURES #
#################
# Select which architectures to train and run
# Select desired node-orderings (for hybrid EV and node variant EV) so that
# the selected privileged nodes follows this criteria
doDegree = True
doSpectralProxies = True
doEDS = True
# Select desired architectures
doSpectralGNN = True
doPolynomialGNN = True
doNodeVariantGNN = True
doEdgeVariantGNN = True
doHybridEdgeVariantGNN = True
# In this section, we determine the (hyper)parameters of models that we are
# going to train. This only sets the parameters. The architectures need to be
# created later below. That is, any new architecture in this part, needs also
# to be coded later on. This is just to be easy to change the parameters once
# the architecture is created. Do not forget to add the name of the architecture
# to modelList.
modelList = []
# Parameters for all models, so we don't need to be changing each one in each
# of the models (this guarantees comparable computational complexity)
nFeatures = 2 # F: number of output features of the only layer
nIndepNodes = 2 # M: number of independent coefficients or priviliged nodes
nShifts = 2 # K: number of shift taps
#\\\\\\\\\\\\
#\\\ MODEL 1: Spectral GNN
#\\\\\\\\\\\\
if doSpectralGNN:
##############
# PARAMETERS #
##############
hParamsSpectral = {} # Hyperparameters (hParams)
hParamsSpectral['name']= 'SpectralGNN'
#\\\ Architecture parameters
hParamsSpectral['F'] = [1, nFeatures] # Features per layer
hParamsSpectral['M'] = [nIndepNodes] # Number of coefficients per layer
hParamsSpectral['bias'] = True # Decide whether to include a bias term
hParamsSpectral['sigma'] = nn.ReLU # Selected nonlinearity
hParamsSpectral['rho'] = gml.NoPool # Summarizing function
hParamsSpectral['alpha'] = [1] # These are ignored when there is no pooling,
# better set it to 1 to make everything slightly faster
hParamsSpectral['dimLayersMLP'] = [nClasses] # Dimension of the fully
# connected layers after the GCN layers
#\\\ Save Values:
writeVarValues(varsFile, hParamsSpectral)
# Add model to the list
modelList += [hParamsSpectral['name']]
#\\\\\\\\\\\\
#\\\ MODEL 2: Polynomial GNN
#\\\\\\\\\\\\
if doPolynomialGNN:
hParamsPolynomial = {} # Hyperparameters (hParams)
hParamsPolynomial['name'] = 'PolynomiGNN' # Name of the architecture
#\\\ Architecture parameters
hParamsPolynomial['F'] = [1, nFeatures] # Features per layer
hParamsPolynomial['K'] = [nShifts] # Number of filter taps per layer
hParamsPolynomial['bias'] = True # Decide whether to include a bias term
hParamsPolynomial['sigma'] = nn.ReLU # Selected nonlinearity
hParamsPolynomial['rho'] = gml.NoPool # Summarizing function
hParamsPolynomial['alpha'] = [1] # alpha-hop neighborhood that is
#affected by the summary
hParamsPolynomial['dimLayersMLP'] = [nClasses] # Dimension of the fully
# connected layers after the GCN layers
#\\\ Save Values:
writeVarValues(varsFile, hParamsPolynomial)
modelList += [hParamsPolynomial['name']]
#\\\\\\\\\\\\
#\\\ MODEL 3: Node-Variant GNN ordered by Degree
#\\\\\\\\\\\\
if doDegree and doNodeVariantGNN:
hParamsNVDeg = {} # Hyperparameters (hParams)
hParamsNVDeg['name'] = 'NdVarGNNDeg' # Name of the architecture
#\\\ Architecture parameters
hParamsNVDeg['F'] = [1, nFeatures] # Features per layer
hParamsNVDeg['K'] = [nShifts] # Number of shift taps per layer
hParamsNVDeg['M'] = [nIndepNodes] # Number of node taps per layer
hParamsNVDeg['bias'] = True # Decide whether to include a bias term
hParamsNVDeg['sigma'] = nn.ReLU # Selected nonlinearity
hParamsNVDeg['rho'] = gml.NoPool # Summarizing function
hParamsNVDeg['alpha'] = [1] # alpha-hop neighborhood that is
#affected by the summary
hParamsNVDeg['dimLayersMLP'] = [nClasses] # Dimension of the fully
# connected layers after the GCN layers
#\\\ Save Values:
writeVarValues(varsFile, hParamsNVDeg)
modelList += [hParamsNVDeg['name']]
#\\\\\\\\\\\\
#\\\ MODEL 4: Node-Variant GNN ordered by Spectral Proxies
#\\\\\\\\\\\\
if doSpectralProxies and doNodeVariantGNN:
hParamsNVSpr = hParamsNVDeg.copy() # Hyperparameters (hParams)
hParamsNVSpr['name'] = 'NdVarGNNSPr' # Name of the architecture
#\\\ Save Values:
writeVarValues(varsFile, hParamsNVSpr)
modelList += [hParamsNVSpr['name']]
#\\\\\\\\\\\\
#\\\ MODEL 5: Node-Variant GNN ordered by EDS
#\\\\\\\\\\\\
if doEDS and doNodeVariantGNN:
hParamsNVEDS = hParamsNVDeg.copy() # Hyperparameters (hParams)
hParamsNVEDS['name'] = 'NdVarGNNEDS' # Name of the architecture
#\\\ Save Values:
writeVarValues(varsFile, hParamsNVEDS)
modelList += [hParamsNVEDS['name']]
#\\\\\\\\\\\\
#\\\ MODEL 6: Edge-Variant GNN
#\\\\\\\\\\\\
if doEdgeVariantGNN:
##############
# PARAMETERS #
##############
hParamsEdgeVariant = {}
hParamsEdgeVariant['name']= 'EdgeVariGNN'
#\\\ Architecture parameters
hParamsEdgeVariant['F'] = [1, nFeatures] # Features per layer
hParamsEdgeVariant['K'] = [nShifts] # Number of shift taps per layer
hParamsEdgeVariant['bias'] = True # Decide whether to include a bias term
hParamsEdgeVariant['sigma'] = nn.ReLU # Selected nonlinearity
hParamsEdgeVariant['rho'] = gml.NoPool # Summarizing function
hParamsEdgeVariant['alpha'] = [1] # These are ignored when there is no pooling,
# better set it to 1 to make everything slightly faster
hParamsEdgeVariant['dimLayersMLP'] = [nClasses] # Dimension of the fully
# connected layers after the GCN layers
#\\\ Save Values:
writeVarValues(varsFile, hParamsEdgeVariant)
modelList += [hParamsEdgeVariant['name']]
#\\\\\\\\\\\\
#\\\ MODEL 7: Hybrid Edge-Variant GNN ordered by Degree
#\\\\\\\\\\\\
if doDegree and doHybridEdgeVariantGNN:
##############
# PARAMETERS #
##############
hParamsHEVDeg = {}
hParamsHEVDeg['name']= 'HybEVGNNDeg'
#\\\ Architecture parameters
hParamsHEVDeg['F'] = [1, nFeatures] # Features per layer
hParamsHEVDeg['K'] = [nShifts] # Number of shift taps per layer
hParamsHEVDeg['M'] = [nIndepNodes] # Number of selected EV nodes per layer
hParamsHEVDeg['bias'] = True # Decide whether to include a bias term
hParamsHEVDeg['sigma'] = nn.ReLU # Selected nonlinearity
hParamsHEVDeg['rho'] = gml.NoPool # Summarizing function
hParamsHEVDeg['alpha'] = [1] # These are ignored when there is no pooling,
# better set it to 1 to make everything slightly faster
hParamsHEVDeg['dimLayersMLP'] = [nClasses] # Dimension of the fully
# connected layers after the GCN layers
#\\\ Save Values:
writeVarValues(varsFile, hParamsHEVDeg)
modelList += [hParamsHEVDeg['name']]
#\\\\\\\\\\\\
#\\\ MODEL 8: Hybrid Edge-Variant GNN ordered by Spectral Proxies
#\\\\\\\\\\\\
if doSpectralProxies and doHybridEdgeVariantGNN:
##############
# PARAMETERS #
##############
hParamsHEVSpr = hParamsHEVDeg.copy()
hParamsHEVSpr['name']= 'HybEVGNNSPr'
#\\\ Save Values:
writeVarValues(varsFile, hParamsHEVSpr)
modelList += [hParamsHEVSpr['name']]
#\\\\\\\\\\\\
#\\\ MODEL 9: Hybrid Edge-Variant GNN ordered by EDS
#\\\\\\\\\\\\
if doEDS and doHybridEdgeVariantGNN:
##############
# PARAMETERS #
##############
hParamsHEVEDS = hParamsHEVDeg.copy()
hParamsHEVEDS['name']= 'HybEVGNNEDS'
#\\\ Save Values:
writeVarValues(varsFile, hParamsHEVEDS)
modelList += [hParamsHEVEDS['name']]
###########
# LOGGING #
###########
# Options:
doPrint = True # Decide whether to print stuff while running
doLogging = False # Log into tensorboard
doSaveVars = True # Save (pickle) useful variables
doFigs = True # Plot some figures (this only works if doSaveVars is True)
# Parameters:
printInterval = 0 # After how many training steps, print the partial results
# 0 means to never print partial results while training
xAxisMultiplierTrain = 10 # How many training steps in between those shown in
# the plot, i.e., one training step every xAxisMultiplierTrain is shown.
xAxisMultiplierValid = 2 # How many validation steps in between those shown,
# same as above.
#\\\ Save values:
writeVarValues(varsFile,
{'doPrint': doPrint,
'doLogging': doLogging,
'doSaveVars': doSaveVars,
'doFigs': doFigs,
'saveDir': saveDir,
'printInterval': printInterval})
#%%##################################################################
# #
# SETUP #
# #
#####################################################################
#\\\ Determine processing unit:
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
# Notify:
if doPrint:
print("Device selected: %s" % device)
#\\\ Logging options
if doLogging:
# If logging is on, load the tensorboard visualizer and initialize it
from Utils.visualTools import Visualizer
logsTB = os.path.join(saveDir, 'logsTB')
logger = Visualizer(logsTB, name='visualResults')
#\\\ Save variables during evaluation.
# We will save all the evaluations obtained for each of the trained models.
# It basically is a dictionary, containing a list. The key of the
# dictionary determines the model, then the first list index determines
# which split realization. Then, this will be converted to numpy to compute
# mean and standard deviation (across the split dimension).
accBest = {} # Accuracy for the best model
accLast = {} # Accuracy for the last model
for thisModel in modelList: # Create an element for each split realization,
accBest[thisModel] = [None] * nDataSplits
accLast[thisModel] = [None] * nDataSplits
####################
# TRAINING OPTIONS #
####################
# Training phase. It has a lot of options that are input through a
# dictionary of arguments.
# The value of these options was decided above with the rest of the parameters.
# This just creates a dictionary necessary to pass to the train function.
trainingOptions = {}
if doLogging:
trainingOptions['logger'] = logger
if doSaveVars:
trainingOptions['saveDir'] = saveDir
if doPrint:
trainingOptions['printInterval'] = printInterval
if doLearningRateDecay:
trainingOptions['learningRateDecayRate'] = learningRateDecayRate
trainingOptions['learningRateDecayPeriod'] = learningRateDecayPeriod
trainingOptions['validationInterval'] = validationInterval
#%%##################################################################
# #
# DATA SPLIT REALIZATION #
# #
#####################################################################
# Start generating a new data split for each of the number of data splits that
# we previously specified
for split in range(nDataSplits):
#%%##################################################################
# #
# DATA HANDLING #
# #
#####################################################################
############
# DATASETS #
############
# Load the data, which will give a specific split
data = Utils.dataTools.Authorship(authorName, ratioTrain, ratioValid,
dataPath)
# Now, we are in position to know the number of nodes (for now; this might
# change later on when the graph is created and the options on whether to
# make it connected, etc., come into effect)
nNodes = data.selectedAuthor['all']['wordFreq'].shape[1]
#########
# GRAPH #
#########
# Create graph
nodesToKeep = [] # here we store the list of nodes kept after all
# modifications to the graph, so we can then update the data samples
# accordingly; since lists are passed as pointers (mutable objects)
# we can store the node list without necessary getting an output to the
# function
G = graphTools.Graph('fuseEdges', nNodes,
data.selectedAuthor['train']['WAN'],
'sum', graphNormalizationType, keepIsolatedNodes,
forceUndirected, forceConnected, nodesToKeep)
G.computeGFT() # Compute the GFT of the stored GSO
# And re-update the number of nodes for changes in the graph (due to
# enforced connectedness, for instance)
nNodes = G.N
nodesToKeep = np.array(nodesToKeep)
# And re-update the data (keep only the nodes that are kept after isolated
# nodes or nodes to make the graph connected have been removed)
data.samples['train']['signals'] = \
data.samples['train']['signals'][:, nodesToKeep]
data.samples['valid']['signals'] = \
data.samples['valid']['signals'][:, nodesToKeep]
data.samples['test']['signals'] = \
data.samples['test']['signals'][:, nodesToKeep]
# Once data is completely formatted and in appropriate fashion, change its
# type to torch and move it to the appropriate device
data.astype(torch.float64)
data.to(device)
#%%##################################################################
# #
# MODELS INITIALIZATION #
# #
#####################################################################
# This is the dictionary where we store the models (in a model.Model
# class, that is then passed to training).
modelsGNN = {}
# If a new model is to be created, it should be called for here.
#%%\\\\\\\\\\
#\\\ MODEL 1: Spectral GNN
#\\\\\\\\\\\\
if doSpectralGNN:
thisName = hParamsSpectral['name']
if nDataSplits > 1:
# Add a new name for this trained model in particular
thisName += 'G%02d' % split
##############
# PARAMETERS #
##############
#\\\ Optimizer options
# (If different from the default ones, change here.)
thisTrainer = trainer
thisLearningRate = learningRate
thisBeta1 = beta1
thisBeta2 = beta2
#\\\ Ordering
S, order = graphTools.permIdentity(G.S/np.max(np.diag(G.E)))
# order is an np.array with the ordering of the nodes with respect
# to the original GSO (the original GSO is kept in G.S).
################
# ARCHITECTURE #
################
hParamsSpectral['N'] = [nNodes]
thisArchit = archit.SpectralGNN(# Graph filtering
hParamsSpectral['F'],
hParamsSpectral['M'],
hParamsSpectral['bias'],
# Nonlinearity
hParamsSpectral['sigma'],
# Pooling
hParamsSpectral['N'],
hParamsSpectral['rho'],
hParamsSpectral['alpha'],
# MLP
hParamsSpectral['dimLayersMLP'],
# Structure
S)
thisArchit.to(device)
#############
# OPTIMIZER #
#############
if thisTrainer == 'ADAM':
thisOptim = optim.Adam(thisArchit.parameters(),
lr = learningRate, betas = (beta1,beta2))
elif thisTrainer == 'SGD':
thisOptim = optim.SGD(thisArchit.parameters(), lr=learningRate)
elif thisTrainer == 'RMSprop':
thisOptim = optim.RMSprop(thisArchit.parameters(),
lr = learningRate, alpha = beta1)
########
# LOSS #
########
thisLossFunction = lossFunction # (if different from default,
# change it here)
#########
# MODEL #
#########
Spectral = model.Model(thisArchit, thisLossFunction, thisOptim,
thisName, saveDir, order)
modelsGNN[thisName] = Spectral
writeVarValues(varsFile,
{'name': thisName,
'thisTrainer': thisTrainer,
'thisLearningRate': thisLearningRate,
'thisBeta1': thisBeta1,
'thisBeta2': thisBeta2})
#%%\\\\\\\\\\
#\\\ MODEL 2: Polynomial GNN
#\\\\\\\\\\\\
if doPolynomialGNN:
thisName = hParamsPolynomial['name']
if nDataSplits > 1:
thisName += 'G%02d' % split
##############
# PARAMETERS #
##############
#\\\ Optimizer options
# (If different from the default ones, change here.)
thisTrainer = trainer
thisLearningRate = learningRate
thisBeta1 = beta1
thisBeta2 = beta2
#\\\ Ordering
S, order = graphTools.permIdentity(G.S/np.max(np.diag(G.E)))
# order is an np.array with the ordering of the nodes with respect
# to the original GSO (the original GSO is kept in G.S).
################
# ARCHITECTURE #
################
hParamsPolynomial['N'] = [nNodes]
thisArchit = archit.SelectionGNN(# Graph filtering
hParamsPolynomial['F'],
hParamsPolynomial['K'],
hParamsPolynomial['bias'],
# Nonlinearity
hParamsPolynomial['sigma'],
# Pooling
hParamsPolynomial['N'],
hParamsPolynomial['rho'],
hParamsPolynomial['alpha'],
# MLP
hParamsPolynomial['dimLayersMLP'],
# Structure
S)
# This is necessary to move all the learnable parameters to be
# stored in the device (mostly, if it's a GPU)
thisArchit.to(device)
#############
# OPTIMIZER #
#############
if thisTrainer == 'ADAM':
thisOptim = optim.Adam(thisArchit.parameters(),
lr = learningRate, betas = (beta1,beta2))
elif thisTrainer == 'SGD':
thisOptim = optim.SGD(thisArchit.parameters(), lr=learningRate)
elif thisTrainer == 'RMSprop':
thisOptim = optim.RMSprop(thisArchit.parameters(),
lr = learningRate, alpha = beta1)
########
# LOSS #
########
thisLossFunction = lossFunction
#########
# MODEL #
#########
Polynomial = model.Model(thisArchit, thisLossFunction, thisOptim,
thisName, saveDir, order)
modelsGNN[thisName] = Polynomial
writeVarValues(varsFile,
{'name': thisName,
'thisTrainer': thisTrainer,
'thisLearningRate': thisLearningRate,
'thisBeta1': thisBeta1,
'thisBeta2': thisBeta2})
#%%\\\\\\\\\\
#\\\ MODEL 3: Node-Variant GNN ordered by Degree
#\\\\\\\\\\\\
if doDegree and doNodeVariantGNN:
thisName = hParamsNVDeg['name']
if nDataSplits > 1:
thisName += 'G%02d' % split
##############
# PARAMETERS #
##############
#\\\ Optimizer options
# (If different from the default ones, change here.)
thisTrainer = trainer
thisLearningRate = learningRate
thisBeta1 = beta1
thisBeta2 = beta2
#\\\ Ordering
S, order = graphTools.permDegree(G.S/np.max(np.diag(G.E)))
# order is an np.array with the ordering of the nodes with respect
# to the original GSO (the original GSO is kept in G.S).
################
# ARCHITECTURE #
################
hParamsNVDeg['N'] = [nNodes]
thisArchit = archit.NodeVariantGNN(# Graph filtering
hParamsNVDeg['F'],
hParamsNVDeg['K'],
hParamsNVDeg['M'],
hParamsNVDeg['bias'],
# Nonlinearity
hParamsNVDeg['sigma'],
# Pooling
hParamsNVDeg['N'],
hParamsNVDeg['rho'],
hParamsNVDeg['alpha'],
# MLP
hParamsNVDeg['dimLayersMLP'],
# Structure
S)
thisArchit.to(device)
#############
# OPTIMIZER #
#############
if thisTrainer == 'ADAM':
thisOptim = optim.Adam(thisArchit.parameters(),
lr = learningRate, betas = (beta1,beta2))
elif thisTrainer == 'SGD':
thisOptim = optim.SGD(thisArchit.parameters(), lr=learningRate)
elif thisTrainer == 'RMSprop':
thisOptim = optim.RMSprop(thisArchit.parameters(),
lr = learningRate, alpha = beta1)
########
# LOSS #
########
thisLossFunction = lossFunction
#########
# MODEL #
#########
NVDeg = model.Model(thisArchit, thisLossFunction, thisOptim,
thisName, saveDir, order)
modelsGNN[thisName] = NVDeg
writeVarValues(varsFile,
{'name': thisName,
'thisTrainer': thisTrainer,
'thisLearningRate': thisLearningRate,
'thisBeta1': thisBeta1,
'thisBeta2': thisBeta2})
#%%\\\\\\\\\\
#\\\ MODEL 4: Node-Variant GNN ordered by Spectral Proxies
#\\\\\\\\\\\\
if doSpectralProxies and doNodeVariantGNN:
thisName = hParamsNVSpr['name']
if nDataSplits > 1:
thisName += 'G%02d' % split
##############
# PARAMETERS #
##############
#\\\ Optimizer options
# (If different from the default ones, change here.)
thisTrainer = trainer
thisLearningRate = learningRate
thisBeta1 = beta1
thisBeta2 = beta2
#\\\ Ordering
S, order = graphTools.permSpectralProxies(G.S/np.max(np.diag(G.E)))
# order is an np.array with the ordering of the nodes with respect
# to the original GSO (the original GSO is kept in G.S).
################
# ARCHITECTURE #
################
hParamsNVSpr['N'] = [nNodes]
thisArchit = archit.NodeVariantGNN(# Graph filtering
hParamsNVSpr['F'],
hParamsNVSpr['K'],
hParamsNVSpr['M'],
hParamsNVSpr['bias'],
# Nonlinearity
hParamsNVSpr['sigma'],
# Pooling
hParamsNVSpr['N'],
hParamsNVSpr['rho'],
hParamsNVSpr['alpha'],
# MLP
hParamsNVSpr['dimLayersMLP'],
# Structure
S)
thisArchit.to(device)
#############
# OPTIMIZER #
#############
if thisTrainer == 'ADAM':
thisOptim = optim.Adam(thisArchit.parameters(),
lr = learningRate, betas = (beta1,beta2))
elif thisTrainer == 'SGD':
thisOptim = optim.SGD(thisArchit.parameters(), lr=learningRate)
elif thisTrainer == 'RMSprop':
thisOptim = optim.RMSprop(thisArchit.parameters(),
lr = learningRate, alpha = beta1)
########
# LOSS #
########
thisLossFunction = lossFunction
#########
# MODEL #
#########
NVSpr = model.Model(thisArchit, thisLossFunction, thisOptim,
thisName, saveDir, order)
modelsGNN[thisName] = NVSpr
writeVarValues(varsFile,
{'name': thisName,
'thisTrainer': thisTrainer,
'thisLearningRate': thisLearningRate,
'thisBeta1': thisBeta1,
'thisBeta2': thisBeta2})
#%%\\\\\\\\\\
#\\\ MODEL 5: Node-Variant GNN ordered by EDS
#\\\\\\\\\\\\
if doEDS and doNodeVariantGNN:
thisName = hParamsNVEDS['name']
if nDataSplits > 1:
thisName += 'G%02d' % split
##############
# PARAMETERS #
##############
#\\\ Optimizer options
# (If different from the default ones, change here.)
thisTrainer = trainer
thisLearningRate = learningRate
thisBeta1 = beta1
thisBeta2 = beta2
#\\\ Ordering
S, order = graphTools.permEDS(G.S/np.max(np.diag(G.E)))
# order is an np.array with the ordering of the nodes with respect
# to the original GSO (the original GSO is kept in G.S).
################
# ARCHITECTURE #
################
hParamsNVEDS['N'] = [nNodes]
thisArchit = archit.NodeVariantGNN(# Graph filtering
hParamsNVEDS['F'],
hParamsNVEDS['K'],
hParamsNVEDS['M'],
hParamsNVEDS['bias'],
# Nonlinearity
hParamsNVEDS['sigma'],
# Pooling
hParamsNVEDS['N'],
hParamsNVEDS['rho'],
hParamsNVEDS['alpha'],
# MLP
hParamsNVEDS['dimLayersMLP'],
# Structure
S)
thisArchit.to(device)
#############
# OPTIMIZER #
#############
if thisTrainer == 'ADAM':
thisOptim = optim.Adam(thisArchit.parameters(),
lr = learningRate, betas = (beta1,beta2))