-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
executable file
·60 lines (57 loc) · 2.1 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/bin/bash
#SBATCH --job-name=classifier
#SBATCH -n 1
#SBATCH -N 1
#SBATCH --time 0-02:00:00
#SBATCH --mem 20G
#SBATCH --mail-type=END,FAIL,TIME_LIMIT_90
#SBATCH -o log.%j
#SBATCH -c 6
#SBATCH --gres=gpu:1
#SBATCH --partition=gpu2
if [ "x1" != "x${1}" ]
then
resume=0
else
resume=1
fi
# for all possible args see pyutil/parseNNArgs.py
# use prepareAndRun.sh to start this script (first copies all scripts to new folder and then executes them on cluster)
PYTHONPATH=pyutil: python \
classifier.py \
--version 0.1 \
`#__________________________________________________`\
`# We need this to resume using the resume.sh script`\
`# (set automatically, do not change this)`\
--resume "${resume}" \
`#__________________________________________________`\
`# Describing the CNN architecture for the classifier`\
--cnnSetSizes "64,128,256,512" \
--fcSizes "1024,1024" \
`#__________________________________________________`\
`# Path to training data and normalization factor`\
-i "PATH TO TRAINING IMAGES" \
--normFactorTrain 1e-10 \
`#__________________________________________________`\
`# Path to validation data and normalization factor`\
--valInDir1 "PATH TO VALIDATION/TEST DATA" \
--normFactorVal1 1e-10 \
`#__________________________________________________`\
`# Don't split data provided with -i in train and validation set`\
`# (if you provide separate validation data with valInDirX`\
--allForTrain \
`#__________________________________________________`\
`# Training parameters`\
--relWeightPosSamples 3 \
--pxRes 64 \
--miniBatchSize 64 \
--dropout 0.5 \
--learning-rate 0.001 \
--optimizer adam \
--threshold 0.5 \
--weight-decay 0.00005 \
--numTrainSteps 50000 \
--batchnorm \
`#__________________________________________________`\
`# Apply augmentation`\
--distorted \